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Computer Engineering Department, Hacettepe University

Assoc. Prof. Dr. Alptekin Temizel
Modeling and Simulation, METU

Date: 26 January 2016





I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: TARIK KAYA

Signature :

iii



ABSTRACT

A NOVEL BROAD-PHASE CONTINUOUS-TIME COLLISION
DETECTION ALGORITHM

Kaya, Tarık

M.S., Department of Game Technologies

Supervisor : Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

January 2016, 49 pages

Today’s game development tools rely on realistic physics simulation more
than ever. Physics simulation is a highly sophisticated subject, which can be
approached from various angles, because of the impossibility of exact simula-
tion. The impossibility of exact simulation for real world physics comes from
the requirements of infinite precision, resolution and therefore infinite com-
putational power. Hence the main aim of game physics simulations is making
the game-world seem as physically realistic as feasible within the computa-
tional power limitations. One can always increment the physical precision
and the number of active physical objects at the cost of performance and vice
versa. This makes performance a critical issue. In our work we optimize the
continuous-time collision detection algorithm by adding a novel broad-phase
step to improve performance without any loss of realism, i.e., the output of
our optimized method is exactly the same as the old method.

Keywords: Physics Simulation, Collision Detection, Continuous-time, Broad-
phase, Optimization
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ÖZ

YENİ BİR GENİŞ-AŞAMA SÜREKLİ-ZAMANLI ÇARPIŞMA TESPİT
ALGORİTMASI

Kaya, Tarık

Yüksek Lisans, Oyun Teknolojileri Bölümü

Tez Yöneticisi : Doç. Dr. Hüseyin Hacıhabiboğlu

Ocak 2016 , 49 sayfa

Geçmişe kıyasla günümüzde oyun geliştirme araçları gerçekçi fizik simülas-
yonuna çok daha fazla önem vermektedir. Fizik simülasyonu, kavraması zor
ve çok farklı açılardan yaklaşılabilen bir konudur, çünkü mükemmel fizik si-
mülasyonu imkansızdır. Mükemmel fizik simülasyonun imkansızlığının ne-
deni, sonsuz çözünürlük, kesinlik ve dolayısıyla sonsuz bilgisayar gücü ge-
reksinimidir. Bu yüzden oyun fiziği simülasyonunun amacı, bilgisayar gü-
cünün mümkün kıldığı kadarıyla oyun dünyasını gerçekçi göstermeye çalış-
maktır. Fizik simülasyonunun kesinliğini ve doğruluk oranını azaltarak daha
hızlı bir simülasyon elde etmek ve tersi her zaman mümkündür. Bu yüz-
den simülasyon verimliliği büyük önem taşır. Biz işbu çalışmamızda sürekli-
zaman çarpışma tespiti algoritmasına kendi geniş-aşama algoritmamızı ekle-
yerek fizik simülasyonunun verimliliğini arttırdık. Bunu algoritma çıktısını
hiç değiştirmeden, yani gerçekçilikten ödün vermeden başardık.

Anahtar Kelimeler: Fizik Simülasyonu, Çarpışma Tespiti, Sürekli-zaman, Geniş-
aşama, Optimizasyon
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CHAPTER 1

INTRODUCTION

Almost all digital games use some form of physical simulation to offer its
players a more relatable virtual world. The game of "Lunar Lander" (See Fig-
ure: 1.2) is an example for realistic and continuous physical simulation. How-
ever, the physical simulation does not have to be realistic. It can even be ab-
stract and discrete such as in the game of "Tetris" (See Figure: 1.1). Although
the complexities and the requirements of these different physics simulations
can vary significantly, they share a common feature: they are one of the most
computationally expensive parts of a game engine. Hence the optimization
of the physical simulation becomes essential.

One of the most time consuming parts of a physical simulation is the collision
detection step, where we detect all of the colliding pairs of objects. In this
work, collision detection optimization is the main focus.

Our optimization is based on a certain approach to physics simulation, namely;
continuous-time collision detection, where the simulator works with events,
not time steps, as opposed to discrete-time collision detection. For discrete-
time collision detection there are many known and practically applied opti-
mization techniques, known as broad-phase algorithms. However, little re-
search has been done for the broad-phase of continuous-time collision detec-
tion. This work aims to fill this gap.

To summarize; we add a broad-phase optimization step to continuous-time
collision detection in order to achieve sub-quadratic time complexity, which
has been O(n2) before.

1.1 Motivation

Graphics rendering and physics simulation technologies have a lot in com-
mon. In graphics rendering, we would like to be able to render as many tri-
angles as possible to improve the smoothness and the overall visual quality of
graphics. Although we have known how to render triangles for a long time,
we are still in the progress of optimizing the rendering pipeline. That is why
a tremendous amount of work has been dedicated to graphics research, such
as the invention of special hardware called GPU’s. The situation in physics
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Figure 1.1: Tetris uses a discrete space simulation

simulation is very similar, in the sense that we are very much interested in
increasing the amount and the level of detail of our simulated physical ob-
jects in our games. One example would be: the number of particle effects in a
game is rarely bounded by the game design, but instead it is bounded by the
underlying hardware and software capabilities.

In game physics simulations there is always a trade-off between accuracy and
performance. In order to improve the performance of a physical simulation,
one can always decrease the amount of detail in physical objects, increase the
length of the time step used, or use numerical systems with less precision.
But all of these methods have their disadvantages. The effects of these meth-
ods range from less immersive virtual environments to game crashing bugs,
making the whole system unplayable.

On the other hand, some optimization techniques do not depend on trade-
offs. Some optimization techniques give us exactly the same output as the
non-optimized techniques with significantly reduced performance require-
ments. In this work, we will present such an algorithm.

Although the discrete-time collision detection methods are more widely used
and investigated, this work explains why continuous-time collision detection
is an important subject, that is strictly needed in some situations such as the
billiard games.

It is our sincere hope that through the presented optimization process, the
continuous-time collision detection will be a more feasible option for game
physics simulations.

2



Figure 1.2: Lunar Lander uses a continuous space simulation

1.2 Contributions

The main contribution of this work is the optimization of the continuous-time
collision detection algorithm by the addition of our novel broad-phase step to
eliminate most of the potential collision checks, which leads to a significant
performance increase.

We have explained the significance of continuous-time collision detection along
with its disadvantages. (See section: 3.3)

To demonstrate the work that has been done, not only the collision detection
algorithm has been implemented, but the whole physical simulation pipeline
(See section: 2.4) has been, namely:

1. Spatial integration: We implemented the simplest method of spatial
integration, which is Explicit Euler Integration. (See section: 2.4.1.1)

2. Collision detection: We implemented our own novel collision detection
method, which will be explained in detail. (See section: 4)

3. Collision resolution: We implemented the simple impulse based elastic
collision resolution for this step. (See section: 2.4.3.2)

For visualization purposes a simple software-renderer has also been imple-
mented. It utilizes the SDL2.0 (Simple DirectMedia Layer) with C++. [1] The
visualization software has the capabilities to render all physical objects, to
change speed of time and to draw AABB’s of our novel broad-phase algo-
rithm.

The physical simulation software and the visualization software are kept in
separate projects. They communicate via files. The physical simulation soft-
ware simulates the given physical environment and then writes the results to
a file. The visualization software reads that file and renders the results. This

3



separation is a desired property in order to keep the running time measure-
ments accurate.

A complexity analysis of the proposed simulation is also given. Although the
worst case time complexity of our method is still quadratic, the average time
complexity is sub-quadratic. This is illustrated by the practical time measure-
ments of simple quadratic method and our novel method.

1.3 Structure

In this chapter the motivation and the contribution of our work are presented.

In chapter 2 background for physics simulation is given. Starting with general
physics simulation and its applications, the chapter focuses on game physics
simulation. Game physics simulations are categorized according to the rep-
resentations of time and space. Two out of the three phases of physics sim-
ulation are explained in detail, leaving out collision detection, which has its
dedicated chapter 3. Previous work on the topic of continuous-time collision
detection is also given.

Chapter 3 is dedicated to the second phase of the physical simulation, which
is collision detection, because collision detection is the major topic of this
work. The collision detection algorithms are divided into two categories:

1. Narrow Phase algorithms detect collisions between pairs of physical
objects.

2. Broad Phase algorithms optimize the collision detection between more
than two physical objects. This is the topic of our contribution with this
work.

Chapter 3 also includes a comparison between discrete-time and continuous-
time collision detection methods.

Chapter 4 explains the details of our novel method, which is a broad-phase
algorithm for continuous-time collision detection. This chapter also includes
the entire pseudocode of our novel method.

Chapter 5 gives a complexity analysis of the proposed method along with
practical running time measurements.

The conclusion and possible future work can be found at chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, background for physics simulation is given. The topic of col-
lision detection is left for the next chapter.

2.1 General Physics Simulation

Although the focus of this work is on game physics, the world of physics
simulation is vastly broader than digital games. Physics simulation has found
uses in a diverse set of areas from robotics to cosmology. Here are a few
examples:

• Robotics: Lin describes a novel collision detection algorithm which is
useful for robotics. The narrow-phase collision detection between con-
vex polyhedra is optimized via their novel incremental method, thus
allowing robots to plan their navigation at real time. [2]

• Flow simulation: Physics simulation can be used to predict incompress-
ible fluid flows, for example by using vortex methods. Ploumhans et al.
use the vortex sheet algorithm to achieve no-slip boundary condition in
order to simulate accurate redistribution of flow particles. [3]

• Cosmological simulation: Some researchers try to explain the universe
through physical simulation. Viel and Haehnelt present the results of a
highly sophisticated cosmological simulation. [4]

• Civil engineering: Especially the finite element method proves to be
very useful for civil engineering. Finite element method is the state of
art method for simulating multidimensional physical setups. It is a re-
sult of advanced linear algebra and differential calculus combined. It
can also be thought of as a generalization of the simple finite difference
methods. [5]

• There are many more examples for the usage of physical simulation. [6]
[7] [8]

• Game physics is the main focus of this work, which is just a subsection
of general physics simulation topic.

5



2.2 Game Physics

Different areas of physics simulation have different requirements. In civil en-
gineering, simulating a bridge construction requires extremely high numeri-
cal accuracy and precision to be considered useful. In flow simulation, higher
accuracy can be achieved by increasing the amount of graph vertices or num-
ber of particles based on the chosen method. Hence they need to be as efficient
as possible to overcome this computational burden.

When it comes to game physics, the main goal is to make virtual worlds look
realistic or at least coherent in its own rules. Even when the aim is to achieve a
certain level of realism, the simulation itself does not need to be actually real-
istic at all, as long as it is successful at making the players think that it is. This
is another property that physics simulations share with graphics rendering,
as well as the need for optimization.

For example, in the early Tomb Raider games, the main character was phys-
ically simulated as a simple capsule, which was common at early 3D games,
because of hardware and software performance limitations. This method has
been successful at making players perceive realism, even though it was only
a rough approximation.[9]

Another example is LoD (Level of Detail) technique used in NVidia Apex [10].
If a cloth mesh is far away from the players’ perspective, it is simulated less
accurately, because it does not substantially contribute to the perception of
realism.

2.3 Categorization of Game Physics

As explained earlier, the aims of general physics simulation and game physics
simulation are different. General physics simulation aims for the realism,
whereas game physics simulation merely needs to be consistent and coherent.
This leads to freedom in the types of physical simulations one can perform on
game engines.

We can categorize game physics in different ways. Some of the important
aspects for our work are presented here:

1. Spatial; refers to how the space of physics simulation is represented.

2. Temporal; refers to how the time of physics simulation is represented.

2.3.1 Spatial Categories

Different game mechanics simulate space in different ways. We will catego-
rize space in games into two:

6



1. Discrete space means that there are fixed possible positions and objects
can not be in-between them.

2. Continuous space means the absence of fixed possible positions and
objects can be at any position.

2.3.1.1 Discrete Space

Some games simulate space discretely. The best known example for this is
the game of Tetris, where players try to place blocks in such a way that they
form full rows. The blocks move in a grid discretely. They are never half way
between grid cells. Instead they appear on their next position instantaneously.

There are many different games that share this property. The common point
of these games is that they utilize a grid of cells. It can be a rectangular grid
such as in the case of Tetris, or it can be a hexagonal grid such as in the case of
many strategic games like Civilization. There can even be three dimensional
grids.

These types of games generally discretize the orientation (rotation) of objects
as well as their positions.

Since discrete space in games presents problems with trivial solutions in gen-
eral, our focus will not be on this type of physics.

2.3.1.2 Continuous Space

Compared to discrete space, continuous space simulation in games are more
realistic, because real life physics work continuously. In these kinds of simula-
tions, objects do not disappear and then reappear at their next location. Even
if this is the case, objects do these jumps in such small time-steps and rela-
tively small space-steps, that they seem to be moving continuously to players.

Although it is a theoretical discussion whether the real life physics work in
an extremely small partitioned discrete way or in an absolute continuous
way[11], for the context of game physics we will consider seemingly very
small spatial steps to be continuous, because the way how current computers
work limits us to do so.

There is an increasing trend towards continuous physics, partly due to their
recent availability. Typically they require floating point arithmetic and more
computational capabilities. It was nearly impossible to simulate continuous
space in games in 1970. Nowadays it is very common, even for simple games
with low budget.

An example for this type of physical simulation is classical platformer games,
such as Super Mario Brothers.

Our work focuses on continuous space simulation.

7



2.3.2 Temporal Categories

Game physics simulations also differ on the basis of how they handle time.
There are similarly two main categories here:

1. Discrete time refers to fixed increments in time, regardless of how many
events the time increment contains.

2. Continuous time refers to adjusting increments in time, which change
according to the physical events in simulation.

A simple approach is discrete time steps, where we integrate object velocities
altogether and then check for pairwise collisions. This means that there will
be overlapping (not only touching) objects, which require special care. When
applicable, this approach is more common due to its simplicity and low per-
formance requirement.

A different approach would be to simulate time continuously. Although we
know from computation theory[12] that our current computers work exclu-
sively discretely, it is possible to simulate continuous time if the "events" of
our simulation occur finitely and discretely. Theoretically this approach is
much more realistic and exact compared to discrete time solutions. However
one should note that this method may not be applicable under all circum-
stances.

Our work is focused on continuous-time simulation.

2.3.2.1 Discrete Time

Discrete time simulation means that we simulate certain time lengths as steps,
one after another. In each step, we first move our objects regardless of any
collisions. Then the collision checking and resolution are performed.

This implies that we simulate the physics in time steps, regardless of how
many events occur inside a time step. These events may be collisions, force
changes, impulses and many others. Even if these events that occur in a single
time step are inter-dependent or overlapping we treat them as independent
in these kinds of simulations. Note that it is also possible to miss some events
in this scheme.

Another important problem with the discrete time simulation is that objects
do not actually come into touching positions, but instead they overlap. In
order to look realistic, we need to prevent objects from overlapping. To han-
dle this we apply artificial separating procedures. These procedures vary in
complexity. The simplest and widely used approach would be to move them
away from each other in the axis that contains the centers of colliding pair of
objects. This would be a rough approximation. On the complex and compu-
tationally expensive side, we can try to approximate the time of collision and

8



rewind the simulation back to the colliding time, so that we can achieve more
exact positions and velocities during the collision.

After this separation step, we can resolve collisions by setting new velocities
to the pairs of colliding objects, by applying either impulses or forces.

One way to overcome these possible short-comings in physics simulation is
to use as small time-steps as computationally feasible. Halving the time step
means we need to execute twice as many simulations than a full time step.
This leads to a trade off between accuracy and performance.

One argument for the discrete time simulation for games is that the human
eye is not very good at spotting the physical artifacts in crowded scenes. As
long as objects do not overlap and do bounce off each other, the precision of
these events generally do not play a huge factor in perception of realism.

The main reasons for the usage of discrete time simulation is ease of imple-
mentation and performance.

2.3.2.2 Continuous Time

If real world physics work in discrete time steps, it seems to work with in-
finitely small time steps, which is not computationally possible with our cur-
rent hardware. Despite this fact; if we need more accurate physics simulation
than discrete time simulation, we have another choice, which is continuous
time physics simulation.

If we try to make discrete time simulation more accurate, we will need to
make the time step shorter and shorter. This operation will result in many
time steps, in which we do not compute any useful information, because there
will not be many events in each time step. This means that if we had kept the
time step long, we would get the same output, because of the lack of events
in the small time steps. How can we differentiate between useful and useless
time steps? We can achieve this by using continuous time simulation.

The main idea of this concept is; instead of simulating in discrete time steps,
we can work in discrete events. We can always keep track of the next event
that will occur and set the time step to simulate up to the time of the next
event. After we simulate the next event, we can calculate the next nearest
event.

As promising as this method may sound, there are some issues to take into
consideration. The most notable one is that the computation of the next event
can be computationally very expensive or even impossible. Special care must
be given to resting contacts, such as a book resting on a table, under gravita-
tional forces. Another one is that simulating discrete time steps means that we
move objects as if none of them collide while moving and then calculating the
overlapping pairs can be achieved by algorithms of sub-quadratic complex-
ity. But calculating the next event is in its nature a quadratic problem, because

9



we need to take each pair of objects into consideration. Our contribution with
this work is exactly about this issue. We have decreased the computational
complexity of the calculation of the next event.

One should note that in circumstances where missing some collisions can not
be tolerated, continuous-time physics simulation is a necessity.

2.4 Simulation Phases

Regardless of the different categories of physics simulations, they share some
common characteristics. One of them is that they work in phases. common
phases of physics simulations can be enumerated as follows:

1. Integration

2. Collision Detection

3. Collision Resolution

Each of them in detail shall be examined.

2.4.1 Integration

Establishing some terminology is necessary for explaining the integration
step.

We define the position of an object as the coordinates of the center of mass of
an object. We regard the position as a vector. We will denote position with ~p.

We define the velocity of an object as the change of position with respect to
time. Therefore the velocity is also a vector. We shall use linear velocity and
velocity interchangeably. We shall make clear when the subject is angular
velocity instead of linear velocity. We will denote velocity with ~v.

We define the acceleration of an object as the change of velocity with respect to
time. Therefore acceleration is also a vector. We shall treat the angular accel-
eration separately just as in the case of velocity. We will denote acceleration
with ~a.

One should note that the velocity is the first order derivative of position and
the acceleration is the second order derivative of position with respect to time.

As in most studies on physics simulation we will not be focusing on the third
order derivative of position, which is called jerk.
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To summarize:

~a =
d~v

dt
=
d2~p

dt2
(2.1)

2.4.1.1 Explicit Euler

By Newton’s laws of motion we can calculate the position of an object at any
time, assuming it has constant acceleration: [9]

~p(t+ dt) = ~p(t) + ~v(t)dt+
1

2
~a(t)dt2 (2.2)

Assuming constant acceleration means that the objects are under only con-
stant forces such as gravity, do not collide and are not effected by certain
models of friction and drag.

These assumptions are true only for trivial physical simulations. Therefore
we need to use small time steps in order to reduce error of this false assump-
tion.

Using a small time step means that the term dt2 becomes negligible. So in-
stead we can use this heuristic in practice:

~p(t+ dt) = ~p(t) + ~v(t)dt (2.3)

Similarly, we can calculate the new velocity according to:

~v(t+ dt) = ~v(t) + ~a(t)dt (2.4)

For simulation, this means updating positions and velocities of objects ac-
cording to velocities and accelerations they had in a previous time. This is the
simplest and computationally least expensive method for integration and it
is used very widely for game physics.

Our work uses this approach for integration.

2.4.1.2 Implicit Euler

The assumption of constant acceleration made by explicit Euler method does
not hold in some cases, such as in spring systems. Although one can always
increase accuracy by shortening the time step, there is an alternative method
called implicit Euler method [13]

Explicit Euler uses the current velocity and acceleration to predict the next po-
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sition and velocity, whereas implicit Euler uses the next velocity to predict the
next position and the next acceleration to predict the next velocity. Namely:

~p(t+ dt) = ~p(t) + ~v(t+ dt)dt (2.5)

~v(t+ dt) = ~v(t) + ~a(t+ dt)dt (2.6)

One shall notice that the unknowns in these equations are dependent on the
other unknowns, since acceleration may be dependent on position, such as
in spring systems. This makes the solution of this set of equations a lot more
complex than explicit Euler. Implicit Euler system is non-linear, which re-
quires computationally expensive methods such as "Newton-Raphson Solver"
which are out of scope for our work. [14]

2.4.1.3 Runge Kutta

Another approach of integration is dividing the integration into sub-steps
without completely decreasing the time step altogether. Runge Kutta is an
integration method where we can adjust the accuracy according to our pre-
cision requirements and performance limits. The number of sub-steps deter-
mine the order of accuracy. [14]

2.4.1.4 Verlet

Another approach for integration is keeping track of previous positions in-
stead of velocities. This leads to verlet integration: [15]

~p(t+ dt) = ~p(t) + (~p(t)− ~p(t− dt)) (2.7)

Which can be simplified as:

~p(t+ dt) = 2~p(t)− ~p(t− dt) (2.8)

Verlet integration can be proven to be of fourth order accuracy. [14]

2.4.2 Collision Detection

In physics simulation, we need to find all pairs of colliding objects in order
to resolve the collisions. This phase is called collision detection. Collision
detection is computationally the most expensive phase in most cases. That is
why our work is built upon optimizing this phase.
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Since our work is concentrated in this subject, the next chapter will go into
details of this phase.

Right now it is worth mentioning that the collision detection is performed
after integration phase and before collision resolution phase.

2.4.3 Collision Resolution

The final step of physics simulation is the resolution of collisions. The simu-
lation detects the collisions in the previous step, in order to resolve them in
this step.

In real life a collision is not an instantaneous event. Real physical objects
are not rigid, despite the general assumption of physical simulations. Even
the most rigid objects in real life have some elasticity. Hence their behavior
are spring-like near the surface. So a collision in real life takes some time to
resolve, with opposite forces applied on pairs of colliding objects. [9]

On the other hand this time of collision resolution is so short most of the time,
that we can simulate it as instantaneous impulses.

This topic leads to the major categorization of collision resolution. Some
physics simulations try to simulate real life more realistically, using only forces
to resolve collisions instead of impulses. They are called "Force Based Simu-
lations". This is a complicated topic and unrelated to our work on collision
detection. Therefore we will not go into details.

Another simplified approach is to treat collisions as instantaneous impulses,
that separate colliding objects. This is the approach we will follow mainly
due to its simplicity.

It is worth noting that different elasticity values are easy to simulate in both
approaches.

2.4.3.1 Force Based

Although more complicated and computationally more costly, these types of
simulations can achieve the realism that impulse based approaches are not
able to, due to their fundamental assumptions.

Perhaps the best known example for this approach is the "Open Dynamics
Engine", which is mainly used for realistic engineering simulations, but also
in some games. [16]

13



2.4.3.2 Impulse Based

Due to its simplicity and computational performance, this is the preferred
model of collision resolution in many game physics simulations. Examples
include Box2D [17] which is the most widely used two dimensional game
physics engine by far.

Since our work is not about collision resolution but about collision detection,
the details of this topic will be left out. It suffices to say that we use this
approach for our physics simulation at this work, due to its simplicity.

2.5 Previous Work

It is our observation that most of the work on game physics simulation comes
from the game industry, not from the academia. It is also a known fact that
the majority of the industry uses discrete time collision detection instead of
continuous time collision detection. This makes the research on continuous
time collision detection very sparse. However, most popular game physics
engines are open source. [17] [18] [16] This enables us to explore the com-
monly used techniques, such as discrete time collision detection and methods
for overcoming tunneling.

Although there has not been much research on our specific subject, which
is continuous time broad phase collision detection, there has been much re-
search on discrete time broad phase collision detection, which is explained in
detail. (See section: 3.2) Our aim is to bridge the gap with this work.

2.5.1 Priority Queue Based Event Simulation

Sedgewick [19] uses a physics simulation similar to our simulation in order
to demonstrate the priority queues. In Sedgewick’s work all of the upcom-
ing collisions are calculated and put into a priority queue. Their priority is
inversely proportional to their collision time. These events are processed one
by one. It is important to note that a collision may result in other collisions
and may invalidate some others. Therefore we need to validate the collisions
before processing them.

This is a valid approach for continuous time physics simulation. However
the complexity analysis of this approach shows a O(n2) memory complexity,
which is what we have been trying to avoid in our work.

A simple observation is enough to prove that this algorithm has quadratic
memory complexity. At any point of time in the simulation the objects may be
moving towards a common point. This leads to O(n2) number of upcoming
events, since every pair of objects will collide.

Sedgewick’s approach is also not numerically stable. Every event time is cal-
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culated much before occurring, compared to our work. This leads to numer-
ical instabilities in floating point arithmetic because the magnitudes of repre-
sented numbers are much bigger.

The sole purpose of our work is to avoid quadratic complexity. Therefore we
see our approach as an improvement over this method.
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CHAPTER 3

COLLISION DETECTION

The contribution of this work is about collision detection. As previously de-
scribed, collision detection is one of the three phases of physical simulation. It
is worth noting that collision detection is almost always the most performance
critical phase of the three phases, because naive approaches to integration and
collision resolution lead to linear time algorithms, whereas a naive collision
detection implementation has quadratic time complexity. This makes the op-
timization of collision detection essential. Hence a huge body of work has
been done to achieve this goal. [20]

Because of the popularity of discrete time collision detection in practice, all of
the methods described below have been aimed towards discrete time collision
detection. The aim of this work is to make a working set of these collision
detection methods available for continuous time collision detection.

The task of collision detection is categorized into two phases:

1. Narrow Phase algorithms detect collisions between two physical ob-
jects.

2. Broad Phase optimize the collision detection between more than two
bodies.

3.1 Narrow Phase

Narrow phase of collision detection refers to the detection of collision be-
tween a pair of objects. The objects in hand can be arbitrarily complex.

All of the methods described below work for convex objects in any dimen-
sions. The reason for that is collision detection for convex objects leads to
much more optimized approaches than general objects which can also be con-
cave. Also, any concave object can be divided into convex objects and then
tested against each other separately. In order to avoid quadratic complexity
in this case, broad-phase collision detection methods are used, which will be
explained later. There are also some special methods aimed towards non-
convex bodies. [21]
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Since the methods that will be described below have been aimed towards dis-
crete time collision detection, they work only for static objects, in the meaning
that they do not take velocities into account. They take objects as snapshots
in time, with their corresponding positions and rotations.

3.1.1 Separating Axis Theorem

The main idea of separating axis theorem is simple: If the one dimensional
projections of two bodies do not overlap, they cannot possibly overlap in their
native dimensions. The objects are usually two or three dimensional. Sepa-
rating Axis Theorem is a popular method in practice, because it is relatively
easy to make intuitive sense. However, the theoretical exposition which leads
to SAT is not further discussed. The interested reader is referred to [20] for
theoretical details.

In two dimensions, this method has linear time complexity with respect to
total vertex count of possibly colliding objects. This comes from the proven
fact, that we only need to check for edge normals as separating axes.[20]

For three dimensional objects, one needs to check for both surface normals
and cross products of edge directions as separating axes. By taking Euler’s
formula into account, it can be shown that this leads to a quadratic time com-
plexity with respect to number of vertices of both objects. [22]

Euler’s formula(3.1) states that number of edges is linearly correlated to the
total number of vertices and faces.

#edge = #face+#vertex− 2 (3.1)

Despite its quadratic time complexity SAT is a useful method for three di-
mensional objects with low number of vertices, such as rectangular prisms,
which are commonly used [23]

This work does not make use of SAT.

3.1.2 Gilbert–Johnson–Keerthi

In order to bring down the time complexity of SAT, one can utilize the idea of
Minkovski Sums.[24]

The main idea is: Two convex objects collide if and only if the Minkowski
sum of the origin-reflected object with the possibly colliding object contains
the origin. This can also be named as a Minkowski difference.

The naive implementation of this idea leads to a yet another algorithm with
quadratic time complexity, which runs slower than SAT in practice. But with
some clever optimization, GJK is brought down to sub-quadratic complexity.

18



[25]

This work does not make use of GJK.

3.1.3 Voronoi Clipping

In almost every physical simulation, one can notice temporal coherence. Tem-
poral coherence refers to objects not changing their positions instantaneously
and arbitrarily, similar to a teleportation. Instead they change their positions
smoothly, given realistic velocities.

One can utilize this fact for optimizing collision detection. A simple applica-
tion of this relates to SAT method. One can store the separating axis for a pair
of objects from previous calculations. There is a high probability that it is still
a separating axis. Storing those axes at each calculation can lead to great gain
in efficiency, with increased need of memory.

This idea can be further developed into incremental approaches for collision
detection, which rely highly on temporal coherence. One of the most devel-
oped algorithms in this fashion utilizes the Voronoi division of space and is
called V-Clipping [26]

Although this method has theoretically high complexity, it runs fast in prac-
tice due to the temporal coherence.

This work does not make use of V-Clip.

3.1.4 Static Circle Pair Collision

Compared to general convex body collision detection algorithms described
thus far, we now describe a simpler specific algorithm for detecting collisions
between static circles, meaning we treat them as stationary objects, with no
velocity.

Two static circles collide if the distance between them are less than or equal
to the total of their radii.

Circles i and j collide if and only if

||~pi − ~pj|| <= (ri + rj) (3.2)

where ~pi stands for the position of the center of circle i and ri stands for the
radius of circle i. The same notation applies to circle j. The notation ||~v|| stands
for the scalar length of a vector. Throughout this work, multiplication of two
vectors refer to the inner product of vectors.

Since calculating the length of a vector involves a square root and square roots
are costly to compute, this method can be optimized by squaring both sides
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of the inequality. One should note that this is possible because both sides are
always non-negative. The resulting equation is more performant in todays
hardware:

(~pi − ~pj)
2 <= (ri + rj)

2 (3.3)

where squaring a vector means calculating the dot product with itself.

In summary, this equation leads to a simple and efficient method for testing
whether two static circles collide.

3.1.5 Dynamic Circle Pair Collision

Since the focus of this work is on continuous time collision detection, the
bodies used in collision detection are not static but dynamic. It means that
velocities must be taken into consideration for collision detection algorithms.

We need a collision detection algorithm which determines the time of colli-
sion, instead of whether the circles are currently colliding.

We know that the position of dynamic circle is a function of time. Here we will
assume that the linear velocity is constant, not a function of time. Therefore
we can safely use Explicit Euler Method(2.2). Constant velocity leads to this
simplified formula:

~p(t+ dt) = ~p(t) + ~vdt (3.4)

Assuming we know the value ~p(0) we get the formula:

~p(t) = ~p(0) + ~vt (3.5)

This is a first order equation with time variable.

We want to know the exact time of collision, which is the time where the
distance between the circles is equal to the total of their radii. Replacing the
position values of static circle collision formula(3.3) with these new position
functions we get:

(~pi(t)− ~pj(t))
2 = (ri + rj)

2 (3.6)

Note that squaring a vector means taking the inner product with itself.

We need to solve this equation for time:

((~pi(0) + ~vit)− (~pj(0) + ~vjt))
2 = (ri + rj)

2 (3.7)
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((~vi − ~vj)t+ ~pi(0)− ~pj(0))
2 = (ri + rj)

2 (3.8)

(~vi− ~vj)2t2+2((~vi− ~vj) · (~pi(0)− ~pj(0)))t+(~pi(0)− ~pj(0))2− (ri+rj)
2 = 0 (3.9)

This formula may seem complicated but it is actually a simple quadratic for-
mula, that can be solved efficiently, using only a square root function call and
basic arithmetic.

at2 + bt+ c = 0 (3.10)

t =
−b±

√
b2 − 4ac

2a
(3.11)

This is the end result:

t =
− ~vij · ~pij0 ±

√
( ~vij · ~pij0)2 − ~vij

2( ~pij0
2 − (ri + rj)2)

~vij
2 (3.12)

Where:

~vij = ~vi − ~vj (3.13)

~pij0 = ~pi(0)− ~pj(0) (3.14)

As can be understood from ± sign, this formula gives two possible solutions.
As it is common in algebraic solutions, this formula also accepts possible neg-
ative or even complex values of time. In this case we regard complex results
as nonexistent and negative values as past times. We can safely disregard
both cases, as we are only interested in future collisions. In the case of two
positive solutions, we take the minimum one, since that event will take place
first, and we are interested in the resolution of the first upcoming collision
event.

This work uses this approach.

3.2 Broad Phase

Narrow phase detects only the possible collision between a pair of objects.
Physical simulations are rarely required to deal with only two objects. In-
stead some algorithms are needed for handling arbitrary amount of objects,
of which any pair can collide.
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A simple but nonetheless valid idea is to do an all-pairs check. This is im-
plemented by checking the possible collision of every object with all other
objects. This obviously leads to an O(n2) algorithm where n stands for the
number of objects.

Although for small numbers of n this all-pairs-check method can be a valid
candidate, it becomes quickly impractical as we increase the n. It turns out
that we can achieve sub-quadratic algorithms utilizing the following idea:

Some sets of objects are obviously not colliding. For example; consider a big
scene with lots of objects. Do the collision checks between the objects in the far
left upper corner and the objects in the far right lower corner really need to be
performed? Eliminating similar cases will achieve sub-quadratic algorithms,
as we will explore in this section.

3.2.1 Bounding Volumes

For achieving sub-quadratic broad-phase methods, a significant optimization
method needs to be explained. Although the method of bounding volumes
is not a broad-phase algorithm, it is used throughout the broad-phase algo-
rithms, especially in bounding volume hierarchies.

As we have seen in the narrow-phase collision detection section, checking
collisions between complex bodies can be computationally expensive. An
important method for eliminating not colliding pairs as early and cheaply as
possible is the bounding volumes.

The idea is: we can wrap the arbitrary physical bodies with simple shapes
such as spheres or boxes, such that the bodies are completely inside those
simple shapes. Then we can be sure that if the simple wrapping shapes do
not overlap, the underlying complex shapes can not overlap. This eliminates
many complex checks by doing only simple shapes collision checks. This
method usually improves performance dramatically and it is used in almost
all physics engines. [17]

There are many different choices for bounding volumes. They all have their
own advantages and disadvantages, such as elimination ratio and computa-
tional expense of collision checks.

Since the purpose of a bounding volume is to increase efficiency, we want the
bounding volumes to have efficient collision detection methods.

Bounding volumes are desired to be tight fitting, minimizing the volume that
is only covered by the bounding volume and not the physical object itself.
This is a desired property because it decreases the number of narrow phase
collision checks performed.

Almost always, these two properties are at odds with each other. The task of
a physical simulation engineer is to find a balance between them.
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Figure 3.1: Different types of bounding volumes (blue), applied on the same
object (green) in order: AABB, OBB, DOP, Sphere, Sphere-Swept, Inner
Sphere Tree

3.2.1.1 Axis Aligned Bounding Box

One of the simplest shapes that we can use is the axis aligned bounding box.
An axis aligned bounding box is a rectangular prism which has all its sides
parallel to coordinate axes.

The practical implementation of AABB needs to store only two scalars for
each dimension. If we work in two dimensions, AABB is a collection of 4
scalars. For each dimension AABB keeps track of the minimum and the max-
imum extend for that dimension. This makes the collision detection very easy
and performant. (See algorithm: 1)

Algorithm 1 AABB collision check

procedure AABB COLLISION CHECK(AABB a, b)
for each dimension x in space do

if a.x.max < b.x.min or b.x.max < a.x.min then
return false

end if
end for
return true

end procedure

Although the collision detection method is fast, an axis aligned bounding box
may not be tight fitting in many circumstances.(See fingure: 3.1) The next two
bounding volumes will aim to improve to tightness of fitting.

AABB is the method of choice for this work, mainly due to its simplicity.
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3.2.1.2 Oriented Bounding Box

There are many situations where an AABB does not fit tightly but the freedom
to rotate the box results in a much tighter fitting. This idea is named oriented
bounding boxes, where the boxes do not have to be parallel to coordinate
axes, but can be rotated freely.

Although OBB results in a tighter fitting almost always, it has the cost of more
expensive collision detection method. Instead of the simple AABB collision
check, we need to use SAT (See section: 3.1.1), so that we can take orientations
into account.

There are many successful implementations of this technique in use nowa-
days. [27]

3.2.1.3 Discrete Orientation Polytopes

AABB has limited its sides in certain directions, whereas OBB has eliminated
this limitation.

Another idea is to keep the side directions set to certain angles, but increase
the number of directions. This idea leads to k-DOP’s where k stands for the
number of allowed directions, such as 4-DOP, 6-DOP.

Having the directions fixed lets us avoid the costly computation of SAT but
still gives us opportunity for tight fitting.

The cost of collision detection for DOP increases linearly with the number of
allowed directions.

This leads to a direct trade-off between tight fitting and collision detection
performance, as it is the main pattern of bounding volumes.

The collision check between two k-DOP’s is almost the same as AABB check.
(See algorithm: 2)

Algorithm 2 DOP collision check

procedure DOP COLLISION CHECK(DOP a, b)
for each direction x in DOP do

if a.x.max < b.x.min or b.x.max < a.x.min then
return false

end if
end for
return true

end procedure
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3.2.1.4 Spheres

Another approach to bounding volumes is to use spheres. A major benefit of
using spheres is their performant and simple collision detection method. (See
section: 3.1.4) Depending on the circumstances, circles may be tight fitting
as well. So one should always keep this option in mind when implementing
collision detection systems.

A draw-back of using spheres as bounding volumes is that calculating the
tight fitting sphere for arbitrary objects is costly. This is the major reason that
spheres are not very common in practical collision detection methods.

3.2.1.5 Sphere Swept Volumes

A sphere swept volume is the Minkowski sum of a sphere at the origin and
any arbitrary object.

A sphere swept volume can also be defined this way: A sphere of a certain
radius is carried through every point of a certain object. The points that are
touched by the sphere belong to the sphere swept volume. For example:

• If we sphere sweep a point, we get a sphere

• If we sphere sweep a line, we get a capsule

• If we sphere sweep a box, we get a larger box with rounded edges and
corners.

The most general way to do collision detection between two sphere swept
volumes is to calculate the distance between the underlying objects. If the
distance is less than the total of their sphere radii, then the objects are collid-
ing.

Note that any object is a sphere swept volume of itself with zero radius. This
enables the collision detection between sphere swept volumes and any arbi-
trary objects.

Sphere swept volumes work well with fault tolerating circumstances and
noisy data, since we can adjust the sphere radius easily. This includes the
numerical precision problems in implementations using floating point arith-
metic. [20]

3.2.1.6 Inner Sphere Trees

Inner sphere trees are different than other bounding volumes. They have not
been designed to bound the object, but instead to fill its interior. But they can
easily be adjusted to completely bound the object simply by increasing the
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sphere radii. Even without completely bounding the object they are useful in
fault-tolerated environments such as haptics. [28] [29]

In summary; utilizing bounding volumes leads to a significant performance
increase but it still does not achieve sub-quadratic time complexity. In order
to achieve sub-quadratic complexity, one needs to use spatial data structures.

There are three main categories for such spatial data structures:

1. Spatial Subdivision

2. Bounding Volume Hierarchies

3. Sort and Sweep

Data structure of choice for this work is bounding volume hierarchies.

3.2.2 Spatial Subdivision

The main idea of spatial subdivision is to divide the simulation space into
sections and to associate objects with any section if they share some volume.
Therefore two objects can not be colliding if they are not associated with a
common section.

The choice of this division leads to different algorithms:

The simplest approach is to divide the whole space into regular rectangular
spaces. This method is called "uniform grid". A rule of thumb is to keep
the subdivision size a little larger then the biggest object in the scene. This
method usually results in many empty grid cells, therefore one may utilize
hashing. [20]

Another approach is a hierarchical tree structure. We keep dividing any sub-
space as long as it contains more than a certain number of objects. This leads
to quadtree’s or octree’s depending on the dimensions of the application.

Hierarchical data structures are more adaptive than uniform ones, but they
have a higher constant factor for performance, due to their more complicated
implementations. This is a trade-off and the right choice depends on the ap-
plication.

3.2.3 Bounding Volume Hierarchies

Instead of dividing the space of simulation one can also divide the physical
objects into sets of objects and their corresponding bounding volumes.

The difference between spatial subdivision and bounding volume hierarchies
is this:
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• In spatial subdivision we generally do not allow the subdivisions to
overlap. Any physical object can overlap with many subdivisions.

• In bounding volume hierarchies we allow subdivisions to overlap. Any
object is fully bounded by a bounding volume.

The construction of bounding volumes can be listed as:

1. Top-Down

2. Bottom-Up

3. Incremental

Top-down construction is the method of choice for this work, because it pro-
vides balanced hierarchy trees.

In order to produce a hierarchy we can use this top-down approach: First let
us choose a criterion, for example; any coordinate axis value. Let us take all
the physical objects that we wish to simulate, and divide them into two sets
according to our chosen criterion. Then recursively, let us divide these two
sets into two, until we have sets of single objects. This will form a tree-like
hierarchy. Let us create bounding volumes for each set in this hierarchy. This
will result in a bounding volume hierarchy. For an illustration see figure: 3.2

Figure 3.2: A simple AABB-hierarchy. The objects are black. The AABB levels
from top to bottom are: red, green, orange, blue.

After the construction we can use the recursive algorithm to detect all pairs
collisions in algorithm 3.

The complexity of algorithm 3 is O(n2) in the worst case. However, the actual
performance of the algorithm depends on how many bounding volumes at
each level in the hierarchy are actually intersecting, which depends on the
states of the objects and on the production method of BVH. Assuming that
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Algorithm 3 BVH collision check

procedure BVH COLLISION CHECK(BVHnode)
if BVHnode is body then

return
end if
BVH collision check pair(BVHnode.left, BVHnode.right)
BVH collision check(BVHnode.left)
BVH collision check(BVHnode.right)

end procedure

procedure BVH COLLISION CHECK PAIR(BVHnode1, BVHnode2)
if BVHnode1 does not collide BVHnode2 then

return
end if
if BVHnode1 is body and BVHnode2 is body then

Narrow phase(BVHnode1, BVHnode2)
else if BVHnode1 is body then

BVH collision check pair(BVHnode1, BVHnode2.left)
BVH collision check pair(BVHnode1, BVHnode2.right)

else if BVHnode2 is body then
BVH collision check pair(BVHnode1.left, BVHnode2)
BVH collision check pair(BVHnode1.right, BVHnode2)

else
BVH collision check pair(BVHnode1.left, BVHnode2.left)
BVH collision check pair(BVHnode1.left, BVHnode2.right)
BVH collision check pair(BVHnode1.right, BVHnode2.left)
BVH collision check pair(BVHnode1.right, BVHnode2.right)

end if
end procedure
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no bounding volumes at each level overlap, this algorithm runs in O(n). It is
trivially easy to produce low quality BVH’s which lead to poor performance.
While producing the BVH, one needs to keep the bounding volumes at each
level as tight fitting as possible to eliminate useless checks.

As we will show, this method suits the needs of continuous-time collision
detection very well. Therefore we will use this broad phase technique in our
work.

3.2.4 Sort and Sweep

Another broad phase approach is called "sort and sweep" or "sweep and
prune". The main idea is to keep sorted one dimensional projections of phys-
ical objects in many directions. Similar to the idea of separating axis theorem,
a pair of objects may collide only if all of their one dimensional projections
collide.

In order to achieve this check efficiently, we keep sorted starting and ending
points on these one dimensional projections. Because of the temporal coher-
ence, this sorted list does not change much usually. Applying insertion sort
on nearly sorted lists are nearly linear-time efficient. So we use insertion sort
to keep our lists sorted from frame to frame. On these sorted lists, it is very
easy to do linear time checks of one dimensional intersections. [30]

Since this work does not make use of this technique, details are left out.

3.3 Comparison of Discrete and Continuous Time

Discrete time collision detection is a much more popular option in practice.
The main reason for this is performance. Simply ignoring or postponing the
resolution of some collision events within the time steps leads to less compu-
tation. However, it also leads to inaccuracies in the physics simulation. The
level of inaccuracy depends on the choice of time step length and whether
some additional methods are used in order to reduce the error. Regardless
of how short the time step is chosen, or whether any additional error avoid-
ance methods are used, it is clear that discrete time collision detection can not
perform completely accurate simulations.

For some physical situations, the inaccuracy of discrete time collision detec-
tion leads to unacceptable simulation artifacts. For example, in a shooter
game, game characters usually throw objects at each other, whether they are
bullets, bombs, laser beams or any other game object. Some of these objects,
such as bullets, can be extremely fast moving. Since many games use discrete
time collision detection, it can be easy to miss a collision between a bullet
and an object. The probability of missing a collision grows as the objects are
smaller and faster. Missing a collision between a bullet and an enemy hin-
ders the game enjoyment greatly. Therefore physics simulation programmers
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have come up with ways to avoid this issue. Almost all of the solutions in-
volve creating a temporary large object, containing the fast moving object at
its two consecutive positions between time steps. If this large object inter-
sects with any other object, they are assumed to be colliding between time
steps. Even though it is a commonly used method, it has its problems. One of
them is that this method does not handle rotations, because the orientations
in-between the frames are not captured by the temporary object.[17] Assum-
ing that the method catches a valid collision, the physics simulation handles
the collision too late, leading to physical inaccuracies.

The order of collisions are not preserved under discrete time collision detec-
tion. Although some methods are used in order to estimate the collision time,
[9] they are only heuristics. Sometimes the order of collisions can be impor-
tant because the collisions can be interdependent. The resolution of a collision
may result in another collision or prevent some other collision from happen-
ing.

The best example for the problems with discrete time collision detection is the
simulation of a billiard game. For this type of a physical simulation it is vital
to handle the collisions at their exact times and positions. Missing the slight-
est collision leads to completely different game states. Also interdependent
collisions happen very frequently. Therefore we have developed a physical
simulation similar to billiard for our work.

If done correctly, continuous time collision detection eliminates all these prob-
lems, because the collisions are detected exactly when they happen, so that
they can be resolved immediately and therefore accurately.

One may wonder why continuous time collision detection is so rarely used in
practice, even though it solves so many problems and always leads to more
accurate physical simulation. The main reason for the lack of popularity of
continuous time collision detection is performance. Even from the narrow
phase collision detection code of circles that we have described earlier, it is
obvious that the handling of dynamic objects are much more complex than
the static ones, both in terms of performance and implementation. Another
aspect for the performance issue is this: It is obvious that there can be at most
O(n2) collisions at any time step in the case of discrete time collision detection,
whereas the number of collisions for continuous time collision detection is
unbounded.

Another limitation of continuous time collision detection involves the rota-
tion. Continuous-time collision detection between arbitraryly shaped, rotat-
ing objects leads to complex equations involving trigonometric terms. [9]
Even such a simple equation(3.15) may not have a solution with constant time
complexity.

cos(x) = x (3.15)

When we take rotation into account for collision detection, many trigonomet-
ric terms get involved in the equations. Few of them have algebraic solutions,
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which are fast to calculate. Almost all of them require numeric approximation
methods, which are not completely accurate and precise. It is always possi-
ble to miss some results due to local extremes in the equation. They are also
computationally expensive.

For games physics simulation, the most important question is: "Is the error
noticeable?". For many games, such as action platformers, the errors due to
discretization is rarely noticeable. For some games where missed collisions
pose a great threat, we can use preventive methods for very fast objects. These
methods are good enough for almost all first person shooter games. But for
some games, such as billiard, the accuracy provided by continuous time col-
lision detection is necessary.

It is worth noting that continuous-time physics simulation is a necessity in the
case that one can not tolerate any missed collisions, such as scientific compu-
tations.
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CHAPTER 4

PROPOSED METHOD

4.1 Broad-Phase for Continuous-Time Collision Detection

During research one can find that the usage of broad-phase methods for discrete-
time collision detection is well established and practically applied in almost
all physics engines. Although there are many choices for discrete-time broad-
phase algorithms (See 3.2), we have not found any broad-phase algorithms
for continuous-time collision detection, which has sub-quadratic space com-
plexity. Without any broad-phase methods, the only available collision de-
tection method is the naive all-pairs check, which results in O(n2) time com-
plexity. We wish to bridge this gap by introducing a novel continuous-time
broad-phase collision detection algorithm.

The proposed work successfully optimizes the continuous time collision de-
tection algorithm by adding a novel broad phase step. The naive all pairs
check method has O(n2) time complexity and O(n) space complexity. The
proposed method keeps the space complexity at O(n) but achieves an aver-
age time complexity of O(n log(n)). Although the worst case time complexity
is still O(n2), practical running time measurements clearly show that the pro-
posed method has sub-quadratic time complexity.

As demonstration, the proposed method and a visualization for it have been
implemented. The physical simulation code and visualization code are kept
separate, in order to keep the running time measurements more accurate.
Two programs communicate via files. The main purpose of the visualiza-
tion tool has been to ensure that the physical simulation gives correct outputs
by not missing or miscalculating any collisions.

The implementation is two dimensional for the ease of visualization and de-
bugging. All of the methods we propose are trivial to convert to three di-
mensions. Adding another dimension does not complicate the sphere repre-
sentation, which is identical to circle representation. Calculating the collision
time of a pair of spheres can again be simplified to a quadratic equation, as in
the case of circles. Axis aligned bounding boxes have already been invented
originally for three dimensional objects and do not require any more sophis-
tication when converted from two dimensions. Similarly bounding volume
hierarchy algorithm stays identical. The only extra work arises in the visu-
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alization of three dimensional physical simulation for the proposed method,
which is not the focus of this work. So three dimensional version of the pro-
posed method has been regarded as a trivial exercise.

As shown earlier (See equation: 3.15), rotation in continuous time collision
detection is a complicated task for arbitrary objects. It is also unrelated to
broad phase, since all broad phase methods, including this method, work
with bounding volumes, making the complexities of the objects irrelevant.
Therefore only circles and static lines have been used for the implementation.
Working with circles eliminated the problem of rotations. Although this may
seem to limit the usefulness of the proposed work, the circles or spheres can
be used as a bounding volume for any object. It is also trivial to convert
dynamic circles to dynamic AABB’s. Therefore the proposed approach can
be utilized under any circumstances.

The only way that the rotation of the dynamic circular objects could have any
impact on the simulation output would be to apply friction on the collision re-
sponse algorithms. We have also disregarded the collision friction altogether,
since the collision responses do not effect collision detection in any way, be-
cause the focus of this work is on the optimization of collision detection.

The linear drag of the simulation, also known as air friction, is not imple-
mented and left for future work. The reason for this is that there are numer-
ous different implementations to simulate linear drag, and the narrow-phase
continuous time collision detection algorithm changes according to the model
of linear drag applied. Another reason for this choice is that the linear drag
does not change the broad-phase algorithms, which is the main focus of this
work.

4.2 Axis Aligned Bounding Boxes

Axis aligned bounding boxes have been chosen for the implementation, but
the proposed approach is suitable for any bounding volumes. The main rea-
son for this choice has been the ease of implementation, compared to methods
such as oriented bounding boxes.

4.3 Bounding Volume Hierarchy

Bounding volume hierarchies have been the broad phase technique of choice,
because the proposed method is an algorithm to apply them on continuous-
time collision detection efficiently, whereas other broad-phase methods for
discrete-time collision detection would require radically different ideas to be
applicable to continuous-time collision detection.

The continuous-time applications of the other discrete-time broad-phase meth-
ods such as "spatial subdivision" and "sort and sweep" have the potential to
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be the topic of further research.

4.4 Adaptive Time Step

Adaptive time step is the crucial idea of the proposed method to be adaptable
for continuous-time collision detection. In discrete-time collision detection,
only the overlapping object pairs are detected without taking their velocities
into consideration. Therefore the bounding volumes need to cover only the
objects at their position at any given time. In continuous-time physics, the
simulation does not let objects to overlap, instead it calculates the times of
first contacts and resolves those events in order. Therefore covering only the
objects does not let a bounding volume hierarchy algorithm to detect future
collisions, since they do not take velocities into account at all.

In order to adapt bounding volume hierarchies for continuous-time collision
detection, a method is needed to let bounding volumes collide, in the case that
the underlying objects will be colliding in a time interval that is interested in.
If this time interval is chosen as infinite, the bounding volumes will have
infinite size, which will result in a correct algorithm, but with quadratic time
complexity.

The main idea of the proposed method is to keep an adaptive time step, and
make the bounding volumes cover the object at any given time and the object
after the chosen time step. The optimal choice of the time step is the time
required for the first collision in the simulation. However, since this value
is what needs to be calculated in a continuous-time collision detection algo-
rithm, binary search can be used to determine this value, in order to achieve
logarithmic time complexity.

This is the reason why a time step parameter is still needed for the proposed
method, although continuous time collision detection is performed. This pa-
rameter will be self adjusting, so there is no choice of time step as in the case
of discrete time collision detection.

The only need for the time step length is to determine the sizes of the AABB’s
that contain only one object. The rest of the AABB’s will be dependent on
these bottom AABB’s as they will be determined in a bottom-up fashion.

If the next collision event within the current time step length cannot be de-
tected, the time step will be increased by multiplying with a constant. The
time step length will be increased until the next event is detected. After the
next event is found, the time step will be decreased, so that it stays adaptive,
not strictly increasing. We decrease by multiplying it with another constant.

Increasing the time step length will increase the sizes of the bottom AABB’s
so the next event that was previously not detected, will be detected after a
certain number of increases.

Since any constant will yield a logarithmic time complexity, the increasing
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constant has been chosen as 2 and the decreasing constant as 1/2 arbitrarily.
Although different choices of these constants will not change the time com-
plexity of the algorithm, one can most probably find better constant values,
which yield better running times.

4.5 Top-down Divide by Median Tree Construction

Top-down hierarchy construction has been chosen, mainly due to ease of bal-
anced tree creation. The construction of the bounding volume hierarchy tree
is almost the same as the classical discrete time collision detection case. The
illustration of the technique can be fount at 3.2.

The axis aligned bounding boxes are built for the bodies as they will include
the body and the body after the current time step. So AABB will take veloci-
ties into account. After initializing the bottom AABBs, the tree is constructed
in a top-down fashion. Objects are divided into two equal sets with respect to
a coordinate axis in each turn. The axis of choice depends on the level of the
tree.

This procedure will result in a balanced tree, which can be easily represented
as an array, avoiding memory fragmentation and pointer chasing.

After determining the hierarchy, the upper AABB’s are determined by the
lower AABB’s as they will enclose their descendants.

4.6 Partitioning an array

During top-down construction of the hierarchy, the AABB’s will need to be
partitioned so that the median is in the middle of the array, all elements that
are less than the median are in the first half of the array and the greater values
are in the second half of the array. Equalities are broken arbitrarily.

It is a proven fact that we can determine the median of an array in linear time.
[31] After determining the median, the array can be divided into two parts in
linear time as well. In the proposed implementation C++/STL "nth_element"
function is used for this task, which is documented to have linear time com-
plexity. [32]

4.7 Pseudocode

Algorithm 4 describes the full version of the proposed method.
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Algorithm 4 Continuous Collision Detection

procedure GET NEXT EVENT(objects)
Construct hierarchy (objects)
Next Event = none
BVH collision check (root of hierarchy)
while Next Event is none do

time step = time step * increasing constant
Update Hierarchy
BVH collision check (root of hierarchy)

end while
time step = time step * decreasing constant
return Next Event

end procedure

procedure CONSTRUCT HIERARCHY(objects)
Construct hierarchy recursive(objects, 0)

end procedure

procedure CONSTRUCT HIERARCHY RECURSIVE(objects, level)
if objects has single object then

return AABB enclosing object(now), object(now + timestep)
end if
axis = axis of level
median = median of objects in axis
half1 = objects before than median
half2 = objects after than median + median
AABB1 = Construct hierarchy recursive(half1, level + 1)
AABB2 = Construct hierarchy recursive(half2, level + 1)
return AABB enclosing AABB1, AABB2

end procedure

procedure UPDATE HIERARCHY
for BVHnode from leaves to root do

if BVHnode contains single object then
Update BVHnode to cover object(now), object(now + timestep)

else
Update BVHnode to cover both children

end if
end for

end procedure
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procedure BVH COLLISION CHECK(BVHnode)
if BVHnode is body then

return
end if
BVH collision check pair(BVHnode.left, BVHnode.right)
BVH collision check(BVHnode.left)
BVH collision check(BVHnode.right)

end procedure

procedure BVH COLLISION CHECK PAIR(BVHnode1, BVHnode2)
if BVHnode1 does not collide BVHnode2 then

return
end if
if BVHnode1 is body and BVHnode2 is body then

Narrow phase(BVHnode1, BVHnode2)
else if BVHnode1 is body then

BVH collision check pair(BVHnode1, BVHnode2.left)
BVH collision check pair(BVHnode1, BVHnode2.right)

else if BVHnode2 is body then
BVH collision check pair(BVHnode1.left, BVHnode2)
BVH collision check pair(BVHnode1.right, BVHnode2)

else
BVH collision check pair(BVHnode1.left, BVHnode2.left)
BVH collision check pair(BVHnode1.left, BVHnode2.right)
BVH collision check pair(BVHnode1.right, BVHnode2.left)
BVH collision check pair(BVHnode1.right, BVHnode2.right)

end if
end procedure

procedure NARROW PHASE(circle1, circle2)
collision time = calculate collision time(circle1, circle2)
if collision time > time step then

return
end if
if collision time < global minimum collision time then

global next event = collision of circle1, circle2
end if

end procedure
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CHAPTER 5

RESULTS AND DISCUSSION

The proposed method has been implemented in C++ and the output is vi-
sualized in order to make sure that the results are correct. Both the naive
check-for-all-pairs method and the proposed novel broad phase algorithm
are implemented. It is empirically shown that the proposed algorithm runs
asymptotically faster than the naive approach.

Sedgewick’s [19] priority-queue based approach has not been implemented
for comparison, as it quickly becomes infeasible as the number of objects
grows, because of the quadratic memory complexity. For example, the naive
method and the proposed approach can theoretically work with a million ob-
jects but the memory required by Sedgewick’s method for a million object is
over a terabyte. This amount of memory may be feasible for scientific com-
putation but for game simulations it is out of reach with today’s hardware.

5.1 Complexity Analysis

As in all broad phase collision detection methods, it is impossible to achieve
a sub-quadratic asymptotic time complexity bound in the worst case, because
at any simulation O(n2) collisions may happen simultaneously. But in prac-
tice broad phase algorithms achieve a significant performance boost and they
are used in almost all physics engines.

Although we can not prove sub-quadratic time complexity in the worst case,
we shall examine each part of the algorithm separately.

• Constructing the hierarchy is O(n log n). The analysis is almost the
same as merge-sort. Since we divide the array from the median, we
divide into two equal sized parts. The depth of the recursion is log n,
where each level works in linear time with respect to amount of all ob-
jects.

T (1) = 1 (5.1)

T (n) = 2T (n/2) + n = O(n log(n)) (5.2)
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• Updating the hierarchy is O(n). A constant time is needed to update
each bounding volume and there are 2n− 1 many bounding volumes in
total. There are two cases for a bounding volume:

1. The bounding volume may be a leaf in the hierarchy tree. To up-
date this bounding volume, we only need to calculate the current
and after time step positions of the underlying object and cover
them. This is done in constant time.

2. The bounding volume may be a non-leaf node in the hierarchy
tree. To update this bounding volume, we only need to update
the bounds of this bounding volume to cover both of its children.

• Narrow phase of collision detection is O(1) assuming that a square-
root operation takes constant time.

• Checking collisions through the bounding volume hierarchy is O(n2)
in worst case. The practical running time depends on the quality of the
generated hierarchy and the states of the objects. In practice this step
behaves more closely to O(n log n) as can be seen at the running time
measurements.

• Number of time step increases is logarithmic with respect to the time
of next collision, since we multiply the time step with a constant in each
iteration. In practice this step behaves more closely to constant time, but
we shall consider this step as O(log t), where t stands for the next time
of collision.

• In total: Assuming that checking the bounding volume hierarchy be-
havesO(n log n) as it does in practice, our algorithm finds the next event
in O(n log n + n log t), where n stands for the number of objects and t
stands for the time of next collision. We consider this complexity sub-
quadratic as the practical running time measurements confirm.

5.2 Running Times

We have implemented the naive all-pairs-check algorithm and our novel broad
phase method in order to compare performance. We have chosen C++ as the
programming language, because it seems to be the dominant choice for game
physics development.

In order to make sure that the physical simulation works correctly, we have
developed a software visualization tool written in SDL2.0 framework.

Here are the environment specifications:

• CPU: Intel i7-2630QM @2.00GHz

• RAM: 8.00GB DDR3
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Table 5.1: Running times in seconds (average of 100 runs)

Number of objects Number of collisions All pairs check Our broad phase

8 52.28 0.000193307 0.000337453

16 213.15 0.001134925 0.000512313

32 628.46 0.009495239 0.005448446

64 1700.78 0.091004501 0.032925012

128 4670.91 1.009229282 0.172442404

256 12138.45 9.716522560 1.101287737

512 33332.82 105.5300373 6.773387463

1024 89060.59 1273.946865 46.33965052

2048 246636.2 13085.64345 264.8951511

• OS: Windows7 Professional SP1

• Compiler: Visual Studio 2013 in default release options

• Floating point precision: double

We have created randomized scenes to test performance with constant object
density and relatively constant velocities, regardless of the scene size. The
scene is similar to a billiard table, where 4 lines cover a rectangular area and
prevent the circles from going outside. The velocities are uniformly random-
ized in an interval, where the maximum velocity can take an object from a
corner of the scene to the opposite corner in one second, regardless of the
size of the scene. The sizes of the circles are also uniformly randomized. The
scene size changes according to the number of circles, in order to keep the ob-
ject density constant. The benchmark simulates 5 seconds of physics for each
test.

In order to reduce noise in the running time measurement data, the test cases
have been carried out a hundred times and the averages are taken, except for
the last test case with 2048 objects. The last test case has been executed 10
times, because of the long time requirement.

We have also tested custom scenes such as the beginning formation of a bil-
liard table. We have soon realized that the simulation goes into the chaotic
randomized state extremely quickly, which made the initial formations of ob-
jects irrelevant.

One should note that the scene setups and the outputs of both all-pairs-check
and our novel collision detection methods are exactly the same. They have the
same space complexity, but they have radically different time complexities,
which is confirmed by the running time measurements at table 5.1.

The running time measurements have also been plotted in a scaled log-log
chart in figure 5.1. The y-axis represents running times in logarithmic scale.

41



Figure 5.1: Running time measurements compared to sample functions in
scaled log-log plot, where x axis represents number of objects and y axis rep-
resents running times

The x-axis represents running times in logarithmic scale. An O(n2) and an
O(n log n) function have been plotted for reference. The running times of our
approach and the naive approach have also been plotted. All four lines have
been scaled to have the same maximum value. The reason why this chart
lacks to show that our approach runs closer to O(n log n) compared to O(n2)
is suspected to be the low number of objects in the scene. The constant factors
play significant role in the running times and the data is noisy. Increasing
the running times is not practical due to long time requirements for measure-
ments.

It is also worth mentioning that these are not per frame time requirements,
but simulation durations of 5 seconds, which would correspond to 300 frames
in a realistic setup. The objects in the simulations have very high velocities,
enough for any object to travel from one corner of the scene to the opposite
corner in one second. Therefore the collision event counts are much higher
than a realistic game setup. One should expect shorter running times in a
realistic game scenario.

5.3 Comparison with Discrete-Time

A comparison between our approach and the discrete-time bounding volume
hierarchy approach has also been carried out. The physical setup is the same
as the previous setup with 1024 objects. The tests have been executed a hun-
dred times and taken averages to reduce noise. Although the discrete-time
physics simulation provides better running times in general, it misses some
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collisions as expected. The number of misses depends on the chosen time
step. The results are shown in table 5.2.

Table 5.2: Comparison with discrete-time

Algorithm Running-Time (seconds) Number of Collision Misses

Continuous-Time 46.33965052 0

Discrete-Time (dt = 0.001) 236.7274949 0.17

Discrete-Time (dt = 0.005) 57.51156817 1.93

Discrete-Time (dt = 0.01) 29.52776001 32.87

Discrete-Time (dt = 0.03) 13.82739977 156.06

Discrete-Time (dt = 0.1) 5.480592384 3416.14

Discrete-Time (dt = 1) 1.893161469 87281.33

The results clearly indicates a trade-off between performance and accuracy
for different algorithms. There is a direct and simple trade-off between per-
formance and accuracy for discrete-time physics simulation with different
choices of time steps, whereas the continuous-time physics simulation is al-
ways completely accurate but its performance is very much dependent on the
physical setup.

Different physical scenarios will provide significantly different performance
outputs. Therefore one should make use of appropriate profiling tools before
deciding on the physical simulation algorithm.
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Figure 5.2: A screen-shot from our visualization tool

Figure 5.3: A screen-shot from our visualization tool displaying some AABBs
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CHAPTER 6

CONCLUSION AND FUTURE WORK

A novel broad phase method that optimizes physical simulations which use
continuous time collision detection has been presented. The proposed method
can solve the broad phase needs of almost all continuous time physical sim-
ulations. The detailed narrow phase continuous time collision detection has
not been concerned with. Only circles have been used for simulation to avoid
rotations.

Although the proposed method still has a time complexity of O(n2) for the
worst case and this does not constitute a theoretical improvement, empiri-
cal measurements of the running time confirm that it provides a significant
improvement for practical cases.

Bounding volume hierarchies have been chosen as the broad phase method.
Bounding volume hierarchies have been well developed and understood for
discrete time collision detection. The contribution of this work has been adapt-
ing them for continuous time collision detection. Some future work may in-
volve adapting other broad phase methods for continuous time collision de-
tection, such as "spatial subdivision" and "sort and sweep".

This work can be seen as a proof of concept. The proposed method and im-
plementation have not optimized to the furthest. Even in this state, it is clear
from the results that the proposed approach is valid. Some implementation
details may yield great gains in performance such as:

• AABB has been used for the ease of implementation. It is suspected that
OBB may be better suited for continuous time collision detection.

• Top-down construction methods have been used for bounding volume
hierarchies by dividing from median. There are other known hierarchy
construction methods, which can be experimented with.

• The bounding volume scaling constants are chosen as 2 and 1/2 arbi-
trarily. These values can be optimized further, which will have different
optimal values according to setup of physical objects.

• Parallel computing has not been utilized for the proposed approach.
Multi-thread programming, CPU-SIMD and GPGPU can result in great
performance increase.
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Another future work for the improvement of the proposed work may be to
include drag to physical simulation. Throughout the work, constant velocities
and no acceleration have been assumed, besides the collision impulses. Drag
has been neglected, because it does not complicate the broad phase methods,
which has been the main focus for this work. Adding drag may complicate
the narrow phase collision detection, depending on the model of drag chosen.
For some models of drag, the solution of the narrow phase collision detection
will stay a quadratic equation. But some other models of drag may complicate
the solution. A through investigation of this issue may be needed for practical
uses of the prop work.
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