
IMPROVEMENT AND ANALYSIS OF TRESSFX REAL-TIME HAIR
SIMULATION FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENIZ UĞURCA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

GAME TECHNOLOGIES

MAY 2015

Approval of the thesis:

IMPROVEMENT AND ANALYSIS OF TRESSFX REAL-TIME HAIR
SIMULATION FRAMEWORK

submitted by DENIZ UĞURCA in partial fulfillment of the requirements for
the degree of Master of Science in Game Technologies Department, Middle
East Technical University by,

Prof. Dr. Nazife Baykal
Director, Informatics Institute, METU

Assist. Prof. Dr. Hüseyin Hacıhabiboğlu
Head of Department, Modelling and Simulation, METU

Prof. Dr. Veysi İşler
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Alptekin Temizel
Modeling and Simulation, METU

Prof. Dr. Veysi İşler
Computer Engineering Department, METU

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu
Modeling and Simulation, METU

Assist. Prof. Dr. Murat Yılmaz
Computer Engineering Department, Cankaya University

Dr. Erdal Yılmaz
Argedor, Ankara

Date: 4 May 2015

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: DENIZ UĞURCA

Signature :

iii

ABSTRACT

IMPROVEMENT AND ANALYSIS OF TRESSFX REAL-TIME HAIR
SIMULATION FRAMEWORK

Uğurca, Deniz

M.S., Department of Game Technologies

Supervisor : Prof. Dr. Veysi İşler

May 2015, 44 pages

One of the single largest challenges in today’s game production is the sim-
ulation and rendering of realistic hair in real time. In most games, hair and
fur are usually covered or simplified with textured meshes. TressFX real-
time GPU hair framework, which is used in Tomb Raider (2013) game, in-
cludes realistic hair by utilizing parallel nature of GPUs. This framework,
however, lacks one of the most distinctive properties of hair: Inter-hair inter-
action. Even though calculating this interaction in real-time is an expensive
task, equalizing hair velocities gives the illusion of hair collision, thus, creat-
ing better visuals, at the expense of some performance loss in a cheaper way.
In this study, an efficient way to address hair-hair collisions is implemented
using uniform girds to improve realism of TressFX framework. Moreover, a
user study is conducted to quantitatively measure the quality improvement.
The results demonstrate that there is a significant difference in users’ percep-
tion of simulation quality in support of the proposed method, while perfor-
mance characteristics of simulation are not effected.

Keywords: Hair Simulation, Hair Physics, Verlet Integration, Direct Com-
pute, GPU

iv

ÖZ

GERÇEK ZAMANLI SAÇ BENZEŞİM PROGRAMI TRESSFX’İN
İNCELEME VE GELİŞTİRİLMESİ

Uğurca, Deniz

Yüksek Lisans, Oyun Teknolojileri Bölümü

Tez Yöneticisi : Prof. Dr. Veysi İşler

Mayıs 2015 , 44 sayfa

Günümüzdeki oyun üretiminde en büyük zorluklardan biri, gerçek zamanlı
ve gerçekçi saç benzetimi ve görselleştirmesidir. Çoğu oyunda saç ve tüy
kapatılmakta ya da basitleştirilmiş dokulu ağlar kullanılmaktadır. Tomb Ra-
ider (2013) oyununda kullanılan TressFX sistemi, grafik işlemcilerinin paralel
doğasından yararlanarak gerçek zamanlı saç kullanmaktadır. Fakat bu yön-
temde saçın en karakteristik özelliklerinden biri olan saç-saç etkileşimlerine
değinilmemiştir. Saç-saç etkileşimini gerçek zamanda hesaplamak oldukça
pahalı olsa da, saçların hızlarını eşitletmek saç çarpışması yanılsamasını ya-
ratarak daha iyi görselleri, bir miktar performans kaybıyla daha ucuza sağlar.
Bu çalışmada, saç-saç çarpışması verimli bir şekilde, düzgün grid kullanıla-
rak, TressFX sisteminin gerçekçiliğinin arttırılarak geliştirilmesi hedeflenmiş-
tir. Buna ek olarak bir kullanıcı çalışmasıyla da sayısal olarak bu iyileştirme
ölçülmüştür. Sonuçlar, önerilen metodda kullanıcıların benzetimdeki kalite
algısında önerilen yöntem lehinde anlamlı bir fark olduğunu gösterirken,
benzetimin performans özelliklerinde değişim olmadığını ortaya koymuştur.

Anahtar Kelimeler: Saç Simülasyonu, Saç Fiziği, Verlet Yöntemi, DirectCom-
pute, GPU

v

To those who can’t wait.

vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Veysi İşler
for invaluable guidance and support.

I would like to thank Dr. Erdal Yılmaz for his advices, patience and remark-
able personality.

I would like to thank AMD for opening TressFX framework to general use
and Kenneth Ellersdorfer for initial Unity3D implementation of the TressFX
framework.

I would also like to thank Mustafa Mert Karaöz for his valuable technical
insights.

Lastly, I would like to thank my mother Z. Günsel Uğurca and my father Rıfat
Uğurca; for without them none of this would be possible.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Contributions . 2

2 BACKGROUND . 3

2.1 Physically Based Simulation 3

2.2 Mass-Spring Systems . 3

2.3 Simulation . 4

2.4 Explicit Euler Method . 5

2.5 Runge Kutta . 5

2.6 Verlet . 6

2.7 GPU Computing . 7

2.8 Compute Shader . 8

2.9 DirectCompute . 8

2.10 Programming Compute Shaders 8

2.11 Hair Model . 10

viii

2.12 Hair Structure . 10

2.13 Hair Simulation . 10

2.14 TressFX . 11

2.14.1 Hair Constraints 12

3 PREVIOUS WORK . 13

3.1 Simulation Methods . 13

3.2 Hair in Computer Games 16

4 PROPOSED METHOD . 19

4.1 Uniform Grid . 19

4.2 Uniform Grid with DirectCompute 20

4.3 Velocity Diffusion . 21

4.4 Diffusion in Compute Shader 22

5 RESULTS AND DISCUSSION . 27

5.1 Performance On Different Architectures 27

5.2 User Study . 28

5.2.1 Performance Test of Braid Hair Style 29

5.2.2 Performance Test of Long Hair Style 29

5.2.3 Realism Test of Braid Hair Style 30

5.2.4 Realism Test of Long Hair Style 30

6 CONCLUSION AND FUTURE WORK 31

REFERENCES . 33

APPENDICES

A QUESTIONNAIRE . 39

A.1 Performance Test of Braid Hair Style 40

A.2 Performance Test of Long Hair Style 41

A.3 Realism Test of Braid Hair Style 42

A.4 Realism Test of Long Hair Style 43

ix

LIST OF TABLES

Table 3.1 Related Work Table . 15

Table 5.1 Performance Tests . 27

x

LIST OF FIGURES

Figure 1.1 Last of Us Remastered . 2
Figure 1.2 Tomb Raider -TressFX Hair . 2

Figure 2.1 CPU GPU Comparison . 7
Figure 2.2 GPU Thread Groups . 9
Figure 2.3 DirectCompute Kernel Call . 9
Figure 2.4 Human Hair . 10
Figure 2.5 Mass Spring System . 11
Figure 2.6 Angular and Stretch Springs 11
Figure 2.7 Local Constraints . 12

Figure 3.1 Tomb Raider 2 . 16
Figure 3.2 Call of Duty: Ghosts . 17
Figure 3.3 The Witcher 3: Wild Hunt . 17

Figure 4.1 A 4x4x4 Uniform Voxel Grid 20
Figure 4.2 Hair in Uniform Grid . 21
Figure 4.3 Tent Function . 22
Figure 4.4 Fast Moving Particle . 23
Figure 4.5 Set Particles to Voxels . 23
Figure 4.6 Random Voxel Index . 24
Figure 4.7 Random Particles Between Successive Frames 24
Figure 4.8 Hair Comparison . 25

Figure 5.1 Screenshot of User Study . 28
Figure 5.2 Descriptive Statistics . 29

Figure A.1 Hair Performance Questionnaire 39
Figure A.2 Hair Realism Questionnaire 40
Figure A.3 Braid Hair Performance Test 40
Figure A.4 Braid Hair Performance Test Graph 41
Figure A.5 Long Hair Performance Test 41
Figure A.6 Long Hair Performance Test Graph 42
Figure A.7 Braid Realism Test . 42
Figure A.8 Braid Realism Test Graph . 43

xi

Figure A.9 Long Hair Realism Test . 43
Figure A.10Long Hair Realism Test Graph 44

xii

LIST OF ABBREVIATIONS

CPU Central Processing Unit
GPU Graphics Processing Unit
GPGPU General Purpose GPU
SoC System on a Chip
FS Fragment Shader
PS Pixel Shader
VS Vertex Shader
CS Compute Shader
PBD Point Based Dynamics
PBM Point Based Methods
FEM Finite Element Method
ODE Ordinary Differential Equations
DAE Differential Algebraic Equations
LOD Level of Detail

xiii

xiv

CHAPTER 1

INTRODUCTION

Although it is currently common for the gaming industry to use characters
with hair in realtime applications, it is still one of the most difficult issues in
development. Usually textured meshes are used to yield plausible results,
but these approaches are not well suited for realistic scenes. Since there is still
a lack of fast and accurate method to simulate thousands of hairs in real time,
static hair with texture-only methods are common in industry. Even games in-
cluding hair simulation, will still limit the number of characters with long and
interactive hair. Avatars and NPCs often have hats, helmets, or they can even
be completely bald to reduce performance requirements considering simulat-
ing real time hair is a daunting task (See Figure: 1.1). Even so, most games
and interactive applications are trying to include characters with interactive
hair, as it is one of the defining characteristics of humans. For this reason in
PC version of the Tomb Raider game, released in 2013, included TressFX hair
simulation framework to simulate full head of hair in real time (See Figure:
1.2).

1.1 Motivation

Typically human hair includes 100.000 - 150.000 strands. Every hair strand is
a thin structure with dynamic features. Even though a hair strand has elastic
properties, as it can easily bend and twist, it is nearly inextensible and resist
to shearing [1]. Hair strands are also notably small in diameter, which makes
the simulation problem more difficult. To overcome this problem, a robust
and efficient method is needed.

Currently, there is no widely accepted method to simulate hair. Since, every
person has a different hair style (color, diameter and general shape) it is also
quite a hard task to simulate hair for individuals considering every ethnic
background have different characteristics of hair [2].

Having a deformable soft-body (such as cloth or fur) in a 3D scene greatly
improves the reality in virtual environments but this improvement is usu-
ally limited with our current generation of computers. With some exceptions,
simulating soft-bodies may be processed in parallel. Along with the rapid
progression in multi-core hardware, especially in GPUs, they can now be uti-

1

lized to perform these tasks. Also, with better simulation methodologies, it is
now closer to become common in games.

Figure 1.1: Last of Us Remastered

1.2 Contributions

Although TressFX is a revolutionary technology in gaming, it still lacks one
key aspect of the believable hair simulation: Inter hair collision. In this study,
a visual improvement by adding inter-hair collision, over the existing frame-
work is proposed. A user study is also conducted to determine the effective-
ness of the proposed method. Furthermore, performance characteristics of
this method is analyzed and discussed.

Figure 1.2: Tomb Raider -TressFX Hair

2

CHAPTER 2

BACKGROUND

In this section, background for physically based simulation and some useful
information on GPU computing and DirectCompute is given. Additionally,
some basic knowledge about hair in humans is provided.

2.1 Physically Based Simulation

In the early days of visualization and special effects, creating believable and
plausible animations was a tedious task. Animators had to work long hours
to create even for a few seconds of animation. To reduce the workload on
animators, and create more plausible results, physically based animation has
emerged. Today, physically based simulation is a particularly active research
field in computer graphics [3]. Although it is computationally expensive to
represent the physical phenomena accurately, recent rapid growth of compu-
tational power makes real time physically based animation a reality.

2.2 Mass-Spring Systems

Deformable bodies are hard to capture in simulation environments. To sim-
plify this phenomena, mass-spring networks can be used. A mass-spring net-
work is a simple approach to model deformable bodies [3]. Let’s consider two
particles with masses m0 and m1 , with positions p0 and p1, and with veloci-
ties v0 and v1. Forces acting on the first two particles (p0, p1) connected with
spring s0 rest length l0, spring stiffness k and damping coefficient kd, (f0, f1)
with regards to will be:

f0 = f s(p0, p1) = ks((p1 − p0)/(|p1 − p0|)) (2.1)

f1 = f s(p1, p0) = −f(xi, xj) = −f0 (2.2)

Here, f s spring force between particles i, j and ks is the spring stiffness. As
Hooke’s law states, ks is a constant factor, specific to that spring.

3

As the total momentum is be conserved (fi + fj = 0), its forces are propor-
tional to the relative elongation:

fi = fd(xi, vi, xj, vj) = kd(vj − vi)
(xj − xi)

|(xj − xi)|
(2.3)

2.3 Simulation

Newton’s second law of motion states:
f = ma (2.4)

In this equation

a = ẍ (2.5)

is the rate of change in velocity, or second derivative of the position with
respect to time. With this formula it is possible to compute the forces acting
on a particle. Separating the second order differential equation results in:

v̇ = f(x, v)/m (2.6)

ẋ = v (2.7)

Where ẋ is the first derivative of position which equals to v and v̇ is the second
derivative which equals to a.

There are analytical solutions of these equations:

v(t) = v0 +

∫ t

t0

f(t)/m dt (2.8)

x(t) = x0 +

∫ t

t0

v(t)/m dt (2.9)

These integrals sum the infinitesimal changes to time t from starting condi-
tions:

v(t0) = v0 (2.10)

and

x(t0) = x0. (2.11)

4

Here, we’re simulating (or time-integrating) x(t) and v(t) from starting time
t0. There are various ways to solve these equations by numerically approxi-
mating derivatives.

2.4 Explicit Euler Method

Where ∆t is the time interval between two successive updates, an approxi-
mation for ordinary differential equations can be written as:

v̇ =
vt+1 − vt

∆t
+ O(∆t2) (2.12)

ẋ =
xt+1 − xt

∆t
+ O(∆t2) (2.13)

Substituting with (2.6) and (2.7) results in:

vt+1 = vt + ∆t f(xt, vt)/m (2.14)

xt+1 = xt + ∆tvt (2.15)

From here, change in velocity and position in ∆t time frame is updated. This
is called explicit Euler integration or Euler forward method as we’re using the
general formula:

yn+1 = yn + hf(xn, yn) (2.16)

to advance the solution from xn to xn+1. Solution is being incremented through
the interval h (which is time step t in this case). As the information used from
beginning of the interval the step’s error is O(t2).

2.5 Runge Kutta

Euler method is only moderately stable as it jumps through future, assuming
the force is constant in the entire step. For large time steps this results in
instability as particles can gain energy and overshoot their target. Runge-
Kutta method (sometimes called RK2 or RK4, depending on the order) on the
other hand, reduces these problems by sampling forces (to cancel out lower
order error terms) more than one time in a time step.

Second order Runge-Kutta results in:
a1 = hf(xn, yn) (2.17)

5

a2 = hf(xn +
1

2
h, yn +

1

2
a1) (2.18)

yn+1 = yn + a2 + O(h3) (2.19)

From this point, fourth order Runge-Kutta can be calculated:

a3 = hf(xn +
1

2
h, yn +

1

2
a2) (2.20)

a4 = hf(xn +
1

2
h, yn + a3) (2.21)

yn+1 = yn +
1

2
a1 + yn +

1

3
a2 +

1

3
a3 +

1

6
a4 + O(h5) (2.22)

2.6 Verlet

Even though having a precise integration method is desired, its significance
may be offset by performance in a real-time entertainment environment, such
as games. One of the high performance and stable integration schemes, used
in simulating molecular dynamics, is the Verlet integration [4]. It was first
used in the game Hitman: Codename 47 (2000).

Being a "velocityless" method, Verlet stores only current position x and pre-
vious position x∗. Keeping time step fixed, we can calculate the new position
x′. With these two simple update rules.

x′ = 2x− x ∗+a∆t2 (2.23)

x∗ = x (2.24)

Also, velocity can easily be computed by:

v(t) =
x(t)− x(t−∆t)

∆t
(2.25)

However, velocity here, is only first order accurate [5]. Since any error made
at any given steps is expected to fade, Verlet algorithm is considered stable.
Other finite difference algorithms don’t guarantee this behavior [6]. These
properties make Verlet an appropriate choice for real time hair simulation.
This thesis is also based on Verlet algorithm, resuming Han and Harada’s
work [7].

6

2.7 GPU Computing

Hardware performance have increased tremendously in recent years with
smaller transistors and multi-core processors yielding considerably more per-
formance. Today, a common CPU includes 4-8 cores. GPUs however, in-
clude hundreds to thousands of cores. (See Figure: 2.1) Even though GPU
cores are lightweight compared to their counterparts, they still offer more
floating point operations per second compared to their CPU counterparts.
In the current market, a 4.6 teraflop NVIDIA GTX 980 GPU including 4GB
GDDR5 memory with 2048 CUDA cores including 1200 MHz clock rate will
cost around $ 600 as of mid 2015 [8]. For more than $ 1000 Intel Haswell E
Core i7 5960X offers theoretical peak of 384 gigaflops [9]. Definitely, CPUs’s
latency oriented nature differ from GPUs in this regard. They don’t need to
send and receive data from slow buses and as a result they’re much faster for
sequential and dependent calculations. On the other hand, throughput ori-
ented processors process bulk data by processing in parallel at the expense
of increased latency, but this latency can be justified by order of magnitude
speed-ups in highly parallel workloads.

CPU Cores -
typically 4-8 GPU Cores - typically 100s-1000s

Figure 2.1: CPU GPU Comparison

GPGPU is General Purpose programming on Graphics Processing Units. In
the late 90s, GPUs were specially designed for games and computer graphics.
They were difficult to program and reason with. Today’s GPUs are general-
purpose parallel processors with support for accessible programming inter-
faces and standard languages such as C/C++ or C derived CUDA (NVIDIA),
OpenCL (Khronos Group) or shader languages. Today not only games, but

7

a wide range of applications can benefit from the throughput oriented pro-
gramming. Developers who use parallelization with GPUs can achieve speedups
of orders of magnitude vs. CPU implementations.

2.8 Compute Shader

The compute shader stage is a data-parallel step which runs on the graphics
hardware. Compute shaders have different processing model than pixel or
vertex shaders as they have cross thread data sharing and unordered access
I/O operations. They can also be used with more general data structures such
as irregular arrays, trees and structs [10]. In the context of games, complex
effects such as fire and smoke simulations or soft body simulations such as
cloth, hair and fur can be achieved easily without changing the render context
to another framework such as OpenCL or CUDA.

2.9 DirectCompute

Microsoft DirectCompute is a compute shader counterpart of OpenGL com-
pute shader. It supports general-purpose computing on GPUs, using same
set of registers as the other programmable stages of Microsoft’s DirectX10
and DirectX11 APIs. DirectCompute has a register based memory. Driver
compiler selects and allocates registers automatically [11]. DirectCompute
guarantees fairly consistent results across different hardware. DirectCom-
pute also shares many concepts, idioms, algorithms and optimizations with
the NVIDIA CUDA, Khronos OpenCL and Microsoft C++ AMP architectures.

In this study’s context, DirectCompute API can also be utilized by soft body
physics such as hair or cloth simulation. In mass spring models, bodies con-
sist of masses and springs. They are updated by forces acting on them in
parallel to speed up the computation.

2.10 Programming Compute Shaders

Decomposing parallel work is one of the main pillars of GPU computing. Di-
rectCompute dispatches groups of threads (hundreds of thousands) to solve
problems this way [12]. Assigning one thread to a part of the big computation
will significantly speed up the process.

Compute Shader stage follows the same general principles as other programmable
shader stages. However, as it is not tied to a particular shader stage, it doesn’t
need to pass or receive data from previous or next stages [13]. For this rea-
son Compute Shaders are reasonably self-contained and can be used to do
computing on its own.

8

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

1 Thread

1 Thread Group

Figure 2.2: GPU Thread Groups

1 / / CPU S i d e
2 / / . . .
3 Dispatch (1 2 , 8 , 3) ;
4

5 / /GPU S i d e
6 [numthreads (5 , 4 , 2)]
7 void MainCS (uint3 Gid : SV_GroupID , uint GI : SV_GroupIndex)
8 {
9 / / . . .

10 }

Figure 2.3: DirectCompute Kernel Call

A GPU is particularly efficient at processing parallel algorithms. It needs,
however, to have a methodology that allows mapping different algorithms to
run on many threads. Like other parallel programming specifications, Direct-
Compute uses a kernel based system. This is a considerably simple way to
work with thousands of threads. Each thread will be tasked with executing
one individual invocation of the kernel on a particular data element. In Di-
recCompute a shader program is executed via a Dispatch call. A dispatch call
will consist of X, Y, Z elements, corresponding to thread group dimensions.

Figure 2.2 illustrates the threading model of DirectCompute API. Here, 12 x
8 x 3 = 288 thread groups are dispatched, each of them containing 5 x 4 x 2
= 40 threads. In this example a total of 11520 threads in parallel are used.
After dispatch call, GPU executes every thread group with a "numthreads"
attribute. This defines the number of threads in a thread group. Call to the
GPU is instantiated by:

To operate on the data kernel must know the index of the relevant thread. For

9

this reason DirectX specifies a number of built-in input variables as follows:

SV_GroupThreadID: XYZ indices of the individual thread in a thread group.
SV_GroupID: XYZ indices of a dispatched thread group.
SV_DispatchThreadID: XYZ indices of the thread in a thread group, com-
bined with other threads and thread groups.
SV_GroupIndex: Individual index of a thread in a thread group.

2.11 Hair Model

Human hair consist of very thin, semi-transparent inextensible strands which
both interact with other hairs and outside objects. In the last century solids
and fluids have been modeled with classic equations, but there is no widely
accepted model for hair as its motion is considerably complex [14]. There
are many different topics to address before discussing a realistic simulation
of hair. In this part mechanical structure and background work will be ex-
plained.

2.12 Hair Structure

To achieve a realistic simulation of hair, requires a detailed understanding of
hair structure. A human hair fiber is a 0.1 mm structure made up mainly from
keratin (See Figure: 2.4 [15]). The Active (live) part of the hair lies under the
skin and called follicle. Shape of the shaft varies by race. Africans usually
have a flat hair cross section whereas Caucasians have ovoid or rounded hair
cross section [2]. Hair simulations are almost solely interested with the dead
part of the hair called the hair shaft.

Figure 2.4: Human Hair

2.13 Hair Simulation

Keratin is the key structural protein material making up the outer layer of the
skin. Even though keratin is considerably stiff, hair’s cross section is remark-
ably small, thus it can easily be bent and twisted [14]. With this property
on hand it is possible to virtually represent a hair strand as chained parti-
cles. In this representation, particles will have point masses and they will be

10

connected by springs. This is called a mass-spring system. (See Figure: 2.5)
Even though this representation have problems such as unwanted elongation
and extreme twisting, it is a very easy model to understand and can be im-
plemented without much effort. To address some of these problems, extra
stretch springs and angular springs between particles (See Figure: 2.6) can be
used.

Figure 2.5: Mass Spring System

Figure 2.6: Angular and Stretch Springs

2.14 TressFX

In 2012, Dongsoo Han and Takahiro Harada published a paper called Real-
time Hair Simulation with Efficient Hair Style Preservation. In this paper,
a real-time hair simulation method is proposed. There were other real-time
hair methods presented before such as position based dynamics (PBD) based
simulations, ([16], [17]) but they were using a large portion of the GPU and
thus are not suitable to be used in a game environment. TressFX, on the other
hand, uses only a fraction of the available GPU power. For these properties it
was later used in Tomb Raider game released in 2013.

TressFX has 2 parts which are hair simulation and hair rendering. As this

11

study is about physical simulation, only physical simulation part of the frame-
work is discussed.

2.14.1 Hair Constraints

TressFX works by utilizing constraints on hair strands. It uses length con-
straints to achieve inextensibility and also global constraints for maintaining
overall hair shape and local constraints for hair bending and twisting effects.

To keep the hair in its starting shape and reduce unwanted entanglements,
initial hair positions are set as goal positions. In every succeeding frame,
hair particles are integrated towards these goal positions and consequently
overall hair shape is maintained throughout the simulation, but this decreases
the bending and twisting of the hair. For this reason, global constraints are
integrated in moderation (usually 2 times).

Another constraint treatment used in TressFX is local constraints. In this step,
hair strands move and rotate in global space to maintain goal rotations. Fig-
ure 2.7 shows a hair strand particles’ positions initial (light blue), goal (red)
and destination (green) positions a frame. This allows preserving of the hair
style whilst sustaining believable bending and twisting effects. After shape
constraints, "length inextensibility" step is applied.

Figure 2.7: Local Constraints

12

CHAPTER 3

PREVIOUS WORK

There are various methods that have been proposed for rendering and simu-
lating hair since late 1980s. Also in recent years with the advancement of the
parallel architectures in both CPUs and GPUs, methods exploiting these par-
allel architectures have increased. This section discusses and reviews some
of the most important hair simulation papers. In addition to hair simula-
tion, some cloth and other soft-body simulation papers are also included since
cloth and hair can easily be represented using same structures such as springs.

3.1 Simulation Methods

Rendering fur and furry surfaces was a largely unsolved problem even at
the late 1980s. Kajiya and Kay’s work is largely on rendering[18]. They
model each hair as infinitesimally thin cylinders and render hair using tex-
els and anisotropic lighting models. Banks generalized this approach to n
dimensions[19]. Early physical hair models largely ignored torsion and inter-
hair interaction forces, focused on non-aggregate methods using spring mod-
els for modeling each strandRosenblum [20]. Anjyo et al. focused on length
preserving models [21]. Since strands don’t have any interactions with other
strands, they are easy to parallelize.

Plante et al. used layered wisp models to address visual defects caused by
the lack of hair-hair interactions [22]. Baraff and Witkin proposed an implicit
integration method with stiff springs [23]. Although this work was for cloth
simulation it was later used for hair simulation by Ward and Lin and Choe et
al. [24], [25]. Using stiff springs however is not enough, a correction method
is needed. Teschner used this method with collisions in cloth simulation [26].
Lokovic and Veach proposed a technique called Deep Shadow Maps for ap-
proximating self shadowing of many thin strands [27]. In this work, instead
of storing a single depth value, they created shadow maps which store a rep-
resentation of the fractional visibility through a pixel at all possible depths.

Selle et al. proposed a new method to simulate the full geometry [28]. As this
is one of the first works simulating full head of hair (about 100.000 strands)
complex hair-hair and hair-body collisions requires considerable computing
resources. Because of this, they failed to simulate 100.000 hairs, as self-collision

13

costs are overwhelmingly expensive even for today’s computers.

Hair can also be modeled as a continuum, to maintain hair volume. Hadap
and Magnenat-Thalmann used a fluid model with chains integrated into vol-
ume [29]. This, being one of the first papers, mixing point chain hair model
with fluid forces, increases fidelity, particularly in hair-hair and hair-air in-
teractions. Bondo et al. also used a fluid continuum, but without connected
particles [30]. This contrasts with Petrovic et al.’s work [31]. They used par-
ticle spring model to represent individual strands with volumetric methods.
Their approach is based on that hair interacts as a bulk material. Utilizing
ideas from Ward and Lin, by considering a small subset of hairs as keyhairs,
reduces the vast number of hairs to deal with[24]. This model uses a Cartesian
voxel grid for both rendering and simulation. Also, the grid based approach
helps with simulation by enabling density and velocity to be averaged.

With the advancement in CPU and GPU hardware, simulated number of
strands have increased considerably. In addition to hardware advancement
some interesting alternatives emerged for simulating hair. Muller et al. in-
troduced position based dynamics (PBD) [32]. PBD solves constraint dynam-
ics problem in an iterative manner. This also enabled to manipulate objects
directly during the simulation, with further improvement, Muller et al. ad-
dressed convergence issues [33]. As this technique is simple and stable, it is
well suited for real-time applications like games. Tariq et al. demonstrated
this technique for an NVIDIA demo with 166 simulated strands, 10220 ren-
dered strands and 1.6 million triangles by utilizing vertex buffer and vertex
shader [17]. Since in mass-spring systems, stretching is an undesired side
effect, there are various methods to guarantee no-stretching. Extending the
method, "follow the leader", Muller et al. used PBD technique efficiently vi-
sualize human hair and furry animals with single iteration per frame for sim-
ulation in real-time [16]. As this method is not as accurate as physically based
techniques, it adds some artificial damping to hairs.

Daviet et al. argued that, friction effect plays a major role in hair dynam-
ics like "stick-slip instabilities" [34]. They presented an iterative solver for
Coulomb friction of tightly packed fibers like hair.

Real hair exhibits many fine details that is hard to capture in a simulation
mostly because of the expensive computations required by complex colli-
sions. Using incompressible fluid methods can overcome this problem ef-
ficiently. McAdams et al. created a technique which combines Lagrangian
and Eulerian hair simulation techniques using fluid-like volumetric collision
methods [35]. In this technique hair behaves similar to fluids, thus momen-
tum and mass are conserved.

Hair may be counted as a super helix structure and the computing dynamics
of super helical thin elastic structures efficiently would result in believable
hair models. Bertails introduced a novel recursive scheme to simulate piece-
wise helical rods in linear time instead of quadratic [36].

Sueda et al. introduced a new hybrid framework combining Lagrangian and
Eulerian approaches to simulations of thin bodies, elastic rods without fluid

14

like forces. Instead they use a reduced node approach for reducing number
of degrees of freedom allowed by the constraints [37].

Iben et al. proposed a method for simulating curly hair to be used in Dis-
ney/Pixar animation film Brave. To maintain curls helical shape they used
extensible elastic rods in addition to bending and core springs [38]. Also their
implementation includes a pruning mechanism to reduce hair-hair contacts
and thus increasing parallelism. Even though many optimization techniques
used in this work, with the sheer number of hairs on characters, simulating
one frame of the hair took over 13 seconds on average on a 12 core Intel Xeon
machine. But, since producing a film doesn’t require real-time simulation,
these costs are usually in the limits.

In 2012, Dongsoo Han and Takihiro Harada published a paper to solve the
real-time hair simulation problem in games which this work is largely based
on [7].

Guan et al. used a data-driven model for learning hair models for real-time
visualizations [39]. They also introduced an efficient hair-body collision tech-
nique by using a form of iterative least squares in a reduced space.

Chai et al. used a data-driven technique with data-driven models simulating
only a small set of hairs called guide hairs [40]. They argued that, previous
works using interpolation of hair dynamics attenuates detailed motions of
hair. With precomputed simulation data, optimizing interpolation weights
for each particle by solving linearly constrained least square problem could
overcome this shortcoming.

Liu et al. proposed a completely new method for integration of Hookean
mass-spring systems which uses a solver based on block coordinate descent
[41]. Using spring directions as auxiliary variables, they cast time-stepping as
an integration problem. Although it converges slower than Newton’s method,
obtaining visually acceptable results are much faster. Being an iterative solver
in its nature, this technique can not be parallelized efficiently and thus uses
only a single core of a CPU.

Table 3.1 shows a matrix of previous approaches.

Table 3.1: Related Work Table

Method / Hardware CPU GPU

Verlet - [7]

Semi-implicit Euler [36], [38], [23], [37] -

Point-Based - [32], [17], [?]

Data-Driven [34], [40], [39] -

Volumetric [29], [30], [31] -

Mathematical [41] -

15

Starting from late 1980s, hair simulation has come a long way. Today, it is
possible to simulate thousands of hair strands in an interactive game environ-
ment with the rapid succession of faster hardware with every generation. Fur-
thermore, algorithms also improved remarkably to enable this visual affinity.
In these works, there is a recognizable pattern. Hair simulations are becom-
ing more parallel by using multiple CPU cores and GPUs, also more data
driven by using statistical learning algorithms. In coming years these two
techniques may merge to create lower training times for learning models and
better runtime performance for multi-core models.

3.2 Hair in Computer Games

Due to the chaotic nature of realistic human hair, it was a hard task to simulate
hair realistically in games even a few years ago. Given the history of the video
games, only a small percentage includes characters with hair. In 1997 Tomb
Raider 2 was released. It was one of the first games to include interactive
hair braids. As it included braids with just a few moving parts in the game,
it allowed developers to increase the fidelity and immersion without much
performance penalty (See Figure: 3.1).

Figure 3.1: Tomb Raider 2

Including physically based hair simulation in games has increased in recent
years. Apart from the TressFX, latest examples include Call of Duty: Ghosts
(2014) and The Witcher 3:Wild Hunt (2015). Both of these games are us-
ing NVIDIA’s Hairworks technology for simulating real-time fur. (See Fig-
ure: 3.2) HairWorks is open to developers to download and experiment with,
through plugins on different versions of Autodesk 3DS Max and Maya but

16

implementation details are not exactly known. Though it is possible to spec-
ulate that it is using Point Based Simulation as NVIDIA affiliated authors
published papers explaining and implementing this technique. An interest-
ing note in Witcher 3 game is that in the game character’s beard grows with
time[42]. As facial hair also delineates the differences between characters this
enhancement would add increased immersion to the game (See Figure: 3.3).

Figure 3.2: Call of Duty: Ghosts

Figure 3.3: The Witcher 3: Wild Hunt

17

18

CHAPTER 4

PROPOSED METHOD

As described in previous chapters, this work aims to introduce hair-hair in-
teraction to the existing TressFX framework with the same spirit as in Petrovic
et al. [31]. Han and Harada’s [7] work, form a basis for TressFX hair simu-
lation framework. In their work, compute capabilities of modern GPUs are
utilized by exploiting the parallel nature of hair. This parallel nature how-
ever, is prone to inter-hair interactions. Since a GPU thread group is assigned
to a strand and a thread is assigned to a vertex, having collisions between
individual hairs is non trivial task because of the GPU’s inter-communication
issues. With thousands of hair strands, using O(n2) complexity algorithm is
not feasible, especially in a fast local memory constrained architecture such as
a GPU. In this study, an improvement is proposed over the original TressFX
method by obtaining better visuals by reason of inter-hair interaction. As will
be discussed in following chapters, this improvement is also evaluated by a
user study.

4.1 Uniform Grid

Petrovic et al. by taking ideas from Hadap et al., proposed a volumetric
method for efficiently solving hair-hair collision problem. A hair strand is
surrounded by other hairs and air and both of these damp hair movements
[29]. Thus, it is safe to assume that adjacent hair strands move with same
or similar velocities and this allows to model hair as a continuum. With this
assumption, hair model becomes similar to fluid models hence reducing the
chaotic complexity of hair to a more manageable scale. One of the easy and
effective ways to represent this phenomena in virtual environment is to use
3D uniform grids as a helper data structure (See Figure: 4.1). First proposed
by Franklin et al., [43] uniform voxel grids provide a fast solution to collision
problem. One of the advantages of using a uniform grid is that uniform grids
are well suited for multi-core architectures such as GPUs. The parallel nature
of many-core systems allow mapping a group of threads to objects in a voxel
grid and thus yielding better performance. Liu et al. also used voxel grids on
GPUs to improve liquid simulation performance [44].

19

Figure 4.1: A 4x4x4 Uniform Voxel Grid

4.2 Uniform Grid with DirectCompute

To equalize the velocities, each hair vertex must be assigned to a voxel of the
uniform grid. In order to achieve this, first a call is made to every particle to
find grid positions. In this call, an integer is assigned to hair vertices from 0
to NumberOfV oxelsPerEdge3 = TotalNumberOfV oxels (See Figure: 4.1).

Figure: 4.1: World To Voxel
1 i n t World2Voxel (f l o a t 4 ver tex)
2 {
3 f l o a t 3 pos = ver tex . xyz − VoxelGridStartPos ;
4 i n t nv = NumVoxelsPerEdge ;
5 i n t voxelNo =
6 i n t (pos . y / EdgeLengthOfAVoxel) ∗ nv ∗ nv +
7 i n t (pos . z / EdgeLengthOfAVoxel) ∗ nv +
8 i n t (pos . x / EdgeLengthOfAVoxel) ;
9

10 return voxelNo ;
11 }

20

Figure 4.2: Hair in Uniform Grid

This call is made by an "embarrassingly parallel" workload. Each vertex of
every strand is calculated fully in parallel. Vertex position is localized by sub-
tracting start position of voxel grid and normalized by dividing edge length
of a voxel. Positions of the vertices are read from a RWStructuredBuffer. A
RWStructuredBuffer is a data buffer residing in GPU, which enables both
read and write operations which differs from StructuredBuffers in this regard.
With this data structure, it is markedly easy to assign hair vertices to voxels
without going back to CPU [45].

4.3 Velocity Diffusion

Due to representation of hair as a volume in this study, density plays an im-
portant role in hair movement. After the construction of the voxel grid, in-
fluence of a hair vertex in each voxel is found via a 3D tent function. Particle
influences linearly increases toward the center and at very center influence is
1 and becomes 0 when vertex coordinates are at the edges of the voxel (4.1).

Dxyz =
∑
i

(1− |P i
x − x|)(1− |P i

y − y|)(1− |P i
z − z|)

(4.1)

Here, D is density and P i
x is the x position of the ith particle.

21

Figure 4.3: Tent Function

Figure 4.3 shows a representation of influences in a voxel. Redder lines show
more influence whereas whiter lines shows less influence.

After finding the average density of the voxel, average velocity of the voxel
should be found. This process is very similar to finding average density. Us-
ing the same 3D tent function, this time influence of every particle is multi-
plied with that particles’ velocities vi and all of these values are summed and
divided to the density (Dxyz) of the voxel (See Figure: 4.2).

Vxyz =

∑
i (1− |P i

x − x|)(1− |P i
y − y|)(1− |P i

z − z|)vi

Dxyz

(4.2)

After finding the average velocity, Verlet integration continues normally. But
if a particle in a voxel is moving faster than the average velocity of that voxel,
its velocity is diffused by introducing a drag term. (See Figure: 4.4) With this
treatment, degenerate fast moving hair particles are slowed down to prevent
unwanted collisions. This, also allows hair to move like a contiguous struc-
ture and outputs more visually pleasing results.

4.4 Diffusion in Compute Shader

In the shader, a global buffer (linear array) is used to hold these indices. At
every frame, every hair particles voxel address is calculated and added to this
buffer in parallel (See Figure: 4.1). This is essentially a scatter operation (See
Figure: 4.5).

In DirectCompute, however, buffers have fixed size. In this implementation

22

Figure 4.4: Fast Moving Particle

Figure 4.5: Set Particles to Voxels

512 (8x8x8) voxels are used with a maximum capacity of 1024 in each voxel.
This pre-allocation results in 2MB of extra memory. Sometimes there may be
more than 1024 particles in a voxel. To cope with this, extra voxels may be
used or capacity of a voxel may be increased but it will also increase memory
requirements. In this work randomness is used to cope with capacity prob-
lem. Particles will be added to voxel buffer randomly without checking if that
place is used by another hair particle via Figure 4.6.

This function outputs a value between 0 and 1 when seeded by two floating
point numbers. Here, floating parts of the vertex x and y coordinates are used.
As floating parts are changing rapidly, functions output is random.

Figure 4.7 shows hair vertices’ states between two successive frames. White
particles represent particles which are not added to the voxel buffer and red
particles represent the ones added to the voxel buffer. In the first frame (left

23

1 s t a t i c const f l o a t 2 r = f l o a t 2 (
2 / / e ^ p i (G e l f o n d ’ s c o n s t a n t)
3 23 .14069263277 ,
4 / / 2 ^ s q r t (2) (Ge l fond−S c h n e i d e r c o n s t a n t)
5 2 .66514414269) ;
6

7 f l o a t Random(f l o a t 2 p)
8 {
9 return f r a c (cos (fmod (1 2 3 4 5 6 7 8 9 . , 1e−7 + 2 5 6 . ∗ dot (p , r)))) ;

10 }

Figure 4.6: Random Voxel Index

cube) red particles’ velocities are calculated and diffused. White particles are
not added to this calculation due to space constraints, but in second frame
(right cube), because of the randomness, some of white particles are turned
to red; hence, added to calculations and their velocities are diffused. In the
course of a few hundred frames eventually all particles will almost surely be
added to voxel buffer and their velocities will be diffused if their speed is
more than 2 times the average voxel velocity in some direction. For exam-
ple, if a particle’s Z coordinate velocity is more than two times the average
voxel velocity, Z component of its velocity vector is reduced by ten percent.
Even for pathologically fast moving particles, (five to ten times more than the
average velocity) this effect adds up in consequent frames and reduces that
particle’s velocity to near average voxel velocity.

Figure 4.7: Random Particles Between Successive Frames

After this treatment, hair in simulation looks more realistic and inter hair col-
lisions are much less pronounced. In Figure 4.8 an image of interlocked hair
is shown.

24

Figure 4.8: Hair Comparison

25

26

CHAPTER 5

RESULTS AND DISCUSSION

After adding the new step, some performance loss is introduced to the sim-
ulation. In this section this loss is justified via a user study and performance
characteristics of the original and proposed method on various architectures
are discussed.

5.1 Performance On Different Architectures

Performance of the braid hair simulation have been tested on two major graph-
ics card vendors. In tests one Intel and five NVIDIA based chipsets are used.
Every test has been done with compiled release versions in 1024x768 win-
dowed resolution with Unity’s "Fantastic" quality setting and ran for 20 sec-
onds five times. Arithmetic mean of the fastest three observations are taken
and the following results are obtained.

Table 5.1: Performance Tests

Graphics Card Original Shader FPS Proposed Shader FPS

Intel(R) HD Graphics 4000 9.62 9.36

NVIDIA GeForce GT 540M 17.64 17.06

NVIDIA GeForce GT 650M 36.91 30.51

NVIDIA GeForce GTX 760 90.24 74.66

NVIDIA GeForce GTX 660 Ti 110.21 87.02

NVIDIA GeForce GTX 960 152.65 124.36

As shown in Table 5.1, it is possible to see with lower end cards, performance
is about the same. This is mainly because of the lower computing unit count.
Intel HD Graphics 4000 GPU has 16 execution units and NVIDIA GT540M
graphics card has 96 shader cores whereas GTX 660Ti has 1344 cores, GTX
760 has 1152 cores and GTX 960 has 1024 cores with varying clock speeds.
In the case of lower end chipsets, performance is stalled at the process of in-
tegrating individual hair strands, therefore adding an additional step would

27

not introduce extra cost. However, after a certain point in graphics card core
count, a performance gap appears. It is possible to say that in this implemen-
tation, core count is important until all hair vertices can be integrated without
"core starvation". After this point, additional performance penalties from the
new implementation becomes pronounced.

5.2 User Study

In testing this interactive 3D physical simulation, users are presented with
two applications for each hair style (braid and long) which are exactly same in
appearance and interaction properties, but differ in simulation characteristics.
Figure 5.1 shows a screen shot of the application in the administered user
study. Also, questions asked to participants can be found in the appendix
A.1.

Figure 5.1: Screenshot of User Study

All tests are conducted with NVIDIA 580M graphics card and Intel Core i7
3630QM CPU. Users interacted with two applications in random order and
after this, they were presented with a questionnaire which asks them to rate
realism and performance of two simulations. A 6-point Likert scale is used
to measure differences in hair simulations. With a total of 17 participants, a
statistical analysis is conducted to gathered data to test proposed hypothe-
ses. The average age of the participants was 29.4 and ages were ranged from
24 to 37. 4 of the participants were female and 13 were male. 10 of the par-
ticipants had technical backgrounds related to information technologies and
all of them had at least a BSc degree in a field of science. To have a better
idea about the given answers and summarize the data descriptive statistics is
given in 5.2.

To test hypotheses Wilcoxon signed-rank test is used. This test is appropriate

28

Descriptive Statistics:

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
BraidImprovedPerformance 17 0 4.824 0.176 0.728 4.000 4.000 5.000 5.000
LongImprovedPerformance 17 0 4.529 0.212 0.874 3.000 4.000 4.000 5.000
BraidOriginalPerformance 17 0 5.235 0.161 0.664 4.000 5.000 5.000 6.000
LongOriginalPerformance 17 0 4.941 0.218 0.899 4.000 4.000 5.000 6.000
BraidImprovedRealism 17 0 4.765 0.182 0.752 4.000 4.000 5.000 5.000
LongImprovedRealism 17 0 5.176 0.196 0.809 4.000 4.500 5.000 6.000
BraidOriginalRealism 17 0 3.765 0.235 0.970 2.000 3.000 4.000 5.000
LongOriginalRealism 17 0 4.235 0.235 0.970 2.000 3.500 5.000 5.000

Figure 5.2: Descriptive Statistics

in this scenario, as 17 users are a relatively small sample size and may not
have normality assumption fulfilled.

In Wilcoxon signed-rank test, median values are compared with testing whether
two samples’ differences originates from a distribution with zero median. For
all of the 4 tests, hypotheses are similar and tests if there is a statistically sig-
nificant difference between two groups.

H0 : Median difference between pairs of observations is zero.

H1 : Median difference between pairs of observations is not zero.

5.2.1 Performance Test of Braid Hair Style

H0 : Median performance differences between proposed

and original method for braid hair style is zero.

H1 : Median performance differences between proposed

and original method for braid hair style is not zero.

In testing of performance with braid hair style, p value is:

p = 0.071 > 0.05 (5.1)

Therefore, null hypothesis is failed to be rejected. Users didn’t perceived a
difference in performance between two applications.

5.2.2 Performance Test of Long Hair Style

H0 : Median performance differences between proposed

and original method for long hair style is zero.

H1 : Median performance differences between proposed

and original method for long hair style is not zero.

29

In testing of performance with long hair style, p value is:
p = 0.154 > 0.05 (5.2)

Therefore, the null hypothesis is failed to be rejected. With the long hair style
users, again, didn’t perceived a difference in performance between two ap-
plications.

5.2.3 Realism Test of Braid Hair Style

H0 : Median perceived realism differences between proposed

and original method for braid hair style is zero.

H1 : Median perceived realism differences between proposed

and original method for braid hair style is not zero.

Testing for realism, however shows different results. With p value:

p = 0.005 < 0.05 (5.3)

Null hypothesis is rejected. In consequence, there is a statistically significant
difference in realism of the two simulations. As median value of results from
proposed simulation is higher than the original simulation values, it can be
said that proposed simulation for braid hair style looks more realistic to tested
users.

5.2.4 Realism Test of Long Hair Style

H0 : Median perceived realism differences between proposed

and original method for long hair style is zero.

H1 : Median perceived realism differences between proposed

and original method for long hair style is not zero.

P value for realism test of long hair style is:

p = 0.027 < 0.05 (5.4)

Therefore, null hypothesis is rejected. In this case, even though median values
are same (5.0), the distribution of LongOriginalRealism is skewed towards the
left side. Hence we conclude that proposed simulation appears more realistic
on tested subjects.

30

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a GPU based hair simulation method TressFX is presented and
an improvement to this technique is proposed. TressFX is currently the state
of the art in hair simulation by allowing real-time and realistic hair simulation
in games. But it doesn’t have hair-hair collision. With this study, a volumet-
ric effect to simulate inter hair-collision is added to the TressFX simulation,
utilizing ideas from [31]. A uniform grid is used to equalize hair velocities
and therefore creating the image of hair-hair interaction. Alongside the extra
computation required to make the collision effect, some performance loss is
added to the system. As computer hardware keeps getting better at every
generation, especially GPUs, this loss will be pronounced less and less.

With conducted user study, two hairstyles are tested regarding performance
and realism of simulation. In both tests, users didn’t perceived a difference
in performance characteristics for either of the simulations. In realism survey,
however, users found proposed hair simulation scheme more realistic.

For future work, different LOD techniques may be introduced into simulation
as with increasing distance from the character with hair would greatly reduce
the costs whilst possessing same appearance with a smaller number of hairs
in simulation. Also in scenes with many characters, some of the same sim-
ulation data may be used in different characters to lower overall simulation
costs. Furthermore, basic simulation data may be preprocessed and can be
added to characters which are distant to the player thus giving the illusion of
an actual simulation is in progress. A user study, similar to one, introduced
in this work, can be conducted to verify results.

31

32

REFERENCES

[1] Jamie Snape. Simulating Hair Dynamics. http://www.cs.unc.edu/
~lin/COMP768-F07/LEC/hair.pdf, 2003. Online; accessed 10-May-
2015.

[2] B Lindelöf, Bo Forslind, Mari-Anne Hedblad, and U Kaveus. Hu-
man hair form. morphology revealed by light and scanning elec-
tron microscopy and computer aided three-dimensional reconstruction.
Archives of dermatology, 124(9):1359–1363, 1988.

[3] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real time
physics: Class notes. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08,
pages 88:1–88:90, New York, NY, USA, 2008. ACM.

[4] Thomas Jakobsen. Advanced Character Physics. http:
//web.archive.org/web/20080410171619/http://www.
teknikus.dk/tj/gdc2001.htm, 2001. Online; accessed 10-May-
2015.

[5] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real time
physics: Class notes. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08,
pages 88:1–88:90, New York, NY, USA, 2008. ACM.

[6] Hannes Johnson. Classical dynamics Lecture Notes. https://
notendur.hi.is/hj/EE4-05/Verlet.pdf, 2003. Online; accessed
10-May-2015.

[7] Dongsoo Han and Takahiro Harada. Real-time hair simulation with effi-
cient hair style preservation. In Workshop on Virtual Reality Interaction and
Physical Simulation, pages 45–51. The Eurographics Association, 2012.

[8] NVIDIA. GeForce GTX 980. http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-980/specifications,
2015. Online; accessed 15-May-2015.

[9] Intel. i7-5960X. http://goo.gl/RmoS9V, 2015. Online; accessed 15-
May-2015.

[10] Boyd, Chas. SIGGRAPH 2008: Beyond Programmable Shading. http:
//s08.idav.ucdavis.edu/, 2008. Online; accessed 10-May-2015.

33

http://www.cs.unc.edu/~lin/COMP768-F07/LEC/hair.pdf
http://www.cs.unc.edu/~lin/COMP768-F07/LEC/hair.pdf
http://web.archive.org/web/20080410171619/http://www.teknikus.dk/tj/gdc2001.htm
http://web.archive.org/web/20080410171619/http://www.teknikus.dk/tj/gdc2001.htm
http://web.archive.org/web/20080410171619/http://www.teknikus.dk/tj/gdc2001.htm
https://notendur.hi.is/hj/EE4-05/Verlet.pdf
https://notendur.hi.is/hj/EE4-05/Verlet.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
http://goo.gl/RmoS9V
http://s08.idav.ucdavis.edu/
http://s08.idav.ucdavis.edu/

[11] Wolfgang Engel. Microsoft R© DirectCompute on Intel R© mi-
croarchitecture Code Name Ivy Bridge Processor Graphics.
https://software.intel.com/sites/default/files/m/
d/4/1/d/8/DirectCompute_on_DirectX_11.pdf, 2012. Online;
accessed 10-May-2015.

[12] Tianyun Ni. Direct Compute Bring GPU Computing to the Main-
stream. http://www.nvidia.com/content/GTC/documents/
1015_GTC09.pdf, 2009. Online; accessed 10-May-2015.

[13] Jason Zink, Matt Pettineo, and Jack Hoxley. Practical Rendering and Com-
putation with Direct3D 11. A. K. Peters, Ltd., Natick, MA, USA, 1st edi-
tion, 2011. Chapter: The Computation Pipeline, Page: 289.

[14] Sunil Hadap, Marie-Paule Cani, Ming Lin, Tae-Yong Kim, Florence
Bertails, Steve Marschner, Kelly Ward, and Zoran Kačić-Alesić. Strands
and hair: Modeling, animation, and rendering. In ACM SIGGRAPH 2007
Courses, SIGGRAPH ’07, pages 1–150, New York, NY, USA, 2007. ACM.

[15] Scienceimage. HUMAN HAIR AND MERINO WOOL FIBRE.
http://www.scienceimage.csiro.au/library/textile/
i/8115/human-hair-and-merino-wool-fibre/, 2008. Online;
accessed 10-May-2015.

[16] Matthias Muller, Tae-Yong Kim, and Nuttapong Chentanez. Fast simu-
lation of inextensible hair and fur. VRIPHYS, 12:39–44, 2012.

[17] Sarah Tariq and Louis Bavoil. Real time hair simulation and rendering
on the GPU. ACM SIGGRAPH 2008 talks on - SIGGRAPH ’08, page 1,
2008.

[18] James T Kajiya and Timothy L Kay. Rendering fur with three dimen-
sional textures. In ACM Siggraph Computer Graphics, volume 23, pages
271–280. ACM, 1989.

[19] David C Banks. Illumination in diverse codimensions. In Proceedings of
the 21st annual conference on Computer graphics and interactive techniques,
pages 327–334. ACM, 1994.

[20] Robert E Rosenblum, Wayne E Carlson, and Edwin Tripp. Simulating
the structure and dynamics of human hair: modelling, rendering and
animation. The Journal of Visualization and Computer Animation, 2(4):141–
148, 1991.

[21] Ken-ichi Anjyo, Yoshiaki Usami, and Tsuneya Kurihara. A simple
method for extracting the natural beauty of hair. In ACM SIGGRAPH
Computer Graphics, volume 26, pages 111–120. ACM, 1992.

34

https://software.intel.com/sites/default/files/m/d/4/1/d/8/DirectCompute_on_DirectX_11.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/DirectCompute_on_DirectX_11.pdf
http://www.nvidia.com/content/GTC/documents/1015_GTC09.pdf
http://www.nvidia.com/content/GTC/documents/1015_GTC09.pdf
http://www.scienceimage.csiro.au/library/textile/i/8115/human-hair-and-merino-wool-fibre/
http://www.scienceimage.csiro.au/library/textile/i/8115/human-hair-and-merino-wool-fibre/

[22] Eric Plante, Marie paule Cani, and Pierre Poulin. A layered wisp model
for simulating interactions inside long hair. In Proc. of Eurographics Work-
shop on Animation and Simulation, pages 139–148, 2001.

[23] David Baraff and Andrew Witkin. Large steps in cloth simulation. In
SIGGRAPH 98 Conference Proceedings, pages 43–54, 1998.

[24] Kelly Ward and Ming C Lin. Adaptive grouping and subdivision for
simulating hair dynamics. In Computer Graphics and Applications, 2003.
Proceedings. 11th Pacific Conference on, pages 234–243. IEEE, 2003.

[25] Byoungwon Choe, Min Gyu Choi, and Hyeong-Seok Ko. Simulating
complex hair with robust collision handling. In Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
153–160. ACM, 2005.

[26] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zach-
mann, Laks Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure,
Nadia Magnenat-Thalmann, Wolfgang Strasser, et al. Collision detection
for deformable objects. In Computer Graphics Forum, volume 24, pages
61–81. Wiley Online Library, 2005.

[27] Tom Lokovic and Eric Veach. Deep shadow maps. In Proceedings of
the 27th annual conference on Computer graphics and interactive techniques,
pages 385–392. ACM Press/Addison-Wesley Publishing Co., 2000.

[28] Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw. Robust
high-resolution cloth using parallelism, history-based collisions, and ac-
curate friction. Visualization and Computer Graphics, IEEE Transactions on,
15(2):339–350, 2009.

[29] Sunil Hadap and Nadia Magnenat-Thalmann. Modeling dynamic hair
as a continuum. In Computer Graphics Forum, volume 20, pages 329–338.
Wiley Online Library, 2001.

[30] Yosuke Bando, Bing-Yu Chen, and Tomoyuki Nishita. Animating hair
with loosely connected particles. In Computer Graphics Forum, vol-
ume 22, pages 411–418. Wiley Online Library, 2003.

[31] Lena Petrovic, Mark Henne, and John Anderson. Volumetric methods
for simulation and rendering of hair. Pixar Animation Studios, 2005.

[32] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
Position based dynamics. Journal of Visual Communication and Image Rep-
resentation, 18(2):109–118, 2007.

[33] Matthias Muller. Hierarchical position based dynamics. VRIPHYS, 8:1–
10, 2008.

35

[34] Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. A
hybrid iterative solver for robustly capturing coulomb friction in hair
dynamics. ACM Transactions on Graphics, 30(6):1, December 2011.

[35] Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios Sifakis, and
Joseph Teran. Detail preserving continuum simulation of straight hair.
In ACM Transactions on Graphics (TOG), volume 28, page 62. ACM, 2009.

[36] Florence Bertails. Linear time super-helices. In Computer Graphics Forum,
volume 28, pages 417–426. Wiley Online Library, 2009.

[37] Shinjiro Sueda, Garrett L Jones, David IW Levin, and Dinesh K Pai.
Large-scale dynamic simulation of highly constrained strands. In ACM
Transactions on Graphics (TOG), volume 30, page 39. ACM, 2011.

[38] Hayley Iben, Mark Meyer, Lena Petrovic, Olivier Soares, John Anderson,
and Andrew Witkin. Artistic simulation of curly hair. In Proceedings of
the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 63–71. ACM, 2013.

[39] Peng Guan, Leonid Sigal, Valeria Reznitskaya, and Jessica K Hodgins.
Multi-linear data-driven dynamic hair model with efficient hair-body
collision handling. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 295–304. Eurographics Associ-
ation, 2012.

[40] Menglei Chai, Changxi Zheng, and Kun Zhou. A reduced model for in-
teractive hairs. ACM Transactions on Graphics, (Proc. of SIGGRAPH 2014),
33(4):to appear, 2014.

[41] Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan.
Fast simulation of mass-spring systems. ACM Transactions on Graphics
(TOG), 32(6):214, 2013.

[42] EuroGamer. Geralt’s beard grows as you play
Witcher 3. http://www.eurogamer.net/articles/
2015-03-24-geralts-beard-grows-as-you-play-witcher-3,
2015. Online; accessed 10-May-2015.

[43] Wm Randolph Franklin, Chandrasekhar Narayanaswami, Mohan
Kankanhalli, David Sun, Meng-Chu Zhou, and Peter YF Wu. Uniform
grids: A technique for intersection detection on serial and parallel ma-
chines. In Proceedings of Auto-Carto, volume 9, pages 100–109, 1989.

[44] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3d fluid simula-
tion on gpu with complex obstacles. In Computer Graphics and Applica-
tions, 2004. PG 2004. Proceedings. 12th Pacific Conference on, pages 247–256.
IEEE, 2004.

36

http://www.eurogamer.net/articles/2015-03-24-geralts-beard-grows-as-you-play-witcher-3
http://www.eurogamer.net/articles/2015-03-24-geralts-beard-grows-as-you-play-witcher-3

[45] Microsoft Dev Center. RWStructuredBuffer. http://bit.ly/
1Fi64Z4, 2013. Online; accessed 10-May-2015.

37

http://bit.ly/1Fi64Z4
http://bit.ly/1Fi64Z4

38

Appendix A

QUESTIONNAIRE

Figure A.1: Hair Performance Questionnaire

39

Figure A.2: Hair Realism Questionnaire

A.1 Performance Test of Braid Hair Style

Figure A.3: Braid Hair Performance Test

40

Figure A.4: Braid Hair Performance Test Graph

A.2 Performance Test of Long Hair Style

Figure A.5: Long Hair Performance Test

41

Figure A.6: Long Hair Performance Test Graph

A.3 Realism Test of Braid Hair Style

Figure A.7: Braid Realism Test

42

Figure A.8: Braid Realism Test Graph

A.4 Realism Test of Long Hair Style

Figure A.9: Long Hair Realism Test

43

Figure A.10: Long Hair Realism Test Graph

44

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions

	BACKGROUND
	Physically Based Simulation
	Mass-Spring Systems
	Simulation
	Explicit Euler Method
	Runge Kutta
	Verlet
	GPU Computing
	Compute Shader
	DirectCompute
	Programming Compute Shaders
	Hair Model
	Hair Structure
	Hair Simulation
	TressFX
	Hair Constraints

	PREVIOUS WORK
	Simulation Methods
	Hair in Computer Games

	PROPOSED METHOD
	Uniform Grid
	Uniform Grid with DirectCompute
	Velocity Diffusion
	Diffusion in Compute Shader

	RESULTS AND DISCUSSION
	Performance On Different Architectures
	User Study
	Performance Test of Braid Hair Style
	Performance Test of Long Hair Style
	Realism Test of Braid Hair Style
	Realism Test of Long Hair Style

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	QUESTIONNAIRE
	Performance Test of Braid Hair Style
	Performance Test of Long Hair Style
	Realism Test of Braid Hair Style
	Realism Test of Long Hair Style

