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ABSTRACT 

 

 

SEMI-AUTOMATIC SEGMENTATION OF MITOCHONDRIA ON ELECTRON 

MICROSCOPY IMAGES USING KALMAN FILTERING APPROACH 

 

Mohammadi Alamdari, Aynaz 

MS., Department of Health Informatics 

Supervisor: Prof. Dr. Ü. Erkan Mumcuoğlu 

March 2016, 69 Pages 

 

 

Mitochondria are membrane bound organelles found in most eukaryotic cells. 

Mitochondria provide cell’s energy; hence they are called ‘power houses of the cell’. 

The structure of mitochondria can be illustrated in an electron micrograph. This 

structure has two membranes: inner and outer. There is a gap between these two 

membranes, called inter-membrane space. Folds of inner membrane inside the 

mitochondria form the cristae.  To study the relation between mitochondria’s 

physical structure and its function, electron microscope tomography (EMT) is used 

to visualize mitochondria. EMT provides 3D structure of mitochondria in high 

resolution images. In the slices of tomographic images provided by EMT, 

mitochondria appear as elliptical structures. The cristae are also visualized in these 

images with various pathology and biological variations. One of the preferred 

method can be semi-automatic segmentation; since manual segmentation in medical 

images is time and energy consuming and tedious; moreover fully automatic methods 

also fail in medical images and cause incorrect results because of low quality of 

images and restrictions imposed by image acquisition. In this work, an endeavour is 

made to segment mitochondrial outer boundary using active contour, Kalman filter 

and optical flow. In the first slice of the images, a contour is provided by user. Then, 

for the other slices, position values and velocity values calculated using the active 

contour and optical flow (respectively) are combined with the Kalman filter to 

predict the points of the boundary in the next slice. In addition, a set of automatic and 

semi-automatic tools are developed to determine splitting and merging mitochondria, 

and to segment them. 

Key words: Semi-automatic segmentation, mitochondria, active contour, optical 

flow, Kalman filter 
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ÖZ 

 

 

ELEKTRON MIKROSKOBU GÖRÜNTÜLERI ÜZERİNDE KALMAN 

FİLTRELEME YAKLAŞIMINI KULLANILARAK YARI-OTOMATİK 

MITOKONDRI BÖLÜTLEME 

 

Mohammadi Alamdari, Aynaz 

Yüksek Lisans, Sağlık Bilişimi Bölümü 

Tez Yöneticisi : Prof. Dr. Ü. Erkan Mumcuoğlu 

Mart 2016, 69 Sayfa 

 

 

Mitokondri çok ökariyotik hücrelerde bulunan zar bağlı organellerdir. Mitokondri 

hücrenin enerjisini sağlamaktadır; dolayısıyla 'hücrenin enerji evleri' olarak 

adlandırılır. Mitokondri yapısı, elektron mikrografıyla tasvir edilebilir. Bu yapı, iki 

membrana sahiptir: iç ve dış. Arası zar alanı olarak adlandırılan bu iki membran 

arasında bir boşluk vardır. Mitokondri içinde iç zarının kıvrımları kristaları oluşturur. 

Mitokondrinin fiziki yapısı ve işlevi arasındaki ilişkiyi incelemek için, elektron 

mikroskobu tomografi (EMT) mitokondriyi görselleştirmek için kullanılır. EMT 

yüksek çözünürlüklü görüntülerde mitokondri 3B yapısının görüntüsünü sağlar. EMT 

tarafından sağlanan tomografi dilimleri içinde, mitokondri eliptik yapı olarak 

görünür. Kristalarında çeşitli patoloji ve biyolojik varyasyonları bu görüntülerde 

görüntülenmiştir. Tercih yöntemlerinin biri yarı-otomatik bölütleme olabilir. Tıbbi 

görüntülerde elle bölümleme zaman / enerji tüketir, sıkıcıdır.Tam-otomatik 

yöntemlerse bazen başarısız olmaktadır. Çünkü görüntüler düşük kalitededir ve 

görüntülerin elde edilmesinde belli kısıtlamalar vardır. Bu çalışmada, aktif sınır, 

Kalman filtre ve optik akış yöntemleri kullanarak mitokondri dış sınırına yarı-

otomatik bölümleme yöntemleri önerilmiştir. Görüntülerin birinci diliminde, bir sınır 

eğrisi kullanıcı tarafından çizilir. Daha sonra, tasarlanan algoritma aracılığıyla, 

sonraki dilimler için, pozisyon / hız değerleri hesaplanır. Aktif  sınır ve optik akış 

yöntemleri  ve Kalman filtresi ile bir araya getirilerek sınır noktalarının bir sonraki 

dilimdeki yerlerini tahmin edilir. Buna ek olarak, bir dizi otomatik ve yarı-otomatik 

araçlar, mitokondri bölme / birleştirme ve bölütleme için geliştirilmiştir. 

Anahtar Sözcükler: yarı-otomatik bölümleme, mitokondri, aktif sınır, optic akış, 

Kalman filtre
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

Mitochondria are membrane bound organelles found in most eukaryotic cells (1). 

The term mitochondrion (plural mitochondria) comes from Greek roots meaning 

“thread” and “gain”, first introduced by Benda. Mitochondria are known to be 

dynamic organelles because their shape and size are highly variable. Mitochondrial 

shape affects its distribution and participation in apoptosis. This leads to the 

importance of mitochondrial dynamics in cells that have special dependence on 

mitochondrial function. Therefore studying structure of mitochondria is important for 

the functional state of mitochondria (2). Mitochondria have been primarily known as 

“power house of the cell”. The energy producing function of mitochondria which is 

necessary for cell growth and biological activities is accomplished by a series of 

complex chemical reactions (2). It has been estimated that 90% of mammalian 

oxygen consumption is mitochondrial (3). However, it is also involved in other 

activities like cell signalling, cellular differentiation, cell division cycle, cell growth 

and programmed cell death known as apoptosis (4) . Mitochondria have two 

membranes: inner membrane and outer membrane, and there is a gap between these 

two membranes called inter-membrane space. Folds of inner membrane inside the 

mitochondria form the cristae and the space within the inner membrane is called the 

matrix . These mitochondrial structural features are all shown in Figure 1. 

Visualizing mitochondria using electron microscope tomography can help us study 

the relation between the mitochondrial function and its physical structure. Some 

sample images of mitochondria using electron microscopy tomography technique is 

presented in Figure 2. A work by Palade and Sjostrand published in 1953 introduced 

electron micrographs showing mitochondria, since then electron microscopy (EM) 

has progressed a lot and has emerged as the leading technique for three dimensional 

(3D) structural analysis of unique complex biological specimens (5) and a powerful 

tool to study mitochondrial ultra-structure and function (6). EM provides greater 

resolution than light microscopy; it also enables 3D reconstruction of images using 

digital image analysis. Electron microscopy allows the study of mitochondrial 

morphology and its overall organization (7). Since the images of three dimensional 

objects generated by conventional EM are two dimensional, 3D imaging techniques 
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like Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 

(TEM) have been introduced. 

 

Figure 1 Mitochondrion Structural Features (Original image by (8)) 

 

In TEM technique there is an electron gun that produces electron beam projected by 

electric field which is generated by condenser and objective lenses. The ultra-thin 

prepared specimen is placed and the electron beam penetrates through it; then its 

image is created on the fluorescent screen. There is a detector that measures the 

intensity of electron which is proportional to the intensity of produced image. The 

detector obtains the projection data by scanning image in different tilted angles of 

electron beams. (9), (10) A collection of large number of projections is created in this 

way then the reconstruction of 3D image of object will be possible. The 

reconstruction can be done by direct back projection or Fourier transforms as shown 

in Figures 3 and 4. 
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Figure 2 Samples of Electron Microscopy Tomography Images of Mitochondria 

 

Figure 3. Tomographic reconstruction by back Projection in TEM (Original image by (11)) 

In SEM, the scanning coils generate the electric field that deflects the focused 

electron beam on the specimen. The electrons that scattered from the surface of 

specimen have an intensity that is measured by a detector. The image generated by 

SEM is 2D. In order to have a 3D image of specimen a special type of SEM called 

Serial Block-Face Scanning Electron Microscopy (SBFSEM) is used. In SBFSEM 

very thin layers of specimen are cut with a diamond knife and then these layers are 

imaged with SEM technique so a stack of 2D images of every slice will be in hand to 

form 3D volumetric data. (12). Schematics of TEM and SEM techniques are shown 

in Figure 5. 
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Figure 4. Tomographic reconstruction by Fourier Transform in TEM (Original image by (11)) 

 

Figure 5. Schematics of a) Transmission Electron Microscopy (TEM) and b) Scanning Electron 

Microscopy (SEM) (Original image by (13)) 
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1.1 Motivation  

Mitochondria are membrane bound organelles found in most eukaryotic cells (1). 

Mitochondria are known to be dynamic organelles because their shape and size are 

highly variable. Mitochondrial shape affects its distribution and participation in 

apoptosis that leads to the importance of mitochondrial dynamics in cells that have 

special dependence on mitochondrial function. Therefore studying structure of 

mitochondria is important for the functional state of mitochondria (2). The 

morphology of intracellular components is of great importance for neuroscientists. 

For instance, abnormalities in mitochondria morphology are seen in Parkinson 

disease or geometrical property of mitochondria can be used to distinguish cancer 

cells from normal ones. Manual segmentation in medical applications is very slow, 

tedious, time and energy consuming, needs training for the segmentation and has 

subjective results. In some cases fully automatic methods fail and cause incorrect 

results due to the difficulty of segmentation in medical images along of restrictions 

imposed by image acquisition, pathology; Moreover biological variation and fully 

automatic segmentation cannot deal with artefacts on its own. All of these issues lead 

the semi-automatic method to be the preferred method of all.  

The main motivation for this study is the work by Tasel (14). In their work 

mitochondria are detected and segmented using their characteristics like elliptical 

shape and double membrane. In their work, they refine their results by using active 

contour and live wire algorithms. In this study, a method for segmentation of 

mitochondria is implemented then tested and compared with the results of Tasel (14). 

In another work by Çöçelli (15) semi-automatic methods were implemented to 

correct wrong segmentation results of Tasel (14) with visualization support. The 

tools that Çöçelli (15) used for correction of results are splitting, merging, deletion, 

selection of low scored mitochondria and initiation of auto-segmentation algorithm. 

The interaction of user is needed to correct the result of automatic segmentation 

whenever a mitochondrion is going to split and then the two mitochondria are 

considered one in the automatic segmentation and this is called splitting. To correct 

this Çöçelli (15) proposed a method to put a barrier between two mitochondria and 

construct a plane between them by arbitrarily defining three points. Merging is the 

case when two mitochondria are detected instead of one real mitochondrion. To 

correct this Çöçelli (15) provided an option in his application letting the user select 

the mitochondria which are wrongly detected as two separate mitochondria instead of 

one. Later the center of mass of two mitochondria are determined they are rotated 

until the line connecting centers of two masses become parallel to x-y axis then 

finding the peak points and finally deleting the points between these peak points on 

the contours. Deletion is used when a non-mitochondrial region is detected as 

mitochondria.  

The main contribution of this thesis is the implementation and adaption of the 

algorithm by Jurrus (16). Jurrus (16) used their technique for the detection and 

segmentation of axons. In this thesis some parts of the algorithm are modified and 

extended to segment mitochondria in 3D images. In addition, a special technique for 

splitting and merging mitochondria cases are also proposed and tested. 
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1.2 Background and previous work  

1.2.1 Segmentation Background 

Medical image segmentation has been important because of its usefulness in 

visualizing and comparing human body’s inner structure. Cell and sub cellular 

segmentation in biomedical images is of great importance because it helps in 

diagnosis of diseases. It is also helpful in cell biology researches. The segmentation 

methods can be categorized in three categories: manual, semi-automatic and 

automatic segmentation of these structures. Manual segmentation is very slow, 

tedious, time and energy consuming in medical applications; at the same time, it 

requires training and being very accurate and detailed for the one doing the 

segmentation and the results are non-reproducible. (17) Manual segmentation has a 

bad reputation because of subjective results (18). In fully automatic segmentation 

there is no need for training and the data are reproducible but it limits the user’s 

authority (17). Sometimes fully automatic methods fail and cause incorrect results; 

this happens more in medical images because segmentation is difficult in this type of 

data for the sake of restrictions imposed by image acquisition, pathology and 

biological variation. Fully automatic segmentation cannot deal with artefacts on its 

own. All of these issues cause the semi-automatic method to be the preferred method 

of all (17). In order to select an appropriate segmentation technique, type of image 

and the application area should be considered.  

Automatic image segmentation methods can be categorized (19) as follows: 

a. Intensity based methods 

b. Discontinuity based methods 

c. Region based methods 

d. Clustering methods 

e. Graph based methods 

f. Pixon based methods 

g. Hybrid methods 

 

a. Intensity based methods 

One of the approaches to segment an image according to its intensity level is called 

threshold based approach which is of the most frequently used ones. The threshold 

operation is a grey level remapping operation in such a manner that it maps a grey-

valued image to a binary image. After thresholding, the result is an image of two 

segments identified by the pixel values of 0 and 1 respectively as shown in 

Equation1. 

G(x, y) = 
                            

                             
          (Eq.1) 
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 Where G(x, y) is the output image and I(x, y) is the input image and t is threshold 

value. (20) 

b. Discontinuity based methods 

If there are objects in an image, there will be the boundaries. The existence of 

boundaries leads to formation of edges. The edges are defined as the changes in 

intensity that causes the discontinuity in the pixels. In other words, a boundary that 

partitions two homogenous regions is called the edge and identifying and locating 

these discontinuities is called edge detection. Edge detecting operators can be in one 

of these two categories: first order derivative operators then the second one. They 

can be named Perwitt, Robert, Sobel and the Feri Chen mask as first order derivative 

operators. These operators convolve a small square kernel with the image to compute 

the gradient. Second order derivative operators are as Laplacian of Gaussian operator 

and Canny edge operator. Second order operators give reliable results. Edge 

detection techniques clarify whether the pixels are of an edge or not. (20) 

c. Region based methods 

These methods are based on this thought that a pixel and the pixels in its 

neighbourhood share similar characteristic and are considered to be in one region 

different from other regions whose pixels have different characteristics from these 

ones. A simple way of classifying pixels in regions is comparing a pixel with its 

neighbour pixel and checking it’s similarity to that pixel, if it is similar it is 

considered to be in that region, if not, the similarity test will stop. The region based 

methods are of two types: 1. Region growing methods 2. Region splitting and 

merging methods 

Region growing based methods: 

This method segments the image into regions having some predefined criteria in 

hand. There are two types of region growing segmentation methods: 1. Seeded 

region growing (SRG) which is semi-automatic; 2. Unseeded region growing 

(UsRG) method which is automatic segmentation method. In SRG method an initial 

seed point is specified by the user (it causes the method to be a semi-automatic 

method). The seed point is a test pixel with the characteristics of the located region. 

There may be one or more sets of seeds according to the users’ will. In each step a 

pixel is added to one of the seed sets. The choice of seed is important due to its 

dependant algorithms. In (UsRG) there is no user intervention and no seed point; it 

starts with assumption that the first pixel is a member of assumed Ai region, then for 

the next pixel the difference measure of test pixel, from the mean value of the 

statistics of the region, decides whether the pixel is in the region or not. In this way, 

if the difference is less than a threshold, the test pixel is considered to be in the 

region, if not, a new region assumed Aj is created and the test pixel gets in that 

region. This continues for every pixel. (20) 

 Region split and merging methods:  

The basis of this method is quadtree. In the first step it assumes the image as one 

whole region; then by having predefined criteria in hand it divides the image into 
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four quadrants. Every quadrant is checked with that predefined criteria and, if 

necessary, dividing those quadrants too till there is no quadrant to be divided or the 

criteria are satisfied. The Figure 6 illustrates the method better. (20) 

 

Figure 6.  Quadtree (Original image by (19)) 

d. Clustering based methods:  

Clustering is gathering pixels with similar characteristics into one cluster whose 

characteristic is different from others. The usual categorization of clustering methods 

can be partitional clustering methods and hierarchical methods. 

Hierarchical methods: hierarchical clustering can be classified into two methods: 

agglomerative and divisive. Agglomerative is a bottom-up approach in which each 

pixel is considered to have its own cluster, the pixels close to each other merge 

successively till all clusters merge together and create one cluster or until a condition 

makes it stop. Actually it stops when the desired structure is obtained. The divisive 

approach is a top-down approach in which all pixels form one cluster and then they 

are divided into sub clusters until the desired structure is obtained. All the merging 

and dividing decisions are made according to a similarity measure (20) , (21).  

Partitional clustering: In this method number of clusters should be known 

beforehand and it starts from an initially partitioning. It gets updated by changing the 

clusters which the pixels belong to. There are various algorithms of partitional 

clustering but the most famous ones are k means and Fuzzy C-Means (FCM) 

algorithms. In k means, the algorithm starts with initial clusters; every cluster is 

represented by its center or mean. In each step, pixels go to the clusters with the 

smallest distance from cluster center according to Euclidean distance between them, 

and then the cluster centers are recalculated. The center of each cluster is calculated 

as the mean of all pixels that belong to that cluster. Various stopping criteria might 

be used. Fuzzy C-Means allow a pixel to be a member of different clusters with 

different membership coefficient. The clustering algorithms use various features of 

image like its intensity, texture, etc. (20). 

e. Graph based methods: If it is assumed that the graph           where   
                      a set of vertices of graph, in image is the vertices are pixels 

and E is a set of edges connecting these vertices           . Each edge has its 

corresponding weight           . In the case of image segmentation the weight 
can be any measure of dissimilarity between two connected pixels like 
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difference in intensity, motion, location, etc.  An image can be divided to 
nonempty components which are graphs themselves. Among various methods 
of graph based methods the most used one is graph cut method in which the 
dissimilarity function can be designed as graph cut. The graph cut method, as its 
name implies, partitions the graph by graph cut which is a subset of edges. 
These edges partition the graph into two disjoint sets. Figure 7 best illustrates 
the graph cut method. 

 

 

Figure 7.  Graph Cut (Original image by (19)) 

  

f. Pixon based methods: In the traditional pixon based method, first the pixons are 

formed then the segmentation is done. Forming the pixons is done in three steps: 1. 

providing a pseudo image with the same resolution of original one 2. Forming pixons 

with the use of anisotropic diffusion filter 3.extracting pixons with the use of 

hierarchical methods. After pixons’ extraction, the image can be considered to have a 

graph structure; if every pixon has a label, the segmentation is done. Combining the 

pixons will continue till satisfaction of stop criteria happens and the final segmented 

image will be achieved. 

g. Hybrid methods: Combination of various methods can be used to achieve a better 

performance. 

1.2.2 Semi-Automatic Segmentation  

For many years automatic segmentation was one of the most important tasks in 

image processing field. Since the medical images are most of the time of low quality, 

bad defined and restricted by image acquisition, pathology and biological variations, 

automatic segmentation methods often fail in these types of images. After some years 

semiautomatic and interactive segmentation became the solution for this problem. In 

this type of segmentation, the user intervenes in the process of segmentation by 

drawing the borders correcting and editing the work done by automatic segmentation 

and actually validating and correcting errors. In semiautomatic segmentation the 

interaction between the user and the image is very low and limited in comparison 

with interactive (manual) segmentation.  
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In (22) , two methods for semi-automatic segmentation were introduced, one based 

on fuzzy connectedness and the other one based on watersheds. They improve fuzzy 

connectedness by introducing the paradigm of competitive learning and omitting 

thresholding. The main idea in fuzzy connectedness is to compute a map which 

indicates connectedness of every pixel in the image with relation to a specified pixel 

in the OOI (Object of Interest). In the present form of fuzzy connectedness method 

just one object can be detected at any time; So there is a need to threshold the 

connectedness map but in the improved fuzzy connectedness method introduced by 

(22) more than one object are labelled by the user and labelling of every seed is done 

by computing affinity of every seed and finally choosing the maximum affinity for 

every seed. In the proposed watershed method in Bonnet (22) despite the original 

watershed that algorithm detects the local minima of the spatial gradient, as the seeds 

for algorithm to find watersheds, the user provides the seeds for objects that are 

needed to be segmented and also background connected parts by clicking on them, 

then starting the watershed algorithm. At the end of the procedure, every pixel of 

image is labelled the same as the seed it belongs to. In Bonnet (22) two tests are done 

and in these tests the fuzzy connectedness based algorithm with competition shows 

better results than the fuzzy connectedness based algorithm with no competition and 

in the specified test the competitive fuzzy connectedness based approach performs 

better than the competitive watersheds method. In most of the cases two methods of 

performance are very similar and it is recommended two algorithms to be applied 

and one of them to be chosen by the user. 

In Piali Das (23) the focus is on industrial applications; the image is of integrated 

chips that requires transistor gates to be segmented from the image. In this paper they 

use graph cut method for semi-automatic segmentation. They assume that the object 

to be segmented is compact in shape. One of the issues they consider is parameter 

selection that if it is done by the user, it will need more interaction; that causes not to 

be in the semi-automatic group of segmentations. Values of parameters have great 

influence on the result of algorithm and segmentation. If the set of images are not so 

variable, parameter values can be selected beforehand but in the case of variable 

images, it is not possible to select parameter values beforehand. For every set of 

images a set of parameter values work well, so they think of a method that runs the 

segmentation algorithm for a range of parameters and then select the parameter 

values with higher quality. The quality is measured by ‘quality check’ which decides 

whether the selected parameter is appropriate or not, if the segment does not pass this 

‘quality check’, the graph cut step should be repeated with new parameter values. 

This process is done iteratively until the resulting segment passes the ‘quality check’. 

With the use of this quality check the best parameter values, which can be used for 

the algorithm, may be detected. Their algorithm produces highly accurate 

segmentation in real time. 

In Xie (24) they use active contour and multi-scale curve editing to interactively 

segment medical images. The algorithm they propose works in three steps. In the 

first step the user selects the ROI (region of interest) manually and then revises 

automatically generated control points by mouse clicks. Second automatic active 

contour segmentation is done and then in last step, the user edits the contour 

manually by dragging the control points with multi-scale spacing. In the first step 

that user selects ROI manually and then automatically control points are generated 
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by curve fitting method, named Hermite Cubic Curve, which smoothly interpolate 

between control points in this way, the user drags a point and no other point’s 

location changes until the user confirms it, then all other control points change 

location according to Hermite Cubic Curve. In the last step where manual multi-scale 

spacing is done by the user, there may be some areas in the border that does not need 

any intervention; meanwhile, there may be areas that need correcting. It may be done 

in some levels until the user decides if it converge the correct segmentation. In 

different levels, the number of control points increases and the space between them 

decreases, the number of control points change hierarchically according to the length 

of region boundary. They test their algorithm on CT images, MRI images and 

ultrasound images but they do not have ground truth to compare the results, so they 

do not have a formal quantitative evaluation. The time necessary for whole process is 

real time, no matter the region of boundary is small or large.  

In Yu-Chi J. Hu (17) they propose a method for semiautomatic segmentation using 

brush strokes to provide input for the algorithm based on CRF (Conditional Random 

Field) segmentation. Their focus is on separating target tissue from background. The 

user inputs are used to extract energy function terms and the form of energy function 

is based on CRF and the final solution is determined by a graph min s-t cut 

algorithm. In brief, it can be said that the user firstly chooses seed points on one 

image by paint brushes from both target and non-target regions, and on the following 

slices the boundary term is estimated from samples in the training slice, but the 

regional term is estimated from the new brush strokes on the current slice being 

segmented. In any slice, the user can retrain the model if statistics are not applicable 

any more. Their test done on liver shows that there is no boundary leakage in this 

algorithm unlike the region growing and level set methods because of smoothness 

weight in CRF and global optimal solution in graph cut, and the time needed for 

interaction in this method is very low in comparison with original graph cut method. 

1.2.3 Previous Study 

In the study of Aurélien Lucchi (25) they used super-voxel based segmentation of 

mitochondria on EM (Electron Microscopy) images. They clustered similar voxels 

into regularly spaced groups of uniform size and named them super-voxels, then they 

extracted feature vectors to get local shape and texture information for each super-

voxel, in the last step segmentation of mitochondria was done by using a graph cut 

approach which uses unary and pairwise potentials of the energy function to 

incorporate shape cues and learned boundary appearance. The data set they used 

comes from two different locations in the brain: hippocampus and striatum .For 

hippocampus they use 165 slices of image for testing purpose and 200 slices for 

training from the whole 1024×1024×1000 image stack. For the striatum, the training 

and test sets are both of size 768×872×318. The study exposes that the approach 

studied is able to segment mitochondria at a performance level close to that of a 

human annotator. There are also failures in this approach such that it can include part 

of nearby membrane with the mitochondria or neighboring mitochondria are merged 

or clusters of vesicles can be mistaken for mitochondria as a result of their similar 

texture. 
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In a work by Dilip. K. Prasad (26) a segmentation algorithm that can model elliptic 

shape of cells or sub-cellular structures is proposed. The data set they use is of 

images of mixed cell types (mitochondria and lysosomes) and the images are 

fluorescence confocal microscope images. The algorithm is of three steps: pre-

processing, ellipse fitting and ellipse filtering. The most important part of the 

algorithm is ellipse fitting step. Among other methods for ellipse fitting, they choose 

least squares based methods. The method chosen for ellipse fitting has a major role in 

the performance of algorithm. Their results show that the geometry based least 

squares fitting method has better performance than other least squares methods. After 

ellipse fitting step, ellipse filtering can be done with the aid of information about 

datasets in hand. Information about dataset images and priori information about cells 

can help having better filtering. In filtering step, unreasonable ellipses are removed. 

It is shown that both low and high contrast images are very well segmented even in 

images with occluded structures. 

In the study of Kendrick Cetina (27) they compare nine image feature descriptors 

with two classifiers on electron microscopy images of mitochondria and synapses. 

The feature descriptors they use are: A. Simple Window and Histogram which is a 

very good descriptor for texture segmentation. B. Local Binary Patterns which 

generate a binary code for every pixel and the feature vector is created using 

histogram of LBP binary codes. C. GRIMS (Gaussian Rotation Invariant and Multi 

Scale) apply linear Gaussian filters to each image with different scales. The feature 

vector is of size 4n because there are 4 features for every scale. D. Ray descriptors: 

In objects like mitochondria that have strong edges, the ray features show good 

performance in extracting shape features. E. Difference of Gaussian’s: In this feature 

a blurred image is subtracted from another blurred image, but in the paper (27) four 

subtractions at different scales are done. F. Laplacian of Smoothed Image: different 

scales of Gaussian kernel are used because there is a relationship between the size of 

blob structures and the size of Gaussian kernel used for smoothing. G. Eigenvalues 

of the structure tensor: The gradients of a function are put into a matrix named 

structure tensor which represents a point’s directions of the gradients. H. Histogram 

of Oriented Gradients: dividing image into small regions called cells and having the 

gradient directions of all pixels in the cell, the feature vector of HOG is created. I. 

Radon like features use both texture and geometric information about image to 

segment the structure to be more effective. In this paper they use two classifiers: a 

Gaussian and Random Forest classifiers. The results show that Random Forest 

classifier performance is better than Gaussian classifier and among nine feature 

descriptors GRIMS and simple window descriptors show the better performance than 

the others. 

In the study of Tasel (14) they tried to detect and segment the mitochondria 

automatically. After automatic detection of mitochondria which is based on elliptical 

shape and double membrane boundary characteristic of mitochondria, they use active 

contour to refine the results; in the next step there are seed points which are 

automatically selected along the contour to be used in live wire graph search 

algorithm which will finalize the segmentation. They test their algorithm on four 

images with multiple mitochondria and they automatically detect 52 mitochondria 

which 42 of them are true but 10 are false. Comparing with a trained reader's 

segmentation, 91% Dice similarity coefficient is achieved. 
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In the study by Çöçelli (15) he tries to correct and optimize the results gained by 

Tasel (14). There are some undetected or wrongly detected mitochondria in the work 

by Tasel (14) that Çöçelli wants to find a solution for them. He uses semi-automatic 

and user guided methods which use the information extracted from auto 

segmentation in his work, also his algorithm is tightly bounded to visualization of the 

sources.  Mainly his work is visualization which is in two phases; first visualizing 

from electron microscope images and secondly is visualization from snakes detected 

by automatic segmentation algorithm.  

In the study by Jurrus (16) axon tracking is done with the use of active contour, 

Kalman filter and optical flow. Their algorithm uses feature tracking methods in the 

images which are in fact 3D volume treated as sequence of 2D images. The set of 

images they use are acquired by SBFSEM. Firstly the user denoises the images then 

in the first slice defines axon locations and in the proceeding slices with the use of 

Kalman filter combined with positional and velocity measurements, then tracks the 

contour points. With comparison to full-manual tracking this method shows 

significant time saving, in this method user can intervene and correct axon locations 

when necessary. Failures to track some axons might also occur in this system. 

1.3 Aims and Scope 

In this study, it is aimed to segment mitochondria of 3D Electron Microscopy images 

with a semi-automatic method. Active contour is selected for segmenting 

mitochondria in every slice of image stack. Because mitochondria is a dynamic and 

shape changing organelle, optical flow is used to estimate its velocity and Kalman 

filter is used to estimate its location in the next slice using information from active 

contour and optical flow . Semi-automatic method is applied such that the user 

initiates the contour and the algorithm starts. The initial contour is placed near the 

edge, then image forces draw contour to edges, Kalman filter estimates the location 

of points on the contour in next slice using velocity from optical flow and placement 

from active contour.  

Three different methods are applied to images here. The methods are as follows: 

active contour, active contour with Kalman filter and the third method using active 

contour, Kalman filter and optical flow. 

Active contour is preferred here because by changing energy terms, the best result 

can be achieved, and Kalman filter is used because it can smooth the result of active 

contour and estimate where the points on contour will go in the next slice of images. 

optical flow can help us find the velocity of points changing place. It is discussed 

which method have better segmentation results. 

1.4 Problem Statement 

As manual segmentation in medical applications is very slow, tedious, time and 

energy consuming and, at the same time, it requires trained and very accurate and 

detailed one for the segmentation, and its results being non reproducible makes it not 

to be a preferred segmentation method. (17) Manual segmentation also has a bad 

reputation because of subjective results (18).  This causes fully automatic 

segmentation methods to come into existence. Fully automatic segmentation methods 
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have the benefit of saving time and energy and increasing productivity. In fully 

automatic segmentation there is no need for training and the data are reproducible but 

it limits the user’s authority (17). Sometimes fully automatic methods fail and cause 

incorrect results, this happens more in medical images because segmentation is 

difficult in this type of data because of restrictions imposed by image acquisition, 

pathology and biological variation and this is because parameter determination in 

fully automatic segmentation methods is very difficult due to differences in every 

sample and also fully automatic segmentation cannot deal with artefacts on its own. 

All of these issues cause the semi-automatic method to be the preferred method of all 

(17). That is why it is also preferred to use semi-automatic segmentation method 

here. 

The mitochondria images used here are provided by The National Center for 

Microscopy and Imaging Research (NCMIR) from a Cell-Centered Database Project 

sustained by Martone (28) , (29) and (30) . Eight datasets are provided and each of 

them approximately contains hundreds of slices and in each slice a number of 

mitochondria are recognizable. The information about data sets is provided in Table 

1.  

The mitochondrion in these data sets need to be segmented but, as it is discussed 

earlier, fully automatic methods or manual methods are not good solutions for 

segmentation of mitochondria; so a semi-automatic method is needed.  

Table 1 Data Set Information 

Data 

set # 

 Data set name Number 

of slices 

Number of 

mitochondria 

Cell/Mito 

type 

Mito 

condition 

1  cone.sub 97 9 cone inner 

segment 

normal 

2 6_22.sub 91 14 rod inner 

segment 

aged 

3 bclpb-d.sub 61 6 rod inner 

segment 

lead 

exposed 

4 gap18_sub 54 6 rod inner 

segment 

aged 

5 mac_serial_sub 111 20 MAC normal 

6 od.sub 91 34 rod inner 

segment 

normal 

7 pedicle 31 6 pedicle normal 

8 spherule24mos1_ 86 1 spherule aged 
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CHAPTER 2 
 

METHODS  

 

2.1 Active contour 

Snake is an energy minimizing and controlled continuity spline which with the 

control of external constraint forces and image forces can make its way toward 

features like lines and edges. They actually try to extract features of interest in 

images. They lock onto nearby edges, localizing them accurately (31). To have a 

model with the ability to interact with higher level processes (31) design energy 

functions whose local minima provide a set of solutions for higher level processes. 

Adding proper energy terms to the minimization guides snakes toward local 

minimum in order to find the desired solution. Actually the solution is found using 

techniques of variational calculus.  

In Michael Kass (31) finding edge is different from traditional one in that it considers 

connectivity of contour, corners and hence detailed structure of the locally optimal 

contour. The energy functional used in Michael Kass (31) is as in Equation 2 where 

V(s) stands for the position of snake                  

         
 
 

                 
 
 

                                        

(Eq.2) 

Where Eint represents the internal energy of the contour, Eimage is the image forces, 

and Econ is the external constraints. 

The internal energy is calculated by Equation 3. 

                                               (Eq.3) 

The first derivative shows an extreme at the edge (maximal positive or negative 

steepness) so the first order term makes the snake act like a membrane and second 

order term makes it act like a thin plate. 

In another work by Shah  (32) it was mentioned that if the points are not in even 

space from each other, the first order derivative term will be incorrect by a factor of 

di2 , where di  is the distance between points i and i-1. (32) The first order derivative 

is calculated in Equation 4. 

   

  
            

            
           

          (Eq.4) 
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An active contour is a continuous curve with deforming ability being controlled by 

internal and external forces. (33)The external forces can be achieved from image data 

or imposed as constraints whereas internal forces define the physical properties of 

the mod (34). The internal forces used in Sahiner B (33) are continuity and curvature 

of the contour which impose a smoothness constraint on the contour and the external 

forces are balloon force and negative of the gradient magnitude which push the 

contour toward salient image features like edges. To do the segmentation there 

should be an initial boundary which changes shape iteratively in a manner that 

internal and external forces can be minimized along the contour. 

 The contour is represented by a set of points that form the vertices of a polygon                 

                        . The energy to be minimized is defined as in Equation 5. 

                                                            
 
      (Eq.5) 

Where curv, con, grad and bal stand for curvature, continuity, gradient, balloon force 

respectively. The w in all terms is weight term which should be considered properly 

to have suitable segmentation in every case. 

Curvature Energy is defined as the estimation to second derivative of the contour 

(33)  as in Equation 6. 

                            (Eq.6) 

This term should be minimized like other terms because when it is large it is the 

result of small angle between two sides of the polygon that meet at vertex v(c)  

When the angle between two sides of the polygon at vertex v(c) is small, this term is 

going to be large, as it is wanted the contour to be smoothed and it is aimed to 

eliminate curvatures from the contour then this term should be minimized so this 

term can smooth the contour. 

 

Figure 8. Second Derivative Representation 
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As apparent in Figure 8 as the angle between two sides of the polygon gets smaller, 

the second order derivative will get larger and when the angle gets larger so the 

distance between a and b gets larger so the second derivative result will get smaller. 

Second derivative is defined as in Equation 7. 

Continuity energy, Econ is defined as the deviation of the length of the line segment 

Sc between two vertices vc and vc+1 from average line segment    
  

 
    ,   

              (33). This term tries to put the vertices along the contour in even 

space from each other so the continuity of the contour and it prevents information 

loss because there are no vertices far from each other in comparison with other points 

or vertices. 

Length of line segment                                                   

Gradient energy, Egrad is represented by the negative of the gradient magnitude. (33) 

To find the image gradient magnitude first partial derivatives in horizontal and 

vertical directions should be found and then calculating the magnitude of the partial 

derivative vector.    is the gradient magnitude of the image, I is the image and I(x , 
y) is the intensity of the pixel at location (x , y) in the image. 

 

Figure 9  partial derivatives 

 

If Figure 9 shows the intensities of the pixels with specified locations, the horizontal 

and vertical gradients     ,     are defined as in Equations 9 and 10 respectively. 

            –               (Eq.9)    = I (x, y+1) – I(x, y-1)  (Eq.10) 

Magnitude of the gradient is:              

Gradient energy is:     

As the gradient magnitude is larger in the edges, to minimize the function the 

gradient energy term should be negative of the gradient magnitude so minimizing 

this term attracts the contour to the object edges. 

Balloon energy, makes the curve act like a balloon. This energy causes the curve 

pass through weak edges with respect to the inflation force. The normal direction of 
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the contour vector at vertex v(c) is the average of normal ones to two sides of vertex 

v(c). The balloon energy, Ebal is the cosine of the angle between the normal vector at 

vertex v(c) and the vector v’(c) – v(c). v’(c) is the coordinate of point in the 

neighbourhood of vertex v(c). If the wbal is negative, the energy component 

encourages the contour to act like a balloon inflating and if it is positive, the energy 

guides the contour to go inside it. (33) 

To minimize all these energy terms a greedy algorithm is used which was proposed 

first by Shah (32) . This greedy algorithm optimizes the contour iteratively; it starts 

with manually provided initial points and finding its way with updates to the location 

of points in a manner that minimizes all energy terms of all initial points on the 

contour (33). 

2.2 Kalman Filter 

Kalman filter is a recursive solution so as new measurements come to account they 

can be processed, it is a set of mathematical equations that uses vector algebra to 

minimize the mean of squared errors and estimates the state of a process. (35) 

Kalman filter is named after Rudolf E. Kálmán. Kalman filter is important because of 

its small computational requirement, recursive property and its being optimal 

estimator. Applications that use Kalman filter are as global positioning systems and 

smoothing the noisy input. Kalman filter predicts future state using past state 

information.  

    is the state vector consist of system information at the time t. 

A is the state transition matrix of size n×n which applies the effects of state k-1 to 

state k. 

 

   is the measurement vector. 

  is the transition matrix contain measurement values that come from state vector 

parameters. 

K is n×m matrix called the gain or blending factor.   

R is the measurement error covariance. 

Time Update 

(prediction) 

Measurement Update  

(correction) 

           
 

            
 Q 
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Q is the measurement noise covariance. 

    is a posterior error covariance of the current state estimate. 

Kalman filter tries to predict state      of a process with a measurement   . As R 

approaches zero the Kalman gain matrix weights     more     
    

 

     
   

 (36)   

2.3  Optical Flow 

The apparent motion of brightness patterns in an image sequence is called optical 

flow. The rate of change of spatial arrangement of objects in the image can be shown 

by optical flow. (37) . To visualize movement of objects in the sequence of images 

the approximation of the optical flow field is needed which is the movement of 

corresponding pixels in the image and is shown in Figure 10. The optical flow at a 

point can be computed using the points in its neighbourhood; because the velocity 

field (change in x and y direction) at a point in the image has two components but the 

intensity change due to motion yields one constraint.  If for example in an image 

there is a pattern that the intensity along one of the image coordinates is constant and 

it changes along the other one then movement of the pattern in one direction causes 

change in the brightness at that point but the movement in the other direction yields 

no change so the movement in the direction with constant intensity cannot be 

measured locally. That is why the method (37) proposed is working global, 

calculation of every flow vector is based on the all points in the image. (37)   

 

Figure 10. Representation of movement of objects and corresponding pixel movement (Original image 

in (37)) 

G.Schunck (37) proposes a method to calculate optical flow. There are two 

assumptions in their work. First they assume that the surface of object being imaged 

should be flat. To guarantee preventing variation in brightness of image due to 

shading this assumption is made. (37) They assume that the brightness is constant; it 



22 
 

means the intensity value of a small region in an image remains constant over time 

despite of its change in position. (38)  

 

Brightness constraint: 

         denotes for the image brightness at point       at the time t . According to 

the assumption, the brightness of a point in the sequence of images being tested is 

constant; so 

  

  
   

The equation that shows the relation between the change of brightness at a point in 

the image and the motion of brightness pattern is like the equation 11.  

  

  

  

  
 

  

  

  

  
 

  

  
        (Eq.11) 

  
  

  
         

  

  
 

By introducing Ex, Ey , Et as the partial derivatives of image brightness in x, y, t 

directions respectively the above equation can be written as in Equation 12. 

                (Eq.12) 

To estimate partial derivatives of a point in the center of a cube like the one in Figure 

11. Where the column index j corresponds to x direction in the image and row index i 

corresponds to y direction in the image and k lies in the time direction. The following 

equations are used in (37). 

    
 

 
                                                                     

             

    
 

 
                                                                     

             

    
 

 
                                                                     

             

(Eq.13) 
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Figure 11. The cube for describing the partial derivatives (Original image in (37)) 

 

The smoothness constraint: 

“The spatial smoothness constraint (spatial term) comes from the observation that 

neighboring pixels generally belong to the same surface and so have nearly the same 

image motion.”  (38) . Actually since the neighbouring points on the object have 

similar velocities, the neighbouring pixels in the image also have similar velocities so 

their velocities vary smoothly in the image. (37) They use the sum of squares of the 

Laplacians of the x and y coordinates for the smoothness measurement as in 

Equation 14. 

    
   

    
   

            
   

   

    
   

             (Eq.14) 

To estimate the Laplacians of u and v the following form is used in G.Schunck (37) 
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Table 2 Laplacian 

 

 

 

 

The Laplacian is calculated by subtracting the value at a pixel from its neighbour 

points with the weights shown in Table 2.  

Minimization: 

To minimize sum of errors in both the brightness constraint               

 and smoothness constraint  
  

  
 
 

  
  

  
 
 

  
  

  
 
 

  
  

  
 
 

two factors      and  

     are used as shown in Equations 15 and 16. 

                         (Eq.15) 

      
  

  
 
 

  
  

  
 
 

  
  

  
 
 

  
  

  
 
 

   (Eq.16) 

The total error factor is             and a weighting factor    which can be chosen 

properly by knowing the fact that the error is proportional to the noise in the 

measurement. 

      
                            (Eq.17) 

            
                      (Eq.18) 

Then by multiplying both sides by   
    in Equation 17 and   

   in Equation 18 there 

will be 

      
    

           
                       (Eq.19) 

      
    

                  
                 (Eq.20) 

An alternate form for Equations 19 and 20 are as follows in Equations 21 and 22 

which are resulted by adding and subtracting    
    from right hand side. 

      
    

                                 (Eq.21) 
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                                 (Eq.22) 

Now for each point in the image there are these two Equations 21, 22 but solving 

these equations simultaneously with standard methods will be costly so an iterative 

method is used as in Equations 23 and 24. 

                
      

        
    

    
             (Eq.23) 

                
      

        
    

    
             (Eq.24) 

One can iterate until it stabilizes before next image frame or have a fix number for 

iterations in every image frame. 

 

2.4 Proposed Methods 

In Elizabeth Jurrus (16) it is proposed an algorithm that uses active contour, Kalman 

filter and optical flow to track axons in SBFSEM. It is used the algorithm to track 

axons in slices through a volume by updating position and velocity information in the 

model. 

The algorithm of Elizabeth Jurrus (16) is used to segment mitochondria in Electron 

Microscopy images which are a set of 2D images in slices, Figure 12 can better show 

how the slices of images can be used. The aim is to segment mitochondria in a set of 

images. If it is assumed 3D volume as a sequence of 2D images in time then 

segmentation methods can be applied to the volume. 

Three different methods are applied to images, the methods are as follows:  

1. Active contour: In this method the first slice is initialized by the user and 

in the proceeding slices the contour will be the previous slice‘s contour 

which will be updated after some iterations of running active contour in 

the current method and this will be initial contour for the next slice and 

this will continue until the end of slices. 

2. Active contour with Kalman filter: In this method the first slice is 

initialized by user and the proceeding slices start with the previous slice ‘s 

contour which will be the initial contour for the current slice, then by the 

aid of Kalman filter in estimating the position of each point of contour in 

the next slice, algorithm will continue. 

3. Active contour with Kalman filter and Optical flow: In this method like 

the previous methods user initializes the contour for the first slice and in 

the next slices active contour provides position information for Kalman 

filter while optical flow provides velocity information for Kalman filter to 

predict where every point on the contour will go in the next slice. 
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Figure 12  Slices of images which contain mitochondrion in our data sets 

 

The algorithm is as follows, it starts with pre-processing step which is done in a work 

by Tasel (14), they firstly apply an auto contrast algorithm in order to have very 

similar contrast in different datasets and also for easy parameter settings they 

interpolate the images to have sizes of 2.0 nm pixel size in all data sets, this size is 

appropriate for both detection and segmentation of mitochondria. The last step in 

pre-processing is bilateral filtering which is useful in reducing the noise in the non-

mitochondrial region. After pre-processing images are ready to be segmented so user 

can initialize contour on the first slice of images.  

Pre-processing is done in 3 steps in the Tasel paper (14). These three steps are as 

follows:   1) Auto-contrast adjustment 2) Resampling 3) Smoothing.  

(1) Auto-contrast adjustment: Brightness of an image is the overall lightness or 

darkness of the image and the difference of brightness in objects and regions of the 

image is called contrast (39). Images with good quality and contrast are considered 

as strong requirement in some areas like medical image analysis and for this purpose 

some applied methods are named image enhancement techniques which process the 

image and help it be visually more suitable than the original one. Automatic contrast 

enhancement is needed in medical images to have better visual inspection. Contrast 

enhancement is essential in medical imaging for better interpretation of images by 

making object features easier to distinguish (40), (41). In the work by Tasel et al they 

use auto-contrast algorithm which is needed for normalizing the gray values of the 

image into a certain range. They did this by setting 0.5% of the lowest gray value of 

the histogram to the minimum gray value and setting 0.5% of the highest gray value 

of the histogram to the maximum gray value. The other pixel values are normalized 

between minimum and maximum values.  

(2) Resampling: In the second step of pre-processing they interpolate the images to 

have the fixed pixel size for all the images of all 8 data sets. This is done to have 
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easier parameter tuning. The pixel size is set to 2.0 nm. As the mitochondrial 

membranes are 4-6 nm apart, 1-3 nm pixel size might be considered a good range. 

Choosing less than 1nm/pixel will cause smaller imaged area than optimal for typical 

mitochondrial sizes. Choosing larger than 3nm/pixel will cause membrane resolution 

loss. 

 (3) Smoothing: Generally all medical images contain some visual noise. The noise 

lowers quality of images. To reduce noise level in images they have tested three 

different methods, Gaussian filtering, Anisotropic diffusion and Bilateral filtering. a) 

Gaussian Filtering: is the convolution of Gaussian kernel with the image. b) 

Anisotropic diffusion: is a type of smoothing that preserves edges. The amount of 

smoothing in different regions of image is determined by the magnitude of gradients 

of the image. In the edges that magnitude of gradient is high; diffusion is weak so 

smoothing is less. In the areas with low magnitude of gradient there is a strong 

diffusion which causes high amount of smoothing. c) Bilateral filtering:  By means 

of Bilateral filtering images can be smoothed with edges preserved, with the aid of 

nonlinear combination of nearby image values. Bilateral filter uses two weighting 

functions, domain weights and range weights. It actually operates in both the domain 

and the range of the image. The main idea in Bilateral filtering is that it smoothes the 

image in the domain of the image and it does not smooth the image when the pixels 

are far from each other in the range of the image, in other words it smoothes the 

image when pixels are similar to each other but does not smooth when the pixels are 

not similar to each other. The simplest similarity factor that can be considered in the 

range of the image can be intensity of the image. The definition of Bilateral filter is 

given in the Equation 26. 

                              (Eq.25) 

   
 

  
                         (Eq.26) 

In the Equation 26, Js is the filtered pixel intensity, p is coordinate of current pixel 

and s is coordinate of center pixel of kernel and Ω is set of all pixel coordinates in 

the local neighbourhood in the kernel.        is used to measure geometric 

distance between two points of p and s .          is used to measure photometric 

similarity between   and   . 

Domain Weighting: 

Usually a standard Gaussian filter is used for this purpose so        can be defined 

as: 

        
 

       

   
 

                                    

                                

Where        is the Euclidean distance between p and s. 
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Range Weighting: 

Usually the difference of intensity values is calculated by a Guassian function. As 

given in Equation 29. 

          
 

        

   
 

                        (Eq.29) 

Where                  .         , the difference between two pixels p and s, 

always this difference is the intensity value differences of two pixels p and s 

             . (42) 

In the work by Tasel (14) there is a comparison between three methods of smoothing 

the Gaussian, Anisotropic diffusion and Bilateral filtering which shows that Bilateral 

filtering causes best results than the other methods tested so it has been tested on the 

images which are smoothed by bilateral filtering. 

The data set images have huge sizes; so in this study, it is done down sampling on 

the images and the result is studied and it is shown that the edges are not influenced 

so much and the edges are not vanished. Before down sampling, it is applied a 

Gaussian filter with standard deviation value of 0.5 and the down sample is done 

with the factor of 2 which is a suitable factor for down sampling here because the 

edges are not so influenced and this is shown in Figure 13. Down sampling is a 

process in which the number of pixels of an image is reduced by removing the pixels. 

A low pass filter like Gaussian blurring is usually needed when down sampling the 

image and reducing the size of image. The Gaussian filter prevents aliasing which 

can be the result of down sampling. Aliasing is loss of some high frequency 

information in the image. 

 

(a)                                                                  (b) 
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(c)                                                                          (d) 

Figure 13 - Location of the edge tested and profile of it before and after down sample, (a) is the 

location of the edge ,(b) is the location of the edge zoom out (c) profile of the selected edge before 

down sample (d)Profile of the edge after down sample with factor 2 

 

2.4.1 Method 1: active contour 

In this work it is better to place initial contour on the target contour then iteratively 

the snake will be attracted toward target contour by forces that control the shape and 

location of the snake in the image. The mentioned forces are internal and external 

forces. Internal forces control the smoothness of contour where external forces guide 

contour toward edges. 

The contour is represented by vertices of a polygon. The vertices are represented by 

v(c) and defined as                        and the polygon is shown in Figure 

14. 
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Figure 14 The contour and vertices of polygon on it 

 

In this work, it is assumed a 3×3 neighbourhood near every point on the contour and 

in calculations of energies in Active contour method the minimum energies of all 

neighbourhood points are calculated and the point with minimum energy will be the 

final position of the point in every iteration, Here it is tested and concluded that 3 

iterations is enough to segment mitochondria properly.  

The energy which is to be minimized is defined in Equation 30. 

                                                            
 
       (Eq.30) 

       is the curvature energy and is defined as                       
         and it is calculated for all points in the neighbourhood.  This energy term 

helps the contour to have a smooth shape and prevents sharp corners. 

     is the continuity energy and defined as      =|       | where     

                         and      
  

 
 , N is number of points on contour. 

This term maintains regular spaces between points on the contour. Here    will be 

length of line segment from every point in the 3×3 mask to the next point on the 

contour.  

      is the gradient energy term and is defined as                where    is the 

gradient magnitude that is defined as        
     

 
 where  

                     ,                       and        is the 

image intensity in position       of the image.            stand for horizontal and 

vertical partial derivatives.  For all points in the mask the gradient magnitude is 

calculated and for the pixels in the border of the image, padding will be done there. 

Table 3 can help in understanding it. 
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Table 3 The mask used to calculate gradient magnitude 

( x-2 , y-2 ) ( x-1 , y-2 ) ( x, y-2 ) ( x+1 , y-2 ) ( x+2 , y-2 ) 

( x-2 , y-1 ) ( x-1 , y-1 ) ( x , y-1 ) ( x+1 , y-1 ) ( x+2 , y-1 ) 

( x-2 , y ) ( x-1 , y ) ( x , y ) ( x+1 , y ) ( x+2 , y ) 

( x-2 , y+1 ) ( x-1 , y+1 ) ( x , y+1 ) ( x+1 , y+1 ) ( x+2 , y+1 ) 

( x-2 , y+2 ) ( x-1 , y+2 ) ( x, y+2 ) ( x+1 , y+2 ) ( x+2 , y+2 ) 
 

Minimizing this term guides the contour toward edges. 

     is balloon energy term and is defined as cosine of the angle between normal vector at 

vertex       and the vector   
           . The normal direction to the contour at vertex 

      is defined as the average of the normals to the two sides of the vertex      .    

 

Figure 15 Normal vector at vertex v(c) 

Here to find the normal to the two sides of polygon first the vector connecting two 

vertices             and the vector connecting              will be found as in 

Figure 15. Then for each of these vectors, finding a point in the middle of these and 

the two perpendicular vectors to this point is needed. The two perpendicular vectors 

to this point are   
       

   

  
  and  

  

   
   . Finding the vectors from these middle 

points to the center point which coordinates have been provided by the user clicks is 

also needed. Finally to know which perpendicular vector is the vector, pointing out 

of the contour, the cosine of the angle between perpendicular vector and the vector 

toward center will help, because the vector with cosine of positive value will be the 

vector pointing out of contour. It is needed to determine the normal pointing outside 

of contour; because the contour is going to get greater. Actually other energy terms 

will control contour also not to get much greater or greater than needed. Figure 16 

well describes this process. 
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Figure 16 Normal vectors 

In the first method in this thesis just Active contour is used to segment mitochondria 

in dataset images. In the first slice of images the user initializes contour but in the 

next slices result of previous slice will be the initial contour then by running Active 

contour 3 iterations iteratively in our case the final contour for the current slice will 

be resulted and will pass to the next slice as the initial contour. 

 

2.4.2 Method2: Kalman filter with active contour  

In this method like the previous one first the slice is initialized by user but for the 

following slices Kalman filter with the aid of active contour estimates where the 

contour will go. 

 Kalman filter estimates the location of mitochondria in the next slice by sampling 

the image and then correcting the estimation. The Mitochondria are represented by a 

set of points. These points have their own Kalman filter updating the state     
                 

  where             is the position of the point on the contour and  

           is the velocity at the point. Kalman filter consists of three computations:  

    prediction,    the measurement, and    the correction.  

    : To calculate current slice’s prediction state previous state’s correction state is 

used as shown            where     

    
  
 
 

 
 

 
 

 
 

  

  , velocity value is assumed 

to be constant and matrix     helps us assume that but position of point in the next 

slice will be computed using current position. Third and fourth rows of matrix A help 

us have constant velocity values. 

   : In the measurement state    the position information comes from active 

contour and velocities come from the difference of positions in previous slice and 

current slice. 
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   : Kalman filter combines the predicted state     and measured state    to have 

corrected state   , the final aim is to find this corrected state. 

                     Where    is the Kalman gain matrix and is defined as 

       
       

       where     is a posterior error covariance of the current 

state estimate, R is measurement noise covariance and it is a 4×4 diagonal matrix. 

  is n×n matrix that relates the state to measurement    .   might be of changeable 

size in practice but here in this model it is assumed constant and is identity matrix of 

size 4.  

To define     it is needed to define the a priori and posterior estimate errors    and 

    as                 and             where     is the a priori state estimate at 

step k giving knowledge about process prior to step k and    is the a posterior state 

estimate at step k given    the measurement state. The a posteriori estimate error 

covariance is              
   and the a priori estimate error covariance is    

       
  . (35)           

   where Q is a 4×4 diagonal matrix which represents 

process noise covariance and here it is assumed it is constant.    is chosen so that 

minimizes   .     is updated after each estimation by               .   defines 

the relationship between the measurement and the model.  As mentioned earlier Q is 

assumed to be constant but the measurement noise can modelled like in the following 

form (16). R can be modelled at a contour point using membrane strength metric. 

The strength of a membrane is defined as follows and it is defined as the second 

derivative in perpendicular direction to membrane   
  

      
    where     is the intensity 

along vector   which is perpendicular to membrane point. A box filter is also used to 

smooth the noise and is oriented in the direction   perpendicular to vector  . It is 

best illustrated in the Figure 17.  

 

Figure 17 shows the directions to membrane 

 

To have intensity values of image in the positions which 3×3 mask is applied, a 

linear interpolation is done to get the pixel intensities. Linear interpolation is 
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calculated as follows but for the sake of better running time it should be forgotten. 

Figure 18 shows how it can be calculated. 

            

            

            

                              

(Eq.31) 

 

Figure 18 shows how linear interpolation is calculated 

To scale membrane strength to a value between 0 and 1 a calculation is done to have 

        
  

 
 
  where c is constant value defining a strong membrane.  

 

2.4.3 Method 3: Kalman filter with active contour and optical flow 

In this method like the other two methods first slice is initialized by user clicks and 

the initial contour is provided by the user but Kalman filter with the aid of active 

contour and Optical flow will estimate position of points on the contour in the next 

slices. 

Kalman filter works as in the method2 with a difference in that the measurement 

state   , the position information comes from active contour and velocity 

information comes from optical flow. 

Motion is one of intrinsic properties of the world and it is a part of our visual 

experience. Each point on a 3D surface moves along a 3D path in camera-centered 

coordinates but when projected in the image plane each point produces 2D path 

                   with the direction of  
      

    
  which is also velocity. The 2D 
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velocity for points of a surface is called the 2D motion field. An approximation to the 

motion field is the goal of optical flow.  Optical flow is the result of relative motion 

of the object and the viewer. Here in this case as mitochondria are dynamic and 

change the shape in every slice of data set images; so there is an optical flow to 

measure. Figure 19 can best illustrate what is optical flow. 

 

Figure 19 Optical Flow shown in a part of image with motion 

 

2.4.4 Merging, Splitting, Vanishing 

 

There are some mitochondria that start as one mitochondrion but after some slices 

split and become two mitochondria, this is named splitting. In the automatic method, 

we try to detect the slice number in which splitting occurs if there is any with two 

rules, distance check rules and edge strength rules. But in some cases, when there is 

no splitting, the algorithm detects wrong splitting. In the semi-automatic method, 

there is an option in the application that lets the user state the slice number in which 

the mitochondrion is going to split. Figure 20 can best illustrate splitting 

mitochondrion. 
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(a)                                                                          (b) 

Figure 20 splitting mitochondrion with its splitting points (a) the two splitting points of one 

mitochondrion (b) all splitting points 

 

After determining splitting points, active contour is executed for 10 iterations, 

because in less iterations the contour cannot find its way and the result will not be 

satisfying. This 10-iterations execution of active contour is just in the slice where 

splitting occurs.  

 

2.4.4.1 Automatic Splitting 

In this method, the distance of every point at the contour from all other points is 

calculated in every slice, then from one slice to another slice, the difference of these 

distances is calculated. Until 10
th

 slice, the difference is the difference between two 

consequent slices, but after 10
th

 slice, the difference of one slice and the 10 slices 

before is calculated. Actually, we want to find if the distances between points are 

changing so much in comparison with 10 slices before the current slice. In the 

algorithm, we try to find two points which are far from each other in one slice and 

become near to each other after 10 slices. If there is any two points with this 

criterion, the edge strength check is needed to find out if splitting points are correctly 

detected. The edge strength check is somehow similar to distance check in this way, 

that it compares the gradient values of the points on the splitting line with respect to 

10 slices before current slice. The splitting region has lower gradient magnitudes and 

this can help us define the edge strength check. From distance check, we have a line 

between splitting points so if we check the gradient magnitudes of the points and a 

    neighborhood of the points on the line, and compare these gradients with 10 

slices before, we can find out if this region's gradient magnitude difference has 

become higher, in comparison to 10 slices before or not; if the difference is higher 

than some threshold the detected points are considered as splitting points. But as the 

detected splitting points might not be the real ones, or not very near to real ones, then 
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the gradient of the splitting line also may not help us much. After determination of 

two splitting points by the algorithm, a line is drawn between these two points. The 

angle between the splitting line and vertical line and the angle between the splitting 

line and horizontal line are calculated. The smaller angle is determined. With this 

way it can be inferred that the mitochondrion is in x direction or in y direction. The 

horizontal and vertical lines are displayed in the Figure 21. If the mitochondrion is 

vertical, then the points on the contour with y values less than y value of the points 

on the line, are gathered in one mitochondrion. Another mitochondrion will have the 

points with y values greater than line's y values. If the mitochondrion is horizontal, 

then x values are compared. This is how one mitochondrion splits and become two 

separate mitochondria.  

 
Figure 21 Horizontal and vertical lines in the splitting region 

After splitting is completed, the active contour is executed 10 iterations just for the 

splitting slice, after that, the program continues normally. This method for the 

mitochondria with splitting, works not bad, but for the mitochondria which do not 

split, it may find some false splitting points. Semi-automatic method can help us 

segment mitochondria more exactly in the case of splitting mitochondria. 

2.4.4.2 Semi-automatic splitting  

As stated before in the automatic splitting section, there might be wrong 

segmentations, but in the semi-automatic method, that is not the case. In this method, 

the user states the slice number in which the splitting occurs, after execution, the 

program pauses in the splitting slice and waits for the user to specify the splitting 

points. In this method, these splitting points are considered to be four points, two for 

every mitochondrion that will be the result of splitting as shown in Figure 20. After 

determination of four splitting points, the points between these points are removed. 

Then every two points on every splitting mitochondrion are connected to each other 

and the algorithm continue with two separate mitochondrion instead of one 

mitochondrion. This is an option in the application that more than one mitochondrion 

can be segmented. In the last step to complete the splitting, the algorithm continues 

with 10 iterations of active contour. A sample of splitting mitochondrion before and 

after splitting is presented in Figure 22. 
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(a)                                                                            (b)  

Figure 22 Splitting mitochondria (a) before splitting (b) after splitting 

 

2.4.4.3 Vanishing 

In some of data sets there are mitochondria which vanish after some slices. Figure 23 

presents a mitochondrion before and after it disappears. In the images that are 

manually segmented, the disappearing mitochondrion loses its edges little by little 

after some slices, and finally it disappears; but in our algorithm, in all three methods, 

the disappearing mitochondria does not get smaller so much because it sticks to 

edges and higher gradients, so, we should find some way to recognize disappearing 

mitochondria. 

If we want to automatically determine that a mitochondrion is going to disappear 

after some slices , in the case of disappearing mitochondria, it will work properly, but 

there are some data sets in which the membranes of mitochondria are not so much 

distinguishable. In other words the gradient magnitudes in the edges of mitochondria 

are also low in comparison to other data sets, so, in these types of data sets, this 

algorithm will cause an existing mitochondrion to disappear wrongly. In the 

automatic method, we will check gradient magnitude of all points on the contour, and 

if more than fifty percent of points on the contour have a gradient magnitude less 

than a threshold that mitochondrion is detected as disappearing mitochondrion. User 

interaction can help us fix it, the application provides the user an option to enter the 

slice number in which the mitochondrion is going to disappear. If there are more than 

one mitochondrion in the program to be segmented and one of them disappears, then 

having the slice number, algorithm can decide which one is going to disappear in this 

way. It calculates the gradient magnitude of all points on the contours of all 

mitochondria in use and the mitochondrion with less value for mean gradient 

magnitudes of points on the contour will disappear in the next slice. 
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(a)                                                                     (b) 

Figure 23 Disappearing mitochondrion in the lower bottom corner (a) before disappearing and (b) 

after disappearing 

2.4.4.4 Merging  

There are cases when two mitochondria merge with each other after some slices and 

become one mitochondrion instead of two separate mitochondria. This can be best 

illustrated in Figure 24. In the application implemented in this thesis there is an 

option for the user to enter the slice number in which the two mitochondria are going 

to merge. Of course it should be considered that the two mitochondria should be 

segmented simultaneously in the application. This is also an option in the application 

for this purpose. If the user wants, he/she can segment more than one mitochondrion 

at the same time. Merging just can occur if more than one mitochondrion is 

segmenting in the application. In the slice number of merging the points on the 

contour of two merging mitochondria that are very close to each other than other 

points on the contour of both mitochondria are going to disappear and the 

mitochondria would merge. As it can be seen in the two merging mitochondria in 

Figure 24, the merging points from two mitochondria are not very close to each 

other. In the merging algorithm in this thesis, as the nearest points from two merging 

mitochondria, which might be in every probable distance, (here it is assumed that 

they can be near to each other 10 pixels or less),  become near to each other, the 

nearest points merge with each other and become one mitochondrion. The process of 

merging starts with the execution of merging slice number (specified by the user). It 

is assumed that the points from two mitochondria which have distance less than 10 

pixels are in the merging region. The points in the merging region are removed from 

two merging mitochondria. Remained points on the contour of two mitochondria are 
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investigated and four points on the contour of two mitochondria are selected. Two of 

the points are from one mitochondrion which are the nearest two points to the other 

two points from the other mitochondrion. After that the four points are specified, in 

the distance of every connecting two points from two mitochondria, some other 

points connecting these points are selected with a distance of 0.1 pixel from each 

other. Connecting these points will merge the two mitochondria. In the last step after 

merging active contour is executed 10 iterations.  

 

 

(a) 
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(b) 

Figure 24 Merging mitochondrion (a) before merging (b) after merging 

The result of this merging mitochondria, is shown in Figure 25. 

 

(a)                                                                            (b) 

Figure 25 Merging mitochondria (a) before merging (b) after merging 
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2.5 Metrics to Evaluate Segmentation Performance 

To measure the performance of the algorithm, visually comparing the output of the 

algorithm with the ground truth is not enough; there should be some metrics to 

measure the performance accurately. Ground truth is a data set image in which 

specialists segment mitochondrion manually using IMOD application which is 

developed to make easier viewing of 3D image data of biological structures. (43) A 

sample of ground truth image in IMOD is presented in Figure 26. 

 

 

Figure 26 Sample image of Ground Truth in IMOD 

 

There are some metrics to evaluate the contour accuracy and some of them will be 

discussed here. (44)  

Dice coefficient is a statistic to compare two samples to know how similar they are. 

It is also known as similarity measure. The two samples are ground truth contour and 

segmented contour by our algorithm. Dice coefficient measures the ratio of the 

intersection and union of two samples and is defined as in Equation 32. Where S 

stands for the segmented contour and G stands for ground truth contour. 
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Average Symmetric Surface Distance (ASSD) is another metric to evaluate contour 

accuracy. In this metric first of all border pixels of the two sets should be obtained. 

For all pixels of the first border, the closest pixel from other border and vice versa 

should be obtained using Euclidean distance and at the end the distances are 

averaged. ASSD is defined as in Equation 33. 

            
 

 
                                   

                                                               

Where        and       are segmented contour and ground truth contour's boundary 

points, N and M are number of points on the boundary of ground truth and 

segmented contour. 

The Root Mean Square Symmetric Surface Distance (RMSSSD) is similar metric to 

ASSD with the difference that in RMSSSD the distances are averaged and then are 

squared.  

Maximum Symmetric Surface Distance (MSSD) is another metric which returns the 

maximum of distance calculated in ASSD.  

Here the two metrics Dice coefficient and RMSSSD are calculated to evaluate the 

segmentation accuracy. Dice coefficient is used because it is comparing the area of 

the two segmented and ground truth contours. RMSSSD is selected among other 

metrics because ASSD will have similar results as Dice coefficient. But RMSSSD 

will give some information about the boundary error of the segmented contour.  

2.6 Setting Parameters 

There are parameters in this work that need to be set to proper values. First of all the 

mask size needed for active contour energy terms calculation is set to be 3×3 and not 

larger because if it is chosen the larger value for it, unrelated pixels come into 

account and the segmentation will be very unrelated.  

Weights of energy terms in active contour are set to appropriate values to segment 

mitochondria properly. These weight terms are used to balance the relative influence 

of energy terms. The weights relative sizes rather than absolute sizes are significant. 

Here it is not chosen the greater values for the weight of Balloon energy term; 

because in this work initial points of contour should be near the target contour and 

the contour does not need to get greater in every iteration. The other weights of 

energy terms should be in balance with each other to have better segmentation. For 

example if the weight of gradient energy term is notably larger than other weights, 

the point will hold on to a point with strong gradient and segmentation will be worse. 

The weights are set to be as follows:             ,      ,          ,      

     . A 3×3 neighbourhood near target point on the contour is considered. Three 

number of iterations for the active contour is considered enough for a good 

segmentation. 
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For Kalman filter there are some parameters that have to be set properly so the 

algorithm performs better. Q matrix is a diagonal 4×4 matrix with 0.6 in diagonal 

values. H matrix is identity matrix of size 4. Value of c=4.0 is better because this 

value causes higher value for µ in strong edges.       is identity matrix of size 4×4 

in most of the examples of Kalman filter. Therefore, this is set to be identity. The 

distance of points to calculate the membrane strength for R matrix is set to one pixel; 

because more than that will cause loss of information near the point of interest. The 

box filter used for calculation of R is set to be of size 3×3.      is set to be the 

contour points which are calculated by active contour.  

The parameter for optical flow is    since it is iterative approach it is better to start 

with larger    and then decreasing its value to achieve greater robustness. By testing 

different values for    it is decided the value of it when segmentation is better than 

the other segmentations with other values of   . The value of   is set to be 15.   The 

other parameter that should be taken into account is iteration number in optical flow 

which is set to 20 iterations because after this number of iterations there are no more 

changes in the result of segmentation. 
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CHAPTER 3 

 

RESULTS 

 

3.1 Test Cases 

Three methods (active contour, Kalman filter with active contour and Kalman filter 

with active contour and optical flow) were applied to 28 mitochondria from eight 

different data sets as shown in Figure 27. Two different evaluation metrics were used 

for evaluation: Dice coefficient and RMSSSD. Dice and RMSSSD are presented in 

Tables 4 and 5. 

        

a) DataSet1 ‘cone. Sub ‘                                                b) DataSet2 ‘6_22.sub’ 
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c) DataSet3 ‘bclpb-d.sub‘                                             d) DataSet4 ‘gap18_sub’ 

       

e) DataSet5 ‘mac_serial_sub ‘                                              f) DataSet6 ‘od.sub’ 
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g) DataSet7 ‘pedicle ‘                                              h) DataSet8 ‘spherule24mos1_’ 

Figure 27  DataSet images and their mitochondrion 

Example resulting contours are displayed in Figure 28 (since the number of slices is 

too big for this example) only the slice numbers which are multiples of ten are 

displayed.    

        

a) Slice number 1 (drawn by the user)                                   b) Slice number 10 

       

     c) Slice number 20                                                              d) Slice number 30 
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e) Slice number 40                                                  f) Slice number 50 

 

g) Slice number 60 

Figure 28. Mitochondrion number 2 of data set” bclpb-d.sub” in different slices from 1 to 60 

 

Table 4(cont.) Segmentation accuracy of mitochondria (Dice coefficient) 

Data Set 
Mitochondria Number 

Active Contour 

Kalman filter  

& 

active contour 

Kalman filter 

& 

 active contour 

& 

Optical flow 

1 

Dice Coefficient 

1 0.97 0.97 0.95 

2 0.86 0.87 0.88 

3 0.91 0.92 0.89 

2 
1 0.92 0.92 0.91 

2 0.95 0.95 0.94 

3 

1 0.94 0.93 0.94 

2 0.88 0.88 0.85 

3 0.92 0.92 0.89 

4 0.91 0.91 0.90 

5 0.88 0.88 0.87 

6 0.84 0.84 0.85 

4 

1 0.92 0.89 0.91 

2 0.85 0.85 0.84 

3 0.91 0.91 0.90 

4 0.92 0.92 0.92 

5 0.73 0.77 0.76 

6 0.88 0.88 0.83 

5 
1 0.91 0.93 0.90 

2 0.88 0.86 0.89 

6 
1 0.94 0.94 0.90 

2 0.86 0.86 0.85 

7 
1 0.90 0.90 0.89 

2 0.97 0.97 0.97 
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3 0.90 0.90 0.90 

4 0.97 0.97 0.97 

5 0.97 0.97 0.97 

6 0.90 0.91 0.92 

8 1 0.96 0.96 0.96 

 

 

Table 5 Segmentation accuracy of mitochondria (RMSSSD) in units of pixels 

Data 

Set Mitochondria 

Number 

 

Active Contour 

Kalman filter  

& 

 active contour 

Kalman filter 

& 

 active contour 

& 

Optical flow 

1 

RMSSSD  

1 0.9 0.9 1.3 

2 1.8 1.8 1.6 

3 0.7 0.7 0.8 

2 
1 0.9 0.9 1.0 

3 0.4 0.4 0.4 

3 

1 0.9 0.9 0.8 

2 1.3 1.3 0.8 

3 0.9 1.0 1.1 

4 0.8 0.9 0.9 

5 1.4 1.0 1.1 

6 1.4 1.3 1.3 

4 

1 0.7 0.9 0.8 

2 0.9 1.0 0.9 

3 0.7 0.7 0.8 

4 0.3 0.3 0.3 

5 1.1 1.1 1.0 

6 0.7 0.7 0.7 

5 
1 1.1 1.1 1.2 

2 0.8 0.9 0.8 

6 
1 0.6 0.6 0.7 

2 0.9 0.9 0.9 

7 

1 0.4 0.4 0.5 

2 0.6 0.6 0.6 

3 1.1 1.1 1.0 

4 0.7 0.6 0.7 

5 0.4 0.4 0.4 

6 0.2 0.2 0.2 

8 1 1.1 1.1 1.0 
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The Dice and RMSSSD values of every mitochondrion in every slice is calculated 

and then the average value of every mitochondrion in all slices is calculated and 

displayed in Tables 4 and 5.  

As dice coefficient reaches one it represents better segmentation which is more 

similar to ground truth segmentation. The value of RMSSSD shows how much the 

boundary of segmented contour is different from the boundary of ground truth 

contour. RMSSSD measures the boundary error. 

In the best segmentation we should have Dice coefficient equal to one and RMSSSD 

equal to zero.  

In most of the cases when Dice coefficient gets higher (better), RMSSSD metric gets 

smaller (better) accordingly. There are also cases where Dice coefficient is better 

(nearer to one) than RMSSSD (near to zero). These are the cases where the two 

regions, segmented region and ground truth region, are very similar to each other 

except in some parts where there is large boundary errors. Figure 29 can help 

understand the case. The two regions are similar to each other except in the areas 

which are specified with red circle in the Figure 29. 

  
Figure 29 Ground truth region (in blue) and segmented region (in red) 

The results displayed in Tables 4 and 5 are the results of semi-automatic method 

using splitting/merging/vanishing detecting techniques. There is one case for each of 

these techniques in Tables 4 and 5. In other words there is one mitochondrion 

needing splitting, one other mitochondrion needing merging and one mitochondrion 

needing applying vanishing technique in all mitochondria tested in this thesis.  

In some of data sets like 'bclpb-d' (data set number 3) the edges are not so strong and 

the quality is low in comparison to other data sets, so, the results are not so satisfying 

as seen in Figure 30(a). There are also some cases in the data sets that mitochondria 

change shape very slowly in each slice and the edges are strong edges, so the results 

are better than the other cases like data sets '6_22' and 'gap18_sub' where the results 

are better. These data sets are shown in the Figure 30(b) and (c) .There are some 

cases of data sets in which some part of mitochondrion is not very clear and the 

edges of that part are not strong. In these cases, after some slices, the snake will lose 

the correct boundary and may go very far from the mitochondrion boundary. This 

will cause less accurate results like the data set ' Pedicle ' as shown in Figure 30(d) . 

There are also cases in which mitochondrion is very clear and has strong edges in the 

first slice where the user initializes it, but after some slices, some part of 

mitochondrion become unclear (have blurry and weak edges), like the sample in data 
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set 'cone.sub', mitochondrion number one which is specified in the Figure 30(e) in 

the slice with unclear edges and Figure 30(f) in the slice with more clear edges.  

In the algorithm used in this thesis, there is no options for the user to correct the 

snake or points on the contour, but if there was such an option, the results can be 

corrected when it starts to lose boundary, and this could help better segmentation in 

the next slices. When a point starts deviating away from the boundary, then in the 

proceeding slices, it will get farther away from the boundary if there is no user 

interaction, but if in the first slice of deviation the user corrects the problematic 

point, then, in the next slices, it will stick to the boundary and we will have better 

and more accurate segmentation. It should be stated that in most of the cases when 

the user initialize the contour in the first slice, it is a little bit different from ground 

truth, in our test cases it also occurs. For example, when comparing with ground truth 

in the first slice, there is not 99% dice coefficient, in all cases, it is less than 99% and 

it continues like that until the last slice, and in most of the cases it decreases 

gradually; it should be considered that it starts from 98,97 (or in some cases even 

lower than that), and decreases gradually. In some cases, ground truth starts from 

some slices other than first slice to segment a mitochondrion, but in the slice that it 

starts segmentation the mitochondrion is not seen very well, in other words, it's edges 

are not very clear but after some slices, it can be more clear. If our algorithm starts 

from the slice which the ground truth have started segmentation, the result would not 

be good because the mitochondrion is not seen, but if we start segmentation after 

some slices when the mitochondrion is more clear, the result of segmentation will be 

better. But, because in the two metrics that we compare the results with ground truth 

we should consider all slices that contain the mitochondrion in the ground truth, then 

the result of comparison will not be good. This case can be seen in data set ' 

gap18_sub ' mitochondrion number 5, the slice that ground truth has started 

segmentation of this mitochondrion is presented in Figure 30(g). The mentioned 

mitochondrion is in the right upper corner of the image. This mitochondrion causes 

the data set to have lower dice coefficient. 
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                                           (a)                                                                       (b) 

(a)Data set 'bclpb-d' (data set number 3) where the edges are weak and image quality is low in 

comparison to other data sets  (b) Data set '6_22' where edges are strong and mitochondria in this data 

set change shape very slowly                                                                                   

 

       
(c)                                                                   (d) 

(c) Data set 'gap18_sub' with strong edges and slowly changing shape of mitochondria (d) Data set ' 

Pedicle ' with weak and unclear edges in some part of a mitochondrion which is specified with red 

ellipse 
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(e)                                                                      (f) 

(e) A mitochondrion in data set 'cone.sub' with weak and unclear edges in some slice in some part of it 

specified with red ellipse (f) Mitochondrion in data set  'cone.sub' with strong edges in the same part 

of mitochondrion as specified in (f) in proceeding slices.  

 

 
(g) 

(g)Starting slice of a mitochondrion in data set 'gap18_sub ' which is specified in red and starting slice 

is not the first slice of data set images. 

Figure 30 Some of data sets and their mitochondria  

As apparent from Table 4, the values of Dice coefficient and RMSSSD for all three 

methods are very similar to each other. To distinguish how statistically significant 

difference there is between the methods a TTest is done. It is comparing each two 

methods with each other. 
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Table 6 TTest 

 Method 1 & 2 Method 1 & 3 Method 2 & 3 

T value 0 0.017 0.016 

 

As apparent from Table 6 there is not statistically significant difference between 

three methods. Method 1 (active contour) is sufficiently good. The reasons might be 

a) By limiting iteration number (3 iterations), we limit the possible excursions (from 

one slice to next) that can occur in active contour. Hence, Kalamn filter function may 

not needed. b) Mitochondria in the data sets change shape (from one slice to the 

next) very minimally.  

 

3.2 Multiple initializations 

Table 7 Dice Coefficient for three methods with multiple initializations 

Data set name Mitochondrion number Initialization number Method 1 Method 2 Method 3 

cone.sub 

1 

1 0.97 0.97 0.95 

2 0.97 0.97 0.96 

3 0.95 0.95 0.94 

Mean 0.96 0.96 0.95 

Standard Deviation 0.0115 0.0115 0.01 

2 

1 0.86 0.87 0.88 

2 0.86 0.87 0.82 

3 0.90 0.90 0.86 

Mean 0.87 0.88 0.85 

Standard Deviation 0.023 0.017 0.03 

6_22.sub 1 

1 0.92 0.92 0.91 

2 0.94 0.94 0.94 

3 0.90 0.90 0.90 

Mean 0.92 0.92 0.91 

Standard Deviation 0.02 0.02 0.02 

bclpb-d.sub 1 

1 0.94 0.94 0.93 

2 0.94 0.94 0.93 

3 0.95 0.95 0.95 

Mean 0.94 0.94 0.94 

Standard Deviation 0.005 0.005 0.011 

gap18_sub 1 

1 0.91 0.91 0.90 

2 0.91 0.91 0.90 

3 0.91 0.91 0.92 

Mean 0.91 0.91 0.91 

Standard Deviation 0 0 0.011 

pedicle 1 

1 0.97 0.97 0.97 

2 0.98 0.98 0.98 

3 0.97 0.97 0.97 

Mean 0.97 0.97 0.97 

Standard Deviation 0.006 0.006 0.006 
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For some of data sets, the initialization step of the algorithm has been done for 

multiple times and the results are gathered in Table 7. As it is apparent from Table 7 

the results of different initializations are similar to each other but in some cases when 

the initial points are different it causes the results to change accordingly. It is 

important that in the first slice when the user initializes the contour, he/she selects 

proper points on the membrane to be the initial points. When the initial contour is 

more similar to the ground truth contour then in the proceeding slices the results will 

be expected to be better. For example in the second mitochondrion of the data set 

'6_22.sub ' the dice coefficient of the first slice is 0.96. But for the third 

mitochondrion of the same data set, Dice coefficient in the first slice is 0.94.  

Another option that can change the results with multiple initializations might be the 

number of points on the contour. For example the second mitochondrion in the data 

set '6_22.sub ' is initialized with 99 points and the third mitochondrion is initialized 

with 47 points on the contour. The results with larger number of points on the 

contour is in general better than the lower number of points on the contour. In the 

cases when the number of points are similar but the initialization points are not 

located similar to each other then, the volume segmentation results of different 

initializations can be different. The number of points on the contour is as important 

as selecting points at correct location on the membrane. In the case of data set 

'cone.sub', mitochondrion number 2 is initialized differently in this manner that the 

cut window of mitochondrion is different from other initialization numbers. In the 

other two cases of data set ' cone.sub ' the cut window is not properly selected by the 

user. The user should pay attention to the size of cut window because if window size 

is such that the mitochondria pass through this window in the proceeding slices the 

segmentation will go very wrong.  

 

3.3 Results Comparison 

Table 8 Results comparison, this thesis results and Tasel's work results 

Data Set Name and Number 

Tasel 's Dice 

coefficient 

(Original) 

Tasel 's Dice 

coefficient 

(Merged) 

Method1 

's Dice 

Method2 

's Dice 

Method3 

's Dice 

bclpb-d    (dataset #3) 0.91 0.89 0.88 0.88 0.88 

gap18_sub(dataset#4) 0.85 0.87 0.87 0.87 0.86 

Pedicle (dataset#7) 0.74 0.84 0.94 0.94 0.94 

spherule24mos1_(dataset#8) 0.98 0.97 0.96 0.96 0.96 

 

In the study of Tasel (14), he does detection and segmentation of mitochondria both. 

If after detection, the ratio of overlapping region to overall area is greater than 30% 

then the snakes are merged. In Table 8 we compare our three method results with 

Tasel's original and merged results both. As apparent from Table 8 the results of 

Tasel's method and ours are similar to each other but in the case of data set ' Pedicle ' 

the results gained in this thesis is much higher than the results of Tasel's work. In 

other data sets the results are very similar to each other, a small difference in the 

results might be because Tasel's method was based on 3D information. Instead, my 

methods are based on 2D information (slice by slice). In 3D method he also   

considers the gap between slices of images, so, that might be a reason   
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for his results to be higher and better than the results gained in   

this thesis 

3.4 Duration of use of methods 

The major part that user spends more time on, is the initialization section of the 

application in which the user specifies the contour points, the points on the 

membrane of mitochondrion, in the first slice of  each data set for any mitochondrion 

to get that mitochondrion segmented. This time is up to mitochondrion size, number 

of points that user wants to specify, the speed of user in initialization, and also the 

distance of points from each other which is varied depending on the user decision. If 

the user wants to have more accurate segmentation, he/she should specify more 

points with very little distance from others that will take more time to initialize, and 

also more execution time in comparison to less point on the contour. The more points 

on the contour match to mitochondrion membrane, the more accurate segmentation 

results we will have. So user must be careful with the initialization. 

In our tests, two users (both females, of ages 26 and 30) used the application, and 

their interaction time was measured. Both of the users were familiar with computer 

applications and university graduates. They tried to initialize snakes according to the 

ground truth provided by CCDB to decrease wrong segmentations. Each of data sets 

was evaluated at least once, because of time limitations. In some of the data sets 

users tested some of mitochondria, but in some others, all mitochondria were tested.  

The major execution time of the algorithm which is implemented in this thesis is 

related to three main steps used in this thesis. They are active contour, Kalman filter 

and optical flow. Table 9 presents average execution time of these steps. The 

execution time for each mitochondrion that is tested in this thesis is measured in 

every slice. Then the mean value of execution time in all slices for a mitochondrion 

is calculated and presented in Table 9. It shows that much time is spent on optical 

flow, because of calculating partial derivatives for the whole image. When the image 

size is greater, the execution time of optical flow is higher. The time recorded for 

execution of active contour is the time for five iterations. There is no other target 

value to compare ours with, but we can consider time as a valuable statistic to 

measure the quality of an application. The user interaction times as well as algorithm 

run times are tabulated in Table 9. As there are one case for each of 

merging/splitting/vanishing detection techniques, the time that user spends when 

specifying splitting points for splitting mitochondrion tested in the semi-automatic 

method is measured and is 12.06 seconds. The time that user1 spends for detecting 

the splitting and merging slice number is approximately 1 minute whereas user2 

spends about 2 minutes to find splitting slice number and about 1 minute to find 

merging slice number.  
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Table 9  Algorithm's duration time and user interaction time 

 

 

 

 

 

Data 

Set 

number   

Mitochondrion 

number 

Initialization 

time (user1) 

Initialization 

time (user2) 

Active 

contour run 

time in 

seconds-per 

slice 

Kalman 

filter run  

time in 

seconds-per 

slice 

Optical 

flow run  

time in 

seconds 

-per slice 

1 

1 92.2 111.4 5.7 0.07 14.8 

2 51.5 88.0 3.1 0.05 8.8 

3 76.3 72.3 5.2 0.08 14.9 

4 44.7 66.7 2.2 0.03 4.3 

2 

1 145.7 140.4 28.3 0.2 25.5 

2   63.2 73.2 3.3 0.03 12.9 

3  83.3 114.8 4.7 0.06 19.8 

3 

1   123.1 94.1 4.7 0.1 6.7 

2   134.4 82.4 3.2 0.05 8.1 

3  162.4 77.1 2.6 0.04 3.6 

4  94.2 84.9 2.3 0.04 2.0 

5  153.0 128.1 3.2 0.05 9.2 

6  61.6 82.4 5.2 0.10 7.4 

4 

1  96.2 119.7 4.3 0.07 5.3 

2  61.5 76.5 2.2 0.04 0.92 

3  82.9 100.6 3.6 0.06 3.2 

4  97.6 100.1 5.5 0.1 3.3 

5  38.7 51.8 1.2 0.01 1.8 

6  69.8 109.7 2.8 0.05 1.7 

5 

1  70.8 95.6 3.2 0.05 3.8 

2  41.0 62.2 2.0 0.03 1.7 

3  55.0 72.1 2.4 0.04 2.2 

6 

1  81.3 80.8 3.6 0.07 3.6 

2  74.4 78.9 3.2 0.06 4.3 

3  57.2 82.4 2.6 0.05 2.9 

7 

1  97.9 147.9 5.0 0.1 14.0 

2  137.7 135.3 7.1 0.1 14.1 

3  85.2 94.6 3.7 0.06 8.1 

4  112.4 135.9 6.6 0.07 17.3 

5  100.9 105.9 4.4 0.07 9.7 

6  87.1 86.4 3.3 0.06 2.7 

8 1  104.7 133.4 9.0 0.08 25.4 
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

The main purpose of this study was to segment mitochondria by using semi- 

automatic methods on transmission electron microscopy images. The methods 

implemented in this thesis were active contour, Kalman filter with the aid of active 

contour, and lastly, Kalman filter with active contour and optical flow. In each of 

these methods, the first slice of a mitochondrion was initialized by the user, (user 

specifies a few points on the membrane of mitochondria to form the contour of 

snake), and in the proceeding slices, these initial points are used to calculate the 

membrane of mitochondria using the automatic algorithms specified. Kalman filter 

helps the contour to estimate the point's location in the next slice by calculating it's 

velocity using point's position in the slice before and the current slice in the second 

method, but in the last method it gets velocity information from optical flow. The 

results from the three methods are very similar to each other. TTest is done and 

shows that there is no significant difference between three methods. The reason 

might be because by limiting iteration numbers in active contour, possible excursions 

are limited, so, Kalman filter may not be needed. The second reason might be 

because of very minimal changes in the shape of mitochondria in data sets.   

 

In some of data sets, there are some mitochondria which after some slices split and 

become two mitochondria instead of one and, in some cases, two mitochondria 

become one mitochondrion after some slices. The three methods in this thesis cannot 

determine these exceptions, so there should be some techniques that determine these 

exceptions. For this purpose, we proposed splitting and merging techniques. Using 

these techniques, the results improved significantly. These techniques give an 

opportunity to the user to correct segmentation by specifying the splitting points of 

mitochondria. In other words the user can determine the splitting slice before 

program starts execution, when the splitting slice number reaches, the program waits 

for the user to specify the splitting points. There is also an option for the user to 

determine in which slice the mitochondrion is going to disappear when there is 

vanishing mitochondrion in the data set. 

The time spent in the algorithm, used in this thesis, for each of active contour, 

Kalman filter and optical flow, are measured and is dependent on data sets 

complexity (image size and number of slices) and size of mitochondrion to be tested. 

Also the initialization of mitochondria tested in this thesis is done by two users and 

the time needed for the users to initialize the mitochondria is measured. 

The results obtained from the algorithm implemented in this thesis were compared 

with the results from the work done by Tasel (14). In most of data sets the results are 

very similar to each other but, in the cases where result is different, the difference is 

because of differences in methods. Tasel 's algorithm is based on 3D information but 

in this thesis the algorithms are 2D based.  
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Some of mitochondria were initialized multiple times and the segmentation results 

were obtained.  Multiple initialization was done with various number of points and 

different point distances and different point locations for some mitochondria to test 

these influence the results much or not. The results show that with larger number of 

points on the contour, better (higher) Dice coefficient and (smaller) RMSSSD values 

are obtained. In the cases where the initial contour is more similar to ground truth, 

the segmentation results will be better. 

There were some mitochondria in some data sets which start to exist after some 

slices. In one case we test this kind of mitochondria in the exact slice number, which 

in the CCDB ground truth have started to segment, and in another case, we start 

segmentation after some slices of CCDB starting slice number and the segmentation 

results are better because in that slice the mitochondrion is clearer and the edges are 

stronger. 

In most of the cases the dice results show a segmentation accuracy of 90 % and more 

which means the segmentation results of the algorithms used in the thesis are very 

close to the segmentation result of ground truth provided by CCDB. The results also 

in most of the cases show RMSSSD value of about one pixel which is quite 

satisfactory. If we compare the results without applying splitting/merging /vanishing 

detecting techniques then we can see a considerable improvement in segmentation 

results in the case these techniques were applied. However, such types of 

mitochondria that require splitting/merging/vanishing detection are very rare among 

our data sets. 

Future work 

The segmentation algorithm proposed in this thesis may also be applied on cristae 

structures. Mitochondrial cristae are structures which increase surface area to provide 

greater space for processes that occur across this membrane, so their shape is also 

important and worth studying. There are studies which analyse and segment cellular 

components such as cistae and study how their shape change through time (45) , (46) 

and (47). It should be investigated if the segmentation algorithm proposed in this 

thesis could be adapted for cristae structures in the mitochondria.  

In the first step of the algorithm, proposed in this thesis, the user has to initialize the 

contour points on the mitochondrion membrane. There is no chance for the user to 

correct wrongly specified points, and existence of such an option could help for a 

more user friendly application. 

In some cases the snake goes far from the mitochondrion membrane, if there was an 

option in the application by which the user could correct the snake points, this could 

help, because if the snake continue with wrong points in the proceeding slices, it will 

go farther than mitochondria membrane.  

In the cases where snake points pass through membrane or stay inside the 

mitochondria there could be an option or tool in the application which allows the 

user to drag boundary to the mitochondria membrane. 
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As data sets are large with many slices, parallel processing could speed up the 

segmentation process and increase user satisfaction. 
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