
1 

 

T.C. 

MARMARA UNIVERSITY 

INSTITUTE FOR GRADUATE STUDIES IN 

PURE AND APPLIED SCIENCES 

 

 

 

 

 

OPTIMIZING THE PLACEMENT OPERATIONS OF 

CHIP MOUNTER MACHINES 

 

 

Hüseyin Demirkale 

 

 

 

THESIS 

FOR THE DEGREE OF MASTER OF SCIENCE 

IN 

COMPUTER SCIENCE AND ENGINEERING  

 

SUPERVISOR 

Assist. Prof. Arzu Baloğlu 

 

CO-SUPERVISOR 

Assoc. Prof. Ekrem DUMAN 

 

 

ISTANBUL 2010 

 



2 

 

T.C. 

MARMARA UNIVERSITY 

INSTITUTE FOR GRADUATE STUDIES IN 

PURE AND APPLIED SCIENCES 

 

 

 

 

 

OPTIMIZING THE PLACEMENT OPERATIONS OF 

CHIP MOUNTER MACHINES 

 

 

Hüseyin Demirkale 

(141100320070242) 

 

 

THESIS 

FOR THE DEGREE OF MASTER OF SCIENCE 

IN 

COMPUTER SCIENCE AND ENGINEERING  

 

SUPERVISOR 

Assist. Prof. Arzu Baloğlu 

 

CO-SUPERVISOR 

Assoc. Prof. Ekrem DUMAN 

 

 

ISTANBUL 2010 

 



i 

 

ACKNOWLEDGMENT 

I would like to thank my supervisor Assoc. Prof. Ekrem DUMAN and Assist. 

Prof. Ali Fuat ALKAYA for continual encouragement, support, advices, and 

extensive knowledge throughout the study. I am also grateful to Assist. Prof. Arzu 

BALOĞLU for her acceptance of my thesis for co-supervising.    

It was a great pleasure for me to become involved in this research study with 

Assist. Prof. Ali Fuat ALKAYA. 

 Many thanks to my friends and instructors in the Computer Science and 

Engineering  Department for their support and friendship.  

The financial support of this study by the Scientific and Technological Research 

Council of Turkey (TÜBĠTAK) through the project 108M198 is gratefully 

acknowledged.  

 

 

 

June 2010       Hüseyin Demirkale 



 

 

ii 

CONTENTS 

PAGE NO 

ACKNOWLEDGMENT ......................................................................... i 

CONTENTS ............................................................................................. ii 

ABSTRACT ............................................................................................ iv 

ÖZET ........................................................................................................ v 

SYMBOLS .............................................................................................. vi 

ABBREVIATIONS .............................................................................. viii 

FIGURES ................................................................................................ ix 

TABLES ................................................................................................... x 

CHAPTER I INTRODUCTION ........................................................... 1 

I.1 SCOPE AND AIM ....................................................................................... 2 

CHAPTER II GENERAL BACKGROUND ........................................ 3 

II.1 TRAVELING SALESMAN PROBLEM ................................................. 3 

II.2 EXACT METHODS .................................................................................. 6 

II.2.1 Branch and bound algorithm ............................................................... 7 

II.2.2 Cutting plane methods ....................................................................... 13 

II.2.3 Branch-and-cut algorithms ................................................................ 14 

II.3 GAMS PLATFORM ................................................................................ 15 

II.4. PRINTED CIRCUIT BOARDS ............................................................. 23 

II.5 CHIP MOUNTER PLACEMENT MACHINE .................................... 23 

II.6 CHIP SHOOTER PLACEMENT MACHINE ..................................... 24 

CHAPTER III THE STUDY ............................................................... 26 

III.1 PLACEMENT SEQUENCING PROBLEM ............................. 27 

CHAPTER IV RESULTS and DISCUSSION ................................... 39 

CHAPTER V COMPUTATIONAL ANALYSES OF ABC 

ALGORITHM ....................................................................................... 49 



 

 

iii 

CHAPTER VI CONCLUDING REMARKS and 

RECOMMENDATIONS ...................................................................... 57 

REFERENCES ...................................................................................... 59 

CURRICULUM VITAE ....................................................................... 66 



 

 

iv 

ABSTRACT 

OPTIMIZING THE PLACEMENT OPERATIONS OF CHIP 

MOUNTER MACHINES 

The wide usage of printed circuit boards (PCBs) in numerous electronic 

products has placed a significant demand for PCBs.   This demand directs the 

researchers to decrease the drawbacks of printed circuit board production where 

placements machines are used.  Main optimization problems of placements machines 

are the placement sequencing problem and assignment of component types to the 

feeders, also called feeder configuration problem.  These problems are called NP-

Complete problems. 

This thesis focuses on optimizing feeder configuration and placement 

sequencing problems   on the operations of chip mounter and chip shooter machines.  

The similarity of these machines is that they have rotational turret, board carrier and 

feeder magazine which holds the components. 

The research begins with literature survey of exact methods and GAMS 

platform with different solvers.  A new generalized version of Traveling  Salesman 

Problem (TSP) is implemented with GAMS platform which is called as the Sequence 

Dependent TSP (SDTSP).  The nonlinear formulation of the SDTSP is explained.  

The results of the exact methods are examined in computational complexity and time 

domain. Also the results are compared in hardware requirement according to the size 

of the problem.   

The thesis continues with exploring the artificial bee colony algorithm on 

chip shooter and chip mounter machines.  It is very time consuming to solve 

problems with exact methods, for this reason, a metaheuristic is implemented and 

tested on the SDTSP.  Furthermore,  ABC is implemented to the problems of chip 

mounter machines and the results of ABC is compared with the exact solutions. 

Computational results are presented to demonstrate the effectiveness of the 

metaheuristics.  It is shown that ABC is a promising algorithm for solving 

combinatorial optimization problems. 

 

June, 2010       Hüseyin DEMİRKALE 

 

 



 

 

v 

ÖZET 

ÇİP PARÇA YERLEŞTİRİCİ MAKİNELERİN 

OPTİMİZASYONU 

 Baskı devre kartlarının günümüzde yaygın bir biçimde kullanılması onlara 

olan talebi önemli ölçüde arttırmıştır.  Bu da araştırmacıları, üretimde meydana gelen 

engellerin en aza indirgenmeye yöneltmiştir. Üretimde meydana gelen aksaklığın 

kaynağı dizgi makineleridir.  Basılı devre kartlarının üretiminde karşılaşılan 

darboğaz, dizgi makinelerinden gelen iki problemden kaynaklanmaktadır.  Bunlar 

sırasıyla, parça montaj sırasının belirlenmesi ve parçaların besleme hücrelerine 

bölünmesi problemleridir.  Bu problemler, NP-Zor problemler olarak 

adlandırılmaktadırlar ve en iyi çözümleri bulan yöntemler ile birlikte çözümlere 

sadece küçük boyuttaki örneklerde ulaşılır. 

Araştırma, çip parça yerleştirici ve çip parça saçıcı makinelerinin işlemlerini 

eniyilemeye odaklanmıştır.  Bunu yaparken de, montaj sıralaması ve besleme 

konfigürasyonu problemleri ele alınmıştır.  Her iki makinede döner tarete sahiptir.  

Problemde en iyi sonuca ulaşmak için bu iki problemin aynı anda çözülmesi 

gerekmektedir.   

Tez kesin çözüm yöntemlerinin ve problem çözümünde kullanılan GAMS 

geliştirme aracı üzerinde  yazın incelemesi ile başlamaktadır.  Bununla alakalı olarak 

Sıraya Dayalı Gezgin Satıcı Problemininin (SDGSP) için doğrusal olmayan tamsayılı 

programlama formulasyonu verilmiştir ve GAMS geliştirme aracı üzerinde kodlanıp 

sonuçları incelenmiştir.  Tez SDGSP probleminin sayısal analizi ve sayısal 

karmaşıklığının incelenmesiyle devam etmiştir.  Problemin çözümünde gereken 

zaman, oluşan karmaşıklık ve bu karmaşıklığa bağlı olarak ihtiyaç duyulan 

donanımsal yapı incelenmiştir.  Sayısal analiz ve sayısal karmaşıklık bölümlerinde 

problem çözümlerinin araştırılması sırasında çip parça yerleştirici makinelerin parça 

sayısı ve besleme konfigürasyonu ayrı ayrı test edilmiştir. 

Tez çip parça saçıcı makinelerinin eniyileme çözümlerinin araştırılmasıyla 

devam etmektedir. Kesin çözüm yöntemleri ile en iyi çözümleri elde etmek çok 

zaman aldığından, sezgisel yöntem olan yapay arı kolonileri algoritması 

geliştirişmiştir. Bundan başka, çip yerleştirici makineler icin yapay arı kolonileri 

algoritması uygulanmıştır. Algoritmanın başarısı sayısal sonuçlarla gösterilmiştir. 

Haziran, 2010                       Hüseyin DEMİRKALE 



 

 

vi 

SYMBOLS 

CF1    : Travel cost of board carrier in chip mounter machines 

cij : Cost of travel from city i to city j 

Cijp : Cost of travel from point i to point j when point j is visited in p
th

 position 

component type 

d          : Distance between two components 

Dijp : The dominating factor in Cijp definition 

e : Edge 

E : Set of edges 

G : Graph consisting of edges and vertices 

gtk : Group (weight category) matrix (n x K) indicating the group of components 

H : Number of heads 

K : Number of weight categories 

n          : Number of nodes 

N : Total number of components to be placed 

Nk : Number of components in each weight category k 

npz      : No pick up zone for chip mounter machines 

 p : The placement order or placement position. 

R : Feeder number 

R : Number of feeder slots  

ttk : Turret rotation time for each weight category k. 

u : Feeder slot constraint 

V : Set of vertices 

v : Speed of board carrier 

wijp: : Binary variable which takes the value of 1 if node j is visited in p
th

 position 

after node i is visited in (p-1)
th

 position 

X
B 

: Basic variable 

xip : Binary variable which takes the value of 1 if node i is visited in position p.  

X
N 

: Non-basic variable 

y : Integer solution 



 

 

vii 

ytr : Binary variable which takes the value of 1 if component type t is assigned to 

feeder slot r.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii 

ABBREVIATIONS 

ABC  : Artificial Bee Colony 

BC  : Board Carrier 

BONMIN   : Basic Open-Source Nonlinear Mixed Integer programming 

ER               : Equality Relaxation 

GRG           : Generalized Reduced Gradient algorithm. 

IP          : Integer Programming 

KKT           : Karush-Kuhn-Tucker  

LB   : Lower Bound 

LP                : Linear Programming 

MINLP        : Mixed Integer Nonlinear Programming 

MIP             : Mixed Integer programming 

NLP             : Nonlinear Programming 

OR               : Outer Approximation Algorithm 

PCB  : Printed Circuit Boards 

SDTSP : Sequence Dependent Traveling Salesman Problem 

SMT  : Surface Mount Technology 

TSP  : Traveling Salesman Problem 

UB    : Upper Bound 



 

 

ix 

FIGURES 

PAGE NO 

  

Figure II. 1 History of traveling salesman problem   5 

Figure II. 2 Pruned nodes   9 

Figure II. 3 Smallest outgoing edges from every node 10 

Figure II. 4 The paths that are excluded from the tours 12 

Figure II. 5 Minimum spanning tree and 1-tree relaxation 13 

Figure II. 6 Solver strategy of our problem in GAMS 16 

Figure II. 7 Outer Approximation of a convex function at four points 17 

Figure II. 8 Solution steps in MINLP problems 18 

Figure II. 9 TDK chip mounter placement machine 24 

Figure III. 1 Initial state 31 

Figure III. 2 The schematic diagram of assembly step 1 31 

Figure III. 3 The schematic diagram of assembly step 2 32 

Figure III. 4 The schematic diagram of assembly step 3 33 

Figure III. 5 The schematic diagram of assembly step 4 33 

Figure III. 6 The schematic diagram of assembly step 5 34 

Figure III. 7 The schematic diagram of assembly step 6 34 

Figure IV. 1 The complexity level when the number of components between 

8-50 42 

Figure IV. 2 The complexity level when the number of components between 

20-5 to 20-17 component feeder 43 

Figure IV. 3 The complexity level when the number of components and 

feeders increase simultaneously 44 

Figure IV. 4 Runtime of easy type problems according to the component 

number 46 

Figure V. 1 New Distribution method 51 

Figure V. 2 Improvement of ABC with iteration number 54 

 

 



 

 

x 

TABLES 

PAGE NO 

Table II. 1 Literature review of TSP until 1988   6 

Table II. 2  Distance matrix between cities   7 

Table II. 3 Calculating the lower bound values   8 

Table II. 4 Pruned nodes in branch and bound algorithm   9 

Table II. 5 Distance matrix of example problem 10 

Table II. 6 The algorithm of DICOPT 19 

Table II. 7 GRG Algorithm 21 

Table III. 1 Components, their types and groups       29 

Table III. 2 Types of components 29 

Table III. 3 Groups of types 30 

Table III. 4 An initial feeder configuration 30 

Table IV. 1 Gams statistical outputs 40 

Table IV. 2 A Better feeder configuration for example 1 40 

Table IV. 3 Model statistics according to the component number (Feeder 

Number is 5, npz=2) 41 

Table IV. 4 Total RAM requirementwith respect to according to number of 

component (memory sizes are approximate) 42 

Table IV. 5 Model statistics with respect to the number of feeder 43 

Table IV. 6 Model statistics with respect to increase in number of component 

and feeder 44 

Table IV. 7 Comparison of DICOPT and BONMIN solvers (Feeder 

configuration=5, npz=2) 45 

Table IV. 8 Runtime of easy problems 46 

Table IV. 9 Runtime of randomly generated problems 47 

Table IV. 10 Model statistics according to increase in component 47 

Table V. 1 Improvement with new distribution methodology 52 

Table V. 2 Solutions with different limit variables on PS11AK08-9 52 

Table V. 3 Change in number of iterations in ABC on PS11AK08-9 52 



 

 

xi 

Table V. 4 Results with change of colony size on PS11AK08-9 with 10000 

iterations and 200 limit with 10 runs 53 

Table V. 5 Comparison with simulated annealing on problem instances 53 

Table V. 6 Comparison with exact methods and metaheuristics 55 

Table V. 7 Computational time with Exact Methods and Metaheuristics 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER I   

INTRODUCTION  

Printed circuit boards (PCB) are used to connect electronic components using 

conductive methods in wide range of industry.  These boards are used in all 

electronic goods which are assembled with placement machines.  Originally, every 

electronic component must be wired in order to operate.  For this purpose, PCB is 

produced to hold the electronic components with the help of holes on it. Generally 

they are designed specially and make the construction of goods very easy. 

When mounting the components on PCB, surface mount technology (SMT) is 

used.  SMT is the method of constructing electronic circuits where components are 

mounted directly to the surface of board.  Nowadays, SMT machine industry has 

come of age and replace the through hole technology (Manko, 1995).  

Because of the wide usage of printed circuit boards and having hundreds of 

components on it make the importance of the assembly of PCB more important in 

global industry.  For that reason, to have effective production of PCB, new 

mathematical models are developed and implemented on several machines.  

In industry, there are several type of machines that are used to assemble PCBs.  

These machines have several parts such as rotational turret, board carrier and feeder 

magazine.  All these parts operate concurrently in order to mount components on 

boards.  

The machine type that we use in our thesis is chip mounter machines.  Chip 

mounter machines have a rotational turret and board carrier (BC).  Although the parts 

operate independently, the solution of one part effects the other. 

Generally speaking, the operations of these machines yield two major problems 

(Duman,1998).  These are allocating the components to feeder slots and 

determination of the placement sequence of these components.  The placement 

sequence problem is a generalized version of TSP which is called as the sequence 

dependent traveling salesman (SDTSP) problem.  



 

 

2 

In a chip mounter machine, there is a stationary feeder magazine, feeder slots 

and board carrier.  Board carrier moves in x-y directions and aligns the component 

hole to the next head of turret.  On rotational turret, there are heads which carries the 

electronical components from feeder magazines to board.  The turrets are capable of 

grabbing different types and groups of components.  

The chip shooter machines are similar to the chip mounter machines.  The only 

difference is the moveable feeder magazine.  The feeder magazine of the chip 

shooter machines move horizontally and aligns the components to turret head.  

I.1 SCOPE AND AIM 

The aim of thesis study is to implement exact methods on chip mounter 

machines and prove that these methods are not suitable for large size of problems.  

The SDTSP problem is explained and implemented with exact methods using GAMS 

(Alkaya and Duman 2009). 

In chip shooter machines, one of the most recent algorithms, artificial bee 

colony, (ABC), is implemented.  This algorithm is motivated from the behaviour of 

honey bees.  In that algorithm, three types of bees, scout, onlooker and employer, are 

analyzed and according to their movements the placement operation of chip shooter 

machine is developed. 

Next, ABC algorithm on chip shooter machines is analyzed. 

In the methodology of thesis study, first the exact methods are examined and 

identified.  The formulation of chip mounter machine is studied (Alkaya and Duman 

2009). 

A literature survey about exact methods, chip mounter machines and chip 

shooter machines is made. 

Then, the formulation of chip mounter machine was implemented and 

computational analyse are made.  

Afterwards, ABC algorithm is implemented for chip shooter machines.  

 

 

 

 

 



 

 

3 

CHAPTER II   

GENERAL BACKGROUND  

In this chapter, we plan to give a general background and literature survey for 

exact methods, printed circuit boards and GAMS optimization platform.  Thus, 

section II.1 gives a general background for exact methods.  Then, in the following 

subsections the problems that are analyzed are given along with their solution 

approaches in the literature. 

II.1 TRAVELING SALESMAN PROBLEM 

 

The Traveling Salesman Problem (TSP) is one of the most widely studied IP 

problems.  Adding new constraints to the problem yields different generalizations to 

the problem and each new generalization forms the basis of a new research area.  

Mostly known generalizations are Asymmetric TSP, Vehicle Routing Problem 

(VRP) and its variants.  TSP is observed in many research areas.  One can easily 

argue that there is uncountable number of studies towards solving it since it is 

introduced to the literature, ranging back to at least the late 1940’s.  The TSP is the 

focus of interests for many research disciplines (mostly computer scientists, 

mathematicians and industrial engineers) because, even after about half a century of 

research, the problem has not been completely solved.  TSP or its variants can be 

applied to solve many realistic problems within our daily lives. 

It can be easily stated as follows:  A salesman wants to visit n distinct cities 

and then returns home.  He wants to determine the sequence of the travel so that the 

overall travelling distance is minimized while visiting each city not more than once.  

Conceptually it seems simple, but obtaining an optimal solution requires a search in 

set with n! feasible solutions.  TSP can be represented on a graph G=(V,E), where V 

is the set of vertices (or cities) and E is the set of edges (or links between the cities).  

Each edge Ee  has an associated cost (or length) ce.  We define the incidence 

vector x as  



 

 

4 






otherwise0

 used is j and ibetween  edge if1
ijx

 
Notice that for a tour, at each vertex the sum of the edge variables must be two; 

this is called a degree constraint.  This leads to the relaxation of the traveling 

salesman problem: 

 ee xcmin
        (II.1) 

s.t.  v verticesallfor      2
)(

  ve ex


     (II.2) 

Here, )(v  denotes the set of all edges incident to vertex v.  All tours are 

feasible in this formulation, but it also allows infeasible solutions corresponding to 

subtours, consisting of several unconnected loops.  To force the solution to be a tour, 

it is necessary to include subtour elimination constraints of the form 



)(

2
ue

ex


 

for every subset VU   with cardinality 22 VU  , where )(U  denotes the set 

of edges with exactly one endpoint in U.  Any feasible solution to the relaxation 

given above which also satisfies the subtour elimination constraints must be 

incidence vector of a tour.  One can see that the number of subtour elimination 

constraints is exponential in the number of cities (Mitchell, 2002). 

Another formulation of TSP is done by using variables xij representing the 

travel of the salesman from city i to city j, and cij representing the cost of travel. 







n

i

n

ij
j

ijij xc
1 1

min         (II.3) 

s.t. jinjx
n

i

ij 


;,,1        ,1
1

      (II.4) 

jinix
n

j

ij 


;,,1        ,1
1

       (II.5) 

jinjinnxuu ijji  ;,,3,2,        1      (II.6) 

  ,,,1       ,,,1        ,1,0 njnixij       (II.7) 

,,,1       integers) positive ofset (Z        niui     (II.8) 



 

 

5 

In this formulation, first constraint ensures that the salesman arrives once at 

each city and second constraint ensures that the salesman leaves each city once.  

Avoidance of subtours is done by third constraint (Winston and Venkataramanan, 

2003). 

In general TSP, there is no restriction on the cost function.  In metric TSP, all 

edge cost are symmetric and fulfill the triangle inequality:  cij ≤ cik + ckj.  In 

Euclidean TSP, vertices correspond to points in a d-dimensional space, and the cost 

function is the Euclidean distance.  The Euclidean distance between two points x=(x1, 

x2,…,xd) and y=(y1, y2, …, yd) is  

 



d

i

ii yx
1

2
        (II.9) 

(Alkaya, 2009). 

The history of TSP is shown in  Table II. 2. (Padberg and Rinaldi, 1991)  In that 

Figure, the Y axis shows the number of cities that is solved in TSP and X axis shows 

the years.   Table II. 2 is a table view of Table II. 2 

 

 

Figure II. 1 History of travelling salesman problem 

 

 

 

 

 

 

 

 

 

 



 

 

6 

Table II. 1 Literature review of TSP until 1988 

 

Year Referance City  0-1 Variables 

1954 DFJ: Dantzig,Fulkerson and Johnson 49 1,076 

1970 HK: Held and Karp 60 1,770 

1974 HHK: Helbig Hansen and Krarup 80 3,160 

1975 CFM: Camerini,Fratta and Maffioli 100 4,950 

1977 G: Grotschel 120 7,140 

1980 CP: Crowder and Padberg 318 50,403 

1987 PR: Padbergand Rinaldi 532 141,246 

1987 PR: Padbergand Rinaldi 1,002 501,501 

1987 PR: Padbergand Rinaldi 2,392 2,859,636 

1988 GH: Grotschel and Holland 666 221,445 

1988 GH: Grotschel and Holland 1,000 499,500 

 

II.2 EXACT METHODS 

In mathematics, computer science, and related subjects, an algorithm is an 

effective method for solving a problem using a finite sequence of instructions.  Exact 

algorithms are guaranteed to find an optimal solution and to prove its optimality for 

every instance of a class of combinatorial optimization problems.  In this section, the 

most poular exact algorithms; branch and bound, branch and cut and cutting plane 

algorithms are explained. 

As mentioned before, traveling salesman problem is attractive topic for the 

researches because of its simplicity on description but difficulty on solution.  In that 

problen type, with given cities, the aim is to find the minimum cost tour provided 

that each city is visited once. 

Traveling salesman problem is important for researchers because the solution of 

it represents all combinatorial optimization problems.  In other words, the solution 

encompasses NP complete problems.  

 In traveling salesman problem, where number of cities is N, there are (N-1)! 

solutions.  At  first glance, this calculation can be thought as easy in small size 

problems, but when the number of size increases, it becomes hard to find the 

optimum solution. 



 

 

7 

In the following, respectively, branch and bound, cutting plane and branch and 

cut algorithms are explained on TSP.  

 

II.2.1 Branch and bound algorithm 

In first part, branch and bound algorithms are examined.  In this algorithm, with 

given city matrix, initially, the minimum possible tour is computed by finding the 

minimum edge that  leaves each node.  These outgoing edges or pathes may not 

construct a tour but one can say that, the the sum of that outgoing edges never 

exceeded by other tours.  In other words, every node is visited only once and the 

summation of smallest outgoing edges is the minimum value of possible tours.  And 

if the smallest outgoing edges constructs a tour, than that is the best tour. 

 Branch and bound algorithm finds the lower bound of the problem with the sum 

of minimum pathes that leaves the cities.  And at each step, solutions are compared 

with that lower bound.  If the current solution is less than lower bound, than 

algorithm continues with that node and branch with that node.  In other words, the 

current tour is considered and included to the solution result set.  Otherwise, 

branching with that node terminated and pruned.  

 In the section below, there is step by step explanation of branch and bound 

algorithm.  

 Cost matrix is defined in Table II. 2. In that examle, where there are 5 cities. 

Table II. 2  Distance matrix between cities 

 

 C1 C2 C3 C4 C5 

C1 0 14 4 10 20 

C2 14 0 7 8 7 

C3 4 5 0 7 16 

C4 11 7 9 0 2 

C5 18 7 17 4 0 

 

In the initial step of algorithm is defining the lower bound is taken as ∞.  After 

that step, minimum pathes are calculated.  As seen from Table II. 2 the minimum 

edge that leaves the city  C1 is 4.  Likewise, The minimum path that leaves C2 is 7, 

C3 is 4, C4 is 2 and finally C5 is 4.  By adding these values, the lower bound can be 

calculated as 21. Table II. 3 shows these steps.  This lower bound is the initial state 



 

 

8 

of branch and bound tree.  Since value, 21, is lower than  ∞, adjacent cities to C1 are 

included to the next step.  That is to say that, pathes C1- C2 , C1- C3, C1- C4 and 

C1- C5 are added to the tour. 

Table II. 3 Calculating the lower bound values 

 

0 14 4 10 20 Min  14,4,10,20  : 4 

14 0 7 8 7 Min  14,7,8,7      : 7 

4 5 0 7 16 Min  4,5,7,16      : 4 

11 7 9 0 2 Min  11,7,9,2      : 2 

18 7 17 4 0 Min  18,7,17,4    : 4 , Total:  4 + 7 + 4 + 2 + 4  = 21 

  

As seen from Table II. 3, lower bound is calculated as 21.  And cities that are 

adjacent to C1 are used for next step.  First, that part from C1-C2 is inserted to the 

new calculations and with the help of formulation (II.7), new lower bound is 

calculated.   

  

LB (C1, C2) = (C1 - C2) + the smallest outgoing edges in unvisited nodes       (II. 10) 

And according to example that value is,  

  14 + 7 + 4 + 2 + 4 = 31 . The value of 14 comes from the distance between 

C1 and C2. 

Likewise, the ditance between C1 and C3 is calculated as;  

  

LB (C1, C3) = (C1 - C3) the smallest outgoing edges in unvisited nodes          (II. 11) 

And the result is = 4 +7 + 4 + 2 + 4 =: 21 

 

In that way, the algorithm continues with  finding a tour and keeping the lower 

bound value.  Than, the lower bound values are compared in each step.  The nodes 

that has higher lower bound values are pruned from the branch and bound tree. 

Algorithm continues with remaining nodes until it reaches the end of tree which is 

the optimum solution.  

One of the main advantage of branch and bound algorithm is arised in runtime. 

In every step of algorithm lower bound values are calculated and some nodes are 

pruned from the branch and bound tree with the help of that lower bound.  Also the 



 

 

9 

calculations of that nodes are pruned.  In big problems, these advantage of branch 

and bound algorithm can be realized clearly.   

 

Figure II. 2 Pruned nodes 

 

The next proposed algorithm about branch and bound is known as Little’s 

algorithm. In that algorithm, different from the previous one, there are some 

constraints which are named as including or excluding constraints.  According to 

these constraints  branch and bound tree is constructed.  Moreover, lower bound 

values are calculated with those constraints too.  These lower bound values represent 

the smallest solution that is possible when there are tours below that node in tree.  If 

this lower bound is higher than the best known solution that this node is pruned like 

first brand and bound algorithm (Little, 1963).  

If the pruned nodes are closer to the root of the tree than the algorithm becomes 

more efficient.  

As mentioned above there are including and excluding rules.  These rules are 

given in Table II.4:  

Table II. 4 Pruned nodes in branch and bound algorithm 

 

 

If we exclude an edge,C1C2, from the tour and this extraction makes it impossible 

for that edges to have two adjacent edges, than we must include these nodes. 

If two cities are included C1C2 to the tour and this happens  to have more than two 

edges adjacent cities in tour than these cities are excluded. 

After the include of two nodes a cycle which is not a tour can be formed. In that 

situation it is excluded from the tour. 

 

 



 

 

10 

Similar to the first algorithm, in order to compute the lower bound, the smallest 

outgoing edges from each node are added. 

In that step, with the including and excluding rules, we construct branch and 

bound tree and find the optimum value.  

 Our cost matrix is defined in Table II. 5. 

Table II. 5 Distance of matrix of example problem 

 

 C1 C2 C3 C4 C5 C6 

C1 0 8 5 3 1 2 

C2 8 0 4 9 2 8 

C3 5 4 0 9 6 7 

C4 3 9 9 0 1 1 

C5 1 2 6 1 0 9 

C6 2 8 7 1 9 0 

 

Initially, algorithm starts with cities C1 and C2. 

 In that example, i(x,y) represents including an edge and e(x,y) represents excluding 

an edge.  For example, i(1,2) means, include the path C1 to C2 to the tour and e(1,2) 

exclude the path C1 to C2 to the tour. 

 First of all, the path from C1 to C2 is included to the tour. This means the 

distance between these cities is added to the tour, which is 8. 

  

 
Figure II. 3 Smallest outgoing edges from every node 

 

In the Figure II. 3 according to the cost matrix in Table II. 5 the smallest 

outgoing edges from every node are shown.  Black line means that these edges are 

included to the tour.  With that figure, the lower bound is calculated as;  



 

 

11 

Smallest edge in node C1 is  8+1 = 9. Here, 8 represents the distance between 

C1 and C2, 1 represents the smallest outgoing edge C1C5. 

S1=Smallest outgoing edge in node C2  8 + 2 = 10. 

S2=Smallest outgoing edge in node C3  4 + 5 = 9. 

S3=Smallest outgoing edge in node C4  1 + 1 = 2. 

S4=Smallest outgoing edge in node C5  1 + 1 = 2. 

S5=Smallest outgoing edge in node C6  1 + 2 = 3. 

 By adding these values, the lower bound 35 is calculated. 

The next step in algorithm is to exclude the edge C1C2. Likewise previous 

calculations;  

S(1) = 3 , S(2) = 6, S(3)=9 , S(4) = 2, S(5) = 2 , S(6) = 3 and the sum is 25. 

Here, the algorithm continues with lower bound 25 because, the probability of  

being pruned of this node from the tree is lower than the other one. 

 In that step, the algorithm continues with calculating the lower bound. 

 And the rules i(C1,C3) and e(C1,C3) is applied to the current step. When we exclde 

the nodes 1 and 3 the lower bound is 26. On the other hand it is 28 when we include 

it. 

 

i(1-3)   S(1) = 6, S(2)=6, S(3)=9 , S(4)=2, S(5)=2, S(6)=3, the sum is 28, 

e(1-3)  S(1) = 3, S(2)=6, S(3)=10 , S(4)=2, S(5)=2, S(6)=3, the sum is 26. And 

next step continues with node 26. 

 

Next step, continues with e(C1,C4) and i(C1,C4). In that step, with including the 

path C1C4 to the tour, the lower bound is calculated as 29.   

When we exclude e(C1,C4), it is clear that, until that step, 3 paths are excluded 

from the tour which are (C1-C2) , (C1-C3) and (C1-C4) .  

 



 

 

12 

 

 

Figure II. 4 The paths that are excluded from the tours 

 

 

In Figure II. 4, the excluded edges are seen.  In that situation, with the help of 

rules, one can say that, in order to return to node C1, at least 2 paths are required.  

For that reason, paths (C1-C5) and (C1-C6) must be included to the tour. 

Moreover,  we must exclude path (C5,C6) from tour in order to prevent 

subtour. 

 The algorithm continuous until a tour is generated with given constraints. 

And with the help of the length of that tour, the nodes of branch and bound tree are 

pruned or branched.  

Another approach on branch and bound algorithm is proposed in years 1970 

from Held and Karp.(Held and Karp, 1970).  In this algorithm, 1-tree is used.  For a 

given node,  a 1-Tree is a tree of {2,3,…n} +2 distinct edges connected to node 1.  

Initially, a node is selected in the given problem and then with remaining nodes, 

minimum spanning tree is created.  And finally, node is connected that spanning tree. 

 With the help of Kruskal and Prim algorithms, a minimum spanning tree is 

generated with cities {2,3,4…N} and the node 1 is combined with that tree as in 

Figure II. 5.  

 In each step of the algorithm, new spanning tree is generated and according to 

them new cost calculations are done to find the optimal solution.  



 

 

13 

1

2

3

4 5

6

0

25

50

75

100

0 25 50 75 100West

South

 

Figure II. 5 Minimum spanning tree and 1-tree relaxation 

 

In that algorithm, the connection between the nodes are important because, 

with the help of them new minimum spanning trees are created.  Likewise previous 

algorithms the algorithm continues with the help of lower bounds and 1-tree 

relaxation rules (Held and Karp, 1970). 

 The algorithm of Held and Karp gives us the lower bounds and these lower 

bounds help us to create new minimum spanning trees.  This lower bound value also 

shows us the minimum tour under that node.  When a tour occurs then,  optimum 

tour is found.  

  

II.2.2 Cutting plane methods 

Cutting plane methods are exact algorithms for integer programming problems.  

They have proven to be very useful computationally in the last ten years, especially 

when combined with a branch and bound algorithm in a branch and cut framework.  

These methods work by solving a sequence of linear programming relaxations of the 

integer programming problem.  The relaxations are gradually improved to give better 

approximations to the integer programming problem, at least in the neighborhood of 

the optimal solution.  For hard instances that cannot be solved to optimality, cutting 

plane algorithms can produce approximations to the optimal solution in moderate 

1

2

3

4 5

6

0

25

50

75

100

0 25 50 75 100West

South  
 

 

  



 

 

14 

computation times, with guarantees on the distance to optimality (Mitchell, 2002).  A 

survey of applications of cutting plane methods, as well as a guide to the successful 

implementation of a cutting plane algorithm can be found in (Jünger et al., 1995).  

Cutting plane algorithms for general integer programming problems were first 

proposed by (Gomory, 1958, Gomory, 1963).  The Gomory cuts were observed to 

give poor performance for large scale problems and were neglected for many years.  

Recently, (Balas et al., 1996a, Letchford and Lodi, 1992) showed that the Gomory 

cuts can actually be useful.  There has been interest recently in other families of 

cutting planes for IP problems.  Two such families are lift-and-project cuts and 

Fenchel cuts (Balas et al., 1996b, Boyd, 1994).  A recent study by (Marchand et al., 

2002) is a good survey that presents cutting planes that are useful or potentially 

useful in solving mixed integer programs. 

 

II.2.3 Branch-and-cut algorithms 

Branch-and-cut algorithms are also exact algorithms consisting of a combination 

of a cutting plane method with a branch-and-bound algorithm.  The method solves 

the LP relaxation of IP problem using simplex algorithm.  When an optimal solution 

is obtained, and this solution has a non-integer value for a variable that is supposed 

to be integer, a cutting plane algorithm is used to find further linear constraints which 

are satisfied by all feasible integer points but violated by the current fractional 

solution.  If such an inequality is found, it is added to the linear program, such that 

resolving it will yield a different solution which is hopefully "less fractional".  This 

process is repeated until either an integer solution is found (which is then known to 

be optimal) or until no more cutting planes are found. 

At this point, the branch and bound part of the algorithm is started.  The problem 

is split into two versions, one with the additional constraint that the variable is 

greater than or equal to the next integer greater than the intermediate result, and one 

where this variable is less than or equal to the next lesser integer.  In this way new 

variables are introduced in the basis according to the number of basic variables that 

are non-integers in the intermediate solution but which are integers according to the 

original constraints.  The new linear programs are then solved using the simplex 

method and the process repeats until a solution satisfying all the integer constraints is 

found. 



 

 

15 

One aspect of a branch-and-cut approach that should not be overlooked is that it 

can be used to provide bounds.  In particular, if we are minimizing but we are unable 

to prove optimality, a lower bound on the optimal value can be deduced from the 

algorithm, which can be used to provide a guarantee on the distance from optimality. 

Therefore, for large and/or hard problems, branch-and-cut can be used in conjunction 

with heuristics or metaheuristics to obtain a good (possibly optimal) solution and 

also to indicate how far from optimality this solution may be (Mitchell, 2002). 

(Padberg and Rinaldi, 1991) introduce a branch-and-cut algorithm for solving 

large scale instance of TSP to optimality.  (Jünger et al, 1995) is good reference to 

cutting plane algorithms and branch-and-cut algorithms from an implementer’s point 

of view.  Recently, (Mitchell, 2002) describes how a branch-and-cut algorithm can 

be tailored to a specific IP problem, and how families of general cutting planes can 

be used to solve a wide variety of problems. 

II.3 GAMS PLATFORM 

Before mention about the problem and solvers, it is good to explain the general 

structure of GAMS platform.  

The General Algebraic Modeling System (GAMS) is high-level modeling 

system which can be used for mathematical modeling and optimization.  This 

platform consists of a compiler and several solvers.  These solvers are capable of 

handling high-level and large scale problems.  

GAMS platform has a compiler thus it has a programming language which is 

similar to other programming languages.  One can write the model to its editor and 

then execute it with different solvers on different computers when it is loaded to each 

platform.  GAMS has the capability of solving models in different types (linear 

Programming, nonlinear programming) and it allows to solve the same model with 

different algorithms and solvers.  So without changing the model representation 

code, one can use different algorithms.  As seen in Figure II.6 , in the solver list of 

GAMS, there are BARON, CONOPT3, MINOS, SNOPT and other solvers which are 

built for nonlinear programs (NLP).  All these solvers can solve a model which is a 

NLP problem.  This causes to change the solver easily and benchmark the 

performance of models easily in different algorithms.  In other words, this yields 

users to find the best way to solve models.  



 

 

16 

When the formulation above is solved with nonlinear solvers in GAMS, GAMS 

raises errors because of discrete variables.  In order to solve problems that have 

discrete variables, solvers needed that handle integer programming.  Moreover the 

model above includes nonlinear functions.  This brings another advantage of GAMS 

which generates errors to identify the problem more clearly.   

Because of the structure of formulation, in GAMS, DICOPT is used as solver 

because it handles both nonlinear and integer programming.  There are other solvers 

that solve our problem like BARON.  However in our formulation, DICOPT is 

chosen as solver because the execution time and memory requirement is less than the 

need of BARON.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 6 Solver strategy of our problem in GAMS 

 

In GAMS, DICOPT is the program that solves mixed integer nonlinear 

programming (MINLP) problems.  In other words, DICOPT solves problems which 

have integer, linear and nonlinear continuous variables.  It is based on the extension 

of the outer approximation algorithm for the equality relaxation strategy (Duran and 

CPLEX is used 

for MIP 

 

CONOPT3 is 

used for NLP 

 

DICOPT algorithm 

needs a NLP and 

MIP solver 

 

To solve model 

DICOPT is used as 

solver 

 

GAMS Solvers (BARON 9.0,  

ALPHAECP, CONOPT 3, CPLEX, 

LINDOGLOBAL 6.0, DICOPT, 

MINOS, SNOPT, MSNLP, 

KNITRO 6.0, OQNLP, SBB) 

 

Available Solvers 

 
GAMS 

 



 

 

17 

Grossman, 1986).  These algorithms solve problems with the help of NLP and MIP 

solvers that run under GAMS.  

While solving the formulation in GAMS, three key ideas are used in DICOPT 

algorithm. These are;  

 Outer approximation 

 Equality Relaxation and 

 Augmented Penalty 

Duran and Grossman proposed the outer approximation algorithm to reduce the 

number of NLP sub problems (Duran and Grossman, 1986).  So, the objective of the 

outer approximation algorithm is to provide polyhedral representation of the solution 

space of the program Figure II.8.  This solution method renders the linearity in the 

continuous variables and enables to replace the difficult MINLP program with a 

mixed integer linear program.  In that algorithm, outer approximations are attained 

by generating linearization at each step and accumulating them to get successively 

linear approximations of nonlinear convex functions that underestimate the objective 

function and overestimate the feasible region.  In outer approximation algorithm 

nonlinear equations must be eliminated algebraically or numerically.  

 

Figure II. 7 Outer Approximation of a convex function at four points 

 

When there is a MINLP problem that contains nonlinear functions NLP(x, y), 

one can always reformulate the problem that is linear in y and nonlinear in x.  As a 

result a master problem (MILP) is generated.  This MILP master problem includes 

the linear constraints from the original MINLP problem and the linear 

approximations to the nonlinear functions are derived in each step of solved NLP 

problems.  



 

 

18 

Solving the master problems gives good approximations to the original 

MINLP problem and, moreover, good lower bounds on the objective functions.  Thus 

that algorithm consists of solving alternating finite sequence of nonlinear problems 

and relaxed versions of integer linear master problems.  Below there is a  that shows 

the steps and algorithm in that solution method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 8 Solution steps in MINLP problems 

 

  

As seen from the Figure II.8, MINLP algorithm alternates between NLP and 

MILP problems.  First, NLP sub problem is generated for the main problem.  The 

result of that sub problem gives the Upper bound to the original problem.  After that 

relaxed MILP master program is generated and this gives a lower bound to the 

problem.  If the solution is feasible which means that Lower bound < Upper Bound, 

NLP Sub 

problem 

MILP Master 

problem 

MINLP Problem 

Upper 

Bound 

Lower 

Bound 

If the solution is 

infeasible, means 

Lower bound >= 

Upper  bound 

If the solution is 

feasible 

Lower bound < 

Upper  bound 

 



 

 

19 

continue to solve problem with generating new NLP sub problems.  If Lower bound 

>= Upper Bound than stop the algorithm (Figure II.8).  

Because of the limitations of the outer approximation algorithm, equality 

relaxation (ER) algorithm was developed.  That algorithm involves the solution steps 

of the outer approximation algorithm (Figure II.8).  The difference is that, the master 

problem is defined in a way that nonlinear functions in the formulation can be 

handled explicitly.  

In outer approximation algorithm in order to get the master problem, we need 

elimination.  And with that, the original sparsity of the MINLP is preserved in the 

MILP problem.  

Table II. 6 shows the algorithm in DICOPT. 

Table II. 6 The algorithm of DICOPT 

 

1. Solve the NLP relaxation of the MINLP program. If y(0) = y is integer,      

stop(“integer optimum found"). 

Else continue with step 2. 

2. Find an integer point y(1) with an MIP master problem that features an 

augmented penalty function to and the minimum over the convex hull determined by 

the half-spaces at the solution (x(0); y(0)). 

3. Fix the binary variables y = y(1) and solve the resulting NLP. Let (x(1); y(1)) 

be the corresponding solution. 

4. Find an integer solution y(2) with a MIP master problem that corresponds to 

the minimization over the intersection of the convex hulls described by the half-

spaces of the KKT points at y(0) and y(1). 

5. Repeat steps 3 and 4 until there is an increase in the value of the NLP 

objective function. (Repeating step 4 means augmenting the set over which the 

minimization is performed with additional linearizations - i.e.half-spaces - at the new 

KKT point). 

 

As seen from the outer approximation and equality relaxation algorithms, 

DICOPT uses NLP and MILP problems in a sequence, so, when solving a NLP 

problem NLP solver is used and solving MILP problem a MIP solver is used.  

For that reason, to solve formulation, the two needed solvers are;  

 CONOPT in NLP sub problems and 



 

 

20 

 CPLEX in MIP master problems. 

 

While solving the NLP sub problem part of our problem, CONOPT solver is 

used.  In GAMS, there are three versions of CONOPT.  These are CONOPT1, 

CONOPT2 and CONOPT3.  CONOPT3 is used for NLP problems because it is 

designed for large and sparse models and has been developed in recent years.  This 

means the number of variables and equations can be large in models.  

 The algorithm used in CONOPT is based on Generalized Reduced Gradient 

(GRG) algorithm.  This algorithm is first suggested by Abadie and Carpentier in 

1969. And then the large application written in GAMS for large scale problems.  

Later on the details of the algorithm is found in Drud in years 1989 and 1992.  

 The idea behind the generalized reduced gradient method is to convert the 

constrained problem into unconstrained problem by using direct substitution.  If this 

direct substitution is possible than we reduce the number of independent variables 

and eliminate the constraint equations.  Here the methods are extended for linear 

constraints to apply to nonlinear constraints.  As a result the active constraints are 

continued to satisfy as the point moves from one to another. 

 In GRG, our problem can be;  

Min f(x)                                                                     (II. 12) 

    Subject to: 

Ax = b 

x>=0. 

In that formulation, A is the m x n function; b is m vector (m ≤ n) . Here the 

vector of x can be represented with x = (X
B 

, X
N
)
T
 . X

B
 is the basic variables and 

is the non-basic variables.  From equation 1, we can write; 

 

BX
B
 + C X

N
 = b                        (II.13) 

And      X
B
= B

-1
 b -  B

-1
 C X

N
                     (II.14) 

 

The idea behind Reduced Gradient algorithm is to eliminate X
B 

with the help of 

(3) and consider the problem with the X
N
. 

 The development procedure of the algorithm starts with adding necessary slack 

and surplus variables to the model.  



 

 

21 

After that, we define basic, non-basic variables and reduced gradient equation. 

And  then solve the reduced gradient to iteratively to find the feasible solution (Drud, 

1985).  

The algorithm of GRG is shown in Table II.7:  

 

Table II. 7  GRG Algorithm 

 

1. Initialize and Find a feasible solution. 

2. Compute the Jacobian of the constraints, J. 

3. Select a set of n basic variables, xb, such that B, the sub- matrix of basic 

column from J, is nonsingular. 

Factorize B. The remaining variables, xn, are called nonbasic. 

4. Solve BT u = df=dxb for the multipliers u. 

5. Compute the reduced gradient, r = df=dx JT u. r will by denition be zero for 

the basic variables. 

6. If r projected on the bounds is small, then stop. The current point is close to 

optimal. 

7. Select the set of superbasic variables, xs, as a subset of the nonbasic variables 

that probably can be changed, and nd a search direction, ds, for the superbasic 

variables based on rs and possibly on some second order information. 

8. Perform a line search along the direction d. For each step, xs is changed in the 

direction ds and xb is subsequently adjusted to satisfy g(xb; xs) = b in a pseudo-

Newton process using the factored B from step 3. 

9. Go to 2. 

 

To solve integer linear part of model, CPLEX is used as solver.  CPLEX is 

selected as solver because it manages the memory efficiently.  Insufficient memory is 

a very big problem when solving large problems.  And when there is a memory 

problem, CPLEX solver is automatically adjusts the data structure and prevent the 

insufficient memory errors. 

The methods that solve integer programming problems require much 

computation than the similar sized linear programs.  For that reason, integer 

programming problems requires much time to solve.   



 

 

22 

When integer programming problems are solved with CPLEX, branch and cut 

algorithm is used for generated linear sub problems.  And as cutting algorithms, it 

uses multiple type of cutting planes, Heuristics, Cut-off and shortcut techniques. 

Some cutting plane algorithms are;  

 Clique cuts 

 Cover cuts 

 Disjunctive cuts 

 Flow cover cuts 

 Flow path cuts 

 Gomory fractional cuts  

 GUB cover cuts  

 Implied bound cuts 

 Mixed integer rounding (MIR) cuts  

 Zero half cuts 

Branch-and-cut algorithms are also exact algorithms consisting of a combination 

of a cutting plane method with a branch-and-bound algorithm.  The method solves 

the LP relaxation of IP problem using simplex algorithm.   

When an optimal solution is obtained, and this solution has a non-integer value 

for a variable that is supposed to be integer, a cutting plane algorithm is used to find 

further linear constraints which are satisfied by all feasible integer points but violated 

by the current fractional solution.  If such an inequality is found, it is added to the 

linear program, such that resolving it will yield a different solution which is 

hopefully "less fractional".  This process is repeated until either an integer solution is 

found (which is then known to be optimal) or until no more cutting planes are found. 

At this point, the branch and bound part of the algorithm is started.  The problem 

is split into two versions, one with the additional constraint that the variable is 

greater than or equal to the next integer greater than the intermediate result, and one 

where this variable is less than or equal to the next lesser integer.  In this way new 

variables are introduced in the basis according to the number of basic variables that 

are non-integers in the intermediate solution but which are integers according to the 

original constraints.  The new linear programs are then solved using the simplex 



 

 

23 

method and the process repeats until a solution satisfying all the integer constraints is 

found. 

II.4. PRINTED CIRCUIT BOARDS 

Printed circuit boards have attractive interest of researchers due to  wide range of 

usage area.  We used them in almost every part of our life.  In computers, TV, radio 

and electronic goods are assembled with PCB.  

For the PCB types and machine categories, the aim is to optimize the assembly 

time with the given board configuration.  Thus, in this category, the main objectives 

are feeder configuration problem and placement sequencing problem.  

Feeder configuration problem is assigning components to feeder slots and 

placement sequence problem is to find the order in which components will be placed 

on board for optimum solution.  So, with two problems, our aim is to find optimum 

feeder configuration and placement sequence.  

Likewise TSP problem, printed circuit problems are of great interest for 

researchers because most of them are generalization of NP-Complete problems.   

  In this thesis study, the main studies are concerned with chip mounter machines 

and chip shooter machines.  We give the integer programming formulations of it and  

analyze placement sequence problem in GAMS platform.  The machine type 

considered in this study is the TDK brand, model RX-5A placement machine.  This 

machine uses surface mount technology to deploy PCBs.  The machine is explained 

in detail in (Duman, 2007). 

 

II.5 CHIP MOUNTER PLACEMENT MACHINE 

Chip mounter machines consists of three part, one of them is rotational turret, 

the other is board carrier and component magazine.  Rotational turret is responsible 

for picking up the components from the feeder mechanism and place them to the 

printed circuit board.  

In rotational turret, there are 72 heads.  When the turet head reaches the 

placement location, board moves in cartesian coordinate to align the head to one 

point. In other words, each head mounts the components in same location (Alkaya 

and Duman, 2009). 

Chip mounter machines are capable of handling component type that have 

different weight category.  If a turret head grabs a heavy component, the rotation 



 

 

24 

speed decreases.  Thus, in our problem, we have 4 rotational speed which are 0.20, 

0.23, 0.33 and 0.40s per 5 degrees.  On the other hand, board carrier has the speed of 

120 mm per seconds.  

Component magazine is behind the feeder slots between heads 21-60 and it is 

stationary.  When the rotational turret is over the suitable component, it grabs 

components and carries it to the placement location.  

In next section there is a detailed simulation of chip mounter machines. 

 

 

Figure II. 9 TDK chip mounter placement machine 

 

II.6 CHIP SHOOTER PLACEMENT MACHINE 

Chip shooter machines consist of three parts. A board carrier, which moves 

concurrently in two dimensions and carries the board.  Feeder carriage that moves 

horizontally and consistst of type slots.  And rotational turret which carries the 

components to the board and mounts them.  These three parts have independent 

movements and they occur simultaneously.  

In chip shooter machine, the feeder carriage moves horizontally and align the 

component to the turret head.  Thus, in order to optimize the problem, we need to 

configure the order of feeder carriage.  

 

II.7 ARTIFICIAL BEE COLONY ALGORITHM 

Artificial bee colony (ABC) algorithm is one of the most recently defined 

algorithms in literature by Dervis Karaboğa.  The main motivation of that algorithm 

is the movements of honey bees.  In real bee colony, every individual bee have some 



 

 

25 

tasks.  And the main objective of them is maximizing nectar amount. They do this 

issue with efficient division of labour and self-organization (Karaboga and Akay, 

2009). 

There are three type of bees that try to maximize nectar amount: Employeed 

bees,  onlooker bees and scout bees. Employed bees are responsible for exploiting 

the nectar resources and giving the necesary information to onlooker bees.  After the 

information comes from the employed bees, onlooker bees decide the food resource 

with the information that comes from employed bees.  Scout bees are responsible for 

exploiting new food resources depending the results from employed bees and 

onlooker bees. 

The algorithm of ABC is; 

 

1. Initialize the food resource 

2. Empoyed bees produces new food resource and exploits the better source. 

3. Onlooker bees select a resource with the help of information from employed 

bees. Produces new food resource. 

4. Find the abandoned food resource and create new food resource 

5. Repeat the steps from 2 to 3 until stopping criteria is met. 

In out thesis study, artificial bee colony algorithm is implemented for chip shooters 

machines.  

 

 

 

 

 

 

 

 

 

 



 

 

26 

CHAPTER III   

THE STUDY  

In the problem, the main objective is to minimize the assembly time.  That is, the 

objective is to find the best placement sequence and feeder configuration in order to 

handle the process in the shortest time.  

To find the minimum time, the following nonlinear integer programming is built 

which searches the optimum values of placement sequence and feeder configuration 

values.  

Before definig the problems for chip mounter machine, notations are given in 

fisrt section (Alkaya , Duman 2009). 

N: Number of components that wil be placed on board, 

K: Number of weight categories,  

Nk: number of components in each weight category k, k=1,2,…,K. 

n: number of component types 

nk: number of component types in each weight category k, k=1,2,…,K. 

nn
K

k

k 
1   

R: number of feeder slots (R=60, but no components are assigned to first 20 

slots because they correspond to no pickup zone, npz) 

H: number of heads (H=71 in our case, excluding placement head) 

npz: number of heads in no pickup zone (npz=20 in our case) 

ctit: component type matrix (N x n)  indicating the component type for each 

component 






             otherwise0

  typecomponent  of is component  if1 ti
ct it

                                                            (III. 1) 

gtk: group (weight category) matrix (n x K) indicating the group for each 

component type 






                   otherwise0

  groupin  is  typecomponent  if1 kt
g tk

               (III. 2) 



 

 

27 

ttk : turret rotation time for each weight category k, (When k=1, the turret 

rotation speed is the maximum, that is, turret rotation time is minimum) 

p: is the placement order or placement position. 

In order to express the placement sequence we need to define decision variable 

xip which denote the assignment of node i to position p. 

otherwise

position pin   visitedis i node if      

,0

,1 th





ipx                                                                    (III. 3) 

Decision variable wijp is used for expressing the travel from node i visited in (p-1)th 

position to node j visited in pth position.  






otherwise

position 1)-(pin   visited wasi nodeafter position  pin   visitedis j node if    

,0

,1 thth

ijpw

       (III. 4) 

On the other hand, in order to express the feeder configuration, we need to 

define decision variable ytr to state the status of assigning component type t to feeder r. 

otherwise

feeder in  stored is  typecomponent  if      

,0

,1 rt
ytr







                                                      

(III. 5) 

r is the feeder number and component magazine is placed behind heads 21-60 and a 

feeder slot corresponds to each head. 

 

III.1 PLACEMENT SEQUENCING PROBLEM 

In placement sequence problem, the aim is to find the optimum placement 

sequence so the assembly time is completed in minimum time.  In that problem, we 

need to define the time between two placement operations from x to y.   

In that problem, we must consider two sub problems.  Travel cost and turret 

rotation time (ttk).  First, the travel cost from x to y.  We calculate the travel cost 

with; 

 

v

yxd
yxCF

),(
),(1                                                        (III. 6)     

Here, d(x, y) is defined as max{|x1-y1|,|x2-y2|} where x1, y1, x2 and y2 are x-y coordinates 

of the components. 

Turret rotation time, ttk is turret rotation time required for the head comes over 

next placement location.  Turret rotation time changes according to the weight 

category of carried components.  If it has a fixed speed value, than it can be treat as a 

classical TSP problem.  But, the changeable speed make problem hard to solve.  This 



 

 

28 

property of turret yields a new problem called sequence dependent traveling 

salesman (SDTSP) problem (Duman, 2007). 

In order to define the rotation time for the turret, heaviest component that is 

carried must be determined.  So, from head 1 to 60, the heaviest component must be 

find.  And this heaviest component determines the current turret time in head 1.  

 So, the two factors that affects the assembly of PCB, Cijp, in chip mounter 

machine is turret rotation time and travel cost. 

 

  

















  

   







N

l

n

t

K

k

R

mu

tumpllttkk

R

m
ijpijp yxctgttjiCFwC

1 1 1 1

,

1

0
max,,1max

                             

(III. 7) 

In that formulation, ),(1 yxCF  is the cost for board alignment. And the 









 
   







N

l

n

t

K

k

R

mu

tumpllttkk

R

m
yxctgtt

1 1 1 1

,

1

0
max  finds the maximum turret rotation time.  

 





 

N

i

N

ij
j

N

p

ijpD
1 1 1

min                   (III. 8) 

s.t. 

  NpjijiCFwD ijpijp ,,1,,0,1              (III. 9) 

NpjiyxctgttwD
N

l

n

t

K

k

R

u

tulplttkkijpijp ,,1,,0
1 1 1 1

 
   

        (III. 10) 

NpjiyxctgttwD
N

l

n

t

K

k

R

u

tupllttkkijpijp ,,1,,0
1 1 1 2

1,  
   

         (III. 11) 

  

NpjiyxctgttwD
N

l

n

t

K

k

R

Ru

tuRpllttkkijpijp ,,1,,0
1 1 1

1,  
   

         (III. 12) 

,,,1,1
1

Nix
N

p

ip 


         (III. 13) 

,,,1 ,1
1

Npx
N

i

ip 


         (III. 14) 

,,,1,,
1

Npjxw jp

N

i

ijp 


         (III. 15) 

,,,1, ,1,

1

Npixw pi

N

j

ijp  



          (III. 16) 

   ,,,1,,1,0 Npixip           (III. 17) 

  ,,,1,,        ,1,0 Npjiwijp           (III. 18) 



 

 

29 

In that formulation, contraint 54 determines that the required placement time is  

never smaller than the travel cost from i to j.  Constraints 55 to 57 determines that, 

the placement time is never smaller than turret rotation time which is determined 

with heavy components.  Components 58 and 59 determines that each location is 

occupied only one component and constraints 60, 61 determines if a component in 

the p
th

 and (p-1)
th

 position than one component precedes in travel sequence.  

The above formulation is nonlinear integer programming and the discrete 

variables are binary variables which appear nonlinearly in the model.  And this is 

formulation of SDTSP. 

 

III.2 ITERATIVE EXAMPLE OF SDTSP 

In order to illustrate how the problem is formulated, an example is presented. 

Consider a board with 6 components, 2 groups and 3 types to be assembled by chip 

mounter machine.  The groups of components identified by one and two with turret 

time values tt1=0.20 s and tt2=0.40 s. 

The types, components and groups are shown in Table III. 1 

 

Table III. 1 Components, their types and groups 

 

component number (i) 1 2 3 4 5 6 

type of component (t) 8 8 7 7 9 7 

group of component type (k) 1 1 1 1 2 1 

 

The groups and types are illustrated in Table III. 2 and Table III. 3; 

 

Table III. 2 Types of components 

 

ctit 7 8 9 

1 0 1 0 

2 0 1 0 

3 1 0 0 

4 1 0 0 

5 0 0 1 

6 1 0 0 

  

 



 

 

30 

Table III. 3 Groups of types    

 

 

 

 

 

 

 

Given a feeder configuration, the objective of the placement sequencing problem 

is to find a placement sequence of the components so that the assembly process is 

completed in the shortest time possible.  So, in order to solve the placement sequence 

problem, an initial feeder configuration can be as in Table III. 4.  In that example, 

heads 1 and 2 are assumed to be in the no-pick up zone. 

 

Table III. 4 An initial feeder configuration 

 

ytr 1 2 3 4 5 

7 0 0 1 0 0 

8 0 0 0 1 0 

9 0 0 0 0 1 

 

 

In steps 1 to 6, there is an explanation of the placement sequence problem that 

is based on example above.  When we look at the Table III. 4 and Figure III. 1, 

respectively feeder 3, 4, 5 contains the types t7, t8, t9.  Interconnected to the model, 

one can say that, this initial state is not good for placement sequence problem 

because type 7 carries the lighter components which means heavier components 

allocates more time in feeders.  Thus, the placement speed decreases and objective 

value increases. Feeder 1 and 2 are in no pick up zone that means they cannot grab 

components from feeders.  

This is the initial state of the example.  

 

gtk 1 2 

7 1 0 

8 1 0 

9 0 1 



 

 

31 

 

Figure III. 1 Initial state 

 

 

Step 1: In first placement, component 5 will be placed on the board and it is being 

carried by head 1 to the placement location.  This placement is not assumed.  In other 

words, it comes from the previous placement operations.  During that placement 

under the feeders 3 and 4, components 4 and 1 is grabbed because type of component 

4 matches the type stored in slot 3 and type of component 1 matches the type stored 

in slot 4.   

 

 

 

Figure III. 2 The schematic diagram of assembly step 1 



 

 

32 

 

This situation is shown in Figure III. 2.  Here the turret rotation time is tt2 

because, there are group 2 components in feeders.    

Step 2: As seen in Figure III. 3, component 6 is in feeder 1 which means it is 

picked up during one of previous placements.  Same as component 6, component 4 

and 1 is grabbed in first step.  And the component 6 is mounted to the board. Here 

turret rotation time is tt1 because all the components are group 1 components.  

 

 

 

Figure III. 3 The schematic diagram of assembly step 2 

 

 

Step 3: Figure III. 4 represents the placement step 3; components 4 and 1 are 

grabbed previously.  3, 2 and 5 is grabbed just now.  Here there is group 2 

component which is c5.  For that reason the turret rotation time increases to tt2 again.  

 



 

 

33 

 

Figure III. 4 The schematic diagram of assembly step 3 

 

Step 4: In that step, component 1 is mounted to the board.  Still the feeders has 

group 2 component (c5) so the rotation time is still tt2.  As seen in Figure III. 5, no 

components are grabbed because the types under feeders will not mounted to the 

board.  Figure III. 5 represents that step. 

 

 

Figure III. 5 The schematic diagram of assembly step 4 

 

Step 5: As shown in Figure III. 6, component 3 is mounted to the board and no 

other components are grabbed.  Turret contains component 5 which is group 2 

element so the turret rotation time is still tt2.  



 

 

34 

 

Figure III. 6 The schematic diagram of assembly step 5 

 

Step 6: Component 2 is mounted to the board and feeder start to grabbed 

component 6 for next board.  This means that travelling along the path restarts after a 

previous tour ends.  Note that this set of placements restart from one after sixth 

placement.  Turret rotation time is tt2.  After the mount operation of component 2, 

component 5 will be mounted for next board. 

 

 

 

Figure III. 7 The schematic diagram of assembly step 6 

 

When we compare that step with step 1, we can notice that in step 1 components 5 

and 6 are taken from previous board assembly. 

The total rotation time is    

C251=max(0.40, max(0.4, 0.2, 0.2, 0.2, 0.0)) = 0.4 s 



 

 

35 

C562=max(0.20, max(0.2, 0.2, 0.2, 0.0, 0.0)) = 0.2 s 

C643=max(0.25, max(0.2, 0.2, 0.2, 0.2, 0.4)) = 0.4 s 

C414=max(0.20, max(0.2, 0.2, 0.2, 0.4, 0.0)) = 0.4 s 

C135=max(0.40, max(0.2, 0.2, 0.4, 0.0, 0.0)) = 0.4 s 

C326=max(0.25, max(0.2, 0.4, 0.2, 0.0, 0.0)) = 0.4 s and total cost is 2.2 s 

 

From the steps above, it can be noticed that grabbing the component, mounting it 

and X-Y movement of the board is concurrent.  

 

III.3 FORMULATION REPRESENTATION OF FORMULATION 

In order to see the formulation, the above example can be used.  

The formulation of problem is:  

 





 

N

i

N

ij
j

N

p

ijpD
1 1 1

min  

 

Subject to: 

 

For equation (III. 19)) and (III. 14);  

xip_1(c1)..  x(c1,p1) + x(c1,p2) + x(c1,p3) + x(c1,p4) + x(c1,p5) + x(c1,p6) = 1  

xip_1(c2)..  x(c2,p1) + x(c2,p2) + x(c2,p3) + x(c2,p4) + x(c2,p5) + x(c2,p6) = 1 

xip_1(c3)..  x(c3,p1) + x(c3,p2) + x(c3,p3) + x(c3,p4) + x(c3,p5) + x(c3,p6) = 1 

xip_1(c4)..  x(c4,p1) + x(c4,p2) + x(c4,p3) + x(c4,p4) + x(c4,p5) + x(c4,p6) = 1  

xip_1(c5)..  x(c5,p1) + x(c5,p2) + x(c5,p3) + x(c5,p4) + x(c5,p5) + x(c5,p6) = 1 

xip_1(c6)..  x(c6,p1) + x(c6,p2) + x(c6,p3) + x(c6,p4) + x(c6,p5) + x(c6,p6) = 1    (9) 

xip_2(p1)..  x(c1,p1) + x(c2,p1) + x(c3,p1) + x(c4,p1) + x(c5,p1) + x(c6,p1) = 1 

xip_2(p2)..  x(c1,p2) + x(c2,p2) + x(c3,p2) + x(c4,p2) + x(c5,p2) + x(c6,p2) = 1 

xip_2(p3)..  x(c1,p3) + x(c2,p3) + x(c3,p3) + x(c4,p3) + x(c5,p3) + x(c6,p3) = 1 

xip_2(p4)..  x(c1,p4) + x(c2,p4) + x(c3,p4) + x(c4,p4) + x(c5,p4) + x(c6,p4) = 1 

xip_2(p5)..  x(c1,p5) + x(c2,p5) + x(c3,p5) + x(c4,p5) + x(c5,p5) + x(c6,p5) = 1 

xip_2(p6)..  x(c1,p6) + x(c2,p6) + x(c3,p6) + x(c4,p6) + x(c5,p6) + x(c6,p6) = 1  (10) 

 

For equation (III. 20) and (III. 16);  



 

 

36 

w(c2,c1,p1) + w(c3,c1,p1) + w(c4,c1,p1) + w(c5,c1,p1)+ w(c6,c1,p1)  = x(c1,p1) 

w(c2,c1,p2) + w(c3,c1,p2) + w(c4,c1,p2) + w(c5,c1,p2)+ w(c6,c1,p2)  = x(c1,p2)  

w(c2,c1,p3) + w(c3,c1,p3) + w(c4,c1,p3) + w(c5,c1,p3)+ w(c6,c1,p3)  = x(c1,p3) 

w(c2,c1,p4) + w(c3,c1,p4) + w(c4,c1,p4) + w(c5,c1,p4)+ w(c6,c1,p4)  = x(c1,p4)  

w(c2,c1,p5) + w(c3,c1,p5) + w(c4,c1,p5) + w(c5,c1,p5)+ w(c6,c1,p5)= x(c1,p5)  

w(c2,c1,p6) + w(c3,c1,p6) + w(c4,c1,p6) + w(c5,c1,p6)+ w(c6,c1,p6)  = x(c1,p6)  

w(c1,c2,p1) + w(c3,c2,p1) + w(c4,c2,p1) + w(c5,c2,p1)+ w(c6,c2,p1)  = x(c2,p1)  

w(c1,c2,p2) + w(c3,c2,p2) + w(c4,c2,p2) + w(c5,c2,p2)+ w(c6,c2,p2)  = x(c2,p2)  

w(c1,c2,p3) + w(c3,c2,p3) + w(c4,c2,p3) + w(c5,c2,p3)+ w(c6,c2,p3)  = x(c2,p3)  

w(c1,c2,p4) + w(c3,c2,p4) + w(c4,c2,p4) + w(c5,c2,p4)+ w(c6,c2,p4)  = x(c2,p4)  

w(c1,c2,p5) + w(c3,c2,p5) + w(c4,c2,p5) + w(c5,c2,p5)+ w(c6,c2,p5)  = x(c2,p5)(11) 

REMAINING 25 ENTRIES SKIPPED 

 

w(c1,c2,p1) + w(c1,c3,p1) + w(c1,c4,p1) + w(c1,c5,p1)+ w(c1,c6,p1) = x(c1,p6)  

w(c1,c2,p2) + w(c1,c3,p2) + w(c1,c4,p2) + w(c1,c5,p2)+ w(c1,c6,p2) = x(c1,p1)  

w(c1,c2,p3) + w(c1,c3,p3) + w(c1,c4,p3) + w(c1,c5,p3)+ w(c1,c6,p3) = x(c1,p2)  

w(c1,c2,p4) + w(c1,c3,p4) + w(c1,c4,p4) + w(c1,c5,p4)+ w(c1,c6,p4) = x(c1,p3) 

w(c1,c2,p5) + w(c1,c3,p5) + w(c1,c4,p5) + w(c1,c5,p5)+ w(c1,c6,p5) = x(c1,p4)  

w(c1,c2,p6) + w(c1,c3,p6) + w(c1,c4,p6) + w(c1,c5,p6)+ w(c1,c6,p6) = x(c1,p5)  

w(c2,c1,p1) + w(c2,c3,p1) + w(c2,c4,p1) + w(c2,c5,p1)+ w(c2,c6,p1) = x(c2,p6)  

w(c2,c1,p2) + w(c2,c3,p2) + w(c2,c4,p2) + w(c2,c5,p2)+ w(c2,c6,p2) = x(c2,p1)  

w(c2,c1,p3) + w(c2,c3,p3) + w(c2,c4,p3) + w(c2,c5,p3)+ w(c2,c6,p3) = x(c2,p2)  

w(c2,c1,p4)+w(c2,c3,p4)+w(c2,c4,p4)+w(c2,c5,p4)+w(c2,c6,p4)=x(c2,p3)  

w(c2,c1,p5) + w(c2,c3,p5) + w(c2,c4,p5) + w(c2,c5,p5)+ w(c2,c6,p5) = x(c2,p4) (12) 

 

REMAINING 25 ENTRIES SKIPPED 

 

For equation (III. 21); 

dijp_wijp(c1,c2,p1)..  - 10*w(c1,c2,p1) + d(c1,c2,p1) ≥ 0        

dijp_wijp(c1,c2,p2)..  - 10*w(c1,c2,p2) + d(c1,c2,p2) ≥ 0        

dijp_wijp(c1,c2,p3)..  - 10*w(c1,c2,p3) + d(c1,c2,p3) ≥ 0   

dijp_wijp(c1,c2,p4)..  - 10*w(c1,c2,p4) + d(c1,c2,p4) ≥ 0        

dijp_wijp(c1,c2,p5)..  - 10*w(c1,c2,p5) + d(c1,c2,p5) ≥0 

dijp_wijp(c1,c2,p6)..  - 10*w(c1,c2,p6) + d(c1,c2,p6) ≥ 0   



 

 

37 

dijp_wijp(c1,c3,p1)..  - 0.4*w(c1,c3,p1) + d(c1,c3,p1) ≥ 0        

dijp_wijp(c1,c3,p2)..  - 0.4*w(c1,c3,p2) + d(c1,c3,p2) ≥ 0        

dijp_wijp(c1,c3,p3)..  - 0.4*w(c1,c3,p3) + d(c1,c3,p3) ≥ 0        

dijp_wijp(c1,c3,p4)..  - 0.4*w(c1,c3,p4) + d(c1,c3,p4) ≥ 0        

dijp_wijp(c1,c3,p5)..  - 0.4*w(c1,c3,p5) + d(c1,c3,p5) ≥ 0   

dijp_wijp(c1,c3,p6)..  - 0.4*w(c1,c3,p6) + d(c1,c3,p6) ≥ 0  

dijp_wijp(c1,c4,p1)..  - 10*w(c1,c4,p1) + d(c1,c4,p1) ≥  0 

dijp_wijp(c1,c4,p2)..  - 10*w(c1,c4,p2) + d(c1,c4,p2) ≥  0 

dijp_wijp(c1,c4,p3)..  - 10*w(c1,c4,p3) + d(c1,c4,p3) ≥  0 

dijp_wijp(c1,c4,p4)..  - 10*w(c1,c4,p4) + d(c1,c4,p4) ≥  0  

dijp_wijp(c1,c4,p5)..  - 10*w(c1,c4,p5) + d(c1,c4,p5) ≥  0  

dijp_wijp(c1,c4,p6)..  - 10*w(c1,c4,p6) + d(c1,c4,p6) ≥  0  

dijp_wijp(c1,c5,p1)..  - 10*w(c1,c5,p1) + d(c1,c5,p1) ≥  0  

dijp_wijp(c1,c5,p2)..  - 10*w(c1,c5,p2) + d(c1,c5,p2) ≥  0  

dijp_wijp(c1,c5,p3)..  - 10*w(c1,c5,p3) + d(c1,c5,p3) ≥  0  

dijp_wijp(c1,c5,p4)..  - 10*w(c1,c5,p4) + d(c1,c5,p4) ≥  0  

dijp_wijp(c1,c5,p5)..  - 10*w(c1,c5,p5) + d(c1,c5,p5) ≥  0  

dijp_wijp(c1,c5,p6)..  - 10*w(c1,c5,p6) + d(c1,c5,p6) ≥  0  

dijp_wijp(c1,c6,p1)..  - 10*w(c1,c6,p1) + d(c1,c6,p1) ≥  0(5) 

. 

. 

REMAINING 155 ENTRIES SKIPPED 

 

 

For each feeder, constraint sets (III. 10) to (III. 12) (representing R different 

constraint sets) impose that placement time for component j cannot be smaller than 

the turret time values associated with the incoming components for placement, if 

they are already picked up by the heads. 

For each feeder, we have 180 equation constraints. 

 

equ1(c1,c2,p1) ..(0)*w(c1,c2,p1) + d(c1,c2,p1) + (0)*x(c1,p1) + (0)*x(c2,p1) + 

(0)*x(c3,p1) + (0)*x(c4,p1) + (0)*x(c5,p1) ≥  0  

equ2(c1,c2,p1)..(0)*w(c1,c2,p1) + d(c1,c2,p1) + (0)*x(c1,p2) + (0)*x(c2,p2) + 

(0)*x(c3,p2) + (0)*x(c4,p2) + (0)*x(c5,p2) ≥  0   



 

 

38 

equ3(c1,c2,p1)..(0)*w(c1,c2,p1) + d(c1,c2,p1) + (0)*x(c1,p3) + (0)*x(c2,p3) + 

(0)*x(c3,p3) + (0)*x(c4,p3) + (0)*x(c5,p3) ≥  0   

equ4(c1,c2,p1)..(0)*w(c1,c2,p1) + d(c1,c2,p1) + (0)*x(c1,p4) + (0)*x(c2,p4) + 

(0)*x(c5,p4) ≥  0   

equ5(c1,c2,p1)..(0)*w(c1,c2,p1) + d(c1,c2,p1) + (0)*x(c5,p5) =G= 0 ; (LHS = 0) 

REMAINING 895 ENTRIES SKIPPED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

39 

 CHAPTER IV  

RESULTS and DISCUSSION 

In this section, we give a detailed analysis of exact methods on our problem. 

Moreover, the affects of  component and type numbers are compared when solving 

the  SDTSP.  

Different size of problems are compared with two types of data. One of them is 

randomly created data and the other is uniform data.  In uniform data, the solution of 

SDTSP is clear with a little amount of effort.  

When comparing the PCB data, components, types and groups are increased 

orderly and the runtime, required memory complexity of them analyzed. 

 So we compared our model in sections, 

 Complexity 

 Runtime and 

 Total memory requirement. 

In that section, we give a solution and output of our model in GAMS and analyze the 

statistical data.  

The statistical data is generated with DICOPT in GAMS platform. In  

Table IV. 1, The NON LINEAR N-Z shows the number of nonlinear matrix 

entries in the model.  With the help of that table we can analyze the problem size and 

its effects. 

Additional to these values, GAMS platform gives “code length” to calculate the 

complexity of problem.  In non-linear problems, the complexity of problem is not 

always same with the matrix entries to the model.  For example, the complexity of , 

x×y is lower than the complexity of exp(x×y).  But the both formulations’ matrix 

entries to the model is 1.  For that reason, GAMS platform, results “code length” in 

order to define the complexity better.  In our statistical data, this compexity is 

defined with “Level of complexity on the non-linearity”. 

Optimal solution of example 1 is given in Table IV.1: 

 



 

 

40 

 

Table IV. 1 Gams statistical outputs 

 

MODEL STATISTICS  

BLOCKS OF EQUATIONS          11            SINGLE EQUATIONS        1,165 

BLOCKS OF VARIABLES           4             SINGLE VARIABLES          397 

NON ZERO ELEMENTS              6, 265       NON LINEAR N-Z               4,320 

DISCRETE VARIABLES             216 CODE LENGTH 

 

 

Above solution shows us that, in 6 components and 5 feeder example, there are 

11 equation blocks, 1165 single equations and 397 variables.  And in 0.812 seconds, 

we reach the solution which is 2.2 with given feeder configuration.  As known for 

that problem, 2.2 is not optimal solution because of the feeder configuration. 

To get a better placement sequence, one idea can be changing the feeder 

configuration.  In that manner, if we put the heavier components closer to the printed 

circuit board and mount them at first, better solutions can be reached.  In Table IV. 2, 

the type of feeder slots changed and as a result a better, 1.85, result is found. 

 

Table IV. 2 A Better feeder configuration for example 1 

 

ytr 1 2 3 4 5 

7 0 0 0 0 1 

8 0 0 0 1 0 

9 0 0 1 0 0 

 



 

 

41 

In next section, the computational analysis of model is given according to size of 

problem. 

 

IV.1 COMPUTATIONAL ANALYSIS 

In this section, the computing complexity of the models are studied.  The 

number of components, groups and feeders are listed and according to them the 

computational times are calculated and presented. Moreover, the required hardware 

components are listed.  

 

IV.1.1 Computational complexity 

The complexity of the model, thus the number of generated number of  

equations increases when the number of variables and constraints increase.  In other 

meanings, when the number of any components or the number of feeder slots 

increase the problem becomes more difficult to solve and takes too much time.  So, 

the computational complexity of the model depends on the complexity of the model. 

Moreover,  the complexity and constraints of our model depends on the number of 

feeder primarily.  If the feeder number increases than the equations  (III. 22) to  (III. 

12) increase proportionally.  Thus the size of model increases. 

Table IV. 3 shows us the complexity and number of equations when the numbers 

of components are increased.   

 

Table IV. 3 Model statistics according to the component number (Feeder Number is 

5, npz=2) 
Component 

-Feeder Number 
8 12 16 20 24 35 44 50 

Single Equation 2,833 9,817 23,585 46,441 80,689 252,421 503,449 740,101 

Non Linear N-Z 16,128 76,032 261,120 638,400 1,324,800 5,997,600 14,984,640 24,990,000 

Single Variable 961 3,313 7,937 15,601 27,073 84,526 168,433 740,101 

Discrete Variable 512 1,728 4,096 8,000 13,824 42,875 85,184 125,000 

Level of Complexity  

on the Non Linearity 
101,249 472,033 1,605,121 3,906,401 8,081,281 36,318,801 90,573,825 150,920,001 

 

       Level of complexity on the non-linearity graph is illustrated in Figure IV.  1  

From the figure the exponential increase according to component number is seen 

clearly. 

 



 

 

42 

101249 472033 1605121 3906401 
8081281 

36318801 

90573825 

150920001 

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

8 12 16 20 24 35 44 50

Level of complexity  
on the non-linearity 

Component Number 

 
 

Figure IV.  1 The complexity level when the number of components between 8-50 

 

As shown in the Table IV. 3, the complexity and the number of equations is getting 

higher when the number of components change.  This results also more consumption 

on memory and hardware.  Table IV. 4 shows the memory consumption of model 

according to component number.  When the component number is 50, the required 

memory can be up to 16GB.  

 

Table IV. 4 Total number of required RAM according to component number 

(memory sizes are approximate) 

 

Component Number 15 20 25 35 40 

RAM Consumption (mb) 700 1000 1600 3200 4300 

 

 In next test, the number of feeder is increased and analyzed how it affects the 

nonlinearity of the model.  When this compared with the increase in component 

number it can be seen that the slope of the increase in feeder number is less than the 

increase in component number.  Table IV.  5 and Figure IV.  2 illustrate the effect of 

feeder slot number to the model.  

 

 

 

 

 

 

 



 

 

43 

Table IV.  5 Model statistics according to the feeder number 

 
Component 

-Feeder 

Number 

 

20-5 

 

20-6 

 

20-7 

 

20-8 

 

20-9 

 

20-10 

 

20-16 

Single 

Equation 
46,441 54,041 61,641 69,241 76,841 84,441 130,041 

NON 

LINEAR 

N-Z 

 

638,400 

 

782,800 

 

813,200 

 

851,200 

 

881,600 

 

934,800 

 

1,368,000 

Single 

Variable 
15,601 15,601 15,601 15,601 15,601 15,601 15,601 

Discrete 

Variable 
8,000 8,000 8,000 8,000 8,000 8,000 8,000 

Level of 

complexity 

on the non-

linearity 

 

3,906,401 

 

4,788,000 

 

4,985,601 

 

5,228,801 

 

5,426,401 

 

5,760,801 

 

8,451,201 

 

 

 

 

Figure IV.  2 The complexity level when the number of components between 20-5 to 

20-17 component feeder 

 

When the number of components and feeders increases independently, as seen from  

Table IV. 3 and Table IV.  5, there is an exponential time and complexity grow in 

model statistics.  And in that step, both feeder and component numbers increased 

simultaneously. The relationship between feeder and component number is shown in  

Table IV. 6. 



 

 

44 

 

Table IV. 6 Model statistics according to increase in component and feeder number 

 

 

And the Figure IV.3 shows us the increase in complexity that depends on both feeder 

and component number. 

 

235801 
655777 

1289289 
1789201 

2565121 

3662209 

5146417 

10760401 

0

2000000

4000000

6000000

8000000

10000000

12000000

10-5 12-6 14-7 15-8 16-10 17-12 19-14 21-16

Level of 
complexity  
on the non-

linearity 

Component Nnumber 

 

Figure IV.3 The complexity level when the number of components and feeders 

increase simultaneously 

 

When Figure IV.3 is compared with Figure IV.  1 and Figure IV.  2, it can be proved 

that if the number of feeders and components increase simultaneously, higher grow 

in slope is derived .  

 

Component 

Number-

Feeder Slots 

Number 

 

10-5 

 

12-6 

 

14-7 

 

15-8 

 

16-10 

 

17-12 

 

19-14 

 

20-16 

Single 

Equation 
5,621 11,401 20,805 28,831 42,785 60,725 98,231 130,041 

NON 

LINEAR N-Z 
37,800 106,128 20,129 289,800 414,720 591,872 831,744 1,368,000 

Single 

Variable 
1,901 3,313 5,293 6,526 7,937 9,538 13,358 15,601 

Discrete 

Variable 
1,000 1,728 2,744 3,375 4,096 4,913 6,859 8,000 

Level of 
complexity on 

the non-

linearity 

235,801 655,777 1,289,289 1,789,201 2,565,121 3,662,209 5,146,417 8,451,201 



 

 

45 

IV.1.2 Computational Time 

The above formulation is nonlinear integer programming and the discrete 

variables are binary variables which appear nonlinearly in the model.  In that point 

solvers that are used must be capable of handling these both conditions. 

To solve model, DICOPT is used as solver.  Because of the structure of 

formulation, in GAMS, DICOPT is used as solver because it handles both nonlinear 

and integer programming.  There are other solvers that solve our problem like 

BARON.  But in our formulation, DICOPT is chosen as solver because the execution 

time and memory requirement is less than needed by BARON.  

In problem, the other solver that is compared with DICOPT is BONMIN (Basic 

Open-source Nonlinear Mixed INteger programming).  BONMIN is a MINLP solver 

that is developed with C++ programming language.  In that solver, branch and 

bound, cutting planes and branch and cut algorithms are used.  When we solve 

placement sequence problem with BONMIN, the required time increases 

considerably. Table IV. 7 shows the required times in both solvers. 

  

Table IV. 7 Comparison of DICOPT and BONMIN solvers (Feeder configuration=5, 

npz=2) 

 

Component Number 5 10 15 

DICOPT Runtime (Seconds) 1.062 5.406 39.547 

BONMIN Runtime(Seconds) 81.766 1,014.672 1,561.047 

 

 

Although optimal solutions can be found with mathematical model, the time to 

solve a problem with more components, feeder slots, type and groups takes too much 

time.  On the other hand, because of memory requirements in larger problems GAMS 

is unable to run the DICOPT solver.  So, in our model, two drawbacks arise; 

•        Exponentially increase in computational time 

•        Exponentially increase in memory requirement. 

When we change the number of components, the required time is changed as in  

Table IV. 8.  And this time increases or decreases according to the diffuculty of the 

problem.  

In GAMS, when the diffuculty of the problem is easy, the time required for 

solution is decreases.  On the other hand, when the problems are hard, this time 

increases in big proportion. 



 

 

46 

 

Table IV. 8 shows the assembly time of printed circuit boards when the problem 

is easy.  Easy problem can be defined as arranging the same groups and types in 

sequential order.  In other words, the components of c1, c2, c3, c4, c5, c6 are designed 

consecutively in PCB and with just looking at the PCB, the tour can be easily 

defined. 

 

Table IV. 8 According to the component number, the runtime of easy problems 

(Feeder configuration=5, npz=2) 

 

Component Number 6 10 15 20 25 30 

Feeder 

Configuration 
5 5 5 5 5 5 

Component Type 

Number 
3 3 3 3 3 3 

Runtime(second) 0.844 5.500 39.547 261.031 680.281 1590.844 

 

 

 

0,844 5.500 19.250 114.800 

410.156 

843.703 

0

200000

400000

600000

800000

1000000

1 2 3 4 5 6

Runtime (sec) 

Component Number 

 
 

Figure IV. 4 Runtime of easy type problems according to the component number 

 

When the coordinates of the components are defined randomly, than the problem 

becomes harder. Table IV. 9 shows the runtime of PCB assembly when we solve 

harder problems. While solving our problems, iteration number increases, thus the 

required time increases too. 

 

 

 



 

 

47 

Table IV. 9 Runtime of randomly generated problems and their optimal results 

(Feeder configuration=5, npz=2) 

 

Number of 

Component 
6 10 15 20 25 30 

Feeder 

Configuration 
5 5 5 5 5 5 

Component Type 

Number 
3 3 3 3 3 3 

Runtime(second) 0.859 13 101.122 1,527.281 52,627.320 93,895.064 

Optimal Solution 4.06 5.52 7.17 8.16 9.740 10.740 

 

When the number of components increase up to 30, from Table IV. 9, we can 

see that the required time is 26 hours.  

On the other hand, when the number of components are increased to the 46, then the 

required memory is insufficient to start the solver. So there is no solution after that 

size.  Table IV.10, shows us the complexity level of the big size problems. And when 

that table is compared with small size problems in  

Table IV. 3, the exponential increase can be seen clearly. This increase also 

affects the required memory size and time. 

 When we increase the number of components up to 50, GAMS cannot generate 

the input file and not solve the problem because of inadequate memory size. As seen 

from Table IV.10, 50 components and 5 feeder slots problem generates too much 

equation and has too much complexity. As a result of that, more memory is needed to 

solve the problem. 

 

Table IV.10 Model statistics according to increase in component 

 

Component number (5 feeder) 40 44 50 (not solve) 

Single Equation 377,681 503,449 740,101 

NON LINEAR N-Z 10,233,600 14,984,640 24,990,000 

Single Variable 126,401 168,433 740,101 

Level of complexity 

on the non-linearity 
62,025,601 90,573,825 150,920,001 

 

Although mathematical model obtain optimum solutions, it is not an efficient way to 

use this method because of exponentially increase in time as seen from Table IV. 9.   



 

 

48 

Table IV. 8, we solved easier problems. When the hardness of the problem 

increase than the elapsed time to solve a problem increases exponentially. 

When more bigger test cases are compared, the slope of time grow can be seen 

better.  Table IV. 9 the component number increased from 6 to 30 and the time 

increases exponentially in real data problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

49 

CHAPTER V  

COMPUTATIONAL ANALYSES OF ABC ALGORITHM  

In this chapter, extensive computational analyses of ABC algorithm are given.  

Firstly, performance of ABC algorithm is tested on the problem arising from the 

operations of chip shooter machines where the problem is solving QAP and SDTSP 

concurrently.  The results are compared with SA and the findings are summarised.  

Then, performance of ABC algorithm is tested on the problems arising from the 

operations of chip mounter machines, where the problem is SDTSP.  These results 

are very important because they reflect the performance of the ABC algorithm when 

compared with exact solutions.  As the reader will see, the results are promising. 

 

V.1 APPLICATION OF ABC ALGORITHM TO QAP AND SDTSP 

CONCURRENTLY  

In this section, performance  of ABC metaheuristic is analysed with respect to 

limit and cycle parameters.  In that algorithm, the limit and cycle are user given 

parameters.  If the number of cycles that a resource can not be improved for the value 

of limit parameter, it is considered to be exhausted and replaced with new solution.  

Cycle parameter is the stoping criteria of the algorithm.  In this section, we also 

investigated the number of cycles that results in stable assembly time. 

In this implementation of ABC for chip shooter machines, firstly, the foraging 

process of bees are initiated.  In this very first step of algorithm, initial solutions are 

generated randomly.  In the second step, employed bees are distributed to the 

solutions and generate new solutions.  In our implementation, solution consists of 

two sub solutions; the feeder configuration and placement sequencing.  A neighbour 

solution is created by pair-wise exchange in either feeder configuration or placement 

sequence or both.  The proposed methods for generation of new solutions can be 

classified as equal chance,  weighted chance and turn based chance. 

In Equal chance generation of new solution, we used   

 If  rand < 0.5 



 

 

50 

New neighbor of feeder 

          Else 

New neighbor of placement sequence 

 

in weighted chance the neighbor creation neighbors are created with, 

 If        

  New neighbor of feeder  

Else 

    New neighbor of placement sequence 

 

 Where S is the cardinality of the set of types in placement sequence and CS is 

the cardinality of set of the components. In turn based solution creation, new 

placement sequence and feeder configurations are generated simultaneously. 

In the next step, onlooker bees selects a solution with the help of information 

from employed bees.  In employed and onlooker  bee phase, the abandoned solutions 

are checked.  Scout bees replace the abandoned solutions with new ones.  

Onlooker bees are distributed to the solutions according to a probability.  The 

probability is calculated via the quality (fitness) of solutions.  To get better solutions, 

it is important to iterate over existing solutions, for that reason, in probability 

calculation the probability must be spread between small intervals.  The calculation 

of probability values of each solution is (Karaboğa and Akay); 

(IV.1) 

 

  

In the above formulation, fi  is the fitness of current solution and fmax is the maximum 

fitness of solutions.  

 

In this thesis, a new probability calculation method is proposed in selection 

step of solutions for onlooker bees. In optimizing chip shooter machines, many 

iterations are needed at the same solution in order to get better results. The number of 

bees that are sent to the solutions are not same. When they go same point, they give 



 

 

51 

more positive feedback. The new method narrows the interval of probability and 

sends the onlooker bees to  better solutions more. 

(IV.2) 

Psel = random ( Ph, PL ) 

 

Here, Psel is selected probability, Ph, PL are highest and lowest probability 

calculations from probability values of the solutions. 

With the help of this method, better results are obtained because bees visit the same 

source more frequently. 

In this section, firstly, the results of new distribution method is analyzed.  Then 

the performance of ABC is proposed and compared with Simulated Annealing in 

chip shooter machines’ placement operation. 

For the bee colony algorithm, new distribution method is compared with the 

parameters as follows; the number of cycles is 5000, the limit for scout bees is 1000 

and colony size is 20. Each of the experiments were repeated 10 times to see the 

robustness.  The Figure V. 1 shows the change in PCB assembly time with new 

distribution of bees. 

 

48,14

50,36

48,93
47,84

49,57
50,59

48,79 49,26 48,79 48,84

44,14

45,65
44,91

42,94

45,36 45,69

43,05

45,24

43,87 43,76

38

40

42

44

46

48

50

52

1 2 3 4 5 6 7 8 9 10

PCB Assembly 
Time

# Runs

Old Distribution New Distribution

 

Figure V. 1 New Distribution method 

 

In the originally proposed distribution method (old one) (Karaboğa and Akay), 

solution selection is done with randomly generated number between [0,1]. This 



 

 

52 

method causes to distribute onlooker bees into the all solutions.  To collect the bees 

to the better solutions, new distribution method is proposed. As seen from Table V. 

1; the mean of 10 runs of are 49.11 and 44.46, and the improvement is about 9.46%. 

 

Table V. 1 Improvement with new distribution methodology 

 

Mean of Solutions 
Results 

Running time Improvement 

49,11 18,16 
 

- 

44,46 17,91 
 

9.46% 

 

In Artificial Bee Colony algorithm, limit variable determines the abandoned 

solutions and replaces them with new ones with scout bees. If the limit variables are 

not big enough, the improvement of solutions can be left half finished and replaced 

with new solutions.  When the limit variable is changed Table V. 2 is obtained.   

When the limit variable variable set to ∞, we obtain better results.  

 

Table V. 2 Solutions with different limit variables on PS11AK08-9 

 

The effects of iteration number on the performance of ABC algorithm is shown in 

Table V. 3. 

 

Table V. 3 Change in number of iterations in ABC on PS11AK08-9 

 

Cycle 
Results 

Time Mean 

1000 3,63 51,42 

5000 17,91 44,46 

10000 38,8 41,8 

Limit Cycle Colony Size 
Results 

Elapsed Time Best Solution 

200 5000 20 18,19 50,816 

500 5000 20 17,91 47,92 

1000 5000 20 17,448 45.28 

∞ 5000 20 17,123 44,87 



 

 

53 

The other parameter that is used in Artificial Bee Colony algorithm is the size 

of bee colony.  In our experiments, the tested colony sizes are 10, 50, 100 and 1000. 

Half of them are employed bees and the other half are onlooker bees (Karaboğa and 

Akay).  Results shows that the colony size does not affect the results explicitly 

(Table V. 4). Therefore, colony size is not as important as the other parameters. 

 

Table V. 4 Results with change of colony size on PS11AK08-9 with 10000 iterations 

and 200 limit with 10 runs  

Colony 

size 

Results 

Avg. Solution 

10 50,31 

20 50,62 

50 50,54 

100 50,03 

1000 50,32 

 

 

Table V. 5 Comparison with simulated annealing on problem instances 

 

Problem Instances 

Metaheuristics 

 ABC   SA  

Avg                       

(%) 

Best                    

(%) 

Tbest                             

(seconds) 

Avg                       

(%) 

Best                    

(%) 

Tbest                             

(seconds) 

PS11AK08-9 41,8 40,4 35 38,57 36,70 7,74 

PS11AK12-7 45,43 44,52 37 42,09 40,77 6,34 

PS11AK15-4 44,67 43,63 39,95 45,05 43,75 3,25 

PS11AK16-3 76,03 71,78 60,88 75,15 73,65 9,98 

PS11AK16-4 75,32 73,38 84 74,36 72,15 11,16 

PS11AK16-5 81,73 80,43 72 79,63 76,69 13,12 

PS11AK17N3 54,2 49,25 4,1 49,35 47,33 13,20 

PS11AK1011 43,49 42,45 42,45 42,52 40,78 6,34 

 

To investigate the performance of simulated annealing and ABC, with given 

printed circuit board data in Table V. 5.  We calculated average cost best found cost 

and time in seconds.  



 

 

54 

As can be seen from the results in Table V. 5, when the iteration count is 

10000, artificial bee colony algorithm gives closer results to SA. However, when 

their running time are compared, SA gives better results.  This is because of the fact 

that SA always improves the current solution and tries to find best solution from this 

current solution.  On the other hand, in ABC algorithm, we have a user given 

solution number that is equal to the colony size and all these solutions are improved 

with  the help of distrubuted bees.  In other words, the iteration over same solution 

decreases. 

In order to find  the last point of the algorithm, we execute the ABC until the 

improvement stops to increase.  Here, the limit variable is set to ∞ and the colony 

size is 20.   In PS11AK08-9 PCB, the improvement of the algorithm can be seen in 

Figure V. 2. 

 

 

Figure V. 2 Improvement of ABC with iteration number 

 

Figure V.2 shows the performance of algorithm in increasing number of cycle 

parameter.  As seen from Figure V.2, the algorithm stops to improve its best solution 

up to 40,063 after 10000 cycles.  

To get better solutions, it is important to find neighbors of the same solutions. 

In other words, the number of bees that are sent to solutions are changed with 

probability.  As a result, evaluation rate over same solution decreases compared with 

simulating annealing.  The number of iterations over same solution is changed with 



 

 

55 

the number of limit variable and probability variable of solutions.  To get a better 

distribution of bees over the same solution space, a new methodology is proposed.  

The results show that, the limit parameter which is used by scout bees affects 

the  results of chip shooter machines.  Replacing the current solution with new ones 

earlier, causes not to improve that solution, or not to send onlooker and employed 

bees. For that reason, when the limit parameters get higher, results are getting better. 

All the experiments were run on Windows operating system with core2 duo 

processor and 4 GB ram. 

 

V.2 PERFORMANCE COMPARISON OF ABC AND SA WITH 

RESPECT TO EXACT SOLUTIONS ON SDTSP INSTANCES  

In this section, we compared the performances of exact methods with ABC and 

SA.  To see the performance of implemented metaheuristics , we solve 10, 15, 20, 

25, 30 component size problems with the GAMS platform, ABC and  SA algorithm.  

In 30 size problem, the exact value is 10,74 which is the taken from GAMS.  With 

ABC algorithm, we get 12.64 with 3000 cycles, ∞ limit and 20 colony size. On the 

other hand, the minimum value we get with  SA is 13,10 when the initial temperature 

is 100, number of iterations at each temperature setting is 20 and temperature 

decrease ratio is 1,5 (In Table V. 6).  

When we test our problem with 30 components, the proximity of the ABC to the 

exact value is 19,55%, on the other hand, with 15 size problem this proximity 

decreases to 10,5 %. 

 

Table V. 6 Comparison with exact methods and metaheuristics 

 

# Components 10 15 20 25 30 

Exact Solution 5,52 7,17 8,16 9,74 10,74 

ABC 5,98 7,93 9,33 11,06 12,75 

SA 5,98 7,93 9,33 11,06 13,1 

 

 

When we compare them in time domain, we get the table below. When the 

number of components increase up to 30, from Table V.7, it can be seen that the 



 

 

56 

required time is 26 hours. On the other hand, the required time is  about 1,49 secons 

with SA and 13,91 seconds with ABC algorithm. 

 

Table V. 7 Computational time with Exact Methods and Metaheuristics  

 

# Components 10 15 20 25 30 

GAMS(Runtime) 13 101,122 1527,281 52627,32 93895,064 

SA(Runtime) 0,018 0,06 0,2 0,38 1,49 

ABC(Runtime) 2,06 8,05 9,75 11,7 13,91 

 

We can say that ABC and SA give reasonable results in very small amounts 

of run time when compared with exact solutions and its running time. Thus, it is 

shown that ABC is a promising algorithm for solving combinatorial optimization 

problems. 

 

 



 

 

57 

CHAPTER VI   

CONCLUDING REMARKS and RECOMMENDATIONS  

In almost every electronic device, printed circuit boards are used.  This usage of 

PCB, attracts the researchers because of the NP-Completeness inherent to the 

problems they yield.  In this thesis, in order to optimize the production of PCBs some 

methodologies are developed and implemented.  In general, PCBs have lots of 

components on it. For that reason, the production time increases dramatically, and 

that affects the cost of production.  

In this thesis study, a new generalization of TSP, SDTSP is implemented with 

GAMS platform and computational analyse are reported.  Afterwards, artificial bee 

colony algorithm is implemented for optimizing the operations of chip shooter 

machines and results are analysed and reported.  

The tests are performed on a machine with Intel Xeon CPU at 2.0 GHz with 4 

GB RAM using Windows 2003 Server Operating system. 

For the chip mounter machine, placement sequence problem is formulated as 

mathematical model and solutions are analyzed using GAMS statistical data. 

Moreover, computational complexity and required hardware is reported. 

The significant contribution of this thesis is; 

1.  With GAMS, optimal solutions are found and it was proved that the 

computational complexity and time grows exponentially when the number of 

components of any type and feeder slots increase.  When the number of 

components are not so high, with exact methods, we reach the optimal 

solution in reasonable time.  But when the number of component is too high, 

there is a dramatical increase in complexity or, nonlinear matrix entries of  

problem.  

2.  Although the optimal solution is found in small size models with GAMS, the 

required time and memory requirements to solve a real problem become too 

much.  When we increase the number of components up to 30, the required 

time is about 26 hours. This dramatically increase in time prevents us to use 



 

 

58 

exact methods for solving large SDTSP instances.  In other words, exact 

methods guarantee to find optimal solution of problems, but when the  size of 

problem increases, they become meaningless to solve with. 

3. Artificial bee colony algorithm is implemented for chip shooter machines. 

ABC algorithm tries to find a good solutions with the help of movements of 

honey bees. And the result of ABC algorithm shows that in short time better 

results can be found by heuristic methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

59 

 

REFERENCES 

[1] Akrotirianakis I.; Maros I.; Rustem, B.:  “An outer approximation 

based branch and cut algorithm for convex 0-1 MINLP problems”, 

Optimization Methods and Software,16(1-4) (2001) 21-47 

[2] Albiach, J.; Sanchis, J. M.; Soler, D.: “An asymmetric TSP with time 

windows and with time-dependent travel times and costs: An exact 

solution through a graph transformation”, European Journal of 

Operational Research, 189 (2008) 789–802.  

[3] Alkaya, A.F.; Duman, E.: “A Literature Survey of the Operation 

Optimization in Chip Shooter Placement Machines”, Proceedings of 

PICMET’09, Portland, OR, USA, August 2-6 (2009) 3296-3306. 

[4] Alkaya, A.F.: “Optimizing The Operations Of Electronic Component     

Placement Machines”, Doctoral Thesis, Marmara University 

Institute for Graduate Studies in Pure and Applied Sciences, 

Ġstanbul, Türkiye  (2009) 77-79. 

[5] Alkaya, A.F.; Duman, E.:  “Programming and optimizing the 

operations of a placement machine” (2009). 

[6] Alkaya, A.F.; Duman, E.; Eyler, M.A: “Assembly time minimization 

for an electronic component placement machine”, WSEAS 

Transactions on Computers, 7 (2008) 326-340.  

[7] Applegate, D.; Bixby, R.; Chvátal, V.; Cook, W.: “Finding tours in the 

TSP” Forschungs Institut für Diskrete Mathematik Report,  99885, 

Computational and Applied Mathematics (1999) 

[8] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J., “The 

Traveling Salesman Problem: A Computational Study”, Princeton 

Series in Applied Mathematics, (2006). 

[9] Babin, G.; Deneault, S.; Laporte, G.: "Improvements to the Or-opt 

heuristic for the symmetric travelling salesman problem", Journal of 

the Operational Research Society, 58 (2007) 402-407. 

http://www.informaworld.com/smpp/title~db=all~content=t713645924


 

 

60 

[10] Balas, E.; Ceria, S.;Cornuejols G.; Natraj, N.: "Gomory Cuts 

revisited", Operations Research Letters, 19 (1996) 1-9. 

[11] Balas, E.; Ceria, S.; Cornuejols, G.: “Mixed 0-1 programming by lift-

and-project in a branch-and-cut framework”, Management Science, 

42 (1996b) 1129-1246. 

[12] Bigras, L.-P.; Gamache, M.; Savard, G.: “The Time-Dependent 

Traveling Salesman Problem and Single Machine Scheduling 

Problems with Sequence Dependent Setup Times”, Discrete 

Optimization, 5 (2008) 685-699. 

[13] Borchersa B.; John E.: “A computational comparison of branch and 

bound and outer approximation algorithms for 0–1 mixed integer 

nonlinear programs”,Computer and Operations Research, 24(8) 

(1997) 699–701 

[14] Boyd, E.A.: "Fenchel Cutting Planes for Integer Programs", 

Operations Research, 42 (1994) 53-64. 

[15] Clausen, J.: "Branch and Bound Algorithms - Principles and 

Examples", Department of Computer Science, University of 

Copenhagen, Universitetsparken (1999) 2-26. 

[16] Croes, G.: "A Method for Solving Traveling-Salesman Problems", 

Operations Research, 6 (1958) 791-812. 

[17] Dantzig, G.; Fulkerson, R.; Johnson, S.: “Solution of a Large Scale 

Traveling Salesman problem”, Operations Research 2 (1954) 393-

410. 

[18] Dantzig, G.B.; Ramser J.H.: “The truck dispatching problem”, 

Management Science, 6 (1959) 80-91. 

[19] Drud A.: “A GRG Code for Large Sparse Dynamic Nonlinear 

Optimization Problems”, Mathematical Programming 31 (1985) 

153-191. 

[20] Duman E.: “Modelling the operations of a component placement 

machine with rotational turret and stationary component magazine”, 

Journal of the Operational Research Society, 58(2007) 317-325. 

[21] Duman, E.; Or, I.: “The quadratic assignment problem in the context 

of the printed circuit board assembly process”, Computers and 

Operations Research, 34 (2007) 163-179. 



 

 

61 

[22] Dumont, J.; Robichaud V.: “Introduction to GAMS Software A 

Manual for CGE Modelers” (2000). 

[23] Duran. M.A.; Grossman I.E.: “An outer approximation algorithm for a 

class of mixed-integer nonlinear programs”, Mathematical 

Programming, 36 (1986) 307–339. 

[24] Fletcher R.; Leyffer S.:“Solving mixed integer nonlinear programs by 

outer approximation”, Mathematical Programming, 66 (1996)  327-

349   

[25] Fox, K.; Gavish, B.; Graves, S.C.: “An n-Constraint Formulation of 

the (Time Dependent) Traveling Salesman Problem”, Operations 

Research, 28 (1980) 1019–1021. 

[26] Gary, M.R.; Johnson, D.S.: "Computers and Intractability: A Guide to 

the Theory of NP-Completeness", W.H. Freeman and Company, 

(1979). 

[27] Gendrau, M.; Laporte, G.; Musaraganyi, C.; Taillard, E.D.: “A tabu 

search heuristic for the heterogeneous fleet vehicle routing problem”, 

Computers and Operations Research, 26 (1999) 1153-1173. 

[28] Geoffrion A.M.: “Generalized benders decomposition”,JOTA, 10(4) 

(1972) 237-260. 

[29] Golden, B.L.; Assad, A.A.; Levy L.; Gheysens, F.G.: “The Fleet Size 

and Mix Vehicle Routing Problem”, Computers and Operations 

Research, 11 (1984) 49-66. 

[30] Gomory, R.E., "Outline of an algorithm for integer solutions to linear 

programs", Bulletin of the American Mathematical Society, 64 

(1958) 275-278. 

[31] Gomory, R.E.: "An algorithm for integer solutions to linear 

programs", Recent Advances in Mathematical Programming, R.L. 

Graves, P.Wolfe eds. McGraw-Hill, New York, (1963) 269-302. 

[32] Grötschel, M.; Holland, O.: "Solution of large-scale traveling 

salesman problems", Mathematical Programming, 51(2) (1991) 141-

202. 

[33] Gutin, G.; Punnen, A.: "The Traveling Salesman Problem and its 

Variants", Kluwer Academic Publishers, (2002) 169-207. 



 

 

62 

[34] Haghani, A.; Jung, S.: “A dynamic vehicle routing problem with time-

dependent travel times”, Computers and Operations Research, 

32(2005) 2959–2986. 

[35] Hansen K.; Kraup J.: “Improvement of the Held-Karp algorithm for 

the symetric traveling salesman problem”, Mathematical 

Programming 7 (1982) 87-96. 

[36] Held, M.; Karp, R.M.: “The Traveling Salesman problem and 

minimum spanning trees”, Operations Research, 18 (1970) 1138-

1162. 

[37] Ho, W.: “Component Sequencing and Feeder Arrangement for PCB 

Assembly Machines: Integration, models, solutions”, Doctoral 

Thesis, The Hong Kong Polytechnic University (2004) 69-162 

[38] Ichoua, S.; Gendreau, M.; Potvin J.Y.: “Vehicle dispatching with 

time-dependent travel times”, European Journal of Operational 

Research, 144 (2003) 379–396. 

[39] John E. M.: “Branch and cut algorithms for Combinatorial 

Optimization Problems”,   Oxford University Press, (2002) 65-77. 

[40] Jon L.; Raffensperger, J.F.: “Using AMPL for teaching the 

TSP”,INFORMS Transactions on Education, 7  (2006) 37-69. 

[41] Jünger M.;  Reinelt G.; Thiene S.: “Provably Good Solutions for the 

Traveling Salesman Problem”, Preprint 94-31, IWR Heidelberg, 

(1994) 

[42] Jünger, M.; Reinelt, G.; Thienel, S.: "Practical problem solving with 

cutting plane algorithms in combinatorial optimization", 

Combinatorial Optimization: DIMACS Series in Discrete 

Mathematics and Theoretical Computer Science, AMS, (1995) 111-

152. 

[43] Karaboğa, D.; Akay, B.: “Artificial Bee Colony(ABC) Algorithm on 

Neural Networks” (2009). 

[44] Kocis G. R.; Grossmann I.E.: “Relaxation Strategy for the Structural 

Optimization of Process Flow-sheets”, Industrial and Engineering 

Chemistry Research, 26 (1987) 1869-1880 

[45] Lawler L.E.; Lenstra J.K.; RinnooyKan A.H.G.; Shmoys D.B.: “The 

Traveling Salesman Problem”, John Wiley & Sons, (1985). 



 

 

63 

[46] Letchford, A.N.; Lodi, A.: "Strengthening Chavatal-Gomory Cuts and 

Gomory fractional cuts", Operations Research Letters, 30(2) (2002) 

74-82. 

[47] Li, F.; Golden, B.; Wasil, E.: “A record-to-record travel algorithm for 

solving the heterogeneous fleet vehicle routing problem”, Computers 

and Operations Research, 34 (2007) 2734-2742. 

[48] Lin, S.: "Computer solutions of the traveling salesman problem", Bell 

System Technical Journal, 44 (1965) 2245–2269. 

[49] Malandraki, C.; Daskin, M.S.: “Time Dependent Vehicle Routing 

Problems: Formulations, Properties and Heuristic Algorithms”, 

Transportation Science, 26 (1992) 185-200. 

[50] Marchand, H.; Martin, A.; Weismantel, R.; Wolsey, L.: "Cutting 

planes in integer and mixed integer programming", Discrete Applied 

Mathematics, 123 (2002) 397-446. 

[51] Martin, G.T.: “Solving the traveling salesman  problem by integer 

linear programming”, CEIR,  (1966) 

[52] Miliotis P.: “Using cutting planes to solve the symmetric traveling 

salesman problem”, Mathematical Programming 5 (1978) 177-188 

[53] Mitchell, J.E.: "Branch-and-Cut Algorithms for Combinatorial 

Optimization Problems", Handbook of Applied Optimization, Oxford 

University Press, (2002) 65-77. 

[54] Or, I.: "Traveling Salesman Type Combinatorial Problems and Their 

Relation to the Logistics of Blood Banking", Northwestern 

University, Unpublished PhD Thesis, (1976).  

[55] Padberg, M.; Rinaldi, G.: "A branch-and-cut algorithm for the 

resolution large-scale symmetric traveling salesman problem", SIAM 

Review, 33 (1991) 60-100. 

[56] Padberg, M.; Rinaldi, G.: "Optimization of a 532 city symmetric 

traveling salesman problem by branch and cut", Operations 

Research Letters, 6 (1987) 1-7.  

[57] Picard, J.C.; Queyranne, M.: “The Time-Dependent Traveling 

Salesman Problem and Its Application to the Tardiness Problem in 

One-Machine Scheduling”, Operations Research, 26 (1978) 86-110. 



 

 

64 

[58] Schneider, J.: “The time-dependent traveling salesman problem”, 

Physica A: Statistical Mechanics and its Applications, 314 (1-4) 

(2002) 151-155.  

[59] Silih S.; Zula T.; Kravanja Z.; Kravanja S.: “MINLP Optimization of 

Mechanical Structures”, University of Maribor, Faculty of Civil 

Engineering (2000) 

[60] Stewart, W.R.: “A computationally efficient heuristic for the traveling 

salesman problem”, Proceedings of the 13th Annual Meeting of 

Southeastern TIMS, Myrtle Beach, SC, USA, (1977) 75–83. 

[61] Taillard E.D.: “A heuristic Column Generation Method for the 

Heterogeneous Fleet VRP”, RAIRO, 33 (1999) 1-14. 

[62] Tarantilis, C.D.; Kiranoudis, C.T.;Vassiliadis, V.S.: “A list based 

threshold accepting metaheuristic for the heterogeneous fixed fleet 

vehicle routing problem”, Journal of the Operational Research 

Society, 54 (2003) 65-71. 

[63] Tarantilis, C.D.; Kiranoudis, C.T.; Vassiliadis, V.S.:“A threshold 

accepting metaheuristic for the heterogeneous fixed fleet vehicle 

routing problem”, European Journal of Operational Research, 152 

(2004) 148-158. 

[64] Tereshko, V.; Loengarov, A.:  “Collective Decision-Making in Honey 

Bee Foraging Dynamics”, Computing and Information Systems 

Journal, 9(3) (2005) 

[65] Viswanathan, J.; Grossmann.I.E.: "A Combined Penalty Function and 

Outer Approximation Method for MINLP Optimization," Computers 

and Chemical Engineering 14, 769 (1990) 307-309. 

[66] Wiel, R.J.V.; Sahinidis, N.V.: “Heuristic Bounds and Test Problem 

Generation for the Time Dependent Traveling Salesman Problem”, 

Transportation Science, 29 (1995) 167-183. 

[67] Wiel, R.J.V.; Sahinidis, N.V.: “An exact solution approach for the 

time-dependent traveling-salesman problem”, Naval Research 

Logistics, 43 (1996) 797-820. 

[68] Winston, W.L.: Operations Research: Applications and Algorithms, 

Duxbury Press, (1994) 639-720. 

http://www.sciencedirect.com/science/journal/03784371
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235534%232002%23996859998%23368387%23FLA%23&_cdi=5534&_pubType=J&view=c&_auth=y&_acct=C000054352&_version=1&_urlVersion=0&_userid=1730902&md5=08cc52c6fbfbeb1d9df23b642538ccc9


 

 

65 

[69] Winston, W.L.; Venkataramanan, M.: "Introduction to Mathematical 

Programming: Operations Research", Brooks/Cole-Thomson 

Learning, California, (2003) 653-738. 

[70] Wong L.; Low M.; Chong C.: “Bee Colony Optimization with Local 

Search for Traveling Salesman Problem” Singapore Institute of 

Manufacturing Technology 6 (2007) 1-7 

 

 

 

 



 

 

66 

CURRICULUM VITAE 

Personal Information 

 

Name, Surname  Hüseyin Demirkale 

Address   Sahrayıcedit Mah. Müminderesi Cad. 

    Arı Apartmanı No:6 D:8  

    Kadıköy/ĠSTANBUL 

Phone    0216 368 75 23  

E-mail    hdemirkale@gmail.com 

Date of Birth   03.11.1984 

 

Education 

 

2002 – 2007      B.S. Computer Science and Engineering Marmara University 

Engineering Faculty, Department of Computer Science and 

Engineering 

   Istanbul, Turkey 

                          GPA: 3.20/4.00  

1997 – 2002      Trabzon Tevfik Serdar Anatolian High School, Istanbul, Turkey 

                          GPA: 4.95/5.00 

 

 

Work Experience 
 

 

   Havelsan Center of  Flight Simulator , Ankara , TURKEY 

   Project 
 

Network Message control software using UDP sockets . 

Graphical User Interface design with QT gui library 

 

Interca software center, Ġstanbul, TURKEY 

Project 
 

Administrator panel for www.yeditepeli.com 

  

Koçsistem Information and Communication Services, Ġstanbul, 

TURKEY 

    

   Java Developer in SAP systems 

http://www.yeditepeli.com/

