

UBDROID: A TOOL FOR MONITORING SMARTPHONE APPLICATION USAGE FOR

USER BEHAVIOR ANALYSIS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERKAM AKKURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JULY 2015

UBDROID: A TOOL FOR MONITORING SMARTPHONE APPLICATION USAGE FOR

USER BEHAVIOR ANALYSIS

Submitted by Erkam AKKURT in partial fulfillment of the requirements for the degree of

Master of Science in Information Systems, Middle East Technical University by,

Prof. Dr.Nazife Baykal

Director, Informatics Institute

Prof. Dr.Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assoc. Prof. Dr. Alptekin Temizel

Supervisor, Modeling and Simulation

Assist. Prof. Dr. Tuğba Taşkaya Temizel

Co-supervisor, Information Systems

Examining Committee Members:

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, METU

Assoc. Prof. Dr. Alptekin Temizel

Modeling and Simulation, METU

Dr. Haluk Altunel

SOFTTECH

Assoc. Prof. Dr. Aysu Betin Can

Information Systems, METU

Assist. Prof. Dr. Erhan Eren

Information Systems, METU

Date: 06/07/2015

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and result that

are not original to this work.

Name, Last Name : Erkam Akkurt

Signature :

iv

ABSTRACT

UBDROID: A TOOL FOR MONITORING SMARTPHONE APPLICATION USAGE FOR

USER BEHAVIOR ANALYSIS

Akkurt, Erkam

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Alptekin Temizel

Co-Supervisor: Assist. Prof. Dr. Tuğba Taşkaya Temizel

January 2015, 63 pages

UBDroid is a multilayer tool for monitoring application usage on Android platform.

UBDroid consists of an Android client application and a server application. The client

application keeps track of user interactions by collecting start and running time of

applications and sensor data. The data are collected on the device and subsequently sent to a

remote server on a schedule and as a result the system does not require constant network

connection. The server application gathers application information such as category and

rating from Google Play and processes the collected data. UBDroid provides an energy

efficient system for collecting user data which is valuable for user behavior analysis.

Keywords: User behavior analysis, mobile application analysis, Android application usage,

mobile sensing.

v

ÖZ

UBDROID: KULLANICI DAVRANIŞ ANALİZİ İÇİN AKILLI TELEFON

UYGULAMALARI KULLANIM İZLEME ARACI

Akkurt, Erkam

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Alptekin Temizel

Eş Danışman: Yrd. Doç. Dr. Tuğba Taşkaya Temizel

Ocak 2015, 63 sayfa

UBDroid, Android platformunda uygulama kullanımını izlemek için çok katmanlı bir araçtır.

UBDroid Android istemci uygulaması ve sunucu uygulamasından oluşur. İstemci

uygulaması, uygulamaların başlatılma zamanı ve çalışma süresi ile algılayıcı verilerini

kaydeder. Aygıt üzerinde toplanan veri daha sonra uzak sunucuya belirli aralıklarla

aktarıldığından sistem sürekli ağ bağlantısı gerektirmemektedir. Sunucu uygulaması Google

Play’den uygulama puan ve kategori gibi bilgileri edinir ve toplanan veriyi işler. UBDroid

kullanıcı davranışı analizi için kullanım bilgisi toplayan enerji verimli bir sistem

sağlamaktadır.

Anahtar Sözcükler: Kullanıcı davranış analizi, mobil uygulama analizi, Android uygulama

kullanımı, mobil algılama.

vi

DEDICATION

To my family

vii

ACKNOWLEDGMENTS

I want to express my gratitude to my supervisor Assoc. Prof. Dr. Alptekin Temizel for his

encouraging, advice and guidance in this thesis study.

I am very thankful to Assist. Prof. Dr. Tuğba Taşkaya Temizel for her important insights that

addresses requirements of our study.

I also would like to thank everyone who keeps my motivation up with their support and

encouragement during the study.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ... v

DEDICATION .. vi

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Scope .. 2

1.3 Outline .. 3

CHAPTER 2 ... 5

LITERATURE REVIEW ... 5

2.1 Mobile Sensing ... 5

2.2 Mobile User Behavior Analysis ... 8

2.3 Mobile Application Analysis .. 12

2.4 Android Battery Management .. 13

CHAPTER 3 ... 15

RESEARCH METHODOLOGY ... 15

3.1 System Objectives .. 15

3.2 System Use Cases ... 17

3.3 System Structure and Implementation Decisions ... 21

3.3.1 Server Application Implementation Decisions ... 22

3.3.2 Client Application Implementation Decisions ... 23

3.3.3 Web Client Application Implementation Decisions ... 23

3.4 Server Application Design ... 24

3.4.1 User Module ... 24

ix

3.4.2 Survey Module ... 26

3.4.3 Message Module .. 28

3.4.4 Data Collection Module ... 29

3.4.5 Batch Module ... 31

3.5 Web Client Application Design ... 32

3.5.1 User Module ... 32

3.5.2 Survey Module ... 33

3.5.3 Message Module .. 33

3.5.4 Batch Module ... 33

3.6 Client Application Design .. 34

3.6.1 User Module ... 34

3.6.2 Data Collection Module ... 35

3.6.3 Message Module .. 39

CHAPTER 4 .. 41

SYSTEM PERFORMANCE TEST AND RESULTS ... 41

4.1 UBDroid Client Test .. 42

4.1.1 Test Setup ... 42

4.1.2 Test Results .. 43

4.2 UBDroid Server Test ... 47

4.2.1 Test Setup ... 47

4.2.1 Test Results .. 47

CHAPTER 5 .. 49

CONCLUSIONS AND FUTURE WORK .. 49

5.1 Conclusions .. 49

5.2 Limitations ... 50

5.3 Future Work ... 51

APPENDICES ... 52

Appendix A: Web Client Application User Interfaces .. 52

Appendix B: Lessons Learned and Implementation Issues ... 58

REFERENCES .. 61

x

LIST OF TABLES

Table 1 - List of sensors on modern smartphones [21] .. 6

Table 2 – Summary of mobile sensing and user analysis studies ... 10

Table 3 – Tested smartphones .. 42

Table 4 – Memory usage (MB) .. 43

Table 5 – Disk usage (KB) ... 44

Table 6 – Network usage (KB) ... 44

Table 7 – Battery usage on foreground application polling (J) .. 45

Table 8 - Battery usage on application usage collection (J) ... 45

Table 9 – Battery usage on application usage transfer (J) .. 45

Table 10 – Battery usage on sensor usage data collection (J) .. 45

Table 11 – Battery usage on sensor data transfer (J) .. 45

Table 12 – Overall battery usage for average user per day (J) ... 46

Table 13 – CPU usage .. 46

Table 14 – Test server specifications ... 47

xi

LIST OF FIGURES

Figure 1 – UBDroid use case diagram ... 17

Figure 2 – Registration user interface .. 18

Figure 3 – Add survey user interface ... 18

Figure 4 – Send message user interface ... 19

Figure 5 – Notification user interface .. 19

Figure 6 – Message user interface.. 20

Figure 7 – Add user group user interface ... 20

Figure 8 – Add user to user group interface ... 20

Figure 9 – System structure ... 21

Figure 10 – Layered application architecture .. 22

Figure 11 – Model-View-Controller pattern [24] .. 24

Figure 12 – User module ER diagram ... 25

Figure 13 – Survey module ER diagram .. 27

Figure 14 – Message module ER diagram ... 28

Figure 15 – Data collection module ER diagram ... 30

Figure 16 – Batch module ER diagram .. 31

Figure 17 – Batch module structure [25] ... 32

Figure 18 – Registration activity diagram .. 35

Figure 19 – Application usage collection timeline .. 36

Figure 20 – Application usage collection class diagram .. 36

Figure 21 – Sensor data collection class diagram .. 37

Figure 22 – Data upload class diagram .. 38

Figure 23 – Message module class diagram .. 39

Figure 24 – Response time graph ... 48

Figure 25 – User status web interface .. 52

Figure 26 – Add list user group web interface ... 53

Figure 27 – Add user to user group web interface ... 53

Figure 28 – Add survey web interface ... 54

xii

Figure 29 – Preview survey web interface ... 54

Figure 30 – List surveys web interface... 55

Figure 31 – Send message web interface ... 55

Figure 32 – Send command message web interface ... 56

Figure 33 – Support messages web interface ... 56

Figure 34 – Fetch application statistics web interface .. 57

xiii

LIST OF ABBREVIATIONS

SDK Software Development Kit

GPS Global Positioning System

LBS Location-based service

SMS Short messaging system

3G 3
rd

 Generation

IMEI International Mobile Equipment Identity

DDMS Dalvik Debug Monitor Server

JSON JavaScript Object Notation

ADT Android Development Toolkit

UTC Coordinated Universal Time

REST Representational State Transfer

DTO Data Transfer Object

ORM Object Relational Mapping

CRUD Create, Read, Update, Delete

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Smartphone usage has increased significantly during the last decade. In 2007,

Apple’s iPhone had the greatest impact on the smartphone market by its innovative

features. It attracted attention with a very responsive user interface powered by

capacitive touch screen. It provided multimedia and synchronization features without

bothering users with the particulars of a file system unlike Windows Mobile and

Symbian. In 2008, mobile application distribution platform, App Store, has been

added to iPhone ecosystem. It was a revolutionary feature that was followed by its

competitors; Google Play (Android Market) in 2008, Nokia Store in 2009,

Blackberry World in 2009, Windows Phone Store in 2010 [1]. Mobile application

distribution platforms provide control over application developers. They helped

detecting and preventing distribution of malicious software. They, also, created a

great market for developers. Apple reported that total number of application

downloads over App Store hit 50 billion in May 16, 2013 [2] and in only 2013,

customers spent over $10 billion on App Store [3]. Even though Apple’s iPhone

initiated the revolution, Android powered smartphones are dominating the market as

reported in [4] [5] [6]. In 2014, 80% of sales were Android smartphones while Apple

amounted to 15% of sales. Android usage is far beyond its competitors by the help of

wide variety of smartphones on the market.

Availability of high speed internet on smartphones has changed user habits. Users

started to spend more time on smartphones than computers for browsing. Popular

social networking, e-commerce, news, financing web sites have mobile applications.

2

Mobile applications provide better user interface and better usage of smartphone

resources. Social networking applications can directly access camera and allow

sharing photo in seconds while web browser bothers with file upload interface for

same functionality. Banking applications started to authenticate users by finger print

sensor. On the other hand, their web versions require two level security. Mobile

applications are also able to notify user even if device is in sleep mode. Mobile

application is preferred rather than web page while users are moving toward mobile

devices. By the effects of changing user habits, on-site web analytics adopted to

mobile applications. Web-based user analysis methods are limited to data gathered

from session, cookies, web surveys; but mobile user analysis methods includes on-

device metrics such as location, running tasks; call logs, contacts, SMS, physical

sensor data. Studies show that these on-device metrics can be used to create valuable

data in mobile sensing applications [7] [8] [9] [10], mobile user analysis [11] [12]

[13] [14] [15] and mobile application analysis [16] [17] [18]. The studies share a

common approach; domain specific data collection, centralization of the collected

data and data processing or mining.

1.2 Scope

The purpose of the study is to introduce a tool to create valuable database for mobile

user behavior analysis. The main focus of the tool, UBDroid, is collection of

application usage information from Android smartphone users. Moreover, UBDroid

allows reading sensor values for a period time. Additionally, UBDroid allows user

participation by messaging and online surveys. UBDroid ought to centralize

collected data and make further process on server such as gathering application

information from Google Play. In addition, UBDroid consumes minimal resources

on smartphone in order to avoid affecting the overall performance and increasing

battery consumption of the device.

UBDroid is intended to gather usage data from a large number of participants. It is

not designed to run on a special hardware or modified versions of Android, so data

collection does not require an experimental environment. Participants can install

UBDroid to their smartphones and continue their daily usage habits; it runs in the

3

background whenever smartphone runs. UBDroid has no need for super user access

or modified Android sources, so it is affected by operating system limits; user input

events cannot be logged.

UBDroid does not only collect data from user, but also fetches further application

information from Google Play including category, rating, rating count and number of

downloads. UBDroid does not require user participation, but gives opportunity to

perform online surveys. Application usage data, supported by Google Play statistics

and online user surveys, creates value for further data mining operations.

1.3 Outline

This thesis organized in five chapters as follows:

 Chapter 2 focuses on the concept of mobile sensing, and elaborates mobile

sensing frameworks. Additionally, mobile user behavior analysis and mobile

application analysis studies are examined. Lastly, common android battery

drain problems are presented.

 Chapter 3 introduces detailed design of proposed system. Also, major

system objectives, which affect system design, are listed.

 Chapter 4 introduces resulting application usage data.

 Chapter 5 includes conclusion which implies evaluation of UBDroid and

possible future extensions.

4

5

CHAPTER 2

LITERATURE REVIEW

Many analysis systems rely on data collection and data mining techniques that is

specialized to their context. UBDroid has similar data collection methods with

mobile sensing approach, but it is not only focused on physical sensor data. UBDroid

aims to collect valuable data for user behavior analysis based on application usage

information. UBDroid is energy efficient, so it does not cause significant battery

drain. By considering these features of UBDroid, related works are categorized and

examined in the four subsections: mobile sensing, user behavior analysis, application

analysis, android battery management.

2.1 Mobile Sensing

A modern smartphone is more powerful than a super-computer of a few decades ago

[19]. By the help of its computing power, smartphones are taking place of personal

computers. Users can perform tasks of web browsing, mailing, social networking,

shopping, gaming, etc. on their smartphone instead of personal computer.

Even though smartphones’ computing power dramatically increasing, it is not the

only reason to why smartphones are intensively used. Mobility and connectivity has

important role on the popularity of smartphones. In early 2014, it was reported that

mobile internet usage exceeded internet usage from PCs [20]. Smartphones could

connect to the Web via Wi-Fi or Bluetooth since early 2000s, but 3G had the greatest

impact on increasing connectivity and data rates.

Modern smartphones are equipped with several sensors as listed in Table 1. These

sensors and mobile operating systems that provide API for 3
rd

 party application

developers enable applications to benefit from them. Smartphones, with increased

connectivity capabilities, enriched by the sensors, became suitable for the concept of

6

mobile sensing. Mobile sensing can be described as fetching data from mobile

devices by the help of their sensors. Smartphones are becoming increasingly popular

devices for mobile sensing frameworks. However, there exist other applications such

as wearables, smartwatches, and heart rate trackers.

Table 1 - List of sensors on modern smartphones [21]

Sensor Function

Accelerometer

Measures the acceleration force in m/s2 that is applied to

a device on all three physical axes (x, y, and z), including

the force of gravity.

Barometer/Pressure Measures the ambient air pressure in hPa or mbar.

GPS Measures the position on the earth.

Gravity
Measures the force of gravity in m/s2 that is applied to a

device on all three physical axes (x, y, z).

Gyroscope
Measures a device's rate of rotation in rad/s around each

of the three physical axes (x, y, and z).

Light Measures the ambient light level (illumination) in lx.

Linear acceleration

Measures the acceleration force in m/s2 that is applied to

a device on all three physical axes (x, y, and z),

excluding the force of gravity.

Magnetometer
Measures the ambient geomagnetic field for all three

physical axes (x, y, z) in μT.

Microphone Measures sound.

Orientation
Measures degrees of rotation that a device makes around

all three physical axes (x, y, z).

Proximity

Measures the proximity of an object in cm relative to the

view screen of a device. This sensor is typically used to

determine whether a handset is being held up to a

person's ear.

Relative humidity Measures the relative ambient humidity in percent (%).

Temperature
Measures the temperature of the device in degrees

Celsius (°C).

7

Lane et al. divides sensing systems into two types; opportunistic or participatory

[22]. Opportunistic sensing requires automated data collection on the device which

requires little or no user involvement. On the other hand, participatory sensing relies

on participation of users. All knowledge belongs to users at critical steps of data

collection. UBDroid adopts opportunistic sensing approach by collecting application

usage and sensor data, but it also allows participatory sensing by online surveys.

Lane et al. expresses that mobile sensing can be applied for various area at different

scales such as social networking, environmental monitoring, health and well-being,

transportation, application stores. [9] Lu et al. proposes continuous sensing engine,

called Jigsaw, which is able to log caloric expenditure, daily activities, significant

places and transportation methods of user [10]. Jigsaw relies on data collected from

accelerometer, microphone and GPS sensors. It is able to run on Nokia N95 and

jailbroken iPhone. It runs entirely on mobile device which and does not use external

server. Even though mobile sensing systems apply for specific domains, the two

mobile sensing frameworks are examined: SynchoSmart Framework, Funf Open

Sensing Framework.

Kepucka proposes a framework, SynchoSmart, for emotion analysis of audience

during particular events such as movies, sport tournaments, and cultural shows [7].

SynchoSmart relies on client-server model whereas clients are Android smartphones.

Key features of SynchoSmart are:

 Accelerometer, linear accelerometer, gyroscope, magnetometer, orientation,

rotation vector and microphone are used for data collection.

 It uses collect then transmit approach. Collected data is stored in local storage

of smartphone, and then transmitted to the server.

 It centralizes data collection and processing in order to provide data integrity

and minimize workload on smartphone.

 It synchronizes data collection. Data is collected from multiple sources whose

time information may differ. Synchronization is performed when the data is

centralized.

8

SynchoSmart gather data for emotion analysis, but its data synchronization and

centralization methods can be applied to other domains.

Funf is an open-source mobile sensing framework that can collect data from all

available sensors on smartphone [8]. It is able to run on Android smartphone. It can

also be added to projects as library, so it reduces application development effort. Key

features of Funf are listed below.

 Funf reports call log, SMS log, browser history, running apps, installed apps,

battery status in addition to the data gathered from all available sensors.

 It keeps collected data in local storage of smartphone, and then transmits to

server when internet connection is available.

 It encrypts locally stored data.

 It allows automatic or manual data upload.

Funf has advanced data collection capabilities, but it does not offer built-in data

centralization method. Funf is highly configurable, but enabling all data collection

methods causes battery drain.

2.2 Mobile User Behavior Analysis

User analysis can be defined as identification of user characteristics in order to

improve quality of service. The identification process is typically done by a set of

measurement that should be performed on target users. Verkasalo presents

MobiTrack Framework for mobile user measurements which focus on data collection

[11]. The study implies the importance of on-device measurements. MobiTrack has

multiplatform support; it can run on Symbian, Windows Mobile, Android and

Blackberry devices. MobiTrack has three sources of data; behavioral measurements,

contextual surveys and web-based surveys. Behavioral measurements consist of

device-based metrics. These metrics are gathered from call usage, SMS usage,

application usage, browsing usage, data service usage. Contextual surveys are on-

device questionnaires about user feedback or user satisfaction. Web-based surveys

used to determine user needs. As Verkalaso stated, one of the key advantages of

9

MobiTrack is its capability to collect a comprehensive set of data from real

environments of users.

Chen et al. proposes a log collection service for analyzing mobile user behavior [12].

Proposed service can run on Android smartphones. The service keeps all user

operations which are extracted from system logs by using logcat tool of Android

SDK. In addition, location information is attached to log data. Since Global

Positioning System uses a lot of power, Location Based Service is used to determine

location even if it does not provide location information as sensitive as GPS. The

collected user log data is transmitted to the server on a schedule so that the service

does not require internet connection all the time. There is also log query service to

allow fetching collected data filter by user, activity or time. Chen et al. states that the

proposed service platform can be used to gather log for specific type of activity, but

there is no categorization mechanism for activities. In other words, who query the

data should know the social networking applications in order to fetch logs of social

networking activities.

LiKamWai et al. introduces smartphone software, MoodScope, which predicts

current mood of user based on smartphone usage [13]. MoodScope runs as

background service and monitors user activities without user interference. It infers

mood of the user by interpreting SMS, email, phone call, application usage, web

browsing history and location data. MoodScope can run on jailbroken iPhone in

order to overcome operating system limitations.

Pejovic et al. developed a model, called InterruptMe, for analyzing interruptibility of

smartphone users [14]. The model seeks to identify suitable moments of users in

order to increase the impact of delivered information. The accessibility of users is

affected by location, time of day, their activity and emotions. The model has three

objectives; reaction presence, timely reaction and sentiment. In other words, users

should react to the delivered information; they should react in a reasonable time

interval; they should be willing to react. The model benefits from Bluetooth and Wi-

Fi environments, GPS coordinates and accelerometer data as well as previous user

10

reactions. The proposed model helps increasing user involvement in participatory

mobile sensing systems.

Yan et al. proposes a personalized application recommendation system, AppJoy [15].

The system recommends applications to smartphone users that they might like. The

traditional way relies on application download history and ratings of user.

Application download history does not imply that users like the application, they

might be only trying the application out. User ratings provide better result, but most

users are not willing to rate. AppJoy calculates usage score from application usage

information by proposed recency, frequency, and duration model. Similar applications are

matched by usage scores of the other users who used the application. AppJoy runs

without user interaction by analyzing application usage data. It relies on client-server

architecture where client application runs on Android platform as a background

service. AppJoy client periodically uploads application usage data to the server. At

server side, application recommendations are created according to statistics

generated from application usage data.

Mobile user analysis depends on data collection on mobile devices and processing

the data. The types of the data to be collected differ according to research context.

Mobile sensing and user analysis studies are summarized in Table 2 – Summary of

mobile sensing and user analysis studies. UBDroid focuses on application usage

collection and categorization of applications by crawling Google Play web page. In

addition, it is able to collect sensor data. As key features, UBDroid allows

participatory data collection and provides administrative web client.

Table 2 – Summary of mobile sensing and user analysis studies

Study Intent Data Collection Key Features Platform

App. Usage Sensor Other Participatory

Jigsaw Monitoring

human activity

and context

- GPS,

Accelerometer,

Microphone

- No Does not use server

Capable of logging

daily activities and

significant places

iOS

(Jailbroken),

Nokia N95

SynchoSmart Emotion

analysis of

audience

- Accelerometer,

Gyroscope,

Magnetometer,

- No Client-server

architecture

Most of the sensors

Android

11

during

particular

events

Orientation,

Rotation,

Microphone

on modern smartphone

can be used

Funf Developing

mobile sensing

capable

applications

Running

and

installed

apps

GPS,

Accelerometer

Contacts,

Call logs,

SMS logs,

Browsing

history,

Network

status,

Battery

status

No Client-server

architecture

Highly configurable,

reduces development

cost.

Automatic or manual

data upload

Encrypted data

storage

Android

MobiTrack Analysis of

user needs and

improving

user

satisfaction

Running

and

installed

apps

- Call logs,

SMS logs,

Browsing

history,

Multimedia

usage,

Network

status

Optional

(On device

and web

based

surveys)

Client-server

architecture

Automatic data

upload

Supports multiple

platforms

Android,

Blackberry,

Symbian S60,

Windows

Mobile

MoodScope Predicting

users’ daily

mood

Running

apps

GPS Call logs,

SMS logs,

Email logs,

Browsing

history

No Client-server

architecture

Automatic data

upload

iOS

(Jailbroken)

InterruptMe Determining

opportune

moments of

user

- GPS,

Accelerometer

Network

status

Yes (On

device

surveys and

notifications

)

Client-server

architecture

Automatic data

upload

Android

AppJoy Personalized

application

recommendati

on

Running

and

installed

apps

GPS - No Client-server

architecture

Automatic data

upload

Crawls application

information from

Google Play

Android

UBDroid Creating

database for

mobile user

behaviour

Running

and

installed

apps

GPS,

Accelerometer,

Gravity,

Gyroscope,

- Optional

(On device

surveys and

notifications

 Client-server

architecture

Automatic or manual

data upload

Android

12

analysis Magnetic Field) Crawls application

information from

Google Play

Administrative web

client

2.3 Mobile Application Analysis

Both user analysis and application analysis approaches use similar data collection

techniques since they are related to each other by human-computer interaction. User

analysis mainly relies on monitoring user actions on a set of applications, while

application analysis relies on monitoring application responses while a group of users

interact. In both approaches, the characteristics of the collected data are similar.

Wei et al. presents a multi-layer system, ProfileDroid, for monitoring and profiling

Android applications [16]. ProfileDroid examines application in four layers; static

layer, user interaction, operating system and network. Hardware usage and

permissions are extracted from the static layer. User generated events, user inputs are

captured from the user interaction layer. Operation system layer is used to get system

calls, interacting services, file system operations. Network traffic of application is

handled in the network layer. ProfileDroid extracts valuable data related to the

analyzed application. However, analysis at the four layers cannot be done by a 3
rd

party application because of Android permissions. ProfileDroid overcomes the

problem by connecting the device to Android SDK in debug mode. ProfileDroid

creates valuable application analysis data, but it is not possible to apply its approach

on opportunistic mobile sensing.

Lee et al. proposes a user interaction-based profiling system to overcome the

limitations of development-level application debugging [17]. The system does not

need source codes of application to be analyzed; instead it performs on-device data

collection by kernel and Android framework level. Process-level hardware usage

information is extracted at the kernel level. At framework level Activity, which is a

part of the Android framework which interacts between user and application, is

monitored. In addition, user input events are logged. The system stores on-device

metrics and transmits the collected data to the server. Since the system runs on

13

multiple clients, time synchronization is performed while data is merged. The

proposed system runs on modified Android 4.3 since kernel level data collection and

user input events logging cannot be done with default sources of Android.

Falaki et al. introduces usage monitoring tool, called SystemSens, for unexpected

application behavior detection [18]. It relies on client-server system architecture.

Client application is able to run on unmodified Android 2.2 and above versions. It

keeps track of CPU, memory, battery, network usage. The collected data is sent to

server. It is reported that the size of data is 2.5MB on average for each user per day.

2.4 Android Battery Management

Battery drain problem commonly occurs by unconscious application developments

that causes bugs or resource misuse. Ma et al. proposes eDoctor tool in order to

detect and suggest solution for abnormal battery drain issues on Android applications

[23]. As stated, they studied 50 cases with the accuracy of 94%. There are two major

problems that attract attention: application bugs and overusing or misusing resources.

Prevention of smartphone to enter sleep mode, leaving mediaserver running, leaving

GPS enabled after getting location information are examples of application bugs.

Overusing or misusing resources are commonly caused by fetching sensor data more

frequently than necessary. Especially GPS consumes much more power than other

sensors, so it should be used sparingly.

14

15

CHAPTER 3

RESEARCH METHODOLOGY

The scope of our study is to design, develop and evaluate a data collection system for

mobile user behavior analysis. UBDroid adopts both opportunistic and participatory

data collection approaches. The system runs on Android smartphones and collects

data and allows performing surveys on mobile web pages. UBDroid focuses on

collection of application usage data and categorization of these applications in order

to create application usage database for mobile user analysis.

We study methodology in six chapters; system objectives, system use cases, system

architecture and implementation decisions, server application design, web client

application design and client application design. In system objectives, the major

system requirements are listed. In system use cases, main usage scenario for data

collection is studied. In system architecture and implementation decisions, overall

system structure with used frameworks and libraries are studied. Application designs

are studied in modules. Server application has five modules with the responsibilities

of; user management, messaging, survey management, data synchronization and

batch processing. Client application has three modules; user module, data collection

module and message module. Web client, which is used for administration of the

system, has four modules; user module, survey module, message module and batch

module.

3.1 System Objectives

The following requirements were considered during the system design:

 Application usage collection: UBDroid is able to continuously watch

foreground application changes and report package name, starting time and

ending time of the applications.

16

 Sensor data collection: UBDroid can read four sensors accelerometer,

gravity, gyroscope, magnetic field. In addition, current location can be

gathered by using Google’s Fused Location API if location services are

enabled on the client. Sensors are not read continuously because of energy

efficiency. Instead, sensor data collection can be triggered at arbitrary times

by push notifications.

 Participatory data collection: UBDroid has survey creation and survey data

collection capability in order to collect participatory user data anonymously.

 Data integrity: UBDroid is always up and running while the smartphone is

running. Any uncaptured usage information will negatively affect analysis

that will subsequently be performed on the data. UBDroid is automatically

started and run at the background as a system service so that it cannot be

stopped by the user or task killer applications.

 Anonymity: The system does not require personal information of the user. A

user token generated from the device IMEI number is used for identification

of user. The token is attached to the every request of the client to the server.

 Energy efficiency: The system is power efficient and does not reduce the

battery life significantly.

o Data collection: Data collection service does not run when the device

is in sleep mode.

o Data transmission: Collected data on the smartphone is transmitted to

the server on a schedule to avoid frequently establishing and closing

network connections.

 Data consistency: The data is collected from many clients whose system

clocks may be different. Time is synchronized with the server when the client

application starts.

 Application categorization and statistics: Application category, number of

downloads and rating information is gathered from Google Play. Fetching the

application information requires accessing to the web page of the application

and crawling the page data. The application information can be fetched by the

server application, while application usage data is stored, but that would

17

cause increasing transaction time and even failures because of timeout. It can

be fetched by the client application, but it leads to increasing power

consumption and cause different clients to fetch the same data. Instead of

these approaches, a batch processor, which runs on the server, perform the

application information retrieval on its own application context.

3.2 System Use Cases

UBDroid is data collection tool relies on server-client application. In UBDroid, there are two

primary actors; user and administrator. There are also two supporting actors which are

Background Services and Google Cloud Messaging. Users, participants of UBDroid, interact

with client application whereas administrator interacts with server application via web client.

As shown in Figure 1, users can register to the system, read messages, fill survey and send

support message. Administrator can add survey, send message to users, manage user groups,

display user status report, list support messages and start fetching application statistics.

Background services run in background and are able to create notification, collect data and

send collected data to the server. GCM transfers push notifications when messages sent from

server to client.

Figure 1 – UBDroid use case diagram

18

User should register to UBDroid. Data collection starts after registration.

Administrator can creates and sends survey to registered users. User can fill survey

and collected data can be uploaded. Main success scenario is covered in nine steps as

follows.

Step 1: User registers to the system.

 User registers to GCM and GCM key is stored in local storage.

 Server client time is synchronized.

 Device information, installed application and GCM key are sent to server. Server

persists user record in database and responds with user token.

 Background services; application usage collector service, sensor reader service,

data uploader service and GCM handler service start to run.

Figure 2 – Registration user interface

Step 2: Administrator creates survey

 Survey record is persisted to database.

Figure 3 – Add survey user interface

19

Step 3: Administrator send message to user.

 Message record is created and persisted with survey link.

 Message metadata is send to GCM.

 UBDroid client receives push notification and stores message receive time.

 Notification is created.

Figure 4 – Send message user interface

Figure 5 – Notification user interface

Step 4: User reads message.

 Message receive time is send to server and message detail is requested.

 Message read and receive time are updated and server responds with message

details.

 Survey is displayed in message details.

20

Figure 6 – Message user interface

Step 5: User fills survey.

 Survey answers record persisted to database and attached with user record.

Step 6: Administrator creates user group.

 User group record is persisted to database.

Figure 7 – Add user group user interface

Step 7: Administrator adds user to user group.

 User group record is persisted to database.

Figure 8 – Add user to user group interface

21

Step 8: UBDroid client service sends collected data to the server.

 Application usage records and sensor data records are sent to server. Server

persists application usage and sensor data records to database if they are not

persisted before.

 Server responds with success message and client removes the data from local

storage.

Step 9: Administrator starts fetching application statistics.

 Application statistics are crawled from Google Play web page and persisted to

database.

3.3 System Structure and Implementation Decisions

UBDroid is based on server-client architecture: Android smartphones are the clients,

and the central application, that stores and processes all the data, is the server. Push

notifications can be sent to clients through Google Cloud Messaging service. Overall

system structure is shown in Figure 9.

Figure 9 – System structure

It is very common approach to have layered application structure considering of

separation of duties. Both server and client applications have the structures with three

22

layers as shown in Figure 10. Data layer is responsible of database operations such as

saving, deleting, updating and querying. Business layer has core application

functionality. Communication layer provides interaction with other systems.

Interaction between server and client, server and GCM, server and web client, client

and GCM are implemented in communication layer.

Figure 10 – Layered application architecture

3.3.1 Server Application Implementation Decisions

We have decided to run server application on Apache Tomcat web server and MySQL

database server. We consider popularity, modularity, community support and

documentation while deciding to use a technology, framework or library.

Server application has layered architecture as mentioned earlier. We have used

Hibernate ORM library in data layer implementation. It provides mapping between

Java classes and database tables and simplifies database operations. We have also

avoided native SQL queries by using criteria mechanism of Hibernate.

In business layer implementation, we have integrated Spring Framework to our

application. Spring Framework reduces coding efforts by providing dependency

injection, aspect oriented programming support, modularity. It also helps to keep

configuration stuff separated. We have also used Spring Batch library to process

large amount of data. Spring Batch can access to database and help performing bulk

23

operations. We used Spring Batch for crawling data from Google Play. We have

adapted Selenium Tool for crawling web page. Selenium is commonly used for

automated tests for web applications, so it has advanced features for crawling.

Communication between applications is done by REST services. REST services

allow data to be attached to HTTP request in JSON format. This requires making

JSON to object and object to JSON conversion. At server application we have

created REST services with Spring MVC Framework and integrate Jackson library

for JSON conversion.

3.3.2 Client Application Implementation Decisions

Client application runs on Android powered smartphones. It has also three layers;

data layer, business layer and communication layer. Android natively supports

SQLite database for local storage. We implemented data layer by using ORM Lite

library for database operations. It provides mapping between java classes and

database tables like Hibernate, but it is a lightweight library that is suitable for

mobile applications. We do not need library or framework at business layer, and

implement business logic with native Android services and activities. In order to

interact with server, we used REST client library called Retrofit. We integrated

Retrofit with Jackson library for JSON conversion.

3.3.3 Web Client Application Implementation Decisions

Web client application relies on model-view-controller architectural pattern as shown

in Figure 11. We implemented web client application by using Primefaces

Framework. It is MVC implementation based on JSF framework. It has a large set of

user interface components which simplifies building web applications.

24

Figure 11 – Model-View-Controller pattern [24]

3.4 Server Application Design

Main focus of the UBDroid server is processing and storing the data collected by the

clients. There are five modules in server application; user module, survey module,

message module, data collection module and batch module.

3.4.1 User Module

Entity

User module entities are user, device and user group as shown in Figure 12 – User

module ER diagram.

25

Figure 12 – User module ER diagram

Functionality

User module has the functionalities of; registration, user group management and user

summary creation.

 Registration: IMEI, device brand/model, Android version, list of installed

applications and Google Cloud Messaging key are taken from user. User

record is created based on the device identifier. Device identifier is a hash

value generated by SHA-256 algorithm from device IMEI appended by a

random salt value, so that IMEI cannot be extracted from the device identifier

by decryption or brute force.

When the registration is successful, user token and sequence numbers of user

data is returned to the client application. User token is used for identification

of the user. If the user is already registered, existing user token for device

identifier is returned instead of creating new user. Data sequence numbers are

used for data synchronization, they are returned in order to handle data

synchronization when the client application is re-installed.

 User Group Management:

26

o Add user group: A new user group is created with the user provided

name and description.

o Add the user to a user group: Users, whose tokens are given, are

added to a specific user group.

 User summary creation: All users’ current status are listed. The summary

information includes enrolled user groups, filled and unfilled surveys, read

and unread messages, latest data transfer time for each user. The summary

information is helpful to detect inactive users.

3.4.2 Survey Module

Entity

Survey module entities are survey, question, choice, survey answers and answer as

shown in Figure 13. There are four types of questions; comment, short comment,

single selection and multiple selections. There are four types of answers for each

type of questions. Lastly, there are two types of choices; comment choice and

selection choice.

27

Figure 13 – Survey module ER diagram

Functionality

Survey module allows participatory data collection. Surveys can be added and filled

dynamically.

 Add survey: A survey with given questions is persisted to the database.

 Get survey: The survey with the given id is returned.

 Get surveys: List of all the surveys is returned.

28

 Add survey answers: Survey answers filled by the user are persisted to the

database.

3.4.3 Message Module

Entity

Message module entities are message and support message as shown in Figure 13 –

Survey module ER diagramFigure 14. There are three types of messages; text, html and

command. Text message is used for ordinary messages. Html message consist of an

URL to display the web page in the message. Command message is designed to

trigger actions on the client application.

Figure 14 – Message module ER diagram

Functionality

Message module is responsible for sending messages to the users and receiving

support message from the users.

29

 Send message: Message is created and persisted to the database for given

users. Also, push notifications are sent by using Google Cloud Messaging

service in order to notify the users.

 Send command message: Command message is created and persisted to the

database, and then push notification is sent. Command message triggers

sensor data collection or data transfer on the client application.

 Get messages: Returns all text and html messages of a given user which are

not marked as deleted.

 Read message: Returns the message by given message id. In addition, receive

time and read time of the message are updated.

 Delete message: Marks the message as deleted. Message is still kept in the

database.

 Save support message: Support message is persisted to the database.

 Get support messages: Returns the list of all support messages.

3.4.4 Data Collection Module

Entity

Data collection module entities are sensor data, application usage, application

information and installed application as shown in Figure 15Figure 15 – Data collection

module ER diagram. Application usage information includes package name and

activity name of the application. Package name is identifier for the application, and

activity name is used for each page in the application.

30

Figure 15 – Data collection module ER diagram

Functionality

The main responsibility of the data collection module is synchronization of collected

application usage data and sensor data.

 Save application usage: Application usage data is persisted to the database if

not already persisted.

 Save sensor data: Sensor data is persisted to the database if not already

persisted.

 Save installed application: Application information is persisted to the

database as installed applications of user.

Application usage or sensor data records should be uniquely identified so that no

record should be duplicated or missed. Therefore, every application usage or sensor

data record is related to user and a sequence number. The synchronization algorithm

is described in pseudocode below:

31

find user by token

for each data

 if sequence of data > max sequence for the user in database

 relate data with user

 persist data to database

return success message

3.4.5 Batch Module

Entity

Batch module entities are application information and application statistics as shown

in Figure 16.

Figure 16 – Batch module ER diagram

Functionality

Batch module is responsible for gathering application information: category, number

of downloads and rating. Batch module is a part of the server application, but it has

its own context for time consuming jobs. Unlike request-response mechanism of

server applications, a batch job does not make user wait until it is completed. It

continues to work in background. Batch job is done in three phases; read, process

and write as shown in Figure 17 – Batch module structure . When a job is started, all

unique package names are gathered from the database. For each unique package

name, batch executes the following procedure:

 ItemReader fetches ApplicationInformation.

32

 ItemProcessor extracts category, number of downloads and rating from

Google Play.

 ItemWriter updates ApplicationInformation and inserts ApplicationStatistic to

the database.

Figure 17 – Batch module structure [25]

3.5 Web Client Application Design

Web client is used for administration. Web client interacts with four modules of the

server application; user module, survey module, message module and batch module.

3.5.1 User Module

User module allows adding a new user group, adding a user to a user group and

listing status of the users.

 Add user group: Name and description is sent to the server to create a new

user group.

 Add a user to a user group: List of user tokens with the selected user group is

sent to the server.

 User status: Enrolled user groups, filled and unfilled surveys, read and unread

messages, latest data transfer time are fetched from the server and listed in a

data grid.

33

3.5.2 Survey Module

Survey module of the web client allows adding and listing surveys.

 Add a survey: A new survey can be added after all questions of the survey are

created. Four types of questions can be created; comment, short comment,

single selection and multiple selection. Questions can be ordered, deleted,

copied or edited. Survey is, also, previewed before it is saved.

 List surveys: All surveys are listed in a data grid.

3.5.3 Message Module

Message module is used to send message to the users and list support messages.

 Send message to a user: A message is created with a title, text and, optionally,

a survey for the selected user.

 Send message to a user group: A message is created with a title, text and,

optionally, a survey for all the users in the selected user group.

 Send command message: Command message is created with selected type to

trigger transferring usage data, reading sensor values or getting the location.

If reading sensor data is selected, then type of sensors to be read

(Accelerometer, Gravity, Gyroscope, Magnetic Field), number of reads and

read interval must be selected.

 List support messages: Support messages are listed in a data grid.

3.5.4 Batch Module

Batch operations run in the background, but batch module of the web client allows

monitoring the operations.

 Fetch application statistics: Starts fetching applications statistics from Google

Play.

 List batch job execution status: Start time, end time and status of batch

operation execution are listed in data grid.

34

3.6 Client Application Design

UBDroid client runs on Android smartphones. It has the core responsibility of data

collection. Application usage and sensor data are collected without user involvement,

but the client allows collecting participatory data by using messages and surveys.

Client consists of three modules; user module, data collection module and message

module.

3.6.1 User Module

User module is responsible for the registration process. No user input is required to

register UBDroid, but following three steps executed without user notification, these

steps are also shown in Figure 18.

 Google Cloud Messaging service registration: UBDroid uses GCM service

for sending and receiving push notifications. At this step, GCM service

returns the unique gcm_key.

 Time synchronization: Each client collects data and attaches time information

by using its own system clock. Since data is centralized, ideally every client

should have the same clock. Instead of synchronizing the time at every data

upload, time difference between the client and the server is calculated before

the registration. By this way, the data is attached with the server time while it

is collected. If time is changed by user, UBDroid re-synchronizes the time.

Unfortunately, usage data recorded with old time information until the

synchronization is done. Time synchronization is performed based on

Cristian’s Algorithm [26]. Client sends request to server, and server responds

with its current time. Client sets the time by adding half of round trip time of

the request. The algorithm removes the effect of network delay where request

and response delays are equal. If the delays are not equal, the maximum time

difference between client and server will be 7.5 seconds since client

application has 15 seconds of timeout duration.

 UBDroid registration: IMEI, device manufacturer/brand/model, Android

version, installed applications, gcm_key information are sent to the server.

35

The server returns user token to the client, indicating that the registration was

successful. User token acts as an identity. It is stored in the local storage and

attached to every request to the server.

Figure 18 – Registration activity diagram

3.6.2 Data Collection Module

The functionalities of the data collection module are extracting, storing, and

synchronizing application usage and sensor data. Since these operations are done

without user interference, they are run as background services. There are three

background services in UBDroid client application as follows.

Application Usage Collector Service

Application usage collector service is the executor of application usage data

collection. As class diagram presented in Figure 20, application usage information is

gathered by watching foreground application changes. Android Framework does not

allow 3
rd

 party applications to handle application change event, but provides

functionality to get foreground application information. The event mechanism is

achieved by polling. ApplicationChangePublisher is responsible to poll foreground

application by an interval. Longer polling interval causes lower sensitivity on

application running time calculation. In addition, the applications used less than the

polling interval might be skipped as illustrated in Figure 19. On the other hand, short

polling interval causes increasing number of calculations which leads to increased

battery consumption. We decide polling interval of 1 second by assuming an

36

application, used less than a second, is not actually used and the usage can be

skipped.

Figure 19 – Application usage collection timeline

ApplicationChangeEvent is published to EventBus whenever foreground application

change is detected. ApplicationUsageCollectorService is registered for

ApplicationChangeEvent. When the event is handled, application usage information

is created and persisted to the local storage. ApplicationChangePublisher stops

polling when the device screen turns off, and restarts polling when the device screen

is back on. Screen On/Off state can be listened by Android Framework, so

ScreenOffListener is not registered to EventBus.

Figure 20 – Application usage collection class diagram

Sensor Reader Service

As shown in Figure 21 – Sensor data collection class diagram, sensor reader service runs

in conjunction with EventBus and StorageManager like the application usage

37

collector service, but sensors are not continuously read to prevent battery drain. The

service is able to read accelerometer, gravity, gyroscope and magnetic field sensors.

Sensor reading is triggered by SensorReadEvent which is fired by push notification.

SensorReadEventListener reads sensor value at given intervals and count defined in

SensorReadEvent. Sensors can be read even if the device is in sleep mode by

acquiring wake lock. Wake lock is released whenever sensor reading is done, so

large number of reads and longer reading interval will increase battery consumption.

Unlike application usage data, sensor data is sent to the server just after sensor

reading is done to give possibility of analyzing collected data instantly. If sensor data

transfer fails, it stays in the local storage until data uploader service synchronizes all

the collected data.

Figure 21 – Sensor data collection class diagram

Data Uploader Service

38

UBDroid client transmits collected data via data uploader service. Data upload is

performed on a daily schedule in order to decrease battery consumption by avoiding

constant network connection. DataUploadScheduler fires DataUploadEvent to

EventBus once a day. DataUploaderService is triggered by data upload event. It

fetches all collected data from the local storage and sends to the server via

UBDroidRemoteService interface. If there is no network connection during a data

upload attempt, then DataUploadScheduler fires DataUploadEvent again when

network connection is enabled.

The collected data is sent to the server by dividing into parts as it might be too large

to process efficiently at a single request. After a part of the data is persisted to the

database, the server returns success message to the client. Then, the client deletes this

part from the local storage of the device and sends the next part of the data to the

server. If the client misses server’s success message, the client will resend the part at

next synchronization. However, server will be aware that the records were already

persisted, and does not duplicate the records.

Figure 22 – Data upload class diagram

39

3.6.3 Message Module

Message module manages operations such as listing messages, reading a message

and deleting a message. It is also integrated with GCM and it handles command

messages sent by the server.

Push notifications are handled by GcmHandler. If a command message arrives to the

handler, then the corresponding event is fired. GcmHandler communicates with

services via EventBus as shown in Figure 23. When a message arrives to the handler,

a system notification is created to notify the user. Also, the arrival time of the

message is stored in the local storage. When the message is read by user, arrival time

and read time of the message are updated.

Figure 23 – Message module class diagram

40

41

CHAPTER 4

SYSTEM PERFORMANCE TEST AND RESULTS

Using system resources efficiently plays a critical role in mobile sensing

applications. The data collection process must have high accuracy, so that any

sample should not be missed. On the other hand, the application should not have a

significant negative impact on the overall performance of the mobile device. It

should have little extra CPU usage overhead not to have any adverse effect on the

operation of the other running processes. It should not have any significant effect on

battery drain not to have a negative impact on the user experience. Considering

battery efficiency, network connections should be used efficiently as well. Memory

should be used efficiently in order to make it possible to run the application able on

lower end mobile devices.

The main focus of UBDroid client is application usage data collection. Application

usage data collector service continuously runs in the background whenever mobile

device is in use and data collection is not performed when device is in sleep mode.

Besides, UBDroid allows reading sensor values for a period of time. However,

sensor values can be read even if the device is in sleep mode. All the collected data is

sent to the remote server on a daily schedule. UBDroid is tested for the specific cases

in terms of CPU, memory, disk, network and battery usage.

The main purpose of UBDroid server is data centralization by handling data transfer

requests from clients. The server is tested by the maximum number of requests that

can be handled the same time. It plays significant role in determining how much

users can use UBDroid.

42

4.1 UBDroid Client Test

4.1.1 Test Setup

UBDroid client is designed to run continuously in background. Application usage

data is stored in local storage until it is transferred to the server. The amount of

collected data affects CPU utilization, battery and network usage while the data is

transferred. We mainly performed tests based on application usage data since it is the

big part of collected data. Before testing client application, we collect data from 12

users for 3 days. We saw that screen is turned 20% of time on average whereas 11%

is minimum, 35% maximum. The most active user produced 822 application usage

records per day and the most passive user was 290. Average number of application

usage records created per day was 478. In tests, we assume that average user creates

500 application usage records and keeps screen on for 5 hours per day. Sensor data

collection is triggered by push notification. The number of sensor reads is decided by

administrator. We assume that 120 sensor data records are created for each four

sensors. We performed data transfer tests with 500, 1000, 1500 and 2000 number of

application usage records. We used 3 smartphones for testing as listed in Table 3.

Table 3 – Tested smartphones

Device CPU Memory Battery
Android

Version

Samsung N900 Quad-core 1.9 GHz Cortex-A15

and Quad-core 1.3 GHz Cortex-

A7

3GB 12.16Wh

(43776J)

4.4.2

Samsung I8190 Dual-core 1 GHz Cortex-A9 1GB 5,7Wh

(20520J)

4.1.2

Samsung I997 Single-core 1.2 GHz Cortex-A8 512MB 6,65Wh

(23940J)

4.2.2

43

4.1.2 Test Results

We performed tests for inferring memory, disk, network, battery and CPU usage.

Memory Usage

Memory usage is monitored by connecting smartphone to Dalvik Debug Monitor

Server (DDMS) [27]. We performed the tests after application user interface is

loaded and all background services are running. Maximum memory usages are

captured while different number of application usage data is transferred. Memory

usage in idle is captured when there is no data transfer. As shown in Table 4, memory

usage varies between devices since Android manages memory differently according

to amount of memory that device has. In order to include results in lower memory

device, we also test UBDroid client on virtual device, which simulates Android

device on computer, with 256MB memory. As the results show, the maximum

memory usage of UBDroid client is around 19MB and it is able to run on low

memory devices.

Table 4 – Memory usage (MB)

Device/Number of Records 0 (Idle) 500 1000 1500 2000

Samsung N900 16.82 17.24 17.65 18.13 18.58

Samsung I8190 9.80 10.16 10.34 10.55 10.81

Samsung I997 7.72 8.05 8.36 8.66 8.95

Virtual device 3.05 3.32 3.60 3.90 4.19

Disk Usage

Application usage data is stored in Android’s built-in SQLite database. The amount

of used local storage is extracted from the system settings of the device. We

examined how much local storage is used while application usage data is collected as

shown in Table 5. Data is removed from local storage when it is transferred to the

server. As a result, if data is collected for a week without transferring to the server,

local storage will be used less than 420KB for an average user.

44

Table 5 – Disk usage (KB)

Device/Number of Records 500 1000 1500 2000

Samsung N900 60 104 160 200

Samsung I8190 60 116 172 232

Samsung I997 60 114 170 228

Network Usage

Network usage is monitored by using DDMS. As shown in Table 6, all devices

produced very similar results. The data is converted to a standard JSON format and

appended to request body, so the sizes of requests are exactly same. The small

differences occur because of network situation that causes resending some of

network packages. Assuming that average user produces 500 application usage

records per day, the total size of data transfer will be 2.88MB over a month.

Table 6 – Network usage (KB)

Device/Number of Records 500 1000 1500 2000

Samsung N900
Tx 90.61 181.74 271.27 362.76

Rx 7.44 14.86 21.66 28.75

Samsung I8190
Tx 89.39 183.84 278.45 360.32

Rx 6.78 13.88 21.54 28.13

Samsung I997
Tx 89.66 182.32 276.85 360.41

Rx 7.18 13.65 21.80 28.64

Battery Usage

We performed battery usage test in order to estimate how much battery is consumed

over a day. Since Android does not provide detailed battery usage statistics, we used

PowerTutor [28] for the measurements. It calculates consumed energy for each

application. We aimed to determine how much energy is consumed over a day by

using UBDroid We separately tested application usage collection, sensor data

collection and data transfer for each.

Aa average user creates 500 application user records. Since device screen is on for 5

hours, foreground application is polled 18000 times per day. Application usage is

45

tested with 500, 1000, 1500 and 2000 records. Sensor data is test with 60, 120, 180

and 240 records for each four sensors available in UBDroid. Battery consumption

results while polling foreground application is shown in Error! Reference source

not found.. Application usage collection and transfer usages are shown in Table 8

and Table 9. Sensor data collection and transfer results are shown in Table 10 and

Table 11.

Table 7 – Battery usage on foreground application polling (J)

Device Energy Consumed

Samsung N900 182.5

Samsung I8190 203.1

Samsung I997 218.9

Table 8 - Battery usage on application usage collection (J)

Device/Number of Records 500 1000 1500 2000

Samsung N900 6.1 10.2 14.6 17.9

Samsung I8190 6.9 11.9 16.0 20.7

Samsung I997 7.5 12.8 16.9 22.3

Table 9 – Battery usage on application usage transfer (J)

Device/Number of Records 500 1000 1500 2000

Samsung N900 17.1 25.8 35.8 45.2

Samsung I8190 16.5 30.9 47.1 57.8

Samsung I997 19.2 33.2 49.3 63.6

Table 10 – Battery usage on sensor usage data collection (J)

Device/Number of Records 60 120 180 240

Samsung N900 4.4 7.9 11.6 15.7

Samsung I8190 5.8 10.0 14.1 18.8

Samsung I997 6.1 10.5 14.8 19.2

Table 11 – Battery usage on sensor data transfer (J)

Device/Number of Records 60 120 180 240

Samsung N900 10.1 19.6 31.3 40.5

Samsung I8190 10.9 21.0 33.1 42.6

46

Samsung I997 12.4 22.8 34.9 45.2

Overall battery consumption is calculated by summing values for 500 application

usage records and 60 sensor data records as listed in Table 12. UBDroid client

consumed around 0.5% battery of high-end smartphone and 1% of mid-range

smartphone over a day. Note that the battery consumption is calculated for

background service of UBDroid client, higher consumptions occur when a user reads

messages and fills surveys.

Table 12 – Overall battery usage for average user per day (J)

Device Consumption Consumption /

Battery Capacity

Samsung N900 220.2 0.5%

Samsung I8190 243.2 1.2%

Samsung I997 264.1 1.1%

CPU Usage

There is no built-in tool for logging CPU usage in Android operating system or

Android Development Toolkit. We calculated CPU usage by using 3C Toolbox [29].

3C Toolbox gives the process time that application consumes CPU. It also calculates

usage ratio which is process time divided by application running time. We performed

test based on average user. We calculated CPU usage time by polling foreground

application 18000 times and creating 500 application usage records. In addition, the

collected data is transferred to the server. CPU usage results are calculated by the

total usage time divided by 5 hours which is shown in Table 13.

Table 13 – CPU usage

Device CPU usage

Samsung N900 0.5%

Samsung I8190 0.8%

Samsung I997 1.0%

47

4.2 UBDroid Server Test

4.2.1 Test Setup

UBDroid server centralizes the data collected from clients. We performed load tests

on server application while application usage data is collected from multiple users.

The tests were performed on mid-end laptop specified in Table 14. JMeter was used

for server tests [30]. It is performance measurement tool for web applications. We

performed tests with 10, 20, 30, 40 and 50 concurrent users who upload application

usage data. Each request contains 50 application usage records to be persisted as

UBDroid client behaves. We run the test continuously; when a request is done, new

one is started.

Table 14 – Test server specifications

Processor Intel Core i5 2450M

Memory 8GB (1GB is dedicated to the server)

Hard Disk Drive Western Digital WD7500BPVT

Operating System Windows 7 Home Basic 64-Bit

4.2.1 Test Results

As expected behavior, servers should respond to client in short time without error.

However, response time increases under heavy load. Load tests are intended to

determine the critical limit that server started to return failed response. The

acceptable response time is taken 5 seconds at ideal cases. We set the timeout

duration as 15 seconds for client application. According to our test results as shown

in Figure 24, 10 and 20, concurrent requests are successfully handled. 30 concurrent

requests exceeds acceptable limit. 40 concurrent requests mostly exceed timeout

duration. The server started to return unsuccessful results where is the number of

concurrent requests is 50. The test results showed that UBDroid server can handle

only 20 concurrent requests on a mid-end laptop. The results mean that UBDroid,

which is running on a mid-end laptop, can serve 20 users at worst case scenario.

48

Instead of transferring collected data at the same time, there must be scheduling

mechanism to ensure that users upload the data at different time of day.

Figure 24 – Response time graph

49

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this study, we develop a tool to create valuable database for mobile user behavior

analysis. We regard usage of mobile device resources for data collection and

synchronization. We performed tests on UBDroid client that indicates no significant

decrease in performance of test device. Tests also show that UBDroid client

consumes battery and use network connections efficiently. In addition to application

usage and sensor data collection, UBDroid has online survey capability. Key features

of UBDroid are listed as follows:

 Collecting application usage data.

 Fetching application statistics from Google Play.

 Collecting sensor (accelerometer, gravity, gyroscope, magnetic field) data in

a period of time.

 Collecting current location.

 Creating and performing online surveys.

 Informing users via messages.

 Triggering sensor data collection, location collection and collected data

synchronization on clients via push notifications.

 Allowing administration of the system via web client.

UBDroid is intended to be used in different research contexts related to Android

smartphone users. UBDroid gets installed applications, tracks running applications,

fetches their Google Play statistics, collects sensor data, sends messages to users and

performs online surveys. By using application usage information, it is possible to

develop application recommendation system as the study of AppJoy [15] shows.

50

UBDroid also gives opportunity to analyze user activities such as the time of day

when the device is in use; the time of message received and read. By applying

InterruptMe model [14], opportune moments of users can be inferred. In other words,

most responsive moments or users can be analyzed by using the data collected by

UBDroid. In addition, MoodScope [13] predicts user mood according to application

usage data. UBDroid creates valuable database for user behavior analysis that can be

used in different contexts.

5.2 Limitations

UBDroid client runs on Android smartphone. The minimum required device

specifications listed as follows:

 Android version must be 2.3 or above.

 Minimum amount of RAM must be 256MB.

 Minimum amount of free disk space must be 20MB.

 Minimum screen resolution must be 480x320 in order to display surveys

properly.

 Google Play Services must be installed for enabling push notifications and

determining current location.

Application usage information includes package name and activity name of the

application. Activity name cannot be determined at devices that run Android 5.0 or

above since the current APIs dropped support for getting running activities. [31]

UBDroid collects data anonymously since users give importance on privacy. In

UBDroid, data collection is not limited to experimental environment or specific time

interval. Sensor data could be fetched in arbitrary times whenever smartphone has

internet connection. By considering this, microphone is not included in sensors to be

used because it may carry sensitive information for users.

UBDroid is designed to consume smartphone resources efficiently. Sensor data

collection is not continuously performed considering battery consumption. Instead of

51

this, sensor data is collected for a period of time which is triggered by push

notifications.

UBDroid server runs on Apache Tomcat 8 application server and MySQL 5 database

server. The server can run on a system with 1GB memory and 500MB free disk

space. However, the required specifications vary depending on number of users and

the duration of data collection. In addition, server application requires a GCM

enabled Google account for push notifications.

5.3 Future Work

UBDroid is a data collection tool for mobile phone users. Its administration can be

done by using web client. Some functions should be triggered by administrator

manually. For instance, fetching application statistics needs to be triggered by web

client. Sensor data collection is also started manually. There might be scheduling

rules that trigger the functions, so UBDroid could be more automated tool.

Collected data is transferred from clients to the server daily. The first transfer is done

one day after registration. If many users are registered at the same time, then all of

them will try to transfer data at the same time. This situation may result in overload

on server application according to the number of users. An advanced scheduler

mechanism can be designed which reserves different time of day for each user.

Therefore, it can be ensured that overload is prevented.

52

APPENDICES

Appendix A: Web Client Application User Interfaces

Web application user interfaces, which are used for administration, listed in this

appendix. User module interfaces for listing user status and managing user groups

are shown in Figure 25, Figure 26 and Figure 27. Survey adding and listing interfaces

are shown in Figure 28, Figure 29 and Figure 30. Message module interfaces are shown

in Figure 31, Figure 32 and Figure 33. Batch module interface to start and monitor

batch jobs is shown in Figure 34.

Figure 25 – User status web interface

53

Figure 26 – Add list user group web interface

Figure 27 – Add user to user group web interface

54

Figure 28 – Add survey web interface

Figure 29 – Preview survey web interface

55

Figure 30 – List surveys web interface

Figure 31 – Send message web interface

56

Figure 32 – Send command message web interface

Figure 33 – Support messages web interface

57

Figure 34 – Fetch application statistics web interface

58

Appendix B: Lessons Learned and Implementation Issues

1. org.hibernate.LazyInitializationException while returning an entity:

The problem occurs while converting Hibernate proxy objects to JSON format:

 Entities are fetched from database and mapped to Hibernate proxy objects.

 JSON converter traverses fields of returned entity.

 Calling lazy fields of the entity triggers database query. Since there is no

database transaction while JSON conversion is performed, Hibernate throws

exception.

There are two solutions for the problem:

 Always return DTO from server, so all the required fields of entity should be

copied to DTO.

 Make a JSON conversion so that lazy fields should not be included.

The second solution leads lower development costs from the first one. We moved

from Gson to Jackson library since Jackson has Hibernate aware conversion module.

2. Empty selection does not properly work for combo boxes at web client

application:

Primefaces provides a mechanism for binding objects to ui components. In fact, there

is no object at HTML front-end, unlike back-end which is run by Java. Primefaces

solves the problem by providing string to object and object to string converter

mechanism. Empty selection problem is caused by improper use of converters. For

empty selection, object to string conversion should not return null, but return empty

string.

3. List of entity loses type information while deserialization:

Java generic types cannot be determined at runtime, so Jackson converter needs type

information to be defined explicitly. Using array type or putting list of entity in a

DTO are simpler solutions which do not affect default conversion configuration.

59

4. Time serialization-deserialization:

Jackson uses UTC by default. If both serialization and deserialization is done by

Jackson library, there is no need for additional configuration. If server or client uses

another JSON conversion library, then time format or time zone configuration must

be done properly.

5. JSF or Spring Framework annotations cannot be used at the same time:

When JSF and Spring are integrated, it is inevitable to face the problem.

Programmers are mostly intended to use JSF’s ViewScope (to manage view-

controller interaction) and Spring’s Autowired (to manage dependency injection)

annotation in same controller. However, Spring annotations do not work, when JSF

annotations are resolved. We overcome the problem by providing custom

implementation for view scope, and use only Spring annotations.

6. EntityManager vs SessionFactory:

Both EntityManager and SessionFactory are intended to perform CRUD operation at

data layer. EntityManager is part of JPA standard whereas SessionFactory is specific

to Hibernate. Since Hibernate fulfils JPA standard, it is possible to use

EntityManager with Hibernate. Best practice is to use EntityManager by default and

accessing Hibernate specific features where needed. EntityManager allows getting

Hibernate session by calling unwrap function; EntityManager.unwrap(Session.class).

7. Creating REST services with Spring MVC:

For REST services, Spring MVC requires a servlet and a context configuration for

the servlet to be defined. REST context is created as child of application context, so

core application services can be accessed from REST services, but not vice versa.

However, improper REST context configuration makes application services

unavailable for REST services. To solve the problem, duplicating creation of

application services in REST context configuration is a common mistake. Best

60

practice is to have only creation of communication layer services in REST context

configuration.

8. Sensor read is stopped after 15 seconds on some devices when the device

is in sleep mode:

We found that the problem occurs because of manufacturer settings. Partial wake

lock is acquired to ensure sensor can be read in sleep mode.

61

REFERENCES

[1] "Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/List_of_mobile_software_distribution_platforms.

[Accessed 10 01 2015].

[2] "Apple Press Info," [Online]. Available:

http://www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-

Billionth-Download.html. [Accessed 10 01 2015].

[3] "Apple Press Info," [Online]. Available:

http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-

2013.html. [Accessed 10 01 2015].

[4] Business Insider, [Online]. Available: http://www.businessinsider.com/iphone-v-

android-market-share-2014-5. [Accessed 10 01 2015].

[5] "IDC," [Online]. Available: http://www.idc.com/prodserv/smartphone-os-market-

share.jsp. [Accessed 10 01 2015].

[6] "StrategyAnalytics," [Online]. Available:

https://www.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=5505.

[Accessed 10 01 2015].

[7] E. Kepucka, "A Mobile Sensing Framework for Audience Emotion Analysis," M. S.

thesis, METU, Ankara, 2014.

[8] "Funf Open Sensing Framework," [Online]. Available: http://www.funf.org/. [Accessed

10 01 2015].

[9] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury and A. T. Campbell, "A

Survey of Mobile Phone Sensing," IEEE Communication Magazine, 2010.

[10] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury and A. Campbell, "The Jigsaw

Continuous Sensing Engine for Mobile Phone Applications," in SenSys'10, Zurich

Switzerland, 2010.

[11] H. Verkasalo, "Analysis of Smartphone User Behavior," in Ninth International

Conference on Mobile Business, Athens Greece, 2010.

[12] P.-M. Chen, C.-H. Chen, W.-H. Liao and T.-Y. Li, "A Service Platform for Logging

and Analyzing Mobile User Behaviors," in Proceeding of Edutainment, 2011.

[13] R. LiKamWai, Y. Liu, N. D. Lane and L. Zhong, "MoodScope: Building a Mood

62

Sensor from Smartphone Usage Patterns," in MobiSys'13, Taipei Taiwan, 2013.

[14] V. Pejovic and M. Musolesi, "InterruptMe: Designing Intelligent Prompting

Mechanisms for Pervasive Applications," in UbiComp'14, Washington USA, 2014.

[15] B. Yan and G. Chen, "AppJoy: Personalized Mobile Application Discovery," in

MobiSys'11, Maryland USA, 2011.

[16] X. Wei, L. Gomez, I. Neamtiu and M. Faloutsos, "ProfileDroid: Multi-layer Profiling of

Android Applications," in MobiCom, Istanbul Turkey, 2012.

[17] S. Lee, C. Yoon and H. Cha, "User Interaction-based Profiling System for Android," in

UbiComp, Seattle USA, 2014.

[18] H. Falaki, R. Mahajan and D. Estrin, "SystemSens: A Tool for Monitoring Usage in

Smartphone Research Deployments," in MobiArch'11, Maryland USA, 2011.

[19] "Phone Arena," [Online]. Available: http://www.phonearena.com/news/A-modern-

smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149. [Accessed

10 01 2015].

[20] "Search Engine Watch," [Online]. Available:

http://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-

biggest-shift-since-the-internet-began. [Accessed 15 01 2015].

[21] "Sensors Overview," [Online]. Available:

http://developer.android.com/guide/topics/sensors/sensors_overview.html. [Accessed 10

01 2015].

[22] N. D. Lane, S. B. Eisenman, M. Musolesi, E. Miluzzo and A. T. Campbell, "Urban

Sensing Systems: Opportunistic or Participatory," in HotMobile, NY USA, 2008.

[23] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul and G. M.

Voelker, "eDoctor: Automatically Diagnosing Abnormal Battery Drain," in 10th

USENIX Symposium on NSDI, Lombard IL, 2013.

[24] "Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[Accessed 25 07 2015].

[25] "Spring Framework," [Online]. Available: http://docs.spring.io/spring-

batch/trunk/reference/html/domain.html. [Accessed 10 01 2015].

[26] F. Cristian, "Probabilistic Clock Synchronization," Distributed Computing, vol. 3, no. 3,

pp. 146-158, 1989.

[27] "Android Developers," [Online]. Available:

http://developer.android.com/tools/debugging/ddms.html. [Accessed 21 06 2015].

63

[28] "Google Play," [Online]. Available:

https://play.google.com/store/apps/details?id=edu.umich.PowerTutor. [Accessed 21 06

2015].

[29] "Google Play," [Online]. Available:

https://play.google.com/store/apps/details?id=ccc71.at. [Accessed 21 06 2015].

[30] "Apache JMeter," Software Foundation, [Online]. Available: http://jmeter.apache.org/.

[Accessed 21 06 2015].

[31] "Android Developers," [Online]. Available:

http://developer.android.com/reference/android/app/ActivityManager.html. [Accessed

21 06 2015].

64

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü 

 Sosyal Bilimler Enstitüsü 

 Uygulamalı Matematik Enstitüsü 

 Enformatik Enstitüsü 

 Deniz Bilimleri Enstitüsü 

 YAZARIN

 Soyadı : Akkurt

 Adı : Erkam

 Bölümü : BİLİŞİM SİSTEMLERİ

TEZİN ADI (İngilizce) : UBDROID: A TOOL FOR MONITORING SMARTPHONE

APPLICATION USAGE FOR USER BEHAVIOR ANALYSIS

 TEZİN TÜRÜ : Yüksek Lisans  Doktora 

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir. 

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir bölümünden

 

kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz. 

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : …………………….

