
AN EXPERIMENTAL COMPARISON OF MESSAGING PROTOCOLS

MQTT AND COAP

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HASAN FARUK ÇOBAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2017

An Experimental Comparison of Messaging Protocols MQTT and COAP

Submitted by HASAN FARUK ÇOBAN in partial fulfillment of the requirements

for the degree of Master of Science in The Department of Information Systems

Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Director, Graduate School of Informatics

Prof. Dr. Yasemin Yardımcı

Çetin

Head of Department, Information

Systems

Assoc. Prof. Dr. Aysu Betin Can

Supervisor, Information Systems

Examining Committee

Members:

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, Middle East Technical

University

Assoc. Prof. Dr. Aysu Betin Can

Information Systems, Middle East Technical

University

Assist Prof. Dr. Erhan Eren

Information Systems, Middle East Technical

University

Assist Prof. Dr. Çağdaş Gerede

Computer Engineering, TOBB

University of Economy and Technology

Assoc. Prof. Dr. Alptekin Temizel

Modelling and Simulation, Middle East

Technical University

Date: ___________

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this wok.

Name, Last name: Hasan Faruk ÇOBAN

Signature :

iv

ABSTRACT

An Experimental Comparison of Messaging Protocols MQTT and COAP

Çoban, Hasan Faruk

MSc., Department of Information Systems

Supervisor: Assoc. Dr. Aysu Betin Can

June 2017, 57 pages

As the attention towards to Internet of Things (IoT) increases recently, the need for the

infrastructure that carries the communication between nodes, which have limited

resources, also increases. The network beneath applications has direct effect on

resilience of IoT environments. Due to the advances on mobile devices in terms of more

powerful hardware, developers focused on mobile applications. However, solid network

structures are needed for these applications. To match these needs several protocols are

introduced. MQTT (Message Queue Telemetry Transport) and COAP (Constrained

Application Protocol) are the most popular among messaging protocols. Although there

are studies comparing these two protocols, they mainly focus on the network

perspective. They cover mostly network traffic and load that protocols put on networks.

Resource usages, especially on the nodes, are not examined thoroughly. Those studies

only cover minimal traits and their test beds are minimalistic environments when it

comes to investigate node’s resource usages. Many applications need network

communications. MQTT and COAP are possible candidates for networking. The amount

of resource the protocols use might be the decisive factor.

In this thesis a comparison between two prominent messaging protocols on common

hardware and software setup is aimed. MQTT and COAP are compared under the

metrics of energy consumption, memory and CPU resource usages, transfer delays and

adaptation capabilities. In this study HL7 messages have been used as a data type in

order to place a healthcare context in experiments.

Key words: MQTT, COAP, Lightweight Messaging Protocols

v

ÖZ

MQTT ve COAP Mesajlaşma Protokollerinin Deneysel Bir Karşılaştırması

Çoban, Hasan Faruk

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Haziran 2017, 57 sayfa

Son yıllarda Nesnelerin İnterneti’ne (IoT) olan ilginin artmasıyla sınırlı kaynaklara sahip

düğümler arasındaki iletişimi sağlayan altyapıya duyulan ihtiyaç artmaktadır.

Uygulamalar altındaki Ağ, IoT ortamlarının esnekliği üzerinde doğrudan etkiye sahiptir.

Mobil cihazlardaki gelişmelere bağlı olarak (örneğin daha güçlü donanım), geliştiriciler

mobil uygulamalara odaklandı. Bununla birlikte, dayanıklı ağ yapıları bu uygulamalar

için gereklidir. Bu ihtiyaçları karşılamak için çeşitli protokoller getirilmiştir. Mesajlaşma

protokolleri arasında MQTT (Message Queue Telemetry transport) ve COAP

(Sınırlandırılmış Uygulama Protokolü) en popüler olanlarıdır. Bu iki protokolü

karşılaştıran çalışmalar olsa da, bu çalışmalar çoğunlukla ağ trafiğini ve yükünü

kapsamaktadır. Kaynak kullanımları, özellikle de nodlardaki kullanımlar yeterince

araştırılmamıştır. Bu çalışmalar yalnızca baz seviyede özellikleri kapsamış ve nodların

kaynak kullanımlarını araştırma noktasında ise minimalist düzeneklerde çalışılmıştır.

Birçok uygulama ağ iletişimi gerektirir. MQTT ve COAP, ağ için olası adaylardır.

Protokollerin tercihinde ne kadar kaynak kullandıkları karar verici etken olabilir.

Bu tez çalışmasında; aynı donanım ve yazılım kurulumu üzerindeki iki önde gelen

mesajlaşma protokolü arasındaki karşılaştırmanın yapılması amaçlanmaktadır. MQTT

ve COAP, enerji tüketimi, bellek ve işlemci kaynak kullanımları, aktarım gecikmeleri ve

uyarlama yetenekleri ölçütleriyle karşılaştırılacaktır. Bu çalışmada, deneylerde bir sağlık

bağlamı yerleştirmek için HL7 mesajları veri türü olarak kullanılmıştır.

Anahtar Sözcükler: MQTT, COAP, Mesajlaşma Protokolleri

vi

DEDICATION

To My Son, Yiğit

vii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my thesis advisor Aysu Betin CAN

for her patience and support.

Besides my supervisor, I would like to thank my friends Gürkan SOLMAZ and Onur

ÇAM for their support and encouragement

Finally, I would like to express my gratitude to my parents, Ayşe-Mithat ÇOBAN.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

DEDICATION ... vi

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF equatıons .. xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 5

BACKGROUND & LITERATURE REVIEW ... 5

2.1. Communication Protocols ... 5

2.1.1. MQTT ... 5

2.1.2. COAP ... 6

2.2. Related Studies .. 8

2.2.1 Use of MQTT and COAP in Healthcare .. 10

2.3. HL7 .. 11

CHAPTER 3 ... 13

METHODOLOGY ... 13

3.1. Goal ... 13

3.2. Research Questions ... 13

3.2.1.RQ1:Resource Aspect ... 13

3.2.2.RQ2:Performance Aspect .. 14

ix

3.3 Metrics.. 14

CHAPTER 4 .. 17

EXPERIMENTS/ EXPERIMENT SETUP ... 17

4.1. Setup .. 17

4.1.1. Network Setup .. 17

4.1.2. MQTT Setup .. 17

4.1.3. COAP Setup ... 19

4.1.4. Test Case Scenarios ... 20

4.2 Qualitive Analysis on Reliability and Integrity ... 21

4.3. Measurement ... 22

4.3.1. MQTT .. 22

4.3.2 COAP .. 27

CHAPTER 5 .. 47

RESULTS AND DISCUSSION .. 47

CHAPTER 6 .. 51

CONCLUSION .. 51

REFERENCE ... 54

x

LIST OF TABLES

Table 1: MQTT Message Structure (Locke, 2010) .. 6
Table 2: COAP Message Structure (Z. Shelby C. K., 2013) .. 7
Table 3: Test Case Scenarios ... 20

Table 4: Message Delay Results for MQTT .. 22
Table 5: CPU Allocation Percentage Results for MQTT ... 24

Table 6: Memory Usage Results for MQTT .. 25
Table 7: Message Delay Results for COAP(50ms) .. 28
Table 8: CPU Allocation Percentage Results for COAP(50ms) 29

Table 9: Memory Usage Results for COAP(50ms) ... 30
Table 10: Message Delay Results for COAP(100ms) .. 32

Table 11: CPU Allocation Percentage Results for COAP(100ms) 33
Table 12: CPU Allocation Results for COAP .. 33
Table 13: Memory Usage Results for COAP(100ms) ... 34

Table 14: Message Delay Results for COAP(150ms) .. 36
Table 15: CPU Allocation Percentage Results for COAP(150ms) 38

Table 16: Memory Usage Results for COAP(150ms) ... 39
Table 17: Message Delay Results for COAP(200ms) .. 40

Table 18: CPU Allocation Percentage Results for COAP(200ms) 41
Table 19: Memory Usage Results for COAP(200ms) ... 42

xi

LIST OF FIGURES

Figure 1: COAP Reliable Transport Implementation (Chen, 2014) 7
Figure 2: RQ1 and Metrics ... 14
Figure 3: GQM Structure ... 15

Figure 4: Hardware Setup for MQTT .. 18
Figure 5: Software Components of MQTT .. 18

Figure 6: Hardware Setup for COAP ... 19
Figure 7: Software Components of COAP... 20
Figure 8: Message Delay Representation for MQTT ... 23

Figure 9: CPU Allocation Representation for MQTT ... 25
Figure 10: Memory Usage Representation for MQTT .. 26

Figure 11: Battery Consumption Results for MQTT ... 26
Figure 12: Message Delay Representation for COAP(50ms) .. 28
Figure 13: CPU Allocation Representation for COAP(50ms) ... 30

Figure 14: Memory Usage Representation for COAP(50ms) .. 31
Figure 15: Battery Consumption Results for COAP(50ms) .. 31

Figure 16: Message Delay Representation for COAP(100ms) .. 33
Figure 17: CPU Allocation Representation for COAP(100ms) 34

Figure 18: Memory Usage Representation for COAP(100ms) .. 35
Figure 19: Battery Consumption Results for COAP(100ms) .. 35

Figure 20: Message Delay Representation for COAP(150ms) .. 37
Figure 21: CPU Allocation Representation for COAP(150ms) 38
Figure 22: Memory Usage Representation for COAP(150ms) .. 39

Figure 23: Battery Consumption Results for COAP(150ms) .. 40
Figure 24: Message Delay Representation for COAP(200ms) .. 41

Figure 25: CPU Allocation Representation for COAP(200ms) 42
Figure 26: Memory Usage Representation for COAP(200ms) .. 43
Figure 27: Battery Consumption Results for COAP(200ms) .. 44

Figure 28: COAP Delay Comparison by Polling ... 44
Figure 29 : COAP CPU Allocation Comparison by Polling .. 45
Figure 30: COAP Memory Usage Comparison by Polling .. 45
Figure 31: COAP Battery Consumption Comparison by Polling 46

Figure 32: COAP Overall Comparison by Polling .. 46
Figure 33: Delay Comparison between COAP and MQTT ... 48
Figure 34: CPU Allocation Comparison between COAP and MQTT 49
Figure 35: Memory Usage Comparison between COAP and MQTT 49
Figure 36: Battery Consumption Comparison between COAP and MQTT 50
Figure 37: Overall Comparison of MQTT and COAP... 52

file:///D:/Users/asghcta/Downloads/1502889-tez%20.docx%23_Toc484762704

xii

LIST OF EQUATIONS

Equation 1 .. 24

xiii

LIST OF ABBREVIATIONS

ACK Acknowledgement

ADT Admittance-Discharge-Transfer

AMQP Advanced Message Queuing Protocol

AVG Average

COAP Constrained Application Protocol

CON Confirmable

CoRE Constrained RESTful Environments

CPU Central Processing Unit

DFT Detail-Financial-Transaction

GQM Goal-Question-Metric

HL7 Health Level Seven

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

MED Median

MQTT Message Queue Telemetry Transport

NON Non-Confirmable

ORM Order-Messages

ORU Observation-Result-Update

PC Personal Computer

QoS Quality of Service

REST Representational State Transfer

RQ Research Question

RTT Round Trip Time

RTT Round Trip Time

S.DEV Standard Deviation

TCP Transmission Control Protocol

UDP User Datagram Protocol

UPS Uninterruptable Power Source

WI-FI Wireless Fidelis

XMPP Extensible Messaging and Presence Protocol

1

CHAPTER 1

INTRODUCTION

Every day, advances on computer science provide new concepts to developers.

Networks connect nodes which are capable of conducting processes. Traditionally

those nodes were few in numbers and managing them is rather easy. However,

processors are constantly getting cheaper and nodes’ sizes constantly keep getting

smaller. This enables number of nodes boosted and created new need for

intercommunication between them. Anything can be a node and everything may try

to communicate. This concept evolved into “Internet of Things”. IoT’s name is first

introduced in 1999 by Kevin Ashton (Ashton, 2009). It could be foreseen that in

2020 IOT objects multiples human population at least five times (Evans, 2012).

Smart phones are important member of this newly defined society. They are

developed and supported by major corporations. Also, massive numbers of

developers are currently working on this environment which depicts a promising

future. Development possibilities also bring serious challenges. Traditional network

protocols are neither designed nor optimized for supporting pervasive network

infrastructures (W. Colitti, 2011). Several lightweight protocols have been developed

since then. Two of them are distinguishing themselves. The Message Queuing

Telemetry Transport (MQTT) (Locke, 2010), designed by IBM, and the Constrained

Application Protocol (COAP) (Z. Shelby C. K., 2013), designed by the Internet

Engineering Task Force (IETF). Although they implement different approaches, both

serve same need: the lightweight Machine-to-Machine communication.

This thesis focuses on the comparison between MQTT and COAP in terms of energy

consumption, resource usage, transfer delays and adaptation capabilities. Providing

the same hardware and software test bed their performances are compared on certain

metrics in these aspects. To evaluate their respective performance metrics, the

identical environment setup is crucial. The aim of this study is after comparison of

these two protocols, to discuss their respective advantages over each other and to

propose suitable application type of these protocols. The context dictates which

protocol would be better choice to implement. Their strengths and weaknesses are

only meaningful by the context.

There are a number of research studies on lightweight network protocols. Mostly,

these studies tend to focus on network layer metrics such as network trafficking and

bandwidth. Other than bandwidth, reliability and energy efficiency metrics are also

investigated. The protocols are tested on wired, wireless and cellular networks. Test

beds vary from single PC setup to a PC and multiple mobile devices. According to

these comparison studies in the literature, in terms of network traffic and bandwidth

aspect, COAP is better choice than MQTT (D.Thangavel, 2014) (S. Bandyopadhyay,

2

2013). Also COAP fared better in message delays (D.Thangavel, 2014) (S.

Bandyopadhyay, 2013). When it comes to reliability MQTT is favored by majority

of literature (D.Thangavel, 2014) (M. Tucic, 2014) (D. Yi, 2016). COAP is claimed

to be more energy efficient than MQTT (S. Bandyopadhyay, 2013), however it is a

debatable subject because of deficiencies in test setup (S. Bandyopadhyay, 2013).

In this thesis, we choose to focus on nodes. How protocols affect nodes of network is

the primary question. Since IoT is gaining popularity and mobile devices are

becoming widespread; MQTT and COAP should be analyzed under wireless

networks with mobile devices. While most studies establish common hardware

infrastructure, they fail to provide common software infrastructure. In order to reach

accurate comparison information middleware should be identical (D.Thangavel,

2014). Mobile devices are resource constraint devices, so resource usages should be

investigated between MQTT and COAP. When investigating message delays

researchers usually ignore protocols have communication patterns. MQTT uses

publish/subscribe and COAP uses request/response. In MQTT delay only matters in

message deliver from server to client, however in COAP it matters entire round trip

time. Security is not concern of this study. Further literature review analysis is

explained in chapter 2. In this thesis, we aim to compare these protocols under

common infrastructure in private wireless network on resource usage, delay and

power consumption aspects.

To conduct disciplined research, we chose Goal-Question-Metric (GQM)

methodology. GQM is a paradigm which proposes measurements should be defined

in top-down fashion (V.R.Basili, 1994). GQM approach is suitable for studies which

have to deal with quantified information. Because it helps to break down

implementation of the study to three levels: (V.R.Basili, 1994)

 Conceptual Level(GOAL)

 Operational Level(Question)

 Quantitive Level (Metric)

These levels force the implementation of study under structural hierarchy and draw

outline for tests and development. Since our study depends heavily on experiments

and tests, we need to organize our experiments. Goal-Question-Metric methodology

is suitable for arranging such study. We decided a goal, generated research questions

to reach it and metrics to answer our RQ's. We built this methodology in the context

of HL7. HL7 is data transfer standard for medical organizations. It provides message

standard for our tests and a base of analysis to evaluate our findings. Another benefit

of HL7 context is to propose possible communication system for medical facilities.

Detailed explanation about methodology is placed in chapter 3.

After deciding methodology and context, we setup our test bed and developed

experiment scenarios. We composed a set of HL7 messages to simulate context. Test

scenarios were organized to reflect medical facilities' network load. Detailed

explanation about our test scenarios are placed in chapter 4.

3

Our testbed is comprised of network, hardware and software components. Our

network setup is private network provided by Wi-Fi router. The Test bed consists of

hardware and software components. The hardware setup is formed with a PC, an

Android Device and a router. We developed Server and Client applications for both

protocols. Since the aim of this study is to compare MQTT and COAP on common

middleware, we setup entire test bed as identical as possible. The same hardware is

used for both test runs. Client and server applications are developed on the same

frameworks. We developed server applications on .Net Framework and client

applications on Android Framework. Other than the protocol implementations, the

applications developed are identical. To sum up, we provide common middleware for

both protocol experiments. Further information related to middleware is located in

chapter 4.

The rest of the paper is organized as follows. Chapter II provides a description of

MQTT and COAP. Chapter III discusses on the related work. Chapter IV provides a

qualitative comparison of the two protocols. Chapter V reports on the experimental

study and discusses. Chapter VI discusses the results and draws the conclusions.

4

5

CHAPTER 2

BACKGROUND & LITERATURE REVIEW

This chapter contains brief information about communication protocols, MQTT and

COAP, the summary of various related studies and explanation about thesis context.

2.1. Communication Protocols

In this section a brief introduction to MQTT and COAP is given.

2.1.1. MQTT
The Message Queuing Telemetry Transport was developed by IBM. It is designed

for devices which have hardware constraints, especially for embedded devices and

microcontrollers. The protocol overhead (fixed-length header of 2 bytes) makes the

MQTT viable solutions for networks with restricted resources, such as low

bandwidth and high-latency (Locke, 2010). This protocol centered on the broker and

publish/subscribe pattern. (Edielson P. Frigieri, 2015). A Broker directs telemetry

messages between nodes which can be a publisher and a subscriber. A Broker can

also support one-to-many communications. Topic mechanism can be used as filters

between publishers and subscribers. MQTT is implemented over TCP which allows

reliable communication on even unreliable networks. Implementation is centered on

a broker which routs messages via topics. Each client receives messages from

subscribed topics. This design of architecture enables isolation of clients. They do

not need to know each other to get messages. Main difference between HTTP and

MQTT is that a client does not have to pull the information it needs, but the broker

pushes the information to the client. MQTT provides a lossless stream in an orderly

fashion between clients and server (Locke, 2010). The stream can be in both

directions.

In MQTT there are three options for message delivery. They provide different level

of reliability.

 Quality of Service 0 (QoS0): In this level, messages are sent without any

acknowledgement mechanism. It is known as “At Most Once” because of the

nature of transfers. In this level messages are only sent once. (Locke, 2010)

 Quality of Service 1 (QoS1): “At Least Once”, this level provides each

messages are delivered at least once. Confirmation messages are expected.

(Locke, 2010)

 Quality of Service 2 (QoS2): “Exactly Once” is the most reliable service level

MQTT has to offer. A Four-Way Handshake mechanism is used.

(D.Thangavel, 2014) It guarantees a message is delivered exactly once. It is

useful for eliminating duplicate messages.

6

Since we are comparing the two protocols in the context of healthcare systems, in

which reliability is essential. The QoS2 “Exactly Once” feature of MQTT is used in

this thesis.

Table 1: MQTT Message Structure (Locke, 2010)

0 4 5 7 8

MQTT Control Packet Type Dup Flag QoS level Retain

Remaining Length

Payload

Table 1 shows the format of an MQTT message. An MQTT message starts with a 2

bytes fixed-length header followed by an optional message specific variable length

message header and a message payload in this order. The 2 bytes header contains the

MQTT control packet type, flags including the flag for quality of service, and

remaining length indicating the bytes remaining within the current package. The

minimum packet size is 2 bytes which is the fixed length header. MQTT supports

maximum package size of 256 MB (Locke, 2010).

2.1.2. COAP

The COAP protocol was designed by the Constrained RESTful Environments

(CoRE) Working Group of Internet Engineering Task Force (IETF). It is an

adaptation of HTTP for devices with limited power and processing capabilities (Z.

Shelby K. H., 2014). It runs over UDP and based on REST architecture. Since it was

an adaptation of HTTP, COAP is implemented over request/response pattern. The

main difference of COAP from HTTP is its reduced overhead in packages and data

exchange between clients and servers. Those benefits are the result of UDP usage on

request/response pattern. Hence, it does not have congestion control as in TCP

(Chen, 2014). Since UDP does not provide reliability, COAP has two mechanisms to

overcome it. They are retransmission mechanism and resource discovery mechanism

(Chen, 2014).

COAP’s message layer supports four types message: CON (confirmable), NON

(non-confirmable), ACK (Acknowledgement), RST (Reset). These messages are

used in implementation of transport types: (Z. Shelby C. K., 2013)

 Reliable Message Transport: COAP implements HTTP interface, so it uses

HTTP methods. GET is the most used HTTP method. In COAP, GET

messages stand for messages dispatch with get method. For each GET

message received, a CON message is sent. It keeps retransmissions until

ACK message is arrived. In any case of failure of processing messages,

receiver sends RST message. Since UDP does not provide such capabilities, it

is handled within HTTP implementation (Z. Shelby C. K., 2013). Figure 1

shows a reliable transport.

7

 Unreliable message transport: Messages are transferred with NON type

message. No ACK or RST response is required.

Figure 1: COAP Reliable Transport Implementation (Chen, 2014)

In this thesis, GET messages with CON property are used. COAP is designed as

“Stop and Wait” when encounters packet loss. Retransmission mechanism tries to

deliver messages. COAP message format, which is defined in the Internet Standards

Document RFC 7252 (Z. Shelby K. H., 2014) is shown in Table 2. The messages are

encoded in binary format.

Table 2: COAP Message Structure (Z. Shelby C. K., 2013)

0 2 4 8 16 32

Ver T OC Code MessageID

Token

Options

Payload

A CoAP message starts with a fixed 4 bytes header consisting of version (Ver), type

(T), token length (TKL), message code (Code) representing request or a success for

request or an error, and message ID used for detecting message duplication and

matching messages of type ACK/Reset to Confirmable/Nonconfirmable. The header

is followed by a 0-8 byte optional token value. The token field is followed by zero or

more COAP options and payload. COAP defines 1152 Bytes as the maximum

message size (Z. Shelby K. H., 2014).

8

2.2. Related Studies

In this section we present the related work in two aspects: the studies comparing

MQTT and COAP, and the studies employing these messaging protocols in

healthcare domain.

In 2014 study of Thangavel et al. (D.Thangavel, 2014) a comparison of MQTT and

COAP is under equal circumstances is presented. They design a common

middleware which is supported by common programming interface. The researchers

intended to compare two protocols under the same test environment. In their setup,

the hardware consists of a laptop, a Beagleboard and a switch. Software used was

Mosquitto (Light, 2017) for MQTT, Libcoap (O.Bergmann, 2012) for COAP and

Wireshark for network monitoring. In their experiments, it was seen that the two

protocols transmitted the messages 100% success. So they simulate packet loss and

packet size to compare those two protocols with respect to delay and bandwidth

usage. According to findings, on delay aspect MQTT performs better at low packet

losses, COAP at higher packet losses. On bandwidth usage aspect, COAP fares better

regardless of packet loss rate except for big packet size. As packet size grows UDP,

which is used by COAP, loses more message causing retransmission. That situation

leads to higher bandwidth usage than MQTT according to their findings. However,

their paper does not cover followings. First, they focused on delay and bandwidth

usage. Those findings are acquired by wired transmission via a switch. Nowadays

wireless communication is rising and this trend will continue for the foreseeable

future. Also, they do not take the node’s (in this case beagleboard) resource usage

such as memory, CPU and energy consumption into consideration. Adding that, there

is no indication or measurement for mobile nodes which are integral part of Internet

of Things.

The study by Bandyopadhyay et al. (S. Bandyopadhyay, 2013) has quite similar

approach to the problem as Ref (D.Thangavel, 2014). Under the same hardware

(Laptop and netbook) and software (Mosquitto, Libcoap and Wireshark), they

compared these two protocols with respect to energy consumption, bandwidth usage

and reliability. According to their findings, MQTT consumes more bandwidth and

energy. Both protocols are proven to be reliable under closed protected network

conditions. Deficiencies are quite similar with Ref (D.Thangavel, 2014). It does not

cover wireless networks and resource usage difference between protocols. Again,

there is no investigation about mobile nodes.

Tucic et al. (M. Tucic, 2014) provide us with insight of a network layer comparison

between the respective protocols. It is a survey study and it does not present any

experimental results; it gives valuable information about how Machine-to-Machine

(M2M) communication with multiple remote nodes. It also provides basic

information about these protocols' features and capabilities. According to the authors

due to its broker mechanism and publish-subscribe pattern MQTT is the most

suitable M2M protocols for closed local network layers (M. Tucic, 2014). However,

they do not perform any experiment to support their claims.

Dürkop et al. (L.Dürkop, 2015) focus on mainly cellular networks such as Edge,

UMTS and LTE and address performance comparison of popular lightweight

9

networks such as COAP, MQTT and OPC UA. They mainly compare network

trafficking of these protocols. They do not conduct any research about nodes, but

only focus on network throughput under EDGE, UMTS and LTE environments. The

idea of using mobile devices as node is derived from this paper.

Karagiannis et al. (V. Karagiannis, 2015) did a survey study on the application layer

protocols that includes MQTT and COAP. They focus on architectural level point of

view and provide information about MQTT, COAP, The Extensible Messaging and

Presence Protocol (XMPP), Restful Services, The Advanced Message Queuing

Protocol (AMQP) and Web Sockets. They conclude with COAP is the most

lightweight protocol due to its UDP nature, but MQTT is the most energy efficient

one. Also they claim publish/subscribe pattern is more suitable for IoT. Deficiency of

their paper is pure qualitative one without any results to support their claims.

De Caro et al. (N. De Caro, 2013) consider MQTT and COAP as sound alternatives

for smartphone based sensor networks. They claim HTTP and XMPP are not suitable

for pervasive network. Lightweight messaging protocols such as MQTT and COAP

are more suitable for transmitting smartphone sensor data. They compare both

protocols in qualitative and quantitative aspects. According to their study, MQTT is

more appropriate in a qualitative aspect. Data-centric design, congestion control

ability and flexibility features put MQTT before COAP. However, in quantitative

aspect, COAP fares better than MQTT in bandwidth usage and round trip time

(RTT). The authors fail to include mobile devices’ resource constraints into their

qualitive and quantitive aspects.

Sutaria et al. (R. Sutaria, 2013) address standardization issues on IoT and emphasize

importance interoperability between different protocols. Since HTTP is largely used

in current network applications and web, they think COAP would be attractive

alternative for IoT applications. COAP has similar implementation with HTTP and

suits better with constraint devices. Interoperability between these two protocols is

easy task according to Sutaria et al. They also consider application level

interoperability between MQTT and COAP. Although there is no provided

experimental result, they claim the best way to interoperate between MQTT and

COAP is common gateways which can operate in protocol layer.

In their study Kim et al. (W. Kim, 2015) try to achieve complete IoT service assisted

by smart phones. They consider COAP, MQTT and XMPP for possible candidates to

their proposed architecture. They develop infrastructure to provide services to HTTP,

COAP and MQTT based application platforms. Although, their paper only provides

for a thermostat system over HTTP based communication, the idea of interoperable

IoT system is noteworthy.

Cohn (Cohn, 2011) compares AMQP and MQTT in his white paper. According to

him, AMQP has wider range of use and more complete messaging protocol than

MQTT. He states that, AMQP and MQTT has divergent intended of uses. MQTT

targeted for small devices and small messages on low-bandwidth networks, but

AMQP is designed for rather bigger and comprehended systems. Also, AMQP

provides extra functionalities especially on security aspect. However, he fails to see

these two protocols are diverged with respect to their usage targets. Although,

10

AMQP is more powerful, it also required powerful clients. MQTT on the other hand,

requires far less resources and bandwidth (S. Hamida, 2015).

In this study, a comparison of MQTT and COAP through common infrastructure idea

is influenced by Ref (D.Thangavel, 2014). Using mobile devices idea is derived from

Ref (L.Dürkop, 2015), Ref (N. De Caro, 2013) and Ref (W. Kim, 2015). The metrics

used in this thesis study are determined by combined analysis of these papers. Since

network trafficking and bandwidth usage of protocols are largely studied, in this

thesis we focus on usage of nodes’ hardware resources. After deciding mobile

devices as nodes of network which is used to compare COAP and MQTT; metrics

are decided by weaknesses of mobile devices which are battery, CPU usage and

memory usage. Delay is also added to these metrics because of their difference of

design. The atomic transaction of MQTT begins with server publishing packet and

ends with client acquire it. However, in COAP transaction begins with client request

packet, server sends it and finally client acquires it. This difference between data

flows is also investigated.

2.2.1 Use of MQTT and COAP in Healthcare

Healthcare systems have to be reliable by its nature of the domain; hence many

researchers automatically assume TCP is indispensable part of such systems.

However, COAP brings reliability features over UDP. Khattak et al. (H. Khattak,

2014) make a survey study based on COAP-based healthcare implementation.

According to their study, COAP can be easily integrated to Internet, because of its

HTTP-based RESTful architecture. They claim COAP might be viable option for

healthcare systems. There are several deficiencies of this paper. First, they do not

conduct any experiment on this issue and provide any result. Second, there is no

comprehensive analysis with respect to reliability. This study only focuses on COAP

might be practical implementation for devices which are used in patient monitoring.

Another study related COAP-based healthcare application is conducted by Cha et al.

(M. Cha, 2017). In this study, Cha et al. design a healthcare monitoring system. In

their implementation, data acquired from sensors are transmitted to android based

mobile devices via COAP. Linux-based gateways are responsible for transmission

between sensor and mobile devices. Three elements (sensor, gateway, mobile device)

of their setup communicate with each other request/response based COAP

implementation. However, they do not provide further information other than

architectural design.

Hamida et al. (S. Hamida, 2015) focus on designing a mobile health framework.

They plan to use Wireless Body Area Networks (WBANs). They consider COAP,

MQTT, MQTT-SN and AMQP as suitable candidates and compare these protocols

for designing a framework in their study. Message overhead and delay are their

performance metrics. According to their study AMQP has the biggest overhead and

the highest delay. COAP has smaller overhead and faster than MQTT. Finally, they

conclude MQTT is better choice but COAP is attractive alternative with its low-

overhead and low-latency.

Yi et al (D. Yi, Design and Implementation of Mobile Health Monitoring System

based on MQTT Protocol, 2016) suggest architecture for healthcare services. The

11

proposed architecture uses MQTT for local communications. They choose MQTT for

its low bandwidth, reliability, limited resource needs. Although, their primary goal

was to develop a complete system design for healthcare monitoring applications,

MQTT related test results could be a reference to our study. Also, their local area

network setup is similar to our setup: Android client operates on Wi-Fi network

where communication is handled by MQTT protocol. They only use MQTT but test

all QoS levels for their monitoring data. Results are in expected value where delay is

sorted in descending order from Qos2, Qos1 and QoS0. Since QoS2 has more control

mechanism in its design, it has bigger delay than other QoS levels.

2.3. HL7

There are many possible apply areas of IoT. Healthcare applications, manufacturing

management, automotive industry, traffic automation systems, and media and

entertainment sectors are potential candidates (D.Soldani, 2015). For this thesis, the

most applicable context is Healthcare. Manufacturing management, automotive

industry, traffic infrastructure, media and entertainment sectors are heavily

commercialized areas where all big corporations position themselves dominantly,

hence all developments are hidden because they are thought as commercial secrets.

In traffic infrastructure there is no substantial progress or accepted standards. On the

other hand, healthcare has public and established standards. Therefore, we have

chosen healthcare as a context. To simulate healthcare system, we transport Health

Level Seven (HL7) messages over MQTT and COAP.

HL7 is international data transfer standard for medical organizations. It is developed

by the Health Level Seven International. Since medicine is a collaborative work

across different areas of expertise, the communication between them is an important

aspect of health and efficiency of knowledge sharing. Interoperability between

different facilities also has equal importance. These requirements cause the need for

standards and it produces HL7. HL7 provides communication platform above

hardware and software infrastructure for hospitals and other healthcare organizations.

These organizations can easily share clinical information between them regardless of

their difference of healthcare, billing, and patient tracking systems. Modern medical

information management is a knowledge intensive activity requiring a high degree of

interoperability across various health management entities (B. Orguna, 2006). As

Orguna (B. Orguna, 2006) suggests the aim is interoperability and HL7 provides that.

Health Level 7 standards define and provide common workspace for data definitions,

data exchange, diagnosis support, personal health records, documentations and

labels. HL7 has several standards, methodologies and guidelines. In this thesis we

have used Version 2.5.1 standard which is the most widely known standard. HL7 V2

messages are used for compare respective protocols. There four main message types

(HL7, 2000):

Patient Administration (ADT): Admittance (A), Discharge (D) and Transfer (T)

messages are, as their name suggest, the patient information related information

carrier messages. Patient personal information (name, age, insurance etc.) and status

of patient (admit, transfer, registration etc.) are relayed via ADT messages.

12

 Orders (ORM): Order (OR) messages (M) are used for transmitting information

about an order. ORM messages also relay orders statuses such as new orders,

cancellations, information updates, and discontinuation.

Results (ORU): Observation (O) Result (R) and Update (U) messages transmits

observation and results from various treatment and analysis instrument such as EKG,

Clinical lab results, Imaging study reports, Patient condition or other data (i.e. vital

signs, symptoms, allergies, notes, etc.). It may also be used to transmit result data

from the producing system to a medical record archival system or to another system

not part of the original order process. ORU messages are sometimes used to register

or link to clinical trials or for medical reporting purposes for drugs and devices as

well.

Charges (DFT): Detail (D) financial (F) transaction (T) messages contain

information about patients' billing and accounting data. DFT includes charges,

deposits and carries them between clinical and billing systems.

13

CHAPTER 3

METHODOLOGY

We follow Goal-Question-Metric (GQM) methodology for our thesis investigation. It

provides us traceable link and action steps between aim of the study and

experiments. In other words, it helps to sort our experiments in reasonable structural

integrity. Also, it provides contextual order for examination of the experiment

results.

3.1. Goal

The goal of this thesis is to determine strengths and weaknesses of MQTT and

COAP protocols on application level. After stating these strengths and weaknesses,

possible usage areas are suggested. To achieve this goal several research questions

(RQs) are developed. Measurable information is the key for answering research

questions. To acquire the measurable information, we need metrics. Hence, first we

decided RQ’s; then the metrics. We have planned to run series of experiments to

acquire metric results. After acquiring the results which are measurable information

to us; we sought to answer RQs.

Research questions are listed below:

 RQ1: Which protocol is resource efficient for mobile hardware aspect?

 RQ2: Which protocol performs better for transfer time aspect?

For each RQ, we determined a set of metrics to provide a measurable data to answer

the question.

3.2. Research Questions

We choose three aspects and develop three research questions (RQ) related to them.

Those are data, resource and performance aspects.

3.2.1.RQ1:Resource Aspect
In this thesis we focus protocols on application level. Specifically, we focused on

applications running on a node. In the test environment, this node is a mobile device.

The application, which contains the implementation of respective protocols, uses the

resources of the node. The usages of these resources are classified as metrics. Three

metrics are chosen as shown in Figure 2:

Central Processing Unit (CPU) Time: Every application has to use CPU Allocation

for execution. In other words, every application uses CPU resource while it is

running. So application’s usage of CPU Allocation is important metric for this thesis.

14

Memory Usage: Mobile devices share its memory between applications. Hence,

memory usage is distinctive quality between applications.

Battery Usage: Battery is the biggest bottleneck for mobile devices. Great number

of research studies is conducted to increase battery life of these devices.

Application’s energy usage is a significant criterion.

Figure 2: RQ1 and Metrics

3.2.2.RQ2:Performance Aspect
When two protocols are compared, it is inevitable to measure their packet delivery

performances. This aspect is analyzed in the literature, as discussed in Chapter 2, as

well. In this thesis we measured delay metrics on application level. Other papers

monitored network via Wireshark software (G.Combs, 2007). In this study, delay

metric is considered as atomic packet delivery time. We define our delay metric as

the time passed between a message become available at server and its arrival to

client. COAP and MQTT have different approach on communication style. COAP

polls server for message availability. MQTT publishes messages when it is ready.

3.3 Metrics

There are several metrics are determined and linked with RQs. Their definitions are

given in the previous section. In this section, further information is provided. Adding

that, how these metrics are gathered is explained.

Central Processing Unit (CPU) Usage: CPU usage time and idle time are acquired

from the android system file named “proc” and then CPU usage percentage is

calculated.

Memory Usage: Unshared memory usage is acquired from the Android operating

system.

15

Battery Usage: Android also provides battery status for applications. It can be

acquired programmatically via the native Android libraries.

Delay: It is measured as a time elapse for single packet delivery. Due to their

different nature, for each protocols delay is calculated differently. In COAP entire

request/response time is qualified for delay. However, in MQTT delay is

transmission from publisher to subscriber.

The whole picture of Goal-Question-Metric tree is depicted in Figure 3.

Figure 3: GQM Structure

16

17

CHAPTER 4

EXPERIMENTS/ EXPERIMENT SETUP

This chapter contains experiment related information. Experiment setup is explained

in section 4.1 and measurement of tests is located section 4.2. Experiment results and

protocols comparison are discussed in chapter 5.

4.1. Setup

For our experiments, we setup a closed private network and develop context as a

healthcare system which is driven by HL7 messages. We compare MQTT and COAP

not on network layer but on application layer. Since this thesis focus on IoT, we try

to understand protocols’ behavior on network nodes. In our case, the clients are

nodes of network. For both protocols, we developed both server and client

applications. Server applications are responsible for providing HL7 messages for the

experiment. The results are collected from clients. Client applications are developed

as light as possible to acquire protocols’ resource usages accurately. In both

applications metrics are acquired by identical software subcomponents. The only

difference between Client applications is protocol implementation. In MQTT, we use

M2MQTT.jar published by IBM that implements MQTT protocol. In COAP,

Californium (M. Kovatsch, 2014) implementation of COAP is used. The network

setup is explained below and context is detailed at “Test Case Scenarios” section.

4.1.1. Network Setup
Network setup consists of a single router with Wi-Fi capabilities. The Network is

configured as closed, private network to eliminate any outside effects. There is no

direct outside influence on clients and servers. Since it is closed to the world, any

bandwidth configuration can be provided for test cases.

4.1.2. MQTT Setup
Setup for MQTT tests are divided into two categories:

Hardware

Hardware setup of MQTT is consists of three components (Figure 4):

 PC working as a server

 Router

 Android device working as client

A PC is configured to be the host of broker and server. The Broker is a third party

software which is responsible for publish/subscribe mechanism of MQTT.

Mosquitto is used for the broker in this setup. We have developed the Server

18

component for distribution of data. An Android device simulates the client. Android

application implementing the MQTT client runs on this device. Figure 4 illustrates

hardware setup for MQTT.

Figure 4: Hardware Setup for MQTT

Software

Two programs were developed for this setup: MqttClient and MqttServer. On the

server side, we implemented an MQTT server, named MqttServer, that is responsible

for publishing data. It has simple user interface and it is single process application.

This server uses a broker, called Mosquito, to publish data on the network via a

router. On the client side, we implemented a MqttClient application that handles

published messages. In order to accomplish this task, MqttClient subscribes to the

broker before publishing commences. MQTTClient also has simple user interface,

and all functionality is delegated to an asynchronous task (thread) in order to prevent

screen locking. In order to lighten our client applications, we only implement

messaging and data gathering functionality at our client application. Our aim is to

reach only resources that are used on messaging phase. We apply same constraints

on COAPClient as well.

Figure 5: Software Components of MQTT

19

Figure 5 shows the software components used in the experiment set up. MQTTServer

is the component that runs on PC. It is responsible for publishing messages. It

implements M2MQTT.dll that IBM published for .NET environment. MQTTServer

publishes the messages; Mosquitto (Light, 2017) brokers the messages into the

network. This concludes Server Side’s operations. MQTTClient application receives

the messages. MQTTClient implements M2MQTT.jar also, published by IBM for

Java environmenti. That is our client application. For each arrival of message, metric

data are stored. At the end of the test run metrics are dumped into text files for

analysis.

4.1.3. COAP Setup
Similar to the MQTT setup, the COAP setup is classified into two parts.

Hardware

The hardware setup of COAP is the same as MQTT (Figure 6):

 PC working as a server

 Router

 Android device working as client

CoapServer operates on a PC. The Router is responsible for network transfers.

Android device simulates the client. Android application of COAP runs on this

device.

Figure 6: Hardware Setup for COAP

Software

Similar to MQTT, we have developed two programs: CoapServer and CoapClient.

CoapServer posts prepared resources to CoapClients' requests. Unlike MQTT, COAP

applications are driven by clients.

20

Figure 7 shows the software components we have implemented and used in the

experiment set up. COAPServer is the component that runs on PC. It is responsible

for responding to COAPClient’s requests. It is a COAP.Netii framework adaptation.

It is a single process application with simple interface. COAP.Net is developed by

ETH Zurich for .Net environment. COAPClient application requests the messages

and acquires them from COAPServer’s responses. Californium (M. Kovatsch, 2014)

implementation is used in COAPClient. It is a SpitFireFoxiii adaptation. It also has an

asynchronous task (thread) which handles communications. For each message

acquired, metric data are stored. At the end of the test run, metrics are dumped into

text files as same way in MQTTCLient for analyze.

Figure 7: Software Components of COAP

4.1.4. Test Case Scenarios
We design our tests under the context of medical applications. We have planned the

experiments in several scenarios aiming to simulate different environments in order

to compare MQTT and COAP under possible circumstances. In E-Health scenarios,

departments of medical facilities are simulated. Hospitals can roughly be divided into

3 large departments. These departments are emergency, out-patient polyclinic and

inpatient service. Therefore, we developed one scenario for each of these

departments. Scenarios are built on HL7 messages which are transferred via network

where MQTT or COAP running. Each scenario has different ratio of HL7 messages.

Our scenario message distribution is depicted in Table 3:

Table 3: Test Case Scenarios

Scenario ADT% ORM% ORU% DFT%

Emergency 60 20 10 10

Polyclinic 20 30 30 20

Inpatient 10 35 35 20

The reasoning behind these ratios is basic operational habits of hospitals. In

emergency, a large number of patients are admitted and after basic treatment they are

either discharged or transferred. Hence ADT ratio is high at emergencies. In out-

21

patient polyclinics where treatments are applied balanced message pattern can be

seen. Because for nearly all patients who are admitted there is medical analysis

orders and observations are applied. Obviously there will be some pharmacy-related

actions. Inpatient department messages are comprised mostly order and observation

messages.

We created emergency, polyclinic and inpatient test cases consisting of 300

messages and set up a message repository. During the experiments, the server

applications (MQTTServer and COAPServer) get the messages from this repository

and send them in the order they appear. On each test run they publish (MQTT) or

response (COAP) from server, depending on which protocol is being tested. Server

applications have presented one message per 100 ms out of 300 message pool for 15

minutes. When all the messages are sent, the server continues to sending the

messages starting from the beginning of the repository. Message package sizes are

between 386-534 Bytes for MQTT and 370-520 Bytes for COAP.

4.2 Qualitive Analysis on Reliability and Integrity

In this section, we provide a qualitative analysis on reliability and integrity of the two

messaging protocols. This analysis is a qualitative one using the literature and the

standards specification since our experimental setup is on a closed network which is

not suitable to evaluate these aspects empirically.

Since COAP and MQTT are lightweight network messaging protocols, their primary

aim is to deliver data from source to destination. We analyzed this delivery in terms

of two aspects: Reliability and Integrity. Reliability refers that data will definitely

reach from source to destination. Integrity refers that data will correctly reach from

source to destination.

MQTT provide reliability and integrity at the transport layer due to the use of TCP.

MQTT runs over TCP (Locke, 2010). TCP specification (Postel, 1981) states that

TCP provides reliable communication. TCP applies sequence number and

acknowledgements to make transmission reliable (Postel, 1981). Adding that, MQTT

specification (Locke, 2010) states that QoS2: “Exactly Once” assures there is no loss

or duplication of messages. Thangavel et al (D.Thangavel, 2014) experimentally

support this statement. Although, they do not provide experimental result Tucic et al

(M. Tucic, 2014) and Yi et al (D. Yi, 2016) are also supports reliability of MQTT.

COAP runs over UDP (Z. Shelby C. K., 2013) which has a reputation for

unreliability unlike TCP (Postel J. , 1980). COAP handles reliability issues at

application layer. A retransmission mechanism is added to provide reliability. Also,

COAP message packets contain 16-bit Message ID section to detect duplicates (V.

Karagiannis, 2015). COAP retransmit messages until it acquires an

acknowledgement (Chen, 2014). By applying HTTP features, COAP manages

acknowledgements and eliminate UDP’s deficiencies (Z. Shelby C. K., 2013).

Thangavel et al (D.Thangavel, 2014) and Bandyopadhyay et al (S. Bandyopadhyay,

2013) support this statement.

22

The standards and the literature show that both protocols have reliability and

integrity properties. Therefore, before running our experiments, we checked whether

the protocol implementations satisfy these conditions. I.e. the protocol and mobile

implementations transmit messages in a reliable fashion with preserved integrity.

This sanity test on our MQTT and COAP implementation showed that the

applications developed for the experiment setup satisfy the reliability and integrity

conditions.

4.3. Measurement

Before proceeding measurement and the analysis section, we explain how data are

gathered and evaluated. The metrics are collected during test runs. When a client

receives a message a set of metric data are stored. However, these data are not

meaningful yet. They are raw information acquired from Android system files. To

lighten the applications, analyze phase is separated from client applications. In other

words, we divide measurement phase into two groups: Collection Phase and

Evaluation Phase. In collection phase, the aim was to gather raw data accurate and

valid. To achieve dependable results, we ran the test scenario 10 times for both

protocols.

We ran the test scenario for 10 times with the time interval of 15 minutes. After each

test, Delay, CPU Allocation, Memory Usage, Battery data were gathered from the

application log.

After gathering data phase, evaluation phase initiated. In this phase raw data were

subject to calculation of average and median means. The reasons behind these

calculations are to eliminate spikes or inaccurate results which were caused by

unexpected or irrelevant outside effects.

The following sections present the experiment results.

4.3.1. MQTT
In this section the test results for MQTT are presented. When message is ready,

server application publishes the messages and client application gathers results.

Delay: MQTT has around 46 milliseconds delay between server and client. The

numeric results are depicted in Table 4:

Table 4: Message Delay Results for MQTT

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms)

Run 1 46 39.470 8.944

Run 2 46 39.660 8.888

Run 3 46 39.755 8.852

23

Run 4 46 40.305 8.512

Run 5 46 39.820 8.710

Run 6 46 39.720 8.907

Run 7 46 40.100 8.732

Run 8 46 39.320 8.721

Run 9 46 39.665 8.837

Run 10 46 40.270 8.661

Graphical representation in Figure 8 also shows stable condition for delay metric. It

transfers messages within expected range of delays. Notable derivation from Figure 8

is the difference between median and average values. This shows us that MQTT

fluctuates within range of 8-9 ms in terms of delay. It sometimes transmits messages

below 35ms. However, it is quite stable around 46ms. Our results are very close to

the literature’s Wi-Fi latency results (S. Hamida, 2015) with respect to MQTT.

Figure 8: Message Delay Representation for MQTT

CPU Usage: The CPU resource is divided between applications running on the

operating system. Amount of time that the processor allocated to the application is

considered as CPU resource usage of application.

In android CPU usage can be acquired any given time from “proc” file. CPU usage

data are collected via formula of:

0

5

10

15

20

25

30

35

40

45

50

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y

(m
s)

Run#

MQTT Message Delay

MEDIAN

AVG

S.DEV

24

CPU = ((cpu2 - cpu1) / ((cpu2 + idle2) - (cpu1 + idle1))/1000

Equation 1

Equation 1iv calculates application percentage of CPU usage while running. Running

applications share CPU. Operating system is responsible for allocating CPU between

running applications. Hence every application uses processor in turns. CPU

Allocation denotes the time that processor actually processes designated tasks from

application when the application takes its turn of processor usage. Cpu2 is the

duration after the application used processor and cpu1 is the duration before. Idle

denotes processor sits idle when application is using processor. Cpu2 and cpu1

denote processor usages before and after application’s turn. Idle2 and idle1 denote

how much time processor sits idly while application is running.

MQTTClient application allocates around 26% of CPU. Results are depicted in Table

5:

Table 5: CPU Allocation Percentage Results for MQTT

Run Count MEDIAN (%) AVG (%) S.DEV (%)

Run 1 24.786 24.763 0.199

Run 2 27.815 27.805 1.115

Run 3 25.623 25.645 0.346

Run 4 25.556 25.568 0.198

Run 5 26.298 26.165 0.405

Run 6 26.360 26.328 0.269

Run 7 26.669 26.723 0.433

Run 8 27.069 27.094 0.190

Run 9 26.972 26.514 1.028

Run 10 24.741 24.722 0.207

Figure 9 shows MQTT results for CPU metrics. Horizontal axis shows the test run

identifier. The vertical axis shows CPU Allocation percentage of MQTTClient. The

columns show the CPU Allocation of each test runs. The average and the median of

the measurements show that MQTTClient allocates 25% of CPU with little

fluctuation.

25

Figure 9: CPU Allocation Representation for MQTT

Memory: MQTTClient uses around 12 MB of unshared memory. Android has

divided device’s memory between processes. Processes might be sharing the same

segment of memory. However, to determine accurate memory usage in this thesis

only unshared memory is gathered. Results are depicted in Table 6:

Table 6: Memory Usage Results for MQTT

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB)

Run 1 11.718 11.625 0.341

Run 2 12.556 12.499 0.230

Run 3 12.184 12.152 0.148

Run 4 12.176 12.144 0.156

Run 5 12.532 12.384 0.227

Run 6 12.552 12.467 0.195

Run 7 12.512 12.458 0.183

Run 8 12.508 12.474 0.150

Run 9 12.496 12.242 0.440

Run 10 11.658 11.581 0.415

0

5

10

15

20

25

30

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

C
P

U
 %

Run#

MQTT CPU ALLOCATION

MEDIAN

AVG

S.DEV

26

The graphic in Figure 10 shows memory usage of MQTTClient while it is running.

The vertical axis represents memory usage in MB.

Figure 10: Memory Usage Representation for MQTT

As the Figure 10 depicts MQTTClient uses 12MB of memory. Similar to CPU

Allocation, memory usage of MQTTClient is stable.

Battery Usage: To determine accurate power consumption the battery was fully

charged before running tests. Approximately, MQTTClient consumed %10 of battery

during the test sessions:

Figure 11: Battery Consumption Results for MQTT

0

2

4

6

8

10

12

14

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

MQTT Memory Usage

MEDIAN

AVG

S.DEV

0

2

4

6

8

10

12

14

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

B
at

te
ry

 %

Run#

MQTT Battery Consumption

27

Since battery is bottleneck for mobile devices energy consumption is important

metric for our study. Figure 11 shows the battery consumption results for

MQTTClient results. Extensive explanation and comparison is located in Chapter 5.

4.3.2 COAP
In this section the test results for COAP are presented. Since COAP is based on

request/ response pattern we conduct our experiments by polling for messages with

different intervals. We choose 50ms, 100ms, 150ms, and 200ms for polling. After

each poll we gather metric data. For delay data we collect latency between message

generation and client’s message acquisition. CPU and memory data are collected

from Android proc file system. We get battery data from Android inbuilt

PowerManagerv library. Experiment results are depicted in this section. Further

analysis and discussions are placed in Chapter 5.

50ms Polling Results:

In this run COAPClient polls server per 50ms.

Delay: COAP has around 7 milliseconds delay at 50ms polling. Its numeric results

are shown at Table 7:

28

Table 7: Message Delay Results for COAP(50ms)

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms)

Run 1 6,5 9,725 20,758

Run 2 6 11,21 28,620

Run 3 7 9,235 24,820

Run 4 6 9,935 24,802

Run 5 6 8,970 21,0245

Run 6 7 10,935 30,703

Run 7 7 12,050 27,540

Run 8 6 11,840 36,380

Run 9 6 10,685 32,180

Run 10 7 7,780 6,011

Graphical representation in Figure 12 shows that delay results vary but COAP

performs better than MQTT with respect to message latency in 50ms polling case.

Recall that the delay is measured as the time difference between a message is

generated and its client acquisition.

Figure 12: Message Delay Representation for COAP(50ms)

0

5

10

15

20

25

30

35

40

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y

(m
s)

Run#

COAP Message Delay

MEDIAN

AVG

S.DEV

29

CPU Usage: In android CPU usage can be acquired any given time from “proc” file.

CPU usage data are collected via equation 1. COAP Client application allocates

around %53 of CPU. Results are depicted in Table 8.

Table 8: CPU Allocation Percentage Results for COAP(50ms)

Run Count MEDIAN (%) AVG (%) S.DEV (%)

Run 1 54,916 63,932 24,367

Run 2 51,962 62,129 25,185

Run 3 53,290 61,360 22,256

Run 4 52,593 59,914 23,387

Run 5 52,203 62,959 25,573

Run 6 53,916 61,451 24,073

Run 7 52,311 59,863 22,831

Run 8 50,641 58,919 23,521

Run 9 51,041 55,982 20,869

Run 10 53,277 62,552 24,943

Figure 13 shows CPU Allocation of COAPClient for 50ms polling:

30

Figure 13: CPU Allocation Representation for COAP(50ms)

Memory: COAP Client uses around 37 MB of unshared memory. Android has

divided device’s memory between processes. Processes might be sharing same

segment of memory. However, to determine accurate memory usage in this thesis

only unshared memory is gathered. Table 9 shows results.

Table 9: Memory Usage Results for COAP(50ms)

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB)

Run 1 37,180 45,111 19,252

Run 2 36,902 41,827 16,448

Run 3 36,956 41,804 15,925

Run 4 37,080 42,700 17,334

Run 5 36,974 39,441 15,159

Run 6 36,992 39,988 16,691

Run 7 37,080 41,539 15,292

Run 8 36,930 40,964 14,381

Run 9 36,524 38,017 11,258

0

10

20

30

40

50

60

70

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

C
P

U
 %

Run#

COAP CPU Allocation

MEDIAN

AVG

S.DEV

31

Run 10 36,712 41,759 18,784

The graphic in Figure 14 shows memory usage of COAPClient for 50ms polling:

Figure 14: Memory Usage Representation for COAP(50ms)

Battery: To determine accurate power consumption the battery is fully charged

before running tests.

Figure 15: Battery Consumption Results for COAP(50ms)

As the Figure 15 shows COAPClient has serious energy consumption. High CPU

Allocation and memory usage affect battery consumption. Also, retransmission is

0

5

10

15

20

25

30

35

40

45

50

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

COAP Memory Usage

MEDIAN

AVG

S.DEV

32

32,5

33

33,5

34

34,5

35

35,5

run1 run2 run3 run4 run5 run6 run7 run8 run9 run10

B
at

te
ry

 %

Run#

COAP Battery Consumption

32

costly operation which might increase the consumption. Besides, in 50ms polling

case the client tries two times to get the message, since a message is generated per

100ms. This situation also affects battery. Extensive explanation and comparison is

located in chapter 5.

100ms Polling Results:

In this run COAPClient polls server per 100ms.

Delay: COAP has around 7 milliseconds delay at 100ms polling. Its numeric results

are depicted in Table 10:

Table 10: Message Delay Results for COAP(100ms)

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms)

Run 1 7 8,735 5,610

Run 2 7 8,345 6,436

Run 3 7 9,275 7,542

Run 4 6 8,290 5,017

Run 5 7 9,095 6,457

Run 6 7 8,715 7,391

Run 7 7 8,705 6,705

Run 8 6 8,490 5,589

Run 9 7 8,445 4,839

Run 10 6 7,725 5,611

Graphical representation in Figure 16 shows that there is a big variation on delay

values on COAP, but COAP is still faster than MQTT. This fluctuation is probably

caused by retransmission cases. Also, COAP’s latency results are supported by

Hamida et al (S. Hamida, 2015).

33

Figure 16: Message Delay Representation for COAP(100ms)

CPU Usage: COAP Client application allocates around %50 of CPU. Results are

depicted in Table 11. This table shows the median, mean and standard deviation of

CPU allocation percentage for each test run.

Table 11: CPU Allocation Percentage Results for COAP(100ms)

Run Count MEDIAN (%) AVG (%) S.DEV (%)

Run 1 48,381 49,169 5,901

Run 2 49,159 49,241 5,738

Run 3 48,734 49,048 5,731

Run 4 48,739 48,712 5,468

Run 5 48,655 49,058 5,496

Run 6 48,255 48,888 5,269

Run 7 49,064 49,318 5,550

Run 8 49,927 49,690 5,294

Run 9 47,017 48,742 5,474

Run 10 49,468 49,143 6,179

Table 12: CPU Allocation Results for COAP

Figure 17 shows CPU Allocation of COAPClient while it is running:

0

1

2

3

4

5

6

7

8

9

10

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y

(m
s)

Run#

COAP Message Delay

MEDIAN

AVG

S.DEV

34

Figure 17: CPU Allocation Representation for COAP(100ms)

In Figure 17, we notice that deviation between results is clear. Together with volatile

nature of delay, we concluded that in any case of retransmission also affects CPU

Allocation metric.

Memory: COAP Client uses around 20 MB of unshared memory. Results are

depicted in Table 13.

Table 13: Memory Usage Results for COAP(100ms)

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB)

Run 1 20.492 20.637 1.835

Run 2 20.392 20.540 1.784

Run 3 20.484 20.471 1.745

Run 4 20.382 20.433 1.633

Run 5 20.536 20.544 1.717

Run 6 20.396 20.487 1.582

Run 7 20.396 20.594 1.650

Run 8 20.492 20.680 1.516

Run 9 20.376 20.403 1.614

Run 10 20.352 20.481 1.953

0

10

20

30

40

50

60

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

C
P

U
 %

Run#

COAP CPU ALLOCATION

MEDIAN

AVG

S.DEV

35

The graphic in Figure 18 shows memory usage of COAPClient while it is running:

Figure 18: Memory Usage Representation for COAP(100ms)

COAPClient’s memory usage is stable around 20MB with the deviation of 1.5MB at

100ms polling.

Battery Usage: Approximately, COAPClient consumes %30 of energy during the

tests sessions. Figure 19 shows results:

Figure 19: Battery Consumption Results for COAP(100ms)

150ms Polling Results:

0

5

10

15

20

25

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

COAP Memory Usage

MEDIAN

AVG

S.DEV

0

5

10

15

20

25

30

35

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

B
at

te
ry

 %

Run#

COAP Battery Consumption

36

In this run COAPClient polls server per 150ms.

Delay: COAP has around 56 milliseconds delay at 150ms polling. Its numeric results

are shown at Table 14:

Table 14: Message Delay Results for COAP(150ms)

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms)

Run 1 56 64,525 67,830

Run 2 56 62,635 156,366

Run 3 56 86,315 215,889

Run 4 57 76,615 196,299

Run 5 56 59,660 38,119

Run 6 56,5 76,220 206,375

Run 7 57 68,475 72,152

Run 8 57 67,670 57,361

Run 9 56 59,29 43,515

Run 10 56,5 83,25 229,531

Visual depiction of latency is presented at Figure 20. Recall that in this setup, the

client is polling in 150 ms intervals while messages are prepared in the server in

100ms intervals. Therefore, messages are not always ready to consume at each

polling. This situation is causing the standard deviation to be high.

37

Figure 20: Message Delay Representation for COAP(150ms)

CPU Usage: COAP Client application allocates around %22 of CPU at 150ms

polling. Results are depicted in Table 15.

0

50

100

150

200

250

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y

(m
s)

Run#

COAP Message Delay

MEDIAN

AVG

S.DEV

38

Table 15: CPU Allocation Percentage Results for COAP(150ms)

Run Count MEDIAN (%) AVG (%) S.DEV (%)

Run 1 22,425 22,476 1,1702

Run 2 22,27 22,468 1,201

Run 3 22,176 22,282 1,119

Run 4 22,414 22,556 1,143

Run 5 22,309 22,416 1,193

Run 6 22,370 22,388 1,077

Run 7 22,380 22,423 1,157

Run 8 22,397 22,427 1,185

Run 9 22,469 22,445 1,190

Run 10 22,47715 22,478 1,127

Figure 21 shows visual representation of Table 15.

Figure 21: CPU Allocation Representation for COAP(150ms)

CPU and polling intervals are in negative correlation as expected. Smaller intervals

result in higher CPU allocation.

0

5

10

15

20

25

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

C
P

U
 %

Run#

COAP CPU Allocation

MEDIAN

AVG

S.DEV

39

Memory: COAP Client uses around 23 MB of unshared memory at 150ms polling.

Table 16 lists experiment results.

Table 16: Memory Usage Results for COAP(150ms)

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB)

Run 1 23,670 26,541 8,469

Run 2 23,672 26,507 8,0480

Run 3 23,656 26,418 8,158

Run 4 23,676 26,726 8,278

Run 5 23,672 26,830 8,051

Run 6 23,750 26,137 7,172

Run 7 23,676 26,976 8,209

Run 8 23,674 26,187 7,944

Run 9 23,658 26,546 8,190

Run 10 23,664 26,281 7,751

Figure 22 shows COAPClient’s memory usage at 150ms polling.

Figure 22: Memory Usage Representation for COAP(150ms)

0

5

10

15

20

25

30

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

COAP Memory Usage

MEDIAN

AVG

S.DEV

40

Battery: As CPU and memory resource usages decrease, power consumption of

COAPClient reduces accordingly. Numeric results are shown at Figure 23.

Figure 23: Battery Consumption Results for COAP(150ms)

200ms Polling Results:

In this run COAPClient polls server per 200ms.

Delay: COAP has around 60 milliseconds delay at 200ms polling. Its numeric results

are shown at Table 17:

Table 17: Message Delay Results for COAP(200ms)

Run Count MEDIAN(ms) AVG(ms) S.DEV(ms)

Run 1 65,5 64,490 66,882

Run 2 59 59,720 50,704

Run 3 59 59,865 49,881

Run 4 58 57,645 48,683

Run 5 64 66,300 63,005

Run 6 60 60,415 49,756

Run 7 67 67,230 76,006

Run 8 57 65,235 69,746

17

18

19

20

21

22

23

run1 run2 run3 run4 run5 run6 run7 run8 run9 run10

B
at

te
ry

 %

Run#

COAP Battery Consumption

41

Run 9 66 65,865 63,677

Run 10 58,5 57,940 49,837

While polling interval increases COAP’s latency advantage diminishes. Figure 24

depicts this result.

Figure 24: Message Delay Representation for COAP(200ms)

CPU usage: COAP Client application allocates around %17 of CPU. Results are

depicted in Table 18.

Table 18: CPU Allocation Percentage Results for COAP(200ms)

Run Count MEDIAN (%) AVG (%) S.DEV (%)

Run 1 17,616 17,872 1,263

Run 2 17,540 17,831 1,240

Run 3 17,780 17,930 1,195

Run 4 17,790 17,938 1,235

Run 5 17,806 17,916 1,225

Run 6 17,877 17,946 1,173

Run 7 17,761 17,931 1,246

0

10

20

30

40

50

60

70

80

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

D
e

la
y

(m
s)

Run#

COAP Message Delay

MEDIAN

AVG

S.DEV

42

Run 8 17,785 17,898 1,170

Run 9 17,701 17,931 1,203

Run 10 17,810 17,893 1,172

At 200ms polling, COAPClient actually allocate lower CPU than MQTTClient.

COAPClients CPU allocation is shown at Figure 25.

Figure 25: CPU Allocation Representation for COAP(200ms)

Memory: COAP Client uses around 24 MB of unshared memory. Experiment results

are listed in Table19.

Table 19: Memory Usage Results for COAP(200ms)

Run Count MEDIAN(MB) AVG(MB) S.DEV(MB)

Run 1 24,156 27,154 8,798

Run 2 25,016 28,192 9,406

Run 3 23,524 27,049 9,469

Run 4 25,946 27,409 8,466

Run 5 25,478 28,065 9,438

Run 6 24,268 26,642 8,731

0

2

4

6

8

10

12

14

16

18

20

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

C
P

U
 %

Run#

COAP CPU Allocation

MEDIAN

AVG

S.DEV

43

Run 7 24,826 28,217 9,401

Run 8 25,052 28,020 9,222

Run 9 25,486 28,660 9,492

Run 10 25,532 28,382 9,229

Memory usage experiment results are placed in Figure 26.

Figure 26: Memory Usage Representation for COAP(200ms)

Battery: As resource usages are drawn lower, battery consumption of COAPClient

scale down to around 11 percent. Results are shown at Figure 27.

0

5

10

15

20

25

30

35

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
e

m
o

ry
 (

M
B

)

Run#

COAP Memory Usage

MEDIAN

AVG

S.DEV

44

Figure 27: Battery Consumption Results for COAP(200ms)

Polling at different rates directly affects COAP experiment results. Hence, to provide

a better understanding we prepare several figures. These figures compare polling

interval’s impacts on our metrics.

Figure 28 shows latency results under different polling intervals. Latency increases

as polling interval grows. Since messages are generated per 100ms, the latency is

greater in polling at 150 and 200 ms intervals. The larger intervals cause longer

latencies.

Figure 28: COAP Delay Comparison by Polling

CPU allocation has negative correlation with polling intervals. As polling interval

grows, the CPU allocation decreases. Figure 29 depicts experiment results.

9

9,5

10

10,5

11

11,5

12

12,5

run1 run2 run3 run4 run5 run6 run7 run8 run9 run10

B
at

te
ry

 %

Run#

COAP Battery Consumption

0

10

20

30

40

50

60

70

50ms 100ms 150ms 200ms

D
e

la
y

(m
s)

Polling Interval

Message Delay

45

Figure 29 : COAP CPU Allocation Comparison by Polling

Polling intervals has no direct effect on memory usage. Our findings are presented at

Figure 30.

Figure 30: COAP Memory Usage Comparison by Polling

Power consumption has positive correlation with CPU usage. So, results of these two

metrics are similar. As CPU usage grows, battery drainage also increases. Figure 31

shows our results.

0

10

20

30

40

50

60

50ms 100ms 150ms 200ms

C
P

U
 %

Polling Interval

CPU Allocation

0

5

10

15

20

25

30

35

40

50ms 100ms 150ms 200ms

M
e

m
o

ry
 (

M
B

)

Polling Interval

Memory Usage

46

Figure 31: COAP Battery Consumption Comparison by Polling

Figure 32 provides combined experiment results on COAP.

Figure 32: COAP Overall Comparison by Polling

0

5

10

15

20

25

30

35

40

50ms 100ms 150ms 200ms

B
at

te
ry

 %

Polling Interval

Battery Consumption

0

10

20

30

40

50

60

70

COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)C
P

U
 %

, M
e

m
o

ry
 (

M
B

),
 D

e
la

y
(m

s)
,

B
at

te
ry

 %

Polling Interval

Overall Comparison

Memory

CPU

Delay

Battery

47

CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents our discussions on the results of the experiments presented in

the previous chapter. In our experiments, the numerical results are dependent to

hardware and software specifications. In order to overcome this threat, the exact

same hardware and software infrastructure is used for testbed. To accomplish exact

settings for hardware is easy, but it is hard to achieve for software. To provide

accurate comparison environment, in software components are designed as layers

and the only difference between applications (MQTTServer, MQTTClient,

COAPServer and COAPClient) is protocol implementations. We also should note

that, our metrics are collected from clients (nodes); since our primary focus is

protocols effects on clients.

In the experiments, the servers have produced a message for each 100ms. MQTT has

publish/subscribe pattern, so MQTTServer publishes message as soon as message

ready. At MQTTClient we collect the metric data. However, COAP implements

request/response pattern. COAPClient needs to poll server for messages. To see the

effect of polling interval, we have collected the data for 50ms, 100ms, 150ms and

200ms polling intervals. Analyses of the results are listed below.

Delay: As seen in Figure 33, MQTT has higher delay than COAP, unless polling

interval is bigger or equal to message generating interval. At 50ms and 100ms

polling COAP fares better than MQTT; however, at 150ms and 200ms polling

experiments MQTT has lower latency. At the same message acquisition timing,

because of its UDP implementation and smaller packet overhead (L.Dürkop, 2015)

COAP is faster than MQTT. Another interesting observation is that MQTT performs

in more stable fashion. COAP has some spikes through the test sessions. Those

spikes are values belong to retransmitted packets. As the COAP specification (Z.

Shelby C. K., 2013) states, in the case of a packet loss the protocol triggers its

retransmission mechanism. The spikes in the experiments are caused by

retransmission of packets. Since UDP does not have any reliability feature, HTTP

enables COAP to provide this feature. Although, COAP is significantly faster than

MQTT, retransmission is extremely expensive. Retransmission nearly doubles

message delay. Our testbed is private network; hence number of retransmission cases

is not high. Our results are backed by Hamida et al (S. Hamida, 2015). Comparison

on delay aspect between COAP with different polling intervals and MQTT is shown

Figure 33.

48

Figure 33: Delay Comparison between COAP and MQTT

CPU Allocation: Figure 34 depicts the CPU allocation for MQTTClient and for

COAPClient with different polling intervals. As seen in the figure, the comparison of

the two protocols in terms of this metric highly depends on the polling intervals in

the COAP. In the COAP case, we have to mark that there is negative correlation

between polling interval and CPU usage. CPU allocation steadily regressed through

from 50ms polling to 200ms polling. MQTTClient needs less CPU resource than

COAP when the 100ms and 50ms polling intervals are used. However, when the

polling interval is bigger than the message preparing time, then COAP outperforms

the MQTT client.

Here we compare the two protocols when the polling interval is the same as the

message preparation interval. MQTTClient uses less CPU time than COAPClient

with 100ms polling interval. One possible reason is as follows. COAP has client-

driven protocol. Due to its HTTP elements, its client has more responsibility than a

MQTT client. The COAP client contains both a request sender and a response

receiver which increases computation on client. MQTT has publish/subscribe pattern,

a client only listens the incoming messages. Karagiannis et al. (V. Karagiannis,

2015) also supports this finding. According to them, additional message processing

required by request/response pattern puts extra execution for CPU. Another possible

reason of the CPU allocation difference is the packet loss cases. COAP handles it at

application layer because of UDP's deficiency (Z. Shelby C. K., 2013).

Retransmission mechanism is implemented within HTTP adaptation (Z. Shelby C.

K., 2013). MQTT handles it at network layer. TCP protocol handles packet loss

cases.

In conclusion, when the message preparation time is known, using a COAP client

with longer polling intervals would require less CPU resource than a MQTT client.

0

10

20

30

40

50

60

70

MQTT COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)

D
e

la
y

(m
s)

Experiment

Message Delay

49

Figure 34: CPU Allocation Comparison between COAP and MQTT

Memory: As Figure 35 shows, COAP uses more memory than MQTT. COAP Client

has more software component than MQTT due to its implementation. This situation

is the result of design choices of protocol designers. In COAP, the client has the

initiative to start the communication which causes heavier application with respect to

resource usage. COAPClient has to send request message to the server and process

response message. Since COAPClient application size does not depend on the

polling intervals, memory usage stays steady across our experiments with the

exception of 50ms polling.

Figure 35: Memory Usage Comparison between COAP and MQTT

0

10

20

30

40

50

60

MQTT COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)

C
P

U
 %

Experiment

CPU ALLOCATION

0

5

10

15

20

25

30

35

40

MQTT COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)

M
e

m
o

ry
 (

M
B

)

Experiment

Memory Usage

50

Battery Usage: MQTTClient is more energy efficient than its COAP counterpart as

shown in Figure 36. This result is predictable due to COAPCLient’s memory

resource usage is higher than MQTTCLient. Also, since at the lower polling intervals

COAP requires more CPU time, the battery usage is higher in these intervals. Our

findings related to battery usage are supported by Karagiannis et al. (V. Karagiannis,

2015). It is also affected by retransmission and resource discovery cases. Since UDP

does not provide any reliability or integrity features, these features are provided in

application level in the COAP implementation. Specifically, HTTP is part of its

implementation. Any packet loss or reconnection causes more resource usage which

is end up more energy consumption. Battery usage has positive correlation with CPU

allocation. As CPU allocation gets high, power consumption also increases. As their

combined (CPU and Memory) resource usages get closer, MQTT and COAP

protocols’ power consumptions also get close to each other.

Figure 36: Battery Consumption Comparison between COAP and MQTT

0

5

10

15

20

25

30

35

40

MQTT COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)

B
at

te
ry

 %

Experiment

BATTERY CONSUMPTION

51

CHAPTER 6

CONCLUSION

We aim to compare two prominent lightweight network protocols; MQTT and

COAP. In order to achieve this goal, we designed and provided a common hardware

setup and software infrastructure. A PC, a mobile device and a router formed our

hardware setup. To avoid constructional threat, we have developed the software

implementing both protocols. Our software applications had dependencies to two

common frameworks. They are .NET and Android frameworks. We developed our

server applications on .NET, client applications on Android framework.

We studied according to GQM approach. The goal is to determine strengths and

weaknesses of MQTT and COAP protocols on application level. The following

research questions are chosen:

 RQ1: Which protocol is resource efficient for mobile hardware aspect?

 RQ2: Which protocol performs better for transfer time aspect?

Our context in the experiments is medical facilities. We simulated them with HL7

messages. We analyzed our findings in aspect of clients. In other words, we

examined the effect of the protocols on the nodes.

For RQ1, we measured CPU allocation, memory usage and battery consumption.

According to our findings, MQTT consumes lower hardware resource than COAP,

unless polling interval is bigger than message generating interval. At higher intervals

memory usage still favors MQTT; however CPU allocation results are reversed.

COAP fares better than MQTT at higher polling interval with respect to CPU

allocation. Power consumption of COAP reduces with increase of interval and its

200ms polling results are similar with MQTT. CPU allocation and memory usages

of MQTT and COAP have not been investigated before in the literature, to the best

of our knowledge the power consumption results conflicts with the literature (S.

Bandyopadhyay, 2013). It is understandable because Bandyopadhyay et al. (S.

Bandyopadhyay, 2013) considers entire systems power consumption. On the other

hand, Karagiannis et al. (V. Karagiannis, 2015) claims by using publish/subscribe

pattern MQTT nodes require less message processing which results extending battery

life. We only focused on battery consumption at the client side. Since server

machines are provided with UPS, power is not constraint resource for them. On the

other hand, our client consists of mobile device for which power is the greatest

constraint. In conclusion, under similar delay or polling conditions MQTT requires

less hardware resources than COAP. For RQ2, we measured the message delay;

COAP is clearly faster than MQTT. Although there are some fluctuations at COAP’s

results, it still faster than MQTT unless polling rate is higher than data generate rate.

These results are compatible with the literature (D.Thangavel, 2014) (S. Hamida,

2015) (N. De Caro, 2013). Figure 37 shows overall comparison conclusion of our

experiments.

52

The areas of use of the protocols are determined by protocols strengths. In general,

publish/subscribe pattern suits better for IoT than request/response pattern (S.

Hamida, 2015). When message delay is the most important factor and overweights

hardware constraints, COAP is apparent solution. As for the CPU metrics, on larger

polling intervals, the resource usage of COAPClient is regressed. However, it costs

COAP’s latency advantage. There is a tradeoff between CPU allocation and latency

for COAP. By increasing polling interval COAP we can achieve lower CPU

allocation than MQTT. But if intended solution requires balance between latency and

CPU MQTT should be used. Also, MQTT would be better choice when it comes to

reliability (D. Yi, 2016) because of its TCP features (Cohn, 2011). COAP also has

reliability mechanism; but TCP is found more dependable (N. De Caro, 2013).

Although there are several initiatives COAP-based patient monitoring (M. Cha,

2017) and sensor network (H. Khattak, 2014) applications; MQTT still stands more

preferable solution. This conclusion is supported by several studies (M. Tucic, 2014)

(D. Yi, 2016) (V. Karagiannis, 2015) (S. Hamida, 2015).

Figure 37: Overall Comparison of MQTT and COAP

Patient related information messages would be carried on MQTT. If total hardware

resource usages are considered as a whole, mobile applications which are used by

medical staff should be implemented with MQTT due to its lower combined resource

usages. Although at higher intervals COAP uses less CPU time, combined CPU,

memory and battery requirements are higher than MQTT. Ambulance and medical

supply movement information related communications should be carried over COAP

since time is essence. Nearly all studies confirm low-latency advantage of COAP

over MQTT when COAP sends requests at the same time MQTT publishes. In other

words, if the message is ready and both protocols try to get it at the same time;

COAP performs better than MQTT. However, there are several limitations in hybrid

approach. Since each protocol has strong sides we suggest hybrid approach for

medical facilities. Currently MQTT and COAP are not interoperable. In other words,

they cannot communicate each other. Each node is able to process both protocols and

they communicate via middleware which is capable of processing messages of both

0

10

20

30

40

50

60

70

MQTT COAP(50ms) COAP(100ms) COAP(150ms) COAP(200ms)C
P

U
 %

, M
e

m
o

ry
 (

M
B

),
 D

e
la

y
(m

s)
,

B
at

te
ry

 %

Experiments

Overall Comparison

Memory

CPU

Delay

Battery

53

protocols (R. Sutaria, 2013). Former approach is not practical because nodes are

constraint devices and this solution negates all advantages of lightweight messaging

protocols. Latter approach is more suitable; however, it may add additional latency

and increase overall system complexity by an adding extra layer.

There are limitations for our thesis. They could be classified into two categories,

Hardware and software limitations. First, hardware limitations consist of closed

network, PC-mobile device specifications and router capabilities. We ran the tests on

closed private network. On public network, security should be included as a metric,

however security is not a concern of this study, and it does not cause any threat to

validity. Adding that, we used router that has data rate of 150 Megabit per second

(Mbit/s)vi. Any differences at data rate can cause changes in delay experiments. Also

our client applications run on mobile device that has Quad Core 1200 megahertz

(MHz) and 4 gigabyte (GB) memory. These specifications directly effect on CPU

allocation and memory usage. Numerical results of CPU allocation and memory

usage have cordial relationship with hardware specifications. Power consumption has

direct relations with mobile device’s battery. In this thesis we use 1800 miliampere-

hour (mAH) battery on mobile device. Numeric results depend heavily on hardware

specifications. They may change under different hardware setup. For example, if

client application runs on device that has more powerful processor will allocate

lower CPU. Likewise, more capable battery will lose lower percentage of power

during test runs. Because of these facts we focus on comparison rather than numeric

values. Second, software limitations comprise of fixed message size, .NET and

Android framework. In our tests, the server publishes/ responses HL7 messages.

Those messages have fixed sizes. This situation is dictated by HL7 standards. Due to

our context decision, we did not cover protocols' responses for different message

sizes. We develop our server applications on .Net framework v4.5 with C# and client

applications on Android framework v4.4.2 with Java. Since covering all available

frameworks is impractical, we provide common software infrastructure.

Optimization of framework directly impacts our experiments. Applications resource

usages depend on framework’s optimization. It affects CPU allocation and memory

usage. Resource usage also affects power consumption, because if resource usage

increases device will definitely consume more power and vice versa. Those threats

do not affect our results because at any rate, both protocols are tested under same

software infrastructure. Although it is subjective matter, we think MQTT has easier

interface for application development.

In the future work, we plan to design for complete communication system for

medical facilities with hybrid use of both protocols. Also, MQTT and COAP can be

viable options to vehicle-to-vehicle (V2V) communication.

54

REFERENCE

1. Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7), 97-

114.

2. Evans, D. (2012). The Internet of Things How the Next Evolution of the

Internet is Changing Everything (April 2011). White Paper by Cisco Internet

Business Solutions Group (IBSG).

3. Colitti, W., Steenhaut, K., & De Caro, N. (2011). Integrating wireless sensor

networks with the web. Extending the Internet to Low power and Lossy

Networks (IP+ SN 2011).

4. Locke, D. (2010). Mq telemetry transport (mqtt) v3. 1 protocol specification.

IBM developerWorks Technical Library.

5. Shelby, Z., Hartke, K., Bormann, C., & Frank, B. Constrained application

protocol (CoAP), draft-ietf-core-coap-18 sl: IETF 2013.

6. Bergmann, O. (2012). libcoap: C-Implementation of CoAP. URL:

http://libcoap. sourceforge. net, Date of access 13.09.

7. Thangavel, D., Ma, X., Valera, A., Tan, H. X., & Tan, C. K. Y. (2014, April).

Performance evaluation of MQTT and CoAP via a common middleware. In

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),

2014 IEEE Ninth International Conference on (pp. 1-6). IEEE.

8. Bandyopadhyay, S., & Bhattacharyya, A. (2013, January). Lightweight

Internet protocols for web enablement of sensors using constrained gateway

devices. In Computing, Networking and Communications (ICNC), 2013

International Conference on (pp. 334-340). IEEE.

9. Tucic, M., Pavlovic, R., Papp, I., & Saric, D. (2014, November). Networking

layer for unifying distributed smart home entities. In Telecommunications

Forum Telfor (TELFOR), 2014 22nd (pp. 368-371). IEEE.

10. Yi, D., Binwen, F., Xiaoming, K., & Qianqian, M. (2016, October). Design

and implementation of mobile health monitoring system based on MQTT

protocol. In Advanced Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC), 2016 IEEE (pp. 1679-1682).

IEEE.

11. Caldiera, V. R. B. G., & Rombach, H. D. (1994). Goal question metric

paradigm. Encyclopedia of Software Engineering, 1, 528-532.

12. Frigieri, E. P., Mazzer, D., & Parreira, L. F. M2M Protocols for Constrained

Environments in the Context of IoT: A Comparison of Approaches. In

International Telecommunications Symposium.

13. Shelby, Z., Hartke, K., & Bormann, C. (2014). RFC 7252—The Constrained

Application Protocol (CoAP). Internet Engineering T ask Force (IETF).

14. Chen, X. (2014). Constrained Application Protocol for Internet of Things.

URL: http://www1. cse. wustl. edu/~ jain/cse574-14/ftp/coap.

55

15. Durkop, L., Czybik, B., & Jasperneite, J. (2015, February). Performance

evaluation of M2M protocols over cellular networks in a lab environment. In

Intelligence in Next Generation Networks (ICIN), 2015 18th International

Conference on (pp. 70-75). IEEE.

16. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J.

(2015). A survey on application layer protocols for the internet of things.

Transaction on IoT and Cloud Computing, 3(1), 11-17.

17. De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., & Reali, G. (2013,

November). Comparison of two lightweight protocols for smartphone-based

sensing. In Communications and Vehicular Technology in the Benelux

(SCVT), 2013 IEEE 20th Symposium on (pp. 1-6). IEEE.

18. Sutaria, R., & Govindachari, R. (2013). Making sense of interoperability:

Protocols and Standardization initiatives in IOT. In 2nd International

Workshop on Computing and Networking for Internet of Things.

19. Kim, W., Shin, Y., & Seol, S. (2015). Smart phone assisted personal IoT

service. Advanced Science and Technology Letters, 110, 61-66.

20. Cohn, R. S. (2011). A Comparison of AMQP and MQTT. Available:

www.stormmq.com.

21. Hamida, S. T. B., Hamida, E. B., & Ahmed, B. (2015). A new mHealth

communication framework for use in wearable WBANs and mobile

technologies. Sensors, 15(2), 3379-3408.

22. Khattak, H. A., Ruta, M., & Di Sciascio, E. (2014, January). CoAP-based

healthcare sensor networks: A survey. In Applied Sciences and Technology

(IBCAST), 2014 11th International Bhurban Conference on (pp. 499-503).

IEEE.

23. M. Cha, J. Kwon,E. Kim (2017), Implementation of Healthcare Monitoring

System based on CoAP Group Communication. Advanced Science and

Technology Letters vol.143 (AST 2017), pp.98-101

24. Soldani, D., & Manzalini, A. (2015). Horizon 2020 and beyond: on the 5G

operating system for a true digital society. IEEE Vehicular Technology

Magazine, 10(1), 32-42.

25. Kovatsch, M., Lanter, M., Shelby, M. (2014). Californium: Scalable Cloud

Services for the Internet of Things with CoAP. Proceedings of the 4th

International Conference on the Internet of Things (IoT 2014). Cambridge,

MA, USA, October 2014

26. Orguna, B., & Vu, J. (2006). HL7 ontology and mobile agents for

interoperability in heterogeneous medical information systems. Computers in

biology and medicine, 36(7), 817-836.

27. HL7 v2.X Message Profiling Specification Version 2.2 (2000). Retrieved

from

https://www.hl7.org/documentcenter/public/standards/v22/HL7_Profile_V2r2

_final.doc

56

28. R. A. Light, “Mosquitto: server and client implementation of the MQTT

protocol,” The Journal of Open Source Software, vol. 2, no. 13, May 2017,

DOI: 10.21105/joss.00265

29. Postel, J. (1981). RFC 793: Transmission control protocol, September 1981.

Status: Standard, 88.

30. Postel, J. (1980). RFC 768: User datagram protocol, August 1980. Status:

Standard.

57

i http://www.eclipse.org/paho/downloads.php 2017
ii https://github.com/smeshlink/CoAP.NET 2016
iii https://github.com/okleine/spitfirefox 2016
iv https://stackoverflow.com/questions/3118234/get-memory-usage-in-

android/5562634# 5560634
v https://developer.android.com/reference/android/os/PowerManager.html 2017
vi http://airties.com.tr/datasheets/AIR5340EN_DS.pdf

