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SEMI-AUTOMATIC SEGMENTATION OF MITOCHONDRIA ON 
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AND SURFACE DRAGGING METHODS 
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Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu 

Co-Supervisor: Asst. Prof.  Dr. Reza Zare Hassanpour 

 

 

September 2017, 66 pages 

 

Mitochondria are cytoplasmic organelles of the cell, which have significant role in the 

variety of cellular metabolic functions. Mitochondria act as the power plants of the cell, 

and are surrounded by two membranes. Significant morphological alterations are often 

due to changes in mitochondrial functions. A powerful technique in order to study the 

three-dimensional (3D) structure of mitochondria and its alterations in disease states is 

Electron microscope tomography. Due to the presence of various subcellular structures 

and imaging artifacts, the detection of mitochondria in electron microscopy images is a 

challenging problem. Another challenge is that each image typically contains more than 

one mitochondrion. Hand segmentation of mitochondria is tedious and time consuming 

and also special knowledge about the mitochondria is needed. Fully automatic 

segmentation methods lead to over segmentation and mitochondria are not segmented 

properly. Therefore, semi-automatic segmentation methods with minimum manual effort 

are required to edit the results of fully automatic segmentation methods. In this thesis two 

editing tools were implemented by applying spline surface dragging and interactive live-

wire segmentation tools. These editing tools were applied separately on the results of fully 

automatic segmentation. 3D extension of these tools were also studied and tested. Dice 

coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This 

metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean 

square symmetric surface distance values of 2D and 3D for surface dragging was 

measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. 

Keywords: Medical Image Segmentation, Semi-automatic methods, Transmission 

Electron Microscopy, Surface Dragging using Splines, Live-Wire 
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Mitokondriler, hücresel metabolik işlevlerin çeşitliliğinde önemli rol oynayan hücrenin 

stoplazmik organelleridir. Mitokondri, hücrenin santralleri gibi davranır ve iki zar ile 

çevrilidir. Mitokondrinin fonksiyonlardaki değişiklikler genellikle önemli şekilsel 

değişikliklerle birlikte görülür. Elektron mikroskop tomografisi, mitokondrinin üç boyutlu 

(3B) yapısını ve hastalık durumlarındaki değişiklikleri incelemek için güçlü bir tekniktir. 

Elektron mikroskop görüntülerinde mitokondrinin saptanması,hücre içi yapılarının ve 

olguların görüntülenmesinin çeşitliliğinden dolayı zorlayıcıdır. Bir diğer zorluk, her 

görüntünün tipik olarak birden fazla mitokondri içermesidir. Mitokondrinin elle 

bölütlenmesi yorucudur, zaman alır ve mitokondriye ilişkin özel bilgiye ihtiyaç vardır. 

Tam otomatik yöntemler aşırı segmentasyona yol açar ve mitokondriler doğru bir şekilde 

bölünmez. Bu nedenle, tam otomatik bölümleme yöntemlerinin sonuçlarını düzenlemek 

için en az kullanıcı etkileşimiyle yarı otomatik bölümleme yöntemleri gereklidir. Bu tez, 

iki yüzey düzenleme aracı, spline yüzey sürükleme ve etkileşimli canli tel araçları 

uygulanarak oluşturulmuştur. Bu düzenleme araçları ayrı-ayrı tam otomatik 

segmentasyon yöntemin sonuçlarına uygulanmıştır. Bu araçların 3B uzantısı da 

incelenmiş ve test edilmiştir. 2B ve 3B Dice katsayısı yüzey surukleme için 0.93 ve 0.92 

olarak ve canli tel yöntemi için 0.94 ve 0.91 olarak ölçüldü. 2B ve 3B ortalama yüzey 

mesafe değerleri yüzey surukleme yöntemi için 0.69, 0.93 ve canlı-tel yöntemi için 

sırasıyla 0.60 ve 2.11 dır. 

 Anahtar Sözcükler: Tıbbi Görüntü Segmentasyonu, Yarı-Otomatik Yöntemler, İletimli 

Elektron Mikroskobu, Yüzey Sürükleme, Canlı-Tel  
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CHAPTER 1 

CHAPTER 

INTRODUCTION 

 

In this study it was aimed to develop and implement some interactive segmentation 

methods in order to correct automatic segmentation results of mitochondrial regions of 

electron tomography images. The introduction section contains notable morphological 

properties of mitochondria and highlights imaging techniques which are used to visualize 

subcellular structures in detail. In the subsequent sections, the motivating factors, aims and 

scope of this study are described. A comprehensive review of the studies published in the 

literature is also presented. 

 

1.1. Mitochondria 

 

The term 'mitochondrion' is derived from a Greek word 'mitos' which means 

'thread' and 'chondrion' which means 'granule' (1). Mitochondrion (plural mitochondria) is 

well-defined cytoplasmic organelle of the cell which takes part in a variety of cellular 

metabolic functions (2). The required energy for survival of the cell is provided by 

mitochondria. Since all the necessary biological energy of the cell are supplied by 

mitochondria, and this energy is obtained by oxidizing the substrates of the Krebs cycle, 

these organelles are important. Most of the energy of the cell in the form of adenosine 

triphosphate (ATP) is generated by these organelles and it is used a source of chemical 

energy (2). The mitochondria mentioned to as the 'power houses' of the cell. Almost all of 

the eukaryotic cells have mitochondria, however they are lost in the later stages of 

development of cell like in the red blood cells or in elements of phloem sieve tube. In other 

words, the mitochondria number per cell varies completely; for instance, in humans, there 

is not any mitochondria in erythrocytes (red blood cells) , whereas there may be hundreds 

or even thousands of mitochondria in liver cells and muscle cells (3). In diameter the 

https://global.britannica.com/science/red-blood-cell
https://global.britannica.com/science/liver
https://global.britannica.com/science/muscle
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mitochondrion ranges from 0.5 to 1.0 micrometer. Mitochondrial disorder and cardiac 

dysfunction can effect human health and they also have significant role in the aging process.  

 

 

 
Figure 1: The generalized structure of a cell (2) 

 

 
Figure 2: Mitochondrion structural features (2) 

Electron microscope tomography techniques can be used to visualize the mitochondria in 

order to study the relation between function and physical structure of it. 

In figure (1), the generalized structure of a cell is shown and structural features of 

mitochondria are shown in figure (2). 
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1.2.Imaging Techniques 

Tomography is a method which is used to reconstruct the interior of an object from its 

projections. (See figure (3)). In literature, “tomography” means the visualizing the slices 

(3).  

 

For any technique that makes use of the transmission electron microscope in order to collect 

projections of an object the term electron tomography is used. That is titles in various 

directions and uses these projections to reinstate the object in its totality. Three-dimensional 

reconstructions are provided by Electron microscope tomography with new insight into 

their structure and function(6). There are several electron microscopy techniques in order 

to obtain EMT images. Two common methods which are used to obtain electron 

microscopy are: Transmission electron microscopy (TEM) and Scanning Electron 

Microscopy (SEM). In the following subsections these techniques are described briefly. 

 

 

 

Figure 3: Basic principle of tomography (3) 

 

1.2.1. Transmission Electron Microscopy (TEM) 

The transmission electron microscope is a form of electron microscope using an electron 

gun to produce a voltage electron to illuminate the specimen and creates an image (7). 

Interacting the electrons which transmitted through the specimen, the image can be formed 

an image device, such as a fluorescent screen is used in order to magnify and focus on it. 

Since the electrons have small wavelength, TEMs provide images at a significantly 

higher resolution than light microscopes. At littler amplifications TEM images 

differentiate relies on upon the ingestion of electrons in the material, contingent upon the 

https://en.wikipedia.org/wiki/Transmission_electron_microscope
https://en.wikipedia.org/wiki/Electron_gun
https://en.wikipedia.org/wiki/Electron_gun
https://en.wikipedia.org/wiki/Fluorescent
https://en.wikipedia.org/wiki/Optical_resolution
https://en.wikipedia.org/wiki/Optical_microscope
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thickness and synthesis of the material. At higher amplifications complex wave 

associations offset the force of the picture, contingent upon the master examination of 

observed images. 

 

1.2.2. Scanning Electron Microscope  

A scanning electron microscope is a type of electron microscope which uses a focused 

beam of electrons to produce images of an object by scanning it (8). The electrons connect 

with the atoms in the object, and create different signs that contain data about the 

specimen's surface geology and structure. Using a general raster scan pattern, the electron 

beam is scanned, and the detected signal is combined with the beam's position to produce 

an image. The resolution better than 1 nanometer can be achieved by SEM. Specimens can 

be seen in conditions such as high vacuum, low vacuum, wet conditions (in environmental 

SEM), and at an extensive variety of cryogenic or raised temperatures. To obtain 2D 

images, electron beams are reflected onto different locations in order to scan the whole 

surface. Utilizing a special type of SEM technique which is called Serial Block-Face 

Scanning Electron Microscopy (SBFSEM) acquisition of 3D volume can be achieved (9). 

In SBFSEM technique, cutting ultra-thin section from the surface using a diamond knife 

and imaging by SEM a stack of 2D images are obtained (See Figure 4). And a 3D 

volumetric data is formed by a series of these 2D images which associated to a single slice 

(See Figure 5), meanwhile, there is no limitation for the number of slices and specimen 

thickness. Typical image size of 3D datasets provided by this technique is 5 – 10 nm in x- 

and y-axes and 20 –80 nm in z-axis (10)(11). Comparing with TEM tomography, the slice 

thickness can be much higher than the lateral resolution. 

 

Figure 4: Scanning and cutting phases in Serial Block-Face Scanning Electron Microscopy (12) 

 

 

https://en.wikipedia.org/wiki/Raster_scan
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Figure 5: 3D volumetric images consist of several 2D images (slices)(16). 

 

1.3. Motivation 

It is progressively ending up noticeably obvious that mitochondria have critical part in 

neural capacity. Late reviews demonstrate that mitochondrial morphology is urgent to cell 

physiology and synaptic capacity and a connection between mitochondrial surrenders and 

neuro-degenerative illnesses is unequivocally suspected (13). The intracellular 

components’ morphology is of great importance for neuroscientists. Characterizing the 

distribution and structure of mitochondria is useful in itself, to identify cellular states such 

as cancer due to the geometrical properties of mitochondria and also abnormalities in 

mitochondria morphology can be seen in Parkinson disease. High-resolution microscopy 

techniques has been used to generate large volumes of data with enough details for 

understanding the complex structure of mitochondria (14),(15). An accurate mitochondria 

detector would allow to clearly distinguish mitochondria membranes from other cell 

membranes and also will improve overall cell segmentation in the future. 

Since manual segmentation in medical applications is very slow, tedious, time and energy 

consuming, and also needs training for the segmentation and having subjective results and, 

in some cases fully automatic methods fail and cause incorrect results because of 

restrictions imposed by image acquisition, pathology and biological variation in medical 

images and fully automatic segmentation cannot deal with artifacts on its own. All of these 

issues lead the semi- automatic method to be the preferred method of all. On the other hand, 

applying semi-automatic segmentation methods do not guarantee the result of the 

segmentation and in order to improve and correct the result of segmentation methods, it is 

needed to use editing tools to make better them. In this study two editing tools are 

developed to apply on the results of the automatic segmentation methods and refine them. 
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1.4. Problem Statement 

Since there are often close to hundred slices per mitochondria, hand segmentation is tedious 

and time consuming and also needs expert users to do it hence, it can lead to many mistakes 

on the results of the segmentation. On the other hand, using fully automatic segmentation 

leads to segmentation errors. 

Çoçelli (17) and Alamdari (5) have applied semi-automatic segmentation method on the 

mitochondria since in these methods, the user only interacted in the first steps of 

segmentation which was done on the initialization part. After the initialization, the user 

could not interfere in the segmentation process and consequently, could not direct the 

process to the right segmentation while it created wrong and inaccurate results because of 

the noise in the image texture.  

This study aimed to create 3D editing and correcting tools in order to make better the results 

of the mentioned methods. In the most semi-automatic segmentation methods such as 

above, the user can only interfere at the first steps of segmentation while some editing tools 

are needed to modify and refine the result of segmentation methods. Merge and split tools 

provided by Çoçelli were used to split the two mitochondria which were considered as a 

single mitochondrion and also merging the parts of a mitochondrion which were segmented 

as two different mitochondria but these tools could not be used to modify the part of the 

segmented boundary and again tools were needed to modify, edit, and make better these 

results and minimize the segmentation error. In this study, two 3D editing tools are 

provided to overcome this difficulty and make user able to edit the segmentation results by 

modifying a part of the boundary and change it until it satisfies the user. Alamdari has 

implemented three semi-automatic segmentation methods using active contour, Kalman 

filter with the aid of active contour, and Kalman filter with active contours and optical flow. 

In these methods, the first slice of mitochondrion was initialized by user to form the contour 

of snake and in the next slices, these initial points were used to calculate the membrane of 

mitochondria using the automatic algorithms specified. In some of the datasets, there are 

mitochondrion which split into two mitochondria or merge after some slices. In these 

methods, by specifying the merging or splitting slices, the opportunity was given to the 

user to correct the segmentation by specifying the splitting/merging points of mitochondria. 

In other words, by determining the splitting or merging slice, when the splitting slice 

number is executing, the program asks the user to specify the splitting/merging points. 

 

1.5. Aims and Scope 

In this thesis, it is aimed to develop a few user interactive editing tools in order to modify 

and refine the results of automatic and semi-automatic segmentation of mitochondria from 

TEM tomography images which were provided by NCMIR from their Cell-Centered 
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Database (CCDB)  (18–20) in which each data set has hundreds of slices and each of slices 

consists of approximately ten mitochondria. Surface dragging and live-wire segmentation 

tools were implemented to provide these editing tools in two dimension and three 

dimensions. Applying these editing tools in 2D and expanding its effect on the all slices 

made it possible to apply these tools on 3D, too. Using surface dragging, helped us to 

modify the boundary without depending on the texture structure of the images and caused 

to eliminate the effect of the noise factor in the results while live-wire tool, focuses on the 

texture characteristics of the image and it was affected badly by noise and edge like details 

in the images. 

 

 

1.6. Literature Review 

Image segmentation is actually extracting the object of interest from the background image. 

The goal of segmentation is to simplify and also change the representation of an image into 

segments that are more meaningful and easier to analyze (21). In the following section a 

brief review for automatic and semi-automatic segmentation methods is provided. 

1.6.1 Automatic Segmentation Methods 

Since electron microscopy (EM) imaging techniques generates nano-scale images, the 

manual analyzing is infeasible and automated image analysis is required (22). Furthermore, 

completely programmed strategies are testing in light of the fact that various intracellular 

parts have sporadic shapes and have comparable neighborhood appearances. Texture and 

physical topologies of intracellular components varies a lot, and applying general image 

segmentation methods which have been proposed for natural image datasets on EM images 

leads to poor results (23). Therefore, segmentation methods for segmenting specific 

structures such as mitochondria must be optimized for EM images.  

SeyedHosseini et al (14) proposed a method in order to segment EM images which is 

composed of four steps as follows: curve fitting, feature extraction, detection and pixel 

labeling. In the proposed method. Since the algebraic curves use all the information in a 

window and also are robust against noise and texture, main idea in this method was to use 

the power of them to extract both shape and textural features from input images. Using 

algebraic curves leads to use regional features which are more informative compared to 

pixel-wise features. The removed elements were utilized to prepare arbitrary woodland 

which recognizes mitochondria in information pictures. At long last a programmed pixel 

marking methodology is connected by finding associated parts of focus pixel in the patches 

that the classifier arranges them as positive examples. Testing the performance of current 

method on two different sets of EM images: mouse neutrophil and Drosophila ventral nerve 

cord (VNC) shows that this method is robust against the texture and noise in the EM images 

and also performs reasonably well even for low quality datasets like Drosophila VNC 

dataset. 
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Richard J Giuly et al (24) developed a multistep automatic segmentation method to segment 

the mitochondria from its background in serial block face SBFSEM data by using texture 

and shape information to identify mitochondria in a complex background which is consist 

of three steps. They demonstrated that texture based methods for mitochondria 

segmentation can be done with multiple steps that form an image processing pipeline. In 

their method (Cytoseg), firstly random forest classifier is applied directly to pixel values of 

2D patches to recognize texture, and it had good performance as a patch classifier. 

Secondly, the detected contours in the probability map from step 1 are refined by using a 

contour pair classifier and finally a level set procedure is operated on the probability map 

from step 1 and seeded with salient contour regions from step 2 to smooth the final results. 

Applying this Cytoseg method in three various types of mouse brain tissues: cerebellum, 

dentate gyrus, and the CA3 division of hippocampus, shows that the patch classifier 

identifies the mitochondria texture but it creates many false positive pixels and by filtering 

them with a second classification step improves the overall accuracy. The level set 

operation which is consequently seeded with yield from past strides, smooth’s the 

outcomes. Absolutely, the outcomes demonstrate that the utilization of form combine 

characterization and level set operations enhance division exactness contrasting and the 

aftereffects of applying patch arrangement alone. 

Exactness in division of EM pictures is an imperative issue for some neuro imaging related 

undertakings because of the commotion and variety inalienable in tissue tests and in the 

EM science and image acquisition process.  And on the other hand, using supervised 

methods requires large sets of training data which are often difficult to obtain in practice, 

Navlakha et al proposed an unsupervised algorithm to generate boundary-preserving super 

pixels by combining a salient watershed algorithm with robust region merging (25). In the 

proposed method, an unsupervised segmentation algorithm is designed specially to be 

robust to the types of variations and noise expected in EM images of brain tissue. At the 

first step, a novel watershed variant method using Canny (26) and probabilistic boundary 

(27) edges is developed to produce a coarse over-segmentation while strongly preserving 

edges in the image. And then a new region merging algorithm to merge the adjacent regions 

based on measure of similarity derived from intensity and texture features, is designed to 

reduce the number of super pixels. The proposed strategy on a benchmark datasets of loud 

EM images, beat two condition of-workmanship techniques utilizing two standard 

measures of over-and under-division blunder: Although this strategy has extra 

computational many-sided quality, the accuracy and time spent in EM images can be 

considered as an advantages of this method. 

Seyedhosseini et al presented a novel strategy utilizing multi-scale relevant data with 

Random-like elements (RLF) to take in a progression of discriminative models keeping in 

mind the end goal to recognize the unbiased films in electron microscopy images (22). In 

this technique, the principle thought is to take preferences of setting images as various 

scales rather than a solitary scale which prompts furnishing a classifier with a wealthier 

arrangement of data. RLF is altered with a specific end goal to concentrate more data from 

various structures of the info images. Contrasting and a solitary scale display, the utilization 

of a multi-scale portrayal of the setting images gives the ensuing classifiers access to a 
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bigger relevant zone in a viable way. Applying this general technique to layer recognition 

in EM images, the outcomes shows that the proposed strategy outflanks condition of-

workmanship calculations while keeping up about indistinguishable computational 

unpredictability. 

A fully automatic modular hierarchical approach for neuron spatial structure segmentation 

and reconstruction using EM image is introduced by Ting Liu et al (28). They proposed a 

hierarchical 2D segmentation method with the merge tree structure and supervised 

classification that uses membrane probability maps as input then a supervised linking 

method is used to acquire inter-section reconstruction of neurons and also a semi-automatic 

2D segmentation method, which takes advantages of the automatic intermediate results and 

improves 2D segmentation with minimized user interaction, is designed. Comparing the 

use of merge tree with the use of general graph structure, it is shown that the merge tree 

structure presents the most plausible segmentation hypotheses in more efficient way. 

According to the experimental results, the proposed automatic merge tree approach 

improves the 2D neuron segmentation accuracy substantially over thresholding the 

membrane probability maps at the best thresholds. 

Cory Jones et.al exhibited an incomplete differential condition (29) with a novel 

development term to enhance the consequences of a managed learning calculation and 

furthermore acquainted another technique with speak to the subsequent pictures that takes 

into consideration a more powerful threshold t additionally enhance the outcome (30). 

Using these two process, the medium sized gap s in the cell membrane detection can be 

closed and also the error can be rand by as much as 9% over the initial supervised 

segmentation. These two processes are applied on two different data sets where the fist data 

set is a stack of 60 images from a serial section Transmission Electron Microscopy (ssTEM) 

data set of Drosophila first instar ventral nerve cord (VNC) and the second data set used 

for these experiments was a stack of 70 images of mouse neuropil. The test results 

demonstrate that when the holes are too vast, for example, in mouse neuropil dataset or 

there are not very many crevices to close, with the DNN likelihood maps on the Drosophila 

dataset, the change is not articulated. 

Tasel (12) introduced a study that was based on curve fitting in order to extract 

mitochondria peripheral membrane from the back ground image. This algorithm started 

with the preprocessing step consist of applying resampling, smoothing and auto-contrast 

adjustment on the input tomography images. Then membrane strength was evaluated by a 

Hessian-based ridge detector. In order to generate energy maps, the summation of local 

energy within two windows with different size was calculated. The parabolic arc fitting 

operation in which the energy maps were used to determine the segments of mitochondrial 

peripheral membranes and cristae. These curves were utilized in a snake algorithm which 

extracts candidate segmentation regions. And at last, the results were fined by a validator 

function.  
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1.6.2. Semi-Automatic Segmentation Methods 

Olabarriaga et al (30) have discussed existing interactive methods with the respect to the 

following aspects: the type of information provided by the user, how this information 

affects the computational part, and the purpose of interaction in the medical images 

segmentation process. The impact of each strategy on the accuracy, repeatability and 

interaction efficiency was analyzed. A sketch of a general interactive segmentation method 

is shown in figure (6). The main components are the user, the computational part, the 

interactive part, and the user interface. The capability of interactive methods was analyzed 

based on the type of user input, the consequence of user input, and the purpose of 

interaction and the role played by the user (31).  

 

Figure 6: Main components of an interactive segmentation method (30). 

 

The computational part corresponds to one or more part of program which is capable to 

generate a delineation of the object of interest given by some parameters. The interactive 

part is actually responsible for the intervention between the user and the computational 

part. This part translates the outcome produced by the computational part into visual 

feedback to the user and the data input by the user into parameters for the program. While 

the output and input devices controlled by the user interface do the actual communication 

between the computer and the user. The visual information displayed on the screen is 

analyzed by the user and the user reacts, providing feedback for the computation. 

Reviewing several semi-automatic segmentation methods, three main types of user 

interaction during the interactive segmentation process were identified as: setting parameter 

values in a continuous or discrete interval; pictorial input directly on the image grid, and 

choosing from pre-defined options in a menu. Setting parameters may be simple to 

implement, but it needs an insight of the user in the function of the computational part of 

the method. This drawback can be minimized by training the human operator, or by 

immediately visualizing the effect of interaction on the screen. Although pictorial input is 

simple for the user, it is typically time consuming. Menu-driven input is the most efficient 

user interaction type. It limits the choices, and eliminates the need for hand-on 

manipulation of parameter values or the image on the screen. In menu-driven, the variation 

in the input data is reduced by constraining the degrees of freedom, therefore leads to more 

repeatable results. For all user interaction types, the program must provide visual feedback 
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to the user in tow moments: before the interaction to help the user plan the next action; and 

after the interaction to inform the user about the impact of the interactions. 

Considering semi-automatic segmentation methods, five roles were identified for the user: 

accepting, or rejecting the delineation generated by computational part, correcting the 

outcome of the computational part, initializing or steering parameters for the computational 

part, selecting among the results generated automatically, and defining targets for the 

generation of a computational method. 

The role of editing the result is considered to guarantee the accuracy even when the 

computational part cannot generate the correct delineation. The purpose of parameter 

initialization is to bootstrap the computational part in an efficient way. The purpose of 

steering is to keep the user in control of the entire segmentation process such that manual 

editing at the end is not necessary. Selecting among the results is considered to let the 

computer find a number of possible delineations and let the user decide on the most 

reasonable ones. 

In their study, interactive segmentation methods were discussed based on accuracy, 

repeatability, and efficiency, too. Accuracy indicates the degree that to which the 

delineation of the object correspond to the truth. In order to get subjective evaluation of the 

accuracy, human experts rank the result generated by the computational method when 

operated by others. Computing objective evaluation, the results generated by the 

segmentation method is compared against the ground truth using different distance 

measures (30). Actually, a method is potentially accurate that provides full control to the 

user to generate any desired result. Another measurement is repeatability which evaluates 

to what extent applying the same method, we can obtain the same results. In order to obtain 

this metric, one human operator segments the same image and object several times and the 

results are compared. Variability in the results can be due to two factors: difference in the 

operation of the segmentation tool for example user clicks the mouse at different positions 

on the image, or difference in judgment which means the user considers the delineation to 

be located at different positions each time. Totally, a method generates which takes 

precautions to minimize the effect of the first type of variation. 

The total elapsed time could be used as an indicator of the methods overall efficiency. For 

the computational part, the efficiency is the time needed by the computer to generate the 

result. For the interactive part, efficiency is inversely, proportional to the effort required 

from the user to accomplish the segmentation task. This effort is the amount and nature of 

user interventions. The amount of interaction is often estimated in terms of the numbers of 

mouse click. Due to the large number of components to manipulate, the selection and 

combination of primitives can be efficient. The purpose of the role of building the 

computational method is to let the user establish targets that guide the construction of an 

appropriate combination of operations to accomplish a given task.  

In order to design an efficient interactive segmentation methods, the following strategies 

seem promising: Designing an integrated process for interaction and computation; using 
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pictorial input to the computational process; minimizing the amount of interaction by 

presenting options for user selection; involving the user in the initialization of the 

segmentation process in order to provide information can lead the method to the desired 

segmentation result more quickly; visualizing the working of the computational part to 

enable an effective user’s response; keeping the user in the control during the whole process 

to generate accurate results; emphasizing computation after each interaction to generate 

repeatable results; adding intelligent behavior to evaluate the abstraction level of 

interaction; and adding intelligence to learn from interaction and reduce the need future 

interventions. 

Paul A.Yushkevich et al (32) introduced an open source medical image processing 

application which is called ITK_SNAP and gives a mix of manual and semi-automatic tools 

for separating structures in 3D images information of various modalities and from various 

anatomical areas  In this application, two well-known 3D active contour segmentation 

methods: Geodesic Active contours by Caselles et al (1993, 1997) and region competition 

by Zhu yuille (1996) were implemented. The user interface consists of three orthogonal 

views of a volumetric image and also a 3D view is provided to render the boundaries of 

segmented structures in visualization Toolkit (VTK) (Lorensen and cline, 1987; Schroeder 

et al., 1996). By providing live feedback and decreasing the number of unrelated features 

it is tried to maximize user efficiency and to provide a smooth learning curve. Using this 

application in order to validation in the context of caudate nucleus and lateral ventricle 

segmentation in child MRI demonstrates excellent reliability and high efficiency of 3D 

SNAP segmentation. 

Malmberg et al (33) developed a tool to use Smart Paint in interactive segmentation 

methods. Since segmenting noisy images using brush tool alone leads to produce 

segmentation results with jagged boundaries, a smoothing operation which can be applied 

to the entire segmentation is provided as a preprocessing step. At the segmentation step the 

user adds or removes paint to segment the desired part by pushing the left mouse button or 

mouse right button respectively. Scrolling to the other slices is provided by using the mouse 

wheel. The paint layer can be turned on/off by pushing space bar. The brush size can be 

changed by ctrl and mouse wheel. If desired, the resulting boundary can optionally be 

smoothed by a 3*3 operator by pushing ctrl and A.  

In order to evaluate the segmentation tool, it was used to segment the prostate image. As a 

quantitative measure of difference between the segmentation result and the ground truth 

available, Dice coefficient was used.  Considering the required time using smart paint for 

segmentation, the minimum time was 2 min, 30 seconds, and the maximum time was 8 

minutes and the accuracy of the results depends on the knowledge of the user about the 

anatomy of the prostate. Using this tool on completely different applications show that the 

smart paint is very effective tool for segmenting objects in 3D volume image even if only 

2D display and interaction tools are available. 

Takumi higaki et al developed a successful method for semi-automatic detection of plant 

organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks 
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in transmission electron microscope images using their original image recognition 

framework clustering Aided Rapid Training Agent(CARTA) (34), combined with 

procedures to highlight and enlarge regions of interest on the image (35). 

 In this method by analyzing a collection of similar subdivided regions of TEM images the 

organelles could be detected semi-automatically. Firstly, square regions of interest, 

designated as ‘windows’ which are randomly located covering the entire TEM image. 

Collecting the similar windows are done as it is done in CARTA Framework. Then cluster 

analyses of the windows in the self-organizing map which refers to as the ‘initial tiled map’ 

and serves as the interface for users to manually search for target organelles, were 

performed based on the randomly selected features. User assigns the clusters and then the 

target window nodes are selected. Then the target in the TEM image is detected. This 

method was applied on different datasets of TEM images of Arabidopsis thaliana root tip 

tissues containing amyloplasts, A.thaliana embryo containing chloroplast, A.thaliana 

cotyledon tissue. The results showed that the proposed strategy was flexible and very 

precise technique to identify organelles in TEM images. 

Cocelli(17), using curve fitting and active contour methods implemented a semi-automatic 

editing tools in order to edit the results of automatic segmentation methods on transmission 

electron microscopy images. The developed editing tools were splitting, merging, deletion, 

initiation of automatic segmentation algorithm at intended position, selection of low scored 

mitochondria and manual drawing. Splitting tools were used in order to split two 

mitochondria which were wrongly detected as a single mitochondrion by automatic 

segmentation method. The merging tool was used to merge the parts of mitochondrion 

which were detected as two different mitochondria. Deletion tool give the opportunity to 

delete the false detection which were done by automatic segmentation method. Applying 

these editing tools on the results of automatic segmentation method led to rise the Recall 

value from 45% to 70% which shows considerable improvements.  

 

Alamdari(5), purposed  semi-automatic segmentation methods by implementing active 

contour, Kalman filter with aid of active contour, and also, Kalman filter with active 

contours and optical flow. In these methods, user interacts by specifying the initial points 

on the membrane of mitochondria. These initial points are used to calculate the membrane 

of mitochondria in the proceeding slices using above automatic algorithms. Kalman filter 

uses the initial points’ location on the current slice to estimate their location on the next 

slice. In the last method, the velocity information is provided by optical flow. In these 

methods the opportunity is given to the user to correct the segmentation by specifying the 

splitting ad merging points of mitochondria. When the splitting/merging slice number is 

executing, the program asks the user to specify the splitting/merging points. The results of 

these methods were very similar to each other. In the most cases the Dice coefficient 

showed accuracy more than 90% which means that these results were very close to the 

ground truth images. The RMSSSD metric was near to 1 approving that these results were 

almost the same as the ground truth images. 
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CHAPTER 2 

Methods 

 

In this thesis, two modification tools were developed in order to make correction or 

refinements on the boundary in to overcome the abnormalities caused by automatic 

segmentation methods: contour dragging using splines and live-wire interactive tool. 

Earlier a few other semi-automatic segmentation tools were developed for this purpose. 

Cocelli (17) developed semi-automatic merge and split tools to apply the results of 

automatic segmentation methods. Alamdari has developed a semi-automatic segmentation 

method using active contour, Kalman filter, and optical flow to segment the mitochondria. 

In her study, a contour was provided by the user. Then for other slices, the position value 

and velocity values were calculated using active contour and optical flow combined with 

Kalman filter to predict the boundary points on the next slice. Even though they were quite 

successful in order to segment the mitochondria from the background images but in some 

cases, the segmented boundaries were not correct. Additional interactive tools were 

necessary to edit the results of these methods. In this thesis, two editing tools using surface 

dragging using splines and live-wire method are provided to edit the segmentation results 

of these methods. 

2.1.Surface Dragging Using Splines 

In this method, the segmented surface inside the region of interest (ROI) is dragged using 

the multiple cubic B-splines (36).  
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 In this method ROI is determined by a circle and using spline method the curve which 

passes through the center of ROI which is called control point, and the two intersection 

points of existed boundary, and ROI and also the midpoints of the lines between control 

point and intersection points is considered as desired boundary (Figure 7). The user can 

control the new boundary part by moving the mouse cursor as a control point which is 

considered as dragged control point. 

 

Using Bernstein polynomial of degree 3 which is called Bezier cubic, the curve can be 

obtained: 

  𝑧(𝑡) = (1 − 𝑡)3 𝑧0 + 3 (1 − 𝑡)2 𝑡𝑧1 +  3(1 − 𝑡)𝑡2𝑧2 +  𝑡3 𝑧3,   ((1) 

Where t varies between 0 and 1 and Z0, Z3 are the intersection points of existed boundary 

and ROI, and Z1, Z2 are the midpoints of the lines Z0- ZC and Z3- ZC considering ZC as a 

control point.  After determining ROI, when the user moves the mouse scroll, the position 

of the mouse is considered as dragged position of the center of ROI and the curve is 

calculated and updated according to the new values of the Z0, Z1, Z2, ZC, Z2, and Z3. It is 

illustrated in Figure 6. 

Zc: is the dragged position of the center of ROI. 

Z0, Z3: the intersection points of ROI and existed boundary 

Z1: the midpoint of the vector between Zc and Z0 

The user can control and change the desired boundary by moving the mouse scroll and 

whenever he is satisfied by the new boundary, he can fix it by double clicking on the image.  

 

Figure 7: Region of interest and dragged center of it (36). 



17 

 

2.1.1. 3D Surface Dragging Using Splines 

 

In order to apply this method to 3D space, instead of ROI, volume of interest (VOI) is 

considered. In the implementation, VOI is considered so that the center of sphere is a point 

on the center slice and it is obvious that the intersection of this sphere with each slice is a 

circle (figure 8) and the radius of this circle, ‘a’ is calculated using equation 3 and the 

details were shown in figure 9. 

Considering:   

                                           𝑅2 = 𝑎2 + (𝑅 − ℎ)2 (2) 

 

 
                                    𝑎 = √2𝑅ℎ − ℎ2   (3) 

   

Figure 8: The intersection of each slice with the VOI is a circle in 2D with the center in the VOI center 

coordinates and radius a. 
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Figure 9: Calculating the radius of volume of interest in the intersection part with each slice (35). 

 

In 2D, on each slice we have the control point which is fixed(center of ROI) and “a” the 

radiusof ROI which is calculated by Equation(3). Therefore the the bazier curve can be 

calculated.  

Actually, the user has to do the refinment on the center slice in 2D and then by pressing 

“apply_all buttun” , “a” for each slice is calculated and the Z0, Z1, Z2, ZC, Z2, and Z3 can be 

obtained and the new boundary part is updated on each slice which leads to apply 

refinement on mitochondrion in 3D. 

In 3D, instead of spherical VOI, we can use cylindrical VOI. In this way the ROI has the 

same radius in all slices. Using this VOI, because of the changes in the size and the shape 

of the mitochondria through the slices, in some cases there is not intersection between the 

ROI and the mitochondria either. So using cylindrical VOI may or may not improve the 

edits. 

2.2. Interactive Live-Wire Boundary Extraction Tool 

As the second method for editing segmentation method the live-wire method (37) is used. 

In this method boundary segmentation is figured as a graph searching problem. The nodes 

are pixels and the edges are made between a pixel and its eight neighbors. The target is 

finding the optimal path between a start node and a set of objective nodes. Boundary is 

defined as optimal path with minimum cumulative cost path from a start node to a global 

node where the cumulative cost of path is sum of the local costs of nodes on the path and 

is defined as below where fG(q) is the gradien magnitute , fz is zero crossing, and fD is the 

gradient magnitude between pixels p and q: 

 

 𝑙(𝑝, 𝑞) = 𝜔𝐺 . 𝑓𝐺(𝑞) +  𝜔𝑧 . 𝑓𝑧(𝑞) +  𝜔𝐷 . 𝑓𝐷(𝑝, 𝑞) (4) 
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In equation 4, l(p,q) is the local cost for directed link from pixel p to a neighbor pixel q and 

ωG , ωZ , ωD are their weight and are set to 0.43,0.43,0.14 respectively as suggested in (37).  

In order to calculate the zero crossing (38), firstly the image is convolved with a laplacian 

edge operator(39). Laplacian is 2nd spatial derivative of an image which lays emphasis on 

the regions with sharp changes. It can be used to detect the edges. 

For an image with pixel intensity values I(x,y), the Laplacian is calculated as: 

 

 
                                        𝐿(𝑥, 𝑦) =

𝜕2 𝐼

𝜕𝑥2
+  

𝜕2 𝐼

𝜕𝑦2
 (5) 

 

We can calculate this equation using a convolution filter. The input for this filter is single 

gray level image. The output is another gray level image. Three commonly used discrete 

approximations to the laplacian filter are illustrated in figure (10).  

 

Figure 10: Three commonly used Laplacian filters. 

 

Positive Laplacian Operator is a standard mask with negtive element in the center and 

corner elements of zero and negative Laplacian operator is a standard mask, with center 

element of positive and zero elements in all coeners and all other elements in the mask are 

-1. Applying Laplacian kernel on the image leads to reduce the amount of data (pixels) to 

process and maintains the "structural" aspect of the image. The output of convolution of 

the image with a laplacian operator is considered as IL. Therefore zero crossing is applied 

on output to make it binary by letting fZ(I)=0 where IL(q)=0 or has a neighbor with a 

different sign and fZ(q)=1 otherwise.  

In other words in order to calculate the zero crossing which is an important step in the 

Laplacian edge detector for each pixel I(x, y) the following steps are done: 

1. Considering four neighbors, left, right, up and down. 

2. If they all have the same sign as pixel I(x, y), then this pixel is not a zero crossing. 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/spatdom.htm
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3. Else, if pixel I(x, y) has the smallest absolute value compared to its neighbors 

with opposite sign, then it is a zero crossing. 

 

The gradient of an image providing two pieces of information measures how it is 

changing. The magnitude of the gradient determines whether the image is changing 

quickly or not, while the direction of it demonstrates the direction in which the 

image is changing most rapidly (40). In this study, using gradient direction, 

associating a high cost for sharp changes in the boundary direction, it is tried to add 

smoothness constraint to the boundary. Supposing Gx and Gy as image gradients in 

x and y directions respectively (equation 6), D (p) which is a unit vector and normal 

to the gradient direction at point P, is  

                                       D (p)  =  (Gy (p), −Gx (p))    (6) 

where Gx, Gy are the image gradient in the x,y directions respectively. The gradient 

direction is calculated with the following equation: 

 

    
(7) 

and vector dot products are :  

 

 

(8) 

And L(p,q) is the direction of the link between p and q so that the direction of the link is 

made normal. 

 

 

(9) 

In the cases that, the edge or link between two pixels are perpendicuar , or nearly 

perpendicular to the link between them but have similar gradient direction, have a high 

cost. Therefore, the direction feature has low cost in the cases that  the gradient direction 

of the two pixels are like each other and the link between them. 

 

Using first order derivative the gradient magnitude for pixel p with coordinates i,j is  

calculated using equations 10 and 11. The steps to calculate the first order derivative are 

shown in figures (10) and (11). 
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Figure 11: Computing first order derivative- Gx. 

 
𝜕𝐼

𝜕𝑥
(𝑖, 𝑗) =

1

2
((𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗)) + (𝐼(𝑖 + 1, 𝑗 + 1) − 𝐼(𝑖 + 1, 𝑗)))       (10) 

 

 
Figure 12: Computing first order derivative- Gy. 

𝜕𝐼

𝜕𝑦
(𝑖, 𝑗) =

1

2
((𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖, 𝑗)) + (𝐼(𝑖 + 1, 𝑗 + 1) − 𝐼(𝑖, 𝑗 + 1)))    (11) 

The gradient magnitude is scaled and inverted using linear ramp function. The gradient 

feature 𝑓𝐺  is : 

  
𝑓𝐺 = 1 −  

𝐺

max (𝐺)
 

 
(12) 

 

 

In this implememntation the second derevative of the mage was used in rder to calculate 

the gardient magnitude. But Sobel filter could be used in order to get more precise edges. 

2.2.1.  3D Interactive Live -Wire Boundary Extraction Tool 

Using live-wire, after selecting the seed point, when the user moves mouse, the optimal 

path between seed point and current mouse position, which is considered as target pixel, is 

calculated and determined, and by double clicking this path is frozen and considered as a 

part of boundary.  

In order to apply this method on 3D, the user applies this method on 2D and then by 

pressing “apply_all_slices” button, the seed point which was determined by user on the 

first slice, is moved to one of its neighbors with high gradient magnitude on the next slice. 

Since the seed point and the target pixel are determined successfully (mostly), the optimal 

path between them on the current slice is again optomally calculated. 
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In order to find neighbor pixel with the highest gradient magnitude, eight neighbors of seed 

pixel is are checked and then the neighbor with the highest gradient magnitude is 

considered as the seed pixel for that slice.  

2.3.  Proposed Methods 

In this study, it is aimed to create tools in order to modify parts of segmentation boundaries 

using dragged spline method and also interactive live-wire method to modify and refine the 

result of automatic segmentation method. Applying each of mentioned methods separately, 

could help us to modify segmentation results. In the following sections, tool provided by 

surface dragging mode was described in details and the required user interactions in order 

to apply this tool on the mentioned tomography images are discussed. And interactive live-

wire editing tool was completely explained in the subsequent section. In figure (14), the 

user interface for applying surface dragging is shown. 

 

Figure 13: User interface applying surface dragging. 
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2.3.1  Surface Dragging Using Splines  

In order to refine the boundary extracted by automatic methods, spline dragging method is 

used. In order to apply this method, the following steps are needed to apply. (See figure 

13). 

 

 

Figure 14: Flowchart of boundary editing using surface dragging. 

As it is discussed in the next chapter, setting the proper value for the radius of the ROI not 

only affects the result of segmentation but also it affects the number of required steps in 

order to refine the boundary as it is expected. 

In order to apply surface dragging method, user at first step has to set the value of radius of 

ROI which the default value is set to 100. Then using mouse cursor, the ROI is set by 

clicking on the desired part of boundary which should be edited. By double clicking on the 

image the ROI is fixed. After setting ROI, user can drag the center of ROI by clicking on 

the image. The Bezier Cubic (41) which passes through the intersection points of ROI and 

boundary and also the dragged center of ROI. Whenever the user moves the mouse cursor 

the dragged center is changed and consequently the new curve is calculated and updated 

on the image. This part is shown by red color on the figure 15. In the case that the user 

accepts the curve, by double clicking the curve is fixed. In the 2D step by clicking on the 

current slice is part of the boundary is updated and saved.  

To apply this method on 3D, the dragging method should be done on the middle slice. After 

fixing the calculated curve user can press apply on-all-slices button. Then according to the 

following calculations the selected part of existed boundary is updated on the all other 

slices. The ROI which is considered as a circle in 2D, is handled on the other slices in the 

way that this area (ROI) is considered as a sphere (VOI).  

In order to apply sphere (volumetric) ROI in 3D, the center of ROI in all slices is set to the 

same coordinate of center of ROI in the middle slice. The value of radius of ROI on the 

other slices is calculated as equation 3. The total view of all ROIs on the all slices form a 

sphere whose center is the center of ROI on the middle slice and the radius is the radius of 

ROI on the middle slice. It is illustrated in details in figure 9. 
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Figure 15: Steps have done for applying surface dragging on cone dataset a) setting ROI b) moving mouse 

cursor until it is satisfying c) satisfying d) updated boundary (result). 

 

2.3.2.  Interactive Live -Wire Boundary Extraction Tool 

As it mentioned in the method part, live-wire segmentation tool is figured as a graph 

searching issue, and the objective is to find the optimal path between a start node and a set 

of target nodes. The pixels are the nodes of graph. The edges are the path between each 

pixel and its eight neighbors. Boundary finding is considered as finding the 

comprehensively optimal path from start node to objective node so that the optimal path is 

considered as minimum cumulative cost path between them. In this thesis, the optimal path 

between start node and end node is calculated by using Dijkstra algorithm(42). Dijkstra 

algorithm is generally used in graph searching problems in order to find the shortest path 

between two specified nodes. The Dijkstra algorithm is given as below: 

The node at which we are starting is called the initial node. The cost of node Y is the 

distance from the initial node to Y. Dijkstra's algorithm will assign some initial distance 

values and will try to improve them step by step. 

1. Assign to every node a tentative distance value: set it to zero for our initial node and 

to infinity for all other nodes 
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2.  Mark all nodes unvisited. Set the initial node as current node. Create a set of the 

unvisited nodes called the unvisited set consisting of all the nodes.  

3. For the current node, consider all of its unvisited neighbors and calculate their tentative 

distances.  

4. When we are done considering all of the neighbors of the current node, mark the 

current node as visited and remove it from the unvisited set. A visited node will never 

be checked again.  

5. If the destination node has been marked visited (when planning a route between two 

specific nodes) or if the smallest tentative distance among the nodes in the unvisited 

set is infinity (when planning a complete traversal; occurs when there is no connection 

between the initial node and remaining unvisited nodes), then stop. The algorithm has 

finished.  

6. Select the unvisited node that is marked with the smallest tentative distance, and set it 

as the new "current node" then go back to step 3. 

In this thesis, the nodes are the image pixels. The distance between nodes p and q is the 

cost associated to the directed link from pixel p to a neighbor pixel q. This local cost is 

calculated by equation 4. Using Dijkstra algorithm, the optimal path (shortest path) between 

start node and goal node is obtained. 

Since we are trying to edit only an especial part of image, we try to find the optimal path 

in a small part of the image. It is not necessary to calculate the path between start node and 

all other nodes (start pixel and all other pixels) on the image. The image size is very huge 

for this calculation and also calculating the path for all pixels is time consuming. In order 

to apply interactive live-wire segmentation tool, it is needed to set ROI in to avoid 

unnecessary computational time. After setting the ROI, by clicking on the ROI the start 

nod is set. According to the following formula for calculating the local cost function the 

costs are calculated for graph which is formed by the pixels of ROI and the edges between 

each pixel and its eight neighbors.  Then by clicking for the second time the goal node is 

set. Then the minimal cumulative path between the start nodes and goal node is calculated. 

If the user is satisfied with the optimal path, this path can be saved on the current slice. 

In 3D, in order to apply this method, again it is needed to apply this method on the middle 

slice and then by applying the method on the all slices the ROI for each slices is set so that 

the over view of the slices on all slices forms a sphere. In this method in order to initialize 

the algorithm on the other slices the first node which is set by user’s mouse click, is carried 

on the pixel of the next slice and then by considering the 3*3 neighborhood of this pixel, 

the pixel with the highest gradient is considered as start node and also the goal node is 

considered as a pixel with the high gradient magnitude in 3*3 neighborhood. 
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2.4.  Data Set  

In this experiment datasets from CCDB provided by the National Center for Microscopy 

and Image Research (NCMIR) are used (18–20). Eight data sets which demonstrate variety 

in image contrast and mitochondrial membrane and crista patterns were chosen in which 

each dataset approximately consists hundreds of slices and each slice contains several 

mitochondria. In this data set collection, mitochondria appearance and shapes and sizes 

differ significantly among the datasets as it is illustrated in Figure 16. Some attributes of 

the datasets such as voxel size, dataset thickness and image size are listed in Table (1). 

Totally, there are 622 slices and 96 mitochondria in the dataset collection. Sample TEM 

images of mitochondria from this dataset are shown in figure (16). 

Table 1: Properties of dataset utilized as a part of the analyses 

Dataset base 

name 

Image Size    

(width * height) 
Number of slices 

Number of 

Mitochondria per 

slice 

6_22.sub 1960 * 2560 91 14 

bcpl-d.sub 720 * 878 61 6 

Cone.sub 736 * 1010 97 9 

gap18_sub 350 * 600 54 6 

Mac_serial_sub 907 * 1172 111 20 

Od.sub 1960 * 2560 91 34 

pedicle 950 * 1280 31 6 

Spherul24mos1 1996 * 1996 86 1 
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Figure 16: Sample TEM images of mitochondria from the used dataset (17–19). 
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In figure (17) some outputs of automatic segmentation method are shown.  

 

 

 

Figure 17: Samples of automatics segmentation method's output. 
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Sample test cases from ‘pedicle’ dataset are shown in figure (18). The ground truth 

images corresponding to this sample test cases are provided in figure (19).  

 

 

 

 

 

 

 

 

 

 

 

 

1.  

2.  

 

 

Figure 18: Sample test cases from pedicle data set. The red contours show the result of automatic 

segmentation by Tasel (12). 
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Figure 19: Ground truth images corresponding to sample test cases above. 

2.5.Ground Truth 

Ground truth is a term which is utilized as a part of different fields to allude to data gave 

by direct perception instead of data given by induction (43). Simply it means a set of 

measurements that is known to be much more accurate than measurements from the 

system that is testing. 

In this field, ground truth images are images in which the desired object is segmented from 

the background by experts and these boundaries are considered to be accurate and reliable, 

and also are used to check or calibrate a recognition or segmentation system  (43). These 

ground truth images were obtained by specifying the outer membranes of mitochondria via 

a manual segmentation process using IMOD software (12) . An expert in University of 

California, San Diego has done the markings figure 19. 
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Figure 20: Examples of the automatic segmentation results which should be edited. 

 

In order to be able to see the effect of editing on 3D construction of the mitochondria, 

anatomical planes are used. In order to show when the boundary of mitochondria is edited 

in 2D by the methods, how these changes affect the 3D construction of it. 

A plane is a 2D slice through 3D space, and it helps us to have a precise view of the inside 

of 3D constructions. These planes can be considered as different hypothetical geometric 

planes used to divide the human body and also can be used to describe the locations of 

structures in relation to the other structures or locations in the body (44). Three commonly 

used planes are sagittal, coronal and transverse. Considering these planes as a cross section 

of a plane with object body, axial plane divides the body of the object into two parts, upper 

and lower parts and sagittal plane does it as right and left sides, coronel does it as front and 

back parts.  These planes are shown in figure 20.  
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Figure 21: Anatomical planes: axial, sagittal and coronal (43). 

 

3D construction of mitochondria was achieved by merging all 2D slices of mitochondria. 

It is considered as body of object. The intersection point of all three planes is considered as 

midpoint of all slices and was called as center point. The axial plane of mitochondria was 

achieved by the horizontal cross section of the object of body with a plane. The sagittal 

view was achieved by cross section of all slices with a vertical plane. Finally, the coronal 

plane was provided by intersection of all slices with plane which is perpendicular to axial 

plane and vertical plane. The provided 3D view for data set “6_22.sub” is illustrated in 

figure (22). 
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2.6. User Interface 

 

 

Figure 22: 3D view of data set “6_22.sub”. 

 

As it was shown in the figure 22, using these planes we tried to track the effect of editing 

on the 3D view of the mitochondria and to visualize the changes in three planes. Since the 

number of slices comparing with the size of each slice was less, the information provided 

by 3D view is not more useful for non-specialist user to gain information.  

In order to track through all slices and get information about the editing results, a 2D view 

of the result of automatic segmentation (input for my methods), result of editing, and also 

ground truth images were provided so by mouse wheel movements the data in three of the 

views are changed in a way that all three view shows the same slice but with three 

mentioned methods results. This 2D view is shown in the figure (23). 
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Figure 23: 2D view to compare the results. The right panel contains the ground truth images. In the middle 

panel, the result of Tasel’s method is provided and in the left panel, the result of editing with dragging 

splines is shown. 

 

2.7. Evaluation Metrics 

In order to evaluate the results of the methods, three common metrics for evaluating 

medical images segmentation results are calculated: Dice coefficient (similarity metric), 

Root Mean Square Symmetric Surface Distance (RMSSSD), and t-test. These metrics are 

explained in the subsequent sections. The reason why these metrics were chosen is also 

explained. 

2.7.1. Dice Coefficient 

Dice coefficient (45), which is additionally called the overlap index, is the most utilized 

metric in approving medical volume divisions. Dice is used as a measure of the 

reproducibility as a statistical validation of manual annotation then the combine insightful 

cover of the rehashed division is estimated using the Dice (figure 24). The formula is 

defined by 
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                             Dice =

2 | 𝐴 ∩𝐵|

|𝐴|+|𝐵|
     (9) 

3. In this study I tried to calculate the volumetric Dice coefficient for each mitochondrion 

in all data sets. Considering the Dice coefficient of each mitochondrion in all slices the 

volumetric Dice coefficient of a mitochondrion in data set with N slices can be achieved 

by: 

4. Average Dice coefficient for each mitochondria is: 

                                 Average _Dice =  
1

𝑁
 ∑ 𝐷𝑖

𝑁
𝑖=0     (11) 

5. where i=0, 1 …., N and N is max slice number and Di is 2D Dice coefficient for ith 

mitochondrion. 

 

6. 2.7.2. Root-Mean-Square Symmetric Surface Distance 

7. The root-mean-square symmetric surface distance (RMSSSD) is utilized as often as 

possible to gauge the contrasts between two surfaces (made up of points). It is defined 

as average squared error distance between a set of real values and paired observed 

value(45). 

8. In order to calculate the RMSSSD for these data sets, the results of both spline method 

and live-wire method were compared with ground truth. 

9. The corresponding points on ground truth images and obtained border points are not 

determined. Therefore, for all pixels of the first border, the closest pixel from other border 

and vice versa should be obtained using Euclidean distance and at the end, the distances 

are squared and then averaged. 

10.  

Figure 24: Illustration for calculating Dice coefficient (44). 
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RMSSSD(Ĝ, Ŝ) = √  
1

n
 (∑({d|d = minj  ||Ŝ(i) − Ĝ(j)|| , i = 1,2, … , N}  

∪ {d|d = 𝑚𝑖𝑛𝑖||Ŝ(i) − Ĝ(j)||, 𝑗 = 1,2, … , 𝑀})2) 

 

(12) 

 

 

Where 𝑆 ̂ and 𝐺̂ are segmented contour and ground truth contour's boundary points, and n 

is total number of points on segmented contour and ground truth image, and N , M are 

number of points on the contours, respectively.  

In some cases, there is only a small disparity between the result and ground truth image. 

Since the ratio of overlap part to non-overlap part is more, measuring the difference 

between them with Dice coefficient does not reveal this disparity. In figure (25), disparity 

between results of automatic method and results of editing tools are shown. 
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2.7.3. T_test  

Actually, t-test assesses whether the means of two groups are statistically different from 

each other or not. While performing a t-test, it is typically attempted to discover 

confirmation of a critical contrast between populace implies (2-test t) or between the 

populace mean and a hypothesized value (1-test t)information is the ascertained 

contrast in units of standard error (46). The more prominent the size of T (it can be 

either positive or negative), the more prominent the confirmation against the invalid 

speculation that there is no significant contrast among them. If the magnitude of T is 

closer to 0, it implies it is more probable there isn't a huge distinction between two 

example gatherings. (See figures (26) and (27)). 

Figure 25: Disparity between results of automatic method and results of editing tools: a), c) results of automatic 

method, b), and d) results of 2D live-wire. 
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Figure 26: Definition of T-test (46). 

 

 

 

Figure 27: Three scenarios for differences between means (46). 
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CHAPTER 3 

  RESULTS 

11. The results of these editing tools were analyzed and compared with the automatic 

segmentation (12) and also Alamdari’s semi-automatic segmentation (5) results. The 

quantitative results of analyzing the results by the mentioned metrics are given in the 

following section. 

3.1. Quantitative Results  

12. Two mentioned metrics, Dice coefficient and RMSSSD are applied on all available 

mitochondria. Table (2) demonstrates an examination between the results of 2D and 3D 

methods in which the surface dragging method was applied. 

13. Evaluating the Dice similarity between obtained results and also the ground truth 

images, it was tried to find out that to what extend theses boundaries are similar. If the 

two boundaries are similar, the common portion of their inside region is approximately 

near to the sum of their region and leads to have Dice similarity near to one while two 

different boundaries lead to Dice similarity near to zero. A sample result of surface 

dragging tool, the result of automatic method, and corresponding ground truth image is 

shown in Figure 27. In every data set there are several mitochondria in each slice. In 

order to evaluate the methods, according to the shape complexity of the mitochondria, 

and also because of the position of the mitochondria on the image, three mitochondria 

from each data set were chosen to show the results. 3D RMSSSD values refer to the 

RMSSSD metric for the result of applying each method in 3D. In all tables 

‘#mitochondria’ refers to the mitochondria number (id) (figure 28). In tables, 3D Dice 

coefficient and 3D RMSSSD refer to the result of applying the methods in 3D. It does 

not mean to calculate the metrics in 3D because there are no significant changes in Z 

direction. 
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Figure 28: Sample slice from cone.sub dataset with the #mitochondria number 
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Table 2: The results of surface dragging in both 2D and 3D for each dataset. 

Dataset name 

  

mitochondrion 

number 

Before editing 

 (Auto segmentation 

by Tasel) 

  Dice coefficient   
RMSSSD (in units 

of pixels)  

Dice 

coefficient   
RMSSSD 2D 3D 2D 3D 

  #1 0.84 10 0.941 0.9186 0.65 0.72 

6_22.sub #13 0.89 7 0.9467 0.9327 0.58 0.85 

  #6 0.91 15 0.9488 0.9326 0.48 0.53 

  #1 0.87 19 0.9285 0.9153 0.89 1.07 

bcpl-d.sub #4 0.82 8 0.9121 0.9242 0.78 1.1 

  #5 0.87 14 0.9217 0.9205 0.68 1.13 

  #1 0.83 21 0.9404 0.9352 0.65 1.02 

Cone.sub #2 0.9 61 0.9397 0.9344 0.43 0.84 

  #3 0.81 13 0.9043 0.9075 0.72 1.05 

  #1 0.86 22 0.9488 0.9379 0.43 0.81 

Gap18_sub #2 0.83 19 0.9425 0.9205 1.01 0.74 

  #3 0.79 17 0.9352 0.9177 0.98 0.67 

  #7 0.85 9 0.9321 0.9201 0.87 1.03 

mac_serial_sub #12 0.81 23 0.9402 0.9106 0.34 1.01 

  #11 0.79 7 0.9352 0.9177 1.01 0.85 

  #3 0.79 11 0.9324 0.9069 0.72 1.02 

Od.sub #5 0.81 15 0.9215 0.9131 0.93 1.16 

  #6 0.78 44 0.9149 0.9248 0.75 1.14 

  #2 0.73 25 0.9321 0.9225 0.57 1.04 

pedicle #3 0.83 12 0.9306 0.9123 0.48 1.1 

  #5 0.87 101 0.9298 0.9068 0.45 1.06 

Average -  - -  0.93 0.92 0.69 0.93 

 

14. In the experiments, the default value for the radius of ROI is set to 100. In figure (29) 

ROI with different values are shown. In some cases, applying method with small value 

of radius requires to apply the method more than once to achieve the desired result 

while setting it to a large value lead to unsatisfied results. 
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15.  

16.  

        

 

User can easily change the radius of ROI to the proper value according to the part of the 

boundary which should be refined and corrected. 

Looking more closely, Table (2), it is obvious that applying surface dragging method in 

both 2D and 3D leads to acceptable results. Dice coefficient metric which is approximately 

1.0.  The edited boundaries are almost the same as the ground truth images since this 

method is unrelated to the texture of the image and by selecting the proper part to correct, 

the desired result is achievable.  

The RMSSSD metric for the mentioned method resulted to values are nearly 0.0 which 

reveals that the slipping value for the resulted boundaries are nearly zero and so the resulted 

boundaries are the same as the ground truth images. In Table (3) the results of Dice 

coefficient and RMSSSD metrics are shown for the interactive live-wire segmentation tool. 

 

 

 

 

Figure 29: R=100, R=200 
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Table 3: The results of live-wire method in both 2D and 3D for each dataset. 

  

Dataset 

name 

  

mitochondrion 

number 

Before editing 

 ( Auto segmentation 

by Tasel ) 

  Dice coefficient   
RMSSSD (in 

units of pixels)  

Dice 

coefficie

nt   

RMSSSD 2D 3D 2D 3D 

  #1 0.84 10 0.9596 0.924 0.32 1.99 

6_22.sub #13 0.89 7 0.9607 0.9129 0.68 2.13 

  #6 0.91 15 0.9624 0.9273 0.51 1.96 

  #1 0.87 19 0.9231 0.9023 0.73 2.31 

bcpl-d.sub #4 0.82 8 0.924 0.9133 0.68 2.1 

  #5 0.87 14 0.9236 0.9032 0.74 2.27 

  #1 0.83 21 0.9375 0.9369 0.48 1.91 

Cone.sub #2 0.9 61 0.9452 0.9421 0.23 1.8 

  #3 0.81 13 0.9276 0.9001 0.67 2.25 

  #1 0.86 22 0.9493 0.9274 0.58 1.94 

Gap18_sub #2 0.83 19 0.9559 0.9261 0.9 1.95 

  #3 0.79 17 0.9581 0.9025 0.63 2.3 

  #7 0.85 9 0.9402 0.9015 0.85 2.32 

mac_serial_s

ub 
#12 0.81 23 0.9468 0.9203 0.23 2.01 

  #11 0.79 7 0.958 0.9025 0.89 2.29 

  #3 0.79 11 0.9423 0.9148 0.68 2.07 

Od.sub #5 0.81 15 0.9316 0.9042 0.82 2.26 

  #6 0.78 44 0.9345 0.9129 0.64 2.15 

  #2 0.73 25 0.9412 0.9082 0.51 2.24 

pedicle #3 0.83 12 0.9395 0.9103 0.43 2.2 

  #5 0.87 101 0.9436 0.9051 0.37 2.05 

Average -  - -  0.94 0.91 0.6 2.11 

 

Comparing the results of 3D live-wire on the all data set with the results of 3D surface 

dragging showed that the former has inferior performance since this method depends on 

the texture characteristics of the image. On the other hand, these images contain a lot of 

noise and edge like details. The Dice coefficient for these results demonstrated that the 

distinction between the results and ground truth images are far from those of dragged spline 
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methods. The RMSSSD value for the results of 3D live-wire show that there was disparity 

between these results and the ground truth images (figure 30). 

 

The RMSSSD value for 2D implementation of live –wire and surface dragging method 

reveal the superiority of the 2D implementation compared to 3D. In 3D implementation 

ROI is considered as intersection of slice with VOI. In some cases, that the mitochondria 

get smaller by moving through the slices, the VOI have no intersection with the boundary 

or only small part of boundary was edited. It is illustrated in figure (31). 

Figure 30: a) Ground truth image b) Result of automatic segmentation c) Result of editing the output 

of automatic segmentation using 2D live-wire. 
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Figure 31 :  Intersection of mitochondria by VOI (5) 

 

As it is shown in figure (31), while applying methods in 3D, when the mitochondria gets 

smaller in some slices there is no intersection between VOI and the boundary. Therefore, 

maybe only a small part of boundary has intersection. In this situation the results of 2D is 

better than 3D. Because in 2D the user selects the ROI and consequently, this leads to better 

result. A sample mitochondrion which gets smaller in the different slices is shown in figure 

(32). 
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Figure 32: The marked mitochondria in (a) gets smaller moving through slices (b), this mitochondrion 

vanishes slowly in the remaining slices. 
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In cases like figure (33), part of the boundary which we try to edit varies while moving 

among the slices. This figure is another example to show that why the result of 2D spline 

method is better than 3D one because of the dragged control point. The barcharts for Dice 

coefient and RMSSSD and also Error bars are shown in the following figures 

(34),(35),(36),(37),(38) and (39). 

 

Figure 33: A sample mitochondria from cone dataset. 
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Figure 34: Bar chart for RMSSSD values of the results of surface dragging method, in units of pixels. 

  

Figure 35: Bar chart for Dice coefficient of the results of surface dragging method. 
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Figure 36: Bar chart for RMSSSD values of the results of live-wire method, in units of pixels. 

 

 

Figure 37: Bar chart for Dice coefficient of the results of live-wire method. 
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Figure 38: Error bar plot of Dice coefficient of the results. 

 

 

Figure 39: Bar chart for RMSSSD value of the results. 
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From the results it is clear that the live-wire 2D method has the least error and therefor the 

most similarity to the ground truth images. In contrast, in the most of the cases 3D live-

wire method has the worst results. However, it is not general and we have some exceptions 

that the 3D surface dragging method shows worse results as well. The errors are the 

difference between the results of the used methods and the ground truth images. In some 

cases, all four methods converge together meaning that all used methods have similar 

results. However, in some datasets, the used methods show scatter results. 

In each dataset, the mitochondria which do not have considerable changes through the 

slices both 2D and 3D methods led to good results and the evaluation metrics showed better 

results. In the contrary, the mitochondria which has considerable changes through the slices 

the 3D dragged spline and also 3D live-wire methods led to worse results and consequently 

the Dice coefficient has worse results than 2D methods. (Figures (40) and (41)). 

 

 

Figure 40: sample mitochondria in pedicle dataset in different slices. 
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(c) 

Figure 41: a) result of 2D live-wire b) result of 3D live-wire c) 2D surface dragging 

As it is shown in figure (40), some mitochondria get faded in some slices. Applying live-

wire method in 3D, live-wire tool snaps to parts with high edge characteristics and lead to 

worse result than 2D live-wire. The result of 2D and 3D live-wire tool are shown in figure 

(41). As t mentioned the live-wire tool, snap to strong edges between seed points. 

T-test is applied on the results considering hypothesis null as there is high differences 

between the segmentation results of current correction method and the ground truth images, 

and also hypothesis 1 as there is not a significant difference between two mentioned 

boundaries which means the current method perform well on the given data sets. 

In order to apply t-test on the obtained results comparing with ground truth results, the area 

inside each mitochondrion in each slice for the result of this study and ground truth images 

were considered and statistics t-score is calculated and the results are illustrated in table 

(4). 
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High value of t shows that there is huge distinction between current outcomes and ground 

truth images while the nearer T is to zero, the more probable there isn't a huge contrast 

difference between two groups of data. 

The T-test results applied to the results of 2D and3D Surface Dragging and live-wire 

methods. 

 

Table 4: The t-test results for 2D and 3D surface dragging and live-wire 

  2D Surface Dragging  3D Surface Dragging 2D Live-Wire 3D Live-Wire 

t-value 0.019 0.026 0.013 0.033 

 

T-value for both 2D and 3D methods of live-wire and surface dragging was calculated. The 

values show that the results of 2D live-wire method were more likely to the ground truth 

images and the results of 3D live-wire had the worst similarity with ground truth images. 

In surface dragging method, 2D method had better results than 3D because in most cases 

the mitochondria had considerable changes moving among the slices. 
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3.1.1  Results Comparison 

These editing tools’ results are compared with the results of Tasel’s and Alamdari‘s work. 

This information is provided in Table (5).  

Table 5: The comparison of the Dice coefficinet results with those of Tasel’s and Alamdari’s. 

 

 

Dataset 

 

Tasel’s 

Dice 

Coefficient 

(Merged) 

Alamdari’s  

2D 

Surface 

Draggin

g 

 

2D 

Live-

Wire 

 

3D 

Surface 

Draggi

ng 

 

3D 

Live-

Wire 

Active 

Contou

r 

Metho

d 

Active 

Contour 

and 

Kalman 

Filter 

Kalman 

Filter 

with    

Active 

Contour 

and 

Optical 

Flow 

bclpb-d 0.89 0.88 0.88 0.88 0.93 0.92 0.92 0.90 

Gap18_sub 0.87 0.87 0.87 0.86 0.94 0.92 0.93 0.91 

Pedicle 0.84 0.94 0.94 0.94 0.95 0.93 0.94 0.91 

Spherule24

mos1* 

0.97 0.96 0.96 0.96 - - - - 

Average 0.89 0.91 0.91 0.91 0.94 0.92 0.93 0.91 

 

Comparing the results of these three mentioned works shows that the Alamdari and Tasel‘s 

methods led to nearly the same results but only in ‘Pedicle’ data set Alamdari’s method 

had better results. Applying the editing tools provided in this study, on these results, led to 

better results with the Dice coefficient. Comparing 3D surface dragging method and 3D 

live-wire method, surface dragging had better results because in live-wire method the noise 

and edge like details caused the live-wire to snap to pixels with high edge characteristics 

and misdirected it. It should be mentioned that Alamdari’s results are taken from her thesis 

and they may not refer to the same mitochondria on which the current editing tools were 

done.  

In Spherule24mos1 dataset, the Tasel’s method could detect almost the exact 

mitochondrion and so this dataset did not edit.  The result of automatic segmentation 

method is shown in figure 42. 
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Figure 42: Mitochondria detected by Tasel’s automatic method in spherule24mos1 (11). 

 

The average Dice coefficient for the work done by Alamdari, for three of the used methods, 

active contour, Kalman filter, and optical flow were calculated as 0.90. Editing these results 

by surface dragging tool and live-wire interactive editing tool improved them and led to 

0.94 and 0.92 values for Dice coefficient, respectively. 

 

3.1.2  Method Run Times and User Interaction Times 

Two female users and one male user from computer engineering department and one female 

user from statistic department applied these tools on the given dataset. The ages of users 

were 27,29,26,31 respectively. The technical characteristics of the computers used by each 

user are provided in the Table (6).  

 

Table 6: The technical characteristics of used computers by users 

User RAM CPU Brand 

User#1 4GB Intel core i7 Lenovo 

User#2 4GB Intel core i5 Del 

User#3 4GB Intel core i3 Asus 

User#4 4GB Intel core i5 HP 
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After that all users got familiar with the tools, using chronometer, at each step the required 

time was recorded by the users. The mean time required for each mitochondrion in per 

dataset is provided in Table (7) according to each method. 

 

Table 7: Mean run time per mitochondria for each dataset to edit using spline method and live-wire method 

in 2D and 3D. 

 
Data set 
  

  

 
#mitoch
ondrion  
  
  

Mean run time 
 ± std 

Dragged Spline 
 ( units of minutes) 

Mean run time 
± std 

Live-wire   
(units of minutes) 

2D 3D 2D 3D 

6_22.sub 

#1 42.47 ± 2.32 1.25 ± 0.08 57.63 ± 2.52 1.90 ± 0.10 

#13 63.70 ± 3.10 1.58 ± 0.12 78.87 ± 3.85 2.60 ± 0.13 

#6 84.93 ± 4.07 1.92 ± 0.17 100.10 ± 4.97 3.30 ± 0.17 

Bcpl-d.sub 

#1 35.58 ± 1.65 1.42 ± 0.10 45.75 ± 2.12 2.25 ± 0.10 

#4 21.35 ± 1.18 1.08 ± 0.08 31.52 ± 1.63 1.55 ± 0.07 

#5 49.82 ± 2.17 1.75 ± 0.10 59.98 ± 2.85 2.95 ± 0.17 

Cone.sub 

#1 33.95 ± 1.73 1.08 ± 0.07 50.12 ± 2.70 1.55 ± 0.08 

#2 79.22 ± 3.90 1.75 ± 0.13 95.38 ± 4.48 2.95 ± 0.15 

#3 113.17 ± 5.40 2.25 ± 0.25 129.33 ± 5.73 4.00 ± 0.22 

Gap18_sub 

#1 50.40 ± 2.35 1.92 ± 0.23 59.40 ± 3.07 3.30 ± 0.17 

#2 18.90 ± 1.10 1.08 ± 0.07 27.90 ± 1.48 1.55 ± 0.07 

#3 25.20 ± 1.25 1.25 ± 0.08 34.20 ± 1.95 1.90 ± 0.10 

Mac_serial_s
ub 

#7 38.85 ± 1.85 1.08 ± 0.10 57.35 ± 2.70 1.55 ± 0.08 

#12 77.70 ± 3.55 1.58 ± 0.12 96.20 ± 4.48 2.60 ± 0.00 

#11 64.75 ± 2.97 1.42 ± 0.10 83.25 ± 4.25 2.25 ± 0.13 

Od.sub 

#3 31.85 ± 1.63 1.08 ± 0.07 47.02 ± 2.43 1.55 ± 0.07 

#5 53.08 ± 2.93 1.42 ± 0.13 68.25 ± 3.25 2.25 ± 0.12 

 #11 84.93 ± 4.37 1.92 ± 0.32 100.10 ± 4.80 3.30 ± 0.18 

Pedicle 
#2 10.85 ± 0.62 1.08 ± 0.15 16.02 ± 0.77 1.55 ± 0.08 

 #3 18.08 ± 0.95 1.42 ± 0.08 23.25 ± 1.25 2.25 ± 0.13 

 #5 3.62 ± 0.32 0.75 ± 0.05 8.78 ± 0.55 0.85 ± 0.05 

Average  47.73 ± 2.35 1.43 ± 0.12 60.50 ± 2.94 2.28 ± 0.11 

 

 

Time required to apply these methods in order to obtain the desired boundary, varies 

according to the method and also according to what extend the user was familiar to the 

application. Different users have tried these two methods in order to apply on the given 

data set. Applying methods on 2D, user has to apply the method on each data set and some 
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data sets involves more than 100 slices and also some mitochondria need more than one 

step of editing. So applying for example 3 steps of editing on Mac_serial_sub with 111 

slices takes at least one and half hour. Totally spline method is faster than live-wire method 

because in live-wire method the editing in done on ROI with radius 100. This lead to apply 

one edit in two or three steps instead of one step which led to increase the required run 

time.  

 Actually, in spline tool, run time includes opening the first slice, selecting ROI, moving 

the dragged center until the result is satisfying, fixing and finally saving the result. Then 

the user can move to the next slice by scrolling the mouse. The number of required edits 

for each mitochondria varies and also each data set has different number of slices.  Some 

mitochondria only need one editing step while some others need more than 3 editing steps 

which significantly affects the run time. In live-wire method, run time involves setting ROI, 

setting seed, moving mouse on the image until the result is satisfying, and finally saving 

the result. In live-wire method since the code is in primary stage of development, editing is 

done in 100* 100 patches which takes more time compared with the spline method. Because 

the user has to work on multiple ROI in order to correct part of a mitochondria. 

Applying editing tool on 2D takes a lot of time to complete because the user has to apply 

edits in all slices. In 3D mode, the user does the edits only on the middle slice and then the 

editing was done automatically on the all other slices. Comparing 2D and 3D methods’ run 

time, it is clear that 3D method in both dragged spline and live-wire take less time than 2D 

which needs to apply the editing tool on each slice manually. 

It is necessary to compare the editing time required (of the tools applied here in this thesis) 

with the San Diego group’s hand segmentation times.  According to the San Diego group, 

when only hand segmentation is used (as in ground truth segmentation), the time to segment 

the outer mitochondrial membrane (OMM) depends in part on the size of the mitochondrion 

and how curvy the membrane is.  For all the datasets except for the Mac_serial_sub, the 

amount of time to trace one contour of the OMM in one slice is approximately 65 seconds 

on average.  For the Mac_serial_sub, it takes approximately 55 seconds.  

In 2D surface dragging method, in order to edit ‘6_22’, ‘bcpl-d.sub’, ‘Cone.sub’, 

‘Gap18_sub’, ‘Od.sub’ and ‘pedicle’ datasets, it takes 42, 10, 46,35,33,38 seconds to edit 

one mitochondrion in one slice respectively. While in hand segmentation this time is 

about 65 seconds for a mitochondrion in each slice in each data set.  

In order to edit one mitochondrion in each slice in ‘6_22’, ‘bcpl-d.sub’, ‘Cone.sub’, 

‘Gap18_sub’, ‘Od.sub’ and ‘pedicle’ datasets using 2D live-wire method it takes 

approximately 52,45,57,45,42,48 seconds , respectively. While in hand-segmentation it 

takes 65 seconds to trace the mitochondrion in each slice. In general, 2D methods takes less 

time than hand segmentation method.  

 

In 3D methods, the user has to do the editing in one slice and the editing on the other slices 

is done automatically. In 3D methods, the required time in order to edit one mitochondrion 
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in all slices varies between 60 and 240 seconds. While in hand segmentation this time is at 

least 2015 seconds for pedicle dataset with 31 slices (considering 65 seconds for a 

mitochondrion in one slice). Therefore, comparing the required time for 3D editing 

methods with that of hand-segmentation method it shows that 3D methods are faster than 

hand-segmentation method.  
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

 

The main purpose of thesis was to develop and implement editing tools to correct automatic 

segmentation results. For this purpose, surface dragging and live-wire segmentation 

methods were implemented and applied on the Tasel’s results. These methods were applied 

on 2D and also 3D. The 3D construction of a mitochondria was gained by considering all 

slices together. In order to apply these methods on 3D, firstly, these methods were applied 

on the middle slice of the method. The region of interest considered as a sphere over whole 

slices with the center in the coordinates of ROI on the middle slice. The radius of ROI was 

set to 100 pixels. The ROI for each slice could be obtained by intersection of sphere with 

the current slice. While applying surface dragging, the ROI is obtained by intersection of 

sphere with the current slice, the intersection points of ROI with existed mitochondria 

boundary and also the dragged center of ROI which was the same as coordinates of dragged 

center in middle slice, were considered and using Bezier cubic formula, the curve which 

passes through these points are drawn and then desired art of the boundary was updated. In 

order to apply live-wire method on 3D, after setting ROI as it was done in previous method, 

the start node and end node which were selected on the middle slice, were carried to one of 

their 8 neighbor pixels which have higher gradient magnitude than other 7 neighbors. Then 

the path between start node and end node with minimum cumulative path cost was 

considered as new part of the boundary and the existed boundary was updated.  

After applying these methods on the given dataset, in order to evaluate the results of 

methods, three metrics, Dice coefficient, RMSSSD, and t-test were calculated in both 2D 

and 3D. Volumetric Dice coefficient and average Dice coefficient were also calculated in 

order to compare the obtained results and ground truth images.  

Comparing these results, it was seen that applying 2D live-wire led to better results in which 

the Dice coefficient were approximately one which means that the obtained results were 

approximately the same as ground truth images, and the RMSSSD were near to zero which 

means that dislocation of the points of the boundaries where the least and near to zero. But 
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editing by 2D methods on all slices, is a very time consuming process (approximately 30-

times more editing time) which may outweigh the benefits of better segmentation (1-2% 

improvement in Dice coefficient, but better improvements in RMSSSD) as compared with 

the 3D methods.  

If the editing time is not considered, the 2D methods led to better results than 3D of both 

live-wire and dragging methods (by 1-2% improvement in Dice coefficient, but better 

improvements in RMSSSD). 3D live-wire method showed worse segmentation results than 

3D surface-dragging method since in the latter method, the method does not relate to the 

texture of the image, noise or edge like details.  

In some cases, the edges are faded and also unclear, in some other cases such as od.sub, the 

mitochondria are so close to each other that while using live-wire method, since it is tried 

to find the optimal path with the high edge characteristics, the boundary of the coherent 

mitochondria can be detected as the optimal path. In order to reduce the impact of the 

coherent mitochondria, this method is implemented so that only the ROI part of the image 

instead of the whole image is considered to find the optimal path. 

Considering the execution time, this time for live-wire was more than that of surface 

dragging method because in live-wire method each editing step was done in ROI with 

100*100 pixels. So, one (rather big) editing step of surface dragging can be achieved by 

more than three steps of live-wire, which results in considerably more editing times as seen 

in Table 7. 

Comparing the results of these editing tools with the results of the work done by Tasel, it 

was shown that these editing tools, led to better results and these results were more similar 

to ground truth image but the required time was higher than hand-segmentation time. Dice 

similarity of both results was calculated to get the similarity between the results and the 

ground truth images. For Tasel’s results, the average Dice coefficient was 0.78 while this 

amount for the results of live-wire was obtained 0.94. It was clear that editing the 

segmentation results of Tasel’s work by surface dragging editing tool, made the results 

better. While applying the surface dragging tool on the results of Tasel’s work, increased 

the Dice coefficient from 0.79 to 0.93. It showed that this editing tools have improved the 

results of automatic segmentation method however, the required time should not be 

ignored. 

 

4.1. Limitations: 

 In some data sets like bcpl-d.sub as it is shown in figure 43, the images have a lot of noise 

and the boundaries of the mitochondria not only are not sharp but also are faded. Detecting 

these boundaries using surface dragging is better and feasible comparing with the 
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interactive live-wire method in which the texture of the image affects the methods results 

adversely. 

 

In some other cases such as od.sub mitochondria are located near each other so that in 

applying interactive live-wire method, there are other mitochondria’s boundaries and this 

affects while trying to find the optimal path between two points on the image. The part of 

the boundary of the nearest mitochondrion can be detected as a part of the current 

mitochondrion which affects the results. In order to decrease the effect of this problem, it 

is tried to apply the method only on the ROI so that other strong edges which are not related 

to the current mitochondria are ignored and are not taking into account while finding the 

optimal path (Figure 44). 

 

Figure 43: In bcpl-d.sub dataset, the boarders are faded and unclear. 

Figure 44: Od.sub dataset. There are many mitochondria in each slice (19). 
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4.2. Future Work 

Live-wire implementation was not as efficient as it should be. Therefore, editing time does 

not reflect its full potential. Our tool has to be faster so that live-wire can be used in a much 

larger ROI so that boundary editing (of a region that covers a large area) can be done by 

the user in one-shot, rather than in multiple ROIs of size 100x100. 

The editing tools proposed in this study may also be applied on cristae structures. Cristae 

(inner membrane of mitochondria) have a large amount of surface area for chemical 

reactions to occur. Cristae shape determines the assembly and stability of respiratory chain 

super complexes (RCS) and therefore the efficiency of mitochondria-dependent cell growth 

depends on cristae shape (47). Therefore cristae shape is studied in the literature very 

often(48). In many studies, the cellular components such as cristae were analyzed and 

segmented It should be investigated whether the editing tools proposed in this thesis could 

be adapted for cristae structure in the mitochondria or not. 

The proposed editing tools are not the only effective semi-automatic methods in order to 

edit the segmentation of mitochondria. The merging and splitting tools proposed by Cocelli  

(17) can be combined with these tools for more accurate and fast segmentation of inner 

membrane and outer membrane. 

 In GUI interface, Visualization Tool Kit (VTK) can be used to give more information 

about the effect of 2D edits on 3D structure of mitochondria by using the rendering tool. 

Furthermore, An ITK pipeline combined with a VTK pipeline to represent the result of 

segmentation of liver from CTA data sets directly in 3-D using VTK was proposed by 

Selver et al (49). The same sequence of pipelines can be used to segment the mitochondria 

from the background image and visualize the results of segmentation of mitochondria in 

3D. 
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