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ABSTRACT

MULTIPLE KERNEL LEARNING FOR FIRST-PERSON ACTIVITY
RECOGNITION

Özkan, Fatih
M.Sc., Department of Information Systems

Supervisor : Assoc. Prof. Dr. Alptekin Temizel

Co-Supervisor : Asst. Prof. Dr. Elif Sürer

June 2017, 74 pages

First-person vision applications have recently gained increasing popularity because
of advances in wearable camera technologies. In the literature, existing descriptors
have been adapted to the first-person videos or new descriptors have been proposed.
These descriptors have been used in a single-kernel method which ignores the relative
importance of each descriptor. On the other hand, first-person videos have different
characteristics as compared to third-person videos which are captured by static cameras.
Throughout the first-person video, vast changes occur in some attributes such as
illumination or brightness. A significant amount of ego-motion is created because of
the movements of the first-person camera wearer. Multiple features are used in order
to capture the different changes in video characteristics. Therefore, appropriate feature
and kernel selection are needed. In this thesis, local and global motion-related features
are used. A data-driven approach is proposed in order to select and combine these
features and kernels employed. Feature and kernel selection is performed through
AdaBoost algorithm’s well-known trials in a probabilistic manner. At training stage,
a classifier which shows better performance than other classifiers is determined for
each trial. After all trials, classifiers which compose the final classifier are determined.
At testing stage, final classifier makes decision for activity labels based on a voting
mechanism. Experiments show that the proposed methods outperform the traditional
SVM single kernel-based methods in literature in terms of recognition accuracy.

Keywords: multiple kernel learning, kernel boosting, first-person, ego-centric videos,
activity recognition
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ÖZ

BİRİNCİ ŞAHIS AKTİVİTE TANIMA İÇİN ÇOKLU ÇEKİRDEK ÖĞRENMESİ

Özkan, Fatih
Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Alptekin Temizel

Ortak Tez Yöneticisi : Asst. Prof. Dr. Elif Sürer

Haziran 2017, 74 sayfa

Birinci-şahıs görü uygulamaları giyilebilen kamera teknolojisindeki ilerlemeler sebe-
biyle yakın zamanda artan bir rağbet kazandı. Literatürde, birinci- şahıs video’ları için
mevcut tanımlayıcılar uyarlanmıştır veya yeni tanımlayıcılar önerilmiştir. Bu tanım-
layıcılar, her bir tanımlayıcının göreceli önemini ihmal eden tekli-çekirdek metodunda
kullanılır. Öte yandan, birinci-şahıs video’ları sabit kameralarla çekilen üçüncü- şahıs
video’larla kıyaslandığında farklı ayırıcı nitelikleri vardır. Birinci şahıs video boyunca,
aydınlanma ve parlaklık gibi bazı özelliklerde geniş değişiklikler oluşur. Birinci şahıs
kamera ile görüntü alan kişinin hareketleri sebebiyle önemli miktarda öz-hareket
oluşur. Çoklu öznitelikler video özelliklerindeki farklı değişiklikleri yakalamak için
kullanılması önerilmektedir. Bu sebeple, uygun öznitelik ve çekirdek seçimi gerekir.
Bu tezde, lokal ve global harekete ilişkin öznitelikler kullanılır. Bu öznitelikleri ve
çekirdekleri seçmek ve bir araya getirmek için veri-güdümlü yaklaşım önerilir. Öznite-
lik ve çekirdek seçimi olasılık temelli bir yol kullanılarak, AdaBoost algoritmasının
bilinen denemeleriyle gerçekleştirilir. Eğitme aşamasında, diğer sınıflandırıcılardan
daha iyi bir performans gösteren sınıflandırıcı her deneme için belirlenir. Bütün den-
emelerden sonra, nihai sınıflandırıcıyı meydana getiren sınıflandırıcılar belirlenir. Test
aşamasında, nihai sınıflandırıcı aktivite etiketlerine oylama mekanizmasına dayalı
olarak karar verir. Yürütülen deneyler, önerilen metodun literatürdeki geleneksel
DVM (Destek Vektör Makineleri - SVM) tekil çekirdek temelli metotlara göre, tanıma
doğruluğu bakımından daha üstün olduğunu gösterir.

Anahtar Kelimeler: çoklu çekirdek ögrenmesi, çekirdek takviyesi, birinci- şahıs, öz-
hareket videoları, aktivite tanıma
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CHAPTER 1

INTRODUCTION

Wearable cameras have become ubiquitous as a consequence of advances in camera
and sensor technologies. Hence, a number of devices such as GoPro, Google Glass
and Microsoft SenseCam have come into use and received widespread attention. These
devices have been broadly employed in several fields such as sport activities and
life-logging applications. Wearable cameras which are mostly mounted on head or
worn like eyeglasses allow capturing videos from the same viewpoint of the person
wearing the camera. Videos which are captured by these cameras are called as
egocentric or first-person videos. First-person videos have brought not only new
capabilities but also unique challenges into the computer vision domain. For example,
a robot can support a security system by recognizing activities, detecting anomalies
or summarizing daily events around itself. The robot can have the capability of
automated analysis of first-person videos to perform this task. However, there are
also challenges since different characteristics of egocentric videos and camera motion
require new approaches. Activity recognition on first-person videos is one of the
particular challenges with its new domain specific problems.

Activity recognition is one of the computer vision problems which aims to recognize
activities. An activity recognition algorithm determines the types of actions occurred
in the videos. If a person runs in a video, then the algorithm is expected to determine
this activity accurately. Moreover, it discerns a specified action among other actions
occurred in the video. For instance; a dog runs toward a ball and catches it in a
video. There are mainly two actions: running and catching. Therefore, it is required to
discriminate these actions accurately to recognize both of which separately. Activity
recognition performs also this distinction between the actions task.

Activity recognition can be employed in a great number of real-life applications from
sport to the health-care systems. Players can benefit from the activity recognition in
order to improve their performances. It recognize the activities of the players in a game
and can be used to analyze the overall actions of a team. It can also be used for social
problems such as elder care. Daily lives of elderly people can be monitored and an
assistance service can be provided for them by recognizing their daily activities. It can
be employed for also disabled people and patients who have diseases such as senility
or rickets. Early detection of unusual behaviours of these persons gains importance for
early intervention.

Wearable cameras enable the activity recognition to become more effective in several
applications by providing more related and rich information of the user. For example,
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an elder person walks in a home and performs several activities throughout a day such
as watching television, sleeping and eating. If a fixed camera is used in a room, the
angle of view becomes constant and user’s specific actions cannot be exploited such
as head or eye movement. On the other hand, wearable camera gives the information
about the movement patterns of a person, interaction with objects and where to look
etc. Therefore, activity recognition from first-person videos gains more importance in
order to analyze the activities.

Activity recognition is considered as a supervised learning problem which consists
of an activity representation model and an activity classification method. It aims to
recognize the activities. Although human brain can perform the recognition process
easily, it is a complex problem for machine learning classifiers due to different envi-
ronmental conditions, complex attributes of the subjects, and resolution of the videos
among other factors. These can affect the performance of machine learning classifiers.
In order to overcome these factors, first of all, they need pre-processing operations
such as scaling, noise cleaning or outliers removing operations. After pre-processing,
based on the appropriate data, constructing the representation model comes as a sec-
ond step. Extracting, clustering or combining features are some of the means of the
modelling step. After this first phase, based on appropriate data, classifiers make
decisions. Hence, we can divide activity recognition process of machine learning
classifiers into two phases: Learning the models of data and choosing the classification
method. Figure 1.1 shows the learning scheme. In the figure, based on the training
dataset, a representation model is built. Then, in order to evaluate the representation
model, error rate is measured and based on the error rate, the model parameters are
updated. This updating process is called as parameter tuning. “Test data” in the figure
is the unseen data on which the prediction is performed. A representation model and
a classification method can handle the complex recognition problem by handling the
factors aforementioned. Consequently, the performance of an activity recognition
system is mainly dependent on the effectiveness of the representation model and the
accuracy of the classification method.

In an activity recognition problem, features are the fundamental instruments to con-
struct the most fitting representation model. Features of a video could be different types
such as spatial and temporal or local and global. Global features describe an image as
a whole whereas local features are computed on specific areas in an image. Spatial
features give information about only an image or a frame in a video but temporal
features show correlations between the images or frames in a video to capture the
dynamic changes. Consequently, each type of feature represents different information
of an image. For instance, spatial color information could show object distribution in
an image at specific time, while temporal color information could show how the object
moves in a specific time interval. Moreover, they could also represent characteristics
such as color, motion, frequency value etc. Color, motion or any other feature already
give different information whether they are same type.

Feature extraction, as part of the step toward the recognition of an activity, may affect
the representation model to a great degree, based on quality, robustness, invariance
to scale of the features. In addition, structures of first-person videos are different
from third-person videos in terms of data distribution changes, ego-motion and angle
of view. Therefore, each first-person video has different type, number, robustness
and quality of features according to its viewpoint. Hence, each video type requires a
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Training Data

Decision Making

Representation Model

Model Evaluation Parameter Tuning

Figure 1.1: A learning process scheme

different representation model. Also, it gains additional importance to represent data
in the videos in an effective way and to select an appropriate classification method.

Representation model is composed of extracted features, as mentioned before, which
describe an activity uniquely. Learning the model is an essential process before the
final stage of decision making. For this purpose, there are several model types such
as statistical, hierarchical or histogram-based models. All model types for activity
recognition aim to describe an activity and provide the similarity computation between
the activities. A model is learned using the features.

In decision making, the purpose is the activity recognition of the unseen video. In
order to achieve the decision making, the activity class in the query video is determined
based on a dictionary of labelled activity samples in a supervised manner. For instance,
if we consider human activities, we are given videos which include human activities
and we are expected to determine the activity class of the related video. To ensure the
decision making, several classification methods like Hidden Markov Models (HMM),
Neural Networks or Support Vector Machine (SVM) are employed.

In all classification methods, a classifier takes a representation model as input, trains the
model and make final decision based on the trained model. In this context, extraction
and combining features for building the model gain importance again. There are
several factors in order to determine the appropriate way to study features. Each feature
extracted from the videos could give distinctive information about a different attribute,
scene, activity etc. from the video. Furthermore, first-person video characteristics
make features more important for the classification since several types of features are
used to capture the changing dynamics of egocentric videos. For example, a video that
is captured by a static camera contains specific types of activities of the same theme,
since the intention is already known before capturing. Thus, third-person videos could
generally be processed with only one type of feature. On the other hand, theme of
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the first-person video is probably changing throughout the capturing since the aim
of observer is not specific before capturing. Therefore, attention, objects, persons
and activities etc. change along the video. Single type of a feature falls short for
capturing the discriminative information from the video. As a result, features could be
used alone or together depending on the application, environment or other conditions.
Optimal combination of the features could be determined for the best recognition
performance. Also, SVM is the preferred approach that is employed in this thesis,
with the combinations of different kernel and feature variations. Hence, SVM kernel
function and a specific feature that shows good performance could be used together.
Also, this gives the opportunity of assigning different weights on specific kernels or
features for better recognition performance.

For building representation model and classification steps, deep learning based ap-
proaches which exploit many layers for non-linear information transformations can
also be employed. They are built hierarchically and each layer processes the outputs
of the previous layer. As opposed to traditional machine learning techniques which
use and process hand-crafted features, a deep learning based approach processes the
data in raw form and transform it through its stack of layers for classification. Thus,
from pixels to motifs and objects, there occur several transformations for image or
video processing. For instance; low level features are processed and mid-level features
are generated in the first-layer. In the second layer, mid-level features are processed
and high-level features are computed as an output. Finally, high-level features are
used in training step. Thus, each layer transforms its input representation model into a
higher-level representation model for the higher level layer. This procedure is called as
end-to-end learning. Hand-crafted features are not needed in deep learning approaches
for the sake of their end-to-end learning concept. There are two types of deep learning
models: unsupervised and supervised. DBN is one of the unsupervised deep learning
models, whereas CNN is the supervised model. For example, CNNs perform feature
extraction and employ several convolutional operators to create high level features in a
hierarchical approach. Thus, representation model learning can be performed by the
CNN model.

Deep learning based approaches require considerable amount of data for training.
However, the well-known datasets in first-person vision domain such as JPL-Interaction
dataset, do not contain such enough data, so that they are not suitable for deep learning
based approaches. They also require complex computations and long execution time.
Therefore, hand-crafted descriptors and kernel-based approaches are used for first-
person activity recognition in this study.

1.1 First-Person Video Characteristics

First-person videos are captured using a wearable camera. Wearable cameras can be
head mounted or worn by a person. Therefore, these types of cameras have the same
viewpoint with the wearer. Since the camera is carried out by a person, the camera
itself is involved in the activities, interactions etc. Consequently, the behaviors of the
wearer gain importance. Wearer’s activities affect the video’s dynamics, events in the
videos which makes the wearer also an actor of the video. First-person videos are
generally dynamic, as opposed to the third-person videos. Since the actor is involved
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in the events, the camera creates large amounts and different types of ego-motion such
as moving up or down and turning with the activity of the user. Figure 1.2 shows
examples of the first-person perspective from the JPL Interaction first-person video
dataset [47]. There are two persons who look at and point to the observer in video
snapshots in the figure. In this case, the observer to whom the camera is attached
interacts with other persons in the video. Since two persons point to the observer from
a distance, no ego-motion is visible in the snapshots. There are video snapshots which
contain ego-motion in the Figure 1.3. Snapshots in the Figure 1.3 are taken from the
videos which belong to the DogCentric Activity Dataset [17].

In these snapshots, there is a person who is walking toward the observer. The person
punches the observer and causes a large amount of ego-motion. After punching, the
snapshots are blurred due to the high amount of camera motion. This is different from
the third-person videos where camera is not affected by the action. First-person videos
have rapid changes of motion and illumination, blur, ego-motion. Also, due to different
perspective, it is possible to see the different body parts to which the camera is attached.
For example, when a camera is attached to the back of a dog, video snapshots contain
the constant views of the animal’s body parts like in the Figure 1.4. In the example
of dog activities, rapid motions of the animal cause sudden changes in video while
responding to any trigger like throwing a ball or sound of car horn. Also, first-person
videos provide close and small angle of views of objects and object-body interactions.
For instance; while a person is writing a note to a paper, the head-mounted camera
probably view the person’s hand with paper and environment. Hence, the camera

(a) A person is shaking the wearer’s hand (b) Before hand shaking

(c) There are two persons who point to the wearer (d) Another snapshot of the pointing action

Figure 1.2: Examples of first-person viewpoint. There are two types of activities in the
snapshots: Hand-shaking with the wearer and the pointing to the wearer [47].
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(a) The person is walking toward the wearer (b) Punching the wearer

(c) After punching, ego-motion occurs (d) Ego-motion

Figure 1.3: Examples of first-person ego-motion. Punching activity creates a huge
ego-motion.

provide information of related objects or attention as long as the person look at the
paper or keep writing. Therefore, this could be specific to first-person videos and used
as discriminative information to extract features.

First-Person videos require different features and representation models because of
their different characteristics. First of all, the ego-motion and the distinctive perspective
of the videos must be taken into consideration while tackling first-person activity
recognition problems. For example, in the activity representation model, the ego-

(a) A snopshot of the dog waits on the road (b) A Snapshot of the dog while cars are moving

Figure 1.4: Examples of animal first-person animal viewpoint.
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motion can be modelled through the use of global features since it affects all the pixels
of an image. The other motions or object appearances occurring in the specific region
of the camera view can be modelled through local features. A running dog creates a
significant amount of ego-motion which affects all the scene and is accepted as global
motion. Global motion requires the usage of global features. On the other hand, a car
movement on the road which is accepted as local motion and only affects the pixels in
a limited region of the image. Local motion requires the usage of local features.

1.2 Advantages and Challenges of First-Person Videos

First-Person videos bring some advantages and challenges as a consequence of unique
properties of egocentric videos in comparison with third-person videos.

• Advances in first-person device technologies enable the researchers to study
in several fields from security to elderly or disabled people’s daily lives. New
datasets in new fields are captured and presented to the usage of computer vision
community.

• The observer is involved in action or interaction in the first-person videos. Hence,
they allow the researcher to investigate the interactions between the objects and
the observer deeply.

• It is possible to track the wearer’s activities, gaze, hand or observations. Hence,
ego-centric videos allow to identify, use and infer the attention information of
the wearer. Therefore capturing the main interest points is possible.

• Ego-motion can give the cues of the motion, attention or events in the video.
Hence, first-person video allows to infer the type of the activities from the
ego-motion.

• There could occur dramatic change in illumination and scene in ego-centric
videos. The dramatic changes are another advantage since they make possible to
infer the activities from these changes.

• Rapid changes in the first-person videos also provide information to the re-
searcher. For example, a punch action changes the optical flow distribution of
the video dramatically, whereas a punch action is only a observation for the
third-person camera. As another example, a hand shaking with the observer
affects the color based features of the video since the hand shaking occurs in the
center of the image because of involving of the observer; but, in third-person
viewpoint, a hand shaking action does not affect the color features so much
because the action does not necessarily occur in the center of the view.

• A wide range of sensors can be used together with the wearable cameras. Sensors
provide different types of information such as voice, heart rate, gaze information
,and so on.

Challenges of first-person videos are also listed below:
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• The motion in the video is unpredictable and instant objects or activity changes
may occur given that the camera is not static. Blur or external physical effects
like a fly, an insect, or the rain may affect the feature distribution and quality of
video unexpectedly.

• The content of the videos can differentiate extremely from dataset to dataset.
While in a dataset all videos are captured from a sport activity, in another dataset
the theme could be daily hospital recordings. In third-person videos, theme is
generally known before capturing the video as opposed to ego-centric videos.
Therefore, it is not easy to apply existing traditional methods to ego-centric
videos.

• In first-person videos, attention can change instantly especially in life-logging or
sport activity videos. As a consequence of the changing nature of the attention
in the videos, there could not be focusing on any object, person, activity and
interaction consistently. This property makes it difficult to extract interesting
points from the videos.

• Some first-person videos are captured for real - time decision making which
requires real - time video processing that causes new algorithm and software
challenges for the researcher.

• Changing illumination is usually seen in first-person videos. For example, a
wearer can capture the video indoor in the first part and outdoor in the remainder
part. This variation in illumination causes a huge change in distribution of the
features.

• Another issue is the privacy problem. A wearable camera can easily capture a
video everywhere. The widespread usage of ego-centric videos creates privacy
problems. For instance while a person captures a first-person video in a street,
other people can also be seen seen in the video. Also, storage of the videos
without consent is another problem.

• Storage is not only related to privacy issues, but also creates handling massive
amount of data problem. Easily capturing the video makes possible creating
a huge amount of data. Therefore, in order to prevent the data loss without
decrease in the quality of the video, storage is necessary.

• Since the specific intent of ego-centric videos is not determined before the
capture, there occurs uninteresting and repetitive scenes in the video. A wearer
who is cycling probably captures the same type and repetitive outdoor scenes.
This requires pre-processing or grouping the scenes in order to get rid of the
unrelated scenes or processing a huge amount of repetitive data.

• Wearable devices have limited resources such as processing power or storage
capabilities. For some applications, such as real-time detection or recognition,
real-time processing the data can be a problem due to the limited resources.

• Wearable devices still do not have the same video quality capabilities with the
static cameras. Therefore, extracting features from the low-quality videos is
another problem as opposed to the third-person videos.
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These challenges lead to questioning the suitability of traditional approaches which
are currently applied to the third-person videos and motivates the research on specific
methods for first-person videos.

1.3 Scope of This Thesis

As the scope of this thesis, we concentrate on activity recognition from first-person
videos. Other applications such as object detection, anomaly detection are out of our
scope. We study on two datasets, JPL Interaction [47] and DogCentric Dataset [17].
These datasets contain specific types of activities. In [47], there are 7 types of indoor
activities including hugging, pointing, and punching. On the other hand, [17] contains
10 types of outdoor activities. These activities are labelled in the training dataset since
we use supervised learning.

In first-person videos, activities can be performed in two ways. An action is performed
toward a person or it is performed by the person. The datasets which are used in this
thesis contain both types of activities. In [47], the actions are performed toward a
humanoid model, whereas actions in [17] are performed by a dog itself. In this study,
both of them are aimed to recognize.

1.4 Contributions

In this thesis, we propose a new innovative approach for first-person activity recog-
nition based on multi-kernel learning and boosted multi-kernel learning methods.
Traditional methods employ equal weighted features for the activity recognition prob-
lem regardless of the importance of each feature. On the other hand, we assign different
weights to the features based on the their importance and discriminative representation
capabilities. For this purpose, we combine the features having distinctive information
to use together and in an optimal setting. Thus, instead of exploiting each feature
individually, all features take part of the final classifier by contributing to the final de-
cision. Also, each feature is employed with different kernels. Each kernel and feature
combination is tried in the training phase and the best combination is determined. The
determination of the feature and kernel process is performed optimally by the method,
instead of parameter searching and tuning. Standard learning framework which uses
traditional feature selection and weighting technique, define rules for the representation
model before the classification. Therefore, equal weighing on features and specific
kernel usage are constraints that decrease the performance of the classifiers. It can be
argued that the performance could be improved by using a combination of different
kernels and kernel parameters.

Since the method proposed in this thesis fuses different features and different kernels
in an optimized way instead of using pre-determined weights and rules, the dynamic
and adaptive structure is the novelty of this study:

• Instead of a single feature, multiple features can be employed
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• Instead of a single kernel, multiple kernels with different parameter sets can be
employed

• Different kernel and feature combinations which fit the representation model
best can be determined

• Assigning weights on classifier and selection of the best kernel-feature combina-
tion is performed in an adaptive framework

• Data-driven approach is applied at the training stage

Boosted multiple kernel learning approach1 described in this thesis has been published
in [37].

1.5 Outline

The thesis is organized as follows:

• In Chapter 2, we briefly review some of existing first-person vision methods and
make a categorization of the methods regarding application field. Also, activity
recognition studies are discussed based on methods employed.

• In Chapter 3, motion based descriptors are discussed. In this context, histogram
of optical flow, cuboid and log-covariance descriptors are mentioned. Clustering
of the descriptors are also talked.

• Multiple kernel learning and how the AdaBoost technique is integrated with
multiple kernel learning are mentioned in Chapter 4. Furthermore, single kernel
SVM and SimpleMKL library are introduced.

• In Chapter 5, experiments which are conducted in this thesis are introduced.
Multiple kernel learning, boosted multiple kernel learning and single kernel
traditional SVM approach performances are compared. The datasets used are
mentioned. SVM kernels employed are also talked.

• Chapter 6 concludes this thesis by summarizing the methods mentioned.

1 Fatih Ozkan et al. “Boosted Multiple Kernel Learning for First-Person Activity Recognition”. In: 2017 25th
European Signal Processing Conference (EUSIPCO). Accepted for publication. 2017.
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CHAPTER 2

FIRST-PERSON VISION

In this chapter, we discuss existing problems in first-person vision.

First-person vision community embrace the wide range of subjects on ego-centric
videos. These subjects can be categorized in terms of application fields or methods
employed. In the literature, there is a general distinction between studies based on
motion-based and object-based methods. These methods differ according to its aim.
For interaction or object detection purposes, object-based methods are employed,
while motion-based methods are used for action recognition or summarization tasks.
Therefore, application fields bring their specific methods in fact. Hence, the studies in
the literature can be categorized regarding their application field. Thus, the methods
used in that field are also mentioned.

We categorize the studies into six groups of gesture and hand activity recognition, wear-
able sensors, activity recognition, eye tracking and gaze detection, object detection
and recognition and life-logging and video summarization.

After the general categorization, we talk about methods which are applied for the
activity recognition that is the research subject of this thesis. Activity recognition
studies are divided into three groups of object based methods, motion based methods
and multi modality based methods. Figure 2.1 shows the categorization of the studies.

First topics which were focused by researchers in egocentric view domain were hand
tracking and hand gesture recognition [53] [54]. Recently, new a few topics were
arisen in the community such as activity recognition and eye tracking.

Starner, Schiele, and Pentland (1998) are the pioneers in the egocentric vision studies.
They used wearable camera and addressed activity recognition problem from first-
person viewpoint. Schiele et al. (1999) proposed a probabilistic algorithm for object
recognition using wearable computer. Mayol and Murray in 2005 studied hand activity
recognition based on object detection using wearable cameras.

In recent times, first-person vision have regained the attention. Some technological
developments were the most important factor of the recent a number of work. Wearable
cameras like GoPro, Google Glass have become widespread. Also, these cameras are
easy to use. Therefore, some areas have received these devices easily and become
convenient for usage of the wearable cameras. In the following subsections, first-person
video topics are detailed.
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2.0.1 Gesture and Hand Activity Recognition

Human gesture recognition is an important topic in first-person vision. Aims of ges-
ture recognition include the interpreting of gestures and providing human-computer
interaction. A user can control a machine by using gestures. Moreover, hand gesture
recognition is more feasible than other types of gestures for human-computer inter-
action since hand gesture is one of the most natural communication tools [34]. Hand
tracking and segmentation are the initial steps toward hand gesture recognition. After
these steps, there are feature extraction and classification steps. Figure 2.2 shows the
hand gesture recognition process scheme.

In [53], Hidden Markov Model based American Sign Language recognition method is
proposed. User’s hands is tracked by desk mounted and body mounted cameras. This
work allows for long, meaningful and different types of sentences to be generated and
recognized. Experiments conducted with desk mounted and body mounted cameras
show that when body mounted camera used, recognition accuracy is higher than
the desk mounted camera. [54] is another study which wearable camera is used for
context aware gesture recognition. This is also an augmented reality research that
tracks user location and binds virtual data to physical location. Sundaram and Cuevas
propose a hand activity recognition based on object manipulation within probabilistic
framework using wearable camera [56]. In this paper, authors presents an algorithm
which works on low-resolution videos. This paper also benefits from hand-object
interaction to recognize activities. In [55], Inside-out hand activity recognition is
performed. For this purpose, hand tracking method which provides detecting whether
any hand manipulated any object is used. Proposed method handles with blurred
images which are caused by gaze directed cameras that are used in this work.

First-Person Vision 
Studies

Gesture and 
Hand Activity 
Recognition

Object 
Detection - 

Recognition - 
Interaction

Activity 
Recognition

Eye 
Tracking 
and Gaze 
Detection

Life-Logging and 
Video 

Summarization

Object Based 
Methods

Motion Based 
Methods

Multi Modality 
Based Methods

Figure 2.1: A categorization of first-person vision studies
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 Image Hand Segmentation

Hand Tracking

Feature Extraction Classification

Figure 2.2: A hand gesture recognition process scheme

In [57], low resolution images are processed for activity recognition. The proposed
system observes the user to detect whether there is an interaction between the user’s
hands and objects. If exists, it uses the manipulation information to classify user
manipulations. In [67] a model based approach is proposed as opposed to work which
use only signal based features. Multiple activities are recognized simultaneously using
hand movements to segment the activities.

2.0.2 Activity Recognition

As a course of its nature, an activity which causes color, appearance changes can
be handled with appearance based features. On the other hand, an activity which
creates motion differences can be dealt with motion-based features. There are also
activity types which require an interaction with objects in the environment. Object
manipulations can be exploited in order to recognize these activities.

Fathi, Farhadi, and Rehg [11] exploit the object appearance changes in the video
which is captured by an egocentric camera. In their study, objects, actions and hands
are modelled together instead of independent analysis. Actions are represented with
object-hand interactions. So, for example movement information is not used for
the recognition task. Activity dataset is composed of daily activities such as meal
preparation. In [40], daily living activities like brushing teeth are recognized based
on object interactions from first-person viewpoint. Authors propose a method which
benefits from the changes in object appearance when anyone interacts with it. Kitani
et al. [18] propose an approach for activity recognition in first-person sport videos
which uses motion based fatures and composes the feature codebook. Motion in
the video is represented globally with histograms. After that, the histograms are
clustered in order to compose codebooks. In [41], high-level temporal segmentation
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of egocentric videos are carried out. After segmentation, hierarchical activities are
composed from the whole video. So that video is divided into meaningful parts such as
“stationary capturing" or “dynamic capturing", “indoor capturing" etc. Authors argue
that this segmentation method is useful for activitiy recognition. Ogaki et al. [36]
use the eye movement and ego-motion in order to recognize indoor activities. They
benefit from the motion features and combine these two types of motion features to
improve the classification accuracy. In [47], motion and appearance based features are
extracted from the first-person videos and clustered to compose visual words. Then,
features are combined through multi-channel kernels using SVM. In [1] a new multi
motion-based feature set which includes motion magnitude, direction and variation
information is proposed. It also employs virtual inertial data generated from a video
instead of using physical sensors. Inertial data describe the movement of intensity
center through specified number of frames. Finally, motion-based and inertial data are
combined and used for activity recognition. In [45], a new feature representation which
keeps track of changes in descriptor values over time is proposed. Global and local
motion descriptors are used. [46] propose human activity prediction from robot-centric
viewpoint. [14] propose recognition of multi-type activities by a robot, which occurs
sequentially or concurrently. In [17], global and local motion descriptors are employed.
These descriptors are combined by using multi-channel kernel. Videos are captured
by cameras which are mounted back of the four different dogs. Also [65], [66], [33],
[20] are studies which use sensor data like accelerometer, smart phone. Sensors which
are used in these work generally sense body movement so that features which are
extracted by this sensors are used for activity recognition.

2.0.3 Eye Tracking and Gaze Detection

Eye tracking determines the eye movement and measures the eye activity. Eye activity
data is collected through an eye tracker. The eye tracker directs light toward the eye
center and the reflections are tracked by the camera inside the eye tracker. The direction
of the eyes defines the eye gaze. Eye movement and gaze information may indicate
the expression or attention of a person. Eye tracking and gaze detection allow a person
communicate with other people and can be used to interact with a machine. So that,
for example an elder or disabled person can be helped by such a device that provide
the person to communicate with other people via eye movement and gaze detection.
Thus, eye tracking and gaze detection are important tools for several computer vision
applications. On the other hand, eye tracking and gaze detection cannot be employed
easily since it requires a specific tool, eye tracker. Therefore, it can be costly. In
addition, it cannot produce reliable and meaningful results. For instance, a person can
sometime look at some points unconsciously and it can be difficult to discriminate
such gazes. It is also difficult to apply eye tracking to people with glasses. Hence,
additional sensors or cameras can be needed in order to provide additional information.

Muir and Conati [31] analyzed students’ attention to a system’s guidance, notifications
and hints. Intended for this purpose, students’ eyes are tracked, attentions and reactions
to hints which a system shows are measured. In [36], eye tracking is performed for the
purpose of activity recognition. In [59], an eye tracking based method is presented
for object recognition. Eye tracking is carried out via a head mounted tracker. SIFT
features are extracted from the objects and best matched objects are found using these
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features. Fathi, Li, and Rehg [12] argue that there is a correlation between gaze points
and interaction to the object. According to the authors, a person firstly fixed the gaze
and after his/her activity comes out. Therefore, gaze behaviour could be exploited in
order to recognize daily activities which require hand-eye coordination. In [24], gaze
prediction is carried out, while in [64] and [63] attention prediction is performed on
first-person videos.

2.0.4 Object Detection and recognition

Object detection find the object of a specific type in an image. It determines the location
of a specified object. It is often used for object recognition. Object recognition which
can be defined as the identifying an object in a video or image is an important research
topic. Human brain immediately can detect and recognize objects in an environment.
Unfortunately, it is a more challenging task for machines. Object recognition methods
generally use some attributes of objects in the image like color, shape and distance
from a specific target. Figure 2.3 gives the information about general process of object
detection. In the figure, elephant and box features are extracted. Subsequently, they
are detected when there are several objects in the scene. When there exists an object
alone in an image, object identity cannot be recognized. For instance, if a ball exists
in an image without any other object, the ball cannot be identified. However, if any
other objects also exist in the image, then infering meaning from the scene becomes
possible. Therefore, object context information is a useful tool for identification of
objects. Object context is also used for activity recognition in some cases. [23], [50],
[61] are the researches which benefit from object context for activity recognition
from third-person viewpoint. In first-person vision, [39], [32], [38] are studies which
recognize activities relying on object use which tagged with RFD. Daily activities are
determined via RFID data coming from objects based on Dynamic Bayesian Networks.
In [5], [4], [8], tracking of objects is performed in first-person viewpoint.

A number of studies also focus on color information in images toward object detection
and recognition. For example, in order to discriminate a skin of a person from other
objects color histogram is a commonly used tool. Moreiro, Marcenaro, and Carlo
extract optical flow and color histograms for the purpose of detection hands in the
video [30]. They use super-pixels so as to reduce the computational cost and make the
center of the images the reference point of the coordinate system which they use in
their studies. In [22], color histogram for human skin detection and super-pixel for
cost efficiency are used also like another study [21]. Fathi, Ren, and Rehg [13] propose
a method which provides learning objects in a weak supervise manner for first-person
videos that include indoor-household activities. For this purpose, a segmentation is
performed on the videos that hands, objects and background are divided into different
groups. So that, the algorithm can focus only on objects instead of background
objects that are not important for the task. [43] also uses segmentation for the object
recognition in order to get rid of unnecessary objects in the background. Some of
studies focus on object recognition for summarization purpose such as [65]. [59]
benefits from eye movement for recognizing objects via an eye-tracker in egocentric
videos, while [9] propose a method for discovering objects using appearance based
features in egocentric viewpoint.
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2.0.5 Life-Logging and Video Summarization

Because of recent developments in wearable camera technologies, people have the
ability to capture their daily lives or activities everywhere individually. For example, a
person who rides a bicycle can record his/her cycling. Long hours videos are captured
in some cases such as sport activities or security systems. When the video record is
required to be analyzed, it is not needed to watch the all the video record. Instead, users
want to see just necessary or important part of videos. Video summarization provides
the important parts of videos by selecting key events, frames, activities, subjects or any
necessary things from videos. On the other hand, life-logging is the complete process
of capturing all activities that a person performs along a specific time interval such as
along a day, a sport activity etc. Life-logging applications include elder or disabled
people but video summarization extracts interesting or key points from the video so
that helps the analysing the elder or disabled peoples’ lives.

In [2], Bai et al. develop a wearable computer, called eButton, which requires mul-
timodal data from the camera and sensors for analysis the people’s lifestyle. The

Figure 2.3: Object Detection example. Elephant and box features are extracted. They
are detected in the whole scene. This figure is a reproduction using Matlab toolbox
object detection example code.
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computer is integrated with the sensors and camera so that it collects the different
type of data and analyze them. The computer can monitor the eating habit or phys-
ical activity etc. In summarization applications, studies focus on especially how to
select important frames from the whole video. [26] propose a story based method to
summarize the video that discovers the story of the video using the influence between
subshots of the video as a metric. Essentially, sub-events which lead to another event
composed a story together. In [65], again a story based approach is employed for the
summarization of videos. The authors Yong Jae Lee, Ghosh, and Grauman concentrate
on the interactions between the camera wearer and other people or objects by exploit-
ing the first-person shooting which allows the wearer to involved in the activities or
interactions. By this way, people or objects which are labelled as “important" since
the wearer interacts with them are used to select key events or frames from the video.

2.1 Methods In Activity Recognition Studies

In this section, we make sub-categorization on activity recognition studies since it is
also concentration of this thesis. We discuss the limitations and open points for future
research in the following sub-sections.

Recently, activity recognition studies have been performing based on three methods
generally. One of them is object based methods which define an activity as an object
usage pattern which causes the attributes of the objects like appearance changing.
Motion based methods which describe an activity according to motion characteristics
and the last methods, multi modality based, use the sensors together with visual
information that is acquired from the cameras.

2.1.1 Object Based Methods

Object based methods require activities in the videos which contain object or hand
usage, since these methods benefit from the appearance change objects or temporal
relationship of object interactions semantically etc. This is the limitation of the object
based method since some activities do no contain any explicit object usage such as
two person talking with each other.

In [11], appearance changes of objects and hands are used for activity recognition from
the ego-centric viewpoint. Daily activities such as meal preparation are segmented
into sub-actions so that each activity is composed of specific intervals. Superpixels
approach that is called for the regions in image in the paper are also employed for
the task. Thus, the method infers the objects and hands by modelling the activities
based on the object appearances. Pirsiavash and Ramanan [40] propose a method
which represents the objects based on objects. Temporal pyramids are used for
matching the temporal relationships between the sub-parts of the activities. For
example, “making tea" activity firstly requires a filling a cup with water and then
boiling water. This temporal relationship is represented in the temporal pyramid. [28]
use object manipulation information together with attention information since for
example, when a camera wearer looks at a knife without moving hands, an object
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manipulation does not occur. So, object manipulation could not be enough to infer the
activity sometime. In [49], crafted features based on hand and object interactions are
used for first-person activity recognition problem. CNNs are employed for the wearer’s
activities classification task. 4 different datasets are used and classification accuracies
indicate the improvement by the proposed method. [27] proposes a twin stream
network architecture, one stream for object appearance and one stream for motion
information. The authors analyze the contribution of each stream to the recognition
performance in the study.

2.1.2 Motion Based Methods

In general, motion based methods use features like optical flow, gradient etc. Most
of the daily activities are so complex that just one type of feature cannot give dis-
criminative information. Therefore, two or more features are usually used together.
Thus, for example, one feature shows the color change in video while other feature
indicates the motion magnitude change. There are more than one way to combine
multiple features. Use of a standard learning framework without particular extension
on feature selection and weighting implies the use of pre-set rules, such as unweighted
sum, which gives equal preference to each feature independent of its classification
ability. Use of multichannel kernels is proposed to combine multiple features. Each
feature is considered as a separate channel and a pre-defined rule using exponents is
utilized to combine them.

Ryoo and Matthies [47] extract motion features from the video in order to perform
activity recognition on the first-person videos. In this context, motion features are
clustered using K-means algorithm and combined using multi-channel kernel. Also, in
the study, activity structures are analyzed and sub-activity features are used together in
order to represent the activities effectively. In [1], a number of new multidimensional
motion-based descriptors are applied. These global descriptors are used together by
concatenating them in a vector in SVM. In [17], dense optical flows, Local Binary Pat-
terns (LBP) are used as global features and cuboid and SpatialTemporal Interest Points
(STIP) are used as local features. These features are used in a similar classification
setting to recognize animal (dog) activities . [18] uses Dirichlet process mixture model
for the motion histograms codebook, after clustering the motion histograms which are
acquired by extracting the optical flow features from the videos. Also, [41] perform
segmentation to the videos based on motion features while [36] use the eye-movement
information for the activity recognition. [34] uses motion pyramid approach, while
[45] uses pooled motion features and [45] employ histogram of time-series gradients
which are results of motions in the video in a probabilistic approach. Furthermore, in
[44], time series pooling is employed to detect short/long term changes of features.
HOF and appearance descriptors from CNN are used in the representation model. [58]
uses DogCentric activity dataset and features from CNN. In the study, input images
are derived from optical flow. Experiments show the effectiveness of the proposed
method.
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2.1.3 Multi Modality Based Methods

In [51], authors use static and ego-centric cameras for the activity recognition. They
define this device environment as a multi-modal approach. Features acquired from
different cameras are encoded according to their importance. Thus, the method selects
the camera that has the best view of activity and classifies the activities. For activity
recognition, 3-axis accelerometer sensor and image sensors are used in [33]. Features
which are acquired from these different sensors are the inputs for SVM classifier
which decides the labels of activities. In [66], smart glasses, first-person camera and
accelerometer re employed for first-person activity recognition in conditional random
fields framework. In addition, use of Multi Kernel Learning (MKL) in a multimodal
setting to fuse different audio and video features has been proposed for event detection
in web videos [35]. It has been shown that MKL performs well even when redundant
features are used and it outperforms other popular methods such as wrappers, filters
and boosting as well [60]. MKL has been shown to produce promising results during
the identification of emergent leaders in meeting scenarios [3]. [16] proposed an
activity recognition method within probabilistic framework that infer the data sensor
provides and transforms to the activity patterns. In [52] temporal segmentation and
recognition of activities are performed via sensors which are worn on body. [67] does
not rely on features acquired from signals, but they infer sub-actions of body motion.
Their approach is capable of recognizing multiple activities by selecting features
that belong to different types of activities. They use body worn sensors, to achieve
activity recognition task. In [7], human location detection and activity recognition
are performed by observing the users via sensors. Mayol and Murray developed an
approach which recognizes hand activities within a probabilistic based framework
using wearable sensor. In [6], authors propose a human activity recognition method
using accelerometer and a wearable device. Image features are extracted based on
optical flow and acceleration data is acquired with the accelerometer and classification
is performed using SVM.
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CHAPTER 3

MOTION BASED DESCRIPTORS

This chapter focuses on the global and local motion related features which are extracted
from the first-person videos. In the previous chapter, various studies for the activity
recognition in the literature were examined. The limitations of the aforementioned
methods motivated us to solve the activity recognition problem for the first-person
videos in a new manner. The previous studies also have paved the way for our new
approach.

We employ a model which covers different and challenging aforementioned char-
acteristics and exploits advantages of first-person videos compared to third-person
videos. Object interaction-involved methods do not handle activities which cannot be
described with object appearances. Also, these methods depend on object detection
or recognition and inherit its difficulties. Therefore, the first attribute of the new
method must be robustness to color, appearance changes, overlapping in cluttered
area and not requiring object usage. Secondly, the new method must not be affected
by the ego-motion badly, but exploit it in order to discriminate different aspect of
information from videos. Ego-motion is contained in the representation model in this
study. Thirdly, not only spatial but also spatio-temporal pattern of a movement must be
considered. Thus, the new method does not depend on posture or appearance. Finally,
the new method must address not only global or local motion, but both of them.

In this context, global and local descriptors are employed to satisfy the aforementioned
concerns for the activity recognition on first-person videos. First of all, global and
local descriptors are mentioned. Then, feature clustering is discussed.

3.1 Global Descriptors

In the following sub-sections, global motion-related descriptors, extracted from the
first-person videos, are described. Global descriptors capture basic motion information
which affects all the scene such as the egomotion. Thus, ego-motion is exploited
to discriminate different characteristics of videos. Therefore, camera movement
compensation methods are not used to remove ego-motion. In this context, global
information is extracted from all pixels in an image that is called as “global feature".
After that, global features are employed in a specific representation. The representation
could be a histogram or concatenation of the feature vectors.

21



Figure 3.1: Optical flows extracted from two frames of a video

In this study, global motion is represented using two descriptors both based on optical
flow information: Histogram of Optical Flow (HOF) [47] and Log Covariance (LogC)
[15].

3.1.1 Histogram Of Optical Flow (HOF)

In order to describe global motion which represents the dominant motion fields which
have effects throughout a frame, dense optical flow method is used. Optical flows are
calculated between every ensuing frames for all the pixels. Then, these optical flows
create the global motion flow. In first-person videos, camera movement, ego-motion,
usually lasts throughout the video. Besides, it affects the flow fields of all the pixels
dramatically or trivially depending on the types and structure of the activities in the
video. Thus, global motion gains additional importance for ego-centric videos because
of continuous movement of the camera. Figure 3.1 shows the optical flows extracted
from a first-person video. A dog with a back mounted camera runs toward a ball which
a person throws in sequential images in the figure. While dog runs, optical flow vectors
are computed. In the figure, there are small flows since the dog waits before the person
throws the ball.

Optical flows are vectors which have magnitude and direction information. Magnitude
is the length of the movement (flow) and direction indicates from where the flow starts
and until where the movement goes. After calculation of the optical flows of all the
pixels, each frame is divided into s-by-s grids so that there occurs s× s regions in each
frame. Also, direction of each flow is represented with eight motion directions. For
instance, if the direction of a flow is 10◦, then the flow is represented with first motion
direction that contains 0◦- 45◦. Furthermore, a histogram of optical flows is computed
in each grid based on the magnitude and the direction of the movement. Thus, there
occurs s-by-s-by-8 histograms all over the frame and each optical flow is placed into
the related bin of the histogram. Consequently, optical flows are categorized into a
number of groups based on direction and location. In the histogram, each optical flow
is counted according to its magnitude.

Figure 3.2 gives an example of the histogramming of optical flows. Vertical axis of
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Figure 3.2: An example of optical flow histogramming. Bin values, horizontal axis,
show the range of angle from based on Π value. Count, vertical axis, shows the number
of optical flows that is angle is within that bin.

the diagram denotes the count of the optical flows and horizontal axis describes the
representative angle values based on Π value. For example, number of optical flows
which have representative angle value 1 is 3 according to the histogram in the figure.
Figure 3.3 shows the counts of first bins of histograms which are generated in each
grid in a frame. These counts are acquired by multiplication with magnitude values.

The histograms aforementioned above constitute the descriptors, the histograms of

Figure 3.3: Distribution of first bin counts of the histograms of optical flows extracted
from a video. Horizontal axis shows the histogram number, and vertical axis shows
the count.
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optical flow. S values of histogram of optical flow descriptor are discussed in section
5.1.

3.1.2 Log-Covariance (Log-C)

Log-covariance (Log-C) descriptor is originally designed for third-person videos to
capture different characteristics of the motion [15]. Videos are divided into L frames
length action segments. Then, Log-C is calculated for each action segment separately.
For this purpose, at each pixel of each action segment, 12 dimensional optical flow-
based motion-related features and intensity-based gradient vectors are extracted. 12
dimensions are listed below:

f (x, y, t) = [x, y, t, It, u, v, ut, vt,Dvr,Vrt,Gt, S t]

• Coordinates: (x, y, t) Horizontal, vertical and temporal axes of a pixel in an
action segment from a video.

• Intensity gradients: (It) First-order partial derivative of intensity gradient of
raw video sequences with respect to temporal t direction.

• Optical flow: (u, v) Optical flow extracted from the action segment.

• Optical flow derivatives: (ut, vt) First-order partial derivative of optical flow
with respect to temporal t.

• Divergence: Dvr The spatial divergence of optical flows computed at each pixel.

• Vorticity: Vrt The vorticity of optical flows computed at each pixel.

• Tensor Invariants of Optical Flow: (Gt, S t) Gradient and strain tensors of
optical flow regardless of the coordinate system.

Intensity gradient and optical flow derivatives, divergence, vorticity and tensor invari-
ants of optical flow are computed as follows:

It =
∂I(x, y, t)

∂t
(3.1)

ut =
∂u(x, y, t)

∂t
vt =

∂v(x, y, t)
∂t

(3.2)

Divergence gives us the information of how much a vector field expands or compresses
around a point. Therefore, divergence shows how the optical flow field behaves around
a pixel regardless of the optical flow magnitude or direction of that pixel. Figure 3.4
shows the positive divergence around the point since all the vectors are away from the
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black dot. There is optical flow field expanding around the black point whereas there
is not any optical flow vector at the exact black point.

Dvr(x, y, t) =
∂u(x, y, t)

∂x
+
∂v(x, y, t)

∂y
(3.3)

In order to discriminate the circular motion in the image, vorticity is used as an attribute
based on optical flow.

Vrt(x, y, t) =
∂v(x, y, t)

∂x
−
∂u(x, y, t)

∂y
(3.4)

Gradient and strain tensor of optical flow are also computed as follows:

∇u(x, y, t) =

(
∂u(x, y, t)

∂x
∂u(x, y, t)

∂y
∂v(x, y, t)

∂x
∂v(x, y, t)

∂y

)
(3.5)

S t(x, y, t) = 1/2 × (∇u(x, y, t) + ∇T u(x, y, t)) (3.6)

x

y

Figure 3.4: An example of positive divergence of vectors
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This set of spatio-temporal features represents dynamics of the motion in first-person
videos in a more comprehensive way than basic optical flow-based features. Covariance
matrix, L, of the feature set is symmetric, so only some of its members are unique.
L is l × l matrix. Unique members of the matrix accepted are the numbers that lie
diagonally and under the diagonal. An example of the symmetric matrix:

1 2 3 4
2 1 7 3
3 7 1 2
4 3 2 1


And the example of compact representation of the covariance matrix is mentioned
above. 

1 sym.
2 1
3 7 1
4 3 2 1


Therefore, the number of independent values in the matrix are computed as the
following:

(l2 + l)/2 (3.7)

Then, compact covariance descriptors are created by capturing these features in the
covariance matrix since high dimensional feature vectors are not efficient for clustering
and classification operations. Euclidean operations cannot be applied into covariance
matrix, since it does not lie on Euclidean space. Covariance matrix lies on Manifold
space. For example, K-Means clustering is an Euclidean operation. Therefore, the
clustering method is not expected to be effective on covariance matrices. For this
reason, an appropriate operation to Manifold space can be applied or the covariance
matrix can be converted into Euclidean space. We use matrix logarithm [19] operation
to convert manifold of covariance matrices into Euclidean space.

Figure 3.5: A Corner in an image
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3.2 Local Descriptors

Local descriptors provide the complementary local information, which is necessary
for the recognition of different types of activities. In this context, interest points are
detected in an image. The interest points are generally robust to several factors such as
changes in appearance or illumination. Then, local regions are determined around the
interest points. After local regions are determined, these regions are represented in a
specific way, such as histogram.

In this thesis, “Cuboid" [10] descriptor is employed as a local descriptor which is
mentioned in the following subsection.

3.2.1 Cuboids

Cuboid features are sparse 3D XYT space-time features [10] and they have been used
extensively to recognize behaviour in third-person camera perspectives. Sparse feature
is a compact representation that compresses high-dimensional features efficiently.
Sparse feature representation provides extracting high-level meaningful information
from the videos which have low-level pixel values. Sparse space-time features have
also been shown to perform well for activity recognition applications [19]. However,
as it is shown in [25], sparse features may cause problems for activity recognition
problems if they are too rare. Besides, spatio-temporal corners are not often detected
in a video, so rarity is also a problem for detecting spatio-temporal corners. In addition,
cuboids are based on spatio-temporal corners.

First, spatio-temporal Cuboid feature detector is run in order to detect feature locations.

Figure 3.6: Corners detected in the image
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Figure 3.7: A window in frames of a video moving in reverse direction

While the idea is similar to spatial detectors, detection proceeds along the temporal
direction t in addition to the spatial x and y directions. Then, at each interest point,
spatio-temporally windowed pixel values (i.e. flattened gradient vectors) are calculated
to form a Cuboid. The Cuboids are specifically designed for behaviour recognition
applications and they aim to detect too many features rather than too few in order to
handle challenging conditions.

To be more precise, we elaborate the cuboid feature in this part. Cuboids represent
local information in an image. Therefore, the Cuboids operate on interest points which
are extracted from images. There are several ways of detecting interest points in an
image. One of these ways is based on the corner detection. Since corner detection
is the base of Cuboid feature, it is preferred in this thesis rather than other ways of
interest points detection.

In an image, corners are the regions that include gradient change in vertical and
horizontal direction. Figure 3.5 shows the change of gradient in vertical and horizontal
direction in corners. A good interest point is expected to be robust to variations like
brightness, and illumination. In addition, interest points should be computed fast
and found easily since descriptors are computed around interest points so that, fast
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computation of interest points support also the fast computation of descriptors. Figure
3.6 shows the corner detected on the image which contains a dog and a number of
buildings. Red points indicate that there is a corner there. In the figure, there are dense
corners on transmission towers as we expect.

Spatial interest points are found in a spatial plane. For example, corners in an image can
be counted as an interest point like in the Figure 3.5. On the other hand, spatio-temporal
interest points are not found on a spatial plane since they occur on a spatio-temporal
plane. Therefore, a temporal dimension is added to the spatial interest points in order
to compose spatio-temporal interest points. Thus, in order to detect a corner, gradient
change is searched not only along vertical or horizontal dimension, but also temporal
direction throughout a number of frames. For example, an object moving in a street
stops and starts to moving reverse, at the moment when the reverse movement starts, a
gradient change occurs in temporal dimension.

Cuboids are extracted at each interest point since it is a sparse and local feature. A
spatio-temporal window sliding on frames is contained in Cuboid if it contains spatio-
temporal corners so that cuboids are computed in some regions of a video that surround
an interest point and store local information.

There are various transformations to apply to cuboids like normalizing, the brightness
gradient or extracting motion information using optical flow method from the cuboids.
After that, local histogramming, global histogramming or just concatenating can be
applied to cuboids. Thus, cuboid descriptors are constructed. Figure 3.7 shows 8
selected frames a video. In these frames, the window in the figure moves from left to
right, and then starts reverse movement. This is the exact pattern of the movement that
cuboid descriptor describes.

Also, in the Figure 3.8 there are 9 sample frames, interest points and cuboids extracted
from these frames of the video from JPL-Interaction dataset. Colorful boxes indicate
the interest points. They locate at the intersection of the objects. For example; there
are pink boxes at the top corner of the desk or red boxes at the intersection of the neck
and arm of the man. Images in the middle of the figure show the extracted cuboids.
There are 5 sequences of cuboids. In the sequence, a reverse movement is seen. In the
first sequence, the dark color region moves to left at first and then moves back to right
again. Images at the bottom of the figure are the sample frames of the video.

3.3 Feature Clustering

The motion information of a video by word occurrences is described by using the bag
of visual words (BoW) approach. Thus, each video is represented by dictionary of
representative feature vectors. Visual word model enables efficiency for representing
descriptors in videos. Each frame in videos can contain several important interest
points. Therefore, millions of features can be extracted from all videos. It is com-
putationally too complex to perform computations on such millions of features. A
dictionary of features provides efficiency in computations. Therefore, instead of em-
ploying millions of features, representative visual words are used in the representation
model in this study.
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Each collection of descriptors is separately clustered into multiple types by K-Means
algorithm. K-Means provides partitioning the data, descriptors in this case. Thus, each

Figure 3.8: Some interest points, cuboids and frames throughout the video, respectively
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descriptor is assigned to a visual word and the histograms for each video are computed
so that representative visual word histograms of each video are obtained. Since each
set of feature descriptors is clustered separately, three histograms are computed for
each video. The histogram Hid is a w dimensional vector for the ith video obtained
using descriptor d and w is the number of visual words. For each video, each descriptor
histogram computed is concatenated and final histogram is obtained.

Hi = [hi1, hi2, hi3...hiw] (3.8)

Hi is the histogram of video vi, hiw is the number of wth visual word of the ith video.

Hi = [Hd1Hd2Hd3] (3.9)

Hi is also the concatenated histogram of video vi. The concatenated histogram is
composed of histograms of HOF, Log-C and Cuboid (Hd1Hd2Hd3).
K values of visual words model are discussed in section 5.1.
Figure 3.9 shows the clustering process of the features before mentioned. First of all,
feature detection is performed. Optical flows are computed for each pixel in all videos.
Optical flow features are the base of HOF and Log-C descriptors. HOF is acquired
by histogramming locally the optical flows exracted. Log-C is also acquired with
the computations of optical flow based features and by concatenating these features.
Cuboids are descriptors which applying some transformation techniques to vectors
of spartio-temporal interest points. After detection, descriptors are constituted by
representing the features as HOF, Log-C and Cuboids. These descriptors are clustered,
thus visual words are composed. Finally, as shown in the figure, histograms are
computed separately for each descriptor counting the visual words.

Clustering does not store spatial information of descriptors but provides compact,
efficient and easy to compute representation. After all, visual words which are the final
form of descriptors can be used to train classifiers.

Feature 
Detection Extract Descriptors

HOF LOG-C Cuboid

Visual 
Words

Visual 
Words

Visual 
Words

Histogram

     Clustering

    Concatenate

Figure 3.9: Feature clustering process using the HOF, Log-C and Cuboid features
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CHAPTER 4

MULTIPLE KERNEL LEARNING

In this chapter, we discuss multi-channel, multiple and boosted multiple kernel learn-
ing.

Most of the machine learning algorithms need to transform the features into a higher
dimensional space for some operations such as similarity computation between feature
vectors. For this purpose, the machine learning algorithms employ kernel methods
allow transformation of the vector space to a higher dimensional space. There are both
linear and non-linear kernel functions. Linear kernel function separate the features
which are linearly separable. Non-linear kernel function transforms the linearly
non-separable features into higher dimensional space. A non-linear kernel function
computes the similarity between features in higher dimensional space.

SVM is one of the kernel-based learning algorithms. We first start with briefly
mentioning about SVM before multiple kernel learning. Then, we present SVM
with multi-channel kernels. Finally, we talk about multiple and boosted multiple
kernel learning.

4.1 Support Vector Machines (SVM)

SVM is a binary supervised classification algorithm which finds a hyperplane in order
to divide the data points into two groups. It is used in various types of problems such as
activity recognition, handwritten text recognition and object detection. SVM classifier
has a decision boundary, (hyperplane), which separates the linearly separable data
points into two parts. The closest data points from two classes to the hyperplane form
support vectors. SVM is a maximum margin, which is the distance between closest
data points to the hyperplane, classifier due to it finds the maximum margin while
separating the data points.

There are a number of ways for applying the SVM to the multi-class classification
problems despite the fact that SVM is a binary classification method by its nature.
One-against-all and one-against-one approaches are two alternatives. Binary classifiers
are used by both alternatives. If there are N classes, N classifiers are trained for one-
against-all technique. Each classifier is trained between class 1 and the rest. Instances
belong to the class 1 are labelled as positive and the rest are labelled as negative. On
the other hand, in one-against-one approach, there is a binary classifier for each pair of
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classes. For N classes, N(N − 1)/2 classifiers are composed. Final decision on test
points are made on voting mechanism. Each classifier assigns a label for the test point.
Most assigned class label is determined for the test point.

Data points can also be linearly non-separable. A hyperplane cannot be found to
separate the data points. In such cases, it is required to map the data into 3D space.
For example, an activity recognition problem is too complex in order to apply simple
binary linear SVM classifier. There are several images as training data which include
different types of activities. In this task, it is needed to transform the data in order to
separate them. For this purpose, SVM kernels are employed. A kernel can be simply
defined as a similarity function between feature vectors. It transforms data points in
2D space which is not linearly separable into higher dimensional space which makes
the data points linearly separable.

SVM has the following advantages:

• Works well on a various types of problems

• Works on problems that are non linearly separable

• Works well on smaller datasets

• It is robust to noise

Following are also disadvantages of SVM:

• SVM uses several kernel parameters. It is required to determine the parameters
to classify data points correctly and to prevent the overfitting.

• Appropriate SVM kernels differ according to the problems, so it is also required
to select suitable kernel.

• Since it is a binary classifier, it needs pair-wise classifiers for multi-class prob-
lems.

In learning problems, the fundamental issue is determining the most appropriate
kernel function and its parameters. Kernels are used to create a similarity matrix that
is composed of all similarity values between each pair of training instances. The
similarity computation with kernel function is done as follows:

d(y) =

N∑
j=1

αik(x j, y) + b (4.1)

where xi is the ith training instance and y is the test instance. k(.,.) is one of the SVM
kernel functions such as linear, gaussian.

A kernel-based method works with limited computational cost. On the other hand,
selecting the most appropriate kernel for solving a specific problem is challenging.
For this purpose, cross-validation is used to determine the kernel and its parameter
on a validation dataset. In addition, for multi-class problems, it is required to adapt
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the kernel methods using approaches such as one-against-all or one-against-one. As
a result multi-class problems require running increasing number of SVM classifiers
depending on the number of classes. Instead of determining kernels and parameters
by trying different kernels on validation set, an algorithm can be used to find the best
kernel and parameter combination of best kernel function. Thus, multiple kernels
can be used together rather than a single kernel. Multiple kernels can provide more
stable and robust similarity computations between training instances. Multiple-kernel
approach provides linear separation in higher dimensional space by using multiple
kernels.

It is possible to assign equal or different weights to kernels. In the following section,
multiple kernel approaches are mentioned.

4.2 Multi-Channel Kernels

Multi-Channel Kernel combines different types of features. Each feature is a separate
channel for the kernel. Also, there is a pre-defined rule in order to compute similarities
between a pair of features. In [47], a multi-channel kernel is proposed whose function
is the following:

k(xi, x j) = exp(−
∑

c

Dc(Ha,Hb)) (4.2)

Dc =

w∑
k=1

(1 −
min(hak, hbk)
max(hak, hbk)

) (4.3)

where c is the channel of the kernel. For instance; HOF, Log-C and Cuboid are the
features given as an input to the Multi-Channel Kernel. In this case, c1 is the HOF,
c2 is the Log-C and c3 is the Cuboid feature. Ha is the histogram of the ath video
(bag-of-words aforementioned). Each histogram has w dimensions. w is the number of
words. hak is the number of kth word in the the histogram ath video. Hence, according
to this kernel function, three features are passed to the kernel as input. After that,
for each feature, channel, similarity between every Ha and Hb is computed. Thus,
non-linear decision boundary, hyperplane, is computed to classify the data points.

Ha︸︷︷︸
channel 1

+ Hb︸︷︷︸
channel 2

+ Hc︸︷︷︸
channel 3

In Multi-Channel Kernel SVM, all the features are given equal weights when they
are combined in a single vector. Equal weighting ignores the relative importance
of each descriptor used in the classification. If, for example, a walking activity is
performed in a video, motion-based features are expected to be more discriminatory
than color gradient-based features. In such a case, motion-based features should be
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given more importance than other and a kernel which combines motion-based and
color gradient-based features should give more weight to motion-based features.

In spite of equally weighting different features, multi-channel kernel is expected to
show better classification accuracy since it makes use of different features together,
instead of using a single feature. A single feature can only capture limited types of
activities or provide limited information from an activity. On the other hand, multiple
features can capture different aspects of information from various types of features.
In [47] and [17], when a single feature is used, classification accuracies are less than
when multi-channel kernels are employed.

4.2.1 Multi-Channel Kernel Types

In this thesis, four types of kernels are employed for combining different features:
Histogram Intersection Kernel, Gaussian Kernel, Modified Histogram Intersection
Kernel [47] [17]. Histogram Intersection kernel function is as follows:

HKint(X,Y) =

j∑
i=1

min xi, yi (4.4)

where j is the dimension number of X feature vector histogram. xi is the values of the
ith bin of the histogram. Gaussian Kernel function is defined with the equation below:

GK(x, x′) = exp(−
||x − x2||

2σ2 ) (4.5)

Modified Histogram Intersection Kernel in [47] is as follows:

K(X,Y) = exp(−
∑

c

Dc(Ha,Hb)) (4.6)

Dc =

w∑
k=1

(1 −
min(hak, hbk)
max(hak, hbk)

) (4.7)

Finally, Modified Histogram Intersection Kernel in [17] is defined below:

K(X,Y) = exp(−
∑

c

Dc(Ha,Hb)) (4.8)

Dc = 1 − (
∑w

k=1 min(hak, hbk)∑w
k=1 max(hak, hbk)

) (4.9)

where Ha is the histogram of the ath video. Each histogram has w dimensions. w is
the number of words. hak is the number of kth word in the the histogram ath video. c
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is the channel of the kernel such as HOF. Modified Histogram Intersection kernels are
different versions of base Histogram Intersection Kernel. In equation (4.7), instead of
summing the minimum values, minimum values of histogram are divided by maximum
values of the histogram so that a kind of normalization is performed. On the other
hand, in equation (4.9), summation of minimum values are divided by summation of
the maximum values of the histogram.

4.3 Multiple Kernel Learning

In this section, we explain Multiple Kernel Learning (MKL), which is employed in
this thesis.

As a general practice in vision applications, a predefined parametric kernel is employed
and the parameters of the kernel function are specified by cross-validation. In Multi-
Channel Kernels, a number of features using a single kernel or multiple kernels are
combined with predefined rules. On the other hand, MKL optimizes this fusion
operation by the procedure and fuses different features and kernels in an optimal way:

• MKL method selects the best kernel and feature combination. Each kernel
represents different type of similarity computation. While traditional SVM
approach tries to find the optimum kernel MKL selects the best fitting kernel.

• While each single kernel represents a different similarity, each feature represents
the different aspect of information. Therefore, in order to combine different
information, MKL combines all these features and kernels.

• A single kernel may have bias towards a feature, but in multi-kernel approach,
this bias can be eliminated to some degree.

Weight of each kernel are determined while the model is being trained. Then, these
weights are used in the final classifier. As this process is done during training using
the training data, it can be called a data-driven feature selection process:

{(xi, yi)}Li=1, xi = {(xi,1, xi,2, xi,3, ..., xi,M)}, yiε{1,−1} (4.10)

where xi,m are the feature vectors, m is the number of features and yi are the class
labels. Also, feature vectors may have different dimensions.

For each feature m = {1, 2, ...,M}, a kernel function Km(xi, x j) computes the pairwise
similarity difference. Thus, we have a total of M kernels:

{Km}
M
m=1

In order to optimize the coefficients, learning equation is as follows:

f (x) =

L∑
i=1

αi × yi × K(x, x j) + b (4.11)
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As a result of all kernel computations of each pairwise similarities, a L × L square
kernel matrix is generated. Then, SVM processes this square kernel matrix.

MKL optimizes the kernel weights with the following equations:

K(xi, x j) =

M∑
m=1

cm × Km(xi,m, x j,m), cm ≥ 0 (4.12)

M∑
m=1

cm = 1 (4.13)

In MKL approach, not only different features, but also a number of different kernel
combinations can be employed. Therefore, for example, HOF feature can be used
with different kernels and also a kernel can be used with different parameters. Since
each descriptor represents a different aspect, an effective combination of these kernels
and features, is expected to show better classification performance. For this purpose,
as opposed to equal weighting of multi-channel kernel SVM, MKL assigns different
weights to each kernel and feature combination in a self-optimized setting.

In the Figure 4.1, there exists MKL learning scheme where there are kernels from
Kernel 1 to k and features from Feature 1 to n. Each kernel and feature combination
composes a classifier. For example, when feature 1 is processed with a kernel function,
this is called as a classifier. There are classifiers from classifier 1 to c with their weights

Kernel k
Kernel 4...

Kernel 3
Kernel 2

Feature n
Feature 4...

Feature 3
Feature 2

Kernel 1 Feature 1

Classifier: Kernel and feature combinations; K1 and F1, K1 and F2,..., Kn and Fn

Classifier 1
Weight 1

Classifier 2
Weight 2

Classifier 3
Weight 3

Classifier ...
Weight ...

Training 
Classifiers Classification

Figure 4.1: Multi kernel learning scheme
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from weight 1 to c, classified in such a way. All these classifiers are learned in training.
Finally, prediction is performed.

4.3.1 SimpleMKL

In some situations, more flexible representation of the data using more than one SVM
kernel can be preferred. Each kernel can employ one type of feature or all sets of
features together. In order to combine multiple features and kernels and improve the
accuracy, a number of multi kernel learning techniques exist. One of these techniques
is SimpleMKL [42].

In order to solve MKL problem, SimpleMKL employs the linear combination of
the multiple kernels using gradient descent-based SVM solver iteratively. For the
optimization purpose, SimpleMKL uses mixed-norm regularization. It can also be used
for regression or multi-class problems. There is an available package of SimpleMKL
implementation. It is used in this thesis for the multiple kernel learning implementation.

4.4 Boosted Multiple Kernel Learning

There are a variety of studies in order to improve the optimization process of the
multiple kernel learning. Also, the MKL classifiers proposed are extensions to the
single kernel classifier. There exist several linear combination of multiple kernels
which do not solve complicated patterns. Although it is a new approach that makes the
optimization process more efficient, SimpleMKL is not computationally cost effective.

In this thesis, we use boosted Multiple Kernel Learning [62] which exploits the idea
of AdaBoost for the first-person videos. Boosted MKL handles the aforementioned
limitations of the traditional MKL approaches.

Boosted MKL aims to learn the final strong classifier through training the weak
classifiers. In the Algorithm 1, the details of the Boosted MKL is explained. Since the
AdaBoost is integrated to the MKL problem, Boosted MKL works through trials. In
each trial, each weak classifier is trained to learn the model. Each weak classifier is
composed of a kernel with specific parameters and a feature set. Feature set has all
features or a subset of features.

For the activity recognition from first-person videos, boosted MKL randomly selects
each video according to its probability. Initial probabilities are determined using
uniform distribution so that initially each video has equal probability in the first state.
Then, at each trial, all classifiers are trained and the winner classifier is determined at
the end of the trial based on their performances:

et =

L∑
l=1

Pt(i)(ct,m(xi , yi))
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Winner classifier of the trial is assigned a weight according to the following equation:

wt = ln
1 − wt

wt

At the end of the trial, probability of each classifier is updated:

Pt+1(i) = Pt(i) ×
e−wt , c(xi) == yi

ewt , c(xi) , yi

Algorithm 1: Boosted Multiple Kernel Learning Algorithm
Input :(x1, y1, ..., (xL, yL)) Training set;

Km(xt, xn) Kernel function;
cn nth classifier;
C number of classifiers;
M number of kernels;
T trial number;
Initial set of probabilities:

P1(i) =
1
L

, i=1..L
Output : Kernel weight vector wt,n nth classifier of trial t;

Output labels of the videos computed based on
sign(

∑T
t=1 wt,n=1:K , ct,n=1:C)

1 for t = 1 : T do
2 Select n videos based on set of probabilities Pt;
3 for m = 1 : M do
4 Train each weak classifier using Km;
5 Compute the error based on Pt:
6 et =

∑L
l=1 Pt(i)(ct,m(xi , yi))

7 end
8 Select the classifier that gives the minimum error et

between errors of all trials:
9 et = min et,m

10 Update weights of classifiers:

11 wt = ln
1 − wt

wt
12 Update Pt+1(i):

13 Pt+1(i) = Pt(i) ×
e−wt , c(xi) == yi

ewt , c(xi) , yi

14 end

After all T trials, T classifiers and their weights are determined. Thus, final strong
classifier is composed of T weak classifiers. In the prediction stage, T classifiers vote
a label for each video based on its weight. A final decision is made and the label of
the video is determined based on voting.

In the Figure 4.2, classifiers are assigned weights. Weights are summed for the final
decision. Finally, the final classifier outputs a label. In addition, Figure 4.3 shows the
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Figure 4.2: Boosted MKL

hyperplanes of weak and final classifiers. Each of the decision boundary of the weak
classifiers classifies the data points, but with some misclassification error. On the other
hand, final classifier that is composed of weak clasifiers with their weights classifies
more accurately the data points since the decision boundary of the final classifier is
updated based on the weak classifiers’ weights.

After all, MKL and Boosted MKL provide the combination of features and kernels
solution to the problem and have the following advantages:
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Weak classifier Weak classifier Weak classifier
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Figure 4.3: Boosted MKL weak classifiers
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• Different kernels could be used with all or subset of features.

• Different types of kernels such as Gaussian, Linear and different parameters for
the kernels can be employed together.

• Each kernel and feature combination is assigned different weights based on its
importance.
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CHAPTER 5

EXPERIMENTAL RESULTS

We presented single and multi-channel kernel SVM, MKL and Boosted MKL methods
in previous chapters. In addition, we discussed the features which we used in this
thesis. We apply MKL and Boosted MKL, for the first-person activity recognition
which allows integrating multiple features in a data-driven adaptive manner as opposed
to the previous studies. In this chapter, we present the experimental evaluation of
the proposed approaches and compare the results against the other methods in the
literature.

5.1 Outcome Measurements

We performed experiments in order to evaluate the single and multi-channel kernel,
MKL and Boosted MKL methods [47] [17] based on classification accuracy for first-
person activity recognition. In order to apply MKL, SimpleMKL library has been
used. Experiments of these four methods were conducted on segmented videos of
JPL-Interaction [47] and DogCentric activity [17] datasets.

In all experiments, all descriptor combinations were used for both datasets. HOF,
Log-C and Cuboid descriptors were employed individually in each experiment using
traditional single kernel approach. In multi-channel kernel, MKL and Boosted MKL
experiments, HOF and Cuboid together, and HOF, Log-C and Cuboid together were
employed. For both dataset, Gaussian, Histogram Intersection (H-Int) and a modified
Histogram Intersection kernels (DC-Int) [17] were used. Also, another modified
Histogram Intersection (JPL-Int) [47] kernel was used for JPL-Interaction dataset.

Histogram of optical flow descriptor is constructed in each s-by-s grids of cells in
each frame, as previously mentioned. For JPL dataset, each frame is divided into
9-by-9 grids (s-by-s) while constructing descriptors. On the other hand, s value is
3 for DogCentric dataset. S values differentiate in each dataset because of different
characteristics of videos such as ego-motion and illumination. In DogCentric dataset,
much more ego-motion is seen than JPL dataset. Therefore, in order to prevent the bad
effects of noisy data, we used smaller number than JPL dataset for s value. Number of
cluster is another varying factor in both dataset. Motion characteristics of dogs affect
also cluster number. There occur more optical flow vectors with varying magnitude and
direction, illumination changes in DogCentric dataset. Therefore different number of
feature structures cause different number of clusters. In order to capture the variations
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in videos of DogCentric dataset, we assign 350 as K value for clustering, whereas the
K value is 150 for JPL dataset.

5.2 JPL-Interaction Dataset Activities

In this section, the activities in the videos of the JPL-Interaction dataset and the
experimental setup are discussed in detail.

There are 7 unique activity types and 84 videos in JPL-Interaction dataset. Experiments
of each method were repeated for 100 times and the results were averaged. At each
iteration, 9 training and 3 testing videos of each activity type were randomly selected.
Thus, 84 videos were divided into two groups of training and testing videos: 63 videos
for training and remainder 21 videos for testing.

In Figure 5.1, two sample snapshots from each of the 7 unique activity types [47]
are shown. These activity types are: Shaking the hand, throwing, waving, hugging,
petting, pointing and punching.

Figure 5.1 (a) and (b) show the shaking the hand activity. Shaking activity is composed
of two sub-actions. In the first part, a person walks toward the wearer. Then he shakes
the wearer’s hand. This activity creates a little ego-motion. In the Figure 5.1 (c) and
(d) throwing activity occurs. Throwing action happens twice in the video. Again, the
ego-motion is observed. Figure 5.1 (e) and (f) shows the waving activity snapshots.
The person waves to the wearer. During this activity, nor touching neither ego-motion
occurs. In the Figure 5.1 (g) and (h) hugging activity takes place. This activity naturally
involves touching between the person and the wearer. The person walks towards the
wearer, first shakes and then hugs the wearer. A considerable amount of ego-motion
is observed during the activity. Figure 5.1 (i) and (j) show the petting activity. In the
first part, the person approaches and holds the wearer. In the second part, the person
pets the wearer. Similar actions occurs in both parts and an increasing ego-motion is
created from beginning to the end of the activity. Pointing activity is seen in the Figure
5.1 (k) and (l). There are two persons standing at a distance and they point to the
wearer. This activity does not contain much motion since the two persons are constant
throughout the video. Last two figures show the punching activity. The person walks
toward the wearer as in the some previous activities and punches the wearer. There
occurs large amounts of ego-motion as a consequence of the punching.

Some of the activities are similar in terms of their characteristics. Shaking, hugging,
petting and punching activities are composed of two sub-actions. Commonly, the
person walks toward the wearer at first, and then the person performs the particular
action. These activities commonly create ego-motion. During these activities, the
person doing the action gets close to the wearer and the person takes a large part in
the scene. Pointing activity is not similar to the other activity types since there are
persons which stand and no movement occurs. It is a difficult activity for the classifier
since there are not enough discriminative patterns. Also, petting and hugging activities
are similar to some degree. There is a person who dominates the scene. The person
touches the wearer in both activities. In addition, the person shakes the wearer using
his hands. Hugging activity differs from the other activity near the end of the activity
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while the person moves his head towards the wearer. Waiving activity is another
different activity because no touching occurs. The person stands and waves his hand.
During his activity, the person is very close to the wearer. Therefore, it contains some
similarity with petting and hugging because of their proximity.

5.3 DogCentric Dataset Activities

In this section, the activities in the videos of the DogCentric activity dataset and the
experimental setup are detailed. There are 209 videos in DogCentric activity dataset.
209 videos contain totally 10 unique activities. Experiments of each method were
repeated for 100 times and the results were averaged. At each iteration, half of the
videos were randomly selected for training and the remainder half of the videos are
selected for testing. Thus, for each iteration, the videos were split into two halves of
the training and testing.

In the Figure 5.2, there are snapshots of the 10 unique activity types from [17]. 10
unique activity types are: Playing with a ball, walking, sniffing, shaking the body,
petting, turning right, turning left, feeding, drinking water and waiting for a car. A
snapshot for each activity type is seen in the figure.

A GoPro camera is mounted to the back of each of the 4 dogs. Under different
environmental conditions, 4 dogs are took by their owners for walking. Videos are
captured indoor, outdoor, near a road with traffic etc.

Figure 5.2 (a) shows the playing with a ball activity. During this activity, the dog runs
after the ball and shakes the camera which is attached to its back. There occurs a
huge ego-motion. In the Figure 5.2 (b), there is a walk with its owner. They walk on
the street. There are a lot of walking videos that some of them contain much more
ego-motion since some of dogs are with collar but remainders are not. If a dog has a
collar, then it’s movement more smooth than the dogs without a collar. In (c), there
is a snapshot of the sniffing activity. During this activity, the dog walks for a while.
Then, it stops and starts sniffing. Therefore, this type of activity is composed of two
parts. In the first part, it is similar to walking and second part contains a different
pattern. (d) shows the snapshot of shaking its own body activity. The dog suddenly
starts shaking its own body, while it’s walking. So, the activity has two parts: walking
and shaking. In the first part, there is a consistent and constant type of ego-motion,
whereas the second part contains different types and huge ego-motion until the end of
the activity. In Figure 5.2 (e), there occurs a petting activity. A person pets the dog,
after the dog walks toward the person. This activity is performed indoor and outdoor.
In some videos, the dog walks toward the person firstly, but in other videos, the dog
stands and a person pets it immediately. (f) and (g) shows the similar activities. A
dog looks at the left in the first figure, and looks at the right in the other figure. A
person feeds the dog in indoor or outdoor in the Figure 5.2 (h). While feeding, the
dog reaches the person out. Especially in outdoor, illumination changes throughout
the video since the camera which is attached to the back of the dog shows the sky
while the dog reaches out the person. In (i), the dog drinks water from a dish. There
are indoor and outdoor capturing of this activity. The activity is simpler than other
activities since it’s a monotonous activity and contains a little ego-motion. In a traffic,
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(a) Shaking first part (b) Shaking second part

(c) Throwing first part (d) Throwing second part

(e) Waving first part (f) Waving second part

(g) Hugging first part (h) Hugging second part

(i) Petting first part (j) Petting second part

(k) Pointing first part (l) Pointing second part

(m) Punching first part (n) Punching second part

Figure 5.1: Snapshots of each activity types in videos from [47]
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the dog waits for a car in order to pass it by in the (j). It’s an outdoor activity. The dog
does not move much in this type of the activity. Therefore, ego-motion is little during
this activity.

Some of the activities are similar in terms of their characteristics. Playing with a ball
and shaking activities are similar because of huge ego-motion. While the dog plays
with a ball, it runs and naturally shakes itself. This creates vast amount of ego-motion
like the shaking activity. The dog shakes off while it walks. In spite of the similarities
to some degree, there are certain differences between these activities. For example,
playing with a ball activity causes complicated movements, whereas shaking activity
causes smooth circular movement.

Looking left, right and waiting for a car activities contain little body movement, but
only head movement. The dog moves its head in order to look to right, left and cars.
Therefore, the movement pattern and ego-motion is similar during these activities.
Drinking and sniffing activities are also similar due to the head movement. The dog
stops and looks down while both drinking and sniffing. In addition, walking and
sniffing activities are similar to some extent since the dog generally walks before the
sniffing. So, it does the same movement before sniffing with the walking activity.
Feeding and petting are also similar activities because a person interacts with a dog
in both activities. In this context, the dog reaches a person out and stands before the
person.

5.4 Video Properties

Videos in JPL-Interaction dataset have a resolution of 320 x 240 at 30 frame per second
(fps). This dataset include friendly, hostile and neutral interactions with the observer.
Friendly activities are "petting", "hugging", "waving" and "shaking hands". Neutral
activity is the "pointing to the observer". "Punching" and "throwing" are the hostile
activities. These videos are captured by a head mounted camera as shown in the Figure
5.3 (a).

DogCentric activity dataset contain videos with 320 x 240 resolution at 48 fps. A
GoPro camera is attached to the back of the dog as in the Figure 5.3(b). There are
both indoor and outdoor videos. Videos are recorded in a traffic, along a river or in a
park. 4 different dogs having different owners take part in the videos. Each of the dogs
performs the same activity but the environment changes in each activity.

5.5 Comparison of Two Datasets

Video characteristics in these two datasets are different. In JPL-Interaction dataset, the
camera is attached to the head of the fixed humanoid model as in the Figure 5.3(a).
Persons in the videos, interact with the humanoid model. Though the viewpoint of
the camera is similar to a human, the camera does not move since the observer is
stationary, unless a person or an object interacts with the observer. Therefore, these
videos have less ego-motion and less dynamic characteristics relative to the Docentric
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(a) Playing with a ball (b) Walking

(c) Sniffing (d) Shaking

(e) Petting (f) Looking to the right

(g) Looking to the left (h) Feeding

(i) Drinking (j) Waiting for a car

Figure 5.2: Snapshots of each activity types in videos from [17]
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activity dataset. Cameras are attached to the back of a dog in DogCentric dataset. In
these videos, dogs are already moving as opposed to the humanoid model. In addition,
dogs as a course of their nature are more brisk than humans. Their movement are
rough and juddery whereas movement of a human is smoother. Also, dogs could move
and react to something suddenly. Consequently, the nature of the movements of a dog
bring several additional difficulties. Furthermore, DogCentric dataset contain not only
indoor but also outdoor activities as opposed to JPL dataset. So, there are much more
illumination, color etc. changes in the videos that are captured by the cameras on the
dogs.

In JPL dataset, the observer is involved in the events implicitly through a person
interacting with the observer. On the other hand, dogs are directly involved in the
events themselves. For example, they play with a ball or walk towards a person. Also,
since the camera is attached to the back of the dog, the view includes some parts of
the dog’s body, but no part of the humanoid model is visible in the videos.

In DogCentric dataset, there are 4 subjects whereas a single subject is used in JPL-
Interaction dataset. Since a single humanoid model is employed in the first dataset,
this does not bring any additional variance in videos. On the other hand, since there
are four different dogs in the second dataset, movement patterns and body shapes of
the dogs change among different videos.

In the Table 5.1, number of occurrences of specific activities are shown. Since there are
4 dogs, activities are firstly categorized according to the dogs. Number of samples for
each activity type is different for different dogs. On the other hand, for JPL-Interaction
dataset, there are 12 samples for each activity type.

5.6 Discussion of the Results

In the following subsection we discuss the results of experiments which are performed
in JPL and DogCentric datasets.

(a) JPL-Interaction Observer Setup. This figure is
taken from [47].

(b) Dogcentric Observer Setup. This figure is
taken from [17].

Figure 5.3: Observer setups
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5.6.1 JPL-Interaction Dataset Results

Figure 5.4 shows the confusion matrices obtained using different base features and
their combinations using DC-Int kernel in JPL-Interaction dataset. Confusion matrices
in Figure 5.4 (a) to (c) belong to base features, HOF, LogC and Cuboid respectively.
Inspection of these matrices reveal that the base features complement each other.
In Figure 5.4 (a), HOF feature shows good performance (above 80%) for “hug",
“wave", “point" and “punch" activities, whereas Log-C has classification accuracy
above 80% for “shake", “wave", “point" and “punch" activities. Also, Cuboid feature’s
performance is higher than 80% for “point", “punch" and “throw" activities. Log-
C feature is more stable than other features based on the accuracy results since it
has higher than 70% performance for all activities but there are two activities for
Cuboid and three activities for HOF below 70% accuracy. False positive rates are also
differentiate for each feature. With HOF feature, false positive rate of “pet" activity
is 0%, but this rate is 7.7% and 4.7% with Log-C and Cuboid features respectively.
“Punch" activity is the common for Log-C and Cuboid features according to false
positive rate (0%) but HOF feature shows high false positive rate (34.3%) for this
activity. Log-C feature gives at the most 14.6% false positive rate for features which it
outputs high classification accuracies. On the other hand, HOF gives at least 19% false
positive rate for features which it performs good performance. Also, Cuboid 47.7%
false alarm rate for the “throw" activity whereas it shows 80% accuracy for the same
activity.

As shown in Figure 5.4 (a), (b) and (c), each feature is distinctive for a set of activities.
Each feature perform well or poorly for different set of activities. Therefore, combi-
nations of these features are expected to perform better than single features. Figure
5.4 (d) and (e) verify this expectation. When HOF and Cuboid features combination
is used with Multi-Channel Kernel, it shows accuracy higher than 80% for “shake",
“hug", “point", “punch" and “throw" activities. For example, HOF and Cuboid features
perform lower than 80% individually whereas the result is 84% when multi-channel

Table 5.1: Activity Tables

(a) Activity numbers in [17]

Activity Dog 1 Dog 2 Dog 3 Dog 4 Total
Ball 6 5 3 0 14
Walk 7 1 14 4 26
Sniff 5 2 2 1 10

Shake 7 3 8 7 25
Pet 8 4 3 6 21

Look right 7 2 4 5 18
Look left 8 4 8 5 25

Feed 8 2 3 5 18
Drink 8 7 7 5 27
Car 7 4 7 7 25
All 71 34 59 45 209

(b) Activity numbers in [47]

Activity Total
Shake 12
Throw 12
Wave 12
Hug 12
Pet 12

Point 12
Punch 12

All 84
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kernel is employed. Combined feature set also performs better than individual features
for “pet" and “throw" activity. When HOF, Log-C and Cuboid features are used
together, results of the combination is better than both HOF & Cuboid combination
and individual features. Only for “wave" and “throw" activities HOF & Log-C &
Cuboid feature set performs worse than HOF & Cuboid feature set. The results are
73.3% and 85.3% with 3 features and 74% and 86% with 2 features for "wave" and
"throw" activities respectively.

Figure 5.4 (f), (g) show SimpleMKL results using HOF & Cuboid and HOF & LogC
& Cuboid repectively. Boosted MKL results for the same feature sets are shown in the
Figure 5.4 (h) and (i). Multi-channel kernel performs better than individual features but
it assigns equal weight for each feature regardless of its importance. This rudimentary
weighting mechanism prevent exploiting features well. Best accuracy results are
acquired when one of the MKL methods are employed except for “pet" activity. For
4 of all activities, SimpleMKL HOF & Cuboid feature set performs higher than 93%
whereas SimpleMKL HOF & Log-C and & Cuboid feature set performs higher than
95% accuracy for the same activities. Boosted MKL shows highest performance in
respect to the overall performance. When Boosted MKL is employed, higher increases
in accuracy values are observed than SimpleMKL results. For instance, SimpleMKL
shows lower than 70% accuracy for “pet" and “wave" activities whereas Boosted MKL
shows higher than 70% accuracy for all activities.

None of the methods perform well for “pet" activity. Both petting and hugging
activities contain touch and close interaction between the person and the humanoid
model. This creates a difficulty for the classifiers and prevents them to be successful in
recognizing this particular activity.

In Figure 5.5, the confusion matrices of the base and combined features using JPL-
Int kernel on JPL dataset are seen. According to these matrices, Multi-Channel
kernel performance is better than using a single kernel. When multi-channel kernel is
employed, recognition accuracies of 5 activity types are higher than 80% with HOF
& Cuboid feature combination, whereas accuracy value of only 1 activity type is
higher than 80% with HOF feature. For “punch" activity, Log-C and Cuboid features’
accuracies are 100% and 99% respectively. In addition, both of Log-C and Cuboid
features show the same performance for “wave" activity. On the other hand, with
multi-channel kernel, when all three features are combined it performs worse than
two feature combination. For “shake", “hug" and “wave", accuracy values of HOF &
Cuboid combination are higher than HOF & Cuboid & Log-C combination. On the
other hand, for “punch" activity, accuracy value of 2 or 3 feature combination with
multi-channel kernel is 100 %.

As seen in Figure 5.6, Log-C performs better than Cuboid. Also, accuracy values of
Cuboid are higher than accuracy values of HOF feature. Furthermore, performance
of multi-channel HOF & Log-C & Cuboid feature set is higher than performance
of multi-channel HOF & Cuboid feature set. For “hug" and “point" activities, 2
feature multi-channel kernel performs better (93.7% and 99.3%) than 3 feature multi-
channel kernel (69.3% and 93%). For all remainder activities, 3 feature set with multi-
channel kernel works better. For some specific activities, there are some differences in
performance of kernels. When JPL-Int kernel is employed, 3 multi-channel feature
combination performs 69% and 2 multi-channel feature combination performs 80% for
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(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid (f) SimpleMKL HOF & Cuboid

(g) SimpleMKL HOF & Log-C & Cuboid (h) Boosted MKL HOF & Cuboid

(i) Boosted MKL HOF & Log-C & Cuboid

Figure 5.4: The confusion matrices of the base and combined features using DC-Int
kernel on JPL dataset, SimpleMKL and Boosted MKL

52



“hug" activity, whereas these values are 95% and 80.7% with Histogram Intersection
kernel. On the other hand, for “pet" activity, JPL-Int kernel’s performance is better
than Histogram Intersection kernel. All confusion matrices show us that JPL-Int
kernel can handle high amounts of ego-motion better than Histogram Intersection
kernel. Accuracy values of JPL-Int kernel for the activities which involve ego-motion
such as “punch", “shake" and “throw" are higher than Histogram Intersection kernel
according to Figure 5.6 (d), (e) and 5.5 (d), (e). In addition, when there is a close
interaction between the person and the humanoid model, such as “pet" and “hug"
activities, Histogram Intersection kernel performs better than JPL-Int kernel.

Figure 5.7 shows that, for “wave" and “point" activities, all single features and feature
combinations perform well (higher than 75% except for “wave" activity with Log-C
feature). Except for 3 multi-channel feature combination, accuracy values of “pet"
activity with each feature are lower than 60%. “Point" activity is the activity that
persons in the video do not much move and only cuboid feature perform 100% accuracy.
Although “punch" activity creates great amount of ego-motion, HOF feature shows
the worst performance because huge and sudden ego-motion causes large dispersion
of optical flow vectors.

(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid

Figure 5.5: The confusion matrices of the base and combined features using JPL-Int
kernel on JPL dataset
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5.6.2 DogCentric Activity Dataset Results

Base features and feature combinations discriminate different activities on DogCentric
activity dataset as similar to JPL-Interaction dataset. Figure 5.8 shows the confusion
matrices obtained using different base features and their combinations using DC-Int
kernel in DogCentric activity dataset. Figure 5.8 (b) shows that, Log-C feature fails to
discriminate “pet" and “feed" activities. In both of these two activities, the dog looks
at and interacts with a person. On the other hand, HOF feature is more successful than
Log-C feature. An interesting finding is that all base features consistently perform
better in classifying “turn left" activity than “turn right" activity. According to the
Figure 5.8, “drink" activity cannot be distinguished from other activities. With base or
multi-channel kernels, none of the accuracy values for “drink" activity is higher than
12%. During this activity, the dog does not move much and only drinks water from
the same viewpoint which makes it difficult for classifiers to find any discriminative
information. For the most of the activities, Cuboid feature performs better than other
features but it is consistently worse for the “playing with the ball" activity.

The results also show that Multi-Channel Kernel performs better than single kernel

(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid

Figure 5.6: The confusion matrices of the base and combined features using Histogram
Intersection kernel on JPL dataset
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approach for the most of the activities. For “walk", “shake", “sniff" and “turn left"
activities. Accuracy values of multi-channel kernel with 2 features is better than
accuracy values of all single features. It works better in classifying “pet" activity
except for Cuboid, “turn right" and “feed" activities except for HOF feature. On the
other hand, multi-channel kernel with 3 features gives higher accuracies than 2 features
except for “pet" activity.

SimpleMKL improves the classification performance significantly, according to Figure
5.8 (f) and (g). For example, the accuracy value of “playing with ball" activity is 85.4%
with SimpleMKL HOF & Cuboid feature set and 79.7% with SimpleMKL HOF & Log-
C & Cuboid feature set, whereas the highest accuracy value of the other approaches
is 43.1%. Also, for “feed", “turn left", “turn right" and “pet" activities SimpleMKL
methods are better than other single and multi-channel approaches. Although general
performance improvement of SimpleMKL methods, the accuracy values of “shake",
“sniff" and “walk" activities, which have smooth and slow movement, decrease with
SimpleMKL methods.

In the Figure 5.8 it is seen that combining multiple features improves accuracies.

(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid

Figure 5.7: The confusion matrices of the base and combined features using Gaussian
kernel on JPL dataset
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(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid (f) SimpleMKL HOF & Cuboid

(g) SimpleMKL HOF & Log-C & Cuboid (h) Boosted MKL HOF & Cuboid

(i) Boosted MKL HOF & Log-C & Cuboid

Figure 5.8: The confusion matrices of the base and combined features using DC-Int
kernel, SimpleMKL and Boosted MKL on DogCentric activity dataset
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Among the three different methods of combining features multiple kernel learning
and SimpleMKL approaches are more accurate than multi-channel kernel approach.
When SimpleMKL and Boosted MKL approaches are compared, SimpleMKL gives
more accurate results than Boosted MKL approach. “Playing with a ball" is an activity
that SimpleMKL classifies more accurate noticeably than Boosted MKL. This fact is
also seen for “drink" activity. For some specific activities, effects of local and global
features in describing the activities are more distinct. For example “sniff" activity.
During this activity the dog moves and creates global motion continuously but several
objects such as collar, trees and other persons creates local motion. Therefore, both of
local feature (cuboid) and global features (HOF and Log-C) are useful in order to get
accurate results. Consequently, for these specific activities, combining the local and
global features is more important. For “sniff" activity, cuboid gets higher values than
global features. Furthermore, if these features are combined in a multi-channel kernel,
then the results are improved by about 4%. If these features are combined in a Boosted
MKL approach, then the results are improved almost 8% according to multi-channel
approach. On the other hand, SimpleMKL is not so successful in combining the
features in order to recognize the “sniff" activity. Cuboid is also the best feature (78%)
in order to discriminate the “walk" activity. The worst is HOF (56%) and the second is
Log-C (65%).

However, Boosted MKL is not the best approach this time, but multi-channel kernel
performs better than other approaches. This trend is opposite for “turn left" and “turn
right" activities. Global motion features classify these activities more accurately than
local feature. This activity has very characteristic motion pattern. The dog only turn
its head to left or right. This movement always generates the same pattern and local
information is very little. MKL approaches are more effective combining these features
than multi-channel kernel approach as opposed to “walk" activity. “Waiting for car"
activity also has both local and global information. Cars moving on the road create
local motion and the dog creates the global motion itself. Therefore, both global and
local features are successful while describing the activity. Also, the most accurate
results are seen with Boosted 3 feature MKL approach.

The Figure 5.9 shows the confusion matrices of Gaussian kernel experiments. Gaussian
kernel results lead to similar observations to the ones obtained using DC-Int kernel.
For “shake" activity, Cuboid is still significantly more accurate than global features.
Multi-channel also improves this result by about 1%. For also “sniff" and “walk"
activities, HOF and Log-C is even worse than DC-Int kernel whereas Cuboid is the
best feature in order to classify these activities in spite of its performance decrease
according to DC-Int kernel. Log-C is still more successful than Cuboid feature for
recognizing the “turn right" activity. On the other hand, global descriptors are no more
successful than Cuboid feature for “turn left" activity. According to the confusion
matrices of Figure 5.9, Gaussian kernel is not as successful as DC-Int kernel for
classifying the activities when global motion is dominant.

The Figure 5.10 shows the confusion matrices using Histogram Intersecton kernel. For
instance, Cuboid descriptor performs still better than global descriptors for “shake",
“sniff" and “walk" activities. Also, the multi-channel approach with 3 features still
gives more accurate results than single feature cases. For “pet" activity that has local
and global motion, multi-channel kernel brings significant improvement. Histogram
Intersection kernel and DC-Int kernel show similar performance for “playing with
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a ball" activity. Global features are better than Cuboid for recognizing the activity
with both kernels. On the other hand multi-channel approach does not bring any
improvement for this activity. For both “turn left" and “turn right" activities, the best
feature is HOF. When multi-channel approach is employed, “turn left" activity is
classified more accurately. However, the multi-channel approach does not show the
expected performance for “turn right" activity.

Among all single and multi-channel kernel approaches, Histogram Intersection kernel
is the most successful approach, according to the confusion matrices above. On the
other hand, Boosted MKL and SimpleMKL perform better than Histogram Intersection
Kernel which is employed in multi-channel or single-kernel approaches.

Table 5.2 and 5.3 show the most successful approaches on both dataset. In these tables,
overall performance of the approaches is seen. According to the Table 5.2, none of
single kernel approaches are among the most successful approaches on DogCentric
activity dataset. In addition, more than half of the most successful approaches are
MKL methods and only 4 of them are not MKL. All of the approaches employ multiple
feature together. None of the single kernels is the most successful method for any of

(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid

Figure 5.9: The confusion matrices of the base and combined features using Gaussian
kernel on DogCentric activity dataset
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Table 5.2: Most successful feature and kernels on DogCentric activity dataset

Activity Kernel Number of Features Accuracy (%)
Ball SimpleMKL 2 85.4
Walk Multi-Channel 3 85.6
Sniff Boosted 3 83.3

Shake Multi-Channel 2 93.1
Pet Multi-Channel 2 67.2

Look right SimpleMKL 2 56.4
Look left Boosted 3 54.5

Feed SimpleMKL 2 71.9
Drink SimpleMKL 3 82
Car Multi-Channel 3 95.6

the activities. SimpleMKL performs better than Boosted MKL according to the table.

(a) HOF (b) Log-C

(c) Cuboid (d) Multi-Channel HOF & Cuboid

(e) Multi-channel HOF & Log-C & Cuboid

Figure 5.10: The confusion matrices of the base and combined features using His-
togram Intersection kernel on DogCentric activity dataset
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Table 5.3: Most successful feature and kernels on JPL-Interaction dataset

Activity Kernel Number of Features Accuracy (%)
Shake SimpleMKL 3 100
Hug SimpleMKL 2 100
Pet Cuboid 1 74.6

Wave HOF 1 92.3
Point Cuboid, SimpleMKL 1,3 100
Punch Cuboid, Multi-Channel, SimpleMKL 1,3,3 100
Throw SimpleMKL 2 93.3

Table 5.3 shows that MKL methods are not so dominant on JPL-Interaction dataset.
First of all, 100% performance is seen for more than half of the activities. In the table,
accuracy values of multiple feature combinations are written for "point" and "punch"
activities since both single and multiple kernel approaches perform 100%. There does
not occur a distinctive performance between approaches for these two activity types.
For "shake", "hug" and "throw" activities, SimpleMKL shows the best performance.
On the other hand Cuboid and HOF single features are successful for "pet" and "wave"
activities respectively. Boosted MKL methods are not seen among the most successful
approaches on JPL-Interaction dataset.

5.6.3 Overall Classification Accuracies

Table 5.4 shows classification accuracies for JPL-Interaction Dataset using different
kernel types. According to this table, DC-Int performs better than other kernels for
individual features on JPL-Interaction dataset. When three features are combined,
DC-Int performs also the best. For HOF & Cuboid feature set, JPL-Int shows the best
performance. Among individual features, accuracy values of Log-C feature are the
highest with all kernel types. When features are combined, performance increases
significantly. In Table 5.6, there are also accuracy values of multiple kernel learning
approach. MKL approaches are more successful than traditional methods except for
Boosted MKL with 2 features. For JPL-Interaction dataset, the best result is achieved
by using Boosted MKL method with 3 feature set. According to the Table 5.5, Cuboid
feature outperforms all other features on DogCentric activity dataset. DC-Int kernel
mostly outperforms other kernels with all features with the exception of Cuboid feature,
where it performs slighly worse (0.5% difference) than H-Int kernel. Furthermore,

Table 5.4: Classification accuracies for JPL-Interaction dataset

Kernel Types (%)
Features JPL-Int DC-Int H-Int Gaussian

HOF 70.3 76 66.4 72.6
Log-C 72.7 84.2 77 74.7
Cuboid 69.5 75.7 73.8 73.3

HOF & Cuboid 85.4 82.9 78.7 77.1
HOF & Log-C & Cuboid 82.2 84.6 79.0 79
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Table 5.5: Classification accuracies for DogCentric activity dataset

Kernel Types (%)
Features DC-Int H-Int Gaussian

HOF 48 45.6 29.8
Log-C 52.6 51 37.2
Cuboid 57 57.5 56.4

HOF & Cuboid 60.4 61.2 58.8
HOF & Log-C & Cuboid 62.4 62.3 54.4

multi-channel with three features is better than 2 features based on accuracy values
except for Gaussian kernel. When three features are combined with DC-Int multi-
channel kernel, it shows the best performance, 62.4% classification accuracy. In the
Table 5.6, the accuracy values of MKL approaches on DogCentric activity dataset
are shown. In Boosted MKL, three feature set is more successful than two feature
set significantly. On the other hand, In SimpleMKL approach, there is not significant
difference between classification performances of two feature and three feature sets. In
addition, MKL approaches outperform the conventional methods according to Table
5.5 and Table 5.6.

Table 5.7 shows the results of experiments based on number of trial. Boosted MKL
works through trials in which each weak classifier is trained to learn the model. At the
end of each trial, a best classifier which is also known as weak classifier is selected.
Final classifier is composed of weak classifiers. When number of trial becomes 200,
there occurs decrease in accuracy values for Boosted MKL approach with regardless
of feature numbers on DogCentric activity dataset. On the other hand, this fact is
not true on JPL-Interaction dataset since the accuracy value increases from 82.7% to
84.6% with 2 features approach. Furthermore, there is not a accuracy trend depending
on number of trial according to the table. For instance; when the number of trial is 10
and 20 the accuracy value becomes 64.1% and 64.3% respectively. So, there occurs
0.2% increment in the accuracy value with 3 feature approach on DogCentric activity
dataset. However, when the number of trial becomes 50, the same trend does not
seen in the table. On JPL-Interaction dataset, the highest accuracy value (84.6%) is
observed when 200 trials are performed with 2 feature combination. This fact is not
true for 3 feature combination experiments. With 3 feature combination experiments,

Table 5.6: Accuracy results on JPL and DogCentric datasets

Accuracy (%)
Approaches DogCentric dataset JPL dataset

Ryoo et al. [17] [47] 60.5 84.4
Abebe et al. (RMF features) [1] 61 86.0

SimpleMKL (2 features) 64.9 86.1
SimpleMKL (3 features) 64.8 85.7

Boosted MKL (2 features) 62.8 82.7
Boosted MKL (3 features) 64.9 87.4
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Table 5.7: Accuracy results on JPL and DogCentric datasets

Accuracy (%)
Number of trials Kernel type DogCentric dataset JPL dataset

10 Boosted MKL (2 feature) 62.5 82.3
20 Boosted MKL (2 feature) 62 82.6
50 Boosted MKL (2 feature) 62.7 83.1
100 Boosted MKL (2 feature) 62.8 82.7
200 Boosted MKL (2 feature) 61.7 84.6
10 Boosted MKL (3 feature) 64.1 87.2
20 Boosted MKL (3 feature) 64.3 87.6
50 Boosted MKL (3 feature) 63.6 87.1
100 Boosted MKL (3 feature) 64.9 87.4
200 Boosted MKL (3 feature) 63.9 86.1

the highest accuracy is 87.6% and seen when 20 trials are performed.

After all, the accuracy matrices and accuracy tables show that multiple kernel learning
methods are superior to traditional single and multi-channel kernel approaches on
both datasets. SimpleMKL and Boosted MKL methods give similar results. Whereas
accuracy values of Boosted MKL are higher than rest on JPL-Interaction dataset, they
give the same accuracy values on DogCentric activity dataset. Boosted MKL is the
most successful approach for combining all features since it’s highest accuracy value
is acquired with 3 features. On the other hand, SimpleMKL gives similar results with 2
or 3 features. It seems most accurate performances are acquired with multiple features
rather than single feature.

Table 5.8 shows the weights of kernel and feature combinations which are employed
in Boosted MKL approach on DogCentric dataset. When DC-Int kernel is used, the
highest weights are obtained. When HOF descriptor is used with DC-Int kernel, the
weight becomes 0.19. On the other hand the weight of three descriptors with DC-Int
kernel is 0.21. The weight of classifier with three descriptor is similar to classification
accuracies of the multi-channel kernel with three descriptor approach since the best
accuracies are obtained with combined three descriptor set in multi-channel kernel. The
weight of individual HOF descriptor is the second highest value among all descriptor
weights with DC-Int kernel. However, when HOF descriptor is used in DC-Int single

Table 5.8: Weight of each feature and kernel combination on DogCentric dataset with
Boosted MKL

Kernel HOF Log-C Cuboid HOF, Cuboid HOF, Log-C, Cuboid Total Weight
Gaussian - 0.05 0.04 0.1 0.08 0.27

H-Int 0.03 0.04 - 0.05 0.07 0.19

DC-Int 0.19 0.09 0.05 - 0.21 0.54

Total Weight 0.22 0.18 0.09 0.15 0.36
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Table 5.9: Weight Of each feature and kernel combination on JPL dataset with Boosted
MKL

Kernel HOF Log-C Cuboid HOF, Cuboid HOF, Log-C, Cuboid Total Weight
JPL-Int - 0.03 0.02 0.1 0.04 0.19

Gaussian - 0.01 0.01 0.05 0.02 0.09

H-Int - - - 0.01 0.06 0.07

DC-Int 0.05 0.22 0.03 0.25 0.1 0.65

Total Weight 0.05 0.26 0.06 0.41 0.22

kernel, it does not give high classification accuracy. When features are combined with
H-Int kernel, their weights are lower than other two kernels although the classification
accuracies of H-Int kernel are greater than Gaussian kernel. However, the weights of
classifiers with H-Int kernel are lower than weights of other classifiers with Gaussian
kernel.

There are weights of classifiers which are described as feature and kernel combinations
in this study in the Table 5.9 on JPL dataset.

When two descriptors are combined using DC-Int kernel, the highest weight is assigned
to them among all descriptor and kernel combinations. On the other hand, the weight
of three descriptors set with DC-Int kernel is greater than two descriptors combination
with DC-Int kernel. However, two descriptors are combined with multi-channel kernel,
the accuracy is lower than the accuracy of three descriptor set with multi-channel
kernel. Log-C descriptor gives 84.2% when it is employed individually so it gives
better results than other individual descriptors. Therefore, the weight of Log-C with
DC-Int kernel is high. When H-Int kernel is employed with single or multi-channel
kernel approach, its classification accuracies are lower than other multi-channel kernel
approaches. Hence, multiple descriptors with H-Int kernel are assigned lower weights
than other descriptor combinations. If HOF and Cuboid descriptors are combined
with JPL-Int kernel then they are assigned high weight (0.1) and their classification
accuracy are better than others.

5.6.4 Computational Evaluation

In this subsection, training time of multiple kernel learning and boosted multiple
kernel learning approaches are analyzed and compared. As a multiple kernel learning
method, SimpleMKL tooblox is adopted. Number of kernels used are the same for
both approaches. Parameters of all kernels used in both methods are also the same.

Table 5.10: Training time evaluation results on DogCentric dataset

Training time (second)
Approaches 36 kernels 72 kernels 100 kernels
SimpleMKL 549.8 940.9 1462.7

Boosted Multiple Kernel Learning 1200 2199.1 3294.9
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Number of kernels are 36, 72 and 100 respectively. Also, number of iteration is 10 for
both methods. Furthermore, varying number of trials (10, 50, 100) is used for boosted
multiple kernel learning method with constant kernel number 36. Training time
analysis experiments are conducted only on DogCentric activity dataset. According to
the results on Table 5.10, Boosted MKL approach is slower than SimpleMKL for all
kernel numbers. When 36 kernels are employed, SimpleMKL is more than 2 times
faster than Boosted MKL. This trend is similar for also experiments with 72 and 100
kernels. Table 5.11 shows that when number of trials increase, the training time of
Boosted MKL also increases. When the number of trial is 10, Boosted MKL lasts 15
times shorter than the number of trial is 100. According to these experiments, Boosted
MKL shows worse performance than SimpleMKL method in terms of training time.

Table 5.11: Trainin time evaluation results of Boosted MKL on DogCentric dataset

Number of trials Training Time (second)
10 1200
50 8949

100 17550
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CHAPTER 6

CONCLUSION

In this thesis, first-person activity recognition is performed with multiple kernels
rather than traditional single kernel SVM. Features, which are employed in this study,
represent different motion types and image characteristics. Instead of using a single
type of information, fusing different features and different types of kernels provide
more robust and accurate classification performance. Multiple kernel learning perform
this fusing operation and allows employing best discriminatory features and kernels
together. Also, different weights are assigned to these combinations based on their
performance.

Three different approaches namely multi-channel kernels, multiple kernel learning
(MKL) and Boosted MKL have been investigated.

Multi-channel kernels allow fusing different features which represent different types
of motion but assigns equal weights to the features. This way of fusing ignores the
relative importance of the features. If global motion is dominant in a video, assigning
different weights to global and local features is more reasonable than assigning equal
weight to both features. However, multi-channel kernel approach assigns equal weights
to these features.

As opposed to multi-channel kernels, multiple kernel learning method assigns different
weights to the kernels based on their relative importance. If global motion is dominant
in a video, then MKL assigns more weight to a global motion feature than a local
motion feature. In this thesis SimpleMKL framework is used in order to apply MKL to
the first-person videos. MKL selects the most appropriate kernels and features in a data-
driven approach during training. Adaptive structure of MKL approach ensures fusing
different features and kernels in an optimized way rather than using pre-determined
rules.

Boosted MKL integrates AdaBoost approach with MKL and selection of the features
and kernels are achieved through AdaBoost trials. After all trials, a final classifier is
composed of weak classifiers of each trial. Final classifier makes its decision based on
a voting mechanism.

According to our experiments on Dogcentric activity and JPL-Interaction datasets,
MKL outperform other methods in the literature in terms of classification accuracy.
MKL approaches achieve state-of-the-art recognition accuracy values as it can integrate
different types of information from videos compared to the traditional methods. In
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order to combine multiple features, MKL provides a robust and flexible framework.
Therefore, other types of information can be integrated easily using the framework in
the future. On the other hand, accuracy values of SimpleMKL are slightly behind to
MKL approaches’ whereas it shows better performance than single and multi-channel
kernel methods.

MKL methods tries several kernel and feature combinations iteratively. In the future,
the computational cost of this method can be improved using parallel programming
techniques. In addition, instead of using pre-determined set of kernels, the approach
can be updated in order to select the kernel and feature combinations heuristically.
Also, different source of information such as audio features and virtual inertial data
can be used.
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TEZİN TÜRÜ.............: Yuksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek
şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Ortadoğu Teknik Üniversitesi kullanıcılarının
erişimine açılsın. (Bu seçenekle tezinizin fotokopisi yada elektronik kopyası
Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)
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