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ABSTRACT

GENE FUNCTION INFERENCE FROM EXPRESSION USING PROBABILISTIC
TOPIC MODELS

Tercan, Bahar

Ph.D., Department of Medical Informatics

Supervisor : Assist. Prof. Dr. Aybar Can Acar

August 2016, 81 pages

The main aim of this study is to develop a probabilistic biclustering approach which
can help to elaborate on the question "Can we determine the biological context of a
sample (tissue/condition etc.) using expression data and associate the contexts with
annotation databases like Gene Ontology, KEGG and HUGE to discover annotations
(like cell division, metabolic process, illness etc.) for these contexts?". We applied a
nonparametric probabilistic topic model, Hierarchical Dirichlet Process (HDP), which
was originally developed for text mining to extract unknown number of latent topics
from documents, to gene expression data analysis. In this study, the analogy is the
mRNA transcript to the word, the biological context to the topic and the sample to
the document. This study builds on previous studies that have, to varying extents,
been able to apply topic models to the problem of differential expression, and improves
on the current state of the art by producing a comprehensive and integrative method
to enhance HDP with prior information. The main areas of proposed improvement
are the preprocessing of gene expression data for topic models and the introduction
of informed priors to the HDP model. The results of experiments showed that prior
improved HDP successfully reveals the hidden biclusters in gene expression data with
higher robustness to changes in sparsity levels (number of samples) and prior strengths
(η).
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Keywords: Expression data analysis, Probabilistic topic models, Hierarchical Dirichlet
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ÖZ

OLASILIKSAL TEMA MODELLERİ KULLANARAK GEN İFADESİNDEN İŞLEV
ÇIKARIMI

Tercan, Bahar

Doktora, Tıp Bilişimi Programı

Tez Yöneticisi : Yrd. Doç. Dr. Aybar Can Acar

Ağustos 2016 , 81 sayfa

Bu çalışmanın temel amacı, "İfade verisi kullanarak bir örneğin (doku/durum vb.) bi-
yolojik bağlamını belirleyebilir miyiz ve bu bağlamları Gene Ontology, KEGG, HUGE
gibi yorumlama veritabanları ile ilişkilendirebilir miyiz?" sorusuna cevap bulmamıza
yardımcı olabilecek olasılıksal bir ikili kümeleme yaklaşımı geliştirmektir. Başlangıçta
dökümanlarda bulunan bilinmeyen sayıdaki gizli temaları çıkartmak için geliştirilen
ve metin madenciliği metodu olan olasılıksal tema modeli Hiyerarşik Dirichlet Süreci
(HDP)’ni gen ifadesi veri analizine uyguladık. Bu çalışmada analoji mRNA transkript-
ten kelimeye, biyolojik bağlamdan temaya, örnekten dökümanadır. Bu tez çalışması,
tema modellerini farklılaşmış ifade problemine belirli bir ölçüde uygulamayı başarmış
çalışmaların üzerine inşa edilmiştir ve tema modellerinin gen ifadesi analizinde kulla-
nılması için HDP’yi öncül bilgi ile güçlendirerek kapsamlı ve bütüncül bir metot ge-
liştirilmiştir. Önerilen iyileştirmenin temel alanları, gen ifade verisinin tema modelleri
için ön işlemesinin yapılması ve Hiyerarşik Dirichlet Sürecine bilgilendirilmiş öncüllerin
eklenmesidir. Sonuçlar, öncül iyileştirilmiş HDP’nin gen ekspresyon verisi içindeki gizli
ikili kümeleri seyreklik seviyesi (örnek sayısı) ve öncül gücündeki (η) değişikliklerden
etkilenmeden başarılı bir şekilde ortaya çıkardığını göstermiştir.

Anahtar Kelimeler: Ekspresyon veri analizi, Olasılıksal tema modelleri, Hiyerarşik Di-
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richlet süreci, Öncül düzgünleştirme, İkili kümeleme
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CHAPTER 1

INTRODUCTION

Transcriptomics is the study area that aims to understand gene activity by measuring
messenger Ribonucleic Acids (mRNAs) within a cell or organism [1]. By examining
the transcriptome, total mRNA in a cell or organism, researchers can find out turned
on/turned off genes at a given time in a cell and this examination provides information
about gene’s effect on a particular phenotype. It is possible to know which gene(s) to
interfere with for curation of complex diseases such as cancer with this information.
This merit of gene expression analysis is facilitated in drug discovery and this is just
one of the usages of transcriptome data. Transcriptome data can also be used for
class prediction, class discovery, pathway analysis, biomarker detection, development
of prognostic tests, and disease-subclass determination, etc. [2].

The reason why transriptome is used for gene activity measurement is that gene reg-
ulation mostly occurs at transcription that is when Deoxyribonucleic Acid (DNA) is
transfered into mRNA.

Although every cell in an organism has the same DNA, different cells have different
gene expression profiles.This is differential gene expression and it is preceeded by gene
regulation. Differential gene expression is responsible for the differences among tissue
types. It causes brain cell to be different from liver cell and as a consequence, brain
functions differently than liver.

Some of the differences between cancerous and normal cells can also be attributable
to gene regulation. Besides many attributes differentiate the onco and normal cell like
ability to metastasize, difference in appearance etc, we want to give an example of
the cell death difference in onco and normal cells. The inactivation of tumor supressor
genes like p53 will cause the cell not to undergo apoptosis (programmed cell death) and
will continue to reproduce despite being too old or damaged, with increasing mutations
causing malignant tumors [3].

The differential expression of a gene is assumed to give clues about existence of bio-
logical conditions in which the gene is known to take role in. Visa versa is also valid;
once a gene is discovered and its function is not known clearly yet, the tissue or biolog-
ical condition in which it is differentially expressed gives information about the gene’s
function.

Besides investigating single gene effects, we know that biological activity is usually
carried out by a coordination of several genes and our aim is to find gene expression
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patterns seen in a cellular activity or biological function, we need to find the group
of genes expressed in a correlated way and we can cluster genes according to their
expression levels under different conditions (samples) for this purpose. Samples can
also be clustered according to their expression profiles to find out similarities between
conditions. Traditional clustering algorithms like k-means, SOM, etc. can perform
clustering on all the feature set, that is sample profiles of all genes for sample clustering
and gene expression profiles of all samples for gene clustering. This process can be
visualized as in Figure 1.1.

Figure 1.1: Traditional clustering of gene expression matrix, gene clustering on the left
and sample clustering on the right side.

Traditional clustering approach has some shortcomings like restricting samples or genes
to a single cluster, and causing noisy genes to join a cluster causing deteoriation of the
clustering process. There is a study [4] which can get rid of the obligation to cluster
a gene into a single cluster. By this study, genes can be clustered into multiple or
none clusters. To us, apart from these shortcomings, the most important limitation
of traditional clustering algorithms is their global modeling. Global modeling does
not always suffice to model gene behavior. A group of genes may be differentially
expressed in some conditions and they may be totally uncorrelated in other conditions
due to being co-expressed in a cellular process which is active under only a subset of
conditions.

There is an obvious need for local modeling. Local patterns (correlated expression
of a subset of genes in a subset of conditions) in gene expresssion data can be found
by clustering genes and samples simultaneously. This clustering approach is called
biclustering [5, 6].

1.1 Motivation

There are different biclustering approaches. Traditional biclustering algorithms like
Chen and Church’s algorithm [5] and Spectral Biclustering [7] can extract biclusters
in gene expression data but the extracted biclusters do not always model biological
reality. The biclusters found by these algorithms are binary and exclusive that is a
sample or a transcript can belong to one or no bicluster as can be seen on left side of
Figure 1.2.
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Figure 1.2: Traditional biclustering of gene expression matrix

The aforementioned biclustering approach underestimates the complexity in the na-
ture of gene expression data. A sample is not limited to a single biological event,
samples have a mixture of these events where each of these biological events can be
seen as a differential expression of a group of genes. A very similar condition applies
to the gene side of the biclustering process. Genes (especially regulatory genes) differ-
entially express due to different roles in many different contexts for different reasons.
Transcripts are "polysemic" or "context-sensitive" in other words. This "context sen-
sitiviy" is mentioned in several publications. A few examples of these publications are
on miRNAs. Gabriely et. al. [8], have stated that miRNA-10b acts differently in dif-
ferent cancer types, for example it fosters metastasis in breast cancer but apoptosis in
glioblastoma. Blenkiron et al. [9] have reported that overlapping subsets of a group of
miRNAs have context-specific roles in different types of breast cancer (luminal, basal).
Zhou et al. [10] have used context-specific miRNA activity as feature space for SVM
classifier and achieved much more accurate prognosis prediction on breast and brain
cancer than using feature space on mRNA expression.

The context-sensitivity in gene expression data requires it to be handled with over-
lapping biclusters where a gene or a sample can belong to more than one bicluster.
This approach can be seen on the right side of Figure 1.2. PLAID model [11], FLOC
model [12] and ISA model [13] are some examples for methods that can find overlapping
biclusters.

There is even a better solution, context-sensitivity can be represented by soft biclus-
ters, letting genes and samples have membership to different biclusters with different
degrees. In order to achieve soft biclustering, we propose a model where samples
are mixtures of biclusters and biclusters are mixtures of gene expressions. Namely,
a bicluster is a probability distribution over transcripts and a sample is a proba-
bility distribution over biclusters. This model is called Bayesian Mixed-membership
Model [14]. Bayesian Mixed-membership Models are commonly used in text mining
and their domain-specific name is "Probabilistic Topic Models" [15]. Probabilistic La-
tent Semantic Analysis (PLSA) [16], Latent Dirichlet Allocation (LDA) [17], and the
Hierarchical Dirichlet Process (HDP) [18] are among the most commonly used topic

3



models.

Figure 1.3: Our biclustering approach

In the text domain, a document is a mixture of words and a corpus is a mixture of
documents. A document is treated as being "bag of words", this means the order of
words is not important in a document and also the order of documents is not important
in a corpus. This case is very similar to the problem at hand. The order of samples
is not important in gene expression data and the order of transcripts in a sample is
again of no importance. The "bag of words" assumption fits our problem even better
than text domain since the order of words may be important in phrases but a sample
is exactly a "bag of transcripts".

The topics in topic models can be considered as mixtures of semantically related words.
Indeed, each topic is a probability distribution over word types in the entire corpus.
We can sort the words based on their probability values in a topic in descending order
and set a threshold on either number of words to include or a cumulative probability
distribution of words (such as top 10 words or the top words that explain 50 percent
of the topic), we can cut at the threshold and use the top words as the topic with or
without their probability values. If we include the probability values, this will give us
the weight of each word in a topic. In our case, a topic is a mixture of biologically
related transcripts. Hence, the topics in mixed-membership models are analogues to
soft biclusters that we are seeking. In our analogy, the topics can be functional modules
of gene products, in other words biological contexts. Samples are mixtures of these
biological contexts. We are going to call biological contexts as topics to be consistent
with the literature throughout this thesis.

Different subsets of genes may over- or under- express in different topics and a certain
gene may be significant in multiple contexts. All probabilistic topic models can handle
this context sensitivity issue but parametric topic models like PLSI and LDA need
many runs and model selection to find the number of topics that fits the data best.
The number of topics has to be set beforehand and it is not easy to know the number
of biological contexts active in a set of samples.

The HDP model is nonparametric and it infers both the topic distributions and number
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of topics from data. HDP assumes an infinite number of topics but concretizes a finite
number of them. We worked on HDP not to be forced to estimate number of topics
before running the algorithm.

The results of this study are expected to have beneficial impact on the study of the
differential expression of highly context sensitive genes and gene products such as
microRNAs, transcription factors and other genes with high centrality in cellular pro-
cesses. As such genes typically regulate cell processes and have high impact in disorders
like cancer; we hope that this study will indirectly benefit the research in these areas.

1.2 Problem Statement

The crux of our study is to find out the situation of a sample by biclustering gene
expression data. We achieve this using the workflow which can be seen in Figure 1.4.

In the system, first gene expression data is converted into a format that is applicable
to topic model which is originally a text mining method. Since we are not just using
the method as is, we also prepare the prior information in the pre-processing step.

The simplified graphical representation of the Probabilistic Biclustering (Topic Model)
Mechanism we propose can be seen in Figure 1.5, please see Figure 3.1(d) for the
detailed representation.

In Figure 1.5, S is the sample, G is the gene and z is the topic assignment, M is
the number of samples and Nj is the number of observations in sample j. Shaded
variables are observed, unshaded variable is latent to be inferred during biclustering
process. The number of topics is inferred by the topic model as well.

After running the probabilistic biclustering algorithm, we have two distributions as
its outputs. First is sample-topic, P (topic|sample), and the second is gene-topic,
P (gene|topic), distribution. Note that the topics are the pivot elements between sam-
ples and genes, they provide the connection between genes and samples. We are also
interested in annotation-topic distribution, P (annotation|topic), which can be inferred
from annotation databases by using P (annotation|gene) of most representative genes
of each topic with geneset enrichment.

The outputs of the biclustering can be used in several ways. First usage utilizes all of
the distributions mentioned above to label samples, we can annotate topics by gene
set enrichment of the top genes of each topic. Thus, we have the biological meaning
of topics. The topics which are dominant in each sample, top topics of each sample,
can explain the sample’s situation (cancer etc.), in turn.

On the other hand, genes’ features are topics and samples’ features are topics, again.
Unlike using one side of the gene expression matrix as features of the other side, the
features which are composed of topics are local modeled. That is, if samples and genes
are classified or clustered according to this new feature set, it is possible to recover
gene expression similarities due to their correlated expression in only subset of samples
and sample similarities due to their gene expression patterns in a subset of genes and
this alleviates the problem caused by global modeling approach of traditional clustering
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Figure 1.4: Workflow of the system

algorithms. We do not suffer from the disadvantage of traditional clustering/classifica-
tion algorithms, although we use them. Especially in sample clustering/classification,
we alleviate the problem of curse of dimensionality because we will be using tens of
topics instead of thousands of genes.

For another usage of topic models in bioinformatics, the top genes in a topic can be used
for gene regulatory network construction or module detection. This can be achieved
by combining the gene-topic distribution output of topic models with the information
about transcription binding sites and tf-gene interaction, to our best knowledge there
is no such a study.
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Figure 1.5: The Plate Model of Probabilistic Topic Model

1.3 Contribution

The main contribution proposed in this study is the use of nonparametric topic model,
Hierarchical Dirichlet Process (HDP), in biclustering microarray data while taking
account the prior information. The prior information we have incorporated to stan-
dard HDP is taken from either an external gene regulatory network or co-expression
information calculated over the correlation of gene expression matrix.

HDP is a nonparametric Bayesian model. Bayesian models have prior belief about
their parameter distributions and update this belief with observations. If the num-
ber of observations is enough to represent the tendency in data, posterior parameter
distribution is sound. If the number of observations is small compared to number of
parameters (n << p), the posterior won’t be well-defined. Starting from an accurate
prior belief enables the model to work on a smaller space configurations and this gives
better results with less number of observations.

The previous applications of HDP in gene expression data analysis have used the
method as is with respect to prior distribution. Standard HDP assumes flat prior
distribution over transcript-topic distribution. So the previous applications do not take
into account gene co-expression or co-regulation information in their prior transcript-
topic distribution. These studies will be summarized in Section 2.8. In this study, we
proved that prior informed (using this information) HDP can mitigate data sparsity
problem and also the model becomes robust to hyperparameter changes. Incorporating
informed prior into HDP enables modeling mixed-memberships on sparse data more
successfully. Our model works without necessity to specify the number of topics in
advance, this is an inherent attribute of HDP and left intact in our model.

In transcriptomics studies, number of genes is in the thousands and number of sam-
ples is generally in the tens. The standard approach used in order to evade curse of
dimensionality problem, genes that are not differentially expressed or having high cor-
relation to each other can be removed with gene selection methods, the rest of analysis
can be done with the remaining distinguishing genes. The removal of genes that are
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not differentially expressed is handled through our preprocesing approach defined in
Section 3.1.2.1.

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we gave background
information about microarray and RNA-seq data which are valid input to our prepro-
cessing for topic models. We mentioned different topic models: unigram, mixture of
unigrams, PLSI, LDA; nonparametric Bayesian models, Dirichlet processes and HDP
and also two metrics used in topic model evaluation, perplexity and topic coherence.
We explained gene set enrichment analysis, hypergeometric distribution of genes and
gene set enrichment analysis tools. In Section 2.8, we summarized previous work on
the application of topic models to gene expression and the incorporation of priors to
topic models.

In Chapter 3, we described our model "Externally Smoothed HDP" with compari-
son to previous mixed membership models, Probabilistic Latent Semantic Indexing
(PLSI), Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP).
We explained the preprocessing approach we adapted to be able to use topic models for
gene expression data analysis. We proposed two methods for encoding the priors: "Co-
expression smoothing" and "Network-based smoothing". "Co-expression smoothing"
uses the correlation of data and "Network-based smoothing" uses external gene-gene
interaction networks as prior information. We proved that both smoothing approaches
enhance success of original HDP algorithm in gene expression data analysis.

In Chapter 4, we mentioned several experiments which were carried out using HDP and
Smoothed HDP algorithms. First experiment was performed to establish the perfor-
mance of HDP in finding pre-seeded biclusters. HDP algorithm successfully recovered
the biclusters in two dimensional datasets of 2, 4 and 8 biclusters. Second experiment
was performed to make sure prior smoothing works as we expect. We tested HDP
and Smoothed HDP algorithms on a test platform which was originally created by Yee
Whye Teh [19] to test HDP algorithm. The results showed that Smoothed HDP algo-
rithm finds topic distributions over words and number of topics much more successfully
than original HDP algorithm in every sparsity level (number of documents) and prior
strength (η) value combination. In the third experiment, we performed quantitive
evaluation of Smoothed HDP algorithm using the model comparison metric Akaike
Information Criterion (AIC) which provides a trade off between model complexity and
likelihood of model given data. According to results of AIC experiment, Smoothed
HDP algorithm is of more quality compared to HDP algorithm under every sparsity
level (number of documents) and prior strength (η ) value combination. The fourth
experiment was performed on a semi-synthetic dataset generated using Syntren [20].
In this experiment, we used a yeast transcriptional network, we first fully perturbed
some of the hub genes individually to know the gene expression profile generated owing
to each perturbation. Resultant gene expression profile of perturbation of each hub
gene fully was regarded as a topic. We perturbed different hub genes at different levels
to generate gene expression data of each sample. We then ran HDP, Co-expression
Smoothing HDP and Network-based Smooothing HDP algorithms and tried to find
the latent topics we had seeded in the experiment set. Both Co-expression Smoothing
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HDP and Network-based Smoothing HDP revealed the latent topics more successfully
than HDP under every sparsity level (number of samples in this experiment) and prior
strength(η) combination. In the fifth and last experiment, we worked on a dataset
from prostate cancer study by Dhanasekaran et. al. [21]. In this experiment, we eval-
uated comparative success of HDP and Co-expression smoothing HDP in two metrics.
First is dependent on sample-topic distribution and sample labels. We compared each
sample’s label with that of the sample which is most similar to it according to its
topic distribution. Second is based on the topic coherence metric given in Section
2.5, this metric measures how often the top words of each topic are seen in the same
documents in the original dataset, its implicit assumption is that if a group of words
are seen together in the same documents in the original corpus, it means that they are
related, so they should be found in the same topic. In both evaluation approaches,
Co-expression Smoothing HDP provided more successful and consistent results over
different η values.

In Chapter 5, we discussed our approach, contribution and the results of experiments,
commented on future directions and concluded the thesis.
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CHAPTER 2

BACKGROUND

In this chapter, I give brief background information to enable readers to familiarize
themselves with the materials covered in the rest of this thesis study. We begin with
basic biology information in Section 2.1 and continue with the data types, microarray
data and RNA-Seq data in Section 2.2. In Section 2.3, we provide introductory in-
formation about probabilistic topic models and list the probabilistic topic models in
evolutionary order: unigram, mixture of unigrams, PLSA and LDA. In Section 2.4, we
point out the differences between frequentist and Bayesian approaches and paramet-
ric and nonparametric Bayesian methods. We touch upon properties of the Dirichlet
Processes, different metaphors for constructing the Dirichlet Processes and Hierarchi-
cal Dirichlet Process. In Section 2.5, we address the post evaluation issue of topic
models and mention a topic coherence metric defined by Mimno et.al [22]. In Section
2.6, we give definition and formula of perplexity which is a measure for prediction
power of probabilistic models. In Section 2.8, we refer to the previous studies on both
mixed membership model usage in transcriptomics studies and informed priors in text
domain.

2.1 Background Biology

The cell is the smallest unit in an organism and it contains all genetic information
of the organism in it. The genetic information in the cell is stored in a nucleic acid
type called deoxyribonucleic acid (DNA). The gene is a segment of the DNA and it
contains necessary information to create functional structures, that are proteins. The
other nucleic acid is the ribonucleic acid (RNA) and a special type of RNAs, messenger
RNA (mRNA), maintains the flow of information in protein synthesis. First, the gene
on DNA is transcribed into mRNA and mRNA is translated into building blocks
of protein, that are amino acids. The flow of information can be summarized as
follows [23]:

DNA→ mRNA→ Amino acid→ Protein→ Phenotype (cell)→ Phenotype (sample)

Samples are the biological materials like tissues and phenotypes are the visible char-
acteristics like cancer, non-cancer.

If the gene is transcribed into its mRNA, it means that it is expressed and the tran-
scription level is its gene expression and can be measured by microaarray or RNA-seq
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technology. The importance of measuring the amount of mRNA is that it gives infor-
mation about the amount of protein and proteins’ functions determine the phenotype.

We call mature mRNAs (containing only exons) mRNA transcripts. Gene and tran-
script terms are used interchangeably throughout this thesis study.

2.2 Data Sources

The genome is the blueprint of all cellular processes and activities in a living thing.
Although every cell contains a copy of whole genome, not all the genes are expressed
equally in each cell every time. This is called differential gene expression [24]. We are
interested in differential gene expression because a successful understanding of gene
expression will lead us to understand cell function and pathology. Gene expression
levels can be measured via mRNA amounts and mRNAs are captured with microarray
chips in microarray technology. There are two main types of microarray chips: first
type is spotted or cDNA microarrays and second type is oligonucleotide chips [25].
In spotted or cDNA microarrays, a probe is a complementary copy of original DNA
and corresponds to one gene. Two classes of tissues (for example, healthy vs. cancer)
are dyed with different colors and they compete to hybridize with probes. In oligonu-
cleotide chips, a gene is represented by a probe set. In this technology, a sample is
hybridized on one chip.

In microarray technologies, raw microarray data are scanned as images, fluorescence
readings from these images are transformed into mRNA expression values [26]. The
datasets used in our experiments come from oligonucleotide chips. One of the meth-
ods for normalization array images into mRNA values for data retrieved with oligonu-
cleotide chips is Robust Multiarray Analysis (RMA) [27]. RMA is a technique that
consists of background correction, normalization across arrays, probe level intensity
calculation and probe set summarization. After this method is applied to raw data,
the gene expression matrix where the mRNA expression values are stored is obtained.
In a gene expression matrix, rows represent genes and columns represent samples (like
tissues, experimental conditions), hence each cell represents the expression level of a
particular gene in a particular sample [28]. Genes can be clustered according to their
expression levels under different conditions (samples) especially for discovery of regu-
latory motifs and conditions (samples) can be clustered according to their expression
profiles to find out condition similarities [5]. Analysis of local expression patterns in
gene expression matrix is also essential because genes may co-express under a subset
of conditions and be independent in other conditions; this simultenous clustering of
genes and conditions is called biclustering of microarray expression data [6].

Before analyzing the gene expression matrix, it should be cleaned from genes exhibiting
little variation across samples (like house-keeping genes). This is especially important
in topic modeling because house keeping genes play a similar role to stop words in
text mining. If this process is skipped, the prevelant genes across the experiment will
dominate all topics and the differences among topics will be obscured.

An alternative to microarray technology is high-throughput sequencing of cDNA (RNA-
Seq). RNA-Seq counts the number of discrete sequence reads while hybridization-based
array methods (microarray) measure continuous probe intensities [29]. Raw RNA-Seq
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data is usually in FASTQ format. It contains an ID number for each read, the read se-
quence, and a quality score [30]. Low quality reads are removed and rest are mapped
to a reference genome. After splice junction detection and gene/isoform expression
quantification, differential expression analysis is performed [31].

RNA-Seq data has many advantages over microarray expression data. Both RNA-
Seq and microarray data can detect differentially expressed genes but only RNA-
Seq data can detect abundances of alternative isoforms. RNA-Seq data favors larger
dynamic range and less background and technical variation [32]. Microarray data is
usually used for comparing the same gene across multiple samples/conditions but not
expession levels of different genes in a single sample because of cross-hybridization
effects on probe intensities. RNA-Seq data makes it possible to do such analyses.
RNA-Sequencing is possible for any organism while microarray platforms are only
available for model organisms [33].

Besides these advantages, RNA-Seq data has its own limitations. The reads are not
uniform along genome, more reads are mapped to longer genes and there is an artificial
correlation between differential expression and gene length; this effects within sample
analysis. Reads Per Kilobase of transcript per Million (RPKM) and Fragments Per
Kilobase of transcript per Million (FPKM) are used methods for normalizing expression
of genes with different length within a sample. Dependence to sequencing depths and
library sizes effects comparison among samples and different normalization algorithms
like Trimmed Mean of M-values (TMM) [34] is used to make the same genes in different
samples comparable [32].

2.3 Probabilistic Topic Models

Probabilistic topic models automatically extract hidden topics from document sets,
in other terms, corpora. They achieve this by considering a topic as a probability
distribution over words and a document as a mixture of topics [35]. These models
define a joint probability distribution on both latent and observed variables; conditional
distributions of hidden variables are calculated given the observed ones [15].

Probabilistic topic models are both generative and discriminative. As a generative
model, a document can be composed by sampling words from topics according to weight
given to each topic; and as a discriminative model, they can be used for statistical
inference of topics that have generated the observed words in corpora.

The probabilistic topic models from the most naive one, the unigram model, up to the
Latent Dirichlet Allocation are explained below:

2.3.1 Unigram

In this model, the "bag of words" assumption is essential as it is in all other topic
models. For every document d1..M in the corpus, its observations w1..N are sampled
independently from a single multinomial [17]. The graphical representation of the
unigram model can be seen in Figure 2.1.
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Figure 2.1: The Plate Diagram of the Unigram Model

The probability of a document can be calculated as follows:

P (w) =

N∏
n=1

P (wn) (2.1)

Unigram model can also be explained in a geometrical perspective. Like all topic
models, unigram acts in the space of distributions over words. Each distribution is a
point on the (V − 1) simplex where V is the number of word types and this simplex is
known as word simplex. The unigram model selects a single point on the word simplex
and assumes that all the observations in the corpus originate from this distribution
[17].

2.3.2 Mixture of Unigrams

This model is an extension of the unigram model [17] with a latent variable topic z. In
this model; for each document, first a topic z is chosen and words w1...N are sampled
from this topic. The graphical representation of the mixture of unigrams model can
be seen in Fig. 2.2.

Figure 2.2: The Plate Diagram of the Mixture of Unigrams Model

The probability of a document can be calculated as follows:

P (w) =
∑
Z

P (z)
N∏
n=1

P (wn|z) (2.2)

This model assumes that a document can be related to only one topic and it is unre-
alistic to assume that each document is relevant to a single topic.
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From a geometrical point of view, the mixture of unigrams model selects one of the
points on the word simplex for each document and observations of the document
originate from this point, in other words, each observation of the document is drawn
according to this distribution [17].

2.3.3 Probabilistic Latent Semantic Analysis (pLSA)

Latent Semantic Analysis (LSA) is a method used for data reduction in text mining
[36, 37]. Let a term-document matrix have terms in rows and documents in columns.
Each cell consists of the number of occurance of the row-indexed word in the column-
indexed document, we can find term similarities by correlation of rows and document
similarities by correlation of columns. The number of features of a document is the
number of terms, and the number of features of a term is the number of documents.
This is a very sparse matrix and LSA offers to reduce the number of features of both
terms and samples by using the Singular Value Decomposition method. This method
breaks the term-document matrix A into linearly independent components:

A = USV T (2.3)

where A is the term-document matrix, U is the matrix whose columns are orthonormal
eigenvectors of matrix AAT , S is the diagonal matrix having square roots of eigenval-
ues of U or T in descending order, V is the matrix whose columns are orthonormal
eigenvectors of matrix ATA.

In this equation, the first few columns of U and V carry information that accounts for
the most variation in the data. We can select a number of eigenvalues beginning from
the largest one and the corresponding eigenvectors in the columns of the matrices U
and V . The number of features of words and documents become this value, hence the
data reduction is realized.

The word and document are represented as rows of reduced form of U and V respec-
tively and their similarities can be computed over this matrices instead of original
term-document matrix.

This method is effective in data reduction and also noise filtering but it has limitations.
The selection of the number of features is arbitrary and this method can not handle
polysemy which is very common in text domain.

This limitations are overcome by pLSA model. pLSA has a statistical foundation,
model selection is possible and this attribute can alliveate the problem of choosing the
number of latent factors randomly. In pLSA model, each observation in a document
is sampled from a topic, which can be viewed as a multinomial random variable. Each
observation is generated from a single topic, and different observations in a document
may be generated from different topics and pLSA can handle polysemy. A document
can be viewed as a mixture of topics with a weight given to each topic [16]. The
graphical representation of the pLSA model can be seen in Fig. 2.3.

In this model, document d and word wn are conditionally independent given latent
variable z.
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Figure 2.3: The Plate Diagram of pLSA where d represents the document, z represents the
topic and w represents the word. N is the number of words and M is the number of documents.

The joint probability of document d and word wn can be calculated as follows:

P (d,wn) = P (d)
∑
zi∈Z

P (z = zi|d)P (wn|z = zi) (2.4)

The pLSA model allows a document to represent a mixture of topics but it has two
serious limitations which were later overcome by the LDA model. First limitation is
that pLSA learns topic proportions p(z|d) only for the documents in the training set
and does not provide generalization to unseen documents. The second limitation is
the number of parameters, kV +kM (k is the number of topics, V vocabulary size, M
is number of documents), grows linearly with the number of documents, which causes
overfitting [17,38].

If we turn back to the geometric interpretation, we now have a new definition: topic
simplex. A sub - simplex is built on the word simplex by selecting k points where k
is the number of topics, the sub-simplex formed by these k points is called the topic
simplex. For each document, pLSA finds a document specific distribution over topics
and this means a point on the topic simplex. pLSA uses Expectation-Maximization
approach to find the distributions that maximize the parameters P (z), P (w|z) and
P (z|d).

LDA instead relates a document with a k-parameter hidden variable and builds a
Dirichlet distribution over it. This enables LDA to have distribution for both training
and unobserved documents. LDA is a truly generative model. LDA uses k + kV
parameters, the number of parameters do not grow with the number of documents
and LDA does not suffer from overfitting.

The distribution used over LDA’s word-topic and topic-document distributions is the
Dirichlet distribution and it can be defined as follows [39, 40]: Random variables
X1, X2, . . . , Xr have a Dirichlet distribution if they have a density function with pa-
rameters α1, α2, . . . , αr and N =

∑r
k=1 αk:

p(x1, x2, . . . , xr) ∼ Dir(α1, α2, . . . , αr) =
Γ(N)∏r
k=1 Γ(αk)

r∏
k=1

xαk−1
k (2.5)

where 0 ≤ xk ≤ 1 and
∑r

k=1 xk = 1

E(Xk) =
αk
N

(2.6)
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Let X be a random variable with event space 1, 2, . . . , r ,

P (X = k) = E(Xk)

Dirichlet distribution is a probability distribution over probability distributions and a
draw from a Dirichlet distribution is a probability distribution.

2.3.4 Latent Dirichlet Allocation (LDA)

LDA clusters words into topics and documents into mixtures of topics just like pLSA.
This is, in fact, a three level hierarchical Bayesian model where each document is
associated with a probability distribution over topics and each topic is a probability
distribution over words. The probability of whole words in a topic sum up to one and
the topic ratios of a document are, again, additive.

The plate representation of LDA can be seen in Figure 2.4. In this figure, α and β
are hyper parameters on θ and φ . θ is the per-document topic distribution, φ is the
per-topic word distribution and z is the topic assignment of each observation to be
estimated.

Figure 2.4: The Plate Diagram of LDA where D is number of documents, Nd is the number
of tokens in a document, T is the number of topics

When using topic models as generative model, θd is a document level variable and
sampled once per document, φk is a topic level parameter and sampled once per topic.
zd,n and wd,n are observation level variables and sampled once for each observation in
each document.

The generative process of LDA can be summarized as follows [41]:
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1. For each topic, draw a distribution over words: φk ∼ Dir(β)

2. For each document, draw a distribution over topics, θd ∼ Dir(α)

3. For each observation of each document,

(a) Draw a topic assignment zd,n ∼Mult(θd) where zd,n ∈ 1, ...,K.
(b) Draw a word wd,n ∼Mult(φzd,n) where wd,n ∈ 1, ..., V .

The joint probability of θ, φ, w and z given α and β is calculated as follows:

p(w, z, θ|α, β) = p(θ|α)

T∏
j=1

p(φj |β)

N∏
n=1

p(zn|θ)p(wn|φzn) (2.7)

The exact posterior distribution of LDA is not tractable and there are variational,
Laplacian and sampling based approximation methods for inference in LDA [17]. In
this thesis study we used a sampling-based method "Gibbs sampling". By apply-
ing Gibbs Sampling to the LDA model, we are seeking the conditional probability
p(z(i,j)|z¬(i,j), w, α, β) where z(i,j) is the topic assignment for the jth word of the ith

document and z¬(i,j) is the topic assignment of every observation in the corpus except
the current observation-topic assignment pair. Therefore for each topic k,

p(z(i,j) = k|z¬(i,j), w, α, β) ∝

(
n

(wi)
¬(i,j) + β

)
(
n

(.)
¬(i,j) + V β

)
(
n

(di)
¬(i,j) + α

)
(
n

(di)
¬(i,.) + Tα

) (2.8)

where n(wi)
¬(i,j) count for word type wi assigned to topic k, n(.)

¬(i,j) is the total number of

observations assigned to topic k, n(di)
¬(i,j) is the number of observations assigned to topic

k in document di, n
(di)
¬(i,.) is the document size, all not including the current observation

wi, V is the corpus size and T is the number of topics.

This formula is calculated for every observation of each document iteratively until it
reaches a stable state. The other latent variables θ(k)

d , the topic-document distribution
and φ(w)

k , the topic-word distribution are calculated from z as follows:

θ̂
(k)
d =

n
(d)
k + α

nd(.) + Tα
(2.9)

φ̂
(w)
k =

n
(k)
w + β

nk(.) + V β
(2.10)

where n(d)
k is the number of observations assigned to topic k in document d, nd(.) is

the number of observations in document d, n(k)
w is the number of observations of word

type w under topic k and nk(.) is the total number of assignments to topic k. The most
representative words can be extracted out of φ and the prominent topics of documents
can be determined out of θ.
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2.4 Non-Parametric Bayesian Methods

Two main approaches for solving statistical problems are frequentist and Bayesian.
In frequentist analyses, parameters are fixed, in Bayesian ones, prior distributions
are placed on parameters [42]. Parametric and nonparametric Bayesian models differ
in model selection. If the data is to be explored with parametric Bayesian models,
different models with different number of parameters are fit to the data; a model
comparison metric that measures which one of the models fits the data best and a
penalty score that is higher in complex models are calculated and a trade off between
these two metrics is used to select the best model. However, complexity is adapted to
the data with Bayesian nonparametric models and number of parameters is estimated
by the model [43].

2.4.1 Dirichlet Process

One of the most commonly used prior distributions in nonparametric Bayesian models
is the Dirichlet Process (DP). DP is a distribution over distributions and has two
parameters. First is the base distribution as the prior belief and the second is the
concentration parameter as its strength [44]. It is symbolized as G v DP (α,H) where
G is the Dirichlet process distributed with base distribution, H and concentration
parameter, α. If the concentration parameter α is small, the samples of Dirichlet
Process will cumulate around small number of units, if it is large, the distribution of
samples will be similar to H.

Dirichlet process is indeed infinite dimensional generalization of Dirichlet distribution.

Some important attributes of a Dirichlet Process can be listed as follows [44,45]:

• E(G) = H that is the base distribution is the mean of the DP.

• Draws from a DP are discrete and probabilities are additive. So identical draws
are possible.

• The posterior distribution of a Dirichlet distribution given observations θ1, . . . , θn
is

G|θ1, . . . , θn ∼ DP (α+ n,
α

α+ n
H +

n

α+ n

∑n
i δθi
n

) (2.11)

where δθi is the unit mass function concentrated at θi. This is a weighted average
of the base distribution H and the emprical distribution∑n

i δθi
n

(2.12)

The weights are α and n respectively. When the number of observations are
large enough, n � α, the posterior DP becomes more and more close to the
underlying distribution of data.

• Posterior distribution given θ1, . . . , θn is the predictive distribution of θn+1.
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2.4.2 Construction of Dirichlet Process

There are some methaphors used to explain the construction of the Dirichlet Process.
These are Blackwell - MacQueen Urn Schema, the Stick Breaking Construction and
Chinese Restaurant Process.

2.4.2.1 Blackwell − MacQueen Urn Schema

This metaphor is established by Blackwell and MacQueen in 1973 [46]. At the begining,
there is an empty urn G. A color is drawn from the base distribution H and a ball
is painted with this color and placed into the urn. In the subsequent steps either this
process is repeated or a ball is drawn from the urn and another ball is painted the
same color as the just drawn ball and both are dropped into the urn. At the n + 1st
draw:

• Either, a new color is drawn with probability α
α+n from the base distribution and

a ball is painted with this color and dropped into the urn.

• Or, a ball is drawn from urn with probability n
α+n and a new ball with the same

color as the just drawn is dropped along with the drawn ball. Drawing of a ball
with a specific color is proportional to number of previous draws of balls wih its
color.

If {θni } are successive draws from the urn:

θn+1|θ1, .., θn, α,H =
K∑
k=1

mk

n+ α
δθ
∗
k +

α

n+ α
H (2.13)

where mk is the number of previous draws of the ball colored k from the urn G and
δθ
∗
k is the unit mass function concentrating at δθk, K is number of different colors in

the urn.

2.4.2.2 Stick Breaking

This definition was established by Sethuraman in 1994 [47]. Suppose that we have a
stick of unit length, we break it at a random proportion β1 and assign π1 to the just
broken piece’s length. Repeat this process to get π2, π3, ... on the remaining stick
recursively [48].

βk ∼ Beta(1, α) πk = βk
∏k−1
j=1(1− βj) (2.14)

An infinite sequence of weights π = {πk}∞k=1 is referred to be distributed according to
GEM(α), where GEM stands for Griffiths-Engen-McCloskey.

The random discrete probability G is said to be a Dirichlet Process symbolized as
G ∼ DP (α,H) if
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G =
∞∑
k=1

πkδθ
∗
k where θ∗k ∼ H (2.15)

2.4.2.3 Chinese Restaurant Process

In Chinese restaurant process analogy, a Chinese restaurant has countably infinite
number of tables, countably infinite number of customers can sit at a table. A customer
can sit at an occupied table or at the next unoccupied table. When customer Xn+1

comes into the resturant,

• Either, they sit at an already occupied table k with probability mk
n+α where mk

is the number of customers at table k.

• Or, they sit at the next unoccupied table with probability α
n+α

θn+1|θ1, .., θn, α,H =
K∑
k=1

mk

n+ α
δθ
∗
k +

α

n+ α
H (2.16)

wheremk is the number of customer sitting at table k, K is number of allocated tables.
The tables can be thought as the colors in the Black− MacQueen Urn schema namely,
G; and the unallocated tables compose the base distribution H.

2.4.3 Hierarchical Dirichlet Process

Hierarchical Dirichlet Process (HDP) is a model that is built on the recursive con-
struction of Dirichlet Processes and it handles cases where data consist of groups
(i.e.documents) and each data point in a group (i.e observation) belongs to a latent
cluster (i.e. topic) and the latent clusters are shared across groups [49]. HDP-LDA
can be considered as nonparametric counterpart of LDA and while the number of top-
ics is given to LDA, the HDP-LDA model assumes the number of topics is infinite and
that can be inferred from data.

The graphical model of HDP-LDA can be seen in Figure 2.5. In this model H is
the prior distribution over topics. θji is a parameter specifying the topic associated
with xji, the ith observation of jth document. G0 is the set of topics and Gj samples
a subset of topics to use in document j from its base distribution G0. γ and α are
concentration parameters for G0 and Gj respectively. These concentration parameters
govern variability.

In HDP construction the Dirichlet process G ∼ DP (α,G0) is drawn from another
Dirichlet distribution G0 ∼ DP (α0, H) which forces G to replace its atoms on discrete
places determined by G0 [50] because support of each draw from the G distribution
has to be a subset of the support of its base distribution G0. This enables sharing
atoms of G0 distribution across Gj distributions.
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Figure 2.5: HDP-LDA model for topic modeling

The HDP model can be summarized as follows:

G0 ∼ DP (α0, H) (2.17)
Gj |G0 ∼ DP (α,G0) (2.18)

θji|Gj ∼ Gj (2.19)
xji|θji ∼ F (θji) (2.20)

where F (θji) is the distribution of xji given θji.

Chinese Restaurant Franchise Sampling is a metaphor used for inference in Hierar-
chical Dirichlet Process. In this analogy, there is a two level hierarchy of Chinese
Restaurant Processes. It uses a seperate Chinese Restaurant Process in each group
(i.e. document). These are document level CRPs. Since latent variables are shared
across groups, a corpus level CRP is defined as the upper level and the dish (i.e. topic)
of the tables in the customer level CRPs are sampled from this layer.

Probabilities for the lower (customer) level CRP calculated using Gibbs sampling are
shown in the following equations: [50].
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The probability of the last customer sitting in a previously selected table.

p(tji = t) ∼
n¬jijt.

n¬jij.. + α
fkjt({xji}) (2.21)

The probability of the last customer to open a new table but with a previously sampled
topic.

p(tji = tnewand kjtnew = k) ∼ α

n¬jij.. + α

m¬ji.k

m¬ji.. + γ
fk({xji}) (2.22)

The probability of the last customer to open a new table and sample a new topic.

p(tji = tnewand kjtnew = knew) ∼ α

n¬jij.. + α

γ

m¬ji.. + γ
fk
new({xji}) (2.23)

where tji is the table at which customer i in restaurant j sits, njt. is the number of
customers sitting at table t in restaurant j, nj.. is the number of customers in restaurant
j, m.k is the number of tables serving dish k, m.. is the total number of tables, ¬ji
means that customer i in restaurant j is removed from CRF.

Probabilities calculated for the upper (menu) level CRP by using Gibbs sampling is
as follows: [50].

p(kjt = k) ∼
m¬jt.k

m¬jt.. + γ
fk({xji : tji = t}) (2.24)

p(kjt = knew) ∼ γ

m¬jt.. + γ
fk
new({xji : tji = t}) (2.25)

2.5 Topic Coherence

After data is clustered into topics, quality of topics should be evaluated in order to
get rid of incoherent topics. Since words with highest probability in each topic are
representative for the topic, in a high quality topic, it is expected that each most
representative word’s conditional probability given the other most representative word
should be high. A topic coherence metric in a pairwise fashion is defined as follows
[22]:

C(t, V (t)) =

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

(2.26)

whereD(v) is document frequency of word type v that is the number of documents that
word type v seen at least once, D(vm, vl) is the co-document frequency of word types vm
and vl i.e the number of documents containing both vm and vl. V (t) = (V

(t)
1 , . . . , V

(t)
M )

is a list of most probable M words in topic t.
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2.6 Perplexity

Perplexity is a measure of prediction power of a probabilitistic model on test data
and monotonically decreases with likelihood. Lower perplexity values mean better
generalization. In probabilistic topic models, for a test set ofM documents, perplexity
is:

perplexity(Dtest) = exp

{
−
∑M

d=1 logp(wd)∑M
d=1Nd

}
(2.27)

where wd represents the words in document d, Nd is the number of words in document
d.

2.7 Gene Set Enrichment Analysis

After genes are clustered together, we consult gene databases to find out the biological
interpretation of the relevant genes. Three of the databases are the Gene Ontol-
ogy (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Human
Genome Epidemiology Network (HuGENet).

Gene Ontology(GO) [51] has a directed acyclic graph structure where the specificity
increases from root to leaves. It has three main divisions: Cellular Compartment,
Molecular Function and Biological Process. Cellular Compartment is the place where
a gene product is active in a cell. Ribosome and nuclear membrane are example terms
of cellular compartment. Molecular Function is the biological activiy of a gene product.
Enzyme and transporter are example terms of molecular function. Biological Process
is the biological objective which a gene/gene product takes role in. Translation and
cAMP biosynthesis are example terms for biological process.

The KEGG database relates gene information to pathways and groups genes according
to the biological pathways that they take role in. It has three databases: GENES for
gene catalogues, PATHWAY for functions in terms of interacting module network and
LIGAND for cellular chemical compounds, enzyme molecules and enzymatic reactions
[52].

HuGENet maintains a database for published epidemiologic studies of human genes
extracted from PubMed. Each article is indexed with MESH terms (by MESH hierar-
chical structure) and gene information from the NCBI Gene database [53].

2.7.1 Hypergeometric Distribution of Genes

If we can answer if a specific GO term or KEGG pathway is enriched in the gene list,
the resulting terms can be biologically meaningful in describing the set of differentially
expressed genes or the gene clusters found. In that sense, an overrepresentation test
of genes can be achieved by using the hypergeometric distribution.

Let N be the total number of genes in the universe of the experiment, M be the
number of genes annotated with a specific GO term or KEGG pathway, n genes are
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differentially expressed or form a cluster, k of these n genes are annotated by the
specific GO term or KEGG pathway.

The probability for each k is:

P (X = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) (2.28)

The probability of having at most k genes:

P (X ≤ k) =

k∑
y=0

(
M
y

)(
N−M
n−y

)(
N
n

) (2.29)

In the GO database, less specific nodes contain more specific nodes, so the nodes at
root or in upper levels can achieve significant p values although these terms are not
very informative. We need to set a limit for the number of genes annotated with the
terms, and exclude the terms exceeding the limit [54].

2.7.2 Enrichment Analysis Tools

The co-expression of genes should be biologically analysed, interpreted and the results
should be visualized. This process is called geneset enrichment analysis and as of 2009,
there were more than 60 tools developed for this purpose [55].

These tools can be studied under three categories:

1. Singular enrichment analysis (SEA)

SEA counts the enrichment of each term for the geneset and it compares the
number of differentially expressed genes to the term and compares the result with
random assignments, calculating the p-value based on statistical tests (e.g. Fisher
exact, Chi-square, Hyper-geometric etc.). The most well-known examples of SEA
tools are GoMiner, Onto-Express, DAVID, EASE, GOEAST and GFinder.

2. Geneset enrichment analysis (GSEA)

GSEA works on all the genes from the experiment without using any threshold.
It takes experimental results of all genes and the extent of differential expression
is important, unlike SEA methods which only consider differential expression as
a binary state. The Kolmogorov-Smirnov test, t-test and Z-score are commonly
used in GSEA tools like Fatiscan, T-profiler, and GOdist.

3. Modular enrichment analysis (MEA)

MEA combines SEA results with network information. This captures term-term
co-occurrences which distinguish between biological conditions. Statistical meth-
ods used in MEA tools are Kappa statistics, the Czekanowski-Dice distance and
Pearson Correlation. Examples of MEA tools are Ontologizer, topGO, ADGO
and GENECODIS.
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A new gene set enrichment analysis tool enrichr [56] approaches gene set enrichment
analysis differently. While most of the gene set enrichment analysis tools rely on
only Gene Ontology, this tool uses 35 different gene libraries which can be divided
into six categories: transcription, pathways, ontologies, diseases/drugs, cell types and
miscellanous.

2.8 Related Work

The usage of parametric topic models in gene expression data analysis has been re-
ported in several publications.

Bicego et. al. [57] have applied PLSA and LDA for biclustering microarray data. They
used the analogy between word-document and gene-sample pairs, their preprocessing
approach does not have a biological foundation. They have applied these topic models
on cancer classification (classification of leukemia and colon cancer) and tested their
system with 10 fold cross validation. The average error rate is 9.24% for PLSA, 18.45%
for LDA and 14.08% for PCA and error rates in LDA varies much depending on the
number of genes. The results of this straightforward application of topic models show
that LDA is not so successful when it is not optimized.

Chen et. al. [58] have applied LDA to analyze genome level composition of DNA
sequences in order to understand whether genes with similar functional roles contain
the similar latent topics. They applied LDA on N-mer sequence data of 635 genomes
acquired from NCBI database with symmetric priors. In this method, N-mers are
taken as words with N-letters and genome as the document.

Chen et. al. [59] have used LDA in metagenomics area. They have found top ranked
taxa of each latent topic by biclustering NMERs and the top ranked latent topics of
samples. They have discovered microbial groups in each sample.

Bicego et.al. [60] have used PLSA to extract biclusters in microarray expression data
and highly correlated sample and gene groups. They determined overrepresented GO
terms in the biclusters using GOstat tool and evaluated the study with both real data
and synthetic benchmark.

Flaherty et. al. [61] have developed LLDA (Labeled Latent Dirichlet Allocation) model
in order to get rid of the limitation of traditional algorithms to classify a gene in a
single class when classifying pleiotropic genes. This study aimed to make drug-target
predictions and its area was chemogenomics.

Chheng [62] have used topic modeling to extract gene relations from medical literature
(PUBMED). The idea behind this study was that genes with similar research topics
would be functionally related.

Caldas et. al. [63] have developed a system in order to find related experiments given
a particular experiment. This application makes it possible to use a dataset itself
as a query to search for similar experimental data. This study enables to overcome
problems stemmed from e meta-data usage. In this study, high biological coherence
was achieved and related experiments were captured. The average precision was 82%
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while random base was 40%.

Bicego et. al. [64] have used probabilistic topic modeling in generative embedding
phase of renal cancer cell classification on tissue microarray images. They took visual
features as words and nuclei as documents.

Liu et. a. [65] have used Correspondence Latent Dirichlet Allocation (Corr-LDA)
for the purpose of identifying FMRM (functional miRNA regulatory modules).Their
algorithm allows to bicluster heterogenous data of miRNA and mRNA both with
and without binding information but they reported only result of the implementation
without binding information in this paper.

Perina et. al. [66] have handled usage of generative-discriminative approaches in mi-
croarray data classification task. They derived features of samples as being The Fisher
Score, TOP kernel scores, Log Likelihood Ratio, Score Space, Free Energy Score Space
and Posterior Divergence Spaces on PLSA model. They performed Support Vector Ma-
chine classification with linear kernel on Colon Cancer, Ovariance Cancer and DLBCL
datasets by defining similarity of two samples as inner product of their scores.

Rogers et. al. [67] have developed a model called Latent Process Decomposition (LPD).
In this study, the LDA model has been modified to be able to express the continuous
nature of gene expression data better. The word- topic distributions are Gaussians
instead of multinomials in original LDA.

Perina et. al. [68] have proposed a method called BaLDA (Biologically - aware latent
dirichlet allocation) for the classification of microarray expression, it is a modifica-
tion of LPD where the dependencies among genes are integrated to the system with a
clustering module. This study takes external information into account but uses exter-
nal information as constraints not as priors. If the prior information is not true, the
model can not overcome this problem. In our approach, if data contradicts with prior
information, prior information is set aside.

Pino et. al. [69] have used LDA to predict gene annotations. They used gene-
annotation matrix A, as their corpus where gene i has an annotation to annotation
term j A[i, j] = 1 else A[i, j] = 0. The interesting point in this study, they used
asymmetric prior on topic-annotation distribution. Their approach is different from
ours, their aim is not to incorporate external gene co-operation information. In our
study, we use a matrix whose individual row has a gene’s co-expression/co-regulation
information, we use a single row for each topic. In this study, they use the same
asymmetric vector for all topics. They were inspired by the term frequency- inverse
document frequency (tf-idf) concept of text mining domain. They use inverse gene
frequency and the prior favors the biological annotation terms associated with fewer
genes and they contend that this improvement contributes to generate more specific
topics.

Nonparametric Bayesian methods have also been used in microarray and RNA-seq
data studies. Vavoulis et. al. [70] developed a software package called DGEclust for
clustering and differential expression analysis of RNA-Seq data. In this software, they
have implemented HDP algorithm but they have modified HDP in a way that allows
to draw expression profiles of genes from Negative Binomial Distribution.
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Gerber et. al. [71] have developed a software called GeneProgram. They modified
HDP in a way to collect tissues into tissue groups. Their model collects tissues into
groups and genes into overlapping topics on time series data.

Wang&Wang [72] have applied HDP in order to segment regulatory network and
clustering gene expression data of yeast cell cycle.

Caldas&Kaski [73] have used Nested Chinese Restaurant Processes for hierarchical
biclustering of miRNA expression data.

These nonparametric Bayesian studies either use HDP or a very similar variant, but
they use flat priors unlike our study.

In the document clustering domain, Wallach et. al. [74] claim that asymmetric Dirich-
let priors over the document-topic distribution can improve LDA’s performance while
asymmetric priors over the word-topic distribution can not. Although words in docu-
ments and transcripts (genes) in biological samples have many common features; in at
least one aspect they differ: causal relationship among words is not as strong as that
among genes. We are claiming and will prove that asymmetric priors over gene-topic
distribution have an impact on performance.

Furthermore, Chen et. al. [75] have objected Wallach et al.’s claim in the text domain
as well. There are a number of studies (e.g. [75–84]) that improve different parametric
and nonparametric topic models with priors on the word-topic distribution in the text
domain.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Method

The model we have proposed in this thesis study is supposed to have the following
features:

1. It should be able to find biclusters, in other words, the clusters found by the
model must cover both samples and transcripts simultaneously. A bicluster
should be a mixture of transcripts and a sample should be a mixture of biclusters.

2. The clusters should be overlapping and should have fuzzy memberships. By this
way, context specific behavior of genes can be modeled.

3. It should not need any knowledge or guess about the number of biclusters.

4. It should be capable of using external information about gene co-regulation and
co-expression (like gene regulatory networks). This enables the model to work
with sparser data.

3.1.1 Mixed-Membership Models

Mixed-membership models are models that can find latent factors in grouped data.
Grouped data is data which can be represented in a frequency table. In the text
mining domain, the groups are the documents, the frequencies are the number of
occurances of different word types in each document. Topics are the latent factors. In
our analogy, we represent expression levels as the observations; samples as the groups
and the biological contexts as the factors. We give the graphical representation of our
model in Figure 3.1 with the other topic models to illustrate the position of our model
in the evolution of topic models.

Although mixed membership models have been explained in detail in Section ??, we
find it useful to review them in order to make our model more understandable. First
mixed membership model is the Probabilistic Latent Semantic Analysis (PLSA) [16]
and its plate notation can be seen in Figure 3.1(a). In PLSA, a latent mixture of
topics (zj.) which is in fact a point in the topic simplex, is assigned for each sample,
the observations (i.e. gene expression levels) xji s are drawn from this distribution.
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Figure 3.1: Mixed-membership models. Observed variables are shaded, latent
variables are unshaded, and deterministic entities are framed by diamonds. In each
plate diagramM denotes the number of samples (assays), Nj the number of transcripts
(observations) assayed in sample j, K the number of topics, and V the number of
transcript types (i.e. the vocabulary). ~θj is the topic distribution of jth sample (or
the index of the jth sample in the case of PLSA), and xji is the observed transcript
type of the ith transcript observed in the jth sample. zji is the topic membership of
each observation in each sample. ~φk is the distribution of the kth topic over transcript
types.
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Expectation-Maximization approach is used for finding this mixture of topics as well
as the correct word distribution, which is a point in the word simplex, for each topic.
The main shortcoming of PLSA is that it is not a generative model and can not assess
an unseen sample.

The second model whose plate notation can be seen in Figure 3.1(b) is Latent Dirichlet
Allocation (LDA) and it overcomes the aferomentioned problem. In LDA model,
samples are modeled as Dirichlet distributions (~θj is the Dirichlet distribution for the
jth sample) over the topic simplex; similarly, topics are Dirichlet distributions (~φk is the
Dirichlet distribution for the kth topic) over the word simplex. The hyperparameter α
is the concentration parameter for the sample distribution. It defines the smoothness
of topic distribution in a sample; if it is too small, the distribution is peaky and a
few topics have high probability while the others have very small probability. If it
is too large the topic distribution becomes uniform. Similarly, η is the concentration
parameter for the topic distribution and it defines the smoothness of word distribution
over a topic. If it is too small, few words tend to have high probability and if it is
too large, every word has nearly same probability in a topic. In generative modeling,
LDA’s mechanism is as follows:

~θj ∼ Dir(α)

φk ∼ Dir(η)

zji ∼ Multinomial(~θj) for each obs. i in sample j

xji ∼ Multinomial(~φ1...k | zji)
(3.1)

Both PLSA and LDA need the number of topics to be set before running the algorithms.
It is hard to guess a plausible number of topics because one may have no idea about
the number of active cellular contexts in a sample set. Model selection is the approach
to get over this handicap and it is performed by running LDA and PLSA with different
number of topics. Cross validation using an external index like perplexity can be used
to decide on the best number of topic among these runs.

Hierarchical Dirichlet Process as a nonparametric Bayesian Model achieves model se-
lection on a single run instead of trying to optimize the number of topics across runs,
it finds the number of topics which is likely to result in the simplest accurate model.
HDP is the nonparametric counterpart of LDA and the Dirichlet distributions in LDA
are replaced by Dirichlet Processes in HDP. The graphical representation of HDP can
be seen in Figure 3.1(c).

In HDP model, the global (experiment level) topic distribution is composed by draws
from a Dirichlet process ~π whose concentration parameter is γ. Topic distribution
of sample j is given by ~θj . ~θj is a Dirichlet distribution sampled from the Dirichlet
distribution ~π with a concentration parameter α. Each observation of a sample (let’s
say ith observation of jth sample) is assumed to be generated by first sampling a topic
k (k = zji) according to the distribution ~π and then sampling an observation according
to the parameter distribution of topic k, φk.

This recursive construction of Dirichlet Processes (~π and ~θj) provides shrinkage among
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samples that is all the samples are mixtures of the global topics but the distribution
of topics over each sample is different. This can be shown as follows:

~π ∼ GEM(γ)

~θj ∼ DP (α~π)

(3.2)

The metaphor used for construction of HDP in our implementation is the Stick Break-
ing Construction [47] and this representation can be summarized as follows:

Let’s start with the base measure ~π.

~π =

∞∑
k=1

βkδφ∗k (3.3)

GEM(γ)(Griffiths–Engen–McCloskey [85]) refers to the joint distribution on the infi-
nite sequence (β1, β2, β3...), where βk ∼ Beta(1, γ)

(
1−

∑k−1
l=1 βl

)
. This process is

the recursive partitioning of a unit probability mass into infinite number of parameters
and kth partition’s probability is βk. The partitioning of the unit probability mass is
distributed according to the Dirichlet process GEM(γ) and ~π is the resulting distri-
bution. More information on Stick Breaking Construction can be found in Section
2.4.2.2.

The topic distribution over jth sample (~θj) is generated by a Dirichlet Process, but
this time the base measure is ~π and the concentration parameter is α. This results in
a hierarchy of Dirichlet processes. In other words, topic distribution over each sample
(~θj) is drawn from the global distribution ~π which is the distribution over all topics.
By this way, support of each ~θj is in the support of ~π. The topics in the samples
are inherited from the global topic distribution and no other topic than the topics in
the global topic distribution can be sampled in each sample and since ~π is a discrete
distribution, the topics are shared across samples. Topics are indexed by k = 1 . . .∞.

~θj =
∞∑
k=1

πjkδφ∗k (3.4)

There are technically an infinite number of topics and ~φk is the distribution of obser-
vation (transcript) types over the kth topic. These topics are the ones mentioned in
the definitions of ~π and ~θj .

zji ∼Multinomial(~θj)

~φk ∼ DP (η)

xji ∼ F (~φ1...∞|zji)
(3.5)

32



xji is the ith observation of jth sample and it is drawn from a categorical distribution. It
is the "type" of the observed transcript which can be a gene or probe name depending
on the experimental observation type.

The Dirichlet Processes included in HDP are modeled by an algorithmic construction.
The metaphors used for this construction are Stick Breaking and the Chinese Restau-
rant Process [86]. The Stick Breaking metaphor is explained above and the Chine
Restaurant Process is explained in Section 2.4.2.3. For HDP construction, two hierar-
chically constructed CRPs can be used for ~π and ~θj and this hierarchical structure is
called Chinese Restaurant Franchise (CRF) [18]. The posterior inference is done with
Gibbs sampling in this study. More detailed information about CRF and posterior
inference can be found in Section 2.4.3 and also [50] and [87].

The Gibbs update step for assignment of observations to topics can be formulated as
follows:

p(zji = k | ·) ∝
(
n¬ijk + απk

)
·
n¬ik,v=xji

+ η

n¬ik + V η
(3.6)

where n¬ij,k is the total number of observations assigned to topic k in jth sample;
n¬ik,v=xji

is the total number of observations in the experiment with the same type
as the observation in question, which are also assigned to topic k; and n¬ik is the
total number of observations which are assigned to topic k in the experiment. The
observation in question, xji is excluded from these counts.

3.1.2 Proposed Model

The proposed model offers novelties in two aspects, first is how gene expression data is
converted into sample-transcript counts (mentioned in Section 3.1.2.1) and the second
is how the prior information is handled and incorporated into the model (mentioned
in Section 3.1.2.2).

3.1.2.1 Preprocessing

First of all, we needed to find a way to represent gene expression levels of transcripts in
samples. Gene expression data takes continuous values and it is natural to be inclined
to use a continuous distribution for its representation. For example, Rogers et.al. [67]
used Gaussian distributions. In microarray image readings, the gene expression data
seems to be continuous but in fact the number of transcript in a cell is discrete. In
an assay of a cell, the reads are multinomial variables. Therefore the distribution we
have used to model gene expression data is multinomial distribution (more specifically
categorical distribution).

The multinomial distribution’s support set is the set of positive numbers and this
causes difficulty in centering. When we center transcript quantities in samples against
a reference value, over-expressed values become positive and under-expressed values
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become negative. The magnitude of these values represent the extent of differential
expression.

In transcriptomics experiments, we have V ′ different observations per sample (one
for each transcript, exon, probe etc.). We first center these observations against a
reference. We now have positive and negative values for each of V ′ observations. Since
we are using multinomial distribution, we can only use positive integers. To be able to
use negative values in multinomial distribution, the individual observation variable is
split into two different multinomial variables. Thus, the transcript type vocabulary size
is doubled, we now have a transcript type vocabulary of size V = 2V

′ . Over-expressed
observations are represented in the first of the pairs, that is in the first half of the
V size vocabulary; under-expressed observations are represented in the second of the
pairs. In other words, over-expressed observations only take 0 values in the second of
the pairs and vice versa applies to the under-expressed observations. These pairs need
to be expressed in integer values and these integer values give the number of times that
corresponds to differential expression level of a given transcript. There are different
ways for preprocessing gene expresssion data in our approach. One possible way is
Multiples of Median (MoM) measure. Another way may be rounded fold change. The
preprocessing for Multiples of Reference where the reference can be median over all
samples or a control assay is:

{e′jv, e′j(V ′+v)} =


{‖ ejv−ẽvẽv

‖, 0}, if ejv − ẽv ≥ 0

{0, ‖ |ejv−ẽv |ẽv
‖}, otherwise

(3.7)

where ejv is the expression level of vth transcript type of jth sample, ẽv is the reference
level for the vth transcript type.

Our approach is not the only option for modeling gene expression data as a multino-
mial distribution. For instance, Gerber et. al. [71], have used a multinomial variable
for magnitude and a Bernoulli indicator for the direction (over-expression or under-
expression) of differential expression for each transcript type. This usage does not
decrease the number of parameters because a transcript type is represented with two
variables like it is in our model. This representation doesn’t model the biological con-
texts where some of the genes’ behaviors are volatile among samples (i.e. cases where
the same context is defined by an "oscillation" of one or more genes).

3.1.2.2 Prior Improvement

The improvements we have made on standard HDP (Figure 3.1(c)) algorithm is en-
hancing transcription distribution over topics. In the standard HDP model a flat
distribution is used, thus the prior information is only parametrized by η. This pa-
rameter is the degree of belief in prior information.

We named our model Smoothed HDP(Figure 3.1(d)), in our model, each topic prior
is drawn from a set of ~ηv multinomials. Each of ~ηv multinomials is a distribution
based on perturbation of a transcript type. When a new topic is drawn, our model is
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informed about which transcript types are likely to be co-expressed whereas standard
HDP assumes uniform prior that is all transcripts are equally likely in a topic distri-
bution. In both models, prior information may be overridden by a sufficient number of
observations. If the observations are sparse, starting from an accurate prior belief en-
ables the model to work on a smaller space configurations and this gives better results
with less number of observations. The generative process of standard HDP (Equation
3.5) is extended as follows:

~ηk ∼Multinomial({~η1, . . . , ~ηV })
~φk ∼ DP (~ηk)

xji ∼ F (~φ1...∞|zji)
(3.8)

~ηk is sampled from V distributions of the same type multinomially based on the cen-
trality of transcript types because the likelihood of a transcript type to originate a
new topic is proportional to the prior density of it. The distribution of topic k in
question will have a prior distribution that is based on perturbation of the transcript
type which is the first observation assigned to it.

A ~ηk is drawn for each topic when it is originated. The subsequent draws of ~ηk among
~η1...v and ~φk is similar to a draw from Imprecise Dirichlet Process [88] but different
in that the number of distributions is finite.

In the implementation of smoothed HDP, a new topic is materialized by assignment
of first observation (of the transcript type whose perturbation is related to ηk) to it.
The ηk vector composes the pseudo counts of the transcript types in this topic. The
Gibbs update of standard HDP given in Equation 3.6 is modified as follows:

p(zji = k | ·) ∝
(
n¬ijk + απk

)
·
n¬ik,v=xji

+ ηkv=xji

n¬ik +
∑V

v=1 η
k
v

(3.9)

where ηkv is the element of the vector ~ηk which corresponds to transcript type v.

3.1.3 Creating The Prior

In our approach, the {~η1, . . . , ~ηV } set is represented in a V × V matrix H, which has
individual ~ηi s in its rows. We have proposed two kernels for preparing H matrix. First
is co-expression smoothing which is based on correlation of gene expression data and
the second is network-based smoothing which is based on transcriptional regulatory
network.

3.1.3.1 Co-expression Smoothing

This approach is an example of empirical Bayes estimation [89] where the priors (hy-
perparameters) are estimated from data and the estimation of priors from data in
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co-expression smoothing approach can be explained as follows, let E be the original
gene expression matrix, each row representing sample profile of a gene, each column
representing gene expression profile of a sample. The correlation matrix (e.g. Pearson
correlation) of this E matrix is ρ where ρi,j = cor(Ei·, Ej·). The V × V matrix H
can then be created by the following concatenation of transformed copies of ρ as also
described in [90]:

H =

[
0.5 + 0.5ρ 0.5− 0.5ρ

0.5− 0.5ρ 0.5 + 0.5ρ

]β
(3.10)

This H matrix is normalized to have total of V η value in each of its rows and β is set
to 8 in our experiments. The over-expression counts of transcripts are represented in
the first V ′ and the under-expression counts are represented in the indices offset by V ′

because of the arrangement in Equation (3.7). For example, if the 1st row of the H
matrix represents the counts for transcripts of A (over-expressed A), the V ′ + 1st of
H matrix represents the counts for ¬A (under-expressed A). So the likelihood of over
and under-expression of the same transcript type are inversely correlated.

Individual rows of H matrix is assured to have a sum of V η. Owing to this, prior infor-
mation can be treated as it is in the standard HDP. The individual rows of H matrix
becomes the ηkv ’s in the Equation (3.9), the

∑V
v=1 η

k
v expression in the denominator of

this equation can be replaced with V η.

The correlation (ρ) can be computed from the dataset to be biclustered or another
dataset including more samples from a large database like Array-Express [91]or Gene
Expression Omnibus [92] to be able to be more precise in correlation calculation.

3.1.3.2 Network-based Smoothing

The second way of generating H matrix is to use an external transcriptional regulatory
network information. They are available for most of the model organisms and also can
be built by gathering information from literature or experimental tools like Chip-Seq.

How to convert a transcriptional regulatory network into H matrix can be explained as
follows: A network is represented as G = {V, E}, where V is the set of transcript types
and E is the links between them. so |V| = V ′. Each element of E is a triplet of (i, j, w)
and this triplet means that there is an edge from transcript type i to transcript type j
with weight w. The weights are in the range [-1,1], positive w values mean activation
and negative w values mean inhibition of transcript type j by transcript type i.

First, we build the undirected adjacency matrix A whose elements are:

aij =


w if (i, j, w) ∈ E
w if (j, i, w) ∈ E
0 otherwise.

This matrix A, holds the relations between transcript types and their immediate neigh-
bor transcript types (radius 1). If one is interested in relations in more than 1 neigh-
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borhood, this can be found by taking appropriate power of A (e.g. A2 for radius
2),

The adjacency matrix becomes:

A× . . .×A = Ar =


a

(r)
11 u

(r)
12 . . . a

(r)
1V ′

a
(r)
12 u

(r)
22 . . . a

(r)
2V ′

...
...

. . .
...

a
(r)
V ′1 u

(r)
V ′2 . . . a

(r)
V ′V ′

 (3.11)

where a(r)
ij ’s are elements of the matrix. The matrix Ar is normalized to get the ρ

matrix.

ρij =
a

(r)
ij√

a
(r)
ii a

(r)
jj

(3.12)

The rest of network-based smoothing approach is similar to co-expression smoothing.
The ρ value is substituted in the Equation 3.10, hence H matrix is calculated.

Both Co-expression smoothing and Network-based smoothing approaches make the
HDP model more accurate and more robust to changes in hyperparameter settings. In
the next chapter, we will report the results of experiments that show this.
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CHAPTER 4

EXPERIMENTS

We have performed various experiments on synthetic and biological datasets using
HDP, Co-expression smoothing HDP and Network-based smoothing HDP.

The first experiment which is explained in detail in Section 4.1 was performed for
ensuring that HDP solves the biclustering problem. This proof of concept was achieved
by using datasets consisting of pre-seeded biclusters. In this experiment, we tested if
HDP could find the positions of biclusters correctly in two-dimensional datasets.

The second experiment which is explained in detail in Section 4.2 is the starting point
of the main contribution of this thesis study. In this experiment, we proved that
informed priors enhance success of HDP algorithm in finding overlapping biclusters.

The third experiment which is explained in detail in Section 4.3 was carried out for
quantitive evaluation of HDP and Smoothed HDP and it reports the Akaike Infor-
mation Criterion (AIC) values for datasets with different sparsity levels (number of
samples) and prior strengths (η values).

The fourth experiment which is explained in detail in Section 4.4 was accomplished
using a semi-synthetic dataset created using Syntren [20]. In this experiment different
genes were perturbed and each perturbance simulated a unique biological context.
Smoothed HDP algorithms outperformed standard HDP algorithm in finding these
biological contexts with robustness to changes in prior strength and in sparsity levels.

The fifth experiment which is explained in detail in Section 4.5 was performed on a
dataset from a prostate cancer study by Dhanasekaran et. al. [21]. In this experiment,
we evaluated comparative success of HDP and Co-expression smoothing HDP in two
metrics. First is dependent on sample-topic distribution and sample labels. We com-
pared each sample’s label with that of the sample which is most similar to it according
to its topic distribution. Second is based on the topic coherence metric given in Sec-
tion 2.5. In both evaluation approaches, Co-expression smoothing HDP provided more
successful and consistent results over different prior strengths (η values).
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4.1 HDP Trials

We wanted to establish the performance of HDP in finding biclusters. We seeded
different numbers of biclusters into two dimensional datasets, as well as noise, in a
way that every observation type is seen in every sample at least once. The datasets of
2, 4 and 8 biclusters can be seen in Figure 4.1.

(a) 2 Biclusters (b) 4 Biclusters

(c) 8 Biclusters

Figure 4.1: Seeded Biclusters

We ran HDP algorithm on these datasets and retrieved the biclusters from sample -
gene - topic triples and visualized them. All the biclusters we seeded were recovered
after HDP runs. There were also some topics with few observations, some noise topics
and some shadow topics consisting tokens from some or all of the seeded biclusters.
One example for each type of topics can be seen in 4.2.

The topics retrieved after running HDP with the datasets of pre-seeded 2, 4 and 8
biclusters with default hyperparameters (η = 0.5, γ = 1 and α = 1) can be seen in
Figure 4.3.

Topics with few tokens can be filtered just by removing topics having number of ob-
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(a) Successfully detected topic (b) Noise topic

(c) Topic with few tokens (d) Shadow topic (from 4-bicluster dataset)

Figure 4.2: Types of Retrieved Topics
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(a) First successfully-detected topic (b) Second successfully-detected topic

(c) Noise topic (d) First shadow topic

(e) Second shadow topic (f) Topic with few tokens

Figure 4.3: Topics Retrieved After 2-Bicluster Dataset Run
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servations under a specific threshold. Shadow topics can be filtered by means of the
topic coherence metric defined in Section 2.5.

4.2 HDP - Prior Improvement Trials

We used HDP test cases created by Yee Whye Teh [19] to test our prior improvement
approach. The test platform works as follows: it generates a dataset with the number
of documents and the number of word types in the vocabulary entered by the user.
The resultant clustering should satisfy bars problem. That is, let us say we have 9
different types of words in our dataset, the number of topics will be 6 -that is the total
number of columns and rows- and each topic must be one of the rectangles which can
be seen in Figure 4.4. For example, words encoded with 1,2 and 3 form a topic, 2, 5,
8 form another topic etc.

Figure 4.4: Distribution of words among topics

We implemented our preliminary Smoothed HDP approach by modifying the HDP
program [93] which has been written by Wang and Blei in C++ programming language.
We ran the Smoothed HDP program with uniform priors and got the same results with
the original HDP program using the same random seed meaning that we did not change
any behavior of the program other than we had planned to.

In the prior set-up, the total of ηkv values (pseudo counts) in the topic k,
∑V

v=1 η
k
v ,

is distributed heavily among the words that are likely to be in the same topic with
the word which has originated topic k. Let’s say word type 1 originates a new topic,
word types 1, 2, 3, 4 and 7 take greater ηkv values than the rest of the vocabulary.
Note that the prior information does not directly feed topics to the model, it just gives
information about co-existence of words.

We used terms "word" and "document" to refer the original testbench but from this
paragraph on, we will be using terms in bioinformatics. Namely sample instead of
document, transcript instead of word. The test was organized as 30, 40, 50, 60 and
70, 80 samples (sparsity levels), each sample having a Dirichlet topic distribution with
hyper-parameter 0.1. The total number of topics in the corpus was 20. The vocabulary
size in the corpus (experiment set) was 100. The experiments were repeated for the
η values (prior strengths) of 0.05, 0.25, 0.5, 0.75 and 1. The tests were run 100 times
for each combination of algorithm, sparsity level and prior strength resulting in 6000
runs.
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Transcript distribution of each original topic was compared to that of each topic re-
trieved in a run. The cosine similarity between the original topic and the most similar
topic was regarded as the measure of topic accuracy.

Since there were 20 topics in the experiment, a properly working algorithm should
have found around 20 topics.

The topic accuracy values and the number of topics with respect to different sparsity
levels can be seen in Figure 4.5(a) and Figure 4.5(b) respectively. Likewise the topic
accuracy values and the number of topics with respect to different prior strengths can
be seen in Figure 4.6(a) and Figure 4.6(b) respectively.

The results showed that Smoothed HDP algorithm outperforms HDP in every com-
bination of sparsity level and prior strength providing more consistent results under
varying prior strengths and sparsity levels. It also finds the correct number of topics
more accurately than standard HDP.

4.3 Akaike Information Criterion Test for HDP and Smoothing HDP
Algorithm

We used the same experimental set up with the previous test to analyze our approach
quantitively. Akaike Information Criterion (AIC) [94]was used for model selection
between original HDP and Smoothed HDP. The AIC criterion given each dataset is
calculated with Equation 4.1.

AIC = 2k − 2L (4.1)
where k is the number of parameters and L is the log-likelihood of the model given
data. AIC can give us an idea on relative quality of a model among the other models
applied on the same dataset and it has no absolute meaning. It measures relative
information loss when the model is applied on dataset, and it provides a trade-off
between fit on data and model complexity, it has higher values for models with worse
fit and more parameters. Lower AIC values mean better clustering performance. AIC
value of HDP was higher than that of Smoothed HDP algorithms for all sparsity level
and prior strength combinations. The AIC values with respect to sparsity levels and
prior strengths can be seen in Figure 4.7(a) and Figure 4.7(b) respectively.

4.4 Experiments with Semi-synthetic Dataset

In this experiment, we tested our prior improvement approach with a semi-synthetic
dataset whose preparation details, implementation and evaluation are explained in
Section 4.4.1, Section 4.4.2 and Section 4.4.3 respectively. We used R and C++ pro-
gramming languages, C++ code was modified from HDP code by Wang and Blei [93].

4.4.1 Data Preparation

We generated gene expression data using Syntren [20] which is able to simulate gene
expression data in accordance with network interactions given and perturbation of se-
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Figure 4.5: Prior Improvement Experiment: Accuracy and the Number of Topics with
respect to Sparsity (η = 0.25). The data points shows medians over all runs, the bands show the

interquartile ranges, the horizontal dashed lines represents the true number of topics (20)
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Figure 4.6: Prior Improvement Experiment: Accuracy and the Number of Topics with
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lected regulators. We used a yeast transcriptional network available in GeneNetWeaver
[95] for both simulation of gene expression data and inference of prior information.
This network was composed of 4440 genes and 12872 edges. 6342 of these edges were
exhibitory and 6330 edges were inhibitory.

Since Syntren allows perturbation of genes with no indegree, we continued to work
with the genes, YAL051W, YBL054W, YBR240C, YDL048C, YDL056W, YDR081C,
YDR213W, YDR253C, YDR266C, YDR421W, YER108C, YER169W, YFL044C, YHR206W,
YJL056C, YJL206C, YKL032C, YKR064W, YLR014C, YLR098C, YML113W, YMR021C,
YMR042W, YOL067C, YOL089C, YOR113W, YOR363C, YOR380W, YPL038W,
YPL089C, YPR199C. We generated gene expression data by fully activating each
of these genes at different experiments while the rest are deactivated. In another
experiment, we deactivated all regulators and used the gene expression data of this ex-
periment as reference. Examining the difference between each activation experiment
result and reference gave us the number of genes effected by the activation of each
gene. The number of genes effected after perturbation of the regulators were 2224, 2,
40, 8, 2288, 3, 14, 46, 1, 32, 1, 19, 10, 62, 10, 10, 10, 1, 15, 14, 1, 8, 3, 1, 6, 1, 13, 1, 1,
7, 1 respectively. We selected the regulators which effect the number of genes between
13 and 62. YBR240C, YDR213W, YDR253C, YDR421W, YER169W, YHR206W,
YLR014C, YLR098C, YOR363C were the selected regulators. We perturbed these 9
regulators to generate gene expression data with Syntren [20]. The gene expression
induced by perturbation of individual regulator was considered as being a topic. By
this way, we obtained true gene expression profile of each topic. The gene expression
profiles of samples in the experiment were generated based on perturbation of genes
with a Dirichlet distribution whose hyperparameter was 0.05.

4.4.2 Implementation

The test was organized as 30, 40, 50, 60 and 70, 80 samples (sparsity levels). The
experiments were repeated for the η values (prior strengths) of 0.05, 0.25, 0.5, 0.75
and 1. The tests were run 100 times for each combination of algorithm, sparsity level
and prior strength resulting in 9000 runs.

4.4.3 Results

Gene expression profile of each original topic was compared to that of each topic
retrieved in a run. The cosine similarity between the original topic and the most
similar topic was regarded as the measure of topic accuracy.

The topic accuracy values and the number of topics with respect to different sparsity
levels can be seen in Figure 4.8(a) and Figure 4.8(b) respectively. Likewise the topic
accuracy values and the number of topics with respect to different prior strengths can
be seen in Figure 4.9(a) and Figure 4.9(b) respectively.
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4.5 Evaluation on Prostate Cancer Dataset

4.5.1 Dataset

The dataset used for evaluation was taken from a prostate cancer study by Dhanasekaran
et. al. [21]. In this dataset, there are 53 samples and 9984 genes. The distribution
of the samples for classes is as follows: 14 samples for benign prostatic hyperplasia
(BPH), 3 samples for normal adjacent prostate (NAP), 1 sample for normal adjacent
tumor (NAT), 14 samples for localized prostate cancer (PCA), 1 sample for prostati-
tis (PRO) and 20 samples for metastatic tumors (MET). For evaluation purpose, the
samples were considered in 3 macro-classes: non-cancer (BPH, NAP, PRO), cancer
(NAT,PCA) and metastatic (MET) as it had been in [67] and [68].

4.5.2 Implementation and Results

In this study we used 500 genes which have the highest variance across samples. We
applied the multiples-of-reference approach which is defined in Equation 3.7 to in order
to convert gene expression data into how many times a given transcript type is seen
in a sample. We prepared the H matrix as defined in Equation 3.10.

We repeated our experiment 100 times for each η value (0.1, 0.5, 2.5, 12.5) resulting
in 400 runs. We performed evaluation by two different metrics. First is dependent
on labels of samples. The topics that explain 0.9 probability of each sample were
extracted and each sample’s distance to remaining samples was calculated as Euclidean
distance between their values on these topics. The most similar sample was found
in 1 neighborhood and compared in terms of macro-class label (non-cancer, cancer,
metastatic). The comparative success rate of HDP and Co-expression Smoothed HDP
with respect to different η values can be seen in Figure 4.10.

The second evaluation criterion is the topic coherence metric which was defined by
Mimno et. al. [22] and given in Section 2.5. According to this metric, it is expected
that the likelihood of each representative gene given the other representative genes
should be high in a high-quality topic. We extracted the genes that explain 30 percent
of each topic and used as representative genes. The topic coherence values of HDP
and Co-expression Smoothed HDP with respect to different η values can be seen in
Figure 4.11.
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CHAPTER 5

DISCUSSION AND CONCLUSION

In this dissertation, we applied the nonparametric topic model, HDP, to gene expres-
sion data biclustering problem. We enhanced the original HDP model by incorporating
gene-gene co-expression and co-regulation information as prior improvement. We de-
fined two different prior improvement approaches, first is encoding an external gene
regulatory network into co-regulation information and the second is encoding the cor-
relation of gene expression matrix into co-expression information. We proved, through
experiments, that HDP informed with either of the two prior improvement approaches,
is more successful at biclustering gene expression data and robust to changes in hyper-
parameter on transcript-topic distribution (η) compared to standard HDP.

The reason why we used a topic model, which is originally a text mining method,
is that text mining and gene expression data analysis have a lot in common. First,
in text mining there are stop words, like the, an, is, etc. which have almost the
same frequency in every document and do not distinguish documents, we have house
keeping (maintenance) genes whose expression level have low variation across different
cells [96, 97], like ERCC3, NR3C1, HPS1 [97]. We filter housekeeping genes before
starting gene expression analysis; the text miner, likewise, removes the stop words
before text analysis.

The topics, co-occurance of semantically related words, are conceptually very similar
to biclusters in bioinformatics domain. Recall the reason which forced the bioinfor-
maticians to move on from clusters to biclusters, it was the need for capturing local
patterns in gene expression data. The same applies to text domain, too. If a group of
words together compose a semantically meaningful co-occurance, we do not expect to
observe this togetherness in every document, we see the words together in only relevant
documents, this is text domain’s local pattern.

The gene expression matrix is similar to document-term matrix. Like the gene expres-
sion matrix represents mRNA extents of each gene of a sample in a row, document-term
matrix represents the frequency of a term in a document in each of its rows. So the
analogy is from gene expression data matrix to document-term matrix.

There is a similarity between genes and words. The words, the topics’ constituents,
may have polysemic usages, for example the word "fine" means well enough, on the
other hand it also means punisment in terms of money for an offense. Namely, the
word "fine" has different meaning in different contexts. Genes in different context
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contribute to different activities in a cell, their context sensitivity is like polysemy in
text domain.

A topic is a probability distribution over genes in our analogy. This provides member-
ship values of genes to biclusters. We can make GSEA as well as SEA since we can use
the ranked list of genes in a bicluster with respect to their membership to the bicluster,
traditional biclustering algorithms allow only SEA. GSEA’s main advantage over SEA
is avoiding the consequences of selecting an arbitrary threshold to decide "interesting
genes" for gene set annotation [98]. The differences between these enrichment analysis
methods were mentioned in 2.7.2.

Another similarity is between samples and documents. A document can be about
more than one topic; for example, it may be about the impact of doing exercise on
school success. So, we expect to see words of both sports and education topics in this
document. Likewise, there may be more than one biclusters active in a sample. The
weights of biclusters are also informative than the binary variable whether the bicluster
is active in a sample. Let us give an example, if we work on a time series data, we can
regard time points as conditions and we can observe the transition between different
biological activities during the passage over the sequential time points. At least, having
probabilistic features provides more information about sample similarities than binary
features when we use bicluster distribution in a sample as the feature set.

Our study has three stages, first is preprocessing, that is converting gene expression
data into transcript counts in samples to be able use topic model. Second is incorporat-
ing priors into topic model. Third is using the output of topic model at bioinformatics
domain’s disposal. At different steps, it has some commonalities and discrepancies
with other studies. We want to explain the reasons why we have not followed similar
path with the following studies. Namely, we will focus on discrepancies.

At the preprocessing we differ from the study by Rogers et. al. [67], they did not modify
gene expression data to be able to use as input to the topic model, they instead modified
the parametric topic model, LDA, to make it compatible with gene expression data
and they named their model LPD. They used Gaussians for topic-gene distribution to
model continuous nature of gene expression data. To us, it is more plausible to model
gene expression data as multinomials because number of transcripts in a cell is discrete,
despite gene expression seems to be continuous in microarray images. The study by
Gerber et. al. [71] discretized gene expression data and used the nonparametric topic
model, HDP, as is in this aspect. While they used multinomial variable for magnitude
to represent gene expression level in a sample like us, their study differs in under-
and over- expression definition. They used a Bernoulli indicator for the direction of
differential expression for each transcript type, we instead centered the gene expression
values against a reference, and used positive and negative values for observations in
samples. Only positive integers can be used in multinomial distribution and to be
able to use negative values, we splitted the individual observation variable into two
different multinomial variables. Thus, the transcript type vocabulary size was doubled,
first half represented over- and second half represented under-expression. So, both
approaches use two variables for a transcript type. Our approach handles one issue
that was ignored in their study. In the biological contexts where some of the genes’
behaviors are volatile among samples (i.e. cases where the same context is defined
by an "oscillation" of one or more genes), both under-expression and over-expression
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of the same transcript type can have high probabilities in a topic because they are
independent variables.

Let us mention our main contribution; we incorporated prior gene co-regulation and
co-expression information into HDP. There is another method (BaLDA) [68] which
incorporated the gene dependencies into the LPD model [67] with a clustering module.
This study takes external information into account but uses external information as
constraints not as priors. If the prior information is not true, the model can not
overcome this problem. In our approach, if data contradicts with prior information,
prior information is set aside.

There is a recent study [69] which also used asymmetric priors in bioinformatics do-
main. Their approach is different from ours. In our study, we used a matrix whose
individual row has a gene’s co-expression/co-regulation information, we used a single
row for each topic. In this study, they use the same asymmetric vector for all topics
and this vector does not carry co-expression or co-regulation information. They used
inverse gene frequency and the prior favors the biological annotation terms associated
with fewer genes and they stipulate that this improvement contributes to generate
more specific topics.

5.1 Discussion on Results of Experiments

In the first experiment (Section 4.1), we established HDP’s performance in finding
pre-seeded biclusters. In the result of biclustering two dimensional datasets of 2, 4
and 8 biclusters with HDP, we observed that all biclusters were recovered, there were
additional topics (biclusters), some had few observations, some had the background
image of all biclusters, and some were noise biclusters. To us, this is acceptable
because need for removing junk topics have been mentioned and metrics have been
defined for finding these topics in several papers [22,99–103]. One of these metrics [22]
was mentioned in Section 2.5. All of these metrics are for text mining domain and
some of them like [22] are applicable to our study, too. We have a stronger incoherence
metric in our domain, incoherent topics are unlikely to annotate GO terms or KEGG
pathways with significant p-values, so we can identify and remove them.

The second experiment was performed to prove that informed priors enhance the suc-
cess of HDP algorithm in finding overlapping biclusters. We used the testbench created
by Yee Whye Teh [19] to test the performance of standard HDP. We compared stan-
dard HDP and Smoothed HDP under different spasity levels (number of samples) and
prior strengths (η values). Smoothed HDP outperformed standard HDP in each spar-
sity level and prior strength combination in both finding the correct number of topics
and the transcript distribution over topics. We can see that HDP underestimated the
correct number of topics. The reason for this, it merged different topics in the same
topic because each transcript type has membership to two topics and the model could
not differentiate the topics which have commonalities but also differences. In gene
expression analysis, this shortcoming may cause to make gene set enrichment analysis
results too general. Smoothed HDP algorithms will prevent us from overlooking topics
which have commonalities but also differences from other topics. We are thus more
likely to hit more specific (closer to the leaf terms) GO terms if we use Smoothed HDP
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algorithms in geneset enrichment analysis. The Smoothed HDP found a few additional
topics with fewer tokens than the rest of the topics in high η values (0.75 and 1) and
they can easily be removed by thresholding which was also the case in HDP runs but
unrecognized because it already underestimated the number of topics. Note that the
interquantile band of Smoothed HDP algorithm is tighter than HDP’s in all experi-
ments, this means the variability of results across runs is lower, thus the results are
more reliable.

The third experiment was performed whether a model selection criterion, AIC, would
favor SHDP rather than HDP. AIC value which provides a trade-off between fit on
data and model complexity was calculated for each run. Lower AIC values mean better
clustering performance and AIC value of HDP was higher than that of SHDP algorithm
for all sparsity level and prior strength combinations. This experiment proved with
internal indices, that SHDP is preferable over HDP. Note that the AIC values over
SHDP runs have lower interquantile range than HDP runs and this is consistent with
the other experiments’ results.

The fourth experiment was performed on a semi-synthetic dataset generated by Syn-
tren [20]. This experiment is the backbone of our study because it is a controlled
gene perturbation experiment that is we already know the ground truth. In addition,
the gene expression profiles of topics and samples were generated by an independent
platform [20] which generates gene expression data similar to biological experimental
data. We tested both of our prior smoothing approaches (Co-expression Smooth-
ing, Network-based Smoothing) in this experiment. The results showed that prior
smoothed HDP outperformed standard HDP by far. The results of this experiment
were consistent with the results of the first experiment and this experiment set-up
also have overlapping topics. The cosine similarity between topics based on their gene
expression profiles can be seen in Figure 5.1.

We can see that Smoothed HDP is more successful at recovering the preseeded topics
and also finding the correct number of topics. Smoothed HDP is robust to changes
in prior strength levels. In contrast, HDP is effected heavily by the change in prior
strength. Let us explain the reason for it. The prior information in standard HDP
is flat that is probability of each transcript type in a topic is the same and the prior
strength is the belief in this flat distribution. So, if the prior strength is high, the
topics will start with a strong belief that every gene has the same chance to be in a
topic. This causes underfitting and the model can not capture the relations between
genes. If the prior strength is very small, a few genes will dominate the topic and the
sampling process will start to open new topics for each small group of observations.
This will cause high number of topics and execution time.

A topic is a Dirichlet compund multinomial distribution over transcript types that is
the prior is Dirichlet distribution and the likelihood is multinomial distribution. In our
approach, the prior distribution is asymmetric Dirichlet that is each topic starts with
a belief that a specific group of genes is active in a topic. The initial probability of a
transcript type in a topic is proportional the ηkv which is the transcript type’s element
of the vector ~ηk (prior distribution of topic k) and first draw will be accordingly. The
subsequent draws of the transcript v in sampling are proportional to number of times
the transcript type v has been drawn in topic k plus ηkv ; so, the topic will have tendency
to form around the genes with higher probabilities in the prior distribution. This is
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Figure 5.1: Original Topic Cosine Similarity

the key for success of Smoothed HDP algorithms. The reason why smoothed HDP
algorithm is robust to changes in η values that the prior is consistent with likelihood,
that is the degree of belief in the correct distribution does not effect the results. If the
prior information was incorrect, the increase in η values would negatively effect the
success.

The posterior distribution is the weighted average of prior and empiricial distributions
that is the empricial distribution is smoothed by the prior distribution to compute the
posterior distribution. As the evidence gets more, the prior distribution is dominated
by the empirical distribution. There are two extreme cases. First is if there is no
evidence, posterior distribution will the same with the prior distribution. Second is
if there is infinite evidence, the posterior will be the same with the empirical distri-
bution. In standard HDP, posterior distribution tends to be similar to uniform prior
distribution in lack of evidence, but in smoothed HDP, as long as the prior information
is correct,the prior reflects the underlying distribution of data, thus smoothed HDP is
more succesful at finding the inherent structure in data even if there is not sufficent
data to represent it.

We did not set a specific number of iterations for HDP and Smoothed HDP runs,
we continued training for more 300 iterations after the best likelihood achieved by the
models in each run. So, the low success rate of HDP is not attributable to convergence.

The time (till each algorithm reached its best likelihood) analyses of HDP, Co-expression
Smoothing HDP and Network-based Smoothing HDP with respect to sparsity levels
and prior strengths can be seen in Figure 5.2 and 5.3 respectively. The computer which
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the experiments were run on has a processor of 2,8 GHz Intel Core i7 and RAM of 16
GB 1600 MHz DDR3.
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Figure 5.2: Time wrt. Sparsity Levels (η = 1)

The fifth experiment was performed on a real biological dataset, it was a prostate
cancer dataset collected by Dhanasekaran et. al. [21]. In this experiment, we evalu-
ated Co-expression Smoothing approach with two different criteria. First is based on
their labels and the second is the topic coherence metric. In the first evaluation, HDP
and Co-expression Smoothing HDP were used to reconstruct samples’ feature set in
order to reduce dimensionality. The topic proportions of each sample became its fea-
tures. The topics that explain 0.9 probability of each sample were extracted and each
sample’s distance to remaining samples was calculated as Euclidean distance between
their values on these topics. The most similar sample was found in 1 neighborhood
and compared in terms of class label. In the second evaluation, the coherence metric
which was defined by Mimno et. al. [22] and given in Section 2.5 was used. The genes
that explain 30 percent of each topic were used as the representative genes and substi-
tuted in Equation 2.26. In both evaluation approaches, Co-expression smoothing HDP
were robust to changes in hyperparameter η. In the first evaluation, Co-expression
Smoothing HDP outperformed HDP in every η values but η = 0.5. Indeed, the la-
bel evaluation is less reliable than the rest of evaluation approaches we have used in
this dissertion, because the aim of the unsupervised topic models is to maximize the
posterior probability of the corpus. If the prevalent formation in the corpus is not
relevant to labels, the reduced feature set will not be succesful at predicting the labels.
Blei & McAuliffe [104] developed a topic model, supervised latent Dirichlet allocation
(sLDA), to model documents and responses/labels together to overcome this problem.

The second evaluation approach was dependent on an internal topic coherence index.
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In this evaluation approach the representative genes of each topic were extracted and
their co-occurance frequency in the samples were calculated and used as the comparison
metric. This evaluation provided to measure quality of topics without any external
labeling which may have been misleading. The results showed that Co-expression
Smoothing HDP outperformed standard HDP in finding coherent topics with robust-
ness to changes in prior strength η.

5.2 Future Work

The prior improvement we have proposed in this dissertation enables to use a single
gene regulatory network in HDP prior and up to now, genome-wide gene regulatory
network is used, tissue specific networks can be incorporated into prior information
and each sample can use prior information derived from its own tissue type’s network.
GNAT [105] can be a source for tissue specific gene regulatory networks.

The model can further be improved by incorparating sample similarities either on the
hyperparameter on sample-topic distribution(α), to our best knowledge there is no such
a study, or grouping of samples into sample groups based on sample topic distribution
during iterations, this approach was handled in Gerber et. al.’s study [71].

This study can be converted into a web application, which allows uploading gene
expression data and gene regulatory network and gives sample-topic, gene-topic distri-
bution in turn, for the users interested in probabilistic biclustering of gene expression
data.
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We have used HDP for discriminative purposes but in generative sense, new samples
can be generated from the fitted model and we can simulate gene expression data
similar to the gene expression data used in the input of the system and this can be
used testing the robustness of algorithms developed for module detection or network
extraction from gene expression data like WGCNA [106] and CoRegNet [107].

The proposed model can be used to find the most correct gene regulatory network
from the existing ones by evaluating the output of Network-based Smoothing HDP.
This evaluation can be done with either the topic coherence metric we have mentioned
in Section 2.5 and applied to evaluation of prostate cancer example in Section 4.5 or
the p-values of the geneset enrichment of the topics retrieved after the Network-based
Smoothing HDP runs with different gene regulatory networks.

The top genes in a topic can be used for gene regulatory network construction or mod-
ule detection. This can be achieved by combining the gene-topic distribution output of
topic model (HDP or Smoothed HDP) with the information from transcription binding
site databases like JASPAR [108] and tf-target gene databases like TRANSFAC [109],
to our best knowledge there is no such a study.

The integrated analysis of different types of omics (genomics, proteomics, metabolomics
etc.) data from a group of samples can be achieved using topic models by defining
more than one word-topic distribution. Topic models specialized for this purpose can
also be developed by modifying the original topic models according to the distribution
of the data types of interest or relations among them.

The gist of our study is to prove that prior improvement works in exploring gene
expression data with probabilistic topic models, we offered two differerent prior im-
provement approaches. Different prior improvement approaches can also be developed,
for example the R package GOSim [110] defines gene similarities based on their GO
term annotations. Their calculation methods can be kernels to prepare the H matrix
defined in Section 3.1.3.

Researchers prefer to use HDP because it does not require the number of topics to be set
beforehand but it may produce uneven size distribution over topics because of rich gets
richer property of Dirichlet process, that is topics having high number of observations
tend to attract new observations than topics with low number of observations, meaning
that each topic may not have similar number of observations, there is a study by
Wallach et.al. [111] to fix this issue but it is still an open problem.

There are topic model variants developed for specialized purposes, like the Author
Topic Model [112] which was developed for exploring the relationships between au-
thors, documents, topics, and words and Collaborative Topic-Model [113] which was
developed as a recommender system matching readers, and scientific articles, both
systems can be empowered with our prior improvement approach using WordNet [114]
which is a network of semantic relations and similarities among words and can together
form a helpful academic search engine.
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APPENDIX

Posterior Sampling By Direct Sampling

The Monte Carlo Markov Chain (MCMC) sampling mechanism used for posterior

sampling in this study is Direct Assignment [115] and its mechanism is explained on

a toy example.

Detailed Explanation of Direct Assignment Sampling Mechanism for SHDP

on a Toy Example

We explain one iteration of posterior sampling on a toy example. Our example is

from the bars problem which has been defined in Section 4.2. We are going to use a

vocabulary of four word types, V = (1, 2, 3, 4).

1 2 1st topic

3 4 2nd topic

3rd topic 4th topic

Recall that each row and each column represented a topic.

Word distribution over 1st topic is [0.5, 0.5, 0, 0],

2nd topic is [0, 0, 0.5, 0.5],

3rd topic is [0.5, 0, 0.5, 0],

4th topic is [0, 0.5, 0, 0.5].

We generate 2 documents:

Doc1 is a mixture of 1st and 4th topics.
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Doc1=[1,2, 2,4]

Doc2 is a mixture of 2nd and 3rd topics.

Doc2=[3 4 1 3]

We calculate the H matrix:

H =


0.5V η 0.25V η 0.25V η 0

0.25V η 0.5V η 0 0.25V η

0.25V η 0 0.5V η 0.25V η

0 0.25V η 0.25V η 0.5V η



V = 4 and η = 0.5 and we use a small constant (10−6) instead of 0.

H =


1 0.5 0.5 10−6

0.5 1 10−6 0.5

0.5 10−6 1 0.5

10−6 0.5 0.5 1


Our hyperparameter for G0 Dirichlet distribution is γ = 1 and Gj Dirichlet distribu-

tions is α = 1.

One Iteration: Assume that we are running an iteration in Gibbs sampling, at this

point there are 2 active topic, 1 table for each topic in each document(m1,1 = m1,2 =

m2,1 = m2,2 = 1, so m.1 = 2, m.2 = 2 where m1,2 is the number of tables assigned

to topic 2 in document 1 and m.2 is the total number of tables assigned to topic 2).

Doc1’s first two tokens (1, 2) have been assigned to Topic1 whose prior is related to

word type 1 and last two tokens (2,4) have been assigned to Topic2 whose prior is

related to word type 2. Doc2’s first two tokens have been assigned to Topic1 and last

two tokens have been assigned to Topic2.

Sampling π :

(π1, . . . , πk, πnew)|. ∼ Dir(m.1, . . . ,m.K , γ) (.1)

1. Calculate the global topic distribution, π:
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(π1, π2, πnew) = Dir(m.1,m.2, γ) = Dir(2, 2, 1)

π1 = 0.6788572, π2 = 0.2680592, πnew = 0.05308357

2. Calculate zji for each token of each document:

Sampling z :

p(zji = k|.) ∝


(n−jijk + απk)f

−xji
k , if k previously used

απnewf
−xji
knew (xji), if k = knew

(.2)

where n−jijk is the number of tokens assigned to topic k in document j excluding

the token in question.

Doc1’s first token is 1:

z1,1 = 1|. ∝ n¬ijk + απk ·
n¬ik,v=xji

+ηkv=xji

n¬ik +
∑V

v=1 η
k
v

= (1 + 1 ∗ 0.678857). (0+1)
(3+2) = 0.5357714

z1,1 = 2|. ∝ (2 + 1 ∗ 0.2680592). (1+0.5)
(4+2) = 0.5670148

z1,1 = knew|. ∝ απnew
V = 1∗0.053083574

4 = 0.01327089

Let’s say this token is assigned to Topic2.

Doc1’s second token is 2:

z1,2 = 1|. ∝ (0 + 1 ∗ 0.678857). (0+0.5)
(2+2) = 0.08485713

z1,2 = 2|. ∝ (3 + 1 ∗ 0.2680592). (1+1)
(5+2) = 0.9337312

z1,2 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

It is assigned to Topic2.

Doc1’s third token is 2:

z1,3 = 1|. ∝ (0 + 1 ∗ 0.678857). (0+0.5)
(2+2) = 0.08485713

z1,3 = 2|. ∝ (3 + 1 ∗ 0.2680592). (1+1)
(5+2) = 0.9337312

z1,3 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

It is assigned to Topic2.

Doc1’s fourth token is 4:

z1,4 = 1|. ∝ (0 + 1 ∗ 0.678857). (1+10−6)
(2+2) = 0.1697144
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z1,4 = 2|. ∝ (3 + 1 ∗ 0.2680592). (0+0.5)
(4+2) = 0.2723383

z1,4 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

It is assigned to Topic1.

Doc2’s first token is 3:

z2,1 = 1|. ∝ n¬ijk + απk ·
n¬ik,v=xji

+ηkv=xji

n¬ik +
∑V

v=1 η
k
v

= (1 + 1 ∗ 0.678857). (0+0.5)
(2+2) = 0.2098571

z2,1 = 2|. ∝ (2 + 1 ∗ 0.2680592). (1+10−6)
(5+2) = 0.03829421

z2,1 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

Let’s say this token is assigned to Topic1.

Doc2’s second token is 4:

z2,2 = 1|. ∝ (1 + 1 ∗ 0.678857). (1+10−6)
(2+2) = 0.4197147

z2,2 = 2|. ∝ (2 + 1 ∗ 0.2680592). (0+0.5)
(5+2) = 0.1620042

z2,2 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

Let’s say, it has started a new topic (3rd) and this topic’s prior distribution is

related to the fourth row of H matrix since word type 4 started the new topic.

Now we need to calculate π3, π3 = Beta(1, γ)∗πnew = 0.9054117∗0.053083574 =

0.04806249

πnew is updated, it is 0.053083574− 0.04806249 = 0.005021084

Doc2’s third token is 1:

z2,3 = 1|. ∝ (1 + 1 ∗ 0.678857). (0+1)
(2+2) = 0.1697143

z2,3 = 2|. ∝ (1 + 1 ∗ 0.2680592). (1+0.5)
(4+2) = 0.3170148

z2,3 = 3|. ∝ (1 + 1 ∗ 0.04806249). (0+10−6)
(1+2) = 3.493542 ∗ 10−7

z1,3 = knew|. ∝ 1∗0.005021084
4 = 0.001255271

It is assigned to Topic2.

Doc2’s fourth token is 3:

z2,4 = 1|. ∝ (1 + 1 ∗ 0.678857). (1+0.5)
(2+2) = 0.6295714

z2,4 = 2|. ∝ (1 + 1 ∗ 0.2680592). (0+10−6)
(4+2) = 2.113432 ∗ 10−7

z2,4 = 3|. ∝ (1 + 1 ∗ 0.04806249). (0+0.5)
(1+2) = 0.1746771
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z2,4 = knew|. ∝ 1∗0.053083574
4 = 0.01327089

It is assigned to Topic1.

3. Sample table counts of each topic for each document:

Sampling m :

p(mjk = m|.) =
Γ(αβk)

Γ(αβk + njk)
s(njk,m)(αβk)

m (.3)

where

s(n,m) =



0, if n = 0, m = 0

1, if n = 1, m = 1

0, if n > 0, m = 0

0, if m > n

0, if m > n

s(n− 1,m− 1) + (n− 1)s(n− 1,m) otherwise

(.4)

For the first document:

For Topic1:

There is a single token assigned to Topic1 so m1,1 = 1, m.1 = 2

For Topic 2:

P (m1,2 = 1|.) = Γ(1∗0.2680592)
Γ(1∗0.2680592+3) ∗ 2 ∗ (1 ∗ 0.2680592)1 = 0.6954022

P (m1,2 = 2|.) = Γ(1∗0.2680592)
Γ(1∗0.2680592+3) ∗ 3 ∗ (1 ∗ 0.2680592)2 = 0.2796134

P (m1,2 = 3|.) = Γ(1∗0.2680592)
Γ(1∗0.2680592+3) ∗ 1 ∗ (1 ∗ 0.2680592)3 = 0.02498432

m1,2 = 1, m.2 = 2

For Topic 3:

Since there is no token assigned to Topic3 in Doc1 m1,3 = 0

For the second document:

For Topic1:

P (m2,1 = 1|.) = Γ(1∗0.678857)
Γ(1∗0.678857+2) ∗ 1 ∗ (1 ∗ 0.678857)1 = 0.5956433
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P (m2,1 = 2|.) = Γ(1∗0.678857)
Γ(1∗0.678857+2) ∗ 1 ∗ (1 ∗ 0.678857)2 = 0.4043567

m2,1 = 2, m.1 = 3

For Topic2:

Since there is single token assigned to Topic2 in Doc2 m2,2 = 1 m.2 = 2

For Topic3:

Since there is single token assigned to Topic3 in Doc2 m2,3 = 1 m.3 = 1

Hence, one iteration is completed; the new iteration is going to start with π

sampling as (π1, π2, π3, πnew) = Dir(m.1,m.2,m.3, γ) = Dir(3, 2, 1, 1)
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