
AN EXPERIMENTAL COMPARISON OF MESSAGING PROTOCOLS  

MQTT AND COAP 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

HASAN FARUK ÇOBAN 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF INFORMATION SYSTEMS 

 

 

 

 

 

 

 
JUNE 2017 

  



 

  



An Experimental Comparison of Messaging Protocols MQTT and COAP 
 

Submitted by HASAN FARUK ÇOBAN in partial fulfillment of the requirements 

for the degree of Master of Science in The Department of Information Systems 

Middle East Technical University by, 

Prof. Dr. Deniz Zeyrek Bozşahin  

Director, Graduate School of Informatics 
 

Prof. Dr. Yasemin Yardımcı 

Çetin 

Head of Department, Information 

Systems 
 

Assoc. Prof. Dr. Aysu Betin Can 

Supervisor, Information Systems  

 
Examining Committee 

Members: 
 

Assoc. Prof. Dr.  Altan Koçyiğit  

Information Systems, Middle East Technical 

University 

 

Assoc. Prof. Dr. Aysu Betin Can 

Information Systems, Middle East Technical 

University 

 

Assist Prof. Dr. Erhan Eren  

Information Systems, Middle East Technical 

University 
 

Assist Prof. Dr. Çağdaş Gerede  

Computer Engineering, TOBB 

University of Economy and Technology  
 

Assoc. Prof. Dr. Alptekin Temizel  

Modelling and Simulation, Middle East 

Technical University 

 

 
Date:                  ___________ 

 

 



 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this wok. 
 

 

 

 

 

 

Name, Last name:   Hasan Faruk ÇOBAN 
 

 

 

Signature             :         
  



iv 

 

ABSTRACT 

 

An Experimental Comparison of Messaging Protocols MQTT and COAP 

 

 

Çoban, Hasan Faruk 

MSc., Department of Information Systems 

Supervisor: Assoc. Dr. Aysu Betin Can 

 

June 2017, 57 pages 

 

As the attention towards to Internet of Things (IoT) increases recently, the need for the 

infrastructure that carries the communication between nodes, which have limited 

resources, also increases. The network beneath applications has direct effect on 

resilience of IoT environments. Due to the advances on mobile devices in terms of more 

powerful hardware, developers focused on mobile applications. However, solid network 

structures are needed for these applications. To match these needs several protocols are 

introduced. MQTT (Message Queue Telemetry Transport) and COAP (Constrained 

Application Protocol) are the most popular among messaging protocols. Although there 

are studies comparing these two protocols, they mainly focus on the network 

perspective. They cover mostly network traffic and load that protocols put on networks. 

Resource usages, especially on the nodes, are not examined thoroughly. Those studies 

only cover minimal traits and their test beds are minimalistic environments when it 

comes to investigate node’s resource usages. Many applications need network 

communications. MQTT and COAP are possible candidates for networking. The amount 

of resource the protocols use might be the decisive factor.  

In this thesis a comparison between two prominent messaging protocols on common 

hardware and software setup is aimed. MQTT and COAP are compared under the 

metrics of energy consumption, memory and CPU resource usages, transfer delays and 

adaptation capabilities. In this study HL7 messages have been used as a data type in 

order to place a healthcare context in experiments. 

 

Key words: MQTT, COAP, Lightweight Messaging Protocols 
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ÖZ 

 

MQTT ve COAP Mesajlaşma Protokollerinin Deneysel Bir Karşılaştırması 

 

 

Çoban, Hasan Faruk 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Aysu Betin Can 

 

Haziran 2017, 57 sayfa 

 

Son yıllarda Nesnelerin İnterneti’ne (IoT) olan ilginin artmasıyla sınırlı kaynaklara sahip 

düğümler arasındaki iletişimi sağlayan altyapıya duyulan ihtiyaç artmaktadır. 

Uygulamalar altındaki Ağ, IoT ortamlarının esnekliği üzerinde doğrudan etkiye sahiptir. 

Mobil cihazlardaki gelişmelere bağlı olarak (örneğin daha güçlü donanım), geliştiriciler 

mobil uygulamalara odaklandı. Bununla birlikte, dayanıklı ağ yapıları bu uygulamalar 

için gereklidir. Bu ihtiyaçları karşılamak için çeşitli protokoller getirilmiştir. Mesajlaşma 

protokolleri arasında MQTT (Message Queue Telemetry transport) ve COAP 

(Sınırlandırılmış Uygulama Protokolü) en popüler olanlarıdır. Bu iki protokolü 

karşılaştıran çalışmalar olsa da, bu çalışmalar çoğunlukla ağ trafiğini ve yükünü 

kapsamaktadır. Kaynak kullanımları, özellikle de nodlardaki kullanımlar yeterince 

araştırılmamıştır. Bu çalışmalar yalnızca baz seviyede özellikleri kapsamış ve nodların 

kaynak kullanımlarını araştırma noktasında ise minimalist düzeneklerde çalışılmıştır. 

Birçok uygulama ağ iletişimi gerektirir. MQTT ve COAP, ağ için olası adaylardır. 

Protokollerin tercihinde ne kadar kaynak kullandıkları karar verici etken olabilir.  

Bu tez çalışmasında; aynı donanım ve yazılım kurulumu üzerindeki iki önde gelen 

mesajlaşma protokolü arasındaki karşılaştırmanın yapılması amaçlanmaktadır. MQTT 

ve COAP, enerji tüketimi, bellek ve işlemci kaynak kullanımları, aktarım gecikmeleri ve 

uyarlama yetenekleri ölçütleriyle karşılaştırılacaktır. Bu çalışmada, deneylerde bir sağlık 

bağlamı yerleştirmek için HL7 mesajları veri türü olarak kullanılmıştır.  

Anahtar Sözcükler: MQTT, COAP, Mesajlaşma Protokolleri  
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CHAPTER 1 

INTRODUCTION 

 

Every day, advances on computer science provide new concepts to developers. 

Networks connect nodes which are capable of conducting processes. Traditionally 

those nodes were few in numbers and managing them is rather easy. However, 

processors are constantly getting cheaper and nodes’ sizes constantly keep getting 

smaller. This enables number of nodes boosted and created new need for 

intercommunication between them. Anything can be a node and everything may try 

to communicate. This concept evolved into “Internet of Things”. IoT’s name is first 

introduced in 1999 by Kevin Ashton (Ashton, 2009). It could be foreseen that in 

2020 IOT objects multiples human population at least five times (Evans, 2012).  

Smart phones are important member of this newly defined society. They are 

developed and supported by major corporations. Also, massive numbers of 

developers are currently working on this environment which depicts a promising 

future. Development possibilities also bring serious challenges. Traditional network 

protocols are neither designed nor optimized for supporting pervasive network 

infrastructures (W. Colitti, 2011). Several lightweight protocols have been developed 

since then. Two of them are distinguishing themselves.  The Message Queuing 

Telemetry Transport (MQTT) (Locke, 2010), designed by IBM, and the Constrained 

Application Protocol (COAP) (Z. Shelby C. K., 2013), designed by the Internet 

Engineering Task Force (IETF). Although they implement different approaches, both 

serve same need: the lightweight Machine-to-Machine communication.  

This thesis focuses on the comparison between MQTT and COAP in terms of energy 

consumption, resource usage, transfer delays and adaptation capabilities. Providing 

the same hardware and software test bed their performances are compared on certain 

metrics in these aspects. To evaluate their respective performance metrics, the 

identical environment setup is crucial. The aim of this study is after comparison of 

these two protocols, to discuss their respective advantages over each other and to 

propose suitable application type of these protocols. The context dictates which 

protocol would be better choice to implement. Their strengths and weaknesses are 

only meaningful by the context. 

There are a number of research studies on lightweight network protocols. Mostly, 

these studies tend to focus on network layer metrics such as network trafficking and 

bandwidth. Other than bandwidth, reliability and energy efficiency metrics are also 

investigated. The protocols are tested on wired, wireless and cellular networks. Test 

beds vary from single PC setup to a PC and multiple mobile devices. According to 

these comparison studies in the literature, in terms of network traffic and bandwidth 

aspect, COAP is better choice than MQTT (D.Thangavel, 2014) (S. Bandyopadhyay, 
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2013). Also COAP fared better in message delays (D.Thangavel, 2014) (S. 

Bandyopadhyay, 2013). When it comes to reliability MQTT is favored by majority 

of literature (D.Thangavel, 2014) (M. Tucic, 2014) (D. Yi, 2016). COAP is claimed 

to be more energy efficient than MQTT (S. Bandyopadhyay, 2013), however it is a 

debatable subject because of deficiencies in test setup (S. Bandyopadhyay, 2013).  

In this thesis, we choose to focus on nodes. How protocols affect nodes of network is 

the primary question. Since IoT is gaining popularity and mobile devices are 

becoming widespread; MQTT and COAP should be analyzed under wireless 

networks with mobile devices. While most studies establish common hardware 

infrastructure, they fail to provide common software infrastructure. In order to reach 

accurate comparison information middleware should be identical (D.Thangavel, 

2014). Mobile devices are resource constraint devices, so resource usages should be 

investigated between MQTT and COAP. When investigating message delays 

researchers usually ignore protocols have communication patterns. MQTT uses 

publish/subscribe and COAP uses request/response. In MQTT delay only matters in 

message deliver from server to client, however in COAP it matters entire round trip 

time. Security is not concern of this study. Further literature review analysis is 

explained in chapter 2. In this thesis, we aim to compare these protocols under 

common infrastructure in private wireless network on resource usage, delay and 

power consumption aspects.  

To conduct disciplined research, we chose Goal-Question-Metric (GQM) 

methodology. GQM is a paradigm which proposes measurements should be defined 

in top-down fashion (V.R.Basili, 1994). GQM approach is suitable for studies which 

have to deal with quantified information. Because it helps to break down 

implementation of the study to three levels: (V.R.Basili, 1994) 

 Conceptual Level(GOAL) 

 Operational Level(Question) 

 Quantitive Level (Metric)   

These levels force the implementation of study under structural hierarchy and draw 

outline for tests and development. Since our study depends heavily on experiments 

and tests, we need to organize our experiments. Goal-Question-Metric methodology 

is suitable for arranging such study. We decided a goal, generated research questions 

to reach it and metrics to answer our RQ's. We built this methodology in the context 

of HL7. HL7 is data transfer standard for medical organizations. It provides message 

standard for our tests and a base of analysis to evaluate our findings. Another benefit 

of HL7 context is to propose possible communication system for medical facilities. 

Detailed explanation about methodology is placed in chapter 3. 

After deciding methodology and context, we setup our test bed and developed 

experiment scenarios. We composed a set of HL7 messages to simulate context. Test 

scenarios were organized to reflect medical facilities' network load. Detailed 

explanation about our test scenarios are placed in chapter 4. 
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Our testbed is comprised of network, hardware and software components. Our 

network setup is private network provided by Wi-Fi router. The Test bed consists of 

hardware and software components. The hardware setup is formed with a PC, an 

Android Device and a router. We developed Server and Client applications for both 

protocols. Since the aim of this study is to compare MQTT and COAP on common 

middleware, we setup entire test bed as identical as possible. The same hardware is 

used for both test runs. Client and server applications are developed on the same 

frameworks. We developed server applications on .Net Framework and client 

applications on Android Framework. Other than the protocol implementations, the 

applications developed are identical. To sum up, we provide common middleware for 

both protocol experiments. Further information related to middleware is located in 

chapter 4. 

The rest of the paper is organized as follows. Chapter II provides a description of 

MQTT and COAP. Chapter III discusses on the related work. Chapter IV provides a 

qualitative comparison of the two protocols. Chapter V reports on the experimental 

study and discusses. Chapter VI discusses the results and draws the conclusions. 
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CHAPTER 2 

BACKGROUND & LITERATURE REVIEW 

This chapter contains brief information about communication protocols, MQTT and 

COAP, the summary of various related studies and explanation about thesis context. 

2.1. Communication Protocols 

In this section a brief introduction to MQTT and COAP is given. 

2.1.1. MQTT 
The Message Queuing Telemetry Transport was developed by IBM. It is designed 

for devices which have hardware constraints, especially for embedded devices and 

microcontrollers. The protocol overhead (fixed-length header of 2 bytes) makes the 

MQTT viable solutions for networks with restricted resources, such as low 

bandwidth and high-latency (Locke, 2010). This protocol centered on the broker and 

publish/subscribe pattern. (Edielson P. Frigieri, 2015). A Broker directs telemetry 

messages between nodes which can be a publisher and a subscriber. A Broker can 

also support one-to-many communications. Topic mechanism can be used as filters 

between publishers and subscribers. MQTT is implemented over TCP which allows 

reliable communication on even unreliable networks.  Implementation is centered on 

a broker which routs messages via topics. Each client receives messages from 

subscribed topics. This design of architecture enables isolation of clients. They do 

not need to know each other to get messages. Main difference between HTTP and 

MQTT is that a client does not have to pull the information it needs, but the broker 

pushes the information to the client. MQTT provides a lossless stream in an orderly 

fashion between clients and server (Locke, 2010). The stream can be in both 

directions.  

In MQTT there are three options for message delivery. They provide different level 

of reliability. 

 Quality of Service 0 (QoS0): In this level, messages are sent without any 

acknowledgement mechanism. It is known as “At Most Once” because of the 

nature of transfers. In this level messages are only sent once. (Locke, 2010) 

 Quality of Service 1 (QoS1): “At Least Once”, this level provides each 

messages are delivered at least once. Confirmation messages are expected. 

(Locke, 2010) 

 Quality of Service 2 (QoS2): “Exactly Once” is the most reliable service level 

MQTT has to offer. A Four-Way Handshake mechanism is used. 

(D.Thangavel, 2014) It guarantees a message is delivered exactly once. It is 

useful for eliminating duplicate messages.  
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Since we are comparing the two protocols in the context of healthcare systems, in 

which reliability is essential. The QoS2 “Exactly Once” feature of MQTT is used in 

this thesis. 

Table 1: MQTT Message Structure (Locke, 2010) 

0                                                                     4 5 7 8 

MQTT Control Packet Type Dup Flag QoS level Retain 

Remaining Length 

Payload 

 

Table 1 shows the format of an MQTT message. An MQTT message starts with a 2 

bytes fixed-length header followed by an optional message specific variable length 

message header and a message payload in this order. The 2 bytes header contains the 

MQTT control packet type, flags including the flag for quality of service, and 

remaining length indicating the bytes remaining within the current package.  The 

minimum packet size is 2 bytes which is the fixed length header. MQTT supports 

maximum package size of 256 MB (Locke, 2010). 

2.1.2. COAP 

The COAP protocol was designed by the Constrained RESTful Environments 

(CoRE) Working Group of Internet Engineering Task Force (IETF). It is an 

adaptation of HTTP for devices with limited power and processing capabilities (Z. 

Shelby K. H., 2014). It runs over UDP and based on REST architecture. Since it was 

an adaptation of HTTP, COAP is implemented over request/response pattern. The 

main difference of COAP from HTTP is its reduced overhead in packages and data 

exchange between clients and servers. Those benefits are the result of UDP usage on 

request/response pattern. Hence, it does not have congestion control as in TCP 

(Chen, 2014). Since UDP does not provide reliability, COAP has two mechanisms to 

overcome it. They are retransmission mechanism and resource discovery mechanism 

(Chen, 2014).  

COAP’s message layer supports four types message: CON (confirmable), NON 

(non-confirmable), ACK (Acknowledgement), RST (Reset). These messages are 

used in implementation of transport types: (Z. Shelby C. K., 2013)  

 Reliable Message Transport: COAP implements HTTP interface, so it uses 

HTTP methods. GET is the most used HTTP method. In COAP, GET 

messages stand for messages dispatch with get method. For each GET 

message received, a CON message is sent. It keeps retransmissions until 

ACK message is arrived. In any case of failure of processing messages, 

receiver sends RST message. Since UDP does not provide such capabilities, it 

is handled within HTTP implementation (Z. Shelby C. K., 2013). Figure 1 

shows a reliable transport. 
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 Unreliable message transport: Messages are transferred with NON type 

message. No ACK or RST response is required.  

 

Figure 1: COAP Reliable Transport Implementation (Chen, 2014) 

In this thesis, GET messages with CON property are used. COAP is designed as 

“Stop and Wait” when encounters packet loss. Retransmission mechanism tries to 

deliver messages. COAP message format, which is defined in the Internet Standards 

Document RFC 7252 (Z. Shelby K. H., 2014) is shown in Table 2. The messages are 

encoded in binary format. 

Table 2: COAP Message Structure (Z. Shelby C. K., 2013) 

0          2 4 8 16 32 

Ver T OC Code MessageID 

Token 

Options 

Payload 
 

    

A CoAP message starts with a fixed 4 bytes header consisting of version (Ver), type 

(T), token length (TKL), message code (Code) representing request or a success for 

request or an error, and message ID used for detecting message duplication and 

matching messages of type ACK/Reset to Confirmable/Nonconfirmable. The header 

is followed by a 0-8 byte optional token value. The token field is followed by zero or 

more COAP options and payload. COAP defines 1152 Bytes as the maximum 

message size (Z. Shelby K. H., 2014). 
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2.2. Related Studies 

In this section we present the related work in two aspects: the studies comparing 

MQTT and COAP, and the studies employing these messaging protocols in 

healthcare domain. 

In 2014 study of Thangavel et al. (D.Thangavel, 2014) a comparison of MQTT and 

COAP is under equal circumstances is presented. They design a common 

middleware which is supported by common programming interface. The researchers 

intended to compare two protocols under the same test environment. In their setup, 

the hardware consists of a laptop, a Beagleboard and a switch. Software used was 

Mosquitto (Light, 2017) for MQTT, Libcoap (O.Bergmann, 2012) for COAP and 

Wireshark for network monitoring. In their experiments, it was seen that the two 

protocols transmitted the messages 100% success. So they simulate packet loss and 

packet size to compare those two protocols with respect to delay and bandwidth 

usage. According to findings, on delay aspect MQTT performs better at low packet 

losses, COAP at higher packet losses. On bandwidth usage aspect, COAP fares better 

regardless of packet loss rate except for big packet size. As packet size grows UDP, 

which is used by COAP, loses more message causing retransmission. That situation 

leads to higher bandwidth usage than MQTT according to their findings. However, 

their paper does not cover followings. First, they focused on delay and bandwidth 

usage. Those findings are acquired by wired transmission via a switch. Nowadays 

wireless communication is rising and this trend will continue for the foreseeable 

future. Also, they do not take the node’s (in this case beagleboard) resource usage 

such as memory, CPU and energy consumption into consideration. Adding that, there 

is no indication or measurement for mobile nodes which are integral part of Internet 

of Things. 

The study by Bandyopadhyay et al. (S. Bandyopadhyay, 2013) has quite similar 

approach to the problem as Ref (D.Thangavel, 2014). Under the same hardware 

(Laptop and netbook) and software (Mosquitto, Libcoap and Wireshark), they 

compared these two protocols with respect to energy consumption, bandwidth usage 

and reliability. According to their findings, MQTT consumes more bandwidth and 

energy. Both protocols are proven to be reliable under closed protected network 

conditions. Deficiencies are quite similar with Ref (D.Thangavel, 2014). It does not 

cover wireless networks and resource usage difference between protocols. Again, 

there is no investigation about mobile nodes.  

Tucic et al. (M. Tucic, 2014) provide us with insight of a network layer comparison 

between the respective protocols. It is a survey study and it does not present any 

experimental results; it gives valuable information about how Machine-to-Machine 

(M2M) communication with multiple remote nodes. It also provides basic 

information about these protocols' features and capabilities. According to the authors 

due to its broker mechanism and publish-subscribe pattern MQTT is the most 

suitable M2M protocols for closed local network layers (M. Tucic, 2014). However, 

they do not perform any experiment to support their claims. 

Dürkop et al. (L.Dürkop, 2015) focus on mainly cellular networks such as Edge, 

UMTS and LTE and address performance comparison of popular lightweight 
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networks such as COAP, MQTT and OPC UA. They mainly compare network 

trafficking of these protocols. They do not conduct any research about nodes, but 

only focus on network throughput under EDGE, UMTS and LTE environments. The 

idea of using mobile devices as node is derived from this paper. 

Karagiannis et al. (V. Karagiannis, 2015) did a survey study on the application layer 

protocols that includes MQTT and COAP. They focus on architectural level point of 

view and provide information about MQTT, COAP, The Extensible Messaging and 

Presence Protocol (XMPP), Restful Services, The Advanced Message Queuing 

Protocol (AMQP) and Web Sockets. They conclude with COAP is the most 

lightweight protocol due to its UDP nature, but MQTT is the most energy efficient 

one. Also they claim publish/subscribe pattern is more suitable for IoT. Deficiency of 

their paper is pure qualitative one without any results to support their claims. 

De Caro et al. (N. De Caro, 2013) consider MQTT and COAP as sound alternatives 

for smartphone based sensor networks. They claim HTTP and XMPP are not suitable 

for pervasive network. Lightweight messaging protocols such as MQTT and COAP 

are more suitable for transmitting smartphone sensor data. They compare both 

protocols in qualitative and quantitative aspects. According to their study, MQTT is 

more appropriate in a qualitative aspect. Data-centric design, congestion control 

ability and flexibility features put MQTT before COAP. However, in quantitative 

aspect, COAP fares better than MQTT in bandwidth usage and round trip time 

(RTT). The authors fail to include mobile devices’ resource constraints into their 

qualitive and quantitive aspects.  

Sutaria et al. (R. Sutaria, 2013) address standardization issues on IoT and emphasize 

importance interoperability between different protocols. Since HTTP is largely used 

in current network applications and web, they think COAP would be attractive 

alternative for IoT applications. COAP has similar implementation with HTTP and 

suits better with constraint devices. Interoperability between these two protocols is 

easy task according to Sutaria et al. They also consider application level 

interoperability between MQTT and COAP. Although there is no provided 

experimental result, they claim the best way to interoperate between MQTT and 

COAP is common gateways which can operate in protocol layer. 

In their study Kim et al. (W. Kim, 2015) try to achieve complete IoT service assisted 

by smart phones. They consider COAP, MQTT and XMPP for possible candidates to 

their proposed architecture. They develop infrastructure to provide services to HTTP, 

COAP and MQTT based application platforms. Although, their paper only provides 

for a thermostat system over HTTP based communication, the idea of interoperable 

IoT system is noteworthy. 

Cohn (Cohn, 2011) compares AMQP and MQTT in his white paper. According to 

him, AMQP has wider range of use and more complete messaging protocol than 

MQTT. He states that, AMQP and MQTT has divergent intended of uses. MQTT 

targeted for small devices and small messages on low-bandwidth networks, but 

AMQP is designed for rather bigger and comprehended systems.  Also, AMQP 

provides extra functionalities especially on security aspect. However, he fails to see 

these two protocols are diverged with respect to their usage targets. Although, 
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AMQP is more powerful, it also required powerful clients. MQTT on the other hand, 

requires far less resources and bandwidth (S. Hamida, 2015).  

In this study, a comparison of MQTT and COAP through common infrastructure idea 

is influenced by Ref (D.Thangavel, 2014). Using mobile devices idea is derived from 

Ref (L.Dürkop, 2015), Ref (N. De Caro, 2013) and Ref (W. Kim, 2015). The metrics 

used in this thesis study are determined by combined analysis of these papers. Since 

network trafficking and bandwidth usage of protocols are largely studied, in this 

thesis we focus on usage of nodes’ hardware resources. After deciding mobile 

devices as nodes of network which is used to compare COAP and MQTT; metrics 

are decided by weaknesses of mobile devices which are battery, CPU usage and 

memory usage. Delay is also added to these metrics because of their difference of 

design. The atomic transaction of MQTT begins with server publishing packet and 

ends with client acquire it. However, in COAP transaction begins with client request 

packet, server sends it and finally client acquires it. This difference between data 

flows is also investigated. 

2.2.1 Use of MQTT and COAP in Healthcare  

Healthcare systems have to be reliable by its nature of the domain; hence many 

researchers automatically assume TCP is indispensable part of such systems. 

However, COAP brings reliability features over UDP. Khattak et al. (H. Khattak, 

2014) make a survey study based on COAP-based healthcare implementation. 

According to their study, COAP can be easily integrated to Internet, because of its 

HTTP-based RESTful architecture. They claim COAP might be viable option for 

healthcare systems. There are several deficiencies of this paper. First, they do not 

conduct any experiment on this issue and provide any result. Second, there is no 

comprehensive analysis with respect to reliability. This study only focuses on COAP 

might be practical implementation for devices which are used in patient monitoring. 

Another study related COAP-based healthcare application is conducted by Cha et al. 

(M. Cha, 2017). In this study, Cha et al. design a healthcare monitoring system. In 

their implementation, data acquired from sensors are transmitted to android based 

mobile devices via COAP. Linux-based gateways are responsible for transmission 

between sensor and mobile devices. Three elements (sensor, gateway, mobile device) 

of their setup communicate with each other request/response based COAP 

implementation. However, they do not provide further information other than 

architectural design. 

Hamida et al. (S. Hamida, 2015) focus on designing a mobile health framework. 

They plan to use Wireless Body Area Networks (WBANs). They consider COAP, 

MQTT, MQTT-SN and AMQP as suitable candidates and compare these protocols 

for designing a framework in their study. Message overhead and delay are their 

performance metrics. According to their study AMQP has the biggest overhead and 

the highest delay. COAP has smaller overhead and faster than MQTT. Finally, they 

conclude MQTT is better choice but COAP is attractive alternative with its low-

overhead and low-latency. 

Yi et al (D. Yi, Design and Implementation of Mobile Health Monitoring System 

based on MQTT Protocol, 2016) suggest architecture for healthcare services. The 
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proposed architecture uses MQTT for local communications. They choose MQTT for 

its low bandwidth, reliability, limited resource needs. Although, their primary goal 

was to develop a complete system design for healthcare monitoring applications, 

MQTT related test results could be a reference to our study. Also, their local area 

network setup is similar to our setup: Android client operates on Wi-Fi network 

where communication is handled by MQTT protocol. They only use MQTT but test 

all QoS levels for their monitoring data. Results are in expected value where delay is 

sorted in descending order from Qos2, Qos1 and QoS0. Since QoS2 has more control 

mechanism in its design, it has bigger delay than other QoS levels. 

2.3. HL7 

There are many possible apply areas of IoT. Healthcare applications, manufacturing 

management, automotive industry, traffic automation systems, and media and 

entertainment sectors are potential candidates (D.Soldani, 2015). For this thesis, the 

most applicable context is Healthcare. Manufacturing management, automotive 

industry, traffic infrastructure, media and entertainment sectors are heavily 

commercialized areas where all big corporations position themselves dominantly, 

hence all developments are hidden because they are thought as commercial secrets.  

In traffic infrastructure there is no substantial progress or accepted standards. On the 

other hand, healthcare has public and established standards. Therefore, we have 

chosen healthcare as a context. To simulate healthcare system, we transport Health 

Level Seven (HL7) messages over MQTT and COAP. 

HL7 is international data transfer standard for medical organizations. It is developed 

by the Health Level Seven International. Since medicine is a collaborative work 

across different areas of expertise, the communication between them is an important 

aspect of health and efficiency of knowledge sharing. Interoperability between 

different facilities also has equal importance. These requirements cause the need for 

standards and it produces HL7. HL7 provides communication platform above 

hardware and software infrastructure for hospitals and other healthcare organizations. 

These organizations can easily share clinical information between them regardless of 

their difference of healthcare, billing, and patient tracking systems. Modern medical 

information management is a knowledge intensive activity requiring a high degree of 

interoperability across various health management entities (B. Orguna, 2006). As 

Orguna (B. Orguna, 2006) suggests the aim is interoperability and HL7 provides that. 

Health Level 7 standards define and provide common workspace for data definitions, 

data exchange, diagnosis support, personal health records, documentations and 

labels. HL7 has several standards, methodologies and guidelines. In this thesis we 

have used Version 2.5.1 standard which is the most widely known standard. HL7 V2 

messages are used for compare respective protocols. There four main message types 

(HL7, 2000): 

Patient Administration (ADT): Admittance (A), Discharge (D) and Transfer (T) 

messages are, as their name suggest, the patient information related information 

carrier messages. Patient personal information (name, age, insurance etc.) and status 

of patient (admit, transfer, registration etc.) are relayed via ADT messages. 
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 Orders (ORM): Order (OR) messages (M) are used for transmitting information 

about an order. ORM messages also relay orders statuses such as new orders, 

cancellations, information updates, and discontinuation. 

 

Results (ORU): Observation (O) Result (R) and Update (U) messages transmits 

observation and results from various treatment and analysis instrument such as EKG, 

Clinical lab results, Imaging study reports, Patient condition or other data (i.e. vital 

signs, symptoms, allergies, notes, etc.).  It may also be used to transmit result data 

from the producing system to a medical record archival system or to another system 

not part of the original order process. ORU messages are sometimes used to register 

or link to clinical trials or for medical reporting purposes for drugs and devices as 

well. 

 

Charges (DFT): Detail (D) financial (F) transaction (T) messages contain 

information about patients' billing and accounting data. DFT includes charges, 

deposits and carries them between clinical and billing systems. 
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CHAPTER 3 

METHODOLOGY 

We follow Goal-Question-Metric (GQM) methodology for our thesis investigation. It 

provides us traceable link and action steps between aim of the study and 

experiments. In other words, it helps to sort our experiments in reasonable structural 

integrity. Also, it provides contextual order for examination of the experiment 

results. 

3.1. Goal 

The goal of this thesis is to determine strengths and weaknesses of MQTT and 

COAP protocols on application level. After stating these strengths and weaknesses, 

possible usage areas are suggested. To achieve this goal several research questions 

(RQs) are developed. Measurable information is the key for answering research 

questions. To acquire the measurable information, we need metrics. Hence, first we 

decided RQ’s; then the metrics. We have planned to run series of experiments to 

acquire metric results. After acquiring the results which are measurable information 

to us; we sought to answer RQs. 

Research questions are listed below: 

 RQ1: Which protocol is resource efficient for mobile hardware aspect? 

 RQ2: Which protocol performs better for transfer time aspect? 

For each RQ, we determined a set of metrics to provide a measurable data to answer 

the question. 

3.2. Research Questions 

We choose three aspects and develop three research questions (RQ) related to them. 

Those are data, resource and performance aspects. 

3.2.1.RQ1:Resource Aspect 
In this thesis we focus protocols on application level. Specifically, we focused on 

applications running on a node. In the test environment, this node is a mobile device. 

The application, which contains the implementation of respective protocols, uses the 

resources of the node. The usages of these resources are classified as metrics. Three 

metrics are chosen as shown in Figure 2: 

Central Processing Unit (CPU) Time: Every application has to use CPU Allocation 

for execution. In other words, every application uses CPU resource while it is 

running. So application’s usage of CPU Allocation is important metric for this thesis. 
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Memory Usage: Mobile devices share its memory between applications. Hence, 

memory usage is distinctive quality between applications.  

Battery Usage: Battery is the biggest bottleneck for mobile devices. Great number 

of research studies is conducted to increase battery life of these devices. 

Application’s energy usage is a significant criterion. 

 

Figure 2: RQ1 and Metrics 

 

3.2.2.RQ2:Performance Aspect 
When two protocols are compared, it is inevitable to measure their packet delivery 

performances. This aspect is analyzed in the literature, as discussed in Chapter 2, as 

well. In this thesis we measured delay metrics on application level. Other papers 

monitored network via Wireshark software (G.Combs, 2007). In this study, delay 

metric is considered as atomic packet delivery time. We define our delay metric as 

the time passed between a message become available at server and its arrival to 

client.  COAP and MQTT have different approach on communication style. COAP 

polls server for message availability. MQTT publishes messages when it is ready.  

3.3 Metrics 

There are several metrics are determined and linked with RQs. Their definitions are 

given in the previous section. In this section, further information is provided. Adding 

that, how these metrics are gathered is explained. 

Central Processing Unit (CPU) Usage: CPU usage time and idle time are acquired 

from the android system file named “proc” and then CPU usage percentage is 

calculated. 

Memory Usage: Unshared memory usage is acquired from the Android operating 

system. 
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Battery Usage: Android also provides battery status for applications. It can be 

acquired programmatically via the native Android libraries. 

Delay: It is measured as a time elapse for single packet delivery. Due to their 

different nature, for each protocols delay is calculated differently. In COAP entire 

request/response time is qualified for delay. However, in MQTT delay is 

transmission from publisher to subscriber.  

The whole picture of Goal-Question-Metric tree is depicted in Figure 3. 

 
Figure 3: GQM Structure 
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CHAPTER 4 

EXPERIMENTS/ EXPERIMENT SETUP 

This chapter contains experiment related information. Experiment setup is explained 

in section 4.1 and measurement of tests is located section 4.2. Experiment results and 

protocols comparison are discussed in chapter 5.  

4.1. Setup 

For our experiments, we setup a closed private network and develop context as a 

healthcare system which is driven by HL7 messages. We compare MQTT and COAP   

not on network layer but on application layer. Since this thesis focus on IoT, we try 

to understand protocols’ behavior on network nodes. In our case, the clients are 

nodes of network. For both protocols, we developed both server and client 

applications. Server applications are responsible for providing HL7 messages for the 

experiment. The results are collected from clients. Client applications are developed 

as light as possible to acquire protocols’ resource usages accurately. In both 

applications metrics are acquired by identical software subcomponents. The only 

difference between Client applications is protocol implementation. In MQTT, we use 

M2MQTT.jar published by IBM that implements MQTT protocol. In COAP, 

Californium (M. Kovatsch, 2014) implementation of COAP is used. The network 

setup is explained below and context is detailed at “Test Case Scenarios” section.  

4.1.1. Network Setup 
Network setup consists of a single router with Wi-Fi capabilities. The Network is 

configured as closed, private network to eliminate any outside effects. There is no 

direct outside influence on clients and servers. Since it is closed to the world, any 

bandwidth configuration can be provided for test cases. 

4.1.2. MQTT Setup 
Setup for MQTT tests are divided into two categories: 

Hardware 

 

Hardware setup of MQTT is consists of three components (Figure 4): 

 PC working as a server 

 Router  

 Android device working as client 

A PC is configured to be the host of broker and server. The Broker is a third party 

software which is responsible for publish/subscribe mechanism of MQTT. 

Mosquitto is used for the broker in this setup. We have developed the Server 



18 

 

component for distribution of data. An Android device simulates the client. Android 

application implementing the MQTT client runs on this device. Figure 4 illustrates 

hardware setup for MQTT.  

 

Figure 4: Hardware Setup for MQTT 

 

Software 

 

Two programs were developed for this setup: MqttClient and MqttServer. On the 

server side, we implemented an MQTT server, named MqttServer, that is responsible 

for publishing data. It has simple user interface and it is single process application. 

This server uses a broker, called Mosquito, to publish data on the network via a 

router. On the client side, we implemented a MqttClient application that handles 

published messages. In order to accomplish this task, MqttClient subscribes to the 

broker before publishing commences. MQTTClient also has simple user interface, 

and all functionality is delegated to an asynchronous task (thread) in order to prevent 

screen locking. In order to lighten our client applications, we only implement 

messaging and data gathering functionality at our client application. Our aim is to 

reach only resources that are used on messaging phase. We apply same constraints 

on COAPClient as well. 

 

Figure 5: Software Components of MQTT 
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Figure 5 shows the software components used in the experiment set up. MQTTServer 

is the component that runs on PC. It is responsible for publishing messages. It 

implements M2MQTT.dll that IBM published for .NET environment. MQTTServer 

publishes the messages; Mosquitto (Light, 2017) brokers the messages into the 

network. This concludes Server Side’s operations. MQTTClient application receives 

the messages. MQTTClient implements M2MQTT.jar also, published by IBM for 

Java environmenti. That is our client application. For each arrival of message, metric 

data are stored. At the end of the test run metrics are dumped into text files for 

analysis. 

4.1.3. COAP Setup 
Similar to the MQTT setup, the COAP setup is classified into two parts. 

Hardware 

 

The hardware setup of COAP is the same as MQTT (Figure 6):  

 PC working as a server 

 Router  

 Android device working as client 

CoapServer operates on a PC. The Router is responsible for network transfers. 

Android device simulates the client. Android application of COAP runs on this 

device. 

 

Figure 6: Hardware Setup for COAP 

Software 

 

Similar to MQTT, we have developed two programs: CoapServer and CoapClient. 

CoapServer posts prepared resources to CoapClients' requests. Unlike MQTT, COAP 

applications are driven by clients. 
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Figure 7 shows the software components we have implemented and used in the 

experiment set up. COAPServer is the component that runs on PC. It is responsible 

for responding to COAPClient’s requests. It is a COAP.Netii framework adaptation. 

It is a single process application with simple interface. COAP.Net is developed by 

ETH Zurich for .Net environment. COAPClient application requests the messages 

and acquires them from COAPServer’s responses. Californium (M. Kovatsch, 2014) 

implementation is used in COAPClient. It is a SpitFireFoxiii adaptation. It also has an 

asynchronous task (thread) which handles communications. For each message 

acquired, metric data are stored. At the end of the test run, metrics are dumped into 

text files as same way in MQTTCLient for analyze. 

 

Figure 7: Software Components of COAP 

4.1.4. Test Case Scenarios 
We design our tests under the context of medical applications. We have planned the 

experiments in several scenarios aiming to simulate different environments in order 

to compare MQTT and COAP under possible circumstances. In E-Health scenarios, 

departments of medical facilities are simulated. Hospitals can roughly be divided into 

3 large departments. These departments are emergency, out-patient polyclinic and 

inpatient service. Therefore, we developed one scenario for each of these 

departments. Scenarios are built on HL7 messages which are transferred via network 

where MQTT or COAP running. Each scenario has different ratio of HL7 messages. 

Our scenario message distribution is depicted in Table 3:  

Table 3: Test Case Scenarios 

Scenario ADT% ORM% ORU% DFT% 

Emergency 60 20 10 10 

Polyclinic 20 30 30 20 

Inpatient 10 35 35 20 

 

The reasoning behind these ratios is basic operational habits of hospitals. In 

emergency, a large number of patients are admitted and after basic treatment they are 

either discharged or transferred. Hence ADT ratio is high at emergencies. In out-
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patient polyclinics where treatments are applied balanced message pattern can be 

seen. Because for nearly all patients who are admitted there is medical analysis 

orders and observations are applied. Obviously there will be some pharmacy-related 

actions. Inpatient department messages are comprised mostly order and observation 

messages. 

We created emergency, polyclinic and inpatient test cases consisting of 300 

messages and set up a message repository. During the experiments, the server 

applications (MQTTServer and COAPServer) get the messages from this repository 

and send them in the order they appear. On each test run they publish (MQTT) or 

response (COAP) from server, depending on which protocol is being tested. Server 

applications have presented one message per 100 ms out of 300 message pool for 15 

minutes. When all the messages are sent, the server continues to sending the 

messages starting from the beginning of the repository. Message package sizes are 

between 386-534 Bytes for MQTT and 370-520 Bytes for COAP. 

4.2 Qualitive Analysis on Reliability and Integrity 

In this section, we provide a qualitative analysis on reliability and integrity of the two 

messaging protocols. This analysis is a qualitative one using the literature and the 

standards specification since our experimental setup is on a closed network which is 

not suitable to evaluate these aspects empirically.  

Since COAP and MQTT are lightweight network messaging protocols, their primary 

aim is to deliver data from source to destination. We analyzed this delivery in terms 

of two aspects: Reliability and Integrity. Reliability refers that data will definitely 

reach from source to destination. Integrity refers that data will correctly reach from 

source to destination.  

MQTT provide reliability and integrity at the transport layer due to the use of TCP. 

MQTT runs over TCP (Locke, 2010). TCP specification (Postel, 1981) states that 

TCP provides reliable communication. TCP applies sequence number and 

acknowledgements to make transmission reliable (Postel, 1981). Adding that, MQTT 

specification (Locke, 2010) states that QoS2: “Exactly Once” assures there is no loss 

or duplication of messages. Thangavel et al (D.Thangavel, 2014) experimentally 

support this statement. Although, they do not provide experimental result Tucic et al 

(M. Tucic, 2014) and Yi et al (D. Yi, 2016) are also supports reliability of MQTT.  

COAP runs over UDP (Z. Shelby C. K., 2013) which has a reputation for 

unreliability unlike TCP (Postel J. , 1980). COAP handles reliability issues at 

application layer. A retransmission mechanism is added to provide reliability. Also, 

COAP message packets contain 16-bit Message ID section to detect duplicates (V. 

Karagiannis, 2015). COAP retransmit messages until it acquires an 

acknowledgement (Chen, 2014). By applying HTTP features, COAP manages 

acknowledgements and eliminate UDP’s deficiencies (Z. Shelby C. K., 2013). 

Thangavel et al (D.Thangavel, 2014) and Bandyopadhyay et al (S. Bandyopadhyay, 

2013) support this statement. 



22 

 

The standards and the literature show that both protocols have reliability and 

integrity properties. Therefore, before running our experiments, we checked whether 

the protocol implementations satisfy these conditions. I.e. the protocol and mobile 

implementations transmit messages in a reliable fashion with preserved integrity. 

This sanity test on our MQTT and COAP implementation showed that the 

applications developed for the experiment setup satisfy the reliability and integrity 

conditions. 

4.3. Measurement 

Before proceeding measurement and the analysis section, we explain how data are 

gathered and evaluated. The metrics are collected during test runs. When a client 

receives a message a set of metric data are stored. However, these data are not 

meaningful yet. They are raw information acquired from Android system files. To 

lighten the applications, analyze phase is separated from client applications. In other 

words, we divide measurement phase into two groups: Collection Phase and 

Evaluation Phase. In collection phase, the aim was to gather raw data accurate and 

valid. To achieve dependable results, we ran the test scenario 10 times for both 

protocols.  

We ran the test scenario for 10 times with the time interval of 15 minutes. After each 

test, Delay, CPU Allocation, Memory Usage, Battery data were gathered from the 

application log. 

After gathering data phase, evaluation phase initiated. In this phase raw data were 

subject to calculation of average and median means. The reasons behind these 

calculations are to eliminate spikes or inaccurate results which were caused by 

unexpected or irrelevant outside effects. 

The following sections present the experiment results. 

4.3.1. MQTT 
In this section the test results for MQTT are presented. When message is ready, 

server application publishes the messages and client application gathers results. 

Delay: MQTT has around 46 milliseconds delay between server and client. The 

numeric results are depicted in Table 4: 

Table 4: Message Delay Results for MQTT 

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms) 

Run 1 46 39.470 8.944 

Run 2 46 39.660 8.888 

Run 3 46 39.755 8.852 



23 

 

Run 4 46 40.305 8.512 

Run 5 46 39.820 8.710 

Run 6 46 39.720 8.907 

Run 7 46 40.100 8.732 

Run 8 46 39.320 8.721 

Run 9 46 39.665 8.837 

Run 10 46 40.270 8.661 

 

Graphical representation in Figure 8 also shows stable condition for delay metric. It 

transfers messages within expected range of delays. Notable derivation from Figure 8 

is the difference between median and average values. This shows us that MQTT 

fluctuates within range of 8-9 ms in terms of delay. It sometimes transmits messages 

below 35ms. However, it is quite stable around 46ms. Our results are very close to 

the literature’s Wi-Fi latency results (S. Hamida, 2015) with respect to MQTT.  

 

Figure 8: Message Delay Representation for MQTT 

CPU Usage: The CPU resource is divided between applications running on the 

operating system. Amount of time that the processor allocated to the application is 

considered as CPU resource usage of application. 

In android CPU usage can be acquired any given time from “proc” file. CPU usage 

data are collected via formula of: 
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CPU = ((cpu2 - cpu1) / ((cpu2 + idle2) - (cpu1 + idle1))/1000        

Equation 1 

Equation 1iv calculates application percentage of CPU usage while running. Running 

applications share CPU. Operating system is responsible for allocating CPU between 

running applications. Hence every application uses processor in turns. CPU 

Allocation denotes the time that processor actually processes designated tasks from 

application when the application takes its turn of processor usage. Cpu2 is the 

duration after the application used processor and cpu1 is the duration before. Idle 

denotes processor sits idle when application is using processor. Cpu2 and cpu1 

denote processor usages before and after application’s turn. Idle2 and idle1 denote 

how much time processor sits idly while application is running.  

MQTTClient application allocates around 26% of CPU. Results are depicted in Table 

5: 

Table 5: CPU Allocation Percentage Results for MQTT 

Run Count MEDIAN (%) AVG (%) S.DEV (%) 

Run 1 24.786 24.763 0.199 

Run 2 27.815 27.805 1.115 

Run 3 25.623 25.645 0.346 

Run 4 25.556 25.568 0.198 

Run 5 26.298 26.165 0.405 

Run 6 26.360 26.328 0.269 

Run 7 26.669 26.723 0.433 

Run 8 27.069 27.094 0.190 

Run 9 26.972 26.514 1.028 

Run 10 24.741 24.722 0.207 

 

Figure 9 shows MQTT results for CPU metrics. Horizontal axis shows the test run 

identifier. The vertical axis shows CPU Allocation percentage of MQTTClient. The 

columns show the CPU Allocation of each test runs. The average and the median of 

the measurements show that MQTTClient allocates 25% of CPU with little 

fluctuation. 
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Figure 9: CPU Allocation Representation for MQTT 

Memory: MQTTClient uses around 12 MB of unshared memory. Android has 

divided device’s memory between processes. Processes might be sharing the same 

segment of memory. However, to determine accurate memory usage in this thesis 

only unshared memory is gathered. Results are depicted in Table 6: 

Table 6: Memory Usage Results for MQTT 

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB) 

Run 1 11.718 11.625 0.341 

Run 2 12.556 12.499 0.230 

Run 3 12.184 12.152 0.148 

Run 4 12.176 12.144 0.156 

Run 5 12.532 12.384 0.227 

Run 6 12.552 12.467 0.195 

Run 7 12.512 12.458 0.183 

Run 8 12.508 12.474 0.150 

Run 9 12.496 12.242 0.440 

Run 10 11.658 11.581 0.415 
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The graphic in Figure 10 shows memory usage of MQTTClient while it is running. 

The vertical axis represents memory usage in MB. 

 

Figure 10: Memory Usage Representation for MQTT 

As the Figure 10 depicts MQTTClient uses 12MB of memory. Similar to CPU 

Allocation, memory usage of MQTTClient is stable. 

Battery Usage: To determine accurate power consumption the battery was fully 
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Figure 11: Battery Consumption Results for MQTT 

0

2

4

6

8

10

12

14

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

MQTT Memory Usage

MEDIAN

AVG

S.DEV

0

2

4

6

8

10

12

14

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

B
at

te
ry

 %

Run#

MQTT Battery Consumption



27 

 

Since battery is bottleneck for mobile devices energy consumption is important 

metric for our study.  Figure 11 shows the battery consumption results for 

MQTTClient results. Extensive explanation and comparison is located in Chapter 5. 

4.3.2 COAP 
In this section the test results for COAP are presented. Since COAP is based on 

request/ response pattern we conduct our experiments by polling for messages with 

different intervals. We choose 50ms, 100ms, 150ms, and 200ms for polling. After 

each poll we gather metric data. For delay data we collect latency between message 

generation and client’s message acquisition. CPU and memory data are collected 

from Android proc file system. We get battery data from Android inbuilt 

PowerManagerv library. Experiment results are depicted in this section.  Further 

analysis and discussions are placed in Chapter 5. 

50ms Polling Results: 

In this run COAPClient polls server per 50ms. 

Delay: COAP has around 7 milliseconds delay at 50ms polling. Its numeric results 

are shown at Table 7: 
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Table 7: Message Delay Results for COAP(50ms) 

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms) 

Run 1 6,5 9,725 20,758 

Run 2 6 11,21 28,620 

Run 3 7 9,235 24,820 

Run 4 6 9,935 24,802 

Run 5 6 8,970 21,0245 

Run 6 7 10,935 30,703 

Run 7 7 12,050 27,540 

Run 8 6 11,840 36,380 

Run 9 6 10,685 32,180 

Run 10 7 7,780 6,011 

 

Graphical representation in Figure 12 shows that delay results vary but COAP 

performs better than MQTT with respect to message latency in 50ms polling case. 

Recall that the delay is measured as the time difference between a message is 

generated and its client acquisition. 

 

Figure 12: Message Delay Representation for COAP(50ms) 
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CPU Usage: In android CPU usage can be acquired any given time from “proc” file. 

CPU usage data are collected via equation 1. COAP Client application allocates 

around %53 of CPU. Results are depicted in Table 8.  

Table 8: CPU Allocation Percentage Results for COAP(50ms) 

Run Count MEDIAN (%) AVG (%) S.DEV (%) 

Run 1 54,916 63,932 24,367 

Run 2 51,962 62,129 25,185 

Run 3 53,290 61,360 22,256 

Run 4 52,593 59,914 23,387 

Run 5 52,203 62,959 25,573 

Run 6 53,916 61,451 24,073 

Run 7 52,311 59,863 22,831 

Run 8 50,641 58,919 23,521 

Run 9 51,041 55,982 20,869 

Run 10 53,277 62,552 24,943 

 

Figure 13 shows CPU Allocation of COAPClient for 50ms polling: 
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Figure 13: CPU Allocation Representation for COAP(50ms) 
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Table 9: Memory Usage Results for COAP(50ms) 
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Run 10 36,712 41,759 18,784 

 

The graphic in Figure 14 shows memory usage of COAPClient for 50ms polling: 

 

Figure 14: Memory Usage Representation for COAP(50ms) 

Battery: To determine accurate power consumption the battery is fully charged 
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Figure 15: Battery Consumption Results for COAP(50ms) 
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costly operation which might increase the consumption. Besides, in 50ms polling 

case the client tries two times to get the message, since a message is generated per 

100ms. This situation also affects battery.  Extensive explanation and comparison is 

located in chapter 5. 

100ms Polling Results: 

In this run COAPClient polls server per 100ms. 

Delay: COAP has around 7 milliseconds delay at 100ms polling. Its numeric results 

are depicted in Table 10: 

Table 10: Message Delay Results for COAP(100ms) 

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms) 

Run 1 7 8,735 5,610 

Run 2 7 8,345 6,436 

Run 3 7 9,275 7,542 

Run 4 6 8,290 5,017 

Run 5 7 9,095 6,457 

Run 6 7 8,715 7,391 

Run 7 7 8,705 6,705 

Run 8 6 8,490 5,589 

Run 9 7 8,445 4,839 

Run 10 6 7,725 5,611 

 

Graphical representation in Figure 16 shows that there is a big variation on delay 

values on COAP, but COAP is still faster than MQTT. This fluctuation is probably 

caused by retransmission cases. Also, COAP’s latency results are supported by 

Hamida et al (S. Hamida, 2015). 
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Figure 16: Message Delay Representation for COAP(100ms) 

CPU Usage: COAP Client application allocates around %50 of CPU. Results are 

depicted in Table 11. This table shows the median, mean and standard deviation of 

CPU allocation percentage for each test run. 

Table 11: CPU Allocation Percentage Results for COAP(100ms) 

Run Count MEDIAN (%) AVG (%) S.DEV (%) 

Run 1 48,381 49,169 5,901 

Run 2 49,159 49,241 5,738 

Run 3 48,734 49,048 5,731 
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Run 6 48,255 48,888 5,269 

Run 7 49,064 49,318 5,550 

Run 8 49,927 49,690 5,294 

Run 9 47,017 48,742 5,474 

Run 10 49,468 49,143 6,179 

Table 12: CPU Allocation Results for COAP 
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Figure 17: CPU Allocation Representation for COAP(100ms) 
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The graphic in Figure 18 shows memory usage of COAPClient while it is running:  

 

 

Figure 18: Memory Usage Representation for COAP(100ms) 

COAPClient’s memory usage is stable around 20MB with the deviation of 1.5MB at 

100ms polling. 

Battery Usage: Approximately, COAPClient consumes %30 of energy during the 

tests sessions. Figure 19 shows results: 

 

 

Figure 19: Battery Consumption Results for COAP(100ms) 
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In this run COAPClient polls server per 150ms. 

Delay: COAP has around 56 milliseconds delay at 150ms polling. Its numeric results 

are shown at Table 14: 

Table 14: Message Delay Results for COAP(150ms) 

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms) 

Run 1 56 64,525 67,830 

Run 2 56 62,635 156,366 

Run 3 56 86,315 215,889 

Run 4 57 76,615 196,299 

Run 5 56 59,660 38,119 

Run 6 56,5 76,220 206,375 

Run 7 57 68,475 72,152 

Run 8 57 67,670 57,361 

Run 9 56 59,29 43,515 

Run 10 56,5 83,25 229,531 

 

Visual depiction of latency is presented at Figure 20. Recall that in this setup, the 

client is polling in 150 ms intervals while messages are prepared in the server in 

100ms intervals. Therefore, messages are not always ready to consume at each 

polling. This situation is causing the standard deviation to be high. 
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Figure 20: Message Delay Representation for COAP(150ms) 

CPU Usage: COAP Client application allocates around %22 of CPU at 150ms 

polling. Results are depicted in Table 15. 

  

0

50

100

150

200

250

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y 

(m
s)

Run#

COAP Message Delay

MEDIAN

AVG

S.DEV



38 

 

Table 15: CPU Allocation Percentage Results for COAP(150ms) 

Run Count MEDIAN (%) AVG (%) S.DEV (%) 

Run 1 22,425 22,476 1,1702 

Run 2 22,27 22,468 1,201 

Run 3 22,176 22,282 1,119 

Run 4 22,414 22,556 1,143 

Run 5 22,309 22,416 1,193 

Run 6 22,370 22,388 1,077 

Run 7 22,380 22,423 1,157 

Run 8 22,397 22,427 1,185 

Run 9 22,469 22,445 1,190 

Run 10 22,47715 22,478 1,127 

 

Figure 21 shows visual representation of Table 15. 

 

Figure 21: CPU Allocation Representation for COAP(150ms) 
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Memory: COAP Client uses around 23 MB of unshared memory at 150ms polling. 

Table 16 lists experiment results. 

Table 16: Memory Usage Results for COAP(150ms) 

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB) 

Run 1 23,670 26,541 8,469 

Run 2 23,672 26,507 8,0480 

Run 3 23,656 26,418 8,158 

Run 4 23,676 26,726 8,278 

Run 5 23,672 26,830 8,051 

Run 6 23,750 26,137 7,172 

Run 7 23,676 26,976 8,209 

Run 8 23,674 26,187 7,944 

Run 9 23,658 26,546 8,190 

Run 10 23,664 26,281 7,751 

 

Figure 22 shows COAPClient’s memory usage at 150ms polling. 

 

Figure 22: Memory Usage Representation for COAP(150ms) 
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Battery: As CPU and memory resource usages decrease, power consumption of 

COAPClient reduces accordingly. Numeric results are shown at Figure 23. 

 

 

Figure 23: Battery Consumption Results for COAP(150ms) 
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Run 9 66 65,865 63,677 

Run 10 58,5 57,940 49,837 

 

While polling interval increases COAP’s latency advantage diminishes. Figure 24 

depicts this result. 

 

Figure 24: Message Delay Representation for COAP(200ms) 
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Run 8 17,785 17,898 1,170 

Run 9 17,701 17,931 1,203 

Run 10 17,810 17,893 1,172 

 

At 200ms polling, COAPClient actually allocate lower CPU than MQTTClient. 

COAPClients CPU allocation is shown at Figure 25. 

 

Figure 25: CPU Allocation Representation for COAP(200ms) 
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Run 7 24,826 28,217 9,401 

Run 8 25,052 28,020 9,222 

Run 9 25,486 28,660 9,492 

Run 10 25,532 28,382 9,229 

 

Memory usage experiment results are placed in Figure 26. 

 

Figure 26: Memory Usage Representation for COAP(200ms) 
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Figure 27: Battery Consumption Results for COAP(200ms) 

Polling at different rates directly affects COAP experiment results. Hence, to provide 

a better understanding we prepare several figures. These figures compare polling 

interval’s impacts on our metrics. 

Figure 28 shows latency results under different polling intervals. Latency increases 

as polling interval grows. Since messages are generated per 100ms, the latency is 

greater in polling at 150 and 200 ms intervals.  The larger intervals cause longer 

latencies. 

 

Figure 28: COAP Delay Comparison by Polling 
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Figure 29 : COAP CPU Allocation Comparison by Polling 

Polling intervals has no direct effect on memory usage. Our findings are presented at 

Figure 30. 

 
Figure 30: COAP Memory Usage Comparison by Polling 
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Figure 31: COAP Battery Consumption Comparison by Polling 

Figure 32 provides combined experiment results on COAP. 

 

Figure 32: COAP Overall Comparison by Polling 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter presents our discussions on the results of the experiments presented in 

the previous chapter. In our experiments, the numerical results are dependent to 

hardware and software specifications. In order to overcome this threat, the exact 

same hardware and software infrastructure is used for testbed. To accomplish exact 

settings for hardware is easy, but it is hard to achieve for software. To provide 

accurate comparison environment, in software components are designed as layers 

and the only difference between applications (MQTTServer, MQTTClient, 

COAPServer and COAPClient) is protocol implementations. We also should note 

that, our metrics are collected from clients (nodes); since our primary focus is 

protocols effects on clients.  

In the experiments, the servers have produced a message for each 100ms. MQTT has 

publish/subscribe pattern, so MQTTServer publishes message as soon as message 

ready. At MQTTClient we collect the metric data. However, COAP implements 

request/response pattern. COAPClient needs to poll server for messages. To see the 

effect of polling interval, we have collected the data for 50ms, 100ms, 150ms and 

200ms polling intervals. Analyses of the results are listed below. 

Delay: As seen in Figure 33, MQTT has higher delay than COAP, unless polling 

interval is bigger or equal to message generating interval. At 50ms and 100ms 

polling COAP fares better than MQTT; however, at 150ms and 200ms polling 

experiments MQTT has lower latency. At the same message acquisition timing, 

because of its UDP implementation and smaller packet overhead (L.Dürkop, 2015) 

COAP is faster than MQTT. Another interesting observation is that MQTT performs 

in more stable fashion. COAP has some spikes through the test sessions. Those 

spikes are values belong to retransmitted packets. As the COAP specification (Z. 

Shelby C. K., 2013) states, in the case of a packet loss the protocol triggers its 

retransmission mechanism. The spikes in the experiments are caused by 

retransmission of packets. Since UDP does not have any reliability feature, HTTP 

enables COAP to provide this feature. Although, COAP is significantly faster than 

MQTT, retransmission is extremely expensive. Retransmission nearly doubles 

message delay. Our testbed is private network; hence number of retransmission cases 

is not high. Our results are backed by Hamida et al (S. Hamida, 2015). Comparison 

on delay aspect between COAP with different polling intervals and MQTT is shown 

Figure 33. 
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Figure 33: Delay Comparison between COAP and MQTT 
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Figure 34: CPU Allocation Comparison between COAP and MQTT 

Memory: As Figure 35 shows, COAP uses more memory than MQTT. COAP Client 

has more software component than MQTT due to its implementation. This situation 

is the result of design choices of protocol designers. In COAP, the client has the 
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exception of 50ms polling.   

 

 

Figure 35: Memory Usage Comparison between COAP and MQTT 
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Battery Usage:  MQTTClient is more energy efficient than its COAP counterpart as 

shown in Figure 36. This result is predictable due to COAPCLient’s memory 

resource usage is higher than MQTTCLient. Also, since at the lower polling intervals 

COAP requires more CPU time, the battery usage is higher in these intervals.  Our 

findings related to battery usage are supported by Karagiannis et al. (V. Karagiannis, 

2015). It is also affected by retransmission and resource discovery cases. Since UDP 

does not provide any reliability or integrity features, these features are provided in 

application level in the COAP implementation. Specifically, HTTP is part of its 

implementation. Any packet loss or reconnection causes more resource usage which 

is end up more energy consumption. Battery usage has positive correlation with CPU 

allocation. As CPU allocation gets high, power consumption also increases. As their 

combined (CPU and Memory) resource usages get closer, MQTT and COAP 

protocols’ power consumptions also get close to each other.   

 

Figure 36: Battery Consumption Comparison between COAP and MQTT 
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CHAPTER 6 

CONCLUSION 

We aim to compare two prominent lightweight network protocols; MQTT and 

COAP. In order to achieve this goal, we designed and provided a common hardware 

setup and software infrastructure. A PC, a mobile device and a router formed our 

hardware setup. To avoid constructional threat, we have developed the software 

implementing both protocols. Our software applications had dependencies to two 

common frameworks. They are .NET and Android frameworks. We developed our 

server applications on .NET, client applications on Android framework.  

We studied according to GQM approach. The goal is to determine strengths and 

weaknesses of MQTT and COAP protocols on application level. The following 

research questions are chosen: 

 RQ1: Which protocol is resource efficient for mobile hardware aspect? 

 RQ2: Which protocol performs better for transfer time aspect? 

Our context in the experiments is medical facilities. We simulated them with HL7 

messages. We analyzed our findings in aspect of clients. In other words, we 

examined the effect of the protocols on the nodes.  

For RQ1, we measured CPU allocation, memory usage and battery consumption. 

According to our findings, MQTT consumes lower hardware resource than COAP, 

unless polling interval is bigger than message generating interval. At higher intervals 

memory usage still favors MQTT; however CPU allocation results are reversed. 

COAP fares better than MQTT at higher polling interval with respect to CPU 

allocation. Power consumption of COAP reduces with increase of interval and its 

200ms polling results are similar with MQTT.  CPU allocation and memory usages 

of MQTT and COAP have not been investigated before in the literature, to the best 

of our knowledge the power consumption results conflicts with the literature (S. 

Bandyopadhyay, 2013). It is understandable because Bandyopadhyay et al. (S. 

Bandyopadhyay, 2013) considers entire systems power consumption. On the other 

hand, Karagiannis et al. (V. Karagiannis, 2015) claims by using publish/subscribe 

pattern MQTT nodes require less message processing which results extending battery 

life. We only focused on battery consumption at the client side. Since server 

machines are provided with UPS, power is not constraint resource for them. On the 

other hand, our client consists of mobile device for which power is the greatest 

constraint. In conclusion, under similar delay or polling conditions MQTT requires 

less hardware resources than COAP. For RQ2, we measured the message delay; 

COAP is clearly faster than MQTT. Although there are some fluctuations at COAP’s 

results, it still faster than MQTT unless polling rate is higher than data generate rate. 

These results are compatible with the literature (D.Thangavel, 2014) (S. Hamida, 

2015) (N. De Caro, 2013). Figure 37 shows overall comparison conclusion of our 

experiments. 
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The areas of use of the protocols are determined by protocols strengths. In general, 

publish/subscribe pattern suits better for IoT than request/response pattern (S. 

Hamida, 2015). When message delay is the most important factor and overweights 

hardware constraints, COAP is apparent solution. As for the CPU metrics, on larger 

polling intervals, the resource usage of COAPClient is regressed. However, it costs 

COAP’s latency advantage. There is a tradeoff between CPU allocation and latency 

for COAP. By increasing polling interval COAP we can achieve lower CPU 

allocation than MQTT. But if intended solution requires balance between latency and 

CPU MQTT should be used. Also, MQTT would be better choice when it comes to 

reliability (D. Yi, 2016) because of its TCP features (Cohn, 2011). COAP also has 

reliability mechanism; but TCP is found more dependable (N. De Caro, 2013). 

Although there are several initiatives COAP-based patient monitoring (M. Cha, 

2017) and sensor network (H. Khattak, 2014) applications; MQTT still stands more 

preferable solution. This conclusion is supported by several studies (M. Tucic, 2014) 

(D. Yi, 2016)  (V. Karagiannis, 2015) (S. Hamida, 2015).  

 

Figure 37: Overall Comparison of MQTT and COAP 

Patient related information messages would be carried on MQTT.  If total hardware 

resource usages are considered as a whole, mobile applications which are used by 

medical staff should be implemented with MQTT due to its lower combined resource 

usages. Although at higher intervals COAP uses less CPU time, combined CPU, 

memory and battery requirements are higher than MQTT. Ambulance and medical 

supply movement information related communications should be carried over COAP 

since time is essence. Nearly all studies confirm low-latency advantage of COAP 

over MQTT when COAP sends requests at the same time MQTT publishes. In other 

words, if the message is ready and both protocols try to get it at the same time; 

COAP performs better than MQTT. However, there are several limitations in hybrid 

approach. Since each protocol has strong sides we suggest hybrid approach for 

medical facilities.  Currently MQTT and COAP are not interoperable. In other words, 

they cannot communicate each other. Each node is able to process both protocols and 

they communicate via middleware which is capable of processing messages of both 
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protocols (R. Sutaria, 2013). Former approach is not practical because nodes are 

constraint devices and this solution negates all advantages of lightweight messaging 

protocols. Latter approach is more suitable; however, it may add additional latency 

and increase overall system complexity by an adding extra layer. 

There are limitations for our thesis. They could be classified into two categories, 

Hardware and software limitations. First, hardware limitations consist of closed 

network, PC-mobile device specifications and router capabilities. We ran the tests on 

closed private network. On public network, security should be included as a metric, 

however security is not a concern of this study, and it does not cause any threat to 

validity. Adding that, we used router that has data rate of 150 Megabit per second 

(Mbit/s)vi. Any differences at data rate can cause changes in delay experiments. Also 

our client applications run on mobile device that has Quad Core 1200 megahertz 

(MHz) and 4 gigabyte (GB) memory. These specifications directly effect on CPU 

allocation and memory usage. Numerical results of CPU allocation and memory 

usage have cordial relationship with hardware specifications. Power consumption has 

direct relations with mobile device’s battery. In this thesis we use 1800 miliampere-

hour (mAH) battery on mobile device. Numeric results depend heavily on hardware 

specifications. They may change under different hardware setup. For example, if 

client application runs on device that has more powerful processor will allocate 

lower CPU. Likewise, more capable battery will lose lower percentage of power 

during test runs. Because of these facts we focus on comparison rather than numeric 

values. Second, software limitations comprise of fixed message size, .NET and 

Android framework. In our tests, the server publishes/ responses HL7 messages. 

Those messages have fixed sizes. This situation is dictated by HL7 standards. Due to 

our context decision, we did not cover protocols' responses for different message 

sizes. We develop our server applications on .Net framework v4.5 with C# and client 

applications on Android framework v4.4.2 with Java. Since covering all available 

frameworks is impractical, we provide common software infrastructure. 

Optimization of framework directly impacts our experiments. Applications resource 

usages depend on framework’s optimization. It affects CPU allocation and memory 

usage. Resource usage also affects power consumption, because if resource usage 

increases device will definitely consume more power and vice versa. Those threats 

do not affect our results because at any rate, both protocols are tested under same 

software infrastructure. Although it is subjective matter, we think MQTT has easier 

interface for application development. 

In the future work, we plan to design for complete communication system for 

medical facilities with hybrid use of both protocols. Also, MQTT and COAP can be 

viable options to vehicle-to-vehicle (V2V) communication.   

  



54 

 

REFERENCE 

1. Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7), 97-

114. 

2. Evans, D. (2012). The Internet of Things How the Next Evolution of the 

Internet is Changing Everything (April 2011). White Paper by Cisco Internet 

Business Solutions Group (IBSG).  

3. Colitti, W., Steenhaut, K., & De Caro, N. (2011). Integrating wireless sensor 

networks with the web. Extending the Internet to Low power and Lossy 

Networks (IP+ SN 2011). 

4. Locke, D. (2010). Mq telemetry transport (mqtt) v3. 1 protocol specification. 

IBM developerWorks Technical Library. 

5. Shelby, Z., Hartke, K., Bormann, C., & Frank, B. Constrained application 

protocol (CoAP), draft-ietf-core-coap-18 sl: IETF 2013. 

6. Bergmann, O. (2012). libcoap: C-Implementation of CoAP. URL: 

http://libcoap. sourceforge. net, Date of access 13.09. 

7. Thangavel, D., Ma, X., Valera, A., Tan, H. X., & Tan, C. K. Y. (2014, April). 

Performance evaluation of MQTT and CoAP via a common middleware. In 

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 

2014 IEEE Ninth International Conference on (pp. 1-6). IEEE. 

8. Bandyopadhyay, S., & Bhattacharyya, A. (2013, January). Lightweight 

Internet protocols for web enablement of sensors using constrained gateway 

devices. In Computing, Networking and Communications (ICNC), 2013 

International Conference on (pp. 334-340). IEEE. 

9. Tucic, M., Pavlovic, R., Papp, I., & Saric, D. (2014, November). Networking 

layer for unifying distributed smart home entities. In Telecommunications 

Forum Telfor (TELFOR), 2014 22nd (pp. 368-371). IEEE. 

10. Yi, D., Binwen, F., Xiaoming, K., & Qianqian, M. (2016, October). Design 

and implementation of mobile health monitoring system based on MQTT 

protocol. In Advanced Information Management, Communicates, Electronic 

and Automation Control Conference (IMCEC), 2016 IEEE (pp. 1679-1682). 

IEEE. 

11. Caldiera, V. R. B. G., & Rombach, H. D. (1994). Goal question metric 

paradigm. Encyclopedia of Software Engineering, 1, 528-532. 

12. Frigieri, E. P., Mazzer, D., & Parreira, L. F. M2M Protocols for Constrained 

Environments in the Context of IoT: A Comparison of Approaches. In 

International Telecommunications Symposium. 

13. Shelby, Z., Hartke, K., & Bormann, C. (2014). RFC 7252—The Constrained 

Application Protocol (CoAP). Internet Engineering T ask Force (IETF). 

14. Chen, X. (2014). Constrained Application Protocol for Internet of Things. 

URL: http://www1. cse. wustl. edu/~ jain/cse574-14/ftp/coap. 



55 

 

15. Durkop, L., Czybik, B., & Jasperneite, J. (2015, February). Performance 

evaluation of M2M protocols over cellular networks in a lab environment. In 

Intelligence in Next Generation Networks (ICIN), 2015 18th International 

Conference on (pp. 70-75). IEEE. 

16. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. 

(2015). A survey on application layer protocols for the internet of things. 

Transaction on IoT and Cloud Computing, 3(1), 11-17. 

17. De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., & Reali, G. (2013, 

November). Comparison of two lightweight protocols for smartphone-based 

sensing. In Communications and Vehicular Technology in the Benelux 

(SCVT), 2013 IEEE 20th Symposium on (pp. 1-6). IEEE. 

18. Sutaria, R., & Govindachari, R. (2013). Making sense of interoperability: 

Protocols and Standardization initiatives in IOT. In 2nd International 

Workshop on Computing and Networking for Internet of Things. 

19. Kim, W., Shin, Y., & Seol, S. (2015). Smart phone assisted personal IoT 

service. Advanced Science and Technology Letters, 110, 61-66. 

20. Cohn, R. S. (2011). A Comparison of AMQP and MQTT. Available: 

www.stormmq.com. 

21. Hamida, S. T. B., Hamida, E. B., & Ahmed, B. (2015). A new mHealth 

communication framework for use in wearable WBANs and mobile 

technologies. Sensors, 15(2), 3379-3408. 

22. Khattak, H. A., Ruta, M., & Di Sciascio, E. (2014, January). CoAP-based 

healthcare sensor networks: A survey. In Applied Sciences and Technology 

(IBCAST), 2014 11th International Bhurban Conference on (pp. 499-503). 

IEEE. 

23. M. Cha, J. Kwon,E. Kim (2017), Implementation of Healthcare Monitoring 

System based on CoAP Group Communication. Advanced Science and 

Technology Letters vol.143 (AST 2017), pp.98-101 

24. Soldani, D., & Manzalini, A. (2015). Horizon 2020 and beyond: on the 5G 

operating system for a true digital society. IEEE Vehicular Technology 

Magazine, 10(1), 32-42. 

25. Kovatsch, M., Lanter, M., Shelby, M. (2014). Californium: Scalable Cloud 

Services for the Internet of Things with CoAP. Proceedings of the 4th 

International Conference on the Internet of Things (IoT 2014). Cambridge, 

MA, USA, October 2014 

26. Orguna, B., & Vu, J. (2006). HL7 ontology and mobile agents for 

interoperability in heterogeneous medical information systems. Computers in 

biology and medicine, 36(7), 817-836. 

27. HL7 v2.X Message Profiling Specification Version 2.2 (2000). Retrieved 

from 

https://www.hl7.org/documentcenter/public/standards/v22/HL7_Profile_V2r2

_final.doc 



56 

 

28. R. A. Light, “Mosquitto: server and client implementation of the MQTT 

protocol,” The Journal of Open Source Software, vol. 2, no. 13, May 2017, 

DOI: 10.21105/joss.00265 

29. Postel, J. (1981). RFC 793: Transmission control protocol, September 1981. 

Status: Standard, 88. 

30. Postel, J. (1980). RFC 768: User datagram protocol, August 1980. Status: 

Standard. 

  



57 

 

 

                                                 

i http://www.eclipse.org/paho/downloads.php 2017 
ii https://github.com/smeshlink/CoAP.NET 2016 
iii https://github.com/okleine/spitfirefox 2016 
iv  https://stackoverflow.com/questions/3118234/get-memory-usage-in-

android/5562634# 5560634 
v https://developer.android.com/reference/android/os/PowerManager.html 2017 
vi http://airties.com.tr/datasheets/AIR5340EN_DS.pdf 


