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ABSTRACT 

 

AUTOMATIC SEGMENTATION OF CRISTAE MEMBRANES IN 3D 

ELECTRON MICROSCOPY TOMOGRAPHY IMAGES USING ARTIFICIAL 

NEURAL NETWORKS 

 

 

Karadeniz, Merih Alphan 

MSc. Department of Health Informatics 

Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu 

 

September 2016, 99 pages 

 

Electron Microscopy Tomography (EMT) technique produces 3D images of cells 

comprising hundreds of slices of high resolution frames. Segmentation of membranes 

in these images are necessary in order to reveal the relations between the structural 

components of the cell and its behaviour. The physical shape of the crista which is a 

membrane of the mitochondria has been hypostatized for being an early indicator for 

many diseases or mitochondrial dysfunctions.  Automatic segmentation of cristae in 

EMT images are necessary since it needs a huge human effort to manually segment 

these membranes. In this study, a method for automatic and robust segmentation of the 

crista membrane in mitochondria is proposed. The method incorporates a pre-

processing stage in which a bilateral image smoothing is applied for noise removal 

while preserving the crista membrane boundaries. The cristae membranes are first 

detected by an artificial neural network (ANN) trained on cropped mitochondria 

images from three different data sets. When a portion of the membrane boundary is 

almost or totally invisible, ANN may produce disconnected segmentation. In order to 

overcome this issue and increase the final performance by means of detecting the 

barely invisible membrane boundaries and decreasing false alarms, a boundary 

growing method called ‘directional growing’ is proposed. The method is tested with 

examples from four different data sets and numerical and visual analysis of the results 

are conducted.  

 

Keywords: Cristae Segmentation, Artificial Neural Networks, Electron Microscopy 
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ÖZ 

 

ÜÇ BOYUTLU ELEKTRON MİKROSKOPİ TOMOGRAFİ 

GÖRÜNTÜLERİNDEKİ KRİSTA MEMBRANLARININ YAPAY SİNİR 

AĞLARI KULLANILARAK BÖLÜTLENMESİ 

 

 

Karadeniz, Merih Alphan 

Yüksek Lisans, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Prof. Dr. Ünal Erkan Mumcuoğlu 

 

Eylül 2016, 99 sayfa 

 

Elektron Mikroskop Tomografi (EMT) tekniği yüzlerce kesit yüksek çözünürlükte 

karelerden oluşan görüntüler üretir. Hücrenin yapısal bileşenleri ile hücrenin davranışı 

arasında ilişkinin ortaya çıkarılabilmesi için bu görüntülerdeki membranların 

bölütlemesi önem arz etmektedir. Mitokondrinin bir membranı olan kristanın fiziksel 

şeklinin birçok hastalık ve mitokondri fonksiyon bozukluğu için bir erken uyarıcı 

olduğu hipotezi ortaya atılmıştır. EMT görüntülerindeki kristaların manuel 

bölütlemesi çok fazla miktarda insan gücü gerektirdiğinden bunların otomatik 

bölütlemesi çok önem arz etmektedir. Bu çalışmada, mitokondri içindeki kristaların 

otomatik bölütlemesini sağlayacak bir yöntem önerilmektedir. Yöntem, 

görüntülerdeki gürültünün giderilmesi için bilateral görüntü filtrelemenin uygulandığı 

bir ön işleme aşaması içermektedir. Krista membranları üç farklı veri setinden 

kırpılarak elde edilmiş mitokondri görüntüleri ile eğitilmiş bir yapay sinir ağı (YSA) 

ile tespit edilmektedir. Eğer bir kirsta membranın kenarları neredeyse veya tamamen 

görünmez ise YSA kopuk bir krista bölütlemesi yapabilir. Bu sorunu ortadan 

kaldırmak ve az görünen kenarları tespit ederek ve yanlış tespitleri azaltarak son 

performansı artırmak için ‘yönsel büyütme’ adı verilen bir yöntem önerilmiştir. 

Yöntem dört farklı veri setinde test edilmiş ve sayısal ve görsel analizler 

gerçekleştirilmiştir.  

  

Anahtar Sözcükler: Otomatik Krista Bölütlemesi, Yapay Sinir Ağları, Elektron 

Mikroskopi  
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CHAPTER 1  

INTRODUCTION 

 

Mitochondria is known as the energy source of the cell.  This energy production is 

achieved by means of ATP synthesizes which is done by the use of dietary calories 

(Zick, Rabl, & Reichert, 2009). The force behind the production of ATP from ADP is 

the constitution of an electrochemical gradient on inner mitochondrial membrane by 

which the cristae is formed (Zick, Rabl, & Reichert, 2009).  

Although mitochondria synthesizes 95% of cellular metabolic energy, recent studies 

like (McBride, Neuspiel, & Wasiak, 2006), (Zick, Rabl, & Reichert, 2009) and 

(Scheffler, 2008) revealed that it takes critical roles on controlling various metabolic 

functions such as regulation of cellular life and death (Mumcuoglu, et al., 2012) and 

cell degeneration-regeneration (Taşel F. S., PHD Proposal, 2012). 

Mitochondria have double membrane structure where the outer membrane forms 

external shape and the inner membrane forms cristae by means of invaginations as 

seen in Figure 1. Since the detailed very first observation of mitochondria under 

electron microscope by Prof. George Palade and Prof. Fritiof Sjöstrand (they did not 

work together but both made outstanding contributions to science of the 

mitochondrion), many unknowns about the function of mitochondria has been revealed 

or at least hypothesized. In these studies many evidence showed that there may be a 

link between mitochondrial function and its physical structure (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016). 

 

Figure 1. Diagram of the Mitochondrion. (Image taken from: 

https://simple.wikipedia.org/wiki/Mitochondria. Last seen at 25.07.2016) 

https://simple.wikipedia.org/wiki/Mitochondria
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Although electron microscopy is a promising technique in order to reveal the relations 

between the physical structure and functional behaviour of the mitochondria, there still 

exists obstacles to overcome because electron microscopy produces 3D stack images 

consisting of hundreds of frames which makes the morphological analysis of 

mitochondria very difficult. In order to overcome this issue, manual segmentation tools 

such as IMOD (Kremer, Mastronarde, & McIntosh, 1996) and Amira are proposed. 

Once the manual segmentation is obtained, these tools allow to model and analyse the 

3D structure of electron microscopy images in 3D computer aided environment. 

Analysing the 3D models of EM images in computer environment is certainly required 

because only then it is possible to measure many features of mitochondria in massive 

numbers of images. As well as segmentation with these tools still requires a huge 

human effort, the produced 3D models may include many faulty results due to human 

error because the manual marking of so large stacks of images requires highly 

concentrated specialists with dedicated attention. These problems directed scientist to 

develop automatic algorithms aiming to produce 3D models of EM images consisting 

segmented mitochondria boundaries. With these systems, hundreds of 3D EM images 

consisting of hundreds of frames in each would be automatically segmented into 

required regions and so that it would be possible to test the hypothesis proposed by 

many scientist about the relation between many disease and shape of the 

mitochondrion.  

Many studies (which are explained in the reminder of this chapter) hypothesized that 

the physical shape of cristae is also an important indicator for many diseases or 

mitochondrial dysfunctions. Problems arising when analysing hundreds of stacks of 

EM images are valid for cristae also. Analysing the morphology of cristae by means 

of manual methods is a more difficult task than analysing the mitochondria since there 

exist many times more cristae than mitochondria in each image and each of the cristae 

may be formed in various different shapes.  

Although there exist many studies for the automatic segmentation of mitochondria in 

the literature, this is not true for cristae. There exists only a limited numbers of studies 

that address the automatic segmentation of cristae. In the study by Narasimha et al. 

(Rajesh, Ouyan, Gray, McLaughlin, & Subramaniam, 2009) a texton-based joint 

classification and segmentation algorithm that deals with the whole cell image is 

proposed. The data set they used in their study was obtained by scanning electron 

microscopy (SEM) so the resolution was low and the boundaries of the cristae in the 

images could be seen as a single thick line. In another study by Bazan et al. (Bazan, 

Miller, & Blomgren, 2009) a level set algorithm subsequent to a novel noise removal 

pre-processing is applied. Although promising results are achieved, they tested their 

algorithm with a single and very clear image (where all membrane boundaries were 

clearly visible) obtained by electron microscopy tomography (EMT) technique. In a 

work by Sanchez et al. (Martinez-Sanchez, Garcia, & Fernandez, 2011), membrane 

segmentation including mitochondria and cristae electron tomography images is 

aimed. They proposed a generic algorithm that can be used for segmentation of all 

membranes in the cell including Golgi apparatus, mitochondria and its inner structure.  

Although they showed that their algorithm performs well on various data sets, the 

single tomogram image they used in order to present their result for mitochondria and 

cristae segmentation was of very low resolution so the cristae seemed as a thick and 

single line so that their method can be seen more of a mitochondria boundary detector 
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instead. Methods developed for mitochondria outer membrane detection cannot be 

effectively used for the segmentation of cristae because it differs from mitochondria 

in two points: (i) cristae can be in various forms of shape and size and (ii) there exists 

many disconnected cristae membranes that shall automatically be connected and 

segmented. This study aims to propose a method which aims the automatic and robust 

segmentation of only the cristae membrane in mitochondria. Since this study is 

concerned on the segmentation of only the cristae membranes, it is expected that the 

proposed method will overperform the antecedents which are not specialized in cristae 

membranes.  

1.1. Biological Background 

When mitochondrion was first identified under light microscope, it was seen as a 

bacteria living in the cell which was indeed far ahead from its time (Scheffler, 2008). 

Today its relation to prokaryotes is recognized, but it is clearly known that they cannot 

reproduce independently outside the cell (Scheffler, 2008). After the use of electron 

microscopy the mitochondria research boosted rapidly. Electron microscopy let the 

researchers to visually observe the intercellular structures of the mitochondria so that 

it induced novel understanding about the morphology and functionality of the 

mitochondria. Sample slices of mitochondria from various types of cells can be seen 

in Figure 2 & Figure 3. 

 

 

Figure 2. Scanning electron microscopy images of mitochondria (Munn, 2014, p. 25) 
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Figure 3. Transmission electron microscopy images of mitochondria. (Image are taken from the data 

set used in this study) 

Palade unveiled the ultrastructure of mitochondrial membranes in 1953 (Palade, 1953) 

by the use of thin sectioning electron microscopy. After this study, the morphology of 

the inner mitochondria could be observed in detail and only then it was discovered that 

the inner membrane of the mitochondria forms convolutions. These convolutions were 

proposed to provide an increase for the capacity of oxidative phosphorylation (Zick, 

Rabl, & Reichert, 2009).  

In order to express the morphological organization of the intercellular membrane of 

the mitochondria, Palade proposed “Baffle model” as seen in Figure 4 and suggested 

that the inner membrane of the mitochondria is folded into a new component which 

was named as “cristae mitochondriales” (Palade, 1953). Baffle model implies that “the 

mitochondrial inner membrane is convoluted in a baffle-like manner with broad 

openings towards the intracristal space regard the cristae as invaginations of the inner 

membrane with rather broad openings” (Zick, Rabl, & Reichert, 2009). 

Another model - which is called ‘septa model’- for the morphological organization of 

inner membranes is proposed by (Sjöstrand, 1953). This model (see Figure 4) implies 

that the septa increases the total surface area of the inner membrane (Zick, Rabl, & 

Reichert, 2009). 

In 1966, after the investigation of thin serial section images obtained by means of 

transmission electron microscopy, a new model that identifies the presence of the 
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structures called ‘cristae junctions’ is proposed in (Daems & Wisse, 1966). This model 

(see Figure 4) could not achieve strong acceptance until electron microscopy 

tomography (EMT) method is used for imaging the ultrastructure of the mitochondria 

(Zick, Rabl, & Reichert, 2009). In (Manella, Marco, Penczek, Bernard, & Frank, 1994) 

EMT is used to visualize the rat liver mitochondria and they showed that the cristae is 

connected to inner boundary of the mitochondria with narrow tubular structures which 

was named as pediculi cristae in the work by Daems at al. (Daems & Wisse, 1966).  

 

 

Figure 4. Proposed Models for Inside of the Mitochondria (Zick, Rabl, & Reichert, 2009) 

All the proposed models indeed explain the same general basic pattern consisting of 

an outer boundary membrane (OBM) which is also limiting the size of the 

mitochondria, an inner boundary membrane (IBM), just peripheral to outer membrane, 

which surrounds the matrix of the mitochondria, and different sized membranous 

structures which are named as cristae mithochondriales (Munn, 2014). The OBM and 

the IBM form the double layer envelope (Rabl, 2009) of the mitochondria as seen in 

Figure 5.   

Cristae in mitochondria can appear either free or attached to the inner membrane with 

the structures called Cristae junctions (Manella, Marco, Penczek, Bernard, & Frank, 

1994) (Frey, Renken, & Perkins, 2002). Cristae junctions are small narrow tubular 

structural openings that are attached to IBM and exhibit sizes ranging from 12 to 40 

nm (Zick, Rabl, & Reichert, 2009). 
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The space inside the cristae is called intracristal space while the space between the 

outer and the inner boundary membranes is called peripheral space (Munn, 2014). 

The structural explanation of the mitochondria can be seen in Figure 5. 

 

 

Figure 5. Structural components of the Mitochondria. 

1.2. Mitochondrion and Cristae and Their Relation to Many Disease 

The correlation of structural status and the function of the mitochondria attract much 

interest as the relation between the mitochondria and degenerative disorders such as 

Alzheimer’s and Parkinson’s disease are revealed (Taşel, Mumcuoglu, Hassanpour, & 

Perkins, 2016).  

In the work by Gabor et al. (Gabor & Kunz, 2013), many evidence that unveil the 

connection between the functionally deceived mitochondria and neurodegenerative 

disorders have been studied. They also mentioned the quality control role of the 

mitochondria in neurons: 

     In addition to the quality control on the protein level, recent evidence suggests also 

the operation of a quality control on organelle level. The prerequisite of a functional 

organelle level quality control is that neurons must be able to distinguish between 

‘‘intact’’ and ‘‘damaged’’ organelles. This distinction is apparently based on the 

potential of the mitochondrial inner membrane and the rate of generation of reactive 

oxygen species (ROS) (Gabor & Kunz, 2013). 

It was shown that mutations in mitochondrial DNA causes early ageing in mice 

(Trifunovi, et al., 2004). This result deduces persuasive evidence that the loss of 

mitochondrial functionality shall be considered as a causative factor instead 

predecessor in aging of mammals (Zick, Rabl, & Reichert, 2009). 
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It has been known that structural alterations in the intercellular mitochondrial 

structures are associated to several diseases in humans (Zick, Rabl, & Reichert, 2009). 

One important example is the structural alterations observed on Barth syndrome 

patients. The size of the mitochondria of lymphoblasts of these patients enlarges while 

surface of the cristae considerably shrinks (Acehan, Xu, Strokes, & Schlame, 2007). 

Another disease in which mitochondrial morphology alterations are observed is the 

Alzheimer’s disease. In Alzheimer’s disease; mitochondria appear swollen (Zick, 

Rabl, & Reichert, 2009) and the cristae membranes are arranged in parallel stacks or 

in concentric positions (Baloyannis, 2006). Structural alteration of mitochondria is also 

observed in Parkinson’s disease (Trimmer, 2000). 

In another study it is observed that several functional changes occur in cancer cells and 

this reveal the evidence that the mitochondria may be responsible in tumour formation 

by means of “reactive oxygen species (ROS), decreased oxidative phosphorylation, 

and a corresponding increase in glycolysis” (Verschoor, et al., 2013).  

Consequently the functional significance of the mitochondrial structure is still an open 

issue. 

1.3. Motivation: Importance of Automatic Cristae Membrane Segmentation 

Imaging the intercellular structures of mitochondria by the help of electron microscopy 

has boosted the knowledge about the mitochondria and revealed many unknowns for 

the internal structure of mitochondria. Although electron microscopy imaging 

techniques allow many novel insights for many details of the mitochondria and its 

structure, it is still a challenging task to reveal the underlying mechanisms that drive 

many diseases inside mitochondria. With the use of electron microscopy imaging 

techniques, many studies attempt to reveal the relation between morphological 

properties (shape, size, fragmentation, elongation etc.) of the mitochondria, cristae, 

and cristae junctions and many disease like Barth syndrome (Acehan, Xu, Strokes, & 

Schlame, 2007) (Brandner, et al., 2005), various types of cancer (Han, et al., 2006) 

(Exner, et al., 2007), Parkinson’s disease (Exner, et al., 2007), Wolf-Hirschhorn 

syndrome (Dimmer, et al., 2008), Autosomal dominant optic atrophy (Alexander, et 

al., 2000)  etc.  

In most of these studies mentioned above, a massive amount of human effort were 

required in order to reveal the proposed underlying mechanisms for related diseases. 

In electron microscopy imaging it is desired to obtain the image resolution as high as 

possible to let the specialist investigate as much detail as possible. But since 

mitochondria has a large shape when compared to its intercellular structures, it is a 

difficult task if not possible to make simultaneous analysis of large volumes of 3D 

mitochondria images. This brings forth the need of massive labour dependent and time 

consuming effort for marking the membranes in images before the analysis of the 

scientists.  

The automatic segmentation of the membranes of mitochondria can resolve this 

problem and let the scientist simultaneously review and analyse the structure of 

mitochondria with the help of 3D computer aided modelling as well as mine data to 



8 

 

infer statistical results. Hopefully this will help the scientist to enlighten many hidden 

morphological mechanisms that are directly related to disease as Alzheimer’s, Cancer 

etc… 

1.4. Current Electron Microscopy Imaging Techniques 

The term “tomography” is widely used encompassing many different methods but it 

literally means visualization of slices used to reconstruct the interior of an object from 

its projections (Frank, 1992).  

The novel and modern insights into the intercellular structure of mitochondria could 

only be understood after the use of electron microscopy in 1950s and by then the 

mitochondrial research is boosted (Zick, Rabl, & Reichert, 2009).  

In electron microscopy a beam of electrons are used to visualize the specimen that is 

methodically prepared before the visualization process. Electron microscope has 

greater resolving power than light microscope, allowing the specialists to observe the 

very fine details of micro seized pre-prepared specimens 

(https://www.jic.ac.uk/microscopy/intro_EM.html). Basically there are two types of 

electron microscopy: Transmission Electron Microscope and Scanning Electron 

Microscope. 

In TEM technique the electron beam is transmitted through an ultra-thin specimen and 

it interacts with specimen as it passes through the specimen. The result of the 

interaction of the electrons transmitted through the specimen is used to compute and 

reconstruct the slice image of the specimen as seen in Figure 6. The transmitted 

electrons are magnified and focused onto an imaging device, such as a fluorescent 

screen, a photographic film, or a charged-coupled device (CCD) sensor (Khan, 2012).  

 

Figure 6. Principle of two dimensional reconstruction in tomography (Frank, 1992). 
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EM tomography allows the three-dimensional reconstruction of volumes of rather 

thick sections (∼0.5 μm). For this a series of electron micrographs is recorded while 

the sample is tilted over a wide range of angles (Zick, Rabl, & Reichert, 2009). 

In TEM, an electron gun produces the electron beam which is directed by lenses and 

electric field. The image is formed once the electron beam passes through the 

specimen. The projected electron intensity is measured by a detector.  The intensity on 

the image is proportional to the amount of electron absorption by the tissue. The 

process is repeated for different tilt angles of the electron beams (Taşel F. S., PHD 

Proposal, 2012). Finally the total absorption of each tilt angle is presented in a 

sonogram-like data as seen in Figure 6. The images are then reconstructed by means 

of back projection techniques.  

“The projection angles are physically limited to a typical range of ±70°. The angular 

separation of each consecutive projection is typically 1°-2°. These limitations cause 

some reconstruction artefacts such that particles may appear elongated in the direction 

normal to the surface of the specimen. Another limitation is the thickness of the 

specimen that must allow sufficient penetration. The 3D image obtained by this 

technique is typically large in two dimensions but thin in the third dimension. 

Therefore, a single mitochondrion may not be fully visible in one dimension.” (Taşel 

F. S., PHD Proposal, 2012). 

 

Figure 7. Schematic ray path for a transmission electron microscope equipped for additional x-ray and 

electron energy-loss spectroscopy (Kohl & Reimer, 2008) . 
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“In SEM technique, the surface of specimen is visualized in 2D (see Figure 9). The 

electron beam is focused on the specimen and deflected by the electric field which is 

generated by the scanning coils. The electrons hit the surface of specimen and scatter. 

The intensity of electrons back-scattered from the surface is measured by a detector. 

In order to obtain a 2D image, electron beams are deflected onto different locations to 

scan the whole surface. Imaging a 3D volume can be achieved by utilizing a special 

type of SEM technique which is called Serial Block-Face Scanning Electron 

Microscopy (SBFSEM). In SBFSEM technique, a stack of 2D images are obtained by 

cutting ultra-thin sections from the surface using a diamond knife and then imaging by 

SEM (see Figure ?). This technique supplies 3D volumetric data formed by a series of 

2D images each associated to a single slice. On the contrary to TEM tomography, the 

slice thickness is higher than the lateral resolution. But, there is no limitation for the 

number of slices” (Taşel F. S., PHD Proposal, 2012). 

 

Figure 8. Schematic diagram of the parts of the electron column (Lyman, Newburry, Goldstein, 

Williams, & Roming, 2012). 
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Figure 9. Scanning and cutting phases in SBFSEM (Taşel F. S., PHD Proposal, 2012). 

On the contrary to TEM imaging, SEM produces images with three-dimensional 

appearance of the specimen (see Figure 10) since this technique has the capability of 

imaging with large depth of field and shadow relief effect of the secondary and 

backscattered electron contrast (Glodstein, et al., 2012).  

 

Figure 10. Skeleton of small marine organism (the radiolarian Trochodiscus longispinus).The upper 

image shows the skeleton viewed with a light microscope and the lower image shows the same 

skeleton viewed with SEM (Glodstein, et al., 2012). 
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1.5. Aim and Scope 

As mentioned in the previous chapters, analysing the EM images in 3D computer 

environment is critical in order to enlighten the unknowns lying behind the mechanism 

of the shape of the mitochondria and the cristae and infer some results that allow the 

early detection of many disease.  

The automatic segmentation of mitochondria in EM images has been studied many 

times and satisfying results are obtained. For instance the detection of mitochondria’s 

inner and outer boundary has successfully been accomplished by Mumcuoglu et al. 

(Mumcuoglu, et al., 2012) and Tasel et al. (Taşel, Mumcuoglu, Hassanpour, & Perkins, 

2016). But there exists a small number of studies aiming at the segmentation of cristae.  

In this study it is aimed to develop a robust and automatic segmentation method for 

cristae membranes which may be fully or partially seen inside the mitochondria. The 

proposed method will be automatic because there will be no human intervention in any 

step of the method. The method proposed can be used for many different types of cells 

since the development and the testing will be done for cristae with different types and 

shapes. Also the discrimination of the cristae from other intercellular structures will be 

ensured so that the false positive rate can be minimised. 

1.6. Contributions 

This study attempts to accomplish the automatic segmentation of cristae by using the 

power of ANNs and proposing a method to increase the performance obtained from 

the trained ANN. In order to achieve a robust solution, two problems shall be overcome 

one of which is that the cristae can be in various sizes and shapes. This problem is 

overcome with the ability of neural networks to model a very wide range of non-linear 

variation in the data. The second problem is that many portions of crista membrane 

boundary may be disconnected or barely visible due to limitations in imaging 

technique and equipment. Since artificial neural networks may underperform in these 

regions, a method that attempts to connect these disconnected boundaries by means of 

directional growing is developed.  

The proposed method is applied to electron microscopy tomography images and the 

results and the performance are presented. 
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CHAPTER 2  

RELATED WORK 

  

Introduction  

In this chapter basic image segmentation methods are roughly explained. These 

methods are either directly used or benefitted from in the pipeline of the proposed 

algorithm. In the second section of this chapter, artificial neural networks are explained 

in detail. It is important to understand every detail of the networks and the derivation 

of backpropagation algorithm in order to build an effective architecture that can 

perform well on the data to be used. And finally a limited portion of the literature 

search done during this study is presented in the final section.   

2.1. Image Segmentation 

“Image segmentation is the task of finding groups of pixels that go together” (Szeliski, 

2010). The aim in segmentation is to distinguish an image into one or more labels 

depending on one or more features of related regions (Rogowska, 2000). From point 

of statistics, segmentation problem is referred as cluster analysis and is a widely 

studied area with hundreds of different algorithms (Szeliski, 2010). From the very 

beginning of the computer vision science; segmentation problems have been studied 

widely (Brice & Fennema, 1970) (Salotti, 2001) (Rosenfeld & Davis, 1979). 

Historically, the development process of segmentation algorithms can be divided into 

two stages. In the early stage, divisive and agglomerative algorithms, which are based 

on region splitting and merging techniques, were widely used; but more recently, 

algorithms often depending on the optimization of a global criterion has been used 

(Szeliski, 2010, p. 237). Another approach for categorizing the segmentation 

algorithms is based on the basic properties of intensity values by means of 

discontinuity and similarity. Discontinuity category is based on the detection of the 

sudden changes in the images. In the similarity approach, the image is segmented 

depending on a predetermined feature set (Gonzalez & Woods, 2002, p. 690). Indeed, 

segmentation techniques can be categorized in many ways depending on the point of 

view (Rogowska, 2000). If the categorization is done based on the human interaction, 

the techniques can be divided as; manual, semi-automatic, and automatic (Shareef, 

Wang, & Yagel, 1999). Although there exists a vast amount of different techniques in 

the literature, important segmentation methods include; thresholding (basic, adaptive, 

Otsu’s), edge detection operators (Sobel, Prewitt, Roberts, Robinson, Kirsh, Frei-

Chen, Laplacian, Laplacian of Gaussian etc.), other edge detection methods like Marr 

and Hildreth (Marr & Hildreth, 1980) and Canny (Canny, 1986), Snakes (Kass, Witkin, 

& Terzopoulos, 1988), Active Shape Models (Cootes, Taylor, Cooper, & Graham, 

1995), level sets (Cremers, Rousson, & Deriche, 2007), region splitting and merging 

(Felzenszwalb & Huttenlocher, Efficient graph-based image segmentation, 2004), 

mean shift (Comaniciu & Meer, 2002) and mode finding (Bishop, 2006), normalized 

cuts (Malik, Belongie, Leung, & Shi, 2001), graph cuts (Boykov & Funka-Lea, 2006). 
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2.1.1. Thresholding 

There exists many thresholding methods based on different features extracted from 

the image such as;  images histogram, mean intensity value, standard deviation of 

intensity values or local gradient. But amongst all different thresholding methods 

global thresholding is the most intuitive approach (Rogowska, 2000).  

In global thresholding it is assumed that the image has a bimodal histogram (see 

Figure 11) so that the desired object can be extracted from the image by means of 

comparing the intensity values with a threshold value (Rogowska, 2000).  

 

Figure 11. An example for bimodal histogram (Rogowska, 2000). 

The thresholding operation which produces a binary image is defined as 

𝐼(𝑥, 𝑦) = {
1, 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇
0, otherwise

 (1) 

Where I is the image to be threshold, 𝐼(𝑥, 𝑦) is the intensity value at location(𝑥, 𝑦), 

and T is the threshold value.  

2.1.2. Edge Detection 

Edge detection is the most frequently used approach in for segmenting the images 

based on locals intensity changes (Gonzalez & Woods, 2002). Local intensity changes 

are determined by the gradient of the pixel by considering the neighbourhood of 

related pixel. The first order derivative approximation of the image intensity changes 

are called first gradient while second order derivative approximation yields to second 

gradient. The direct application of continuous differentiation is not possible on 

discrete nature of digital image so that the gradient of an image is computed by means 

of differencing approach (Rogowska, 2000). There exist many different 

approximations for the calculation of gradient of an image. In order to obtain the 

gradient of an image the partial derivatives at each pixel shall be computed (Gonzalez 

& Woods, 2002). A basic approximation of the partial derivative of a pixel over its 

neighbourhood is given by; 
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𝑔𝑥 =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦) (2) 

and 

𝑔𝑦 =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦) (3) 

But for computing the edge direction, it is more common to use symmetric masks 

about the centre point for which the gradient is being computed. These masks reveal 

more information regarding the direction of the edge because they allow to compute 

the data on opposite sides of the pixel that is being considered (Gonzalez & Woods, 

2002). Some common masks used for edge detection can be seen in Figure 12. 

 

Figure 12. Commonly used mask for computing the gradient at a point. 

The 3x3 masks shown in Figure 12 above involve convolutional calculations by 

means of summation of weighted pixel intensities with the constants in masks. There 

exist various gradient operators used for edge detection. Some of these are; Sobel, 

Roberts, Prewitt, Robinson, Krisch, Frei-Chen.  

The above methods are simply filters the image by means of masking operators. These 

filters operate on the image without any provisions being made for the characteristics 

of edges and noise (Gonzalez & Woods, 2002). But the noise content in the image 

highly effect the performance of gradient based edge detection methods. In order to 

overcome noise issue and improve the performance of gradient based methods, 

methods such as (Marr & Hildreth, 1980) and (Canny, 1986) are proposed. These 

methods take into account factors such as image noise and the nature of edges 

themselves. 
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2.1.3. Active Contours 

Every object in the natural environment have curves corresponding to their 

boundaries. Detecting and locating these curves play such an important role on 

detection or recognition of desired objects. Active contours are used to locate such 

boundary curves in images. While there exist different active contour methods, all 

methods iteratively move towards their final solution under the combination of image 

and optional user-guidance forces. 

One of the most famous active contour method is called snakes (Kass, Witkin, & 

Terzopoulos, 1988). In snakes method a two dimensional spline curve is iteratively 

moves towards some defined image features (Szeliski, 2010).  

2.1.4. Region Based - Region Splitting and Merging 

Region based algorithms attempt to segment the image by directly finding the 

regions of interest (Gonzalez & Woods, 2002). One of the two main approaches in 

region based segmentation is region growing while the second is split and merge 

approach. 

In the region growing approach a set of seed points are selected and neighbouring 

pixels of these seed points that have predefined properties are added to the region 

(Gonzalez & Woods, 2002).   

Split and merge algorithms work in two different types; by recursively splitting the 

whole image into pieces based on region statistics or merging pixels and regions 

together in a hierarchical manner (Szeliski, 2010). Also there are methods that use 

the advantage of both approaches (Horowitz & Pavlidis, 1976). An image is divided 

into a set of arbitrary, disjoint regions and then merge or split the regions that satisfy 

the predefined conditions. 

2.1.5. Image Segmentation in Medical Imaging 

In medical imaging, segmentation is widely used in labelling the images depending 

on the anatomical features such as blood vessels (Hoover, Kouznetsova, & Goldbaum, 

2000) (Soares, Leandro, Cesar, Jelinek, & Cree, 2006) (Kobashi, Kamiura, Hata, & 

Miyawaki, 2001), (Frangi A. , Niessen, Vincken, & Viergever, 1998), internal organs 

like liver (Masomi, Behrad, Pourmina, & Roosta, 2012) or ventricular (Paragios, 

2003), muscles (Kwok, 2004), and bones (Sebastian, Tek, Crisco, & Kimia, 2003) 

(Suzuki, Abe, MacMahon, & Doi, 2006).  It is also used for classifying the 

pathological regions such as lesion, tumour boundary detection (Zhu & Yan, 1997), 

detection of mammographic calcifications (Shen, Rangayyan, & Desautels, 1993), or 

tissue deformities in medical images (Rogowska, 2000).  

With the use of 3D imaging techniques, segmentation has gained more importance for 

the construction of 3D computer modal of the scanned volume. Computer Aided 

Analysis (CAA) of these medical images is very important since modern 3D imaging 

modalities (such as Computer Tomography, Magnetic Resonance Imaging, and 

Electron Microscopy etc.) have reached a very high quality and resolution levels so 
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that an extensively large volume of data is produced. Examining and analysing this 

massive data is a very hard task, if not possible, for human specialist.  

Some important studies that show the diverse applications of segmentation in 3D 

Electron Microscopy image analysis are; computerized detection of mitochondria on 

electron microscope images (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016), 

(Mumcuoglu, et al., 2012), (Lucchi, Smith, Achanta, Knott, & Fua, 2012), 

(Seyedhosseini, Ellisman, & Tasdizen, 2013, April), the automation of reconstruction 

of neural tissue in serial section transmission electron micrographs (Mishchenko, 

2009), segmentation of neuronal membranes in electron microscope images (Ciresan, 

Giusti, Gambardella, & Schmidhuber, 2012) (Jurrus, et al., 2010). 

 

Figure 13. Various segmentation results of medical images from state-of-the art studies. (a) and (b) 

show the original and the resultant image of mitochondria detection in (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016). (c) and (d) show of the vessel enhancement method developed in 

(Frangi A. , Niessen, Vincken, & Viergever, 1998) for aortoiliac MRA. The neuronal membrane 

segmentation applications; (e) and (f) with deep neural networks (Ciresan, Giusti, Gambardella, & 

Schmidhuber, 2012) and (g) and (h) with serial neural networks (Jurrus, et al., 2010). 

Consequently; in medical image analysis, segmentation play critical role including for 

various measurements, visualization of multi-dimensional images, and computer aided 

diagnosis.  

2.2. Supervised Learning and Artificial Neural Networks 

The origin of the motivation for developing neural systems goes down to the effort of 

McCulloch and Pitts (McCulloch & Pitts, 1943) and Hebb (Hebb, 1949) for modelling 

the brain. Their approach includes independent units that process the inputs and return 
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a simple function of the total input. They proposed the most prevailing paradigm in 

neuro-science that the power of the brain lie in the connections of neurons instead the 

power of individual neurons (Dunne, 2007, p. 1). On the path that (McCulloch & Pitts, 

1943) and (Hebb, 1949) opened, neural networks evolved to the machines that model 

the problems and tasks just as the brain does but by the use of electronic components 

and software on digital computers instead of biological metabolisms (Haykin, 2009, p. 

2).  

Multilayer neural networks are most widely used for function approximation and 

pattern classification because they are very powerful tools for modelling very complex 

nonlinear problems (Krawczak, 2013, p. V). Especially for the last two decades, they 

have been used in many fields mostly for the problems of pattern recognition. 

Although many different types and architectures (for different kinds of problems) have 

been proposed (Bengio, Courville, & Vincent, 2013), feed-forward network 

architectures such as the multi-layer perceptron and the radial basis function network 

became the most popular ones amongst others (Bishop, 2006, p. preface). These are 

very general frameworks that maps several input variables to several output variables 

by means of many parameters which are adjusted depending on the problem itself. 

This adjusting process is called training (Bishop, 2006). 

Simon Haykin (Haykin, 2009, p. 2) defined a neural network as; “a massively parallel 

distributed processor made up of simple processing units that has a natural propensity 

for storing experiential knowledge and making it available for use”.  

Neural networks are composed of many information processing elements called 

neurons. A neuron model many of which is used for designing various types of 

artificial neural networks can be seen in Figure 14.  

 

Figure 14. The neuron model for the kth neuron in an imaginary network. (Image taken from (Haykin, 

2009)) 

There exist three basic components in a neuron model. First, there are linking elements 

or synapses which connect the input signals to the summing component of the neuron. 

Each connection in a neuron model has a coefficient which determines the strength of 

its own (Haykin, 2009, p. 10) since the related input signal is multiplied by this 

coefficient so that the contribution of the input signal is determined. If the weight of 
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the link is very small then it means that the related input has a small contribution to 

the output of that neuron. The multiplied input signals are summed in an adding unit 

which is the second basic component in the neuron model proposed in Figure 14. The 

third main component is the activation function also called the squashing function 

which is used for limiting the amplitude of the neuron (Haykin, 2009, p. 10). There 

also exist a bias input component to the summing component. Bias increase or decrease 

the total input of the activation function depending on its sign (Haykin, 2009, p. 11). 

The neuron model is mathematically expressed as; 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘 (4) 

and 

𝑦𝑘 = 𝜑(𝑣𝑘) (5) 

 

where 𝑗 is the index number of the input signals 𝑥1, 𝑥2, … , 𝑥𝑚 and 𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚 

are the synaptic weights of input signals respectively. It shall be noticed that the 

weights 𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚 are belong to kth neuron as “k” denotes the index of the 

neuron (there exist only one neuron in the Figure 14 above which is the kth one). 𝑏𝑘 is 

the bias and 𝜑(𝑣𝑘) is the activation function whose output produces the final output, 

𝑦𝑘, of the neuron. The bias 𝑏𝑘 may be viewed as the fixed coefficient for an affine 

transformation (see Figure 15) to the output 𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1  in the linear combiner 

(summing component of the neuron). 

 

Figure 15. The transformation applied to the output of linear combiner, 𝑢𝑘, so that graph of 𝑣𝑘 versus 

𝑢𝑘 does not pass through the origin. 

The linear combinations of the input signals are transformed by activation functions, 

denoted as 𝜑(𝑣𝑘) in Equation 6. There exist many different types of activation 

functions including; step function which is also known as Heaviside function in 
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engineering community, ramp function, sigmoid function, and Gaussian function. Step 

function is defined as in Equation 6 and graphed as in Figure 16. 

𝜑(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 < 0

 (6) 

A neuron that use threshold function in its activation layer is referred as McCulloch-

Pitts model due to their cutting-study accomplished in 1943 (McCulloch & Pitts, 

1943). 

 

Figure 16. Heaviside (threshold) function (Image taken from (Haykin, 2009)) 

Another commonly used activation function is the sigmoid function. The graph of the 

sigmoid function is in the form of “S” as it is an increasing function exhibiting an 

elegant balance between linear and nonlinear behaviour (Haykin, 2009). A typical 

example for the sigmoid function is the logistic function which is defined as; 

𝜑(𝑣) =
1

1 + 𝑒(−𝑎𝑣)
 (7) 

 

The graph of the sigmoid function can be seen in Figure 17. In Figure 17 the behaviour 

of the function as 𝑎 is increased can be seen. 

 

Figure 17. The sigmoid function as ‘a’ is increased (Image taken from (Haykin, 2009)). 

2.2.1. Feedforward Neural Networks 

Feedforward neural networks are commonly used multilayer neural network 

frameworks modelling the linear or non-linear mappings between input and output 

variables (Bishop, 2006). Feedforward multilayer neural networks are capable of 
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approximating any function with sigmoid or linear output unit and “squashing” 

activation functions in the hidden layers on closed and bounded sets (Dunne, 2007, p. 

37). For 𝑓: 𝑅𝑝 → 𝑅𝑞, for a closed, bounded 𝐾 ⊂ 𝑅𝑝 𝑎𝑛𝑑 𝜀 > 0; there exist a 𝑒∗ that 

‖𝑓(𝑥) − 𝑒∗(𝑥)‖ < 𝜀, ∀𝑥 ∈ 𝐾 (8) 

where 𝑓(𝑥) is the real output of function aimed to be modelled, and 𝑒∗(𝑥) is the output 

of the function. This result is presented by (Hornik, Stinchcombe, & White, 1989) and 

(Funahashi, 1989) independent of each other. 

In a feedforward network, the input signals projects directly to the next layer of the 

network (which is the output layer in a single layer network and the next hidden layer 

in a multilayer network). Each signal passes through the network only towards the 

forward direction without activating any backward signals. Multilayer feedforward 

networks have hidden layers between the input and the output layers. Hidden layers 

mediate between the external input and the network output so that the network can 

extract higher-order statistics from its input (Haykin, 2009, p. 22). Because of the 

increase in synaptic connections and neural interactions’ dimension, the network gain 

more global perspective (Churchland & Sejnowski, 1992) despite its local 

connectivity.  

The hidden nodes in a neural networks plays an important role during the learning 

process such as deducing the features that enables the network to use the extracted 

features that characterize the training data. They transform the input data to a new 

space so that the discrimination between the patterns can be accomplished more easily 

(Haykin, 2009, p. 126).  

For the learning process of a neural network the back-propagation algorithm is one of 

the most commonly used algorithm. The backpropagation algorithm proceeds in two 

stages: the forward and the backward stage. In the forward stage, the input signal is 

passed through each neuron in the next layer by means of being multiplied with the 

corresponding weights of the neurons until the output layer. An example of the forward 

run calculation for one hidden neural network as in Figure 18 are shown in the 

equations below. 

[
𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23
] ∗ [

𝑖1

𝑖2

𝑖3

] = [
𝑣ℎ1

𝑣ℎ2
] 

𝜌1(𝑣ℎ1) = 𝑦ℎ1 

𝜌1(𝑣ℎ1) = 𝑦ℎ2 

[𝑤𝑜1 𝑤𝑜2] ∗ [
𝑦ℎ1

𝑦ℎ2
] = [𝑣𝑜] 

𝜌3(𝑣𝑜) = 𝑦𝑜 

(9) 

In the beginning of the second stage, the output obtained after the forward run is 

compared with the ground truth of the related pattern which is used as the input vector 

in the first stage and an error signal is obtained. This signal is then passed through the 

network in the backward direction and the weight adjustments are accomplished in this 

stage as to minimize the calculated error which is defined as; 

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛) (10) 
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where 𝑑𝑗(𝑛) is the desired response (ground truth) of the jth output neuron in the 

network when nth pattern is used as input.  

 

 

Figure 18. A multilayer neural network with 3 input elements, one hidden layer with 2 nodes, and one 

output node in the output layer. 

The adjustment in each neuron is made by the help of gradient descent algorithm which 

is used to seek a direction through which the weights are updated so that the value of 

the error is reduced (Haykin, 2009, p. 131). The correction value in the ith input of the 

jth neuron is defined as; 

∆𝑤𝑗𝑖(𝑛) = −𝜂
𝜕ℰ(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (11) 

ℰ(𝑛) is the total instantaneous error energy of the whole network and 𝜂 is the learning 

rate parameter. The Equation (11) depicts that the weight 𝑤𝑗𝑖 is updated with a rate 

which is proportional to the partial derivative of 
𝜕ℰ(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
. Translation of the delta rule 

expressed in Equation (11) is that; once the direction of the change for the total error 

with respect to that weight is found, then make the adjustment on that weight through 

the opposite direction so that the total error shall reduce. The magnitude of the 

adjustment to be made is determined by the learning rate, 𝜂. 

According to the chain rule of calculus the gradient can be expressed as 

𝜕ℰ(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=

𝜕ℰ(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (12) 

This derivative calculated in Equation (12) determines the direction of search for the 

weight to be adjusted in the in the weight space (Haykin, 2009). Notations in Equation 

(12) are shown in Figure 19.   

The total instantaneous error energy is defined as (Haykin, 2009) 

𝜕ℰ(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)

𝑗∈𝐶

 (13) 

where 𝑒𝑗(𝑛) is defined in Equation (10) and C is the neurons in the output layer. 

Differentiating both sides of the equation above gives: 
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𝜕ℰ(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛) (14) 

 

From Equation (10); 

𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
= −1 (15) 

Since 𝑦𝑗(𝑛) = 𝜌𝑗(𝑣𝑗(𝑛)) 

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝜌𝑗

′ (𝑣𝑗(𝑛)) (16) 

And finally 

𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= 𝑦𝑖(𝑛) (17) 

Since 𝑣𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑚
𝑖=0 𝑦𝑖(𝑛) where m is the number of input applied to the jth 

neuron and 𝑖 = 0 stands for the bias.  

So the correction value for the weight 𝑤𝑗𝑖 yields 

∆𝑤𝑗𝑖(𝑛) = 𝜂𝑒𝑗(𝑛) 𝜌𝑗
′(𝑣𝑗(𝑛))𝑦𝑖(𝑛) (18) 

 

 

 

Figure 19. The flow in neuron j.(Image taken from (Haykin, 2009)) 

The correction value in Equation (18) can be defined in terms of local gradient as in 

Equation (19) below. 

∆𝑤𝑗𝑖(𝑛) = 𝜂𝛿𝑗(𝑛)𝑦𝑖(𝑛) (19) 
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Local gradient 𝛿𝑗(𝑛) is defined by 

𝛿𝑗(𝑛) =
𝜕ℰ(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛) 𝜌𝑗

′(𝑣𝑗(𝑛)) (20) 

Since there is no desired response for the neurons in the hidden layer, the error signal 

can be calculated in terms of the errors of the neurons that are connected to that neuron 

which is in the hidden layer (Haykin, 2009). The flow at the hidden layer can be seen 

in Figure 20 below. The local gradient can be redefined as  

𝛿𝑗(𝑛) =
𝜕ℰ(𝑛)

𝜕𝑣𝑗(𝑛)
=

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
∑

𝜕ℰ(𝑛)

𝜕𝑣𝑘(𝑛)

𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
𝑘

 (21) 

Where 

 

𝜕ℰ(𝑛)

𝜕𝑣𝑘(𝑛)
= 𝛿𝑘(𝑛) 𝑎𝑛𝑑 

𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
= 𝑤𝑘𝑗(𝑛) 

 

(22) 

Finally the equation for the local gradient in the hidden layer yields to; 

𝛿𝑗(𝑛) = 𝜌𝑘
′ (𝑣𝑘(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (23) 

And the correction value is defined as; 

∆𝑤𝑗𝑖(𝑛) = 𝜂𝜌𝑘
′ (𝑣𝑘(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

𝑦𝑖(𝑛) 

 

(24) 

 

Figure 20. Flow of from hidden neuron j to output neuron k. (Image taken from (Haykin, 2009))   
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2.2.2. Neural Networks used for EM Image Segmentation 

In the paper by Ciresan et al. (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012) 

neuronal structures in stacks of electron microscopy images are attempt to be 

automatically segmented by means of a deep neural network which is used for labelling 

of each pixel. Their network uses the image intensities as the input extracted from a 

pre-defined input window centred on the pixel to be classified.  As training set they 

used TEM image consisting of 30 images with a resolution of 512x512. All pixels 

belonging to the neuronal membranes are used as positive examples, and the same 

number of negative examples are randomly selected from remaining non-membrane 

pixels. This yield to 3 million patterns in total to be used in training where both labels 

(membrane and non-membrane) are equally represented to the network during 

training. They also mirrored and/or rotated by ±90̊ each pattern at the beginning of 

each epoch. The input data is manipulated by means of foveation and non-uniform 

sampling which makes the input windows carrying more information. Since different 

architectures of networks performs different for different parts of images, they average 

the calibrated outputs of the neural networks trained. An output from their method can 

be seen in Figure 21. 

 

Figure 21. The original image and corresponding output of the proposed method in Ciresan et al. 

(Ciresan, Giusti, Gambardella, & Schmidhuber, 2012) 

In another study (Jurrus, et al., 2013) 3D images obtained by the use of Serial-section 

Transmission Electron Microscopy (ssTEM) and Serial Block Face Scanning Electron 

Microscopy (SSBFSEM) techniques are used in order to segment neuron boundaries 

in these image. They proposed a serial neural network architecture and trained the 

network with a 2D input stencil. The Figure 22 shows the diagram for the serial neural 

network they trained.  
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Figure 22. Serial neural network architecture proposed in Jurrus et al. (Jurrus, et al., 2013). I is the 

input image, S is the intensity values of the image I extracted with the help of input stencil. Ml is the 

classifier and C is the output of the classifier in each step.  

The trained serial neural network is then used to segment 3 subsequent images from 

3D stacks of images. A sequential section serial network is trained with the inputs 

obtained from a 3D input stencil which spans 3 images. The images used for training 

sequential section serial network are the resultant image from serial classifiers from 

the first stage.  The diagram demonstrating the framework can be seen in Figure 23. 

 

Figure 23. The final flowchart of serial neural networks trained in Jurrus et.al. (Jurrus, et al., 2013). 

In the study by Middleton and Damper (Middleton & Damper, 2004) the binary 

classification results of a trained neural network are used as external energy function 

for a snake in order to segment the lungs from multiple MR slices. A multilayer 

perceptron is trained with error backpropagation algorithm. As the input values to the 

network, the normalised intensity values of the image within a 7x7 input window are 

used for the network which consists of output layer with one node, one hidden layer 

with 30 nodes and input layer with 49 input elements. They used a fixed number of 

1000 epoch as the stopping criteria of the training. This approach is not suggested since 

it does not guarantee the convergence of the error performance to the global minimum. 

The fixed number of epoch approach may also lead to overfitting. Since the multilayer 

neural network’s resultant image consists of disconnected boundaries, they used an 

active contour model as the post-processing step in order to obtain closed lung 

boundaries. 

2.3. Current Research on Automatic Mitochondria and Cristae 

Segmentation 

In the work by Mumcuoglu et al. (Mumcuoglu, et al., 2012) it is aimed to detect and 

segment the mitochondria on electron microscope images including partially seen 

boundaries. Four different data sets provided by “National Center for Microscopy and 

Imaging Research, USA” were used for their experiments. The proposed method 

includes two phases. In the first stage the detection of mitochondria boundary is done 



27 

 

depending on the two properties of the mitochondria: mitochondria possess an 

elliptical shape and the boundary of the mitochondria contains a double membrane 

geometry. Some important geometrical properties of the mitochondria that they 

considered are; mitochondria can be global or elongated, the diameter (smallest cross-

section) of the mitochondria is usually between 0.25μm and 2μm, the length (largest 

cross-section) can be up to 20μm or even longer, the membrane thickness is between 

4nm and 6nm for different cell types in conventional tomograms, and the gap between 

the double membrane (inner and outer membrane) structure in healthy cells is almost 

uniform and differ from 10nm to 36nm. The proposed algorithm basically possess two 

phases: the detection and the segmentation phases. In the first stage of the detection 

phase; noise reduction, contrast enhancement and normalization is done. Once the pre-

processing in the first stage is accomplished, a double ridge energy function is 

computed for each pixel prior to connected component analysis and morphological 

operations in which it is aimed to determine the probable double membrane regions. 

Found probable double membrane regions are used in an ellipse detection operation so 

that many ellipses in different sizes and orientations are detected around the double 

membrane boundaries. At the end of the detection phase, merge and split methods are 

used to obtain the mitochondria detections from many detected ellipses. At the 

detection phase of the algorithm, the approximate boundary positions of the 

mitochondria are obtained. For a complete and robust segmentation, the algorithm first 

refines the initial detected boundaries by means of active contours in the first stage of 

the segmentation phase. Still the results of active contours method may produce 

boundaries that are misaligned with the detected mitochondria. In order to overcome 

this issue, a modified live-wire graph search algorithm is used in order to finalize the 

segmentation. An automatic seed point selection algorithm is used for selection of 

robust seed points to be used by the live-wire algorithm. Although satisfying results 

are obtained, the proposed method is dependent to the successful removal of cristae in 

order to locate the peripheral mitochondrial membranes (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016). 
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Figure 24. Results of the method in Mumcuoglu et al. (a) shows the original tested image; (b) shows 

the double ridge energy image where the darker pixels points the double ridge locations; (c) the image 

on which the thresholding morphological filtering and connected component analysis applied; (d) first 

detection of ellipses; (e) ellipses that are merged from (d); (f) the results of active contour algorithm 

and the automatically selected seed points (red points); (g) the results of live-wire contour tracking 

algorithm. (Mumcuoglu, et al., 2012) 

In a study by Taşel et al. (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016), robust 

segmentation of mitochondria boundary membrane is aimed as their previous attempt 

in (Mumcuoglu, et al., 2012).  

In the proposed method, a ridge detection algorithm is applied following a pre-

processing which includes auto-contrast adjustment, resampling, and smoothing.  In 

ridge detection step, membrane-like structures are obtained by a constructed Hessian 
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based ridge detector. They constructed the detector based on the observation that 

membranes possess a bright-dark-bright transition profile. The eigenvalues of the 

Hessian Matrix are used in order to define the ridge energy of each pixel. The Hessian 

matrix is defined as: 

𝐻 = [
𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑦𝑥 𝐺𝑦𝑦
] (25) 

𝐺𝑥𝑥, 𝐺𝑥𝑥, 𝐺𝑥𝑥, 𝐺𝑥𝑥 are the second order Gaussian derivatives of the intensity values of 

each pixel in the image. The eigenvalues are interpreted as in Figure 25. According to 

this interpretation; a valley-like structure is observed when 𝜆1 ≫ |𝜆2| and a saddle 

point in the valley is obtained when 𝜆1 ≫ 0 and 𝜆2 ≪ 0 on which the point belongs to 

a weak point in the membrane. Also they mentioned that the point corresponds to a 

dark blob when 𝜆1 ≈  𝜆2  ≫ 0. Consequently, they define the ridge energy as: 

𝑟(𝜆1, 𝜆2) = {
𝜆1 − 𝜆2 𝑖𝑓 𝜆1 > 0  𝑎𝑛𝑑 𝜆2 > 0

𝜆1 𝑖𝑓 𝜆1 > 0  𝑎𝑛𝑑 𝜆2 < 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

Figure 25. Topographic shapes that eigenvalues of Hessian matrix points (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016). 

Once the ridge energy image is obtained by the formula in Equation (26), an energy 

mapping algorithm is applied to ridge energy image since the classification of 

mitochondria cannot be accomplished only with the ridge energy image. The energy 

map is constructed on the observation that peripheral membranes have low curvature 

and are longer structures. A parabolic arc model which utilizes the ridge energy maps 

is then adopted and used with curve fitting and filtering algorithm in order to obtain 

the membrane-like patterns. Due to weak membrane regions the ridge detection may 

be inaccurate. At these circumstances curve fitting algorithm fails. In order to 

overcome this issue another step snake-based shape extraction is implemented. At the 

final stage a validator mechanism is built for separating the possible outliers. The 

validator function depends on the facts that a mitochondrion has an enclosing 

membrane and cristae inside. Mitochondria segmentation results of the proposed 

method can be seen in Figure 26. 



30 

 

 

Figure 26. Results of the method in Tasel et al. Mitochondria segmentation results (Taşel, 

Mumcuoglu, Hassanpour, & Perkins, 2016). 

In another study Seyedhosseini et al. (Seyedhosseini, Ellisman, & Tasdizen, 2013, 

April) attempt to segment the mitochondria in electron microscopy images used the 

advantage of algebraic curves. They extract textural features and shape information 

from images and used the power of algebraic curves for boundary detection of 

mitochondria in cluttered electron microscopy images. The method proposed include 

four stages. In the first stage of the proposed method, a rotation and scale invariant 

different degrees of polynomial curve fitting operation is applied on an 𝑛 𝑥 𝑛 image 

patch. In the second stage a relatively complex set of features are extracted from the 

inside of the fitted curve on image patches. The features extracted from the inside 

region of the curve include; entropy of the pixel intensities, skewness, kurtosis, 

variance, Hu’s invariant moments, and mean. These features correspond to the textural 

information of the patch. Also some additional features that correspond to the shape 

of the curve are extracted. These include; the average intensity value of pixels on the 

fitted curve, Hu’s invariant moments of the curve, and ratio of the number of pixels in 

the inner area to the curve length. In Figure 27 below, input patches, fitted polynomials 

and the selected fitted curve can be seen. 
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Figure 27. The fitted polynomials of the method in Seyedhosseini et al. Top left two images are two 

patches belonging to a mitochondrion and top right two are non-mitochondrion patches. Fitted forth 

degree polynomials to the related patches (same column upper images) can be seen in the middle row. 

The fitted curves are seen at the bottom row. (Seyedhosseini, Ellisman, & Tasdizen, 2013, April) 

A binary random forest classifier is trained by using the features extracted. The trained 

random forest is used to label the pixels weather they belong to a mitochondria or not. 

At the final stage of the method; is the patch that is passed through the random forest 

is classified as positive then all the pixels that lay on the fitted curve are marked as 

mitochondria. 

 

Figure 28. The fitted polynomials of the method in Seyedhosseini et al. (a) and (b) show two different 

test EM images. (c) and (d) are the segmentation results of the proposed method while (e) and (f) are 

the related ground truths of the images in (a) and (b). (Seyedhosseini, Ellisman, & Tasdizen, 2013, 

April) 
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In the work by Sanchez and Fernandez (Martinez-Sanchez, Garcia, & Fernandez, 

2011)  a segmentation method targeted at membrane detection is proposed. Their 

method which is based on local differential structure and a Gaussian-like membrane 

model which defines the natural limits of compartments within biological specimens. 

Their method include two main stages. In the first stage they produce an output map 

that describes how well a point in the image belongs to a boundary. Then by using this 

output map the final segmentation is obtained. They proposed that the intensity 

variation across a membrane section shows the characteristics of a Gaussian function. 

So they expressed the density variation across a membrane as: 

𝐼(𝑟) =
𝐷0

√2𝜋𝜎0

𝑒
𝑟2

2𝜎0
2
 (27) 

They did the inference in Equation (27) depending on the observation that the density 

along the normal direction to the curve of the membrane progressively decreases as 

the distance to the centring element of the membrane increases. In order to determine 

the curve direction, the eigenvectors of the Hessian matrix of the image is used. Once 

the direction is determined, they calculated the Hessian matrix of the membrane model 

(which is calculated in the first stage) with direction of the curve and then a membrane 

strength is defined by using the result of the gauge defined in Equation (28) below. 

𝑅 = {
|𝜆1| − √𝜆2𝜆3 𝑖𝑓 𝜆1 < 0 

𝜆1 𝑖𝑓 𝜆1 ≥ 0  
 (28) 

 

 

Figure 29. Results of the method in Sanchez et al. The original EMT image is seen in (a). The 3D 

view of the membrane which are segmented by the proposed method is seen in (b). (c) and (d) are the 

membrane strength image and the result of hysteresis thresholding respectively. (Martinez-Sanchez, 

Garcia, & Fernandez, 2011)  
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Subsequent to membrane strength detection by using the gauge (R) obtained in 

Equation (28) a hysteresis thresholding is applied. For finalization of the segmentation, 

the size (i.e. the number of voxels of the component) of detected membranes are 

calculated and only the one that are larger than a pre-set threshold are selected. In 

Figure 29 above, the result of their method can be seen.  
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CHAPTER 3  

PROPOSED WORK / METHODS 

3.1. Data 

As mentioned before the aim of this study is the automatic segmentation of cristae 

boundaries on TEM images. Since this study aims to achieve the segmentation of 

cristae membranes without any dependency on the cell type, the data used shall be 

collected from various different cell types so that the generalization could be achieved 

in the targeted scope.  

A neural network shall have enough number of nodes and hidden layers to approximate 

complex functions. If the number of nodes are too small then the network may not 

have enough representative power to model the data (Lai, 2015). A neural network 

aiming at modelling relatively simple problems requires smaller number of parameters 

(smaller degree of freedom) which requires smaller data sets for training (Lai, 2015). 

The same suggestion is valid from the opposite side: if the problem to be approximated 

is relatively complex than the size of the neural network, then the number of 

parameters to be trained are increased accordingly, bigger datasets are required in order 

to ensure that the generalization is achieved. Since the segmentation of the cristae 

membranes can be seen as a multidimensional and highly non-linear classification 

problem, huge numbers of patterns representing the whole input and output space are 

required. 

3.1.1. Data Sets 

The dataset used in this study is obtained from the Cell Centered Database (CCDB). 

The CCDB is a web accessible database for high resolution data from light and electron 

microscopy and supported by “National Center for Microscopy and Imaging Research, 

USA” and also is a part of the Cell Image Library.  

Four dataset including various sized cristae membranes and show diversity in image 

contrast are selected. Each dataset differs in resolution of the images and size of the 

voxel (see Table 1). 

Table 1. Properties of datasets used in the experiments. Table taken from (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016) 

Dataset name 
Image size 

(width × height) 

Number of 

slices 

Voxel size (nm) 

(X × Y × Z) 

6_22.sub 1960 × 2560 91 1.1 × 1.1 × 1.1 

bclpb-d.sub 720 × 878 61 2.4 × 2.4 × 2.4 

cone.sub 736 × 1010 97 2.4 × 2.4 × 2.4 

gap18_sub 350 × 600 54 2.2 × 2.2 × 2.2 

 

Cone.sub set which obtained by using a conventional back-weighted EMT technique 

is formed from a mouse retina-cone cell (Taşel F. S., PHD Proposal, 2012). The other 



36 

 

sets belong to a mouse retina-rod cell and are collected with a slow-scan CCD camera 

(Taşel F. S., PHD Proposal, 2012). 

Electron microscopy tomography image examples from each dataset can be seen in 

Figure 30. 

 

Figure 30. Mitochondria examples from different datasets used. (a) from bclpb-d.sub, (b) from 

cone_sub.sub, (c) from gap18_sub, (d) from 6_22.sub 

3.1.2. Ground Truth 

In this study the ground truth for training and testing the neural networks and 

evaluating the results is obtained by manually marking the data set which is provided 

by the National Centre for Microscopy and Imaging Research, University of 

California, San Diego, CA, USA. Since manual marking of TEM images is a highly 

labour dependent effort due to large number of images and pixels, vast amount of this 

thesis study was spent for manually marking the cristae membranes. Although it is a 

common approach to obtain the ground truth by averaging the markings of many 

specialist, in this study markings are done only by the writer of this thesis due limited 

means of specialists so that ground truth may contain erroneous markings since the 

writer of this thesis is not competent in the cell morphology science. Also it is 

important to note that marking such a big ground truth database requires an outstanding 

labour dependent and time consuming effort.  
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It shall be mentioned that Sub_6.22 data set which is one of the four data sets used in 

this study were marked by the National Centre for Microscopy and Imaging Research, 

University of California, San Diego, CA, USA. However the markings were roughly 

done such as misaligned markings on cristae membrane boundaries (see Figure 31), 

they provided an initial truth for fine tuning the Sub_6.22 data set and a directive 

example while marking the other data sets such as cone_sub, bclpb-d, and gap 18. 

 

Figure 31. Misaligned markings of the ground truth provided by the National Centre for Microscopy 

and Imaging Research on the left hand side of the figure. Retraced examples for a better ground truth 

for 6.22_sub data set. 

Because the scope of this study only covers to segment the cristae membranes, the 

mitochondria boundaries are not marked on data sets bclpb-d, cone_sub, and gap 18 

as well as not refined on data set sub_6.22. 

Boundaries of cristae membranes are carefully traced by using the IMOD tool 

(Kremer, Mastronarde, & McIntosh, 1996). The thickness of the boundaries are set to 

3 as it is observed that this size fits best to the thickness of cristae boundaries. Although 

the thickness of the boundaries may vary through the periphery of a single cristae, 

marking is done with a fixed thickness size because the 3D mode software do not allow 

to draw a boundary with variable thickness size. In Table 2 below, the numbers for the 

ground truth marking study can be seen.  
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Table 2. Summary of the effort spent for manual marking of ground truth. 

Data 

Set No 

Data Set 

Name 

# of inner 

mitochondria 

marked 

# of 

slices 

ROI size total # 

of 

cristae 

marked 

/ slice 

total # 

of 

pixels 

marked 

# used 

slices 

for 

training 

# used 

slices 

for 

testing 

1 Cone_sub 1 6 428x497 ~43 90000 2 1 

2 6.22_sub 1 8 371x496 ~39 88800 2 1 

3 bclpb-

d_sub 

2 2 393x350 ~34 18000 1 1 

4 gap18_sub 2 2 161x241 ~19 8000 0 1 

3.1.3. Preparation of the Data for Training and Testing 

It is a known fact that the machine learning algorithms perform different depending on 

the selection of the features that represent the data (Yoshua, Courville, & Vincent, 

2013). This requires a labour intensive effort and human intervention and shows the 

inability of the algorithm to obtain the discriminative information from the row data 

and make the suitable inferences (Yoshua, Courville, & Vincent, 2013). In order to 

design systems that are not directly dependent on the data and are easy to apply on 

data obtained on different conditions, it may be the best way to use the very low level 

data without applying any feature extraction. From the point of this approach, the input 

space shall be formed with the intensity values of the pixels in the image since they 

are the very raw data of an image. 

In order to achieve a neural network that can identify all the various patterns in the 

target space from the given input space data, the training set shall contain sufficient 

numbers of all possible types of input patterns for all different types of output labels. 

Multilayer Neural Networks cannot extrapolate beyond the range of the training set so 

that the training data shall span all the range of the input space (Beale, Hagan, & 

Demuth, 2014). 

There are two different approaches in the literature in order to guarantee that the input 

patterns in the training set cover all the range of the input space when dealing with 

images.  In the first approach, where the aim is usually to classify the whole image, all 

the pixels in the image is used for the training of the neural network. In the second 

approach only a region in the image is considered for the classification purpose and 

intrinsically the number of the input space is dramatically decreased when compared 

to the first approach. The neural networks trained with this approach has the ability to 

classify only the related region or the pixel instead of the whole image so that this 

approach is more widely used when the aim to segment a region or a part of an image. 

If the data to be classified is pixels in the image then the input vector to the network 

may be formed of features extracted from the related pixel or directly the intensity 

values of the related pixel and its neighbourhood pixels. One can also use the intensity 

values of the pixel to be classified and its neighbouring pixels in addition to an 

extracted set of features as inputs to the neural network. In (Mishchenko, 2009) in 

addition to 3x3 neighbourhood of the related pixel, Gaussian Smoothed Hessian 



39 

 

eigenvalues are used. In studies like (Suzuki, Horiba, Sugie, & Nanki, 2004), 

(Middleton & Damper, 2004), (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012) 

a square input window covering the intensity values of neighbouring pixels is 

transformed to input vector and used as input for the neural networks.  

 

Figure 32. Input Windows and the whole training patterns for an image. 

Depending on the classification task, the shape of the input window can be modified. 

Using a square input window with size of nxn is a common approach. An illustration 

that explains the procedure of obtaining the training pattern with square input window 

can be seen in Figure 32. In studies such as (Jurrus, et al., 2010), (Jurrus, et al., 2013) 

an input stencil window is used, as can be seen in Figure 33, in order to keep the input 

vector as small as possible while still keeping the generalization performance in hand. 

This type of neighbourhood sampling technique is used when a large area is needed 

for the segmentation of related pixel. Different input windows depending on the type 

of the classification purpose, resolution of the images, and size of the training set has 

been used with many different artificial neural network models and architectures in the 

literature. The main objective for selecting different input window sizes and shapes is 

to optimize the number of input layers in the neural network. Since the training process 

of the neural networks usually includes iterative error minimization, the size of the 

input space shall be kept minimum being formed of limited numbers of carefully 

selected input elements. This input window shall provide enough contextual 

information about the pattern of the pixel to be classified. Of course this contextual 

information approach for training neural networks is useful only when the local image 

features are sufficient for the segmentation purposes. 
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Figure 33. Input stencil versus square path. (a); a square input window with 25 input features (which 

are the intensity values of the pixel). (b); an example of stencil input window which contains 25 input 

features as (a) but cover a larger neighbourhood area around the centre pixel. (Image taken from 

(Jurrus, et al., 2010). 

As it is a common and convenient approach when working with high resolution image 

data, the input vector for training the neural networks is limited to a considerably small 

numbers of pixels covering the neighbourhood of size w (window size of the input 

vector) of the centre pixel to be classified. Otherwise the use of all pixels of the image 

in a single input would be impractical due to the huge computation power and massive 

numbers of training images needed. For instance, a 512x512 image has a total of 

262144 pixels. If we tend to train the network with an input vector of size 262144 then 

we would have a very large NN to train which gives 262144 weights plus 1 bias for 

each neuron in the first hidden layer. This consequence implies that a very large 

training set and huge computational resources would be needed. In practice such an 

approach is impractical.  Because a large w (it is the whole image when w equals the 

width of the image) results in much bigger networks, which take longer to train and, 

at least in theory, require larger amounts of training data to retain their generalization 

ability (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012). In addition to 

computational power problem; the increased input window size can cause modelling 

the noise. In massive training of ANNs, the size of the input window determines the 

number of features used for modelling the desired function. The feature size shall be 

big enough to let the ANN model the function but more than this will tend to memorize 

the data as mentioned in (Lawrance, Giles, & Tsoi, 1996). This problem is more 

commonly known as overfitting. 

In this study segmentation of cristae boundaries by means of ANN will be 

accomplished by means of massive training. Massive training with many input 

windows are introduced in many works like;  (Suzuki, Amato III, Li, Sone, & Doi, 

Massive training artificial neural network (MTANN) for reduction of false positives 

in computerized detection of lung nodules in low-dose computed tomography, 2003), 

(Middleton & Damper, 2004), (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012), 

(Jurrus, et al., 2010) and many others.  

In massive training hundreds of thousands of input windows are used to represent all 

the useful patterns in a data set in order to let the network model the desired function. 

Each input window, in which enough information to be able to segment the cristae 
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boundaries shall be contained, represents a small region of the whole image. The 

information contained by the input window is determined by the size of the input 

window. The more the size is increased the more information is carried out. The view 

of the cristae boundaries inside different sized windows can be seen in Figure 34.  

 

Figure 34. Images from ‘cone_sub’ date set with different size of input windows. 

In Figure 34, one can observe that although it seems possible to identify the boundary 

even with the smallest input window, it is impossible to differentiate whether it is 

mitochondria and cristae boundary. In order to differentiate whether the boundary 

belongs to cristae or not, the input window shall cover all the cristae. This is possible 

only by increasing the size of the input window.  In (Mumcuoglu, et al., 2012) the 

mitochondria boundary is effectively segmented. Since the aim of this study is to only 

segment the cristae boundaries, the problem arose from the difficulty of discriminating 

the mitochondria and the cristae boundaries can be ignored. 

But the size of the input window still effects the performance of the trained neural 

networks when the intercellular structures in mitochondrion except cristae membranes 

taken into consideration. This problem is described in Figure 35. In Figure 35-(a) a 

small portion of a section from Sub_6.22 data set is seen. On the left hand side, a crista 

boundary is seen with different size input windows while on the right views of different 

input windows belonging to a non-membrane area can be seen. Figure 35 below 

reveals that, it is impossible to distinguish the cristae membrane area from non-

membrane area when the input window size is 9x9. As the input window size increases 

it becomes clear that the images c, e and g belong to non-membrane area in the 

mitochondria. 
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Figure 35. The views of membrane (on the left) and non-membrane (on the right) areas with different 

size input windows. 

Since the scope of this study is to segment the cristae boundaries inside the 

mitochondria, only the area remaining within the mitochondria inner membranes shall 

be used for training and testing. Because the slices in the data set includes many other 

cell structures like nucleus, endoplasmic reticulum etc. besides mitochondria, the 

slices to be used for training and testing are cropped as seen in Figure 36. 
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Figure 36. Cropped image of the mitochondria. Each slice to be used in training of the networks are 

cropped and cleaned. 

There exists a huge number of negative examples when compared to positive ones 

since the positive examples in a slice are only the membrane boundaries. If all the 

patterns in the image is used, the network will see many times more negative examples 

than positives during the training. This turns out that the trained network will be prone 

to classify the massive number of pixels as negative so that the false negative rate will 

be unacceptably high. In order to overcome this issue, the ratio between the number of 

positive and negative examples are arranged by removing the determined numbers of 

randomly selected negative examples from the training set. 

The pixels falling into the membrane – non membrane transition area are difficult to 

label since they represent the features between membrane and non-membrane 

structure. These pixels may decrease the training performance of the networks. In order 

to determine the effect of this phenomenon different training sets both including and 

excluding (without the pixels adjacent to membrane boundaries) the pixels in this 

transition zone are prepared and used for training the networks. The networks trained 

with the sets excluding these pixels are reported in “Results” Chapter. 

3.1.4. Pre-processing 

EMT images may contain some artefacts including; extremely dark or bright intensity 

values due to the imaging technique, limitation of the equipment, or weak or very 

strong membrane edges (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016). In 

addition to the artefacts of the EMT, the technique may produce noisy images so that 
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noise removal is recommended when working with electron microscopy data (Bazan, 

Miller, & Blomgren, 2009) (Mumcuoglu, et al., 2012) (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016). These characteristics on the input image may cause 

undesirable or insufficient findings on the output segmentation results.  

As mentioned before the method proposed in this study aims to operate on different 

data sets which are obtained from different types of cells. This turns out that each data 

set has different pixel size which originates the problem of parameter tuning since the 

features used for segmentation of the membranes are not invariant to the scale and size 

of the viewed and analysed mitochondria in the image. 

 In order to overcome the possible effects of these issues on the results, the pre-

processed images obtained with the application of the procedure proposed in the study 

by Taşel et al. (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016) is used. The original 

and the pre-processed image can be seen in Figure 37. The pre-processed images are 

provided by Dr. Serdar Taşel. At the first stage of the proposed method auto-contrast 

adjustment is applied on the data set. Direct normalization cannot be applied since it 

can cause substantial degradation in image contrast due to extreme changes in image 

intensity levels which may arise due to gold markers utilized or X-rays and other flaws 

in CCD sensors (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016). Auto-contrast 

adjustment assumes that there exist extreme points in the intensity histogram so that 

the algorithm can re-normalize the intensity distribution to a certain range (Taşel, 

Mumcuoglu, Hassanpour, & Perkins, 2016). Subsequent to auto-contrast adjustment, 

images are resampled so that all the thickness of cristae membrane in different data 

sets are set to a fixed pixel size. The typical mitochondria membrane thickness ranges 

from 4nm to 6nm (Rog, et al., 2009) and the resampling is achieved by means of 

interpolating the image to 2 nm pixel size which prevents any data loss for the 

mitochondria membrane during resampling. In the end of the pre-processing, the noise 

removal operation is applied by means of bilateral smoothing technique (Tomasi & 

Manduchi, 1998, January) which preserves edge while removing the noise in the 

image. This technique is also useful for removing the non-membrane-like structures 

while conserving the membranes (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016). 

In Figure 37, it is seen that the application of bilateral smoothing makes image clearer 

while preserving the membranes with very limited data loss. 
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Figure 37. The pre-processed image processed by the method proposed in (Taşel, Mumcuoglu, 

Hassanpour, & Perkins, 2016) 

3.2. Segmentation in Two-Dimensions 

In many studies (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016) (Mumcuoglu, et 

al., 2012) (Martinez-Sanchez, Garcia, & Fernandez, 2011) it has been attempted to 

segment the inner and the outer membrane of mitochondria. Although the 

mitochondria boundaries have successfully segmented in these studies, there exists 

limited number of studies for the problem of segmentation of the cristae membranes. 

In this study we aim to segment only the inside region of the mitochondria excluding 

the boundary membranes. These include the cristae and other intercellular structures 

inside mitochondria.  

As a simple approach we first tested ‘Canny’ edge detection method (Canny, 1986) 

which is known to be one of the best methods for edge detection with connectivity. 

The Figure below shows the results of the ‘Canny’ method. As seen from the Figure 

that although the method is capable of detecting many of the edges, still it shows 

considerably low performance on detecting weak boundary edges and false positive 

rate. 
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Figure 38. Result of Canny edge detection method. 

The proposed method for the segmentation of cristae membrane from the inner 

mitochondria images includes two main stages after the pre-processing step is 

accomplished. In the first stage, the image transformed to the input vectors obtained 

as described in Section 3.1.3 is used for training a neural network. The output of the 

network produces the probability values whether the centring pixel of the input 

window from which the input vector is obtained belongs to a cristae membrane or not. 

In the following stage the result of the neural networks are refined by means of a 

special method named as “Directional Hessian Ridge Growing”. The flowchart of the 

proposed method can be seen in Figure 39. 
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Figure 39. Flowchart of the proposed method. 

Although the segmentation of cristae in hundreds of slices of EMT images has a critical 

importance in order to reveal the role of the cristae in many disease within its 

morphology as mentioned Section 1, there exist a limited number of studies in the 

literature for the automatic segmentation of the cristae membrane in the mitochondria. 

In this study, only the interior region of the mitochondria is considered as the analysing 

data leaning on the fact that the segmentation of boundary membrane of the 

mitochondria has successfully been accomplished by the studies like (Mumcuoglu, et 

al., 2012) (Taşel, Mumcuoglu, Hassanpour, & Perkins, 2016). So the images on which 

the proposed method applied are the images that includes only the region that is 

bounded by the inner boundary membrane of the mitochondria where the inner 

boundary is excluded. The remaining section of the images are cropped out. 

3.2.1. Segmentation Using Classical Feed-Forward Neural Networks 

In order to start to train the neural network once the data is ready, an architecture that 

let the network to represent all the input patterns in the data while not overfitting the 

data shall be selected. The parameters that define the architecture of the network are; 

the number of hidden layers, the size of the input layer, the number of hidden nodes in 

each hidden layer, and the size of the output layer. A fully connected feedforward 

network example can be seen in Figure 40. The size of the input layer is defined by 

the size of the input vectors as seen in Figure 40. This turns out that the selection of 

input window stencil which is described in Section 3.1.3 defines the size of the input 

layer. We aim to decide whether a pixel belongs to a membrane boundary or not, so 

that there exist only one node in the output layer.  
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Figure 40. Illustration of a feedforward neural network. (Image taken from (Haykin, 2009)) 

The remaining parameters in order to define the architecture of the network are the 

number of hidden layers and hidden nodes in the hidden layers. The determination of 

the number of hidden layers and the number of hidden nodes in the hidden layers is 

not a straightforward task. Even though there exist many proposed rule-of-thumbs, it 

a very common approach to determine them by trial and error. Starting with a very 

small network may result networks that do not have enough power to represent all 

useful patterns in the input. This phenomenon is known as high bias. On the contrary, 

if a very large network is used, then the network may be trained to model the noise and 

overfit the data. This phenomenon is known as high variance (Lai, 2015). As a 

common approach many different networks with varying numbers of hidden layers 

and hidden nodes are trained.  

Another issue that characterizes the performance of the networks is the choice of the 

activation functions in the neurons. For pattern recognition problems sigmoid 

activation functions are often used (Beale, Hagan, & Demuth, 2014). Since we want 

to obtain outputs falling between 0 and 1, sigmoid activation function is used in both 

the hidden and the output layers. 

3.2.2. Training 

The training phase of a neural network can be defined as the process of estimating the 

values of adjustable parameters which define the characteristics of the classification 

model depending on the data set (Bishop, 2006, p. 5).  

In the training phase of the neural network, the whole data set is randomly divided into 

three subsets: training set, validation set, and the test set. The training set which is %70 

of the whole set is used to update the weights and biases as well as computing the 

gradient of the error function. The validation set which is %15 of the whole set is used 

to decide the moment that the network begins to model the noise in the training set 
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which is called overfitting. And finally the test set which is %15 of the whole set is 

used to represent the present performance of the current trained network and compare 

with different networks. The receiver operating characteristic (ROC) curves and the 

confusion matrix which are useful tools in order to measure the performance of the 

network and select the best one are formed with the test data.  

Before the division of the training set into three different parts, a normalization 

operation is applied to the input vectors, which comprises the intensity values of input 

window or patch, so that the input values are mapped in the range between -1 and 1 

with the formula defined in Equation (29).  

𝑦 =
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗ (𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 𝑦𝑚𝑖𝑛 (29) 

 

Where 𝑦 is the normalized intensity value, 𝑦𝑚𝑎𝑥 = 1, 𝑦𝑚𝑖𝑛 = −1, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are 

the minimum and maximum intensity values in the image respectively.  

The reason for the normalization operation on the input patterns lay behind the 

saturation behaviour of the sigmoid function. The sigmoid functions used in the 

activation of each neuron are saturated by approaching the limit values of the functions 

when the net output of the neuron is greater than a specific value. For instance, let the 

sigmoid function used defined as; 

𝑦 =
1

1 + 𝑒−𝑥
 (30) 

Where 𝑓(𝑥) is the output of a neuron and 𝑥 is the sum of all inputs multiplied by the 

weights plus the bias. If the summed output of the neuron is 4 (four) then the output of 

the activation function approach to the upper limit of the function (From the Equation 

(30) for 𝑥 = 4, 𝑓(𝑥) =  0.9820). This means that the gradient will become too small 

so that the progress of the learning will be limited. In order to avoid the phenomenon 

explained below either the weights shall be extremely very small or the input shall be 

normalized in a relatively small range.  

Before starting the training, the parameters to be adjusted which are weights and bias 

shall be initialized. As it is a very common approach the initialization is made by 

means of randomly selected small values. The selection of random values for weights 

and bias guarantees the avoidance of the problems due to symmetries in the network 

and the selection of small values provides that the sigmoid activation functions are not 

driven into the saturation regions (Bishop, 2006, p. 261).  

As the initial weights directly define the course of the training (minimum error rate 

achieved, training time, total iterations) and the performance of the resultant network, 

it is a common approach to train the network for many times and to select the best 

network by comparing their performances by the use of the data set which is not used 

for training and reserved for independent testing (Bishop, 2006). 

Perrone and Cooper (Perrone & Cooper, 1993) proposed a method which may result 

networks with improved performance as combining these trained networks to form a 

committee. In this study the best performing network is selected amongst some trained 

networks. It shall be noticed that selecting a single network amongst many trained ones 
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has an disadvantage along with wasting the effort paid for training the remaining 

networks: the network which has the best performance on one single selected test set 

may not be the best performing network for new data sets because the test set selected 

possess random components due to the noise (Bishop, 2006, p. 364). In our study, each 

network (with a different architecture) is trained for 10 times. Once each training is 

completed with one of the stopping criteria defined below, the trained network is tested 

on a completely different image (using its ground truth). Input vectors whose sizes 

depend on the shape of the input stencil are obtained for each centring pixel and its 

neighbourhood from the test image. Then the input patterns are passed through the 

network and the results are compared with the ground truth image by the help of 

metrics like true positive rate (TPR) which is also called recall, true negative rate 

(FPR) which is also called specificity, precision and a kind of effectivity metric defined 

in (Middleton & Damper, 2004). These metrics are defined in Equation (31). Although 

many metrics are computed, TPR metric is used for the selection of the best neural 

network from 10 trained networks.  

𝑇𝑃𝑅(𝑟𝑒𝑐𝑎𝑙𝑙) =
∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑

∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑇𝑁𝑅(specificity) =
∑ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑

∑ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑

∑ 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠  𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 1 −
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑇𝑃𝑅

(1 − 𝛼) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝛼 ∗ 𝑇𝑃𝑅
 

(31) 

 

In the training set there is an orders of magnitude higher number of negative examples 

as compared with the positive examples since only cristae boundaries are considered 

as positives. This naturally causes an important issue that TPR, FPR and precision 

measures cannot effectively represent the performance of the networks trained. The 

denominators of FPR and TPR metric are significantly different and consequently 

tenderness of these two measures against changes are not comparable. Thus a small 

change in the false positive error rate is relatively more important than a comparable 

change in the false negative error rate, leading to difficulties in interpretation 

(Middleton & Damper, 2004). 

For the learning of the parameters in the network, the Levenberg-Marquardt [ 

(Levenberg, 1944) (Marquardt, 1963)] optimization algorithm which is also known as 

damped-least-squares is used instead of standard gradient descent algorithm. 

Levenberg-Marquardt method is a compromise of the Newton’s method and gradient 

descent methods (Haykin, 2009) as described in Section 2.2. 

It has not been proven that the backpropagation algorithm can converge, likewise no 

golden standard stopping criteria for its operation has been proposed (Haykin, 2009, 

p. 139). But there exist some criteria that are used for the termination of training 

process such as checking the rate of change of the average squared error per epoch. In 

this approach, if the derivative of the average squared error with respect to epoch 

number is sufficiently small, then the training is stopped (Haykin, 2009, p. 139). This 

approach may cause to premature stopping if the error function temporarily stick 



51 

 

around a local minima (Bishop, 2006, p. 262). Also the error value itself can be used 

as the training is terminated when it falls below a specified threshold value. But this 

time the specified threshold may never be reached so that some additional limits like 

processing time or maximum iterations may be required (Bishop, 2006, p. 262).  

In this study, in addition to “maximum iterations reached” and “gradient value of error 

function” checks for the termination, validation stop criterion is used. As the training 

progress, the validation set is passed through the present trained network in order to 

validate the model on another data which is different from one used for parameter 

adjustment (Haykin, 2009, p. 171). During the training process the training set error 

decreases as well as the validation set error. With the use of validation stop criterion, 

the training is stopped when the validation set error starts to increase which is the 

moment the network starts to overfit the training data. In order to be sure that 

overfitting is started the validation error shall be increasing simultaneously in each 

new iteration.  If the validation error increases for 6 consecutive epochs which is 

empirically determined in this study then the training is stopped and the network 

(weights and biases) is saved at the minimum of the validation set error which is 6 

epochs before. This is called the validation stop criteria in the neural networks 

literature. The graphical explanation of the training and validation error formation can 

be seen in 41. From Figure 41 it can be observed that although the training error 

decreases throughout the process, the error computed with the validation set data 

which is not used for updating the weights starts to increase at moment where the 

network starts to lose its generalization ability. 

 
Figure 41. The error formation during training process of a neural network. The dashed line shows the 

moment that the overfitting begins. (Image taken from (Haykin, 2009, p. 174)) 

Although there are studies in the literature which trains the networks with a fixed 

number of epochs, in our study, fixed epoch numbers approach is not employed 

because if the neural network converges the desired performance much far before the 

pre-set number of epochs then the network will start to model the noise in the data set 

because the training is not stopped. By the use of decreasing validation performance 
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check approach, training is stopped just when the neural network starts to memorize 

the data. 

As mentioned before, in the weight adjustment stage of the backpropagation algorithm 

the error function is used as a cost function to be minimized. There exists two main 

approaches in the literature for training of the synaptic weights during this stage of the 

backpropagation algorithm. In the first approach, the weights are updated just after 

each pattern is shown to the network. This type of learning is called online learning. 

In the second approach the adjustments of the weights and bias are performed after all 

the patterns in the data set (which is called one epoch of the training (Haykin, 2009, p. 

127)) are shown to the network. This type of learning is called batch learning (Bishop, 

2006, p. 146). In this approach the learning is progressed through an epoch by epoch 

basis. Since the adjustments of the weights are done after each epoch is completed, the 

error function is defined as the average error function, ℇ𝑎𝑣, as defined in Equation (32). 

 

ℇ𝑎𝑣(𝑁) =
1

𝑁
∑ ℇ(𝑛)

𝑁

𝑛=1
 (32) 

 

where N is the number of patterns in the training set and ℇ(𝑛) is the error of nth pattern. 

Due to its advantages of accurate estimation of the gradient vector and parallelization 

of the learning process (Haykin, 2009, p. 128), the batch learning approach is used in 

this study.  

The learning rate parameter in the learning algorithms controls the level of the 

adjustment applied to the weight at each iteration when standard gradient descent 

algorithm is used. If it is selected too small then the minimization of the error function 

will be slightly slow while the training may not converge to a minimum error, for the 

opposite case (if it is selected too large) divergent oscillations may occur (Bishop, 

2006). The Levenberg-Marquardt algorithm is a composed version of the gradient 

descent and Gauss-Newton algorithm, no learning rate is used in steps of the iteration. 

The flowchart of the training process applied for the one hidden layered networks can 

be seen in Figure 42. The neural network toolbox of the MATLAB® R2016a software 

is used since it offers wide range of access and control to the parameter of the networks 

including the ones explained above. 
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Figure 42. Flowchart of the training process. Each pattern is comprised of the centring pixel with its 

neighbourhood. The pairing target values of the patterns form a matrix with size of 1xPattern_No. 

 

3.3. Segmentation in Three-Dimensions 

Although three dimensional electron microscopy datasets are used in this study, the 

useful information that lays in the third direction (the thickness of the cell) of the 

images are not benefitted in the first section of the study.  

Membrane boundaries in the data set may appear disconnected when looking at a 

single slice of image. But one may observe that these disconnected boundaries are 

connected when the following sections are analysed. While it is impossible to specify 

the boundary on only one section of the image, it may be easier when the following 

sections in the z direction of the 3D image are considered because the boundary of the 

membrane usually becomes apparent in the neighbouring sections. This phenomenon 

can be observed in Figure 43.  

 

Figure 43.  Appearing boundaries in 3D sections. In the very left image the indicated region of the 

boundary is disconnected while it becomes apparent in following sections. 

In addition to the phenomenon indicated in Figure 43, there also exist many boundary-

like structures that do not belong to a membrane in the image. These structures usually 

appear and disappear one or two sections. When only one slice of image is 
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investigated, these structures may be classified as a part of boundary of a crista. The 

information that these structures are not continuous through the thickness of the cell 

can only be ingested to the network with the use of 3D input patterns so that these 

deceptive artefacts can be truly classified. In Figure 44 below a disappearing non-

membrane structure can be seen. On the very left image, the indicated structure can be 

classified as a part of the crista. But the following section reveal that it is a not. 

 

 
Figure 44. Discrimination of non-membrane structures in 3D sections. For many cases non-membrane 

structures can only be truly classified by the observation of the thickness of the cell.  

Since the aim lays beneath the 3D extension of the method is to use the information 

which is hidden in the neighbouring images, simply, the input stencil or window used 

in the 2D training section is enlarged to 3D by means of adding pixel intensities of 

neighbouring pixels of the centring pixel in the following images through z direction. 

By this the training is accomplished including the 3D information so that the 

performance of the algorithm is enhanced. An input stencil example with the depth of 

three can be seen in Figure 45-b. On the left side (Figure 45-a) an input stencil used 

for extracting input features from a single 2D image can be seen while on the right side 

the same input stencil is tripled through z axis. With the use of this 3D input stencil, 

the intensity values of the neighbouring pixels including the centring image and its 

neighbouring pixel can be obtained. 
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Figure 45. Examples of 2D and 3D input stencils. (a) shows the standard input stencil used for 2D 

training (on one section). (b) Shows the same input stencil but extended to 3D so that the training 

section thickness becomes three.  

3.4. Directional Hessian Ridge Growing Method 

In the first stage of the proposed method, vast majority of cristae boundaries are 

segmented except areas where the gradient of the membrane is relatively small (which 

means the intensity value of the boundaries are almost same as the non-membrane 

areas) when compared to neighbouring cell fluid region of related boundary. In these 

zones, the neural networks cannot produce significantly different intensity values to 

discriminate the membrane from darker cell fluid regions. In these areas the 

segmentation cannot be accomplished by means of direct thresholding methods (of the 

output stage) and consequently disconnected boundaries are observed in the results.  
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Figure 46. The flowchart of the iterative directional hessian growing method 

In order to enhance the performance of the results obtained from neural networks, a 

method which grows the previously segmented membranes and attempts to connect 

the disconnected boundaries is proposed. The proposed method is inspired by the 

Canny (Canny, 1986) method in which edge growing through a hysteresis thresholding 

is applied. The proposed method used the advantage of hysteresis thresholding in order 

to determine the real and candidate ridges separately just as Canny did.  The flowchart 

of the method can be seen in Figure 46 above. Below the examples from the sub 

outputs of the algorithm which are numbered in Figure 46 above can be seen in Figure 

47-b-c-d. Image in Figure 47-b form the base for the resultant image. Pixels in Figure 

47-d are added to resultant image if they are located in the search window are of the 

pixels in b and satisfy the rules explained in the remainder of this section. 
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Figure 47. Sub-outputs of the directional hessian growing method. (a) is the output image of the 

network, (b) is the strong membrane boundary image that forms the base for the growing operation, 

(c) is the weak boundary pixels that are used to obtain the candidate pixels in (d). 

The proposed method takes advantage of two basic assumptions about the membranes 

that were successfully segmented in the previous stage depending on the fact that the 

intensity values shall remain similar through the membrane connectivity direction and 

increase through both orthogonal (opposite to each other) directions: 

1. However the intensity value produced by the network is almost similar or lower 

when compared to many non-membrane areas in the cell, if the analysed pixel 

is part of a cristae membrane, still, it shall have a smaller intensity (where a 

%100 possibility of belonging a membrane boundary is represented with an 

intensity value of 0) value than the vast majority of the non-membrane areas 

and possesses visually observable valley-like intensity transition zones. 

2. If the observed pixel in a weak valley-like transition zone is a membrane 

structure, then the curvature direction of the zone around that pixel shall be 

similar to the direction of the curvature of neighbouring strongly classified as 

membrane structures which fall into strong valley-like transition zones. 
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In order to check the first assumption, a double thresholding operation is applied so 

that the continuous result of the network is divided into two binary images of which 

one contains the pixels that strongly belong to a membrane structure. The pixels 

belonging to strong boundaries are classified as membrane boundary pixels at this 

stage, and this decision is not changed in the following stages of the algorithm. This is 

accomplished by means of applying a basic thresholding as in Equation (33).  

𝐼𝑠𝑡𝑟𝑜𝑛𝑔(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐿𝑜𝑤

0, otherwise
 (33) 

 

In Equation (33) 𝐼𝑠𝑡𝑟𝑜𝑛𝑔 is a binary image where only the real or most likely membrane 

structures exists. In order to determine the optimal 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐿𝑜𝑤 value; various 

different threshold values are applied to resultant images of networks and an optimal 

threshold value which maximizes the TPR while minimizing the FPR is empirically 

determined. 

The second binary image obtained in this stage (double thresholding) contains the 

weak boundary pixels that were eliminated in the first thresholding stage but still are 

candidates to be a part of a membrane boundary. This image is used in connecting the 

disconnected membrane structures. In order to obtain the weak candidate membrane 

pixels, a higher threshold (for selecting both the strong and the weak pixels) is applied:    

𝐼𝑎𝑙𝑙(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐻𝑖𝑔ℎ

0, otherwise
 (34) 

 

where; 

𝐼𝑎𝑙𝑙(𝑥, 𝑦) =  𝐼𝑠𝑡𝑟𝑜𝑛𝑔(𝑥, 𝑦) +  𝐼𝑤𝑒𝑎𝑘(𝑥, 𝑦) (35) 

 

In Equation (35),  𝐼𝑤𝑒𝑎𝑘(𝑥, 𝑦) is the image that contains weak candidate membrane 

pixels. In order to discriminate the weak membrane structures from non-membrane 

structures, the second assumption is assured by using the information that the 

eigenvectors of the Hessian Matrix provide. In this method; each pixel marked as 1 in 

the 𝐼𝑤𝑒𝑎𝑘 binary image is marked as membrane if both of these two conditions are 

satisfied;  

1. There exists at least one 𝐼𝑠𝑡𝑟𝑜𝑛𝑔(𝑖, 𝑗) = 1 within a neighbouring area defined 

by the input window with size nxn. 

2. The similarity metric (S) of the eigenvector of 𝐼𝑤𝑒𝑎𝑘(𝑥, 𝑦) and 𝐼𝑠𝑡𝑟𝑜𝑛𝑔(𝑖, 𝑗) is 

greater than similarity threshold (which is set empirically) for at least one of 

the 𝐼𝑠𝑡𝑟𝑜𝑛𝑔(𝑖, 𝑗) in the nxn neighbouring window around the weak pixel 

location (𝐼𝑤𝑒𝑎𝑘(𝑥, 𝑦)). 

 



59 

 

The similarity metric in the second condition is defined as: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑆) =  
𝑒𝑠𝑡𝑟𝑜𝑛𝑔

′ ∗  𝑒𝑤𝑒𝑎𝑘

|𝑒𝑠𝑡𝑟𝑜𝑛𝑔| ∗ |𝑒𝑤𝑒𝑎𝑘|
 

 

(36) 

where; 𝑒𝑠𝑡𝑟𝑜𝑛𝑔 is the eigenvector that corresponds to the greatest eigenvalue of the 

Hessian matrix (H) which is shown in Equation (37). 

𝐻 =  |
𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑦𝑥 𝐺𝑦𝑦
| (37) 

The members of the Hessian matrix shown in Equation (37) are the second order partial 

derivatives of I(i, j) in the image where i and j are the row and column of the image 

pixel. The gradient of the pixel I(i, j) through directions x and y are calculated as in 

Equation (38); 

𝐺𝑥(𝑖, 𝑗) = 𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗 − 1) 

𝐺𝑦(𝑖, 𝑗) = 𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖 − 1, 𝑗) 
(38) 

The second order derivatives are calculated as in Equation (39): 

𝐺𝑥𝑥(𝑖, 𝑗) = 𝐺𝑥(𝑖, 𝑗 + 1) − 𝐺𝑥(𝑖, 𝑗 − 1) 

𝐺𝑦𝑦(𝑖, 𝑗) = 𝐺𝑦(𝑖 + 1, 𝑗) − 𝐺𝑦(𝑖 − 1, 𝑗) 
(39) 

And the diagonal elements 𝐺𝑥𝑦 and 𝐺𝑦𝑥 is calculated as in Equation (40). 

𝐺𝑥𝑦(𝑖, 𝑗) = 𝐺𝑦𝑥(𝑖, 𝑗) = 𝐺𝑥(𝑖 + 1, 𝑗) − 𝐺𝑥(𝑖 − 1, 𝑗) (40) 

 

The process explained above is iterated until the desired performance is achieved as 

explained in Figure 46 above. 
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CHAPTER 4  

RESULTS 

 

Introduction 

Although the data obtained from the Cell Centered Database (CCDB) is a huge data 

set including total of 249 slices (for “cone, sub22, and bclpb-d” sets), only a small 

number of slices could be used because of the restrictions rising from the limited power 

of processor and memory used in this study. Two slices from the “6_22-sub” data set, 

two slices from the “cone_sub” data set, and one slice from “bclpb-d” data set is 

selected and used for training of the neural networks. The trained networks are tested 

with slices that are not used during the training phase. The 2D networks are trained 

only with one single slice of training image while the 3D networks are trained with 

stacks of neighbouring slices through z direction (thickness direction), where the 

segmentation is done on the centring slice. 

The image to be tested is transformed into input vectors which are formed from the 

intensity values of the pixels obtained with the input stencil window, and each input 

window is paired with the corresponding target value which is the ground truth. In 

order to evaluate the performance of the networks, metrics described in “Section 3.2.2 

Training” are calculated with the result produced by related network. The numbers of 

true positives, false positive, true negatives, and false negatives are computed by 

comparing the resultant image and the related ground truth. Ground truth image is a 

binary image which is composed of positive (membrane boundaries) and negative 

(everything else in the image) labels while the row output of the network is continuous 

since the activation function in the output layer produces values between 0 and 1 where 

a value near to 0 corresponds to negative classification while 1 corresponds to positive. 

In order to obtain the exact binary classification, a threshold operation is applied to the 

output image. Although the balance between the number of positive and negative 

examples used in the training may affect the selection of the threshold value used in 

this step as discussed in the work by Middleton (Middleton & Damper, 2004), this is 

ignored in this study and a threshold value of 0.5 is used for many of the networks 

trained. 

4.1. Tests for Selection of Neural Network Parameters 

As described in section “3.1.3. Preparation of the Data for Training and Testing”, the 

balance between the negative and positive number of training patterns are arranged so 

that the trained networks do not tend to produce too much false negatives. In the work 

by Ciresan et al. (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012) same amount 

of positive examples are randomly selected from all negative examples while in 

another work (Jurrus, et al., 2013) the number of randomly selected negative examples 

are two times more than the positive ones. When the aim is to segment the cristae 

membrane boundaries in electron microscopy images, using more negative examples 

makes sense since there exists relatively much more negative examples that represent 
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the non-membrane pixels. In order to observe the effect of the ratio to be used during 

the training, Figure 48 can be viewed where a specific network is trained with different 

training sets which are composed of; (i) the same number of negative and positive 

examples, (ii) the number of negative examples are three times more than the positive 

ones, (iii) and all the negative and positive patterns in the images without decreasing 

the number of negatives.  In the case (i), the total number of examples are 2x48550; in 

the case (ii) the number of negative examples is 145650 (3x48550); and in the final 

case the number of negative examples is 263430 while the positives are 48550. The 

width of the network used here is 1 which means that the segmentation is done in 2D. 

It is seen from the Figure that the best true positive rate can be obtained with equal 

number of positive and negative training examples are used (Figure 48-a). But as true 

positive rate increases false positive rate is also increased and as a result the minimum 

false positive rate is obtained in Figure 48-a.  

 

Figure 48. Results from the networks trained with different numbers of negative training examples. 

Remarkable differences are pointed with black arrows. Positive examples = 48550 in all cases. The 

number of negative patterns are; 48550 in (a), 145650 in (b), 263430 (c). (Network properties: Input 

Stencil Size =15, Centring Square Patch = 9, Width = 1 (2D network); Hidden nodes = 55, Pixels 

adjacent to positives are not used, balance ratio of one, three, and no ratio is used for training set in 

row one, two, and three respectively.) 

The performance metrics can be seen in Table 3. As described above, TPR decreases 

as the number of negative conditioned examples in the training set increases. Although 

effectivity metric has approached the highest value where all the negative examples 

are used, it will not be used during the preparation of training sets in the remainder of 

this study because the TPR is too low to be acceptable while the aim of this study is to 

segment the cristae membrane boundaries. 

 



63 

 

Table 3. Performance metrics of the networks trained with different numbers of negative training 

examples for the comparison of the effect of the number of negative conditioned examples versus 

positive ones. (The network properties: Input Stencil Size =15, Centring Square Patch = 9, Width = 1 

(2D network); Hidden nodes = 55, Pixels adjacent to positives are not used, balance ratio of one, 

three, and no ratio is used for training set in row one, two, and three respectively. 

  TPR TNR precision effectivity 

NN1-iw1-15-HN-55-W1-B1-WOA 85% 98% 76% 80% 

NN1-iw1-15-HN-55-W1-B3-WOA 79% 99% 83% 81% 

NN1-iw1-15-HN-55-W1-Ball-WOA 77% 99% 86% 82% 

 

In section “3.2.2.1 Segmentation Using Classical Feed-Forward Neural Networks”, it 

was described that there are no gold standard methods in the literature for determining 

the number of hidden layers and nodes while designing the architecture of the network. 

In order to observe the effect of the number of hidden layers, two networks trained 

under the same conditions (i.e: input nodes, activation functions, training set). The 

only difference is that one of them has one hidden layer while the other one has two 

hidden layers. The resultant images of networks can be seen in Figure 49. It shall be 

noted that the initial weights in the beginning of two training were not the same but 

this can be ignored because each training is done for 10 times so that the effect of the 

weight initialization is discarded. 

 

Figure 49. The comparison of the result of one and two hidden layer networks. (a: one hidden layer, b: 

two hidden layer). (The network properties: Input Stencil Size =15, Centring Square Patch = 9, Width 

= 1 (2D network); Hidden nodes in the first hidden layer= 55, Hidden nodes in the second layer = 10, 

Pixels adjacent to positives are not used, balance ratio of one used for training set) 
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From the Table 4 below, it can be seen that no significant performance change on TPR 

and TNR occurs while the effectivity performance is decreased with additional hidden 

layers. 

Table 4. Performance metrics of one and two hidden networks. The first one (in first row) is trained 

with one hidden layer while the second with two hidden layers. (The network properties: Input Stencil 

Size =15, Centring Square Patch = 9, Width = 1 (2D network); Hidden nodes in the first hidden layer= 

55, Hidden nodes in the second layer = 10, Pixels adjacent to positives are not used, balance ratio of 

one used for training set) 

  TPR TNR precision effectivity 

NN1-iw1-15-HN-55-W1-B2-WOA 79% 99% 83% 81% 

NN1-iw1-15-HN1-55-HN2-10-W1-B2-WOA 79% 99% 82% 80% 

In Figure 50, two networks whose number of nodes in the hidden layer are different 

from each other can be seen. From the results it can be seen that the increase in the 

number of hidden nodes in hidden layer does not significantly affect the TNR and 

effectivity performance of the network but increase the TPR metric for %0.5.  

 

Figure 50. The comparison of the result of identical networks except whose number of nodes in the 

hidden layer is different. The number of nodes is 55 in (a) and 20 in (b). (The network properties: 

Input Stencil Size =15, Centring Square Patch = 9, Width = 1 (2D network); Pixels adjacent to 

positives are not used, balance ratio of one used for training set) 

The performance metrics in Table 5 verifies the results seen in Figure 50 above. 

Table 5. Performance metrics of the networks trained with 55 and 20 number of nodes in the hidden 

layer in the first and the second row respectively. All other parameters of the networks and the 

training set are identical. (The network properties: Input Stencil Size =15, Centring Square Patch = 9, 

Width = 1 (2D network); Pixels adjacent to positives are not used, balance ratio of one used for 

training set) 

  TPR TNR precision effectivity 

NN1-iw1-15-HN-55-W1-B1-WOA 85% 98% 76% 80% 

NN1-iw1-15-HN-20-W1-B1-WOA 84% 98% 75% 80% 
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In Figure 51 the effect of not using the negative patterns (non-membrane) that are 

adjacent to the positive examples (cristae membrane) during the training can be seen. 

It is seen that the method used in Figure 51-b during preparation of the training set 

effected the performance of the training so that the network produced thicker 

membrane boundaries when compared Figure 51-a. This result make sense because in 

the training set prepared with the method in Figure 51-b, there are no patterns that can 

teach the network not to mark the negative patterns that are adjacent to the membrane 

boundaries and as a result these pixels are marked as membrane boundaries which 

yields to higher true positive rates. But the number of true negatives are decreased with 

‘without adjacent pixels’ approach. 

 

Figure 51. Results for the comparison of training without the adjacent pixels to positives. In (a) the 

result of the network trained with the examples including the negative ones that are adjacent to the 

positive ones. In (b) the patterns mentioned in (a) are not included in training set of the network. (The 

network properties: Input Stencil Size =15, Centring Square Patch = 9, Hidden nodes in the first 

hidden layer= 55, Width = 1 (2D network)) 

 The effect of producing thicker membrane boundaries can be seen in Table 6 that the 

true negative rate (TNR) is decreased for %1. The TPR increased dramatically so that 

the effectivity metric is increased for %4 although the precision metric has been 

decreased due to %4 decrease in TNR. 

Table 6. Performance metrics of the networks trained with the use of “with adjacent pixels” versus 

“without adjacent pixels (WOA)” approaches explained above. (The network properties: Input Stencil 

Size =15, Centring Square Patch = 9, Hidden nodes in hidden layer= 20, Width = 1 (2D network)) 

  TPR TNR precision effectivity 

NN1-iw1-15-HN-20-W1-B1 73% 99% 79% 76% 

NN1-iw1-15-HN-20-W1-B1-WOA 84% 98% 75% 80% 
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Another important issue is to select the size of the input window which indeed defines 

the number of elements in the input layer of the network trained. In Figure 52 a basic 

comparison of two networks one of which is trained with a relatively smaller size of 

input window than the other one.  

 

Figure 52. The result of the networks trained in order to reveal the effect of the input window size. 

The size of the input layer is 41 in (a) and 97 in (b). (a) and (b) are the resultant images and (c) and (d) 

are related input windows used to obtain the input vectors. (The network properties: Hidden nodes in 

hidden layer= 20, Width = 1 (2D network), Pixels adjacent to positives are not used) 

It seems there is no significant difference between the network trained with the smaller 

seized window and the other one. This result is can be observed with the metrics seen 

in Table 7. This result reveal that the input window covering around 9 pixels contains 

enough information for segmenting the membrane boundaries. 
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Table 7. Performance metrics of the networks trained with the use of small and large input stencil 

windows where input stencil size is 9 and centring square patch is 5 in the first row and input stencil 

size is 15 and centring square patch is 9 in the second row (The network properties: Hidden nodes in 

hidden layer= 20, Width = 1 (2D network), Pixels adjacent to positives are not used) 

  TPR TNR precision effectivity 

NN1-iw1-9-HN-20-W1-B1-WOA-CP5 84% 98% 78% 81% 

NN1-iw1-15-HN-20-W1-B1-WOA-CP9 84% 98% 75% 80% 

As described in section “3.1.3. Preparation of the Data for Training and Testing”, two 

networks that have the same architecture are trained with the training sets that were 

prepared with two different input window shapes (square and stencil patch) in order to 

observe the effect on the classification performance. Almost no change is observed in 

the performance except little changes as marked with black arrows in Figure 53 

although additional 16 input features are used with the use of input stencil window 

during the training phase. 

 

Figure 53. The result of the networks trained in order to determine the effect of stencil window 

approach. The size of the input layer is 81 in (a) and 97 in (b). (a) and (b) are the resultant images and 

(c) and (d) are related input windows used to obtain the input vectors. (The network properties: 

Hidden nodes in hidden layer= 20, Width = 1 (2D network), Pixels adjacent to positives are not used) 
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The situation observed in Figure 53 above can be viewed in Table 8. The test results 

show that stencil window approach do not increase the performance of the network. 

 Table 8. Performance metrics of the networks trained with the use of stencil and square window 

approaches where input stencil and centring square patch size is 9 in the first row and input stencil 

size is 15 and centring square patch is 9 in the second row. (The network properties: Hidden nodes in 

hidden layer= 20, Width = 1 (2D network), Pixels adjacent to positives are not used) 

  TPR TNR precision effectivity 

NN1-iw1-9-HN-20-W1-B1-WOA-CP9 84% 98% 78% 81% 

NN1-iw1-15-HN-20-W1-B1-WOA-CP9 84% 98% 75% 80% 

Electron Microscopy Tomography imaging provides 3D volumetric data that contain 

many information that would make the performance of the cristae membrane 

segmentation better as mentioned in section “3.3. Segmentation in Three-

Dimensions”. In Figure 54, two identical networks one of which trained with a training 

set obtained from single 2D slices while the other one is trained with volumetric data 

with a width of 5 slices. Networks trained with 3D data are better at segmenting 

disconnected membrane boundaries as well as not segmenting darker boundary-like 

non-membrane regions as seen from the figure below. 

 

Figure 54.The comparison of 2D versus 3D networks’ results. (a) is a network trained with 2D single 

slices. (b) is a network trained with 5 slices of volumetric 3D data. (The network properties: Input 

Stencil Size =15, Centring Square Patch = 9, Hidden nodes = 55, Pixels adjacent to positives are not 

used, balance ratio of one is used). 

The performance metrics of the networks trained above verifies the inferences made 

from the resultant images. In Table 9, it is seen that both the precision and the 

effectivity metrics are increased. Also the TNR is increased for %1. It shall be noted 
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that a very small change in TNR corresponds to a very big change in the performance 

of the network when compared to TPR since there exist almost 5-6 times more negative 

patterns than positive ones in a test image. With the use of advantage of 3D volumetric 

data, all four performance metric have reached the best performance. 

Table 9. Performance metrics of the networks trained with 2D versus 3D training data. (The network 

properties: Input Stencil Size =15, Centring Square Patch = 9, Hidden nodes = 20, Pixels adjacent to 

positives are not used, balance ratio of one is used). 

  TPR TNR precision effectivity 

NN1-iw1-15-HN-20-W1-B1-WOA-CP9 84% 98% 75% 80% 

NN1-iw1-15-HN-20-W5-B1-WOA-CP9 84% 99% 81% 82% 

4.2. Quantitative Evaluation of Results 

There exist various segmentation techniques and proposed methods in the literature as 

reviewed in sections “2.1 Image Segmentation” and “2.3. Current Research on 

Automatic Mitochondria and Cristae Segmentation”. But segmentation of EMT 

images by means of neural networks gained importance because they produce 

promising results in the studies like (Ciresan, Giusti, Gambardella, & Schmidhuber, 

2012), (Jurrus, et al., 2013), and (Jain, et al., 2007, October).  

In the previous section, the effort made in order to select the architecture and the 

parameters of the network to be trained is explained. Once the architecture is selected 

and the parameters are determined, the data set to be used for training is prepared as 

described in section “3.1.3. Preparation of the Data for Training and Testing”. On the 

training set preparation phase, a challenging problem arose: Determination of the 

balance ratio between the negative and positive samples in the training set. It is a 

common approach to train the networks with same numbers of positive and negative 

examples (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012), (Jurrus, et al., 2013). 

But since each class is not equally represented in the testing data, the networks trained 

with this approach tend to overestimate the membrane probability (Ciresan, Giusti, 

Gambardella, & Schmidhuber, 2012) resulting with low TNR while maximizing the 

TPR. As there exist much more numbers of negative pixels in the images aimed to be 

segmented, equal representation of two classes in the training set approach yields to a 

decrease in the effectivity metric due to the decrease in the TNR metric. The TNR 

performance can be reached to an acceptable value with increasing the numbers of 

negative examples in the training set. But this time the TPR performance decreases as 

FNR is increased. In Table 10, the numbers for the classification results of two 

networks where the one in the first row is trained with equally representation of both 

classes. The second network is trained with three times more number of negative 

examples than positives. As seen, with the use of three times more number of negative 

examples than positives in the training set, a number of 880 true positive classifications 

are sacrificed in order to obtain a number of 1052 more true negative classifications. 
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Table 10. Results of two networks trained with different number of negative examples. The first row; 

equal representation of two classes and the second row; 3 times more representation of negative 

examples in the training set. (Note that a threshold value of 0.5 is used.) (The network properties: 

Input Stencil Size =15, Centring Square Patch = 9, Hidden nodes = 20, Width = 5 (3D network), 

Pixels adjacent to positives are not used). 

  TP TN FP FN 

NN1-iw1-15-HN-20-W5-B1-WOA-CP9 9320 170737 2148 1811 

NN1-iw1-15-HN-20-W5-B3-WOA-CP9 8440 171789 1096 2691 
 

The threshold value applied (0.5 (127 in [0-255] range) in the Table 10 above) can be 

arranged as a solution to increase the number of true positives in “NN1-iw1-15-HN-

20-W5-B3-WOA-CP9”. If a value of 199 is used for thresholding then the 

classification table for the second network (NN1-iw1-15-HN-20-W5-B3-WOA-CP9) 

becomes as seen in Table 11. It is seen that the adjustment of threshold value is not a 

solution to this problem since the network produces more false positives although the 

number of true positives are equalized.  

Table 11. The effect of thresholding operation. Classification results of the network in Table 10 above 

when threshold value is set to 199. (The network properties: Input Stencil Size =15, Centring Square 

Patch = 9, Hidden nodes = 20, Width = 5 (3D network), Pixels adjacent to positives are not used). 

  TP TN FP FN 

NN1-iw1-15-HN-20-W5-B3-WOA-CP9 9318 170711 2174 1813 
 

In Figure 55, the resultant images of the networks in Table 10 above can be seen. It is 

seen that the cristae boundaries that relatively easy to discriminate in the original 

image in Figure 55-a can be strongly segmented in both cases. But the problem arises 

for the ones that are represented with a very weak gradient (almost invisible) or seem 

totally obscure. In EMT images this may occur in some portion of membrane 

boundaries. These portion of membranes are also produced as weak boundaries in the 

output continuous images of the network. Detection of disconnected boundaries that 

usually are represented with weak values is a very challenging problem. This 

phenomenon can be observed in Figure 55–(c) (red arrows).  In Figure 55-c, the result 

of the network trained with the set in which there exist three times more number of 

negative examples than the number of positives can be seen. The red arrows in Figure 

55-c show the boundaries where the network could not produce strong enough results 

when compared to boundaries in Figure 55-b in which the network is trained with 

equal representation of both classes. The boundaries are classified with stronger 

intensities (red arrows) in Figure 55-b.  But this time many pixels that belong to non-

boundary regions are represented with more probability for belonging to membrane 

boundary regions (shown with blue arrows in Figure 55). 
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Figure 55.The comparison of result images of two networks. (a) the original image to be segmented, 

(b) the result of network trained with equal representation of two classes in the training set and (c) the 

result of network trained with three times more representation of negatives in the training set.(The 

network in b and c are NN1-iw1-15-HN-20-W5-B1-WOA-CP9 and NN1-iw1-15-HN-20-W5-B3-

WOA-CP9 respectively where NN1-iw1-15-HN-20-W5-B1-WOA-CP9 represents the network 

properties: Input Stencil Size =15, Centring Square Patch = 9, Hidden nodes = 20, Width = 5 (3D 

network), Pixels adjacent to positives are not used, balance ratio of one is used and NN1-iw1-15-HN-

20-W5-B3-WOA-CP9 represent the same network except balance ratio of three is used. ) 

As seen in Figure 55 above, the networks produce continuous outputs since the 

activation function in the output layer is a continuous differentiable sigmoid function. 

It is a common approach to apply thresholding operation to the outputs of the networks 

in order to obtain binary classification results of the networks. While the determination 

of the threshold value can be done by means of different adaptive methods or 

polynomial post-processor functions (Ciresan, Giusti, Gambardella, & Schmidhuber, 

2012), in this study empirically determined threshold values used in order to obtain 

binary results. The threshold application is shown in Eq (*) below. 

𝐼(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) > 𝑇
0, otherwise

 (?) 

where T is the threshold value and 𝐼(𝑥, 𝑦) = 1 represents the negative (non-boundary) 

classifications. Since a value of 0 (zero) is an absolute boundary (%100 positive) with 

zero probability of belonging to non-boundary region in the continuous output images, 

the number of positives increase as the threshold value T is increased. As a result the 

selected threshold value determines the balance between TPR and TNR performance 

of the network. In Figure 56 below, the binary results obtained with the application of 

different thresholds can be seen where the threshold value is increased from left to 

right. As the threshold value is increased, much more number of pixels fall behind the 

threshold value so that the number of positive marked pixels increase. In Figure 56-a, 

some weak or disconnected boundaries are marked as negative while in Figure 56-c 
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many of them are marked as positive. But as the weak or disconnected boundaries 

marked, the number of false positives are increased. 

 

Figure 56. The effect of threshold operation on the performance of detecting weak or disconnected 

boundaries. The threshold values used are 100, 127, and 195 respectively. (The network (NN1-iw1-

15-HN-20-W5-B3-WOA-CP9) properties: Input Stencil Size =15, Centring Square Patch = 9, Hidden 

nodes = 20, Width = 5 (3D network), Pixels adjacent to positives are not used, balance ratio of three is 

used) 

It shall be noted that the weak boundaries mention above are the membranes that are 

almost invisible on the original image. The 3D neural networks trained are capable of 

detecting the semi-weak membrane boundaries as seen in Figure 57 below. 
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Figure 57. The neural networks can successfully detect semi-weak boundaries. 

A special approach for the post-processing phase as a substitute of threshold operation 

is proposed in order to overcome the problems raised above when thresholding is used. 

With this method, it is aimed to increase the number of true positives while keeping 

the increase in the number of false positives relatively low. The method as explained 

in “Section 3.4 Directional Hessian Ridge Growing” iteratively enlarges the strong 

boundaries through the ridge direction so that the weak boundaries that cannot be 

detected with basic threshold operation can be segmented.  

As the method needs the selection of parameters like two threshold values for 

hysteresis thresholding, similarity metric threshold, input window size, and number of 

iterations; many experiments are done and the values for related parameters are 

determined empirically.  

In Figure 58 below, a comparison of the proposed method can be seen. In (b), the 

binary image in which thresholding is applied to the network’s output image in (a). As 

one can observe from the comparison between the ground truth image in (d) and (b), 

many boundaries cannot be detected and a couple of cristae seem to be disconnected. 
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The application of directional growing method almost connected the big gaps on the 

disconnected regions of cristae.  

 

Figure 58. The comparison of the performance of thresholding and directional growing methods. (a); 

the original output of the network, NN1-iw1-15-HN-20-W5-B3-WOA-CP9. (b); the thresholded 

image with value, 127. (c); the resultant image after directional growing method applied with the 

parameters; thresholds for hysteresis thresholding: 40 and 212, input window size: 5, similarity metric 

threshold: 0.828, and number of iterations: 30. (d) is the ground truth image. 

In Figure 59 below benefits of the method can be observed much clearly that the small 

gaps between disconnected cristae boundaries are filled and the cristae which are 

disconnected with big gaps are almost connected. 

While the gaps between the disconnected cristae boundaries are filled with this 

method, still the method can produce false alarms in the areas where the output of the 

network fall behind the threshold with which the strong boundaries are selected. The 

method may cause to grow these regions. 
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Figure 59. Detail view of the results shown in Figure 58. On the left side the results of thresholding 

method is seen. On right side it is seen that the boundaries are connected or at least big gaps are closed 

with the proposed method. (Results from NN1-iw1-15-HN-20-W5-B3-WOA-CP9 network is used). 

One way to make a fair comparison between the thresholding operation and the 

directional growing, the threshold value can be arranged so that the number of true 

positives in the thresholded image become equal to the number of true positives in the 

directional growing result. The threshold value that produces almost the same number 
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of true positives is determined empirically (th=199). When parameter of both methods 

are set to produce the same number of TPs, it is clearly seen that the directional 

growing method over performs the thresholding method as seen in Table 12 and Figure 

59.  

Table 12. The comparison of directional growing method versus basic thresholding. (NN1-iw1-15-

HN-20-W5-B3-WOA-CP9 network is used for both of the results) (Parameters of directional growing 

method: thresholds for hysteresis thresholding: 40 (strong boundaries) and 210 (weak boundaries), 

input window size: 5, similarity metric threshold: 0.84, and number of iterations: 30.) 

  TP TN FP FN 

NN1-iw1-15-HN-20-W5-B3-WOA-CP9 

Threshold value = 199 
9318 170711 2174 1813 

DirGrow-thH-212-thL-40-iw-5-sim-0.828 9323 170883 2002 1808 

In Figure 60, the first two images are obtained by means of threshold operation 

(threshold values 199 and 127 respectively) on the network’s output and the image at 

the very right side of the figure is obtained by means of directional growing method. 

Figure 60-(a) and (c) has the same number of true positives (~10340), but (a) produced 

a much more noisy and dirty result which includes significantly much more false 

positives. The coloured boundaries seen intermittently on cristae membranes are the 

ground truth of the image and shows the regions that could not be detected. 

 

Figure 60. A fair comparison between threshold (images in a & b) and directional growing (image in 

c) methods where the coloured boundaries are the ground truth markings and black boundaries are the 

produced segmentations. (Threshold values 199 & 127 respectively. NN1-iw1-15-HN-20-W5-B3-

WOA-CP9 network is used for all of the results. Parameters of directional growing method: thresholds 

for hysteresis thresholding: 40 (strong boundaries) and 212 (weak boundaries), input window size: 5, 

similarity metric threshold: 0.828, and number of iterations: 30.) 
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As mentioned in the beginning of this chapter, equal representation of two classes in 

the training set maximizes the effectivity metric defined in the previous chapters. But 

it was also shown that the TNR is decreased while TPR is maximized. Figure 61 can 

be viewed in order to compare the result of best performing neural network (by which 

the effectivity metric is maximized) with the results obtain from direction growing 

method. It is seen from the figure that the results of directional growing method (which 

is shown in Figure 61-b) are better from the results (which is shown in Figure 61-a) 

obtained with the best performing network (NN1-iw1-15-HN-20-W5-B1-WOA-CP9) 

especially for connecting the disconnected membranes (regions pointed with red 

arrows). Also as seen in the regions covered with red sketches, the directional growing 

method produces much ‘clearer’ results and increase the TNR. 

 

Figure 61. The comparison of the results of the best performing network (a) and directional growing 

method (b) where the coloured boundaries are the ground truth markings and black boundaries are the 

produced segmentations. (The network in (a) is NN1-iw1-15-HN-20-W5-B1-WOA-CP9, the 

threshold value used is 127. The network in (b) is NN1-iw1-15-HN-20-W5-B3-WOA-CP9 and 

parameters of directional growing method are; thresholds for hysteresis thresholding: 40 (strong 

boundaries) and 210 (weak boundaries), input window size: 5, similarity metric threshold: 0.828, and 

number of iterations: 30 

As Figure 61 above reveals the benefits of directional growing method, from Table 13 

below, it is seen that the directional growing method increases the effectivity and 

precision metric with only a value of %1. If Figure 61 is investigated in detail, one can 

see that the boundaries produced by directional growing method are thicker than the 
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networks output since the regional growing occurs also on the edges of detected 

boundaries. This increases the number of false positives and approximates the 

performance of two methods. 

Table 13. Binary classification results of the best performing network and directional growing 

method. 

  TP FP TPR TNR Precision Effectivity 

NN1-iw1-15-HN-20-W5-B1-

WOA-CP9 
9320 2148 84% 99% 81% 82% 

DirGrow-thH-212-thL-40-iw-5-

sim-0.828 
9323 2002 84% 99% 82% 83% 

In Figure 62 below the results of the algorithms applied to an example from the 

cone.sub data set can be seen. It is seen that while the result of the neural network 

produces satisfactory results for segmenting the cristae membrane, it also produces 

many false positives. The directional growing method decreases the number of false 

positives and produces much more ‘cleaner’ resultant image.  

 

Figure 62. Results from cone data set. (a) is the original image (from cone data set and obtained by 

means of cropping around mitochondria inner membrane) that is used as input to the trained network 

which produced the result in (c). (b) is the ground truth image and (d) is the result of directional 

growing method which used the grayscale version of the network result seen in (c). 
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 In Figure 63 below the results of the algorithms applied to an example from the bclpb-

d.sub data set can be seen. As many disconnected cristae membrane boundaries can be 

seen in Figure 63-c and d, neither the neural network nor the directional growing 

method could produce satisfactory results. This result is somehow understandable 

since much portion of the cristae in the image is invisible. So one can conclude that 

there is not enough information for a satisfying segmentation performance. But still 

the directional growing method eliminated many false positives produced by neural 

network.  

 

Figure 63. Results from bclpb-d  data set. (a) is the original image (from bclpb-d  data set and 

obtained by means of cropping around mitochondria inner membrane) that is used as input to the 

trained network which produced the result in (c). (b) is the ground truth image and (c) is the result of 

directional growing method which used the grayscale version of the network result seen in (c). 

In Figure 64-a below, an example from gap-18 data set in which most of the cristae 

boundaries are almost invisible can be seen. When Figure 64-d and Figure 64-c is 

compared, one observe that directional growing method over perform the neural 

network in this example. Many of cristae membrane boundaries are segmented after 

the grayscale result of the neural network is processed with directional growing 

method. It shall also be noted that the no slices from the data set that this example in 

Figure 64 belongs to is used during training.  
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Figure 64. Results from gap-18 data set (a) is the original image (from gap-18  data set and obtained 

by means of cropping around mitochondria inner membrane) that is used as input to the trained 

network which produced the result in (c). (b) is the ground truth image and (c) is the result of 

directional growing method which used the grayscale version of the network result seen in (c). 

4.3. Qualitative Evaluation of Results 

We presented our results to Dr Guy Perkins in order to have an evaluation for the 

quality of results. Mr. Perkins is a known authority on the structure of the mitochondria 

and the cristae and researcher at National Center for Microscopy and Imaging 

Research. His comments on our study is as follows: 

“The manual segmentation is very, very good!  The ANN auto-segmentation is also 

very good, both 2D and 3D, with the 3D being slightly better than the 2D.  In fact, in 

once sense, the auto-segmentation is more accurate than the manual segmentation 

because it shows only the membranes that are contrasted, i.e., have significant signal-

to-noise.  As you know, the human brain wants to complete, i.e., close the contour of a 

boundary curve.  Another way to say it is to "fill in the gaps."  We do this because we 
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know from many years of electron microscope imaging of biological membranes, and 

in particular mitochondrial membranes, that they should be "closed" structures in 

order for them to function properly as specialized compartments housing enzymes and 

metabolites that must interact with each other, or be in close proximity to cascading 

events, and be kept from diffusing too far away from their interaction partners. 

However, human error may introduce inaccuracies in filling in the gaps or closing the 

contour of mitochondrial membranes that have such low contrast that they are 

essentially invisible. Furthermore, even when the membranes are well-contrasted, 

human error may not trace the membrane exactly in the centre, i.e., the hand may stray 

when tracing.  For these reasons, when given the opportunity, I would choose to 

display the auto-segmented versions in papers, videos and conference presentations 

in addition to any manual segmentation that may be used to distinguish different 

cristae.  At times, it will be necessary to manually edit the auto-segmented version to 

close the contours in order to use modelling software, such as mcell, that require 

closed contours. 

Because a mitochondrion may have anywhere from a few to more than 100 cristae, 

segmenting the cristae is by far the most time-consuming step in manual segmentation 

of mitochondria.  Other programs exist that with varying degrees of accuracy and 

semi-automated segmentation can segment the rather topologically simple outer 

mitochondrial membrane, but your programs are the only ones that have had success 

in segmenting the much more topologically complex cristae membranes. Thus, your 

effort will be essential to accelerate our efforts in studying the structure/function 

relationships of cristae and their macromolecular components.” 

4.4. Computational Cost 

One of the most important issues when training neural networks with massive number 

of training patterns is the huge magnitude of the computation power required. In this 

study a machine with Intel® Core ™ i7-3720QM CPU @ 2.60GHz processor and 16 

Gigabyte of Random Access Memory is used. Computation power directly effects the 

time of the training and testing of the neural networks. The whole process (including 

10 consecutive trainings) for one single network architecture takes approximately 35-

40 minutes for a 3D neural network. The process includes the generation of the training 

set, training the network, testing with a sample image, and saving the results. In Table 

14 below, the time spent for training and testing of one single 3D network can be seen. 

It is seen that most of the time is spent for generation of the training patterns. Also it 

is seen that the results can be obtained within a trice with the trained network. 

Table 14. Time stamps during training of a single network. The first row is for a 3D network while the 

second row is for 2D. (All units are in seconds) 

 Generate Training Set Train Test 

NN1-iw1-15-HN-20-W5-B1-WOA-CP9 739,2 78,8 1,5 

NN1-iw1-15-HN-20-W1-B1-WOA-CP9 294,3 22,3 0,7 
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CHAPTER 5  

CONCLUSION, DISCUSSION & FUTURE WORK 

A method with the aim of obtaining a robust detection of cristae membranes is 

proposed in this study. The method mainly comprise of two stages; a neural network 

that is aimed to segment the membrane boundaries, and a special post-processing 

method that increases the performance of basic thresholding applied to the continuous 

result of the network. 

The ground truth needed for training of the network is also generated by means of 

manually marking the EMT images by tracing the cristae membrane boundaries. This 

took an important portion of the time spent for this study since labelling the EMT 

images needs a huge human labour dependent effort. Also the ground truth, which is 

modifiable and ready for fine tuning by a specialist (with IMOD software), generated 

in this study can be used for future studies which we see this as one of the remarkable 

contributions of this study. 

In order to obtain the parameter set of the network, many networks are trained with 

different parameter sets. The results are demonstrated and interpreted and the best 

performing amongst all is selected. Also it is showed that using the advantageous 3D 

nature of EMT images in the training set increases the performance of the networks. 

The restrictions of classical thresholding approach in the post-processing stage which 

is used for obtaining the binary classification results of neural networks is indicated 

and a special method to be used instead of basic thresholding is proposed. The method 

is called ‘directional hessian growing’ and showed to be performing better than the 

basic thresholding method.  

This study showed that a single hidden layer network with a carefully selected set of 

parameters can robustly segment the cristae membranes even if they are weakly 

represented in the EMT images. But a single network itself is not powerful enough to 

obtain a continuous membrane boundary and detect the disconnected boundaries that 

are almost invisible. For this, an additional post-processing method, ‘Directional 

Growing’, is applied. Although the method was successful in connecting the 

boundaries for the vast majority of cristae, still there exists exceptional cases that the 

cristae boundary is disconnected. In order to obtain fully connected boundaries for 

each cristae active contour methods may be applied after directional growing stage of 

the algorithm. 

In order to obtain the best performance from the ‘directional growing’ method, for 

each data set a manual parameter adjustment is required. This makes the algorithm 

semi-automatic for the human interference needed at this stage. An algorithm that 

automatizes this process depending on the characteristics of the data set to be used may 

be proposed. 

A vast amount of the ground truth used in this study is not manually marked by a 

specialist on the morphology of mitochondria and cristae. So, the ground truth used 

for the training of the networks and for testing the methods proposed may be including 
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false markings. The performance of the networks trained may increase if the ground 

truth is fine-tuned by a specialist on the morphology of mitochondria and cristae.  

Some features that help describe whether the pixel under consideration belongs to a 

corner, edge, ridge etc. can be obtained from the Hessian matrix. There exists many 

interpretations of these features in medical image segmentation literature like (Taşel, 

Mumcuoglu, Hassanpour, & Perkins, 2016), (Sener, Mumcuoglu, & Hamcam, 2016), 

(Frangi A. , Niessen, Hoogeveen, Van Walsum, & Viergever, 1999), (Koller, Gerig, 

Szekely, & Dettwiler, 1995), and (Lesage, Angelini, Bloch, & Funka-Lea, 2009). 

Using these features may have a positive effect especially for eliminating the pixels 

that pass the strong boundary test. Eigenvalues of the Hessian matrix which are widely 

used in the literature can be used to determine whether the selected eigenvector 

actually represents the principal direction of the boundary curvature or not. If the ratio 

between the eigenvalues of the selected and ignored vectors are close to one then this 

means that no dominant direction exits where the pixels in these regions do not belong 

to a membrane boundary. 

Some studies (Ciresan, Giusti, Gambardella, & Schmidhuber, 2012) which use neural 

networks in the medical image analysis literature use the advantage of isotropic nature 

of the data in order to increase the number of training patterns. By means of rotating 

each input window, the number of positive and negative patterns to be used in the 

training can be increased so that the training performance of the networks may be 

increased. This approach is much more beneficial when the data has three directions 

since there exist one more axis to rotate the input windows. 

Another approach for increasing the performance of the networks with the use of same 

data is to exaggerate the patterns to be used by means of foveation and non-uniform 

sampling. These techniques allow to have an information covering a large area while 

keeping the input window size in the input layer of the network smaller. Applying 

these techniques to the input patterns while training of the networks may increase the 

performance of the networks. 

The images used in this study are resampled so that the all of the pixels are set to a 

fixed size of 2 nm. But resampling is not applied through third direction so that the 

voxel size of 3D images differs for three different data sets used during training. 

Resampling the images in 3D and setting all of the voxels in the images to fixed size 

may increase the performance of the networks trained. 

It is shown that averaging or combining many networks trained with exactly the same 

training set increases the performance of the network (Perrone & Cooper, 1993) 

(Ciresan, Giusti, Gambardella, & Schmidhuber, 2012). Since the best performing 

network amongst ten consecutive trainings is selected and used in this study, 

combining these ten networks may increase the performance of the network. 

Activation function in the output layer of neural networks trained in this study is a 

sigmoid function which has limits at 0 and 1 so that although the output of the function 

rapidly saturates to values very close 0 or 1, it can never exactly reach to them. This 

may result oscillation of the calculated error in the backpropagation algorithm since 

the ground truth values are 0 or 1. If the ground truth values are set to values that are 

very close to 0 and 1, but not exactly them, the training performance may be increased.   
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Convolutional neural networks (CNN) may perform better than many methods known 

in the literature for image classification tasks. This is also valid for medical image 

segmentation tasks. Using CNN instead of feed forward neural networks may increase 

the performance of the method proposed in this study especially for weak boundary 

regions. But in order to train a CNN, a much larger training set and computational 

power would be required. 

Segmentation with sequentially trained neural networks usually yields to better 

performing networks (Jurrus, et al., 2010). A serial neural network architecture may 

decrease the number of false positives in the output of the networks so that the 

performance of the directional growing for connecting the disconnected boundaries 

may be increased. 
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APPENDIX A 

A Preliminary Work: Segmentation on the Whole Image Including both 

Interior and Exterior of Mitochondria 

 

In the very early stages of this thesis study; it is aimed to segment the cristae from the 

whole EMT images without cropping a region of interest area (which is the interior 

region of a mitochondrion). This problem has its own problems in addition to the 

problems when only segmenting the interior region of the mitochondria. One of them 

is that almost all boundary membranes of the cell has very similar properties (i.e: the 

width, the intensity variation, and first or second order gradients through curvature 

direction etc.). An example of a whole EMT image can be seen below. 

 

In order to obtain a neural network that can segment cristae boundaries while not 

segmenting the mitochondria or endoplasmic reticulum boundaries a classical feed 

forward neural network architecture is used. Both one and two hidden layered 
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networks were not successful enough for discriminating the mitochondria boundaries 

from cristae membrane boundaries. Grayscale results of one hidden layered networks 

can be seen in the figure below. 

 

Grayscale results of two hidden layered networks can be seen in the figure below. 
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As seen from the figures above, both networks trained with a classical approach are 

prone to produce too many false positives. In order to overcome this issue a serial 

neural network architecture is proposed. In this architecture the basic idea is to force 

the first neural network to learn more low level abstractions on the data. Low level 

abstractions help the first network to extract the edges and clean the small membranes 

in the image and transform the image to a more easily understandable form so that the 

second network can learn more high level features like double ridges, connected curves 

etc. Consequently the second network can distinguish the cristae boundaries from i.e. 

mitochondria boundary.  

In this training method each network uses the inputs produced by the previous network. 

Serial neural networks can over-perform the classical feedforward neural networks 

because they use the deduced context produced by the previous network so that in each 

step the detection accuracy is improved (Jurrus, et al., 2013). The first network uses 

the intensity values of the input stencil just as the classical neural networks, but the 

remaining networks in the series uses the input vectors extracted from the output of 

the previous network. 
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In this preliminary study, a two stage serial network is trained. By the help of the two 

stage serial network, the false positives produces by the first network is reduced to an 

acceptable ratio in the second neural network. The flowchart of the two stage serial 

network during the training and testing can be seen in Figure below. 

 

Grayscale results of two different serial neural networks can be seen in the figure 

below. It can be seen that membranes that are not cristae throughout the whole cell are 

discriminated from cristae and not marked.   
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