

A SOFTWARE QUALITY MODEL FOR ANDROID APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE VİLDAN ŞİMŞEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2016

iii

A SOFTWARE QUALITY MODEL FOR ANDROID APPLICATIONS

Submitted by MERVE VİLDAN ŞİMŞEK in partial fulfillment of the requirements

for the degree of Master of Science in Information Systems, Middle East

Technical University by,

Prof. Dr. Nazife Baykal _____________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _____________________

Head of Department, Information Systems

Doç. Dr. Aysu Betin Can _____________________

Supervisor, Information Systems, METU

Examining Committee Members

Prof. Dr. Nazife Baykal

IS, Middle East Technical University _____________________

Assoc. Prof. Dr. Aysu Betin Can

IS, Middle East Technical University _____________________

Assist. Prof. Dr. Erhan Eren

IS, Middle East Technical University _____________________

Assist. Prof. Dr. Sadık Eşmelioğlu

CENG, Çankaya University _____________________

Assist. Prof. Dr. Abdül Kadir Görür

CENG, Çankaya University _____________________

Date: 05.02.2016

iv

v

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: Merve Vildan ŞİMŞEK

 Signature:

vi

ABSTRACT

A SOFTWARE QUALITY MODEL FOR ANDROID APPLICATIONS

Şimşek, Merve Vildan

M.Sc., Department of Information Systems

Advisor: Assoc. Prof. Dr. Aysu Betin Can

FEBRUARY 2016, 149 Pages

Nowadays mobile devices have become increasingly widespread. It causes mobile

applications number to grow dramatically. As the popularity of these systems is

predicted to continue its increase in the near future, the importance of the quality of

mobile applications increases. The aim of this study is to present a quality model for

Android applications. We chose applications developed for Android Operating

System as our target because of its prevalence in the mobile market. To achieve the

aim of the study, we analyzed traditional software quality characteristics, which are

described in ISO/IEC SQuaRE Software Quality Standard and selected applicable

quality characteristics. Afterwards, we have identified new Android-specific source

code metrics and quality characteristics. We have developed a quality model that

contains the resulting quality characteristics and applied this model to Android

applications in a case study to show the applicability of the model.

Keywords: Software Quality, Mobile Software, Quality Model, Android

Applications, ISO/IEC SQuaRE Standard

vii

ÖZ

ANDROID UYGULAMALAR İÇİN YAZILIM KALİTE MODELİ

Şimşek, Merve Vildan

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanı: Doç. Dr. Aysu Betin Can

Şubat 2016, 149 Sayfa

Günümüzde akıllı telefon ve tablet gibi mobil cihazlar giderek yaygınlaşmaktadır.

Bu durum mobil uygulama sayısının önemli ölçüde artışını da beraberinde

getirmektedir. Bu sistemlerin popülerliğini yakın gelecekte de arttırmaya devam

edeceği tahmin edildiğinden, mobil uygulamaların kalitesi oldukça fazla önem

kazanmaktadır. Bu çalışmanın amacı Android uygulamaları için bir kalite modeli

oluşturulmasıdır. Mobil pazardaki yaygınlıklarından dolayı Android İşletim Sistemi

için geliştirilmiş uygulamalar hedef olarak seçildi. Çalışmanın amacına ulaşması için

ISO/IEC SQuaRE Yazılım Kalite Standardında tanımlanmış olan geleneksel yazılım

kalite özellikleri analiz edildi ve uygulanabilir kalite özellikleri belirlendi.

Sonrasında Android uygulamalara özgü yeni kaynak kod metrikleri ve kalite

özelliklerini belirlendi. Nihai özelliklerin yer aldığı bir kalite modeli oluşturuldu ve

bu model bir örnek olay incelemesinde Android uygulamalarına uygulanarak,

modelin uygulanabilirliği gösterildi.

Anahtar Kelimeler: Yazılım Kalitesi, Mobil Yazılım, Kalite Modeli, Android

Uygulamalar, ISO/IEC SQuaRE Standardı

viii

To My Family

Tacettin, Oya Selma, Ahsen and Muhsin

ix

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Assoc. Prof. Dr. AYSU BETİN

CAN for her guidance, encouragements and support during my thesis study.

I also would like to thank my amazing family: Tacettin, Oya Selma, Ahsen and Safa

Muhsin ŞİMŞEK and my amazing grandfather: Muhsin ŞİMŞEK for their concern

during this process.

I would like to send a special thanks to my best friend Gülçin HÖKELEKLİ for all of

her help and support throughout Master’s Program.

x

xi

TABLE OF CONTENTS

ABSTRACT ...vi

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xv

1 INTRODUCTION .. 1

2 LITERATURE REVIEW ... 3
2.1 SOFTWARE QUALITY MODELS .. 3

2.1.1 McCall’s Model (1977) .. 3
2.1.2 Boehm’s Quality Model (1978)... 4
2.1.3 FURPS (1987) ... 5
2.1.4 ISO/IEC 9126 Standard Quality Model (1991) ... 6
2.1.5 Dromey’s Quality Model (1995) ... 7
2.1.6 Bansiya’s QMOOD Model (2002) .. 8
2.1.7 ISO/IEC 25000 Standard (SQuaRE’s Model) (2011) .. 9

2.2 QUALITY MODELS FOR MOBILE APPLICATIONS ... 10

3 ANDROID QUALITY MODEL DEVELOPMENT 13
3.1 IDENTIFYING QUALITY CHARACTERISTICS ... 14
3.2 IDENTIFYING METRICS .. 17
3.3 METRICS - QUALITY CHARACTERISTICS RELATIONSHIP 20

3.3.1 Weighting The Relationship .. 21

4 MODEL EVALUATION & RESULTS ... 25
4.1 MODEL VALIDATION ... 25

4.1.1 Determination of a Rating Scale .. 29
4.3 GATHERING EXPERIMENT DATA FOR CASE STUDY 30
4.4 GATHERING AND NORMALIZING METRIC DATA ... 31
4.5 ANALYZING RESULTS .. 36

5 CONCLUSION AND FUTURE WORK ... 55
5.1 CONCLUSION .. 55
5.2 LIMITATIONS ... 55
5.3 FUTURE WORK .. 56

REFERENCES ... 57

APPENDICES ... 61
Appendix A: Survey Questions .. 61

xii

Appendix B: Ethics Approval Form ... 72
Appendix C: Summary of Survey Results ... 74
Appendix D: Cronbach’s Alpha Values of Survey Results 145

xiii

LIST OF TABLES

Table 3. 1: METRICS USED FOR QUALITY ASSESSMENT FOR OBJECT-

ORIENTED DESIGN IN LITERATURE ... 17

Table 3. 2: LIST OF METRICS USED IN OUR MODEL 19

Table 3. 3: METRICS - QUALITY CHARACTERISTICS RELATIONSHIP (THE

MEDIAN OF RESPONSES) ... 22

Table 3. 4: COMPUTATION FORMULAS FOR QUALITY CHARACTERISTICS

 .. 23

Table 3. 5: MIN AND MAX VALUES OF QUALITY CHARACTERISTICS 24

Table 4. 1: SCORES OF THE EVALUATORS TO 2048-ANDROID

APPLICATIONS…………………………………………………………….……..26

Table 4. 2: METRIC VALUES FOR 2048-ANDROID .. 26

Table 4. 3: COMPUTED QUALITY CHARACTERISTICS FOR 2048-ANDROID

 .. 27

Table 4. 4: COMPUTED QUALITY CHARACTERISTICS FOR 2048-ANDROID

WITHIN THE NEW RANGE [0, 10] .. 27

Table 4. 5: THE CATEGORIES OF QUALITY CHARACTERISTICS OF 2048-

ANDROID APPLICATIONS .. 30

Table 4. 6: METRIC VALUES FOR ADBLOCK PLUS .. 31

Table 4. 7: METRIC VALUES FOR KEEPASSDROID .. 32

Table 4. 8: METRIC VALUES FOR COSYDVR ... 33

Table 4. 9: NORMALIZED METRIC VALUES FOR ADBLOCK PLUS 34

Table 4. 10: NORMALIZED METRIC VALUES FOR KEEPASSDROID 35

Table 4. 11: NORMALIZED METRIC VALUES FOR COSYDVR 36

Table 4. 12: COMPUTED QUALITY CHARACTERISTICS FOR ADBLOCK

PLUS .. 37

Table 4. 13: COMPUTED QUALITY CHARACTERISTICS FOR

KEEPASSDROID .. 37

Table 4. 14: COMPUTED QUALITY CHARACTERISTICS FOR COSYDVR 38

Table 4. 15: COMPUTED QUALITY CHARACTERISTICS FOR ADBLOCK

PLUS WITHIN THE RANGE [0, 10] AND THE CATEGORIES OF THE VALUES

 .. 39

Table 4. 16: COMPUTED QUALITY CHARACTERISTICS FOR

KEEPASSDROID WITHIN THE RANGE [0, 10] AND THE CATEGORIES OF

THE VALUES ... 40

Table 4. 17: COMPUTED QUALITY CHARACTERISTICS FOR COSYDVR

WITHIN THE RANGE [0, 10] AND THE CATEGORIES OF THE VALUES 41

xiv

LIST OF FIGURES

Figure 2. 1: Hierarchy of Major Perspective, Quality Characteristics and Quality

Criteria of McCall Quality Model [9] .. 4

Figure 2. 2: Hierarchy of High Level, Intermediate Level and Primitive

Characteristics of Boehm's Quality Model [11] ... 5

Figure 2. 3: McCall, Boehm, FURPS Models.. 6

Figure 2. 4: Quality Model of ISO/IEC 9126 [15] ... 7

Figure 2. 5: Principles of Dromey's Quality Model [16] ... 8

Figure 2. 6: Levels in QMOOD [18] .. 8

Figure 2. 7: Quality Model of ISO/IEC 25010 [18] ... 10

Figure 2. 8: Franke et al. Mobile Applications Quality Model [19] 11

Figure 2. 9: Zahra et al. Mobile Applications Quality Model [22] 12

Figure 3. 1: The Research Methodology………………………………………..…..13

Figure 3. 2: The Android Applications Quality Model .. 17

Figure 3. 3: Demographic Data of Respondents .. 21

Figure 4. 1: Paired Samples T-Test of the Data Sets (Scores of Evaluators & Results

of the Model) .. 28

Figure 4. 2: Paired Samples T-Test of the Data Sets (Scores of Evaluators & Results

of the Model) .. 29

Figure 4. 3: Plots Of Quality Characteristics Of Adblock Plus 41

Figure 4. 4: Plots Of Quality Characteristics Of KeePassDroid 46

Figure 4. 5: Plots of Quality Characteristics of CosyDVR .. 50

Figure 4. 6: Quality Scores of the Last Release of Adblock Plus 53

Figure 4. 7: Quality Scores of the Last Release of KeePassDroid 53

Figure 4. 8: Quality Scores of the Last Release of CosyDVR 54

xv

LIST OF ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

ISO International Organization for Standardization

IEC The International Electrotechnical Commission

SQuaRE Software product Quality Requirements and Evaluation

QMOOD Quality Model for Object Oriented Design

API Application Program Interface

App Application

1

CHAPTER I

1 INTRODUCTION

Mobile communication occupies an important place in our life that we feel lost

without a smartphone. This new concept of phobia is called Nomophobia (no-

mobile-phone phobia) in psychology [1]. What is a smartphone that causes such a

phobia? A smartphone is a multifunctional device that we use for not only

communication but also for entertainment, business transactions, and much more.

These functions are made possible by the development of mobile applications.

The increase in smartphones and tablets causes mobile application number to grow

dramatically. “More than 268 billion mobile application downloads will have taken

place by 2017, generating more than $77 billion in revenue and making apps one of

the most popular computing tools for users across the globe” according to Gartner

Group [2]. This study shows that mobile applications are becoming an essential

requirement of our lives. As the number of mobile applications is increasing at a very

high rate, quality of the applications is becoming an important issue.

IEEE Definition of Software Quality is “the degree to which a system, component, or

process meets specified requirements” [3]. Software Quality is essential for software

engineering because the aim of software engineering is to produce software products

with high quality.

Quality of a software product is significant for both user and the developer. The user

wants to work with good qualitative software and developer wants his/her product to

be used admiringly. The quality of a mobile software product is considerably

important. Developers should not underestimate the importance of mobile app

quality, because of the reasons listed below:

 Quality is not only an IT problem anymore. It affects the reputation of

Developer/Company directly. Users write reviews, give stars to applications.

Overview of applications’ ratings and reviews are accessible for every user.

 There is a very high possibility of customer churn. The number of

competitors is very high in application stores. It is very easy to abandon an

application and find an alternative to it.

2

Quality is the combination of many characteristics. These characteristics are referred

as quality characteristics. The quality characteristics and their relationships are

represented in Quality Models. The models are useful because they display the

factors important for quality. Developers need quality models as a guideline to

maintain and improve the quality of their mobile applications.

The aim of this study is to develop a quality model for Android applications. We

chose applications developed for Android Operating System as our target because of

its prevalence in the mobile market. According to the statistics, the number of

applications available for download in Google Play Store “as of July 2015 is 1.6

million. Apple's App Store is the second largest application store with 1.5 million

available applications” [4].

In the process of Android Applications Quality Model development, we have

analyzed quality characteristics, which are described in ISO/IEC SQuaRE Software

Quality Standard. In the Quality Standard, quality properties are categorized into

eight characteristics: functional suitability, performance efficiency, reliability,

security, usability, compatibility, portability and maintainability. As our quality

model deals with the quality characteristics, which are relevant to the area of mobile

software, we have selected the applicable quality characteristics from the quality

standard and added a new characteristic named Data Integrity.

We have determined the relationship of source code metrics and quality

characteristics by conducting a survey on Android Developers. We have developed

our Android Applications Quality Model, validated the quality model and applied

this model to different releases of three open-source Android applications in a case

study to show the applicability of the model.

Few studies have been done on the development of mobile software quality models.

Most of the related studies are incapable of assessing the quality of applications

because they are a lack of metric determination as explained in detail in Chapter 2.

On the other hand, in our study we have determined Android-specific source code

metrics to make measurable the quality of mobile applications in accordance with a

quotation from Galileo Galilei “Measure what is measurable, and make measurable

what is not so” [5].

The contribution of this thesis study is the validated Android Applications Quality

Model based on the data gathered from Android developers, and the metrics

identified for the quality model.

This thesis is structured as follows:

 In Chapter 2, we presented the literature review related to software quality

models.

 In Chapter 3, we explained the proposed Android Applications Quality

Model’s development processes in a detailed manner.

 In Chapter 4, we presented the evaluation of the proposed model and the

results of the case study.

 Finally, in Chapter 5, we presented the conclusion of the thesis work and

possible future work related to the proposed model.

3

CHAPTER II

2 LITERATURE REVIEW

Over the last 30 years, a number of quality models have been developed. Quality

models represent a quantitative structure of quality. [6] In this chapter, we presented

the related literature. The first section contains the detailed expression of software

quality models. The second section contains information about quality models

developed for mobile applications.

2.1 SOFTWARE QUALITY MODELS

Beginning with hierarchical models proposed by McCall and Boehm, a variety of

software quality models have been developed. Some of which have been

standardized. In this section, we summarized the most notable software quality

models.

2.1.1 McCall’s Model (1977)

Jim McCall presented a quality model, which is one of the most famous predecessors

of today’s quality models. The model is also named as the General Electrics Model.

McCall developed the model for the US military in 1977. The McCall quality model

has three factors, which are Product Revision, Product Operation, and Product

Transition to identify the quality of a software product. [7]

Product Revision: It is related to error correction and system adaptation.

- Maintainability: the ease of finding and fixing a bug.

- Flexibility: the ease of making changes required by modification in the

operating environment.

- Testability: the ease of validating the software requirements.

Product Operation: It is related to operation characteristics.

- Correctness: the functionality conforms the specification.

- Efficiency: usage of system resources such as storage, network, processor

time.

- Integrity: protecting a system from unauthorized access.

- Reliability: the system’s ability not to fail.

- Usability: the ease of use of the software.

Product Transition: It is related adaptability to rapid changes in hardware.

- Reusability: the ability to use software components in a different context.

- Portability: the ease of transferring the software from one environment to

another.

4

- Interoperability: the ability of software components to work together.

Figure 2. 1: Hierarchy of Major Perspective, Quality Characteristics and Quality

Criteria of McCall Quality Model [9]

2.1.2 Boehm’s Quality Model (1978)

Barry W. Boehm presented the second quality model in 1978. It consists of a

hierarchical model for quality characteristics: high level, intermediate level, and

primitive characteristics.

At the highest level of the quality model, Boehm determined three main software

requirements: As-is utility, Maintainability, and Portability [10]:

As-is utility:

- Reliability: the degree of software to perform its intended functions

satisfactorily.

- Efficiency: ideal use of resources during a correct execution.

5

- Human Engineering: ease of use, usability.

Maintainability:

- Testability: the ease of validating the software requirements.

- Understandability: the ease of software to be easily comprehended.

- Modifiability: the ability to change the software to meet new requirements.

Portability: the ease of changing the software to accommodate a new environment.

Figure 2. 2: Hierarchy of High Level, Intermediate Level and Primitive

Characteristics of Boehm's Quality Model [11]

The hierarchical structure is similar to McCall’s quality model, but additionally

quality model of Boehm contains hardware performance that is missing in McCall’s

quality model. [12]

2.1.3 FURPS (1987)

Robert Grady and Hewlett Packard presented FURPS Model in 1987. They built

FURPS model for the Rational Software Company. [12] It has two main categories

namely functional requirement and non-functional requirement.

Functional Requirements

- Functionality: “includes feature sets, capabilities, and security.” [12]

Non-functional Requirements also known as URPS

6

- Usability: “includes human factors, overall aesthetics, consistency, and

documentation.” [12]

- Reliability: “frequency and severity of the failure, recoverability,

predictability, accuracy, and mean time between failures (MTBF).” [12]

- Performance: “arranges conditions on functional requirements such as speed,

efficiency, availability, accuracy, throughput, response time, recovery time,

and resource usage.” [12]

- Supportability: “include testability, extensibility, adaptability,

maintainability, compatibility, configurability, serviceability, installability,

and localizability.” [12]

FURPS model is also a hierarchical definition model. “Defining quality” is the main

purpose of FURPS model. [13] One disadvantage of the FURPS model is that they

did not consider software products’ portability as a characteristic [14].

Figure 2. 3: McCall, Boehm, FURPS Models

2.1.4 ISO/IEC 9126 Standard Quality Model (1991)

The International Organization for Standardization (ISO) and The International

Electrotechnical Commission (IEC) introduced ISO/IEC 9126, which is an

international standard for the evolution of software. The purpose of the standard is

defining a quality model and a set of guidelines to measure the software quality

characteristics. Hence, the model is divided into four parts: quality model, external

metrics, internal metrics and quality in use metrics. ISO/IEC 9126 Part-1 is an

extension of McCall, Boehm, and FURPS studies. It decomposes characteristics into

two categories namely external characteristics and internal characteristics.

External Characteristics

- Functionality: “the ability of the product to provide functions that meet stated

and implied needs.” [15]

- Reliability: “the ability of the product to maintain a specified level of

performance.” [15]

7

- Usability: “the ability of the product to be understood by the user.” [15]

- Efficiency: “the ability of the product to provide appropriate performance,

relative to the amount of resources used.” [15]

Internal Characteristics

- Maintainability: “the ability of the product to be modified.” [15]

- Portability: “the ability of the product to be transferred from one environment

to another.” [15]

Each of these characteristics has sub-characteristics as illustrated in Figure 2.4.

Figure 2. 4: Quality Model of ISO/IEC 9126 [15]

2.1.5 Dromey’s Quality Model (1995)

R. Geoff Dromey presented Dromey’s Quality Model in 1995. The quality model is

product based stating that quality evaluation differs for each product. Dromey’s

Model focused on relationships between the characteristics and the sub-

characteristics of quality. There are three principle elements in this quality model

[11]:

1. Product properties that affects the quality.

2. High-level quality characteristics.

3. Linking the quality characteristics with the product properties.

8

Figure 2. 5: Principles of Dromey's Quality Model [16]

2.1.6 Bansiya’s QMOOD Model (2002)

Jagdish Bansiya presented Bansiya’s Quality Model in 2002. The model extends

Dromey’s Model and it is a hierarchical Quality Model for Object Oriented Design

(QMOOD). Development of this model includes four levels.

Figure 2. 6: Levels in QMOOD [18]

2.1.6.1 Design Quality Characteristics (L1)

They examined ISO/IEC 9126 quality characteristics and selected applicable

characteristics for design quality. They included two new characteristics that were

determined as important for the object-oriented design quality assessment in the

model: Reusability and Flexibility. Thus, they identified six Object-Oriented systems

characteristics.

- Functionality: “the responsibilities assigned to be classes of design, which are

made available by the classes through their public interfaces.” [17]

- Effectiveness: “ability to achieve the desired functionality and behavior using

OO design concepts and techniques.” [17]

- Understandability: “related to the complexity of the design structure.” [17]

- Extendibility: “presence and usage of properties in an existing design that

allow for the incorporation of new requirements in the design.” [17]

- Reusability: “characteristics that allow a design to be reapplied to a new

problem without significant effort.” [17]

9

- Flexibility: “the ability of a design to be adapted to provide functionally

related capabilities.” [17]

2.1.6.2 Object-Oriented Design Properties (L2)

They identified design properties as follows [17]: Design Size, Hierarchies,

Abstraction, Encapsulation, Coupling, Cohesion, Composition, Inheritance,

Polymorphism, Messaging, and Complexity.

2.1.6.3 Object-Oriented Design Metrics (L3)

They identified design metrics as follows [17]: Design Size in Classes, Number of

Hierarchies, Average Number of Ancestors, Data Access Metric, Direct Class

Coupling, Cohesion among Methods of Class, Measure of Aggregation, Measure of

Functional Abstraction, Number of Polymorphic Methods, Class Interface Size, and

Number of Methods.

2.1.6.4 Object-Oriented Design Components (L4)

They identified design components as follows [17]: objects, classes and the

relationships between them.

After these steps, they identified the relationship of quality characteristics and design

properties by reviewing object-oriented development books and publications. They

developed the final form of QMOOD quality model.

2.1.7 ISO/IEC 25000 Standard (SQuaRE’s Model) (2011)

The purpose of this standard is providing a general overview of Systems and

Software Quality Requirements and Evaluation (SQuaRE) contents, common

reference models and definitions. ISO/IEC 9126-1:2001 standard has been revised by

ISO/IEC 25010:2011. They identified eight quality characteristics:

- Functional Suitability: “degree of a product or system to provide functions

that meet stated and implied needs.” [18]

- Performance efficiency: “performance related to the amount of resources

used under stated conditions.” [18]

- Compatibility: “degree of a product, system or component to exchange

information with other products, systems or components, and perform its

required functions, while sharing the same hardware or software

environment.” [18]

- Usability: “degree of a product or system to be used by specified users to

succeed specified goals with effectiveness, efficiency, and satisfaction.” [18]

- Reliability: “degree of a system, product or component to perform specified

functions under specified conditions for a specified period.” [18]

- Security: “degree of a product or system to protect information and data.”

[18]

10

- Maintainability: “degree of effectiveness and efficiency of a product or

system to be modified by the intended maintainers.” [18]

- Portability: “degree of effectiveness and efficiency of a system, product or

component to be transferred from one environment to another.” [18]

Figure 2. 7: Quality Model of ISO/IEC 25010 [18]

2.2 QUALITY MODELS FOR MOBILE APPLICATIONS

Franke and Kowalewski [19] examined McCall’s, Boehm, and ISO/IEC 9126

software quality models in their study. They extracted quality characteristics from

these models and presented a mobile applications quality model as illustrated in

Figure 2.8. Afterwards, they applied their model to two Android applications to

assess their quality. What is missing in this study is that it only contains the

identification of 4 main mobile quality characteristics: Usability, Efficiency, Data

Persistence, Flexibility and three sub-characteristics of Flexibility: Adaptability,

Portability, Extensibility. The quality model was not validated. How to measure the

identified quality characteristics was not considered. Therefore, they did not use

metrics for measurement. They selected two non-open source Android applications

for case study and evaluated their quality subjectively. Their evaluation was based on

their ideas. They did not include an evaluation process, which was statistically

supported, in this study.

11

Figure 2. 8: Franke et al. Mobile Applications Quality Model [19]

Franke and Weise [20] provided a framework based on existing quality models,

quality metrics, and design patterns for testing mobile applications. They first

analyzed statistically the quality of mobile applications. Based on the results they

defined methods and tools for testing the lacks, which occurred in the analysis phase.

After that, they applied the tools and methods in a case study to assess the provided

framework. The most important deficiency in this study is that the results of the case

studies are not included. They stated some example metrics that can be used to

analyze the source code of software for mobile devices. These examples are Mc-

Cabe Cyclomatic Complexity, Weighted Methods per Class and Lack of Cohesion of

Methods, but these metrics are not used in the study.

Idri, Moumane, and Abran [21] studied the use of the ISO/IEC 9126 software quality

standard to the limitations (e.g. Lower Bandwidth, Frequent Disconnection, and

Limited Energy Autonomy) of the mobile environment. They identified the influence

of the limitations on quality characteristics. The quality model was useful for

assessing Reliability, Usability and Efficiency characteristics. What is missing in this

study that it only contains the metrics related to mobile limitations. Besides, it is not

a study covering all the quality characteristics; only three of them are covered.

Zahra, Khalid, and Javed [22] presented a mobile application quality model. They

extracted quality characteristics of the model from ISO / IEC 9126 standard as

illustrated in Figure 10. This study only contains the identification of mobile quality

characteristics. Identification of metrics for mobile-specific measurements was not

considered. In addition, they did not apply their model to mobile applications to

show the applicability of the model.

12

Figure 2. 9: Zahra et al. Mobile Applications Quality Model [22]

Jost, Huber and Hericko [23] examined whether the traditional software metrics are

suitable for assessing the source code of mobile applications. They developed a

small-scale application for three different platforms (Android, IOS, Windows

Phone). They evaluated the source codes of the applications by using traditional

software metrics. Because the results of the analysis were slightly different between

platforms, the hypothesis “traditional software metrics can be used for mobile

applications’ source codes” was rejected. Mobile application quality model

development and mobile-specific metric determination are missing in this study.

They used traditional software metrics.

Hecht, Benomar, Rouvoy, Moha and Duchien [24] introduced the PAPRIKA tool to

monitor the evolution of mobile apps quality based on antipatterns. The antipattern

detection was based on software metrics computed by the tool. They considered

three Object Oriented antipatterns, which are Blob Class, Long Method, Complex

Class, and four Android antipatterns, which are Member Ignoring Method, Leaking

Inner Class, UI Overdraw, and Heavy Broadcast Receiver. They utilized the detected

antipatterns in the evaluation of mobile applications quality. Development of a

mobile application quality model is missing in this study. They identified the

antipatterns and applied them in mobile applications in a case study to evaluate

software quality score of mobile applications.

13

CHAPTER III

3 ANDROID QUALITY MODEL DEVELOPMENT

To quantify quality, researchers have developed quality models as explained in

Chapter 2. All of these models share a common difficulty: they are less applicable

for Android Applications. Our model resolves this difficulty. In this chapter, we

explained the methodology used in the development of the proposed Android Quality

Model in a detailed manner. The first section contains the information about the

identification of quality characteristics. The second section contains the information

about the identification of metrics specific for Android applications. The third

section contains the information about determining the relationship between the

identified quality characteristics and the identified metrics. Finally in the last section,

we present the developed Android Applications Quality Model. We illustrated

research methodology of the study in Figure 3.1.

Figure 3. 1: The Research Methodology

14

3.1 IDENTIFYING QUALITY CHARACTERISTICS

We considered ISO/IEC SQuaRE Quality Standard, Object-Oriented models, and

components that are specific to Android Applications while identifying quality

characteristics. We selected the quality characteristics “Functional Suitability”,

“Reliability”, “Performance Efficiency”, “Portability”, “Maintainability”,

“Usability”, “Security” and “Compatibility” from ISO/IEC 25010 Quality Standard

as the initial set of quality characteristics. In addition to these quality characteristics,

we selected “Data Integrity” as a characteristic considering the studies in this field

[19] [20] [22]. We provided the definitions of the quality characteristics identified

for our Android Applications Quality Model and reasons of the identification of

these characteristics below. We illustrated the Android Applications Quality Model

in Figure 3.2.

A. Functional Suitability

Functional Suitability is the degree of a product/system to provide functions that

fulfill needs [18]. Functional suitability for mobile applications means an application

meets the needs of a particular user. If there is too much extra functionality in an

application, it devastates the user. On the other hand, if functionalities are less than it

should be needs of the user are not fulfilled. It is expected from a mobile application

to answer these three main questions [26]:

- Are the application features included?

- Are the application features working properly?

- Is the install/uninstall process of the application working properly?

B. Reliability

Reliability is the degree of a product/system/component to perform specified

functions under stated conditions for a specified period [18]. Reliability means the

stability of mobile applications. Users do not want to deal with an application with

full of bugs that causes a frustration overload. Besides, users do not want to deal with

a slow application that causes waiting a long time to load the application. A mobile

application with poor stability leads quickly to abandonment. According to research

from TechCrunch, “users have low tolerance for buggy apps, only 16% will try a

failing app more than twice” [27].

C. Performance Efficiency

Performance Efficiency is related to the amount of resources used under specified

conditions [18]. Mobile resources are limited; thus, they should be used optimally.

Battery power and phone memory are limited resources on the mobile phones. Users

typically only have 1/1000
th

 as much memory in a mobile phone as they have on a

desktop computer [28]. Besides mobile phones do not have a limitless supply of

electrical power. Users expect the battery in their mobile devices to last at least eight

hours. To meet this requirement, both the hardware and the software on a mobile

15

device should be power efficient. Users tend to uninstall apps that run their battery

down quickly, and they write unfavorable reviews about these applications [29].

D. Portability

Portability is the degree of efficiency and effectiveness of a

product/system/component to be transferred from one environment to another [18].

Portability measures if an application is able to run on different devices. The mobile

market is growing rapidly and there are a wide range of models for each mobile

device. “The worldwide smartphone market grew 13.0% year over year in 2015 Q2,

with 341.5 million shipments” according to the data from the International Data

Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker. Android dominated

the market of smartphones with a share of 82.8% [30]. Samsung and other players

such as Huawei, Xiaomi, ZTE, LG, Nexus, Sony, Asus contribute this percentage

[31]. If the diversity in the market is taken into consideration, users should be able to

run the same application on different mobile devices with the same efficiency.

E. Maintainability

Maintainability is the degree of efficiency and effectiveness of a product/system to

be modified by the maintainers [18]. Mobile Application Markets are already big,

and they are going to keep getting bigger. According to the statistics, the number of

applications available for download in Google Play Store as of July 2015 is 1.6

million. Apple's App Store is the second largest application store with 1.5 million

available applications [4]. Thus, markets are rapidly changing. Developers should

update mobile applications according to the changing requirements. Maintainability

is helpful at this point. Extensibility is the sub-characteristic of maintainability.

Mobile applications have to be extensible for new hardware components, or they can

be extended if new releases of applications available in App Stores.

F. Usability

Usability is the degree of a product/system to be used by specified users to succeed

specified goals with efficiency, effectiveness, and satisfaction [18]. PACMAD

Usability Model identifies seven attributes for mobile applications [32]:

1. Efficiency is the ease of a user to complete a transaction with speed and

accuracy.

2. Effectiveness is the ease of a user to complete a transaction in a stated

context.

3. Satisfaction is the level of pleasantness of the user while using the

application.

4. Memorability is the ability of a user to remember how to use an application

effectively.

5. Learnability is the ability of a user to gain proficiency with an application.

6. Cognitive Load means the amount of cognitive processing necessary for a

user to use the application.

7. Errors attribute express how well the user can complete the transactions

without errors.

16

Usability is related to improve user experience and response about mobile

applications. First seconds of mobile applications are critical because users decide to

use the application or abandon the application [22].

G. Security

Security is the degree of a product/system to protect information and data [18].

Mobile application number in App Stores is increasing dramatically. The question is:

Are mobile applications secure enough? According to the recent research by Arxan,

the rates of the hacked applications are as follows [33]:

- 100% of the top 100 paid apps on the Google Android platform

- 56% of the top 100 paid apps for Apple iOS

- 73% of popular free apps on Android

- 53% of popular free apps on Apple iOS

These numbers obviously present the necessity of security for mobile applications.

H. Compatibility

Compatibility is the degree of a product/system/component to exchange information

with other products/systems/components, and performs its required functions while

sharing the same environment [18]. Mobile applications may also exchange

information with each other by using Bound Services, which are implementation of

Service classes. Bound Service allows other applications to bind to it and interact

with it. Inter-process communication (IPC) is performed [34].

İ. Data Integrity

Data Integrity is the ability of a mobile application to keep information when state

changes happen [18]. Data integrity is the main component of information security. It

provides data, which is stored in a database, data warehouse, data mart or another

construct, to be kept accurately and consistently. Data should be kept free from

corruption or modification. When mobile applications are paused, killed or a call

arrived, the current state of running applications should be saved [22]. Data

corruption, a form of data loss leads users to abandonment and developers to failure.

17

Figure 3. 2: The Android Applications Quality Model

3.2 IDENTIFYING METRICS

Source code metrics are commonly used in assessing the quality of software systems.

They present an objective way to get concrete information about the source code.

Source code metrics for quality assessment of Object-Oriented Design was identified

in QMOOD by Bansiya[17]. In a study of Jetter from the University of Zurich,

Bansiya’s Quality Model was adapted for the Java programming language. They

identified source code metrics related to the Java source code [35]. Metrics that were

used in these two studies is given in Table 3.1.

We analyzed related studies, quality standards and extracted metrics applicable for

Android Applications from these sources. Source code metrics like Number of

Classes, Depth of Inheritance Tree, Instability, Lack of Cohesion of Methods,

Number of Methods and McCabe Cyclomatic Complexity can also be applicable to

Android applications’ source codes.

Table 3. 1: METRICS USED FOR QUALITY ASSESSMENT FOR OBJECT-ORIENTED

DESIGN IN LITERATURE

Metrics used by Bansiya [17] Metrics used by Jetter [35]

Design Size in Classes Number of Classes

Number of Hierarchies Depth of Inheritance Tree

Average Number of Ancestors Abstractness

Data Access Metric -

Direct Class Coupling Instability

Cohesion Among Methods of Classes 1 / Lack of Cohesion of Methods

Measure of Aggregation Number of Attributes

Measure of Functional Abstraction 1 _ Number of Overridden Methods

Number of Methods

Number of Polymorphic Methods Number of Overridden Methods

18

Class Interface Size Number of Methods

Number of Methods Weighted Methods per Class

Android development is Java-Based and Object-Oriented, but there are key

differences. Java programs have a main function On the contrary; Android

applications do not have a main function. They have onCreate, onResume, onPause

and onDestroy functions. Developers overwrite these functions while developing

Android applications. [36]. Due to the difference in source code structures, we need

an identification of metrics that are specific for Android application. By reviewing

Android Programming books, tutorials and publications extensively [25] [36] [37]

[38] [39] [40] [41] [42] [43] [44], we identified eight new Android-specific metrics:

Number of Activities, Number of Services, Number of Broadcast Receivers, Number

of Content Providers, Minimum SDK Version, Target SDK Version, Number of

Intents and Number of Permission. These components are special for Android

development. The definitions of these Android components [25] are given below:

- Activity: Provides a screen to users to interact to do a transaction

such as: dialing the phone, taking a photo, sending an

email, and viewing a map.

- Broadcast Receiver: Responds to broadcast announcements from the system or

from other applications. Broadcast examples from the

system are notifying that the battery is low, a picture was

captured, or the screen has turned off.

- Content Provider: Manages access to a structured set of data. Content

provider examples are Contacts, which allows other

applications to access user information, Media Store,

which allows other applications to access or store media

files.

- Intent: Allows application components to request functionality

from other Android components. The intent is a message to

communicate an action such as View Video, Play Game.

- SDK Version: An integer value designating the API Level required for an

application to run. For example, API Level of Android 6.0

Platform is 23, API Level of Android 3.0.x is 11 and API

Level of Android 1.0 is 1.

- Permission: Request permissions that applications must be granted to

operate correctly. Users confirm permissions when they

install the application.

- Service: Performs long-running operations in the background.

Services do not provide a user interface in contrast to the

activities.

19

In addition to the Android-specific metrics, we identified three metrics that may be

applicable to Android applications: Number of Dialogs, Number of Threads, and

Number of Tables in Database. These metrics are not Android-specific. They are also

applicable to Object-Oriented Programs. We identified them because we hypothesize

that they might affect Android applications’ quality.

The resulting list of metrics and descriptions of them are given in Table 3.2.

Table 3. 2: LIST OF METRICS USED IN OUR MODEL

METRIC TYPE DESCRIPTION

Num of Classes OO This metric is the count of the total

number of classes in a source code.

Depth of Inheritance Tree OO This metric calculates the maximum

length of a path from a class to the

root class in the inheritance hierarchy.

Instability OO This metric is the ratio of efferent

coupling to total coupling (Efferent +

Afferent). Instability shows the

package's resilience to change. [46].

- Afferent Coupling: “The number of

classes in other packages that depend

upon classes within the package is an

indicator of the package's responsibility.

Afferent = incoming” [46].

- Efferent Coupling: “The number of

classes in other packages that the classes

in the package depend upon is an

indicator of the package's dependence on

externalities. Efferent = outgoing” [46].

Lack of Cohesion of

Methods

OO This metric measures the relation

degree of methods and fields to each

other within a class. It measures the

cohesion of a class.

Num of Attributes OO This metric is the count of the total

number of attributes in source code.

Num of Methods OO This metric is the count of the total

number of methods in source code.

McCabe Cyclomatic

Complexity

OO This metric measures the number of

linearly independent paths through

source code of a program.

Num of Activities Android This metric is the count of the total

number of classes that extend

Activities in a source code.

Num of Services Android This metric is the count of the total

number of classes that extend Services

in a source code.

Num of BroadcastReceivers Android This metric is the count of the total

20

number of classes that extend

BroadcastReceivers in a source code.

Num of ContentProviders Android This metric is the count of the total

number of classes that extend

ContentProviders in a source code.

Num of Dialogs OO

Android

This metric is the count of the total

number of dialogs in source code.

Dialogs are small windows that ask

users to enter information or make

decisions.

Num of Threads OO

Android

This metric is the count of the total

number of classes that extend Threads

in a source code.

Android:minSdkVersion Android This metric is an integer, which

indicates the minimum API Level

required the application to run.

Android:targetSdkVersion Android This metric is an integer, which

indicates the target API Level required

the application to run.

Num of Intents Android This metric is the count of the total

number of Intents in a source code.

Num of Tables in Database OO

Android

This metric is the count of the total

number of tables in the database of the

application.

Num of <uses-permission> Android This metric is the number of requested

permissions that the application should

have to operate correctly.

3.3 METRICS - QUALITY CHARACTERISTICS RELATIONSHIP

To determine the relationship between the source code metrics and our quality

characteristics, we conducted a survey for Android Developers. The survey consists

of two parts. The first part includes demographic questions about respondents;

second part includes questions to identify the relationships between metrics and

quality characteristics. The demographics part includes three questions about years

of work experience, the number of developed Android projects and purpose of

Android application development. The second part includes 18 questions that expect

respondents to select the degree of effect for each metrics on the quality

characteristics (Likert Scale in [-1, +1] range). The options are Strongly Negative (-

1), Somewhat Negative (-0,5), No Effect (0), Somewhat Positive (+0,5) and Strongly

Positive (+1). The survey is prepared and sent as an online survey. The Survey tool

of Google Forms [47] was used for the preparation of the survey and acquiring

responses from participants. We included the survey and ethics approval form of

survey in the Appendix.

Since the survey asks questions about the structure of Android applications, our

respondents should have the ability to develop Android Applications. We emailed

our survey to Android Developer Groups in Social Media (Facebook, Linkedin),

21

several IT Companies in Turkey and our personal connections. The mail contains a

brief explanation about the study, the purpose of the study and the link to our online

survey. 33 Android developers participated the survey. The demographic data of

respondents are as follows:

Figure 3. 3: Demographic Data of Respondents

In this study, we employ a quantitative approach to analyzing the data. We used

Cronbach’s Alpha [48], which is the most common statistic, to investigate the

internal consistency (reliability) of surveys. We calculated the Cronbach’s Alpha

value of 33 responses by using IBM SPSS Statistics [50]. The Alpha values for each

question are provided in the Appendix. The average value of all survey questions is

0.82, which indicates the reliability of our survey is in an acceptable range.

3.3.1 Weighting The Relationship

Using the results of the survey, we created a matrix that shows the relationship of

metrics and quality characteristics. This matrix is given in Table 3.3. The matrix

shows how an increase in a metric given in a row affects the quality characteristics.

In this table 0 means no effect, -1 means strong negative effect, -0.5 means negative

effect, +0.5 means positive effect, +1 means a strong positive effect on a

22

characteristic. To determine the effect of a metric, we use the median [53] of

responses on the survey for each quality characteristic.

Table 3. 3: METRICS - QUALITY CHARACTERISTICS RELATIONSHIP (THE

MEDIAN OF RESPONSES)

Increase in F
u
n
ct

io
n
al

S
u
it

ab
il

it
y

R
el

ia
b
il

it
y

P
er

fo
rm

an
ce

E
ff

ic
ie

n
cy

P
o
rt

ab
il

it
y

M
ai

n
ta

in
ab

il
it

y

D
at

a
In

te
g

ri
ty

U
sa

b
il

it
y

S
ec

u
ri

ty

C
o
m

p
at

ib
il

it
y

Of Classes (NOC) +0.5 0 +1.0 +1.0 +0.5 0 +0.5 +0.5 0

Depth of Inheritance

Tree (DIT)

+0.5 -0.5 -1.0 +0.5 +0.5 +0.5 0 0 +0.5

Instability (COP) -0.5 -0.5 0 0 -0.5 +0.5 0 +0.5 +0.5

1 / Lack of Cohesion of

Methods (COH)

+0.5 +0.5 0 0 0 +0.5 0 +0.5 +0.5

Of Attributes (NOAT) 0 +0.5 -0.5 0 0 +0.5 +0.5 +0.5 +0.5

Of Methods (NOM) +0.5 0 0 +0.5 -0.5 +0.5 +0.5 +0.5 0

McCabe Cyclomatic

Complexity (CYC)

0 0 -1.0 0 0 0 0 0 0

Of Activities (NOAC) +0.5 0 0 0 +0.5 +1.0 +0.5 0 0

Of Services (NOS) +0.5 +0.5 -0.5 +0.5 +0.5 +0.5 +0.5 -0.5 0

Of Broadcast Receivers

(NOBR)

+0.5 +0.5 0 0 0 0 0 0 0

Of Content Providers

(NOCP)

-0.5 +0.5 +0.5 +0.5 +0.5 0 +0.5 +0.5 0

Of Dialogs (NOD) 0 0 -1.0 0 0 0 +0.5 0 0

Of Threads (NOT) +0.5 +0.5 +1.0 0 +0.5 +0.5 +0.5 0 0

android:minSdkVersion

(MSDK)

+0.5 0 0 -1.0 0 0 0 0 0

android:targetSdkVersion

(TSDK)

+0.5 0 0 0 0 0 0 0 0

Of Intents (NOI) +0.5 0 0 +0.5 0 +0.5 +0.5 +0.5 +1.0

Of Tables in Database

(NOTD)

+0.5 0 -1.0 +0.5 +0.5 +0.5 0 -1.0 +0.5

Of <uses-permission>

(NOP)

0 0 +0.5 0 0 0 -0.5 +0.5 0

By using this matrix, we obtained computation formulas for each quality

characteristics. We weighted proportionally the effects of metrics on quality

characteristics so that the computed values of all quality characteristics have the

same range. We selected +1 as a range for the effects of metrics. For this reason, we

changed the weights of each metric to ensure that the sum of the new weight values

of all metrics equal to +1. We used Bansiya’s QMOOD study while determining the

weights [17]. The resulting computational formulas for quality characteristics are

shown in Table 3.4.

23

Table 3. 4: COMPUTATION FORMULAS FOR QUALITY CHARACTERISTICS

QUALITY

CHARACTERISTIC

COMPUTATION EQUATION

Functional Suitability +0.1*(NOC) +0.1*(DIT) -0.1*(COP) +0.1*(COH)

+0.1*(NOM) +0.1*(NOAC) +0.1*(NOS)

+0.1*(NOBR)

-0.1*(NOCP) +0.1*(NOT) +0.1*(MSDK)

+0.1*(TSDK) +0.1*(NOI) +0.1*(NOTD)

Reliability -0.25*(DIT) -0.25*(COP) +0.25*(COH)

+0.25*(NOAT)

+0.25*(NOS) +0.25*(NOBR) +0.25*(NOCP)

+0.25*(NOT)

Performance Efficiency +0.5*(NOC) -0.5*(DIT) -0.25*(NOAT) -0.5*(CYC) -

0.25*(NOS) +0.25*(NOCP) -0.5*(NOD) +0.5(NOT) -

0.5(NOTD) +0.25*(NOP)

Portability +0.33*(NOC) +0.165*(DIT) +0.165*(NOM)

+0.165*(NOS) +0.165*(NOCP) -0.33*(MSDK)

+0.165*(NOI) +0.165*(NOTD)

Maintainability +0.2*(NOC) +0.2*(DIT) -0.2*(COP) -0.2*(NOM)

+0.2*(NOAC) +0.2*(NOS) +0.2*(NOCP) +0.2*(NOT)

+0.2*(NOTD)

Data Integrity +0.09*(DIT) +0.09*(COP) +0.09*(COH)

+0.09*(NOAT) +0.09*(NOM) +0.18*(NOAC)

+0.09*(NOS) +0.09*(NOT) +0.09*(NOI)

+0.09*(NOTD)

Usability +0.125*(NOC) +0.125*(NOAT) +0.125*(NOM)

+0.125*(NOAC)

+0.125*(NOS) +0.125*(NOCP) +0.125*(NOD)

+0.125*(NOT)

+0.125*(NOI) -0.125*(NOP)

Security +0.2*(NOC) +0.2*(COP) +0.2*(COH) +0.2*(NOAT)

+0.2*(NOM) -0.2*(NOS) +0.2*(NOCP) +0.2*(NOI)

-0.4*(NOTD) +0.2*(NOP)

Compatibility +0.14*(DIT) +0.14*(COP) +0.14*(COH)

+0.14*(NOAT)

+0.28*(NOI) +0.14*(NOTD)

We provided the minimum and maximum values of the quality characteristics

according to the computation formulas in Table 3.5. We took zero (0) as a minimum

value of metrics, one (1) as a maximum value of metrics while calculating the

minimum and maximum values of the quality characteristics. We created the table to

use it while adjusting the ranges of quality characteristics in Section 4.1 and Section

4.5.

24

Table 3. 5: MIN AND MAX VALUES OF QUALITY CHARACTERISTICS

QUALITY

CHARACTERISTIC

MIN VALUE MAX VALUE TOTAL VALUE

Functional Suitability -0.2 +1.2 +1

Reliability -0,5 +1,5 +1

Performance

Efficiency

-2,5 +1,5 -1

Portability -0,33 +1,32 +0.99

Maintainability -0,4 +1,4 +1

Data Integrity 0

+0,99 +0,99

Usability -0,125 +1,125 +1

Security -0,6 +1,6 +1

Compatibility 0 0,98 +0,98

25

CHAPTER IV

4 MODEL EVALUATION & RESULTS

In this chapter, we present a validation and the evaluation of the quality model and

results of the case studies. The first section contains the validation of the Android

Applications Quality Model and determination of a rating scale for quality

characteristics. The second section contains the information about selecting Android

applications for a case study. The third section contains the information about

gathering and normalizing metric data. The results are analyzed in fourth section.

4.1 MODEL VALIDATION

In order to verify the computed values of the Android Application Quality Model, we

used a group of three independent evaluators to study the quality of two applications.

All evaluators had four to five years of experience in software development and had

knowledge of the Android application programming.

To select an open source application as a validation suite, we used an application

called F-Droid [51], which is a catalogue of free and open-source applications for

Android platform. We searched for application based on the following criteria from

F-Droid’s list:

- To be popular

- To be open source

- To be small (max 5000 KLOC)

- To have at least two releases.

We selected two releases of 2048-android application as a validation suite: the first

release and the last release. The 2048-android application [49] is a simple puzzle

game, which consists of 4.275 KLOC. It provides the expected criteria.

Three independent evaluators analyzed the source codes of the 2048-android v1 and

2048-android v2.06 and scored the quality characteristics. Participants scored each

quality characteristics on a range of [0, 10]. Table 4.1 shows the scores of 3

evaluators and the average values of quality characteristics.

26

Table 4. 1: SCORES OF THE EVALUATORS TO 2048-ANDROID APPLICATIONS

After that, to validate the Android Application Quality Model we calculated the

quality scores for the two releases of the selected application by analyzing source

codes of them. To calculate the quality scores, we first gathered the metrics of the

two releases. We described the methods we used for gathering metrics in Section 4.3.

The metric values for the releases of the 2048-android application are stated in Table

4.2. Since we combined actual metric values of different ranges in the computation

of the quality characteristics, normalization of these metric values was necessary.

Thus, we normalized these metric values. The calculation and normalization methods

that were used in this study are explained in Section 4.3.

Table 4. 2: METRIC VALUES FOR 2048-ANDROID

2048-android v1.0

2048-android v2.06

Evaluators E1 E2 E3 AVG E1 E2 E3 AVG

Functional Suitability 5 4 6 5 8 7 10 8,33

Reliability 4 3 6 4,33 7 9 10 8,66

Performance

Efficiency

4 2 5 3,66 6 5 8 6,33

Portability 2 5 7 4,66 8 10 8 8,66

Maintainability 7 6 8 7 4 6 7 5,66

Data Integrity 5 3 6 4,66 8 7 9 8

Usability 4 5 8 5,66 7 9 10 8,66

Security 6 4 7 5,66 8 7 8 7,66

Compatibility 2 3 5 3,33 6 5 5 5,33

 2048-android

v1.0

2048-android

v2.06

Of Classes (NOC) 11 12

Depth of Inheritance Tree (DIT) 5 5

Instability (COP) 0.5 1

1 / Lack of Cohesion of Methods (COH) 0 16.1

Of Attributes (NOAT) 0 4

Of Methods (NOM) 2 8

McCabe Cyclomatic Complexity (CYC) 1 2.125

Of Activities (NOAC) 1 1

Of Services (NOS) 0 0

Of Broadcast Receivers (NOBR) 0 0

Of Content Providers (NOCP) 0 0

Of Dialogs (NOD) 0 0

Of Threads (NOT) 0 0

android:minSdkVersion (MSDK) 10 8

android:targetSdkVersion (TSDK) 19 23

Of Intents (NOI) 0 0

Of Tables in Database (NOTD) 0 0

Of <uses-permission> (NOP) 0 0

27

We calculated the values of identified nine quality characteristics by using the

computation formulas stated in Table 3.4. We used normalized values of the metrics

for each of the formula. Table 4.3 shows the computed values of nine quality

characteristics for the two releases of the 2048-android game.

Table 4. 3: COMPUTED QUALITY CHARACTERISTICS FOR 2048-ANDROID

Afterwards, to compare the results of the quality model and the results of the

evaluators we changed the ranges of computed quality characteristics to [0, 10] by

using the formula provided below [52]:

 NewValue = (Value - Min) * (NewMax - NewMin) +NewMin

Max - Min

Where

- Min and Max: The minimum and maximum values of quality characteristics

provided in Table 3.5.

- NewMin: New minimum value is 0

- NewMax: New maximum value is 10

- Value: Values of quality characteristics provided in Table 4.3.

- NewValue: New values of quality characteristics within the new range [0,

10].

We calculated new values of quality characteristics. We provided them in Table 4.4.

Table 4. 4: COMPUTED QUALITY CHARACTERISTICS FOR 2048-ANDROID

WITHIN THE NEW RANGE [0, 10]

 2048-android v1.0 2048-android v2.06

Functional Suitability 0,1 0,3

Reliability 0 0,25

Performance Efficiency 0 -0,25

Portability -0,33 0,495

Maintainability 0 -0,2

Data Integrity 0 0,36

Usability 0 0,375

Security 0 1

Compatibility 0 0,42

 2048-android v1.0 2048-android v2.06

Functional Suitability 2,14 3,57

Reliability 2,5 3,75

Performance Efficiency 3,125 5,625

Portability 0 5

Maintainability 5,7 1,11

Data Integrity 0 3,63

Usability 1 4

Security 2,72 7,27

28

We used Paired Samples T-Test to calculate the difference between results of the

quality model and scores of the evaluators. If there are two data sets in which

observations in one data set can be paired with observations in the other data set,

generally paired samples t-test is used for comparison in statistics [54]. Thus, we

selected this test to compare our two data sets.

We obtained the Sig (2-Tailed) values and t values of 9 pairs by using IBM SPSS

Statistics [50]. We provided the values in Figure 4.1 and Figure 4.2.

Figure 4. 1: Paired Samples T-Test of the Data Sets (Scores of Evaluators & Results

of the Model)

Compatibility 0 4,28

29

Figure 4. 2: Paired Samples T-Test of the Data Sets (Scores of Evaluators & Results

of the Model)

All Sig (2-Tailed) values of the pairs are greater than 0.005. Thus, according to

paired samples t-test results, there is a statistically significant correlation between the

two datasets. This correlation validates our Android Applications Quality Model and

supports the reliability of the model.

4.1.1 Determination of a Rating Scale

In order to elicit information about the results, we determined a rating for the quality

scores of quality characteristics of Android applications. The rating scale contains six

categories: 0-1 Very Poor, 1-3 Poor, 3-5 Fair, 5-7 Good, 7-9 Very Good, and 9-10

Excellent.

Very Poor Poor Fair Good Very Good Excellent

0 1 3 5 7 9 10

We applied our rating scale to the results of quality characteristics presented in Table

4.4 to figure out which categories they enter. According to the rating scale, the

quality characteristics computed by the Android Applications Quality Model for

2048-Android applications enter into the categories provided in Table 4.5.

30

Table 4. 5: THE CATEGORIES OF QUALITY CHARACTERISTICS OF 2048-ANDROID

APPLICATIONS

4.3 GATHERING EXPERIMENT DATA FOR CASE STUDY

To gather open source applications, we used an application called F-Droid [51].

From F-Droid’s list, we have searched for applications based on the following

criteria:

- To be open source

- To be large (min 10000 KLOC)

- To have multiple releases.

We selected three Android applications for case study: Adblock Plus [55],

KeePassDroid [56] and CosyDVR [57]. The first application, Adblock Plus consists

of 11.055 KLOC and 10 releases. Adblock Plus is a free open source application that

allows the user to block annoying advertisements, disable tracking and block

domains, which is known to spread malware. The other application, KeePassDroid

consists of 29.328 KLOC and 115 releases. KeePassDroid is a free open source

password manager. Users can store all their passwords in one database, which is

locked with one master key. Thus users have to remember only one password to

reach the whole database. The third application, CosyDVR consists of 24.087 KLOC

and 21 releases. CosyDVR is a free and open source DVR software kit designed for

in-car use.

We downloaded source codes of the selected applications for the case study. We

downloaded all releases of Adblock Plus, 10 out of the 115 releases of

KeePassDroid, and 10 out of the 21 releases of CosyDVR. While selecting the 10

 2048-android v1.0 2048-android v2.06

Functional Suitability
2,14 3,57

Poor Fair

Reliability
2,5 3,75

Poor Fair

Performance Efficiency
3,125 5,625

Fair Good

Portability
0 5

Very Poor Good

Maintainability
5,7 1,11

Good Poor

Data Integrity
0 3,63

Very Poor Fair

Usability
1 4

Poor Fair

Security
2,72 7,27

Poor Very Good

Compatibility
0 4,28

Very Poor Fair

31

releases of KeePassDroid and CosyDVR, we considered the releases that have more

commits. When some changes are made in application, commits are used to save the

changes to application’s repository. If the release has more commits, it means that it

has more changes. We preferred to download 10 releases of each application to

evaluate equal numbers of releases of the applications.

4.4 GATHERING AND NORMALIZING METRIC DATA

We calculated the 18 metrics that we described in Table 3.2 for the 10 releases of

Adblock Plus, KeePassDroid and CosyDVR. In this study, for calculating Object-

Oriented metrics we used Eclipse Metrics plug-in 1.3.8 [58]. For calculating the

additional metrics that we identified, we implemented a Java program since there is

no tool or plug-in developed specifically to calculate these metrics.

Using ECLIPSE plug-in and our Java program, we obtained the metric values. We

provided them in Table 4.6, Table 4.7 and Table 4.8. Table 4.6 contains the metric

values for Adblock Plus application. Table 4.7 contains the metric values for

KeePassDroid application. Table 4.8 contains the metric values for CosyDVR

application. If there was no metric value in the release of the application, we filled

the related cells with the hyphen mark (-).

Table 4. 6: METRIC VALUES FOR ADBLOCK PLUS

A
d

b
lo

ck
 P

lu
s

v
1

.0

A
d

b
lo

ck
 P

lu
s

v
1

.0
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.2

A
d

b
lo

ck
 P

lu
s

v
1

.1
.3

A
d

b
lo

ck
 P

lu
s

v
1

.1
.4

A
d

b
lo

ck
 P

lu
s

v
1

.2

A
d

b
lo

ck
 P

lu
s

v
1

.2
.1

A
d

b
lo

ck
 P

lu
s

v
1

.3

Of Classes (NOC) 92 92 92 90 91 91 91 88 88 147

Depth of Inheritance

Tree (DIT)

8 8 4 5 5 5 5 5 5 5

Instability (COP) 0.331 0.331 0.593 0.345 0.345 0.351 0.345 0.334 0.334 0.357

1 / Lack of Cohesion

of Methods (COH)

5.714 5.714 5.154 5.814 5.882 5.882 5.848 5.747 5.747 4.807

Of Attributes

(NOAT)

218 218 218 218 218 218 218 259 259 346

Of Methods (NOM) 418 418 418 418 419 419 420 422 422 644

McCabe Cyclomatic

Complexity (CYC)

3.294 3.293 3.323 3.310 3.293 3.293 3.290 3.231 3.231 2.549

Of Activities

(NOAC)

3 3 4 4 4 4 4 4 4 4

Of Services (NOS) 2 2 2 2 2 2 2 2 2 2

Of Broadcast

Receivers (NOBR)

2 2 2 2 2 2 2 2 2 3

Of Content

Providers (NOCP)

0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 1 1 1 1 1 1 1 1 1 1

Of Threads (NOT) 5 5 5 5 5 5 5 5 5 4

android:minSdkVersi

on (MSDK)

7 7 7 7 7 7 7 7 7 9

android:targetSdkVer

sion (TSDK)

7 7 16 16 16 16 16 16 16 16

32

Table 4. 7: METRIC VALUES FOR KEEPASSDROID

Of Intents (NOI) 23 25 29 31 31 31 32 34 34 37

Of Tables in

Database (NOTD)

0 0 0 0 0 0 0 0 0 0

Of <uses-

permission> (NOP)

3 3 4 4 4 4 4 4 4 5

K
ee

P
as

sD
ro

id

v
0

.0
.1

K
ee

P
as

sD
ro

id

v
0

.2
.0

K
ee

P
as

sD
ro

id

v
0

.6

K
ee

P
as

sD
ro

id

v
1

.0

K
ee

P
as

sD
ro

id

v
1

.6

K
ee

P
as

sD
ro

id

v
1

.9

K
ee

P
as

sD
ro

id

v
1

.9
9
.0

K
ee

P
as

sD
ro

id

v
1

.9
9
.9

K
ee

P
as

sD
ro

id

v
2

.0

K
ee

P
as

sD
ro

id

v
2

.0
.4

Of Classes (NOC) 60 92 125 109 110 359 425 429 444 450

Depth of Inheritance

Tree (DIT)

6 7 8 9 10 10 10 10 10 10

Instability (COP) 0.603 0.470 0.433 0.285 0.402 0.416 0.428 0.434 0.436 0.430

1 / Lack of Cohesion

of Methods (COH)

5.102 5.464 6.849 6.535 6.172 6.410 6.369 6.410 6.452 6.494

Of Attributes

(NOAT)

143 201 250 190 640 650 725 731 773 777

Of Methods (NOM) 295 412 525 360 1664 1726 2098 2163 2212 2241

McCabe Cyclomatic

Complexity (CYC)

1.84 1.866 1.836 1.799 2.03 2.04 2.01 2.02 2.04 2.05

Of Activities

(NOAC)

2 5 6 6 7 10 12 12 12 13

Of Services (NOS) 0 1 1 1 1 1 1 1 1 1

Of Broadcast

Receivers (NOBR)

0 0 0 0

0 0 0 0 0 0

Of Content

Providers (NOCP)

0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 0 1 4 5 6 5 5 5 5 5

Of Threads (NOT) 0 0 0 0 0 0 0 0 0 0

android:minSdkVersi

on (MSDK)

1 1 3 3 3 3 3 3 3 3

android:targetSdkVer

sion (TSDK)

- - - 4 8 8 12 12 12 12

Of Intents (NOI) 2 19 19 16 19 26 24 30 29 30

Of Tables in

Database (NOTD)

7 10 10 13 23 26 33 34 39 39

Of <uses-

permission> (NOP)

0 0 0 1 1 1 2 2 2 2

33

Table 4. 8: METRIC VALUES FOR COSYDVR

Since we combined actual metric values of different ranges in the computation of the

quality characteristics, normalization of these metric values was necessary.

Therefore, we normalized the metric values. We used Min-Max Normalization that is

the process converting data to a value between 0 and 1.

We calculated the normalized value of the metric value Xi in the ith row as [59]:

where

Xmin = the minimum value for variable X

C
o

sy
D

V
R

v
1

.0

C
o

sy
D

V
R

v
1

.0
.3

C
o

sy
D

V
R

v
1

.0
.6

C
o

sy
D

V
R

v
1

.1

C
o

sy
D

V
R

v
1

.2

C
o

sy
D

V
R

v
1

.3

C
o

sy
D

V
R

v
1

.3
.1

C
o

sy
D

V
R

v
1

.3
.5

C
o

sy
D

V
R

v
1

.3
.9

C
o

sy
D

V
R

v
1

.3
.1

1

Of Classes (NOC) 23 23 25 25 25 25 25 25 26 60

Depth of Inheritance

Tree (DIT)
7 7 7 7 7 7 7 7 7 6

Instability (COP) 1 1 1 1 1 1 1 1 1 0,603

1 / Lack of Cohesion

of Methods (COH)
12,19 12,19

13,3

3
13,33

13,3

3
13,33

13,3

3
13,33

13,8

8
5,102

Of Attributes

(NOAT)
63 65 68 68 69 71 71 73 80 143

Of Methods

(NOM)
49 49 55 55 56 57 57 57 56 295

McCabe Cyclomatic

Complexity (CYC)
2,184 2,204

2,36

4
2,364

2,42

9
2,421

2,42

1
2,526

2,78

9
1,84

Of Activities

(NOAC)
1 1 1 1 1 1 1 1 1 1

Of Services (NOS) 1 1 1 1 1 1 1 1 1 1

Of Broadcast

Receivers (NOBR)
0 0 0 0 0 0 0 0 0 0

Of Content

Providers (NOCP)
0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 0 0 0 0 0 0 0 0 0 0

Of Threads (NOT) 0 0 0 0 0 0 0 0 0 0

android:minSdkVersi

on (MSDK)
11 11 11 11 11 16 16 16 16 16

android:targetSdkVer

sion (TSDK)
17 17 17 17 17 17 17 17 17 17

Of Intents (NOI) 4 4 5 5 5 5 5 5 5 6

Of Tables in

Database (NOTD)
0 0 0 0 0 0 0 0 0 0

Of <uses-

permission> (NOP)
8 8 12 8 9 9 9 9 9 9

34

Xmax = the maximum value for variable X

We did the normalization of the values of three applications separately because three

independent vendors have developed the applications. Table 4.9, Table 4.10 and

Table 4.11 show the normalized metric values for Android Applications.

Table 4. 9: NORMALIZED METRIC VALUES FOR ADBLOCK PLUS

A
d

b
lo

ck
 P

lu
s

v
1

.0

A
d

b
lo

ck
 P

lu
s

v
1

.0
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.2

A
d

b
lo

ck
 P

lu
s

v
1

.1
.3

A
d

b
lo

ck
 P

lu
s

v
1

.1
.4

A
d

b
lo

ck
 P

lu
s

v
1

.2

A
d

b
lo

ck
 P

lu
s

v
1

.2
.1

A
d

b
lo

ck
 P

lu
s

v
1

.3

Of Classes (NOC) 0,067 0,067 0,067 0,033 0,050 0,050 0,050 0 0 1

Depth of Inheritance

Tree (DIT) 1 1 0 0,25 0,25 0,25 0,25 0,25 0,25 0,25

Instability (COP) 0 0 1 0,053 0,053 0,076 0,053 0,011 0,011 0,099

1 / Lack of Cohesion of

Methods (COH) 0,843 0,843 0,322 0,936 1 1 0,968 0,874 0,874 0

Of Attributes (NOAT) 0 0 0 0 0 0 0 0,320 0,320 1

Of Methods (NOM) 0 0 0 0 0,004 0,004 0,008 0,017 0,017 1

McCabe Cyclomatic

Complexity (CYC) 0,962 0,961 1 0,983 0,961 0,961 0,957 0,881 0,881 0

Of Activities (NOAC) 0 0 1 1 1 1 1 1 1 1

Of Services (NOS) 0 0 0 0 0 0 0 0 0 0

Of Broadcast Receivers

(NOBR) 0 0 0 0 0 0 0 0 0 1

Of Content Providers

(NOCP) 0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 0 0 0 0 0 0 0 0 0 0

Of Threads (NOT) 1 1 1 1 1 1 1 1 1 0

android:minSdkVersion

(MSDK) 0 0 0 0 0 0 0 0 0 1

android:targetSdkVersion

(TSDK) 0 0 1 1 1 1 1 1 1 1

Of Intents (NOI) 0 0,142 0,428 0,571 0,571 0,571 0,642 0,785 0,785 1

Of Tables in Database

(NOTD) 0 0 0 0 0 0 0 0 0 0

Of <uses-permission>

(NOP) 0 0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1

35

Table 4. 10: NORMALIZED METRIC VALUES FOR KEEPASSDROID

K
ee

P
as

sD
ro

id

v
0

.0
.1

K
ee

P
as

sD
ro

id

v
0

.2
.0

K
ee

P
as

sD
ro

id

v
0

.6

K
ee

P
as

sD
ro

id

v
1

.0

K
ee

P
as

sD
ro

id

v
1

.6

K
ee

P
as

sD
ro

id

v
1

.9

K
ee

P
as

sD
ro

id

v
1

.9
9
.0

K
ee

P
as

sD
ro

id

v
1

.9
9
.9

K
ee

P
as

sD
ro

id

v
2

.0

K
ee

P
as

sD
ro

id

v
2

.0
.4

Of Classes (NOC) 0 0,082 0,166 0,125 0,128 0,766 0,935 0,946 0,984 1

Depth of Inheritance

Tree (DIT)
0 0,25 0,5 0,75 1 1 1 1 1 1

Instability (COP) 1 0,581 0,465 0 0,367 0,411 0,449 0,468 0,474 0,455

1 / Lack of Cohesion

of Methods (COH)
0 0,207 1 0,82 0,612 0,748 0,725 0,748 0,772 0,796

Of Attributes

(NOAT)
0 0,091 0,168 0,074 0,783 0,799 0,917 0,927 0,993 1

Of Methods (NOM) 0 0,06 0,118 0,033 0,703 0,735 0,926 0,959 0,985 1

McCabe Cyclomatic

Complexity (CYC)
0,163 0,266 0,147 0 0,92 0,96 0,84 0,88 0,96 1

Of Activities

(NOAC)
0 0,272 0,363 0,363 0,454 0,727 0,909 0,909 0,909 1

Of Services (NOS) 0 1 1 1 1 1 1 1 1 1

Of Broadcast

Receivers (NOBR)
0 0 0 0 0 0 0 0 0 0

Of Content

Providers (NOCP)
0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 0 0,2 0,8 1 1,2 1 1 1 1 1

Of Threads (NOT) 0 0 0 0 0 0 0 0 0 0

android:minSdkVersi

on (MSDK)
0 0 1 1 1 1 1 1 1 1

android:targetSdkVer

sion (TSDK)
0 0 0 0,333 0,666 0,666 1 1 1 1

Of Intents (NOI) 0 0,607 0,607 0,5 0,607 0,857 0,785 1 0,964 1

Of Tables in

Database (NOTD)
0 0,093 0,093 0,187 0,5 0,593 0,812 0,843 1 1

Of <uses-

permission> (NOP)
0 0 0 0,5 0,5 0,5 1 1 1 1

36

Table 4. 11: NORMALIZED METRIC VALUES FOR COSYDVR

4.5 ANALYZING RESULTS

We calculated the values of identified nine quality characteristics by using the

computation formulas stated in Table 3.4. We used normalized values of the metrics

for each of the formula. Table 4.12, Table 4.13 and Table 4.14 shows the computed

values of nine quality characteristics for the three Android applications based on the

normalized metric values.

C
o

sy
D

V
R

v
1

.0

C
o

sy
D

V
R

v
1

.0
.3

C
o

sy
D

V
R

v
1

.0
.6

C
o

sy
D

V
R

v
1

.1

C
o

sy
D

V
R

v
1

.2

C
o

sy
D

V
R

v
1

.3

C
o

sy
D

V
R

v
1

.3
.1

C
o

sy
D

V
R

v
1

.3
.5

C
o

sy
D

V
R

v
1

.3
.9

C
o

sy
D

V
R

v
1

.3
.1

1

Of Classes (NOC) 0 0 0,054 0,054 0,054 0,054 0,054 0,054 0,081 1

Depth of Inheritance

Tree (DIT) 1 1 1 1 1 1 1 1 1 0

Instability (COP) 1 1 1 1 1 1 1 1 1 0

1 / Lack of Cohesion

of Methods (COH) 0,807 0,807 0,937 0,937 0,937 0,937 0,937 0,937 1 0

Of Attributes

(NOAT) 0 0,025 0,062 0,062 0,075 0,1 0,1 0,125 0,212 1

Of Methods (NOM) 0 0 0,024 0,024 0,028 0,032 0,032 0,032 0,028 1

McCabe Cyclomatic

Complexity (CYC) 0,362 0,383 0,552 0,552 0,620 0,612 0,612 0,722 1 0

Of Activities

(NOAC) 0 0 0 0 0 0 0 0 0 0

Of Services (NOS) 0 0 0 0 0 0 0 0 0 0

Of Broadcast

Receivers (NOBR) 0 0 0 0 0 0 0 0 0 0

Of Content

Providers (NOCP) 0 0 0 0 0 0 0 0 0 0

Of Dialogs (NOD) 0 0 0 0 0 0 0 0 0 0

Of Threads (NOT) 0 0 0 0 0 0 0 0 0 0

android:minSdkVersi

on (MSDK) 0 0 0 0 0 1 1 1 1 1

android:targetSdkVer

sion (TSDK) 0 0 0 0 0 0 0 0 0 0

Of Intents (NOI) 0 0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1

Of Tables in

Database (NOTD) 0 0 0 0 0 0 0 0 0 0

Of <uses-

permission> (NOP) 0 0 1 0 0,25 0,25 0,25 0,25 0,25 0,25

37

Table 4. 12: COMPUTED QUALITY CHARACTERISTICS FOR ADBLOCK PLUS

Table 4. 13: COMPUTED QUALITY CHARACTERISTICS FOR KEEPASSDROID

A
d

b
lo

ck
 P

lu
s

v
1

.0

A
d

b
lo

ck
 P

lu
s

v
1

.0
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.2

A
d

b
lo

ck
 P

lu
s

v
1

.1
.3

A
d

b
lo

ck
 P

lu
s

v
1

.1
.4

A
d

b
lo

ck
 P

lu
s

v
1

.2

A
d

b
lo

ck
 P

lu
s

v
1

.2
.1

A
d

b
lo

ck
 P

lu
s

v
1

.3

Functional

Suitability 0,291 0,305 0,281 0,473 0,482 0,479 0,486 0,491 0,491 0,715

Reliability 0,210 0,210 0,080 0,408 0,424 0,418 0,416 0,483 0,483 0,412

Performance

Efficiency

-

0,447

-

0,447 0,158 0,025 0,044 0,044 0,046

-

0,020

-

0,020 0,375

Portability 0,187 0,210 0,092 0,146 0,152 0,152 0,165 0,173 0,173 0,371

Maintainabili

ty 0,289 0,289 0,149 0,312 0,315 0,311 0,315 0,315 0,315 0,441

Data

Integrity 0,255 0,268 0,427 0,432 0,439 0,441 0,442 0,473 0,473 0,481

Usability 0,133 0,151 0,249 0,263 0,265 0,265 0,275 0,327 0,327 0,5

Security 0,182 0,210 0,463 0,418 0,435 0,440 0,444 0,501 0,501 1,019

Compatibility 0,258 0,297 0,304 0,333 0,342 0,345 0,357 0,423 0,423 0,468

K
ee

P
as

sD
ro

id

v
0

.0
.1

K
ee

P
as

sD
ro

id

v
0

.2
.0

K
ee

P
as

sD
ro

id

v
0

.6

K
ee

P
as

sD
ro

id

v
1

.0

K
ee

P
as

sD
ro

id

v
1

.6

K
ee

P
as

sD
ro

id

v
1

.9

K
ee

P
as

sD
ro

id

v
1

.9
9
.0

K
ee

P
as

sD
ro

id

v
1

.9
9
.9

K
ee

P
as

sD
ro

id

v
2

.0

K
ee

P
as

sD
ro

id

v
2

.0
.3

Functional

Suitability -0,1 0,199 0,438 0,511 0,630 0,768 0,864 0,893 0,914 0,934

Reliability -0,25 0,116 0,300 0,286 0,257 0,284 0,298 0,301 0,322 0,335

Performance

Efficiency

-

0,081

-

0,636

-

0,979

-

1,049

-

2,066

-

1,718

-

1,587

-

1,620

-

1,736 -1,75

Portability 0 0,358 0,107 0,118 0,340 0,613 0,724 0,774 0,811 0,825

Maintainabilit

y -0,2 0,111 0,107 0,178 0,002 0,188 0,256 0,254 0,286 0,309

Data Integrity 0,09 0,308 0,420 0,368 0,583 0,683 0,758 0,788 0,810 0,832

Usability 0 0,289 0,402 0,324 0,546 0,673 0,684 0,717 0,729 0,75

Security 0,2 0,088 0,267 0,135 0,34 0,526 0,622 0,672 0,634 0,650

Compatibility 0,14 0,341 0,481 0,396 0,626 0,737 0,766 0,838 0,863 0,875

38

Table 4. 14: COMPUTED QUALITY CHARACTERISTICS FOR COSYDVR

In order to identify the categories of quality characteristics of the releases, we

changed the ranges of computed quality characteristics to [0, 10]. We stated the

formula used for changing the ranges of quality characteristics in Section 4.1.

When all quality characteristics were converted to the range of [0, 10], we applied

our rating scale to these values. The rating scale contains six categories: 0-1 Very

Poor, 1-3 Poor, 3-5 Fair, 5-7 Good, 7-9 Very Good and 9-10 Excellent. We

illustrated the rating scale in Section 4.1.1.

Table 4.15, Table 4.16 and Table 4.17 shows the changed values of nine quality

characteristics for the three Android applications based on the ranges of [0,10] and

the categories they entered according to the determined rating scale.

C
o

sy
D

V
R

v
1

.0

C
o

sy
D

V
R

v
1

.0
.3

C
o

sy
D

V
R

v
1

.0
.6

C
o

sy
D

V
R

v
1

.1

C
o

sy
D

V
R

v
1

.2

C
o

sy
D

V
R

v
1

.3

C
o

sy
D

V
R

v
1

.3
.1

C
o

sy
D

V
R

v
1

.3
.5

C
o

sy
D

V
R

v
1

.3
.9

C
o

sy
D

V
R

v
1

.3
.1

1

Functional

Suitability 0,080 0,080 0,151 0,151 0,151 0,252 0,252 0,252 0,260 0,4

Reliability -

0,298

-

0,292

-

0,250

-

0,250

-

0,247

-

0,240

-

0,240

-

0,234

-

0,197 0,25

Performance

Efficiency

-

0,681

-

0,697

-

0,514

-

0,764

-

0,739

-

0,741

-

0,741

-

0,802 -0,95 0,312

Portability

0,165 0,165 0,269 0,269 0,269

-

0,059

-

0,059

-

0,059

-

0,051 0,33

Maintainabili

ty -0,4 -0,4

-

0,394

-

0,394

-

0,394

-

0,395

-

0,395

-

0,395

-

0,389 0

Data

Integrity 0,252 0,254 0,317 0,317 0,318 0,321 0,321 0,323 0,336 0,27

Usability

0 0,003

-

0,045 0,08 0,05 0,054 0,054 0,057 0,071 0,468

Security 0,361 0,366 0,715 0,515 0,568 0,574 0,574 0,579 0,614 0,85

Compatibility 0,392 0,396 0,559 0,559 0,561 0,565 0,565 0,568 0,589 0,42

39

Table 4. 15: COMPUTED QUALITY CHARACTERISTICS FOR ADBLOCK PLUS

WITHIN THE RANGE [0, 10] AND THE CATEGORIES OF THE VALUES

A
d

b
lo

ck
 P

lu
s

v
1

.0

A
d

b
lo

ck
 P

lu
s

v
1

.0
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.1

A
d

b
lo

ck
 P

lu
s

v
1

.1
.2

A
d

b
lo

ck
 P

lu
s

v
1

.1
.3

A
d

b
lo

ck
 P

lu
s

v
1

.1
.4

A
d

b
lo

ck
 P

lu
s

v
1

.2

A
d

b
lo

ck
 P

lu
s

v
1

.2
.1

A
d

b
lo

ck
 P

lu
s

v
1

.3

Functional

Suitability

3,507

3,607 3,435 4,807 4,871 4,85 4,9 4,935 4,935 6,535

Fair Fair Fair Fair Fair Fair Fair Fair Fair Good

Reliability 3,55 3,55 2,9 4,54 4,62 4,59 4,58 4,915 4,915 4,56

Fair Fair Poor Fair Fair Fair Fair Fair Fair Fair

Performance

Efficiency

5,132 5,132 6,645 6,312 6,36 6,36 6,365 6,2 6,2 7,187

Good Good Good Good Good Good Good Good Good Very

Good

Portability 3,133 3,272 2,557 2,884 2,921 2,921 3 3,048 3,048 4,248

Fair Fair Poor Poor Poor Poor Fair Fair Fair Fair

Maintainabil

ity

3,827 3,827 3,05 3,955 3,972 3,95 3,972 3,972 3,972 4,672

Fair Fair Fair Fair Fair Fair Fair Fair Fair Fair

Data

Integrity

2,55 2,68 4,27 4,32 4,39 4,41 4,42 4,73 4,73 4,81

Poor Poor Fair Fair Fair Fair Fair Fair Fair Fair

Usability 2,064 2,208 2,992 3,104 3,12 3,12 3,2 3,616 3,616 5

Poor Poor Poor Fair Fair Fair Fair Fair Fair Good

Security 3,554 3,681 4,831 4,627 4,704 4,727 4,745 5,004 5,004 7,359

Fair Fair Fair Fair Fair Fair Fair Good Good Very

Good

Compatibilit

y

2,58 2,97 3,04 3,33 3,42 3,45 3,57 4,23 4,23 4,68

Poor Poor Fair Fair Fair Fair Fair Fair Fair Fair

40

Table 4. 16: COMPUTED QUALITY CHARACTERISTICS FOR KEEPASSDROID

WITHIN THE RANGE [0, 10] AND THE CATEGORIES OF THE VALUES

K
ee

P
as

sD
ro

id

v
0

.0
.1

K
ee

P
as

sD
ro

id

v
0

.2
.0

K
ee

P
as

sD
ro

id

v
0

.6

K
ee

P
as

sD
ro

id

v
1

.0

K
ee

P
as

sD
ro

id

v
1

.6

K
ee

P
as

sD
ro

id

v
1

.9

K
ee

P
as

sD
ro

id

v
1

.9
9
.0

K
ee

P
as

sD
ro

id

v
1

.9
9
.9

K
ee

P
as

sD
ro

id

v
2

.0

K
ee

P
as

sD
ro

id

v
2

.0
.3

Functional

Suitability

0,714 2,85 4,557 5,078 5,928 6,914 7,6 7,807 7,957 8,1

Very

Poor

Poor Fair Good Good Good Very

Good

Very

Good

Very

Good

Very

Good

Reliability 1,25 3,08 4 3,93 3,785 3,92 3,99 4,005 4,11 4,175

Poor Fair Fair Fair Fair Fair Fair Fair Fair Fair

Performance

Efficiency

6,047 4,66 3,802 3,627 1,085 1,955 2,282 2,2 1,91 1,875

Good Fair Fair Fair Poor Poor Poor Poor Poor Poor

Portability 2 4,169 2,648 2,715 4,060 5,715 6,387 6,690 6,915 7

Poor Fair Poor Poor Fair Good Good Good Good Very

Good

Maintainabil

ity

1,111 2,838 2,816 3,211 2,233 3,266 3,644 3,633 3,811 3,938

Poor Poor Poor Fair Poor Fair Fair Fair Fair Fair

Data

Integrity

0,9 3,08 4,2 3,68 5,83 6,83 7,58 7,88 8,1 8,32

Very

Poor

Fair Good Fair Good Good Very

Good

Very

Good

Very

Good

Very

Good

Usability 1 3,312 4,216 3,592 5,368 6,384 6,472 6,736 6,832 7

Poor Fair Fair Fair Good Good Good Good Good Very

Good

Security 3,636 3,127 3,940 3,340 4,272 5,118 5,554 5,781 5,609 5,681

Fair Fair Fair Fair Fair Good Good Good Good Good

Compatibilit

y

1,4 3,41 4,81 3,96 6,26 7,37 7,66 8,38 8,63 8,75

Poor Fair Fair Fair Good Very

Good

Very

Good

Very

Good

Very

Good

Very

Good

41

Table 4. 17: COMPUTED QUALITY CHARACTERISTICS FOR COSYDVR WITHIN

THE RANGE [0, 10] AND THE CATEGORIES OF THE VALUES

We drew the plots of quality characteristics based on these computed values. We

provided the plots of quality characteristics of Adblock Plus, KeePassDroid and

CosyDVR applications in Figure 4.3, Figure 4.4 and Figure 4.5.

Figure 4. 3: Plots Of Quality Characteristics Of Adblock Plus

C
o

sy
D

V
R

v
1

.0

C
o

sy
D

V
R

v
1

.0
.3

C
o

sy
D

V
R

v
1

.0
.6

C
o

sy
D

V
R

v
1

.1

C
o

sy
D

V
R

v
1

.2

C
o

sy
D

V
R

v
1

.3

C
o

sy
D

V
R

v
1

.3
.1

C
o

sy
D

V
R

v
1

.3
.5

C
o

sy
D

V
R

v
1

.3
.9

C
o

sy
D

V
R

v
1

.3
.1

1

Functional

Suitability

2 2 2,507 2,507 2,507 3,228 3,228 3,228 3,285 4,285

Poor Poor Poor Poor Poor Fair Fair Fair Fair Fair

Reliability 1,01 1,04 1,25 1,25 1,265 1,3 1,3 1,33 1,515 3,75

Poor Poor Poor Poor Poor Poor Poor Poor Poor Fair

Performance

Efficiency

4,547 4,507 4,965 4,34 4,402 4,397 4,397 4,245 3,875 7,03

Fair Fair Fair Fair Fair Fair Fair Fair Fair

Very

Good

Portability 3 3 3,630 3,630 3,630 1,642 1,642 1,642 1,690 4

Poor Poor Fair Fair Fair Poor Poor Poor Poor Fair

Maintainabili

ty

0 0 0,033 0,033 0,033 0,027 0,027 0,027 0,061 2,222

Very

Poor

Very

Poor

Very

Poor

Very

Poor

Very

Poor

Very

poor

Very

Poor

Very

Poor

Very

Poor Poor

Data

Integrity

2,52 2,54 3,17 3,17 3,18 3,21 3,21 3,23 3,36 2,7

Poor Poor Fair Fair Fair Fair Fair Fair Fair Poor

Usability 1 1,024 0,64 1,64 1,4 1,432 1,432 1,456 1,568 4,744

Very

Poor Poor

Very

Poor Poor Poor Poor Poor Poor Poor Fair

Security 4,368 4,390 5,977 5,068 5,309 5,336 5,336 5,359 5,518 6,590

Fair Fair Good Good Good Good Good Good Good Good

Compatibility 3,92 3,96 5,59 5,59 5,61 5,65 5,65 5,68 5,89 4,2

Fair Fair Good Good Good Good Good Good Good Fair

42

Quality scores of all quality characteristics, which are Functional Suitability,

Reliability, Performance Efficiency, Portability, Maintainability, Data Integrity,

Usability, Security, and Compatibility, of Adblock Plus application increased.

- Quality Score of Functional Suitability: According to the Functional

Suitability formula in Table 3.4, the increase in Number of Classes (NOC),

Depth of Inheritance Tree (DIT), Degree of Cohesion (COH), Number of

Methods (NOM), Number of Activities (NOAC), Number of Services (NOS),

Number of Broadcast Receivers (NOBR), Number of Threads (NOT),

Android Min SDK Version (MSDK), Android Target SDK Version (TSDK),

Number of Intents (NOI) and Number of Tables in Database (NOTD) metrics

affects characteristic positively; Number of Content Providers (NOCP) and

Degree of Coupling (COP) metrics affect the characteristic negatively. The

metric values of NOC, COP, NOM, NOAC, NOBR, MSDK, TSDK, and NOI

increased; DIT, COH, and NOT decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Reliability: According to the Reliability formula in Table

3.4, the increase in Depth of Inheritance Tree (DIT) and Degree of Coupling

(COP) metrics affects Functional Suitability characteristic negatively; Degree

of Cohesion (COH), Number of Attributes (NOAT), Number of Services

(NOS), Number of Broadcast Receivers (NOBR), Number of Content

Providers (NOCP) and Number of Threads (NOT) metrics affect the

characteristic positively. The metric values of COP, NOAT, and NOBR

increased; DIT, COH, and NOT decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

1. The reason for the sudden decrease in the quality scores of Reliability

characteristic between Adblock Plus v1.0.1 and v1.1 is the decrease in

the degree of coupling, which was identified as Instability (COP)

metric in our study. COP value is 0.331 in Adblock Plus v1.0.1 and

0.593 in Adblock Plus v1.1.

The main reason of the decrease in Instability (COP) metric is most

probably the decrease in Depth of Inheritance Tree (DIT) metric.

Developers of Adblock Plus probably decreased the maximum length

of a path from a class to the root class in the inheritance hierarchy to

reduce the complexity of the application. When DIT metric was 8 in

Adblock Plus v1.0.1, it was more difficult to make changes without

impacting the rest of the application. Application was more stable.

DIT metric was 4 in Adblock Plus v1.1; means making changes on

application became easier. Instability of application increased.

As can be understood from the formula of Reliability, COP metric

affects quality score of the characteristic negatively. The increase in

this metric value reduced the quality score of Reliability

characteristic.

43

2. The reason for the decrease in the quality scores of Reliability

between Adblock Plus v1.2.1 and v1.3 is the decrease in the value of

Cohesion (COH) and increase in the value of Instability (COP). COH

metric affects the quality score positively and COP metric affects

negatively. The changes in the values of metrics caused the decrease

in total.

It is impossible to arrive any definite outcome about the main reasons

of the decrease in the value of COH metric and the increase in the

value of COP metric. It is probably because of the decrease in linearly

independent paths through source code. McCabe Cyclomatic

Complexity (CYC) measures the linearly independent paths. The

decrease in CYC metric indicates that the dependency increased. The

increase of dependency may be the reason of the decrease in cohesion.

Apart from that, the increase in class number and method number may

also the reason for the decrease of cohesion. Because cohesion

measures how well the methods of a class are related to each other.

Low cohesion often correlates with high coupling [46]. The main

reason of the increase in COP metric may be the decrease in COH

metric.

- Quality Score of Performance Efficiency: According to the Performance

Efficiency formula in Table 3.4, the increase in Number of Classes (NOC),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Permissions (NOP) metrics affect the characteristic positively;

Depth of Inheritance Tree (DIT), Number of Attributes (NOAT), McCabe

Cyclomatic Complexity (CYC), Number of Services (NOS), Number of

Dialogs (NOD), Number of Tables in Database (NOTD) affect the

characteristic negatively. The metric values of NOC, NOAT, and NOP

increased; DIT, CYC, and NOT decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Portability: According to the Portability formula in Table

3.4, the increase in Number of Classes (NOC), Depth of Inheritance Tree

(DIT), Number of Methods (NOM), Number of Services (NOS), Number of

Content Providers (NOCP), Number of Intents (NOI), Number of Tables in

Database (NOTD) metrics affect the characteristic positively; Android Min

SDK Version (MSDK) metric affects the characteristic negatively. The

metric values of NOC, NOM, MSDK, and NOI increased; DIT decreased

from the first release to the last release of the application. The changes in the

values of metrics caused the increase in total.

1. The reason for the sudden decrease in the quality scores of Portability

between Adblock Plus v1.0.1 and v1.1 is the decrease in the value of

Depth of Inheritance Tree (DIT) metric. DIT value is 8 in Adblock

Plus v1.0.1 and 4 in Adblock Plus v1.1. As DIT metric affects quality

44

score of Portability positively, the decrease in this metric value

reduced the quality score of Portability characteristic.

The main reason of the decrease in the value of DIT metric is

probably the preference of the developers. Developers of Adblock

Plus probably decreased the maximum length of a path from a class to

the root class in the inheritance hierarchy to reduce the complexity of

the application.

- Quality Score of Maintainability: According to the Maintainability formula

in Table 3.4, the increase in Number of Classes (NOC), Depth of Inheritance

Tree (DIT), Number of Activities (NOAC), Number of Services (NOS),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Tables in Database (NOTD) metrics affect the characteristic

positively; Degree of Coupling (COP) and Number of Methods (NOM)

metrics affect the characteristic negatively. The metric values of NOC, COP,

NOM, and NOAC increased; DIT and NOT decreased from the first release

to the last release of the application. The changes in the values of metrics

caused the increase in total.

1. The reason for the sudden decrease in the quality scores of

Maintainability characteristic between Adblock Plus v1.0.1 and v1.1

is the decrease in the degree of coupling, which was identified as

Instability (COP) metric in our study. COP value is 0.331 in Adblock

Plus v1.0.1 and 0.593 in Adblock Plus v1.1.

The main reason of the decrease in Instability (COP) metric is most

probably the decrease in Depth of Inheritance Tree (DIT) metric.

Developers of Adblock Plus probably decreased the maximum length

of a path from a class to the root class in the inheritance hierarchy to

reduce the complexity of the application. When DIT metric was 8 in

Adblock Plus v1.0.1, it was more difficult to make changes without

impacting the rest of the application. Application was more stable.

DIT metric was 4 in Adblock Plus v1.1; means making changes on

application became easier. Instability of application increased.

As can be understood from the formula of Maintainability, COP

metric affects quality score of the characteristics negatively. The

increase in this metric value reduced the quality score of

Maintainability characteristic.

- Quality Score of Data Integrity: According to the Data Integrity formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

Threads (NOT), Number of Intents (NOI) metrics affect the characteristic

positively. The metric values of COP, NOAT, NOM, NOAC, and NOI

increased; DIT, COH, and NOT decreased from the first release to the last

45

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Usability: According to the Usability formula in Table 3.4,

the increase in Number of Classes (NOC), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

Services (NOS), Number of Content Providers (NOCP), Number of Dialogs

(NOD), Number of Threads (NOT), Number of Intents (NOI) metrics affect

the characteristic positively; Number of Permissions (NOP) metric affects the

characteristic negatively. The metric values of NOC, NOAT, NOM, NOAC,

NOI, and NOP increased; NOT decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Security: According to the Security formula in Table 3.4,

the increase in Number of Classes (NOC), Degree of Coupling (COP),

Degree of Cohesion (COH), Number of Attributes (NOAT), Number of

Content Providers (NOCP), Number of Intents (NOI) and Number of

Permissions (NOP) metrics affect the characteristic positively; Number of

Services (NOS), Number of Tables in Database (NOTD) metrics affects the

characteristic negatively. The metric values of NOC, COP, NOAT, NOM,

NOI, and NOP increased; COH decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Compatibility: According to the Compatibility formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Intents (NOI), Number of Tables in Database (NOTD) metrics

affects the characteristic positively. The metric values of COP, NOAT, NOI,

and NOTD increased; DIT and COH decreased from the first release to the

last release of the application. The changes in the values of metrics caused the

increase in total.

46

Figure 4. 4: Plots Of Quality Characteristics Of KeePassDroid

Quality scores of Functional Suitability, Reliability, Portability, Maintainability,

Data Integrity, Usability, Security and Compatibility characteristics of KeePassDroid

application increased; Performance Efficiency characteristic of KeePassDroid

application decreased.

- Quality score of Performance Efficiency: According to the Performance

Efficiency formula in Table 3.4, the increase in Number of Classes (NOC),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Permissions (NOP) metrics affect the characteristic positively;

Depth of Inheritance Tree (DIT), Number of Attributes (NOAT), McCabe

Cyclomatic Complexity (CYC), Number of Services (NOS), Number of

Dialogs (NOD), Number of Tables in Database (NOTD) affect the

characteristic negatively. The metric values of NOC, DIT, NOAT, CYC,

NOS, NOD, NOTD, NOP increased from the first release to the last release

of the application. The changes in the values of metrics caused the decrease

in total.

1. The reason for the sudden decrease between KeePassDroid v1.0 and

v1.6 is the three times increase in Number of Attributes (NAO)

metric; this degree of change did not occur in other metric values.

NOA value is 190 in KeePassDroid v1.0 and 640 in KeePassDroid

v1.6.

The main reason of the increase in attribute number is most probably

the increase in class number and method number. Developers of

KeePassDroid added new classes and methods to the application to

update the application. These new classes and methods caused the

increase in the number of attributes.

47

As NOA metric affects quality score of Performance Efficiency

characteristic negatively, the increase in this metric value reduced the

quality score of Performance Efficiency characteristic.

- Quality Score of Functional Suitability: According to the Functional

Suitability formula in Table 3.4, the increase in Number of Classes (NOC),

Depth of Inheritance Tree (DIT), Degree of Cohesion (COH), Number of

Methods (NOM), Number of Activities (NOAC), Number of Services (NOS),

Number of Broadcast Receivers (NOBR), Number of Threads (NOT),

Android Min SDK Version (MSDK), Android Target SDK Version (TSDK),

Number of Intents (NOI) and Number of Tables in Database (NOTD) metrics

affects characteristic positively; Number of Content Providers (NOCP) and

Degree of Coupling (COP) metrics affect the characteristic negatively. The

metric values of NOC, DIT, COH, NOM, NOAC, NOS, MSDK, TSDK,

NOI, and NOTD increased; COP decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Reliability: According to the Reliability formula in Table

3.4, the increase in Depth of Inheritance Tree (DIT) and Degree of Coupling

(COP) metrics affects Functional Suitability characteristic negatively; Degree

of Cohesion (COH), Number of Attributes (NOAT), Number of Services

(NOS), Number of Broadcast Receivers (NOBR), Number of Content

Providers (NOCP) and Number of Threads (NOT) metrics affect the

characteristic positively. The metric values of DIT, COH, NOAT, and NOS

increased; COP decreased from the first release to the last release of the

application. The changes in the values of metrics caused the increase in total.

- Quality Score of Portability: According to the Portability formula in Table

3.4, the increase in Number of Classes (NOC), Depth of Inheritance Tree

(DIT), Number of Methods (NOM), Number of Services (NOS), Number of

Content Providers (NOCP), Number of Intents (NOI), Number of Tables in

Database (NOTD) metrics affect the characteristic positively; Android Min

SDK Version (MSDK) metric affects the characteristic negatively. The

metric values of NOC, DIT, NOM, NOS, MSDK, NOI, and NOTD increased

from the first release to the last release of the application. The changes in the

values of metrics caused the increase in total.

1. The reason for the sudden decrease in the quality scores of Portability

between KeePassDroid v0.2.0 and v0.6 is the increase in the value of

Android Min SDK Version (MSDK) metric. MSDK value is;

- 1 (supported by platform version 1.0) in KeePassDroid v0.2.0,

which was developed on May 14, 2009.

- 3 (supported by platform versions 1.5) in KeePassDroid v0.6, which

was developed on Sep 25, 2009.

The change in MSDK value is connected with the changes on

Android releases, because Android 1.0 was released on Sep 23, 2008

and Android 1.5 (Cupcake) was released on Apr 30, 2009 [63]. When

developers of KeePassDroid developed the 0.2.0 version of the

48

application, Android 1.0 platform dominated the Android market.

Four months later, they developed KeePassDroid v0.6 and updated

the MSDK value to be supported by Android 1.5 platform. The

developers of CosyDVR application probably changed the MSDK

value to update their application in order to keep up with the latest

developments.

As MSDK metric affect quality score of Portability negatively, the

increase in this metric value reduced the quality score of Portability

characteristic.

- Quality Score of Maintainability: According to the Maintainability formula

in Table 3.4, the increase in Number of Classes (NOC), Depth of Inheritance

Tree (DIT), Number of Activities (NOAC), Number of Services (NOS),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Tables in Database (NOTD) metrics affect the characteristic

positively; Degree of Coupling (COP) and Number of Methods (NOM)

metrics affect the characteristic negatively. The metric values of NOC, DIT,

NOM, NOAC, NOS, and NOTD increased; COP decreased from the first

release to the last release of the application. The changes in the values of

metrics caused the increase in total.

- Quality Score of Data Integrity: According to the Data Integrity formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

Threads (NOT), Number of Intents (NOI) metrics affect the characteristic

positively. The metric values of DIT, COH, NOAT, NOM, NOAC, NOS,

NOI, and NOTD increased; COP decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Usability: According to the Usability formula in Table 3.4,

the increase in Number of Classes (NOC), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

Services (NOS), Number of Content Providers (NOCP), Number of Dialogs

(NOD), Number of Threads (NOT), Number of Intents (NOI) metrics affect

the characteristic positively; Number of Permissions (NOP) metric affects the

characteristic negatively. The metric values of NOC, NOAT, NOM, NOAC,

NOS, NOD, NOI, and NOP increased from the first release to the last release

of the application. The changes in the values of metrics caused the increase in

total.

- Quality Score of Security: According to the Security formula in Table 3.4,

the increase in Number of Classes (NOC), Degree of Coupling (COP),

Degree of Cohesion (COH), Number of Attributes (NOAT), Number of

Content Providers (NOCP), Number of Intents (NOI) and Number of

Permissions (NOP) metrics affect the characteristic positively; Number of

Services (NOS), Number of Tables in Database (NOTD) metrics affects the

49

characteristic negatively. The metric values of NOC, COH, NOAT, NOM,

NOS, NOI, NOTD, and NOP increased; COP decreased from the first release

to the last release of the application. The changes in the values of metrics

caused the increase in total.

- Quality Score of Compatibility: According to the Compatibility formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Intents (NOI), Number of Tables in Database (NOTD) metrics

affects the characteristic positively. The metric values of DIT, COH, NOAT,

NOI, and NOTD increased; COP decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

1. The reason for the sudden decrease in the quality scores of

Compatibility between KeePassDroid v0.6 and v1.0 is the decrease in

the values of COP, NOAT and NOI metrics. Because COP, NOAT

and NOI metrics affect quality score of Compatibility positively, the

decrease in these metric values reduced the quality score of

Compatibility characteristic.

The main reason of the decrease in COP metric is most probably the

decrease in Depth of Inheritance Tree (DIT) metric. Developers of

KeePassDroid probably decreased the maximum length of a path from

a class to the root class in the inheritance hierarchy to reduce the

complexity of the application. When DIT metric was 8 in

KeePassDroid v0.6, it was easier to make changes without impacting

the rest of the application. Application was more instable. DIT metric

was 9 in KeePassDroid v1.0; means making changes on application

became more difficult. Instability of application decreased. The main

reason of the decrease in NOAT and NOI metrics is probably the

preference of the developers. Developers of KeePassDroid probably

decreased the attribute number and intent number to simplify the

application.

50

Figure 4. 5: Plots of Quality Characteristics of CosyDVR

- Quality Score of Functional Suitability: According to the Functional

Suitability formula in Table 3.4, the increase in Number of Classes (NOC),

Depth of Inheritance Tree (DIT), Degree of Cohesion (COH), Number of

Methods (NOM), Number of Activities (NOAC), Number of Services (NOS),

Number of Broadcast Receivers (NOBR), Number of Threads (NOT),

Android Min SDK Version (MSDK), Android Target SDK Version (TSDK),

Number of Intents (NOI) and Number of Tables in Database (NOTD) metrics

affects characteristic positively; Number of Content Providers (NOCP) and

Degree of Coupling (COP) metrics affect the characteristic negatively. The

metric values of NOC, NOM, MSDK and NOI increased; DIT, COP and

COH decreased from the first release to the last release of the application.

The changes in the values of metrics caused the increase in total.

- Quality Score of Reliability: According to the Reliability formula in Table

3.4, the increase in Depth of Inheritance Tree (DIT) and Degree of Coupling

(COP) metrics affects Functional Suitability characteristic negatively; Degree

of Cohesion (COH), Number of Attributes (NOAT), Number of Services

(NOS), Number of Broadcast Receivers (NOBR), Number of Content

Providers (NOCP) and Number of Threads (NOT) metrics affect the

characteristic positively. The metric values of NOAT increased; DIT, COP,

and COH decreased from the first release to the last release of the application.

The changes in the values of metrics caused the increase in total.

- Quality Score of Performance Efficiency: According to the Performance

Efficiency formula in Table 3.4, the increase in Number of Classes (NOC),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Permissions (NOP) metrics affect the characteristic positively;

Depth of Inheritance Tree (DIT), Number of Attributes (NOAT), McCabe

Cyclomatic Complexity (CYC), Number of Services (NOS), Number of

51

Dialogs (NOD), Number of Tables in Database (NOTD) affect the

characteristic negatively. The metric values of NOC, NOAT, and NOP

increased; DIT, and CYC decreased from the first release to the last release of

the application. The changes in the values of metrics caused the increase in

total.

- Quality Score of Portability: According to the Portability formula in Table

3.4, the increase in Number of Classes (NOC), Depth of Inheritance Tree

(DIT), Number of Methods (NOM), Number of Services (NOS), Number of

Content Providers (NOCP), Number of Intents (NOI), Number of Tables in

Database (NOTD) metrics affect the characteristic positively; Android Min

SDK Version (MSDK) metric affects the characteristic negatively. The

metric values of NOC, NOM, MSDK, and NOI increased; DIT decreased

from the first release to the last release of the application. The changes in the

values of metrics caused the increase in total.

2. The reason for the sudden decrease in the quality scores of Portability

between CosyDVR v1.2 and v1.3 is the increase in the value of

Android Min SDK Version (MSDK) metric. MSDK value is;

- 11 (supported by platform version 3.0.x) in CosyDVR v1.2, which

was developed on 29 July 2014.

- 16 (supported by platform versions 4.1 and 4.1.1) in CosyDVR v1.3,

which was developed on 13 Nov 2014.

The change in MSDK value is unconnected with the changes on

Android releases, because Android 3.0 (Honeycomb) was released on

10 May 2011 and Android 4.1 (Jelly Bean) was released on 9 July

2012 [63]. The developers of CosyDVR application probably changed

the MSDK value to update their application in order to keep up with

the latest developments.

As MSDK metric affects quality score of Portability negatively, the

increase in this metric value reduced the quality score of Portability

characteristic.

- Quality Score of Maintainability: According to the Maintainability formula

in Table 3.4, the increase in Number of Classes (NOC), Depth of Inheritance

Tree (DIT), Number of Activities (NOAC), Number of Services (NOS),

Number of Content Providers (NOCP), Number of Threads (NOT) and

Number of Tables in Database (NOTD) metrics affect the characteristic

positively; Degree of Coupling (COP) and Number of Methods (NOM)

metrics affect the characteristic negatively. The metric values of NOC, NOM,

and NOAC increased; DIT and COP decreased from the first release to the

last release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Data Integrity: According to the Data Integrity formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

52

Threads (NOT), Number of Intents (NOI) metrics affect the characteristic

positively. The metric values of NOAT, NOM, NOAC, and NOI increased;

DIT, COP, and COH decreased from the first release to the last release of the

application. The changes in the values of metrics caused the increase in total.

- Quality Score of Usability: According to the Usability formula in Table 3.4,

the increase in Number of Classes (NOC), Number of Attributes (NOAT),

Number of Methods (NOM), Number of Activities (NOAC), Number of

Services (NOS), Number of Content Providers (NOCP), Number of Dialogs

(NOD), Number of Threads (NOT), Number of Intents (NOI) metrics affect

the characteristic positively; Number of Permissions (NOP) metric affects the

characteristic negatively. The metric values of NOC, NOAT, NOM, NOI, and

NOP increased; NOT decreased from the first release to the last release of the

application. The changes in the values of metrics caused the increase in total.

- Quality Score of Security: According to the Security formula in Table 3.4,

the increase in Number of Classes (NOC), Degree of Coupling (COP),

Degree of Cohesion (COH), Number of Attributes (NOAT), Number of

Content Providers (NOCP), Number of Intents (NOI) and Number of

Permissions (NOP) metrics affect the characteristic positively; Number of

Services (NOS), Number of Tables in Database (NOTD) metrics affects the

characteristic negatively. The metric values of NOC, NOAT, NOM, NOI, and

NOP increased; COP and COH decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

- Quality Score of Compatibility: According to the Compatibility formula in

Table 3.4, the increase in Depth of Inheritance Tree (DIT), Degree of

Coupling (COP), Degree of Cohesion (COH), Number of Attributes (NOAT),

Number of Intents (NOI), Number of Tables in Database (NOTD) metrics

affects the characteristic positively. The metric values of NOAT, and NOI

increased; DIT, COP and COH decreased from the first release to the last

release of the application. The changes in the values of metrics caused the

increase in total.

The expected increase in quality scores of quality characteristics verifies the

prediction that these quality characteristics should increase in the new releases of

Android applications. Most of the quality scores of the last releases of the Adblock

Plus and KeePassDroid applications are in the categories more than or equal to

“Fair” On the other hand quality scores of the last release of the CosyDVR are

mostly less than or equal to “Fair”.

53

Very

Poor

Poor Fair Good Very

Good

Figure 4. 6: Quality Scores of the Last Release of Adblock Plus

Very

Poor

Poor Fair Good Very Good Excell

ent

Figure 4. 7: Quality Scores of the Last Release of KeePassDroid

54

Very

Poor

Poor Fair Good Very

Good

Figure 4. 8: Quality Scores of the Last Release of CosyDVR

The number of downloads and reviews of the Adblock Plus, KeepassDroid and

CosyDVR applications are consistent with the quality scores of the applications

evaluated by our Android Applications Quality Model. According to the reviews of

users, star values of Adblock Plus and KeePassDroid are high; on the contrary star

value of CosyDVR is low in Google Play Store. The number of downloads and the

star values of the applications in Google Play Store are:

- Adblock Plus [60]: The number of downloads is in the range of 1,000,000 -

5,000,000. According to reviews of 41,503 users, the application has 4.1 stars

out of 5.0.

- KeePassDroid [61]: The number of downloads is in the range of 1,000,000 -

5,000,000. According to reviews of 31,305 users, the application has 4.6 stars

out of 5.0.

- CosyDVR [62]: The number of downloads is in the range of 100 - 500.

According to reviews of 6 users, the application has 2.5 stars out of 5.0.

55

CHAPTER V

5 CONCLUSION AND FUTURE WORK

The increase in mobile devices causes the number of mobile applications to grow

dramatically. As the number of mobile applications is increasing at a very high rate,

quality of the applications has become an important issue. As quality is the

composition of many characteristics, it is usually captured in a model that represents

the quality characteristics and their relationships. Quality Models guide developers in

the process of improving and maintaining the quality of their mobile applications. In

this chapter of the thesis, the model development process concluded. We discuss the

limitations encountered in our study in the second section. In third section, we

present the future study directions.

5.1 CONCLUSION

In this thesis study, we proposed a quality model for Android applications. In the

process of Android Applications Quality Model development, we have analyzed

traditional quality characteristics, which are described in ISO/IEC SQuaRE Software

Quality Standard and selected applicable quality characteristics. Afterwards, we have

identified new Android-specific source code metrics and quality characteristics.

We have determined the relationship of source code metrics and quality

characteristics by conducting a survey to Android Developers. We have developed

our Android Applications Quality Model, validated our Quality Model and applied

this model to different releases of three open-source Android applications in a case

study to show the applicability of the model. We developed a general model for

Android applications. Android developers can modify the quality model according to

specific applications they prefer to apply.

Mobile software quality assessment is a recent discipline. In this study, we have

started the assessment from the bottom by identifying the source code metrics, and

developed a quality model for Android applications.

5.2 LIMITATIONS

There are some limitations of this study. First of all collecting data from mobile

application developers was a painful process. As many developers do not prefer to

participate in surveys, it was difficult to increase the number of participants. We

emailed our survey to several IT Companies in Turkey and our personal connections.

One of the threads to validity in this study is about the bias of selection. To mitigate

this issue and include developers out of our contact network we emailed our survey

to Android Developer Groups in Social Media (Facebook, Linkedin). 33 random

56

Android developers participated the survey. Secondly, reaching participants from

different countries was difficult. We used social media to reach them, but convincing

those developers to participate the survey was hard to achieve. As a result, all of the

developers who participated the survey were from Turkey. Since the characteristics

of Turkish developers could be different from those from other countries, the overall

results may change when developers from other countries participate the survey. We

plan to overcome this limitation in future work. Thirdly, all participants have the

ability to develop Android applications but more than half of the participants

developed one to four Android applications. It was difficult to include more

developers who developed more than ten applications in the study. As Android was

born on 2007 and started to become widespread on 2010 [63], finding participants

who have been working on this domain for a long time was difficult. To mitigate this

issue, we emailed our survey to all major mobile application development companies

in Turkey. As a result, 5 out of 33 developers who developed more than ten

applications participated the survey. Lastly, finding evaluators and including them in

our study were hard to achieve. We overcame this limitation by inviting evaluators

through the Android developers’ network to include them in model validation

process. We included three evaluators in our study.

5.3 FUTURE WORK

As a future work, some improvements will be made on this quality model. We plan

to do a validated and statistically detailed analysis of source code metrics in the large

scope of mobile applications. We plan to include different types of mobile platforms

 (e.g. IOS, Windows Mobile) in the quality model. We will perform the model

development with the data gathered from more mobile application developers. We

plan to reach more mobile application developers from different countries. In this

manner, the results about the system will be more efficient. In addition, we will

include more evaluators in our study to validate the quality model. The increase in

evaluator number will enhance the reliability of the model.

57

REFERENCES

1. Yildirim, C. & Correia, A. Understanding Nomophobia: A Modern Age

Phobia Among College Students, presented at Second International

Conference, Held as Part of HCI International 2015, Los Angeles, 2015. Los

Angeles, LA: Springer International Publishing.

2. Predicts 2014: Apps, Personal Cloud and Data Analytics Will Drive New

Consumer Interactions. (n.d.). Retrieved October 21, 2015, from

https://www.gartner.com/doc/2628016/predicts--apps-personal-cloud

3. Standards. (1990) IEEE Standard Glossary of Software Engineering

Terminology. (Std 610.121990). Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?&arnumber=159342

4. The Statistics Portal: Number of Apps Available in Leading App Stores.

(n.d.). Retrieved October 24, 2015, from

http://www.statista.com/statistics/276623/number-of-apps-available-in-

leading-app-stores/

5. BrainyQuote: Galileo Galilei Quotes. (n.d.). Retrieved October 28, 2015,

from http://www.brainyquote.com/quotes/quotes/g/galileogal381325.html

6. Robson, C. (2002). Real world research: a resource for social scientists and

practitioner-researchers. Retrieved from

http://www.dem.fmed.uc.pt/Bibliografia/Livros_Educacao_Medica/Livro34.p

df

7. Malhotra, N. & Pruthi, S. (2012). An Efficient Software Quality Models for

Safety and Resilience. International Journal of Recent Technology and

Engineering (IJRTE). 1 (3). 66-70

8. Quality Models in Software Engineering. (n.d.). Retrieved November 3,

2015, from https://msritse2012.wordpress.com/2013/01/27/quality-models-

in-software-engineering/

9. McCall Quality Model. (n.d.). Retrieved November 8, 2015, from

http://maisqual.squoring.com/wiki/index.php/McCall_Quality_Model

10. Boehm Quality Model. (n.d.). Retrieved November 8, 2015, from

http://maisqual.squoring.com/wiki/index.php/Boehm_Quality_Model

11. Samadhiya, D., Wang, S. & Chen, D. Quality Models: Role and Value in

Software Engineering, presented at 2nd International Conference on Software

Technology and Engineering (ICSTE), San Juan, PR, 2010. IEEE.

12. Suman. & Wadhwa, M. (2014). A Comparative Study of Software Quality

Models. International Journal of Computer Science and Information

Technologies (IJCSIT). 5 (4). 5634-5638

13. Wagner, S. (2013). Software Product Quality Control. Retrieved from

http://www.springer.com/it/book/9783642385704

https://www.gartner.com/doc/2628016/predicts--apps-personal-cloud
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?&arnumber=159342
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.brainyquote.com/quotes/quotes/g/galileogal381325.html
http://www.dem.fmed.uc.pt/Bibliografia/Livros_Educacao_Medica/Livro34.pdf
http://www.dem.fmed.uc.pt/Bibliografia/Livros_Educacao_Medica/Livro34.pdf
https://msritse2012.wordpress.com/2013/01/27/quality-models-in-software-engineering/
https://msritse2012.wordpress.com/2013/01/27/quality-models-in-software-engineering/
http://maisqual.squoring.com/wiki/index.php/McCall_Quality_Model
http://maisqual.squoring.com/wiki/index.php/Boehm_Quality_Model
http://www.springer.com/it/book/9783642385704

58

14. Maryoly, O., M.A. Perez & T. Rojas. (2006). A systemic quality model for

evaluating software products. Laboratorio de Investigcin en Sistemas de

Informacin. 2 (4). 373-381

15. ISO/IEC 9126-1:2000 (2000). International Standard. “Information

technology- Software product quality - Part 1: Quality model”. (Std. FDIS

9126-1) Retrieved from

http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resources/9126-

1%20Standard.pdf

16. Tripathi, S. (2014). A Survey on Quality Perspective and Software Quality

Models. IOSR Journal of Computer Engineering (IOSR-JCE). 16 (2). 63-72

17. Bansiya, J. & Davis, C. A (2002) Hierarchical Model for Object-Oriented

Design Quality Assessment. IEEE Transactions on software engineering. 28

(1). 4-17

18. ISO/IEC 25010:2011. (n.d.). Retrieved December 2, 2015, from

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

19. Franke, D. & Kowalewski, S. A Mobile Software Quality Model, presented at

12
th

 International Conference on Quality Software, Xi'an, Shaanxi, 2012.

IEEE.

20. Franke, D. & Weise, C. Providing a Software Quality Framework for Testing

of Mobile Applications, presented at Fourth IEEE International Conference

on Software Testing, Verification and Validation, Berlin, 2011. IEEE.

21. Idri, A., Moumane, K. & Abran, A. On the Use of Software Quality Standard

ISO / IEC 9126 in Mobile Environments, presented at 20
th

 Asia-Pacific

Software Engineering Conference, Aveiro, 2013. IEEE.

22. Zahra, S., Khalid, A. & Javed, A. (2013). An Efficient and Effective New

Generation Objective Quality Model for Mobile Applications. I.J.Modern

Education and Computer Science (MECS). 4. 36-42

23. Jost, G., Huber, J., & Hericko. M. Using Object Oriented Software Metrics

for Mobile Application Development, presented at 2
nd

 Workshop of Software

Quality Analysis, Monitoring, Improvement and Applications (SQAMIA),

Serbia, 2013. Published at http://ceur-ws.org.

24. Hecht, G., Benomar, O., Rouvoy, R., Moha, N. & Duchien, L. Tracking the

Software Quality of Android Applications along their Evolution, presented at

30th IEEE/ACM International Conference on Automated Software

Engineering, United States, 2015. IEEE.

25. Android Developer Page. (n.d.). Retrieved November 12, 2015, from

http://developer.android.com/

26. Hoberg, J. (2013). Testing Mobile Applications: A Model for Mobile Testing.

Retrieved from http://www.slideshare.net/JohanHoberg/testing-mobile-

applications-29290125

27. TechCrunch Research. (n.d.). Retrieved December 10, 2015, from

http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-

only-16-will-try-a-failing-app-more-than-twice/

28. Ferguson, D. (2002). Mobile .NET. Retrieved from

https://books.google.com.tr/books?id=fYInCgAAQBAJ

29. Lee, W. (2015, December 10). Mobile Apps and Power Consumption Basics,

Part 1 [Web log post]. Retrieved from

https://developer.qualcomm.com/blog/mobile-apps-and-power-consumption-

basics-part-1

http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resources/9126-1%20Standard.pdf
http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resources/9126-1%20Standard.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
http://developer.android.com/
http://www.slideshare.net/JohanHoberg/testing-mobile-applications-29290125
http://www.slideshare.net/JohanHoberg/testing-mobile-applications-29290125
http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
https://books.google.com.tr/books?id=fYInCgAAQBAJ&lpg=PA473&ots=Q-buT-IBz1&dq=28.%20Derek%20Ferguson.%20%E2%80%9CMobile%20.NET&pg=PP1#v=onepage&q=28.%20Derek%20Ferguson.%20%E2%80%9CMobile%20.NET&f=false
https://developer.qualcomm.com/blog/mobile-apps-and-power-consumption-basics-part-1
https://developer.qualcomm.com/blog/mobile-apps-and-power-consumption-basics-part-1

59

30. IDC. Smartphone OS Market Share, 2015 Q2. (n.d.). Retrieved December 12,

2015, from http://www.idc.com/prodserv/smartphone-os-market-share.jsp

31. Category: Android (Operating System) Devices. (n.d.). Retrieved November

12, 2015, from

https://en.wikipedia.org/w/index.php?title=Category:Android_(operating_sys

tem)_devices&pagefrom=Xiaomi+Mi+2A#mw-pages

32. Harrison, R., Flood, D. & Duce, D. (2013). Usability of mobile applications:

literature review and rationale for a new usability model. Journal of

Interaction Science. 1(1). 1-16

33. Arxan Research: State of the Application Security. (n.d.). Retrieved

December 15, 2015, from https://www.arxan.com/resources/state-of-

application-security/

34. Android Developer Page: Bound Services. (n.d.). Retrieved December 15,

2015, from http://developer.android.com/guide/components/bound-

services.html

35. Jetter, A. (2006). Assessing Software Quality Attributes with Source Code

Metrics. (Diploma Thesis). Retrieved from

http://www.ifi.uzh.ch/seal/research/tools/archive/swQuality/da_jetter.pdf

36. Meier, R. (2012). Professional Android 4 Application Development.

Retrieved from

https://books.google.com.tr/books?hl=en&lr=&id=bmJIl_wPgQsC

37. Smyth, N. (2014). Android Studio Development Essentials. Retrieved from

http://www.techotopia.com/index.php/Android_Studio_Development_Essenti

als

38. Smyth, N. (2014). Android 4 App Development Essentials. Retrieved from

http://www.techotopia.com/index.php/Android_4_App_Development_Essent

ials

39. Murphy, M. (2012). The Busy Coder’s Guide to Android Development.

Retrieved from https://commonsware.com/Android/Android_3-6-CC.pdf

40. Gramlich, N. (2012). Android Programming with Tutorials from the

anddev.org-Community. Retrieved from

http://andbook.anddev.org/files/andbook.pdf

41. Önder, M. & MERMERKAYA, A. (2013). Merhaba Android. İstanbul:

Deniz Ofset

42. Vogel, L. (2015) Introduction to Android development with Android Studio.

Retrieved from http://www.vogella.com/tutorials/Android/article.html

43. Android Development. (n.d.). Retrieved November 20, 2015, from

https://teamtreehouse.com/tracks/android-development

44. Developing Android Apps Android Fundamentals. (n.d.). Retrieved

November 30, 2015, from https://www.udacity.com/course/developing-

android-apps--ud853

45. Difference between Android and Java. (n.d.). Retrieved December 17, 2015,

from http://www.differencebetween.com/difference-between-android-and-vs-

java/#ixzz2TIkUX7cI

46. Software Package Metrics. (n.d.). Retrieved December 20, 2015, from

https://en.wikipedia.org/wiki/Software_package_metrics

47. Google Forms. (n.d.). Retrieved December 20, 2015, from

https://www.google.com/forms/about/

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://en.wikipedia.org/w/index.php?title=Category:Android_(operating_system)_devices&pagefrom=Xiaomi+Mi+2A#mw-pages
https://en.wikipedia.org/w/index.php?title=Category:Android_(operating_system)_devices&pagefrom=Xiaomi+Mi+2A#mw-pages
https://www.arxan.com/resources/state-of-application-security/
https://www.arxan.com/resources/state-of-application-security/
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html
http://www.ifi.uzh.ch/seal/research/tools/archive/swQuality/da_jetter.pdf
https://books.google.com.tr/books?hl=en&lr=&id=bmJIl_wPgQsC
http://www.techotopia.com/index.php/Android_Studio_Development_Essentials
http://www.techotopia.com/index.php/Android_Studio_Development_Essentials
http://www.techotopia.com/index.php/Android_4_App_Development_Essentials
http://www.techotopia.com/index.php/Android_4_App_Development_Essentials
https://commonsware.com/Android/Android_3-6-CC.pdf
http://andbook.anddev.org/files/andbook.pdf
http://www.vogella.com/tutorials/Android/article.html
https://teamtreehouse.com/tracks/android-development
https://www.udacity.com/course/developing-android-apps--ud853
https://www.udacity.com/course/developing-android-apps--ud853
http://www.differencebetween.com/difference-between-android-and-vs-java/#ixzz2TIkUX7cI
http://www.differencebetween.com/difference-between-android-and-vs-java/#ixzz2TIkUX7cI
https://en.wikipedia.org/wiki/Software_package_metrics
https://www.google.com/forms/about/

60

48. George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple

guide and reference. Retrieved from

http://wps.ablongman.com/wps/media/objects/385/394732/george4answers.p

df

49. 2048-android game in Google Play Store. (n.d.). Retrieved December 25,

2015, from

https://play.google.com/store/apps/details?id=com.gabrielecirulli.app2048

50. IBM SPSS Statistics. (n.d.). Retrieved December 20, 2015, from http://www-

01.ibm.com/software/analytics/spss/

51. F-Droid Limited. (n.d.). Retrieved December 22, 2015, from https://f-

droid.org/wiki/index.php?title=Category:Apps.

52. Feature Scaling (n.d.). Retrieved December 15, 2015, from

https://en.wikipedia.org/wiki/Normalization_(statistics)

53. Survey Methods: When is it Generally Better to Use Median over Mean?

(n.d.). Retrieved December 20, 2015, from

http://blog.surveymethods.com/when-is-it-generally-better-to-use-median-

over-mean/

54. Paired Sample T-Tests. (n.d.). Retrieved December 26, 2015, from

http://libguides.library.kent.edu/SPSS/PairedSamplestTest

55. Adblock Plus. (n.d.). Retrieved December 22, 2015, from

https://adblockplus.org/

56. KeePassDroid. (n.d.). Retrieved December 22, 2015, from

http://www.keepassdroid.com/

57. CosyDVR. (n.d.). Retrieved February 10, 2015 from

https://github.com/sergstetsuk/CosyDVR

58. Eclipse Metrics Plugin 1.3.8. (n.d.). Retrieved December 25, 2015, from

http://metrics2.sourceforge.net/

59. Data Normalization and Standardization. (n.d.). Retrieved December 25,

2015, from http://www.benetzkorn.com/2011/11/data-normalization-and-

standardization/

60. Adblock Browser for Android in Google Play Store. (n.d.). Retrieved

December 25, 2015, from

https://play.google.com/store/apps/details?id=org.adblockplus.browser&hl=e

n

61. KeePassDroid in Google Play Store. (n.d.). Retrieved December 25, 2015,

from

https://play.google.com/store/apps/details?id=com.android.keepass&hl=en

62. CosyDVR in Google Play Store. (n.d.). Retrieved February 10, 2015, from

https://play.google.com/store/apps/details?id=es.esy.CosyDVR

63. The Android Story. (n.d.). Retrieved February 10, 2015, from

http://www.xcubelabs.com/infographic-android-story/

http://wps.ablongman.com/wps/media/objects/385/394732/george4answers.pdf
http://wps.ablongman.com/wps/media/objects/385/394732/george4answers.pdf
https://play.google.com/store/apps/details?id=com.gabrielecirulli.app2048
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/
https://f-droid.org/wiki/index.php?title=Category:Apps
https://f-droid.org/wiki/index.php?title=Category:Apps
http://blog.surveymethods.com/when-is-it-generally-better-to-use-median-over-mean/
http://blog.surveymethods.com/when-is-it-generally-better-to-use-median-over-mean/
http://libguides.library.kent.edu/SPSS/PairedSamplestTest
https://adblockplus.org/
http://www.keepassdroid.com/
http://metrics2.sourceforge.net/
http://www.benetzkorn.com/2011/11/data-normalization-and-standardization/
http://www.benetzkorn.com/2011/11/data-normalization-and-standardization/
https://play.google.com/store/apps/details?id=org.adblockplus.browser&hl=en
https://play.google.com/store/apps/details?id=org.adblockplus.browser&hl=en
https://play.google.com/store/apps/details?id=com.android.keepass&hl=en
https://play.google.com/store/apps/details?id=es.esy.CosyDVR

61

APPENDICES

Appendix A: Survey Questions

62

63

64

65

66

67

68

69

70

71

72

Appendix B: Ethics Approval Form

73

74

Appendix C: Summary of Survey Results

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Appendix D: Cronbach’s Alpha Values of Survey Results

146

147

148

149

