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ABSTRACT 

 

MAPPING AND ANALYSIS OF HUMAN DISEASE NETWORK MAP 

(DISEASOME) ON MOUSE GENOTYPE & PHENOTYPE NETWORK 

 

 

Sultan Nilay CAN 

MSc, Bioinformatics 

Supervisor: Prof. Dr. Rengül ÇETİN-ATALAY 

Co-Supervisor: Dr. Tunca DOĞAN 

 

June 2017, 146 Pages 

 

 

Mouse is the primary model organism to study mammalian genetics. The genome of 

mouse is incisively and specifically modified and controlled to study the mutations in 

the human genome, to discover the molecular mechanisms of various complex human 

diseases such as cancers, diabetes, hereditary and neurological disorders. Various 

ontology systems have been constructed to express metabolic functions and diseases 

as controlled vocabulary terms. This way, abstract definitions such as gene functions, 

diseases or phenotypes become machine readable and quantifiable data. Mammalian 

Phenotype Ontology (MPO) is one of these databases that generates standardized 

terms to define phenotyping textures in mammals by carrying out gene knock out 

experiments in mice, which was followed by the observation of abnormal phenotypes. 
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In a previous study, biological networks were designed to analyse the relationships 

between complex human diseases and the genes responsible for the occurrence of those 

diseases. Human disease network focused on 22 different disease classes and brought 

insight to the complex relations between different disease classes. This study aims to 

map the human disease network onto the mouse genotype/phenotype data by 

generating multi-partite networks of human diseases – human/mouse genes – 

phenotypic abnormalities observed in targeted knock-out-mouse models. The resulting 

networks are presented to the research community in an online interactive platform. 

The output of this work is expected to aid experimental researchers to select the 

appropriate targeted knock-out mouse models to study a specific human disease. 

Furthermore, the mappings between disease and phenotype terms is expected to enrich 

the ongoing efforts to curate specific symptoms and effects of diseases to improve 

medical diagnosis.  

 

Keywords: Human diseases, abnormal phenotypes, mouse knock out genes, biological 

networks 
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ÖZ 

 

FARE FENOTİPİ VE GENOTİPİ ÜZERİNDE, İNSAN HASTALIK AĞININ 

(DISEASOME) HARİTALAMA VE ANALİZİNİN YAPILMASI 

 

 

Sultan Nilay CAN 

Yüksek Lisans, Biyoenformatik 

Tez Yöneticisi: Prof. Dr. Rengül ÇETİN-ATALAY 

Ortak Tez Yöneticisi: Dr. Tunca DOĞAN 

 

Haziran 2017, 146 sayfa 

 

 

Fare, memeli genetiğini çalışmak için kullanılan temel model organizmadır. İnsan 

genomundaki mutasyonları çalışmak ve kanser, diyabet, kalıtsal ve sinirsel birçok 

kompleks insan hastalığının mekanizmasını anlamak için, memeli genetiğinde temel 

bir organizma olan fare genomu isabetli ve spesifik olarak değiştirilebilir ve kontrol 

edilebilir olarak kullanılmaktadır. Metabolik fonksiyonları ve hastalıkları, 

organizmalar üzerindeki fenotipik yansımalarını da hesaba katarak anlamak için 

birçok ontoloji sistemi yapılandırılmıştır. Memeli sistemleri için fenotipleme özelliğini 

tanımlamak amaçlı standartlaştırılmış birçok terimi barındıran Memeli Fenotipi 

Ontolojisi (MPO) bu özelleşmiş veri bankalarından biridir ve farede anormal 

fenotiplerle sonuçlanan nakavt çalışmalarını yürütmek, fenotipik terimleri tanımlamak 
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için standartlaştırılmış tanımlar üretir. Önceki bir çalışmada biyolojik haritalamalar, 

kompleks hastalıklar arasındaki ilişkileri ve bu hastalıklardan sorumlu olan genleri ve 

kendi aralarındaki ilişkileri çalışmak amaçlı dizayn edilmişlerdir. Bu tez, insan 

hastalıklarının ve nakavt fare çalışmalarından elde edilmiş fenotipik anormalliklerin 

çok parçalı ağlarını üreterek, insan hastalık ağını, fare fenotipi ve genotipi veri setinin 

üzerine haritalamayı amaçlamaktadır. Sonuç olarak elde edilecek olan haritalamalar, 

araştırma dünyasına çevrimiçi bir platform olarak sunulmuştur. Bu çalışmanın, insan 

hastalıkları üzerine gerçekleştirilmekte olan deneysel araştırmalarda uygun nakavt fare 

modellerinin seçilmesine yardımcı olması beklenmektedir. Ayrıca, hastalıklar ve 

fenotipik terimler arası yapılan bu haritalamanın, tıbbi teşhis ve tedavilerin 

geliştirilmesi amacıyla yapılan ontolojik çalışmalara katkıda bulunması 

beklenmektedir. 

 

Anahtar Sözcükler: İnsan hastalıkları, hastalık fenotipleri, fare nakavt genleri, 

biyolojik ağlar. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 MOTIVATION 

Model organisms have long been experimented on to understand complex molecular 

mechanisms in the human body. When the Human Genome Project (HGP) was started 

in 1990, mouse was included as one of the five central model organisms with the 

purposes of understanding the gene functions, disease mechanisms and for discovering 

new drugs (Waterston et al., 2002). 

There are biological data resources to store and freely publish the finding obtained 

from the experimental studies on mouse. One example is Mouse Genome Informatics 

- MGI (Blake et al., 2011), which is documenting the relations between mouse 

genotype and phenotype. MGI is discussed in section 2.2, in detail. There are also 

open-access resources that document the relations between the human genome and the 

genetic diseases, such as OMIM (Hamosh et al., 2005) and Diseasome (Goh et al., 

2007), which is discussed under section 2.5. Both the human and mouse resources are 

extremely valuable for the research community and the underlying knowledge have 

significant overlaps due to the genetic similarities between human and mouse. 

However, the resources on mouse has a lot more to offer compared to resources on 

human, due to extensive systematic experimental research carried out on mouse. As a 

result, integrating the information found in mouse data resources to human datasets 

have the potential to extensively enlarge our understanding about the relation between 

human genome and phenome, especially in terms of genetic human diseases. This 
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understanding may in turn help researchers to develop novel treatments to stop these 

diseases. 

As far as we are aware, the studies aiming to integrate the biomedical data on model 

organisms with the human data exists, though scarce. We believe that more focus is 

required for biological data integration and inferring biological insight from the results. 

Automated computational approaches should be used for this purpose, as the data 

volume is now beyond the capabilities of manual curation now. Open access tools and 

services that will be generated to house and to present the integrated data to the life 

science research community is the key to be able to analyze this huge amount of data 

and to obtain biological knowledge from it. 

 

1.2 SCOPE AND GOAL 

The main objective of this thesis is to generate a biological network composed of 

disease records, disease causing genes and observed abnormalities in the form of 

phenotypic terms. This is done by analyzing the Diseasome (the Human Disease 

Network) and mapping it onto the mouse genotypic vs. phenotypic relation data. This 

way, associations between abnormal mouse phenotypes and human diseases are 

provided by using mouse knock-out genes and their human orthologues as the key 

attribute between two data sources. The main output of this thesis is an open access 

online network that visualizes these relations interactively, in a map format.  

As the first step, Diseasome database source published by Goh et. al. in 2007 was used 

as a data resource and the list of human disorders, disease genes, and associations 

between them were obtained from their datasets. Mouse Genome Informatics (MGI) 

and Mammalian Phenotype Ontology (MPO) databases were used to collect mouse 

affected systems (abnormal phenotypes) and the associated mouse knock-out genes. 

The data derived from MGI/MPO and Diseasome were integrated to generate the data 

tables.  
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In second part of the study, python scripts were written to produce gexf formatted files, 

to run on Gephi graph visualization tool, for constructing biological networks in two 

different approaches, which are Genes-Node and Genes-Edge versions. Genes-Node 

version treat mouse genes, affected systems (phenotypes) and human diseases as nodes 

and the edges represent the direct relations in-between. Genes-Edge version patterns 

genes as edges that connect human disease nodes with mouse affected system (i.e. 

abnormal phenotypes) nodes. Gephi tool was used to process these gexf files, to 

analyze them in terms of simple graph theory concepts and finally to visualize the 

undirected graphs on web-browsers via an exporter tool.  

The main objective of this thesis is to provide a practical online tool for the use of 

experimental and computational researchers working on genetic diseases, and 

providing case studies on how the proposed tool can be utilized to infer biological 

insight. We seek to aid laboratory scientists to prepare their knockout mouse models 

by using our online tool. This study is also expected to aid the computational studies 

on the development and the annotation of ontological systems for medical diagnosis 

and treatment.  

 

1.3 CONTRIBUTION 

The main contribution of this study is to provide an open access tool that displays the 

associations between diseases, genes -that cause these diseases when they possess 

specific mutations- and the observed abnormalities when those genes do not function 

properly. The produced output is expected to help laboratory scientists to observe 

targeted knock-out mouse gene models to select relevant models for studying specific 

human diseases. Another contribution is encouraging researchers to investigate the 

novel human disease - phenotype associations, which may aid the development of 

ontological medical diagnosis systems. Newly discovered relations between 

phenotypes, diseases and genes can be utilized in the forthcoming studies in the field 

of biomedicine.  
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1.4 OUTLINE 

This thesis comprises 5 chapters. These chapters are entitled as “Introduction”, 

“Background and Related Works”, “Materials and Methods”, “Results” and 

“Discussion”, respectively.  

The first chapter gives a short introduction followed by the scope and objective of the 

study.  The second chapter provides a short description of the basic concepts used in 

the proposed research together with the related work in the literature (i.e. information 

about the targeted knock-out mice studies, Diseasome with its analysis details, MPO 

and MGI databases and a brief information about the general phenotypic studies in the 

mouse and human genomes). In the third part (Material and methods), the details about 

data preparation and integration are provided and illustrated exclusively. Moreover, 

network visualization tool Gephi is exhibited under this section, together with the 

technical details on the proposed web-service Mouıse2HumanNet. The fourth chapter 

(Results) includes the information related to statistical and network analysis of the 

generated networks, together with case studies. Finally, the fifth chapter (discussion) 

sums up the work done, discusses the results and offers possible modifications, 

alterations and developments as potential future studies. 
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CHAPTER 2 

 

 

BACKGROUND AND RELATED WORKS 

 

 

2.1 MOUSE AS A MODEL ORGANISM 

Mouse is one of the most preferred model organisms for the research on human 

physiology and pathophysiology (Rosenthal and Brown, 2007). Mouse models have 

been used comprehensively to understand the mechanisms of human diseases, to 

explore the effects of drugs and to predict patient provisions. 

Genetic resemblance between mouse and human organisms is the reason behind using 

mouse as a model organism to study human diseases. More than 90% of the mouse 

and human genomes can be divided into related conserved synteny regions, which 

show the gene order in the genomes. These regions are highly conserved in both human 

and mouse genomes (Waterston et al., 2002). It is also stated that, both species have 

similar number of protein coding genes (Guénet, 2005). 

Another reason why mouse is a suitable model organism to model human diseases and 

deficiencies is that mice is easy to maintain and breed in the laboratory conditions. The 

typical "life span” of the mouse approximately ranges from 1.3 to 3 years for various 

strains. As a result, their lifetime can be studied in a reasonable period (Comfort, 

1959). Furthermore, mice have been used in numerous experimental genetic studies 

up to this day; as a result, the generated collective practical experience is shared by 

researchers all over the world. 

However, there also exist genetic differences between the mouse and human, which is 

reflected onto their distinct physiological and anatomical characteristics. These 
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differences are resulted from the accumulation of various types of mutations on the 

genomes of human and mice after their divergence from their common ancestor. 

Naturally, there also is a divergence between the human and mouse at the systemic 

level such as the regulatory factors, immune system gene activities, stress response 

and metabolic periods (Comparing the mouse and human Genomes, 2015). 

Various studies in the literature have investigated the genetic differences between 

mouse and human with the purpose of modifying the mouse genome to study human 

physiology on mouse models. The way to achieve this lies in the field of genetic 

engineering, which is dealing with the direct manipulation of DNA to change an 

organism’s genotype in a desired way. Gene targeting –one of the various genetic 

manipulation methods– allows researchers to introduce mutations at specific loci in 

the target organism. For example, targeted deletion of a specific gene in mouse is 

frequently used to determine the biological role of the in-activated/deleted gene. 

 

2.1.1 THE KNOCK-OUT MOUSE 

A targeted knock-out mouse is a laboratory animal where a specific gene was 

inactivated, in other words "knocked out" by researchers. The practical application is 

usually carried out by replacing the existing gene or damaging it with an artificial piece 

of DNA. During the 1980’s, a Dr. Mario Capecchi invented a procedure to remove or 

change any single gene in the mouse genome (Capecchi, 2008). Mouse strains were 

constructed in such a way that the altered genes pass from parent to its offspring. 

The discovery of mouse embryonic stem (ES) generating cell lines allowed for the 

generation of the efficiently targeted knock-out mouse (Limaye, Hal, & 

Kulkarni,2009). ES cells were reproduced from embryos at a developmental stage 

before implantation. Fertilization normally occurs in the oviduct, and throughout few 

days a series of cleavage divisions occur. The embryo rides down the oviduct and into 

the uterus. Embryo cells are undifferentiated in each cleavage-stage. Indeed, each of 

these cells has a potential to give rise to any cell for the body. The first fractionation 

in human organism occurs at about five days of development. Outer layer of cells self-
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dedicate themselves to become a part of the placenta and separates from the inner cell 

mass (ICM). The ICM cells can generate any cell type of the body. If the ICM is 

removed from its environment and cultured, these cells can continue to proliferate and 

replicate themselves indefinitely. These cells can maintain the developmental potential 

to form any cell type of the body. These ICM-derived cells are ES cells. It is important 

to notice that ES cells do not exist in vivo; they should be considered as a tissue culture 

artifact (Winslow, 2017). 

Gene targeting and homologous recombination are the preferred ways of building a 

targeted knock-out mutation in a mouse. Homologous recombination is a DNA repair 

mechanism and it has been made up by inserting a specific mutation into the 

homologous genetic locus (Majzoub and Muglia, 1996). During gene targeting or 

homologous recombination, manipulation of the gene is occurred in the nucleus of an 

ES cell. This is done by introducing an artificial piece of DNA that shares identical or 

homologous sequence to the gene. This homologous sequence flanks the existing 

gene's DNA sequence both upstream and downstream of the gene's location. The cell 

recognizes the identical stretches of sequence and wipes out the existing gene or 

portion of this gene with the artificial piece of DNA. Because the artificial DNA is 

inactive, the wipe eliminates, or "knocks out," the function of this gene. In the second 

strategy, called gene trapping, again a gene in an ES cell is manipulated. However, 

instead of directly targeting a gene of concern, a random process is preferred. A piece 

of artificial DNA containing a reporter gene is constructed to be inserted randomly 

into any gene. The inserted piece of artificial DNA prevents the cell's RNA "splicing" 

mechanism to work properly, thus gene’s function is knocked out. 

When the gene loses its activity, various alterations can be observed in the mouse 

phenotype. These phenotypical alterations can be anatomical, behavioral, biochemical 

or physical (Austin et al., 2004). The knockout mice specifically constructed to study 

human mutations are eminent sources to study pathophysiology and may serve to find 

novel therapies for genetic diseases (Majzoub and Muglia, 1996). These works have 

led to various discoveries about human diseases, from cancer to obesity. 

 



8 

2.1.2 PURPOSES BEHIND USING KNOCK-OUT MICE 

Human organism shares various similar genes with the mice. Therefore, observing the 

main characteristics of knocked-out mice can give valuable information regarding the 

human genetic disorders. A study stated that mice have been used widely to enlighten 

the mechanism behind human diseases and increase the efficacy of drugs (Vandamme, 

2014; Justice and Dhillon, 2016). There have been progress for understanding critical 

human diseases such as cancer, obesity, heart disease, diabetes, anxiety, aging and 

Parkinson disease thanks to the mouse studies, as the knockout mice serve critical 

information about how the knocked-out gene normally functions in the body.  

IMPC (International Mouse Phenotyping Consortium) is a freely available and useful 

platform for human disease investigations (White et al., 2013) and this consortium is 

creating targeted knock-out mutations for various protein coding orthologue genes in 

the mouse genome. Orthologous genes are defined as homologs in different species, 

which diverged from each other following a speciation event (Jensen, 2001). It is 

reported that usually the function is conserved between orthologous genes. The main 

aim of IMPC is to explore the machinery and functions of 20,000 common genes 

between mouse and human. It provides a platform to examine the mechanisms of 

human disorders.  

It has been stated that the identification of the essential genes in mouse will help to 

analyze genetic human diseases. Essential genes can be defined as the genes required 

for the life of any human cell. In the perspective of the collaboration with The Exome 

Aggregation Consortium (ExAC) it was demonstrated that, these genes are valuable 

nominees for various undiagnosed human genetic conditions (Lek et al., 2016). ExAC 

is created for harmonizing and clustering the exome sequencing data of large scale 

sequencing projects. 
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2.2 MOUSE GENOME INFORMATICS (MGI) 

Mouse Genome Informatics (MGI) is an international database of scientific 

information obtained by experimenting with the genome of laboratory mouse. It is 

considered and acknowledged as the most comprehensive resource covering the 

genomic features of the mice. It also facilitates human health and disease studies. 

There exist various projects contributed to MGI can be listed as: 

•   Mouse Genome Database (MGD) Project 

•   Gene Expression Database (GXD) Project 

•   Mouse Tumor Biology (MTB) Database Project 

•   Gene Ontology (GO) Project at MGI 

•   MouseMine Project 

First project that contributed to MGI is MGD project (Blake et al., 2011), which was 

carried out in Jackson’s laboratory. MGD includes various types information such as 

GO, MPO and human diseases in OMIM. It provides a genetic map, a genome browser 

(Mouse Jbrowse), Single Nucleotide Polymorphisms (SNPs) information and 

mammalian orthology data.  

Second project is the Gene Expression Database (GXD) and constructed to extract 

gene expression profiles for the laboratory mouse. There exists emphasis on 

endogenous gene expression during the development of mouse.  

Another project is the Mouse Tumor Biology Database (MTB), established to mine 

experimental models, review specific cancers and detecting genes that are mutated in 

cancers.  

Other one is Gene ontology project at MGI, which is a part of the Gene Ontology 

Consortium that provides vocabularies for describing the MF, BP, and CC of gene 

products. GO team members at MGI contribute to develop specific ontological terms 

for mouse and functional curation of mouse gene products.  
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Lastly, MouseMine is a very powerful online platform which serves a system using 

mouse data from MGI. It includes nomenclature, synonyms, database cross references, 

genome coordinates, the mouse allele catalog, spontaneous and engineered mutants, 

mutant cell lines, mouse strains and genotypes. Also, it consists mouse functional (GO) 

annotations, phenotype (MP) annotations, disease (OMIM) annotations, human genes 

and their genome coordinates (via EntrezGene); mouse/human orthologues and 

mouse/mouse paralogues, mouse/mouse and mouse/human protein-protein interaction 

data from Database of Protein, Chemical, and Genetic Interactions (BioGrid) and 

European Bioinformatics Institute (IntAct); plus, publications, notes, and external 

database references. MGI also provides an investigation tool called as “batch 

summary”. 

 

2.3 BASIC CONCEPTS IN GRAPH THEORY AND NETWORK ANALYSIS 

The computational methodology to generate the proposed tool in this study is based 

on the graph theory and on network analysis. As a result, an introduction on the basic 

concepts in graph theory and network analysis is required. 

A graph is a pair of sets (V, E) where V is defined as a finite set called the set of 

vertices and E is a set of 2-element subsets of V, called the set of edges. A network 

can be defined as a graph where nodes and/or edges have labels in other words 

attributes. In graph theory, various concepts are employed to analyze a network. One 

of the basic terms, a walk is defined as any route from vertex to vertex along edges 

and it can end on the same vertex where it began or on a different vertex. A path is a 

walk that does not include any vertex twice, except that its first vertex can be the same 

as its last. A trail is defined as a walk with no repeated edge. A cycle is defined as a 

closed path. Edges do not have an orientation in undirected graph and undirected graph 

is connected if there is a path between each pair of vertices and if it has no cycle, it is 

called as acyclic, it is defined as a tree if any two vertices are connected by exactly one 

path and it is named as acyclic - bipartite if V is partitioned into two independent sets. 
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Networks used in this thesis are constructed as undirected and modified from the 

bipartite Diseasome design mapping. 

Furthermore, degree, average weighted degree, graph diameter, graph density, 

modularity and eigenvector centrality terms are frequently used to reveal various 

characteristics of networks.  

For undirected networks, the node degree term is the number of edges linked to node 

n. A self-loop of edges is counted as two edges for the node degree (Seymour, 

Schrijver, and Diestel, 2005). In degree and out degree terms are used for directed 

graphs, not applicable for the undirected ones. In degree means incoming edges to a 

node n and out degree means outgoing edges from the node n. Weighted degree is the 

weight of each edge related to node n. 

Graph diameter can be defined as the maximum of the shortest paths between any two 

of the vertices in graph, in other words, it is the maximum eccentricity of any vertex 

in the graph. The maximum eccentricity is the graph diameter. The eccentricity of any 

vertex denoted as v in a connected graph is the maximum graph distance between this 

vertex v and any other vertex u.  

Graph density is a measure that shows how strongly network elements have connected 

each other. It is calculated as dividing the number of edges in network to the all 

possible connections. It takes a value between 0 and 1.  

Modularity can be one of the most frequently used quality function for community 

detection in networks (Jin, Girvan, and Newman, 2001). It is a representation of sum 

of the number of edges in the communities minus the expected fraction of such edges 

if they are placed at random with the same distribution of vertex degree (Newman and 

Girvan, 2004). In other words, modularity compares the number of edges in a cluster 

with the expected number of edges that can be found in a cluster. It indicates the 

importance of a node while considering its connections in a network and it gives 

relative scores to each node. Modularity also measures the robustness of a network 

(Labs, 2012). It has been stated that the modularity issue suffers from resolution limit 

and therefore sometimes it is unable to detect small communities or cliques. If a 
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network is considered as large enough, the expected number of edges between two 

groups of nodes in a model with null modularity can be smaller than one. In that case, 

a single edge between two clusters would be interpreted by modularity. Therefore, 

even weakly interconnected complete graphs would be merged by modularity 

optimization if the network were sufficiently large (Fortunato and Barthélemy, 2007). 

Another important term is directed acyclic graph (DAG) for understanding the logic 

of this study. In DAG structure, one node is named as a root node, and all the other 

nodes are constructed as leaf nodes. It is declared that DAG having established 

hierarchical parent-child relations between all neighbor nodes proceeding from the 

root node down to any leaf nodes. The difference between a tree and a DAG is the 

possibility of more paths between two nodes in the DAG structure. In other words, an 

undirected graph is named as a tree if there exist exactly one simple path between each 

pair of vertices. 

A Connected component defines a subgraph where any two of its vertices are 

connected to each other by common paths (i.e. there is no non-connected vertices in a 

connected component), whereas a maximal clique defines a component whose all 

vertices are fully connected to each other.  

 

2.4 MAMMALIAN PHENOTYPE ONTOLOGY (MPO) 

Phenotype is a term that describes observable morphological, physiological and 

behavioral characteristics of an individual. Phenotypic characters can appear, 

disappear, increase or decrease in lifetime. Environmental facts can change the 

phenotypic characters. Phenotypic variation can be explained with the individual’s 

genetic and environmental history. Various human diseases are associated with both 

environmental and genetic characters. Also, it is possible that some variantions in 

germline cells may lead to inherited syndromes that are passed to the offspring (Smith 

and Eppig, 2009).  
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A comprehensive database called the Mammalian Phenotype Ontology (MPO) has 

been constructed under the MGI resource to catalogue tens of thousands of mutations 

in the mouse genome and their related phenotypes. Phenotypic terms are stored in a 

specialized format to describe abnormal mammalian phenotypes in a hierarchical 

format. Root node is named as the “Mammalian Phenotype” in that hierarchy and it 

divaricated into 30 different terms called high-level phenotypes, which are related to 

the physiological systems, survival and behavioral conditions. Each term describes a 

unique phenotype and displayed with its unique MP ID. Besides this ID, it consists 

term name, a synonym (if any) and a detailed definition of the content. Every 

phenotypic term that is inherited from a term in a higher level in the hierarchy is called 

as “child” of the parent term. Their direct parent phenotypes called as “parent” of the 

child term. Any term should have at least one parent except the root term “Mammalian 

Phenotype”.  

All phenotypic information in MPO is kept in OBO (Open Biological and Biomedical 

Ontologies) format. The OBO is one of the machine-readable formats implemented 

for easy data query, mining, and manipulation. One of the properties of OBO is that it 

is constructed as easily human readable compared to the XML.  

Mammalian phenotype browser serves the users with the stored phenotypic terms and 

their relations. Under phenotype search bar, the recorded phenotypic information can 

be viewed in a DAG format. Additional information is given under “Phenotype Term 

Detail” part with terms, synonyms, definitions, parent terms and IDs. According to the 

MGI statistics, as of 2017, 11,464 mammalian phenotype (MP) terms are generated 

and stored. MP terms can be searched by typing its name directly on the query column. 

For example, the term “abnormal brown fat cell morphology” (id: MP:0009116) was 

searched and the relationships are illustrated in Figure 1. In this example, “abnormal 

brown fat cell morphology” term has two parent phenotype terms namely: “abnormal 

brown adipose tissue morphology” and “abnormal fat cell morphology”. 

To sum up, MPO is a collection of controlled vocabulary terms to define abnormal 

phenotypes observed in mouse experiments. These phenotypes have been annotated to 
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mouse genes, which lead to the corresponding phenotypic traits due to certain 

mutations. 

 

 

Figure 1: Phenotypic relationships of “abnormal brown fat cell morphology” in MPO 

 

2.5 DISEASOME 

Diseasome is a collection of networks that relates human diseases with the disease 

causing human genes (Goh et al., 2007). It is proposed as a network based approach 

to study the relations between human genetic disorders and the genes. The Online 

Mendelian Inheritance in Man (OMIM) is used as the data source for disease-gene 

relations in Diseasome. The Diseasome mapping consists of multiple networks 

namely: the human disease network (HDN), the disease genes network (DGN) and the 

bi-partite human disease and gene network. More details about these two networks are 

given under section 2.5.1. In Figure 2, Diseasome design is illustrated. In their study, 

Goh et al. stated that disorders can be associated with each other using the shared 
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disease-causing genes. The main list of Diseasome contained 1,284 disorders and 

1,777 disease genes and all diseases are categorized based on 22 distinct disease 

classes. 

Diseasome particularly focuses on the molecular relationships between genetic 

variation and phenotypic information, and it is a seminal work in terms of discovering 

the mechanisms of complex diseases. It is important here to note that, revealing 

complex disease mechanisms is one of the most crucial problems in biomedical 

research, currently (Botstein and Risch, 2003, Kann, 2009). It had already been stated 

in the literature that many human diseases occur due to the factors related to genetic 

variations (Hirschhorn and Daly, 2005). Up to date, various databases are constructed 

for annotating the relations between genes and diseases of human such as OMIM 

(Hamosh et al., 2005), CTDTM (Davis et al., 2010) and NHGRI-EBI GWAS catalog 

(Welter et al., 2013). Due to the nature of database curation process the associations 

are not complete, so the integration of multiple existing resources usually leads to more 

comprehensive view of the current biomedical knowledge.  DisGeNET is one of these 

platforms and constructed for the integration of gene and disease information and 

associations from various resources (Piñero et al., 2015). The source of disease-gene 

relation information is obtained from the OMIM database. The Online Mendelian 

Inheritance in Man (OMIM) was constructed by Dr. Victor A. McKusick in early 

1960’s to catalogue genetic diseases/traits and the corresponding disease causing 

genes (Hamosh et al., 2005). 
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Figure 2: Illustration of Diseasome networks, Re-printed from: Physical Sciences - 

Applied Physical Sciences: Kwang-Il Goh, Michael E. Cusick, David Valle, Barton 

Childs, Marc Vidal, and Albert László Barabási, the human disease network PNAS 

2007 104(21) 8685-8690; published ahead of print May 14,2007, 

doi:19.1073/pnas.0701361104). 

 

2.5.1 HUMAN DISEASE NETWORK AND DISEASE GENE NETWORK 

Human Disease Network (HDN) shows the relations between human disorders. A 

representative sub-network of HDN is shown on the left side of Figure 2. Every node 

in HDN shows a distinct disorder and two disorders have a link if they share at least 

one gene in common. Disorder classes inform the user regarding which physiological 

system is affected by that disease. Classifications were made for twenty primary 

disorder classes but additionally two categories were preferred to be added as 

“multiple” and “unclassified”. If the primary classification does not seem clear and 

this disorder belongs to more than one classes, then it was put into the multiple class. 

Construction*of*the*diseasome*bipartite*network.*

Kwang8Il*Goh*et*al.*PNAS*2007C104:868588690

©2007%by%National%Academy%of%Sciences
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If there is no sufficient and obvious information for classification, then the disorder 

put into the unclassified class. At the visualization level, 22 different disorder classes 

are differentially colored to investigate if the diseases belong to the same system share 

their genes as well. The edge between the diseases from the same disorder classes is 

colored according to the color of this class; otherwise they are shown in gray. The size 

of every disease node depends on the number of genes associated with that disorder. 

Also, the edge thickness between two disorders is proportional to the number of shared 

genes. Name of disorder is shown on the network if it has ten or more genes associated 

with it for practical reasons. 867 of 1,284 disorders have at least one link to other and 

516 disorders constitute a giant component. This result suggests that the origins of 

most of the hereditary/genetic diseases are shared.  

Disease Gene Network (DGN) displays the associations between genes according to 

their shared diseases. In DGN, each node represents a distinct gene. Two distinct genes 

are connected to each other if they are both associated with the same disorder. 

Therefore, the link thickness is proportional to the number of disorders commonly 

shared by two distinct genes. The size of each node is proportional to the number of 

diseases it is related to. Nodes are coloured as gray if they play a role in more than one 

disorder, otherwise they are colored according to the disorder class of related disease. 

The name of gene is indicated only if it is associated with more than five disorders, for 

practical reasons. It can be said that the link between two genes may indicate the 

phenotypic associations, protein-protein interactions (PPIs) (Rodriguez-Caso, Medina, 

and Sole, 2005) and the discovery of novel genetic interactions. 1,377 out of 1,777 of 

disease genes are connected to at least one other gene and 90 of them compose a giant 

component. 

 

2.5.2 INVESTIGATION OF THE DISEASOME NETWORK 

Morbid Map (MM) of the OMIM is one of the most comprehensive and highly curated 

disorder gene association database. The OMIM MM shows the cytogenetic map 

location of disease genes in OMIM. The data in Diseasome were downloaded from the 

2005 version of MM and contains 2,929 entries of 4,043 with the “(3)” tag, which 
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shows at least one mutation exists in that gene causing the disorder. After this pre-

processing, the authors have parsed 2,929 entries into 1,284 distinct disorders by 

gathering all same subtypes of the same diseases under one entry. For example, 11 

distinct groups of Fanconi Anemia were merged. Each distinct disease was assigned 

with unique disease ID. Similarly, each gene was indicated with its distinct ENTREZ 

ID, which is a specific indicator of it for the organism of interest. Entrez Gene is a 

gene bank and maintained in the National Center for Biotechnology Information 

(NCBI) (Maglott et al., 2010). 

In the Diseasome mapping, circle shaped nodes represent diseases and rectangle 

shaped nodes show disease genes. There exists a link between two disorders if a 

mutation in the commonly shared gene lead to these disorders. Colors are attained 

according to these disease classes. Size of giant component of a randomized network 

was computed both for the HDN and the DGN. It had been shown that the giant 

component sizes of the randomized networks are larger than the actual ones. This result 

gave the indication that there is a pathophysiological clustering between the disorders 

and the disease genes. The researchers stated that actual disorders and diseases genes 

show tendency to link with the same classes (Goh et al., 2007). 

A specifically described term in the Diseasome study is the “locus heterogeneity”, 

which was employed to reveal the hub diseases clusters in Diseasome. Locus 

heterogeneity term is specified according to the mutations in more than one genes 

which cause similar disorders. It has been found that cancer and neurological disorders 

show high locus heterogeneity and they are the most connected nodes. On the other 

hand, metabolic, skeletal, and multiple disorder classes are the less connected ones and 

shows low genetic heterogeneity (Goh et al., 2007). 

It was seen from the results of Disesome that several disorders arise from mutations in 

few genes. Therefore, it was thought that corresponding protein product of these genes 

tend to participate in the same cellular pathways, molecular complexes or functional 

modules. Disease genes associated with the same disorders share common cellular and 

functional characteristics in terms of their annotated “Gene Ontology (GO) Terms”. 

GO is a controlled vocabulary ontology system to describe gene/protein functions and 
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it is highly used in functional genomics studies. GO is composed of 3 main categories: 

Molecular Function (MF), which shows the molecular activities of gene products, 

Cellular Component (CC), which shows location of activity for the gene products, and 

the Biological Process (BP), indicating the involvement of gene products in the 

systemic processes such as the metabolic pathways. 

Finally, an investigation in Diseasome study worth mentioning is the prediction of the 

essential gene information for the human. If a targeted knock-out mouse gene ends 

with lethality at the end of the experiment, then the researchers called human 

orthologue of that mouse gene as an essential gene. They obtained human related data 

from MGI in 2006 (MGI-Mouse genome informatics-the international database 

resource for the laboratory mouse, 2014). Embryonic/prenatal lethality and postnatal 

lethality classes are considered as lethal and the rest as marked as non-lethal. 398 of 

1,267 mouse lethal human orthologue genes were found to have known human disease 

associations (Goh et al., 2007), which shows 22% of them are already known human 

disease genes. This result leads to a separation in two classes of human disease related 

genes: 1,267 essential disease genes and 1,379 nonessential disease genes.  

 

2.6 THE HUMAN PHENOTYPE ONTOLOGY PROJECT (HPO) 

HPO provides a controlled vocabulary set to define phenotypic traits in human 

diseases. These phenotype terms mostly cover symptoms and they are associated with 

human disease records by manual curation. Köhler et al., reported in 2014 that the 

system contains 10,088 classes (terms) describing human phenotypic abnormalities. 

HPO also provides phenotype-gene relations using OMIM disease-gene associations. 

Combination of phenotype and genomic data serves the identification of complications 

of disease subtypes (Köhler et al., 2014). The HPO project (Robinson et al., 2008) has 

started in 2007 and it has enhanced the coverage, usage, complexity and cross 

connection with other projects, particularly from the OBO Foundry (Smith et al., 

2007). HPO covers a wide range of phenotypic abnormalities seen in human diseases. 

Each class is named starting with “HP” letters with a unique and a stable number. On 
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average, each disease entry has 15 HPO annotations and the mapping is enriched at 

every database release. There are various biomedical projects that link to HPO. 

DECIPHER project interconnects with HPO and its aim is to find clusters of rare 

diseases that have phenotypes and structural rearrangement with strong correlation 

(Firth et al., 2009). The Biomedical Research Centers/Units Inherited Diseases 

Genetic Evaluation consortium uses the HPO database for saving the phenotypes of 

patients with rare inherited disorders.  

Another crosslinking project is European Cytogeneticists Association Register of 

Unbalanced Chromosome Aberrations (ECARUCA), which is established in 2003 and 

collecting and providing clinical and molecular information related to rare unbalanced 

chromosome abnormalities (Feenstra et al., 2006). Currently this database includes 

information for more than 4800 cases that are crosslinked to HPO (Vulto-van Silfhout 

et al., 2013). 

Yet another one is Nijmegen Genetics Phenotype Database (NGPD), aiming to use 

and collect phenotypic information of patients with unexplained intellectual disability 

and/or congenital anomalies using the HPO. The NGPD currently includes more than 

8000 patients with 73,496 HPO associations (Moss et al., 2014).  

 

2.7 NOVEL DISEASE - GENE IDENTIFICATION USING PHENOTYPE 

DATA 

There are studies in the literature aiming to discover novel disease-gene associations 

using phenotype data. A study was conducted in 2012 by Chen et al. to find the 

candidate disease genes by using mouse phenotypes. The authors developed a web 

application to compare the mouse organism with human. Data collection comprises 

the most comprehensive part of this study. Human Phenotype ontology (HPO) 

annotations of OMIM diseases, and the HPO itself, and MPO annotations of mouse 

models, MGI asserted disease models and OMIM human gene to MGI gene mappings 

were downloaded. At the end, a database was created that consists of HPO annotations 
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for almost all clinical OMIM entries for a large part of HPO and MPO terms. 

Investigation was extended that covers nearly all known Mendelian diseases and a new 

software called OWLSim was constructed. The database was started to be constructed 

in 2011 and contains mappings from HPO, MPO and OMIM databases. 5,035 OMIM 

diseases (1858 with known gene associations and 3,177 with no known gene) and 

1,791 OMIM genes with HPO annotations, along with the MPO annotations of 24,904 

mouse models and 8,124 mouse genes are stored in the database. Additionally, 2,624 

associations between OMIM diseases and models from MGI of the literature are also 

published (Chen et al., 2012). 

The main reason of using OWLSim software is to compare each HPO related OMIM 

genes or diseases with all MPO related mouse genes or mutant lines. It uses merged 

OWL file of PATO, UBERON, MPO plus logical definitions, HPO plus logical 

definitions and a mapping of HPO and MPO lexical matches for pairwise comparisons. 

OWL is the acronym for Web Ontology Language and a standard produced by the 

W3C. GO terms in OWL are based on a translation from OBO to OWL. Uberon is an 

integrated cross-species ontology that covers anatomical structures in animals. PATO 

can be used along with other ontologies such as GO or anatomical ontologies. 

Another resource called PhenomeNET was conducted in 2011 by Hoehndorf et al., 

with the same annotations, ontologies and definitions used for comparing human and 

mouse phenotypes; however, this algorithm differs from OWLSim (Hoehndorf, 

Schofield and Gkoutos, 2011) in methodological manners. While calculating the least 

common ancestor, PhenomeNET uses the idea of subsuming between classes, while 

OWLSim prefers to use other ontology relations. PhenomeNET calculates the average 

of all pairs of phenotypes, however, OWLSim uses the average of best matches.  

MouseFinder is a web tool, which provides users with the opportunity to investigate 

mouse phenotypes and their comparison to disease records (Chen et al., 2012). Users 

can search for various types of features by entering OMIM disease, gene names or 

HPO terms. Also, MGI asserted mouse models can become visible if it is provided. 

Another aim of this web tool is to discover the novel genes for OMIM diseases with 



22 

unknown gene. 468 OMIM diseases were taken with a mapped locus with no known 

genes.  

In 2007, a study authored by Chen et al. improved the novel gene prioritization by 

using mouse phenotype information. It was shown that genes that because diseases 

have functional relationships. ToppGene database was created for gene prioritization 

and claimed to have higher performance compared to resources such as SUSPECTS 

and ENDEVAOUR (Chen et al., 2007).  Since most of the diseases are genetically 

polygenic, intricate, multifactorial and present different clinical phenotypes, it is hard 

to identify the disease-causing genes. Therefore, a different approach was applied with 

the use of integrative genomics-transcriptomics-phenomics-bibliomics sources. These 

sources were compounded with human gene annotations, mouse phenotype data and 

literature co-citations of genes. 

In the same study, ToppGene was compared to the other gene prioritization methods: 

SUSPECTS and ENDEVAOUR. SUSPECTS is a tool that matches within GO terms, 

InterPro domains and gene expression data built on top of the PROSPECTR. 

PROSPECTR uses sequence features to rank genes (Adie et al., 2005). The user 

interface was written in JAVA script, JSP and servlets, and integrated with the Tomcat 

web server. GO, pathways, phenotype, protein domains, PubMed and protein 

interaction terms are displayed (Chen et al., 2007). While comparing it with 

SUSPECTS and ENDEVAOUR it was observed that percentage of top 10% and 5% 

ranked target genes results were higher in ToppGene. 

ToppGene Suite is a portal for gene enrichment and novel gene prioritization based on 

functional annotations and protein interactions. Moreover, literature identifiers were 

used such as PubMed, PMIDs. As an example, for simple interpretation, if two genes 

have the same cross-reference in PMID result, it means that they have either direct or 

indirect biological association. 

 

 

  



23 

CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

3.1 MATERIALS 

This section includes the processing steps of website and the required inputs for design 

and analysis. The inputs’ preparation and related soft wares are illustrated in detail. 

 

3.1.1 GEPHI FOR NETWORK ANALYSIS & VISUALIZATION 

Network visualization of large graphs has been a challenging subject for various years 

but it also is crucial to examine and understand the biological mechanisms (Bastian, 

Heymann and Jacomy, 2009).  Gephi is an open free source software written in Java 

on the NetBeans platform for analyzing and visualizing networks and graphs. It is 

claimed that Gephi can handle large and complex data and both dynamic and static 

networks can be displayed and manipulated with Gephi tool (Bastian, Heymann, and 

Jacomy, 2009). It is freely available for academic purposes under the public license 

agreements (gephi.org). Gephi provides a visual platform, which bridges the complex 

biological data and mechanisms onto a tangible virtual environment. Gephi has various 

modules for importing, visualizing, filtering all types of networks. Multiple networks 

can run at the same time in separate workspaces.  

Any algorithm, tool or filter can easily be added to Gephi with moderate programming 

skills. Nodes and edges output files can be exported manually or using filtering system. 

It provides various network analysis tools and their results also can be exported in 
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various formats. Also, with the help of various plugins in it, both static and dynamic 

results can be gathered. It provides user to manipulate and anticipate the data during 

handling with the network (Bastian, Heymann and Jacomy, 2009).  

There are various visualization tools as alternatives to Gephi, which can be listed as 

yEd Graph Editor, Graphviz, Cytoscape, and Neo4j. The reason behind using Gephi 

arised from the fact that it was used in the Diseasome project. yEd is more suitable in 

diagramming rather than network analysis. The Graphviz takes descriptions of graphs 

in a text language and can create diagrams in several formats. Cytoscape is an open 

source platform for visualizing complex networks. Neo4j is an online platform for 

graph visualization and for the generation of graph based databases. 

It is possible to perform various types of analysis with Gephi and results can be 

exported in different formats. Here are the important graph properties that Gephi 

calculates: Connected components, modularity, node degree, graph diameter, 

centrality, graph density, average path length and clustering coefficient. These network 

statistics can be computed under statistics part belongs to the “Overview” menu. Users 

can found filter options and node/edge overviews under this menu. Possible formats 

to export a network can be given as: 

 

•   A CSV is a comma separated values file and it allows data to be saved in a 

table structured format.  

•   A GML, Geography Markup Language (GML) is the XML grammar defined 

for expressing geographical features. Image exporters makes user to export 

view of a graph to .png,  w.svg of .pdf formats 

•   Portable Network Graphics is a raster graphics file format that supports lossless 

data compression. 

•   Scalable Vector Graphics (. svg) is an XML-based format that can be edited 

using either text editors or image editing software. SVG can also be used for 

the Web, as it looks well when zooming or panning a visualization.  
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•   The Portable Document Format (PDF) is the output can be written in terms of 

the wide-spread cross-platform document format. Even though this is the most 

trivial way among other exporting variations, any possibility for interactive 

alterations is not fully accessible. 

•   Seadragon exporter is suitable for the dynamic networks.   

•   Sigma.Js creates web based network graphs using a template driven approach.  

•   Loxa web site export also uses a sigma. Js and it provides user an interactive 

filtering and zooming.  

•   Terminally, an HTML/JS project which is gexf. Js master makes user to drag 

and drop a GEXF file to create a web export. 

 

3.2 METHODS 

This section explains the data preparation, aggregation and integration work. Also, 

processing steps of Gephi tool, details of python scripts in pseudo format are presented. 

A short website tutorial is described under this part (for more details see Appendix A). 

Data processing steps are summarized in Figure 3 and detailed information is provided 

in the following sub-sections.  
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Figure 3: Working diagram of the study. 

  

3.2.1 DATA DOWNLOAD AND PROCESSING 

Under this part, datasets are illustrated according to their purpose of usage, content 

and modifications that were made on them. Two different datasets about human and 

mouse organisms were extracted. Dataset 1 contains the Human disease – human gene 

relation information and downloaded from Diseasome resource and the Dataset 2 

contains Mouse affected system (phenotype) – mouse gene information derived from 

MGI. Mouse genes attribute was chosen as a foreign key, to relate these two sets. A 

more detailed information about the datasets is provided under sections 3.2.1.1 and 

3.2.1.2 respectively.   

 

 

 

DATA	  
DOWNLOAD

•Human disease – human gene relations were downloaded from Diseasome.
•Mouse affected system (phenotype) – mouse gene relations were downloaded from MGI.

DATA	  
PROCESSING

•Dataset 1 was generated using targeted knock-out mouse orthologues of human genes, 
Entrez ID of these genes, human diseases  with their ID's and disorder class information.

•Dataset 2 was generated using affected system (phenotype) terms with their unique MP 
ID's, targeted knock-out mouse orthologues of human genes.

DATA	  
INTEGRATION	  

•Dataset 1 and Dataset 2 were integrated by using knock-out mouse orthologues human 
genes as a foreign key. 

•Python scripts were created to obtain .gexf extension files while using these datasets. 

NETWORK	  
VISUALIZATION

•Visuzalition of network was done with Gephi tool.

HTML	  EXPORT

•Final mapping was exported to generate the online web-service using a Gephi network 
visualization tool.
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3.2.1.1 DATASET DOWNLOAD FROM DISEASOME & DATA 

PROCESSING 

Diseasome dataset shown in Table 1 was used as the source to constitute Dataset 1. It 

includes disease ID, disease name, disorder class, size (s) that show the number of 

associated genes, degree (k) shows number of disorder classes it connects to, class 

degree (K) is the number of distinct disorder classes it connects to and genes written 

as comma delimited at the last column. 

 

Table 1: The Diseasome dataset 

 

 

Information about datasets are available under the supported information (SI) part. 

Curated Morbid Map file with disease ID, class assignment (SI Table1), network 

characteristic of diseases (SI Dataset 2) from and disease genes (SI Table 3) were 

examined and combined in Dataset 1. Mouse orthologues of human genes were 

converted and extracted with the online converter tool called as HCOP: Orthologue 

Predictions Search (European Bioinformatics Institute, HCOP: Orthologue Predictions 

Search. Retrieved [04.07.2016] from [http://www.genenames.org/cgi-bin/hcop]). 

SI Table1 contains the Disease ID, Disorder name, Human Gene Symbols, OMIM ID, 

Chromosome Position of the related gene and Disorder Class information. Disorder 

names were aligned in an alphabetical order and distinct consecutive numbers are 

given in ascending order starting from 1. These numbers are called as Disease ID and 

assigned for analysis in Gephi. Disorder names are distinctly ordered with their related 
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human genes and in accordance OMIM Ids are retrieved. If a disorder has more than 

one genes related to it, these genes are separated with comma.  

SI Table 2 covers the information based on disease network statistics. Columns are 

separated as Disease ID, Disorder name, class Size(s), Degree(k), Class-degree(κ), 

Genes implicated (Entrez ID) as comma delimited. Size(s) is the number of genes 

associated with that disorder, degree(k) is the total number of connectivity to disorder 

classes and class-degree(κ) is the number of distinct disorder classes.   

SI Table 3 was constructed according to the disease gene information. This table 

contains Entrez ID, Symbol, Disorder class, Size (s), Degree (k), Number of classes 

associated, Implicated diseases (Disease ID) as comma delimited. Size(s) is the 

number of diseases associated with that gene, degree(k) is the total number of genes 

belonging to disorder(s) interact with this gene expect itself.  

SI Table2 was used as a reference source to compose Dataset 1. As the final step, 

Dataset 1 was linked together with the dataset obtained from MGI, which is explained 

in the following section. 

Dataset 1 shown in  

 

 

 

Table 2 consists of targeted knock-out mouse orthologues of human genes, Entrez ID 

of these targeted knock-out mouse genes, human disease ID, human disease and 

disorder class information. The remaining information except mouse orthologues of 

human genes and their IDs are the same with the Diseasome dataset information. 

Human gene column was added to ease the understanding for orthologue idea between 

human/mouse organisms. This dataset is based on human data. 
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Table 2: Dataset 1 

 

 

3.2.1.2 DATASET DOWNLOAD FROM MGI & DATA PROCESSING 

Mouse affected systems information (i.e. phenotypes) was collected from the MGI 

database. Collected mouse orthologue genes with HCOP were imported to the MGI 

batch summary tool for creating Dataset 2. Only the targeted null/knock-out mouse 

genes were taken into consideration during the generation of Dataset 2. MGI data 

shown in Table 3 were used as the source to constitute Dataset 2. It includes affected 

system information with unique “Mammalian phenotype ID” of all recorded mouse 

genes with marker symbols in that database. It also provides unique MGI IDs for these 

genes, allele type and allele attribute information.  

 

Table 3: The MGI Dataset 
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MPO website was used as a main source for the phenotypic information in both OBO 

and OWL format. In this resource, gene list either can be pasted directly or imported 

as a file into “ID/Symbols List” part in batch summary tool. “Mammalian Phenotype 

(MP)” option under additional information part was selected and search was initiated. 

From the resulting list, related data was imported with human readable file formats, 

such as .xlsx, .csv or .txt. 

A Microsoft Office Excel tool function Vlookup was used for gathering the related 

affected systems of mouse genes in Dataset 1. Vlookup function finds common parts 

in a table or in each range, with respect to rows. 

Except from the affected systems that are directly taken from MPO, four different 

versions of Dataset 2 were created by taking the different levels of phenotypes. 

Purpose of this idea is to observe the change in the network size. Detailed information 

about this method can be found under “3.1.2.3 Phenotype Levels” section. 

Furthermore, it was noticed that some of these mouse orthologs of human genes were 

not annotated with any phenotype in the MGI database. According to MGI batch 

summary results, it was found that 1,375 of these genes have mammalian phenotype 

id and 170 of them do not have any recorded information. Detailed list is provided 

under Table 5. 

Dataset 2 is shown in Table 4, and it consists of phenotype terms with their MP ID’s 

and targeted knock-out mouse orthologues of human genes. Human gene column again 

was added for the ease of understanding. This dataset is based on mouse data. 
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Table 4: List of mouse gene symbols, which do not have any MPO annotation 

 

 

Table 5: Dataset 2. 

 

 

3.2.2 HIERARCHICAL APPROACH TO PHENOTYPES 

This section explains the different approaches used to generate the dataset 2. Batch 

summary result for affected systems of related genes in MGI contains concurrently the 

direct results of experiments. In other words, phenotypes provided by MGI tool are the 

directly recorded phenotypes (i.e. only the most specific phenotype terms in the MPO 



32 

DAG). We propagated the phenotypic term annotations through the root of MPO (i.e. 

mammalian phenotype term) and applied at cut-off only to provide the annotations at 

that certain level. Since the specific terms merge under the same parent terms at each 

level, the number of terms decrease going from specific to generic. This way, the total 

number of phenotype nodes decreases when we use higher levels of MPO instead of 

the most specific ones. 

Figure 4 illustrates the MPO relations and how it can be possible to reach the 

Mammalian Phenotype (i.e. the root term) in varying number of steps, according to 

the actual level of the most specific annotated phenotype term. 

 

 

Figure 4: Three types of paths for affected systems to reach the root MP term. 

 

In the toy example displayed in Figure 4, the annotated terms can connect the root of 

the MP tree in varying steps, according to their specificity. In this sense, we divded 

MP terms in 3 groups. First group is represented by MP1 phenotype, which can reach 

the root in multiple steps. The number of steps change from term to term, as some 

terms are more specific compared to the others. In the second group, MP2 connects to 

the root in 3 steps. Lastly for the third group, MP3 reaches the root node at 2 steps. To 

reduce the number of phenotype nodes in the generated networks, we generated 4 

levels of phenotype annotations: using i) most specific phenotypes (i.e. direct 

annotations to genes), ii) first/direct parent phenotypes, iii) 2-steps before the root 
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affected systems, and iv) high-level affected systems. By using the main source from 

the bio portal, desired levels of affected systems were gathered.  

In Figure 5, statistics for the networks generated using different phenotype levels are 

displayed. First level covers child affected systems directly taken from the batch 

summary result in MGI. Number of nodes on this version is 8,355 where 1,116 of them 

are diseases and the number of distinct affected systems is 5,696 and the number of 

edges is 111,207. This network is called as "child affected systems version". Second 

version represents the one step higher level (i.e. direct parent) of the asserted affected 

systems. Number of nodes is 3,675 and for distinct affected systems it is 2,558, where 

1,116 of them are diseases and number of edges is 89,603. This second network is 

called as "parent affected systems version". The third one is generated with the affected 

systems that stands for two steps before mammalian phenotype. This one is called "two 

step before root version". In this version, number of nodes is 1,248, number of edges 

is 26,009 and there exist 131 distinct affected systems in this network. The last network 

is formed according to high-level affected systems. Here the total number of nodes is 

1,146. Number of edges is 13,661 and the number of phenotypes was just 30. This 

version is called as “high-level affected systems”. It was observed that generalizing 

the affected systems decreases both edge and node numbers.  
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Figure 5: Node and Edge Statistics for Dataset 2 Versions. 

 

Large datasets such as the network generated using the asserted phenotypes (i.e. child 

affected system version) can reveal diverse and extensive information; however, it has 

a drawback of very populated and dense visualization render, which is computationally 

intense. To avoid it, one can use the other versions with less nodal degrees of freedoms. 

In this sense, parent affected systems version did not provide a significant 

improvement as the number of edges is nearly the same as the child version. Moreover, 

both two steps previous version and the high-level version has very low number of 

distinct phenotypes, 131 and 30 respectively, to cause a loss in specificity. At the end, 

we decided to continue with the child affected version of the network as in the 

beginning. 

 

3.2.3 INTEGRATION OF DATA & GENERATING THE NETWORKS 

The data integration was based on connecting human diseases and mouse affected 

systems (i.e. phenotypes) by using mouse/human orthologous genes. Two strategies 

were followed to generate the networks: treating the genes i) as nodes, and ii) as edges. 

The idea behind this design is to generate a comprehensive network that display all 

Only	  Child	  
Version

#	  of	  Nodes:	  
8,355

#	  of	  Edges:	  
111,207

#	  of	  Distinct	  
Affected	  

Systems:	  5,696

Parent	  version

#	  of	  Nodes:	  
3,675

#	  of	  Edges:	  
89,603

#	  of	  Distinct	  
Affected	  

Systems:	  2,558

2	  Steps	  Before	  
Version

#	  of	  Nodes:	  
1,248

#	  of	  Edges:	  
26,009

#	  of	  Distinct	  
Affected	  

Systems:	  131

High-‐Level	  
Version

#	  of	  Nodes:	  
1,146

#	  of	  Edges:	  
13,661

#	  of	  Distinct	  
Affected	  

Systems:	  30
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relations in-between genes-diseases-phenotypes. Human diseases are indirectly 

connected to the mouse phenotypes (i.e. affected systems) while using mouse/human 

orthologous genes as the mediator. 

 

 

Figure 6: Genes-Node version of the Mouse2Human network. 

 

In Figure 6, Genes-Node version design is illustrated and all terms are classified as 

nodes in that network. 

Second version was constructed by treating mouse genes as edges. The idea behind 

this design is to decrease the number of nodes, to provide a less crowded network and 

visually perceivable network by only displaying relations between human diseases and 

mouse affected systems. Figure 7 displays the representation of Genes-edge network 

version, where the knock-out mouse genes / orthologues human genes were treated as 

edges. 

 

 

Figure 7: Genes-Edge version design of the Mouse2Human network 
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At this part of the study, Dataset 1 and Dataset 2 were merged by integrating the human 

and mouse data tables. A link was established between human and mouse data using 

the targeted knock-out mouse orthologues of human genes. If any gene is related to 

more than one disorder, the gene name is repeated multiple times in the merged dataset 

for each related disease.  

Each human disease has a unique ID. Normally, OMIM IDs are used for diseases; 

however, it was indicated in the Diseasome study, the derivatives of the same diseases 

are gathered into a single category for the sake of simplicity. For example, all the 

derivatives of Alzheimer diseases were grouped into a one category and named as 

“Alzheimer disease”. Therefore, another unique numbering system was developed by 

Diseasome and called as “Disease ID”. In our study, Diseasome Disease IDs are used, 

as well. Disorder classes were attached to the diseases collaterally from the Diseasome 

dataset. Targeted knock-out mouse genes were indicated with their ENTREZ IDs. 

Knock-out mouse gene and human disease columns consist string values and rest of 

the table is composed of integers. Table 6 illustrates a portion of the combined dataset. 

 

Table 6: The combined dataset 

 

 

Python dictionary and list objects, sorting and string functions, parsing methods were 

used for the generation of the networks. The pseudo code of Genes-Node network and 
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the objects of the program can be found in Figure 8: Pseudo code for the network 

generation for the genes-node version (for more details see Appendix B.2). 

 

 

Figure 8: Pseudo code for the network generation for the genes-node version 

 

The written scripts take these two datasets as input, process them and attain node and 

edge features. After executing the written scripts, output file was attained in. gexf 

format which is readable by the open viz platform, Gephi. Both versions of the 

networks were imported to Gephi as undirected.  

Gephi provides a coloring option according to the node category. To differentiate 

different types of nodes in the network, mouse genes and affected systems are 

colorized as black and red, respectively in the Genes-Node version. Similarly, mouse 

affected systems were colored as red in the Genes-Edge version. Human diseases (i.e. 

disorders) were colored differently according to the disease classes. Node coloring in 

Gephi is set using the options under the overview menu, through node attributes and 
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type choices. The number of selected colors can be increased, as well as decreased 

using the palette widget option. Twenty-four and twenty-three distinct node coloring 

were generated respectively for Genes-Node and Genes-Edge versions. 

Color code tables were constructed for both versions of network. Color code table for 

Genes-Node and Genes-Edge versions can be observed to gether with the number of 

nodes for each node type in Figure 9 and in Figure 10, respectively. 

 

 

Figure 9: Color code table with the number of nodes for Genes-Node version 

 



39 

 

Figure 10: Color code table with the number of nodes for Genes-Edge version 

 

Different layouts can be applied to the networks in Gephi. In Diseasome network, 

“Force Atlas’’ layout was employed. In this layout, repulsive forces between the 

distant nodes in the same cluster are approximated by a Barnes-Hut calculation and it 

stops after the range of convergence is achieved iteratively. Barnes-Hut calculation is 

an approximation algorithm to perform an n-body simulation.  

It was also investigated to use the OpenOrd layout to emphasis divisions. This layout 

provides undirected weighted graphs and can divide clusters virtually in a tangible 

manner. It also stops automatically and this algorithm is also based on Fruchterman 

and Reingold and works with an upper limit for the number of iterations till 

convergence is achieved. 

The name of the nodes and edges were automatically imported to the network by 

selecting show labels and show edges options in Gephi. The resulting can be exported 

in graph file format and it provides either a text or an xml of the trimmed gexf file. 

Also, it is possible to save the image of the network by selecting one from various 

other formats like pdf, jpeg or png.  
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Finally, a web exporter was used to provide the networks to the research community 

in a web-server, which was gexf Js master tool (Velt, 2011). This plug-in is used for 

undirected and static graphs and it provides a user firiendly interface (downloaded 

from: https://github.com/raphv/gexf-Js). Under the config.Js folder, output was be 

replaced by changing gexf extension name with the desired one. Output of network 

was kept under index.html part. The HTML file can be opened with any web browser 

and after a few seconds of loading time, the desired network becomes visible. It is 

possible to type node names in the search column, which provides a list of possible 

terms related to the searched word. One of the nodes can be selected from the list to 

display the related sub network (isolating the sub-network requires clicking on three 

dots sign at the lower left side of the screen). Connected nodes will become highlighted 

while approaching any node with the mouse cursor without clicking it. 
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CHAPTER 4 

 

 

RESULTS 

 

 

4.1 NETWORKS ANALYSES WITH GEPHI 

Under statistics menu in Gephi, network analysis options are available for static and 

dynamic graphs for average degree, average weighted degree, network diameter, graph 

density, modularity and eigenvector centrality. We carried out the network analyses 

using Gephi’s options and the results are given below. 

Degree gives the number of edges linked to a node. Average degree is the information 

for all nodes in the network and it can be found by taking mean of all degrees. In 

Genes-Node and Genes-Edge versions respectively the average degrees are 12,725 and 

26,620. In other words, it is the average number of links per node and naturally the 

value is larger in Genes-Edge version because making genes as nodes reduce the 

number of edges per node by the increasing the number of nodes. Degree distribution 

graphs are illustrated under Figure 11 and Figure 12 respectively for Genes-Node and 

Genes-Edge versions. 
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Figure 11: Degree distribution for Genes-Node version network 

 

 

Figure 12: Degree distribution for Genes-Edge version network. 

 

Average weighted degree results for Genes-Node and Genes-Edge versions are 26,203 

and 30,095 respectively. It is expected to see a decrease in total node number from 

Genes-Node version towards to the Genes-Edge version. However, edge number has 

been increased up to 1.77 times in Genes-Edge version.  

Network diameter can be defined as the maximum eccentricity of any vertex in the 

graph, in other words, it is the longest one of all shortest paths between any pair of 

vertices. Under the "Network diameter" section, betweennes centrality, closeness 

centrality and eccentricity analysis has also been performed. In Genes-Node version, 

diameter has been found as 8. In Genes-Node version, the shortest path was found 
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between any pair of vertices shows the diameter of a graph. Radius was calculated as 

1 and average path length is 3,84. Number of shortest paths were calculated as 

97,130,898 totally. In Genes-Edge version, diameter has been found as 7 and it is 

expected to be seen smaller in this version while comparing with the Genes-Node 

version. Radius again calculated as 1 and average path length is 3,45. Because genes 

were no more treated as nodes, it is expected to see the decline in this number also. 

Number of shortest paths had been found as 70,216,028 in total.  

Another measure that we calculated was the Graph density analysis. Dense graph is 

where the number of edges is close to the maximum number of edges. The opposite 

term is a sparse graph that is a graph with only a few edges. Graph density had been 

found as 0,001 in Genes-Node version and 0,003 in Genes-Edge version. This value 

increase with the number of edges in the same direction. In this way, Genes-Node 

version network can be considered as a relatively sparse graph while comparing with 

the Genes-Edge version.  

Modularity shows how well a network decomposes into its modular communities. It 

is directly proportional to the departmentalize issue in the network. Gephi looks for 

the nodes that are more densely connected in the network (Blondel et al., 2008). A 

high modularity score indicates complicated internal construction. In other words, 

community structure shows how network is disaggregated into various sub-networks. 

Randomization provides a better disaggregation resulting in a higher modularity score, 

however randomizing procedure drastically increases the calculation time. In our 

analysis, “randomize” and “use weights” options were chosen to produce better 

disaggregation, and the edge weights were considered while computing the 

modularity. This these options, modularity was calculated for both Genes-Node and 

Genes-Edge versions. 
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Figure 13: Modularity class sizes for the Genes-Node version network. 

 

Modularity report in Figure 13 shows that modularity was calculated as 0,414 and 15 

communities were found for Genes-Node version network. This positive modularity 

score indicates the presence of modularity structure and it is an average value for this 

network. This score is acceptable because 24 kind of nodes exist in network structure 

which are genes, affected systems and 22 disorder classes and they all show different 

patterns and edge properties. In Figure 14 OpenOrd layout was applied to reveal 

communities more clearly. Also, distinct colors and respective percentages for each 

community are visualized to distinguish clusters. 
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Figure 14: Modularity class colorization and percentage information in total for Gene 

Node version. 

Some small sub-networks exist in the network and their connections are isolated and 

displayed for the selected examples of Aanat and Hal genes together with their 

connections. 

 

 

Figure 15: Aanat targeted knock-out mouse gene and its connections as a subnetwork. 
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In Figure 15, Aanat gene and its connections “Disorder: Delayed sleep phase 

syndrome”, and affected systems “abnormal pineal gland melatonin secretion” and 

“abnormal pineal gland physiology” show that this sub-network constituted a distinct 

community. These nodes are only connected to each other and is separate from rest of 

the network and its class number was “0”. 

 

 

Figure 16: Hal targeted knock-out mouse gene and its connections as a subnetwork. 

 

Also, in Figure 16, Hal gene and its connections “Disorder: Histidinemia”, and 

affected system “increased urine histidine level” show that this sub-network 

constituted a distinct community and its class number was “5”.  

Modularity clusters kept in group number 4 and 15 were analyzed to observe the 

network characteristics. These are distinct hub clusters and show different features. 

Degree frequencies for disorders in modularity class 15 in Figure 17shows that mostly 

cancer, hematological and metabolic diseases belong to that class. Disorder class 

frequencies are illustrated at the right-side pane in Figure 17.  

Also, the average disorder degree frequency for modularity class 15 is calculated as 

2,4787 and they are separately illustrated at the left side pane in Figure 17. This table 

shows that 104 diseases in that modularity class have degree 1 and 22 diseases have 

degree of 2, etc. The diseases “Leukemia” and “Colon Cancer” that have 31 

connections, stand together at the last line of this table.  
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Figure 17: Degree analysis result for disorders in Modularity class 15 

 

Degree indicates number of total connected mouse knock-out genes for an affected 

system. The average affected system degree frequency for modularity class 15 is 

calculated as 10,3482 and distinct degree frequencies are illustrated in Figure 17. Bar 

plot in Figure 18 also shows that this class keeps affected systems with degree 1 mostly 

but also some affected systems with high degrees exist, as well. Affected system with 

the degree value of 440 is the ‘‘premature death’’.   
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Figure 18: Degree analysis result for affected systems in Modularity class 15. 

 

Degree shows the number of total connected diseases and affected systems to the 

corresponding mouse knock-out gene. The average targeted knock-out mouse gene 

degree frequency for modularity class 15 is calculated as 42,058 and distinct degree 

frequencies are illustrated in Figure 19. The mouse knock-out gene that has degree 308 

is Trp53.  
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Figure 19: Degree analysis result for mouse knock-out genes in modularity class 15 

 

The biggest modularity class in Genes-Node version was the 4th class. Figure 20 

shows the degree frequencies for disorders in modularity class 4. As observed, mostly 

skeletal, multiple and dermatological disorder classes located in this group. Also, the 

average disorder degree frequency for modularity class 4 was calculated as 1.54123 

and they are separately illustrated at the table stands on the left side in Figure 20. The 

disease which have 10 connections is Epidermolysis bullosa. Bar plot shows degree 

distribution for disorders in modularity class 4.  
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Figure 20: Degree analysis result for disorders in Modularity class 4. 

 

The average affected system degree frequency for modularity class 4 is calculated as 

6.9760 and distinct degree frequencies are illustrated in Figure 21. Bar plot in Figure 

21 also displays that this class mostly contains affected systems with degree 1 but also 

some affected systems with higher degrees exist, as well. The affected system with the 

degree value of 423 is the decreased body weight. 
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Figure 21: Degree analysis result for affected systems in Modularity class 4 

 

The average targeted knock-out mouse gene degree frequency for modularity class 4 

was calculated as 51,136 and distinct degree frequencies are illustrated in Figure 22. 

This modularity class have higher average degree frequency compared to the class 15, 

since most of the loosely interconnected disorders classes (such as bone, skeletal, 

multiple etc.) and nearly all connected mouse knock-out genes are kept in class 4. 

Therefore, it is usual to see higher average degree for mouse knock-out genes in 

modularity class 4.  The mouse knock-out gene that has the degree value of 343 is 

Fgfr2.  
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Figure 22: Degree analysis result for mouse knock-out genes in modularity class 4 

 

Figure 23 displays the modularity class sizes for Genes-Edge version network. The 

report in Figure 23 shows that the modularity was calculated as 0.368 and 12 

communities were formed in total. This positive modularity score indicates the 

presence of modularity structure and it is an average value for this network. The 

modularity score is reduced in Genes-Edge version because genes are not treated as 

nodes anymore and the diseases are directly connected to the affected systems. 

Therefore, it is possible that some nodes belong to different classes in the previous 

network may remained in same class in this network version. 
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Figure 23: Modularity class sizes for the Genes-Edge version network 

 

 

Figure 24: Modularity class colorization and percentage information in total 

 

In Figure 24, OpenOrd layout was again applied to reveal communities (i.e. classes). 

Small sub-networks similar to the ones shown in Figure 15 and Figure 16 are isolated 

from the whole network and illustrated in Figure 25 and Figure 26. These are 

“Disorder: Delayed sleep phase syndrome”, Disorder: Histidinemia”, and their 

connections. 
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Figure 25: Delayed sleep phase syndrome disorder & its connections as a subnetwork. 

 

In Figure 25, “Disorder: Delayed sleep phase syndrome” and its connection “abnormal 

pineal gland melatonin secretion” and “abnormal pineal gland physiology” affected 

systems are shown and that this sub-network constituted a distinct community number 

“8”. It stays separated from rest of the network. 

 

 

Figure 26: Hal targeted knock-out mouse gene and its connections as a subnetwork 

 

In Figure 26, “Disorder: Histidinemia”, and affected system “increased urine histidine 

level” show that this sub-network constituted a distinct community with number “5”.  

Modularity clusters 0 and 7 were analyzed to see network characteristics. These are 

distinct hub clusters and show varying features. Modularity class "0” mostly has cancer 

class diseases and some connected hub genes. Degree frequencies for disorders in 

modularity class 0 (Figure 27) reveals that mostly renal, multiple and cancer diseases 
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belong to this module. Also, the average disorder degree frequency for modularity 

class 0 is calculated as 155.5073 and they are separately illustrated at the table stands 

at left in Figure 27. This score is increased when it is compared with Genes-Node 

version because diseases directly connect to the affected systems in Genes-Edge 

version. The diseases “Colon Cancer” and “Breast Cancer” have 1469 and 976 

connections, respectively.  

 

 

Figure 27: Degree analysis result for disorders in Modularity class 0. 

 

The average affected system degree frequency for modularity class 0 is calculated as 

19.3448 and distinct degree frequencies are illustrated in Figure 28. Bar plot in Figure 

28 also shows that this class contains affected systems with degree 1 mostly, together 

with some affected systems with high degrees. Affected system with the degree value 

of 440 is mortality/aging. 
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Figure 28: Degree analysis result for affected systems in Modularity class 0 

 

Another modularity class in 7th group is analyzed as being one of the hub classes in 

Genes-Edge version. Degree frequencies for disorders in modularity class 7 (Figure 

29) indicates that mostly renal, multiple and cancer disorder classes located in this 

group. Also, the average disorder degree frequency for modularity class 15 is 

calculated as 82.5357 and they are separately illustrated at the table stands at the left 

side in Figure 29. Bar plot shows degree distribution for disorders in modularity class 

4 and disorders with degree 85 are the most frequent ones as the tallest bar. These are 

Yemenite deaf blind hypopigmentation syndrome, Frasier syndrome, WAGR 

syndrome, PCWH, Denys Drash syndrome and Mesangial sclerosis diseases. 
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Figure 29: Degree analysis result for disorders in Modularity class 7 

 

The average affected system degree frequency for modularity class 4 is calculated as 

19.6465 and distinct degree frequencies are illustrated in Figure 30. Bar plot in Figure 

30 also shows that this class contains the affected systems with degree 1. Affected 

system with the degree value of 350 is postnatal lethality, incomplete penetrance. 
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Figure 30: Degree analysis result for affected systems in Modularity class 7 

 

There is another measure, which shows the importance of a node in a network based 

on a node's connections.  Sum change was found as 0.061 and 0.076 in Genes-Node 

and Genes-Edge versions respectively. It can be said that the nodes connected to 

central nodes are considered central themselves. Eigenvector centrality distributions 

for Genes-Node and Genes-Edge networks are visualized under Figure 31 and Figure 

32, respectively. 
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Figure 31: Eigenvector Centrality distribution for Genes-Node version network 

 

 

Figure 32: Eigenvector Centrality distribution for Genes-Edge version network 

 

All the graphical statistical analyses are summarized for both versions of networks 

under the Table 7. 
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Table 7 : Gephi statistical analysis results for Genes-Node and Genes-Edge version 

networks. 

 

 

4.2 STATISTICAL ANALYSIS OF THE NETWORKS 

The following sections describes the statistical analyses done in R platform. R is a free 

software environment for making statistical computing and analyze graphics. It can 

compile and run on an extensive variety of UNIX platforms, Windows and MacOS 

(The R Project for Statistical Computing. 1993. R Core Team. [ONLINE] Available 

at: https://www.r-project.org/). In the following analyses, the diseases were ranked 

according to number of targeted knock-out genes they have and the genes are ranked 

regarding both the number of diseases and the number of affected systems they are 

related to. 

 

4.2.1 DISEASE STATISTICS 

In this analysis, the diseases are arranged from the most to least populated in terms of 

the connected genes. Histogram plot of diseases vs. genes are illustrated under Figure 

33 and the top5 diseases were shown in Figure 34. These diseases are Deafness, 

Leukemia, Colon cancer, Retinitis Pigmentosa and Diabetes Mellitus, having 

connections with 38, 31, 31, 26 and 22 genes, respectively.  
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Figure 33:Frequency plot of all diseases in terms of their connected targeted knock-

out mouse genes 

 

 

Figure 34:Top five diseases are listed according to their related total number of genes. 

 

In Table 8, frequencies for all the diseases are shown. Total gene number column 

shows the number of targeted knock-out mouse genes and column total diseases 

number shows how various diseases have the corresponding number of mouse knock-

out genes. For example, it was calculated that 881 diseases are correlated with just 1 

mouse knock-out gene. 
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Table 8: Gene frequencies for diseases in total 

 

 

4.2.2 GENE STATISTICS AND A CASE STUDY 

Statistical computing was done to see distributions of genes in terms of diseases by 

using R programming. In Figure 35, the histogram of genes vs. connected diseases was 

illustrated. The gene mostly distinguished in the histogram is Trp53 and has 11 disease 

connections in total. Also, in Figure 36, the top 5 genes are listed. 
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Figure 35: Frequency plot of all mouse knock-out genes in terms of their connected 

diseases. 

 

 

Figure 36: Top 5 genes specified according to the number of diseases they are related 

to. 

 

In Table 9: Disease frequencies for genes in total, all the genes are grouped according 

to their total disease frequencies. Total disease number column shows the number of 

diseases and total gene number shows how various genes have the corresponding 
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number of diseases. For example, it was calculated that 1031 genes are connected to 

just 1 disease. 257 genes are connected to 2 diseases.  

 

Table 9: Disease frequencies for genes in total 

 

 

A literature and a database review was done for the top5 genes. In this review, the hub 

genes in terms of diseases are investigated to make inferences about Mouse2Human 

Network node statistics. Human orthologues of top5 mouse knock-out genes were 

searched from NCBI databases and from the relevant literature, various types of 

statistics about these genes are listed in Figure 37. The literature review indicated that 

these genes have been studied and investigated extensively. Chemical results signify 

the number of molecular pathways linked to these genes. For example, one of the top5 

genes in Figure 36, the p53 tumor suppressor gene (TP53 in humans or Trp53 in mice) 

is crucial for inhibiting tumor growth (Blackburn & Jerry, 2002). Another gene, the 

PAX6 belongs to a PAX gene family and plays a critical role in the formation of tissues 

and organs during embryonic development (Thakurela et al., 2016).  PTEN is also 

highly studied and it belongs to a tumor suppressor gene family (LESLIE & 

DOWNES, 2004).  Tumor suppressor genes are related to the cell growth control, and 

acting to block cell proliferation and tumor development, which is the reason why 

these genes are highly studied (Lee & Muller, 2010). It was stated that the FGFR2 

abnormalities underlie a wide range of bone, skin and cancer pathologies because FGF 
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group of genes are involved in fetal morphogenesis, adult tissue homeostasis, and 

tumorigenesis (Dailey et al., 2005; Eswarakumar et al., 2005; Grose and Dickson, 

2005; Wilkie, 2005; Chaffer et al., 2007). The MSH2 gene codes a protein that plays 

an important role in DNA repair, as it aids fixing errors in DNA replication. As a result, 

it plays roles in various fatal human diseases (Pereira et al., 2013). These findings 

correlate with these genes being hub nodes in the network, as their roles in various 

diseases are revealed in the literature and recorded in disease databases. 

 

 

Figure 37: NCBI statistics for Top 5 gene in terms of diseases 

 

A similar analysis has been done for top genes in terms of the number of associations 

with the affected systems (as opposed to the previous analysis, which was done for top 

genes in terms of the number of associations with diseases). The top 5 genes in terms 

of associated phenotypes are displayed under Figure 38. Also, in Figure 4-30, the 

hitogram of genes vs. phenotypes is illustrated. The gene with the highest rank in the 

histogram is Pten, which has 520 associated phenotypes. In Table 10, the genes are 

grouped according to their phenotype association frequencies. The total related 
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phenotype column shows the number of phenotypes and the second column titles total 

gene number show how many genes are associated to those phenotypes. For example, 

41 genes have just 1 phenotype association. 

 

 

Figure 38: Top5 genes in terms of the total number of their associated affected systems 

(i.e. phenotypes). 
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Figure 39: Histogram plot of all mouse knock-out genes in terms of their associated 

affected systems (i.e. phenotypes). 

 

Table 10: Phenotype frequencies for genes in total 

 

A database search was done from the NCBI resources for the human orthologues of 

top5 mouse knock-out genes in terms of phenotypes. The finding in terms of literature, 
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health and chemicals statistics are shown in Figure 40. Ctnnb1 and Shh genes exist in 

the top5 list, different from the previous list shown in Figure 37. Epithelial-

mesenchymal transition (EMT) and the related gene CTNNB1 plays an important role 

for the regulation of cancer signaling and stem cell pluripotency (Tanabe et al., 2016). 

SHH gene in other words “Sonic Hedgehog” gene encodes a protein that is crucial in 

the early embryo stage, adult organ homeostasis and organ repair. It has been stated 

that it provides a key inductive signal ventral neural tube, the anterior-posterior limb 

axis, and the ventral somite (Petrova & Joyner, 2014). 

 

 

Figure 40: NCBI statistics for Top 5 gene in terms of phenotypes 

 

4.2.3 AFFECTED SYSTEM STATISTICS 

The phenotype (a.k.a. affected system) statistics for the network generated using 

different versions of Dataset 2 (i.e. ‘‘child’’, ‘‘parent’’, ‘‘2 steps before the root’’ and 

‘‘higher level affected systems’’ versions) were analyzed. The reason of using 4 

different versions for Dataset 2 was explained in section 3.2.1.2 under Phenotype 

Levels title explicitly. Here are the results for child and high-level affected systems 
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version are given, since the calculations for mid-levels are not straightforward (e.g. the 

same term can both be a parent and a child phenotype annotation in different cases), 

leading to biased results. 

  

4.2.3.1 CHILD AFFECTED SYSTEM STATISTICS 

The phenotype annotations directly collected from the MGI database are named here 

as child affected systems (i.e. asserted annotations) and their frequencies are calculated 

and the top 5 child affected systems are shown in Figure 44. Premature death 

phenotype is the mostly connected term and mapped to 440 genes in total. Child 

phenotype systems histogram plot in Figure 45 gives the distribution of phenotypes in 

terms of the connected genes. 

 

 

Figure 41: Top 5 child affected systems in terms of the number of gene associations 
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Figure 42: Child affected system histogram plot. 

 

4.2.3.2 HIGH-LEVEL AFFECTED SYSTEM STATISTICS 

There are 30 high-level phenotypes under the root term ‘‘Mammalian Phenotype’’ in 

MPO. The list of all high-level terms is given in Table 11and the top 5 high-level 

affected systems are shown in Figure 44. Mortality/aging is the most connected 

phenotype and it is mapped to 2,538 genes in total.  

 

Table 11: The list of high-level phenotypes 
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Figure 43: Top 5 high-level affected systems in terms of the number of gene 

associations 
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Figure 43 referred to the statistics for high-level phenotypes when all phenotype 

annotations are propagated through the root of MPO. Figure 44 shows the statistics for 

the same 30 high-level systems when only direct annotations to these terms are 

considered (i.e. no propagation from more specific terms). In Figure 44, the most 

frequent term is “no abnormal phenotype detected” and the most frequent systemic 

phenotype is the “nervous system phenotype”.  

 

 

Figure 44: High-level affected system histogram plot (only considering direct 

annotations). 

 

4.3 MOUSE2HUMANNET WEB-SERVICE 

Mouse2HumanNet open access web-service was constructed for both Genes-Node and 

Genes-Edge versions using Gephi web exporter tool gexf Js master (Velt, R. 2011). 

Detailed informationabout the web-service usage is given under Appendix A. 
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4.4 TERM SIMILARITY CALCULATIONS WITH CASE STUDIES 

Users can utilize the Genes-Edge network especially when they are interested in 

disease vs. affected system relations. For example, the diseases and genes connected 

to two target affected systems can be compared, to observe their similarity. The user 

can collect both the gene and disease information by searching the name of the target 

affected systems via the search box. In our example, “Increased mean systemic arterial 

blood pressure” and “decreased systemic arterial diastolic blood pressure” phenotype 

comparison was made. Related disorders, together with the gene symbols are shown 

in Table 12. In this example, phenotypes with opposite effects were chosen, and as 

expected, the overlap between the connected disorders are quite low. The same 

analysis can be made for comparing two diseases, as well. 

In any comparison, connections (disorders, phenotypes or genes) can also provide a 

quantitative measure for the similarity of the compared terms. This can be achieved by 

calculating the number of shared nodes between terms. This calculation can yield a 

similarity measure between 0 and 1, zero meaning no similarity and one meaning 

100% similarity. In an example shown in Table 12, the similarity between the target 

phenotypes are calculated as (2 * 3) / (25 + 16) = 0.146. This similarity calculation can 

also be formulated by taking the disorder classes and the phenotype hierarchy which 

would yield a better estimate about the actual similarities. 

To test the idea of “similar diseases can have similar phenotypic traits” we carried out 

various quantitative analyses. First, two diseases “Macrothrombocytopenia” and 

“Factor X deficiency”, which belong to the same disorder class “hematological” were 

analyzed. The associated phenotypes for these diseases were extracted and compared. 

It was observed that there were 86 phenotype annotations for the first disease and 95 

for the second one, and 13 of these phenotype annotations were shared between the 

two target diseases, which led to a similarity score of 0.14. Some of the non-shared 

phenotype annotations between these diseases could be from the same hierarchy in the 

MPO DAG, which means that they are similar. As a result, compared phenotype 
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annotations should not be counted as totally dissimilar if there is a parent-child 

relationship in-between. To take this into account, we propagated the asserted 

phenotype annotations for these diseases to high-level phenotypes. This resulted in 13 

different high-level phenotype annotations for the “Macrothrombocytopenia” disease 

and 18 for the “Factor X deficiency” disease. It was observed that 9 of these terms 

were shared between the target diseases. These high-level phenotype term annotations 

are shown in Table 13, with star symbols next to the shared ones. The same similarity 

calculation using the high-level phenotypes yielded 0.58. As observed, the similarity 

is increased from 0.14 to 0.58 with the inclusion of the phenotype relations into 

account. 

In order to find a more sophisticated way to express similarities, we generated a 

measure called relative ratios (i.e. relative frequencies) for each high-level phenotype 

term annotation by calculating what portion of the asserted phenotype annotations for 

that disease lead to the corresponding high-level phenotype term. For example, it is 

observed in Table 13 that, nearly 9% of the “Macrothrombocytopenia” disease’s 

asserted phenotype annotations belong to mortality/aging high-level phenotype class. 

This calculation is made for all high-level phenotypes for both target diseases. To 

calculate the total ratio of shared high-level phenotype annotations between these 

diseases (i.e. those 9 phenotypes marked with a star in Table 13), their relative ratios 

(i.e. frequencies) are summed. As a result, it can be inferred that 87% (total frequency: 

0.87) of the phenotype annotations of “Macrothrombocytopenia” is similar to “Factor 

X deficiency”, and 68% of the phenotype annotations of “Factor X deficiency” is 

similar to “Macrothrombocytopenia”. 
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Table 12: High- level phenotype levels and relative frequencies for the target diseases 

in the first analysis. 

 

 

In the second analysis, the same similarity calculations were repeated for diseases 

belong to different disorder classes which are “Macrothrombocytopenia” in 

hematological class and “Hearth Block” in “Cardiovascular” class (note that the target 

diseases chosen in the previous analysis were from the same disorder class), to observe 

whether the diseases from the same classes would have higher similarities. The direct 

(i.e. asserted) phenotype annotation comparison gave 0.08 similarity and the high-level 

class comparison raised this similarity to 0.45. In Table 14, high level phenotype 

annotations (stars on the shared ones) are displayed with the relative ratios. It was 

found that 16% (total frequency: 0.16) of the phenotype annotations of 

“Macrothrombocytopenia” is similar to “Hearth Block”, and 85% of the phenotype 

annotations of “Hearth Block” is similar to “Macrothrombocytopenia”. 

As a result, comparisons of “Macrothrombocytopenia” disease with another disease 

from the same disorder class and a disease from a different disorder classes yielded 

high-level similarity values of 0.58 and 0.45, respectively; and relative ratio 

similarities with 87% and 16%, respectively. This indicates that the diseases from the 

same disorder class have more similar phenotypic traits, compared to diseases from 

different disorder classes. Thus, different forms of phenotypic trait similarity 

calculations can be used as an indicator to compare diseases with each other. In a 
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disease similarity network such as the one generated in the Diseasome study, the edges 

can be weighted according to phenotypic similarities, to capture the relations more 

accurately. 

 

Table 13: High- level phenotype levels and ratios for chosen diseases 

 

 

The same similarity calculations can be done to compare the phenotype terms, by using 

disease annotation similarities in-between. For this analysis, fistly two phenotypes that 

belong to same high-level class (i.e. “oligozoospermia” and “azoospermia”) were 

compared to each other. After that, two phenotypes that belong to different high-level 

class phenotypes (i.e. “azoospermia” and “decreased skeletal muscle mass”) were 

compared to each other. 

First, the similarities were calculated using the direct disease term annotation matches 

between the target phenotypes. The similarity ratio was found as 0.28 and 0.15 for 

“oligozoospermia” vs. “azoospermia” and for “azoospermia” vs. “decreased skeletal 

muscle mass”, respectively. 

Secondly, the high-level term similarity concept was applied for the phenotype 

comparisons (similar to the disease comparison analysis done using high-level 

phenotypic term annotations, mentioned above), in terms of comparing the disorder 
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classes of the annotated diseases. In Table 15, disorder classes for “oligozoospermia” 

and “azoospermia” phenotype terms are shown and the common disorder classes 

between these two phenotype terms are marked with star, and the relative ratios are 

given. Table 14shows the same results for “azoospermia” vs. “decreased skeletal 

muscle mass” comparison. similarities were calculated using the high-level term 

annotations (i.e. disorder classes) and the similarity values were found as 0.88 and 0.67 

for the same high-level class phenotypes and for different high-level class phenotypes, 

respectively. Also, the ratios for the matched disorder classes have been summed up 

for each phenotype. According to this calculation, “azoospermia” term’s annotated 

disease similarity to “oligozoospermia” term (the same high-level class phenotype) 

was found as 100%; whereas, “azoospermia” term’s annotated disease similarity to 

“decreased skeletal muscle mass” term (a different high-level class phenotype) was 

found as 77%. These results indicated that, phenotypes from the same high-level class 

have more similar disease annotations compared to the phenotypes from different 

high-level classes. 

 

Table 14: Disorder classes of the annotated diseases for “oligozoospermia” and 

“azoospermia” phenotype terms. Common disorder classes are marked with stars 
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Table 15: Disorder classes of the annotated diseases for “azoospermia” and “decreased 

skeletal muscle mass” phenotype terms. Common disorder classes are marked with 

stars. 
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CHAPTER 5 

 

 

DISCUSSION 

 

 

5.1 SUMMARY 

This section presents a discussion over the obtained results and a conclusion of this 

study including its output Mouse2HumanNet web-service, and suggests further 

improvements and applications for studying human biology using graph theory 

concepts and network analysis.  

•   This study aims to create a mapping between human diseases and the abnormal 

phenotypes observed in mouse experiments. Mouse is the most widely used 

model organism to study the mammalian physiology and diseases. Therefore, 

relating the observations from the mouse gene knock-out experiments to 

human diseases may provide novel information about both the symptoms of 

diseases and the potential affected systems. This information can be utilized 

for research in medical diagnostics and for novel treatment options. 

•   The proposed mapping has been structured as biological networks in two 

different forms. Genes-Node version network is composed of nodes of 

diseases, phenotype terms and genes and connections (i.e. edges) indicating 

direct relations; and ii) Genes Edge version is composed of nodes of diseases 

and phenotype terms and connections (i.e. edges) in between indicating 

relations through shared genes. The generated networks are published in an 

open-access web-service with an easy to use interface, where the users can 
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display either the whole or the relevant parts of the networks and can download 

the corresponding information. 

•   One of the objectives of this project is to aid laboratory scientists to design by 

selecting the most relevant mouse knock-out models for studying a specific 

human disease. This can be trivial while studying single gene diseases, as the 

researcher can directly obtain thee information from relevant biological 

databases. However, when multiple genes are associated with a specific 

disease, network approach may provide multiple alternative models. 

•   Another objective of this study is to enrich the associations between abnormal 

phenotypes observed in animal studies and human diseases by connecting these 

two via mouse/human orthologous genes. Novel relations may both aid the 

studies on medical diagnostics (since the phenotypes contain symptoms) and 

discovering the systems affected due to a certain disease. In this sense, this 

project will also aid computational researchers working on ontological systems 

(e.g. the Human Phenotype Ontology project – HPO) to find and record new 

disease-phenotype-gene relations. To illustrate this with a very simple 

example, the difference between the phenotype annotations of human TP53 

gene (from the HPO project) can be compared to the annotations of its 

orthologue in mouse Trp53 (from the MGI project). Both annotation tables are 

given in Appendix C.1. and its observed from these tables that mouse 

phenotype annotations are richer compared to human due to extensive animal 

studies on the mouse. This information may be used to annotate human TP53 

with additional phenotypic abnormalities, which in turn can be utilized to aid 

the development of novel treatments to hereditary/genetic diseases. 

•   Multiple usage scenarios can be derived for Mouse2HumanNet. For example, 

a user who is interested in two different genes can do a simple search on our 

service with the symbol of the corresponding genes. This will return the 

connected phenotypes and diseases for the target genes. In a hypothetical case 

that these target genes share high number of phenotype connections, and the 

first one have a certain disease association but the second one does not. This 

may lead the user to do more investigation to see if it would be possible for the 
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second gene be also related to the same disease (relation here is defined as a 

certain mutation in the corresponding gene would lead to the formation of the 

corresponding disease), due to high phenotype similarity with the first gene. A 

similar methodology can be followed to compare two diseases, as well. 

•   Different types of term similarity approaches have been tested and explained 

in the Results section. According to these analyses it was observed that, 

intersections of phenotypic traits can be a good indicator for disease 

similarities, and similarly, intersections of disease annotations can be a good 

indicator for phenotypic term similarities. Another finding was that, it would 

be possible to improve the similarity measures by including the relations 

between phenotype terms and between the diseases, to the similarity 

calculation. 

•   In the light of this information, it can be said that integrating multiple types of 

information to the similarity calculation would yield more accurate results. In 

other words, using just one type of information (e.g. only considering the 

asserted phenotype annotations for comparing 2 diseases) can be misleading 

due to both the incomplete information in the biological databases and the 

inconsistencies between the data sources. For example, “Azoospermia” is a 

disease record under “Endocrine” disorder class in the OMIM database. 

However, “azoospermia” is also a phenotype term under the “reproductive 

system phenotype” and “cellular phenotype” high-level phenotypes in the 

MPO and mostly mapped to the cancer, endocrine and metabolic disorder 

classes. 

•   As a case study, we have investigated selected connections of “azoospermia” 

phenotype from Mouse2HumanNet. There is a connection between 

“azoospermia” phenotype and “Diabetes Mellitus” disorder, which is 

interesting to discuss. In order to investigate this connection, we carried out a 

literature search. According to the literature, Diabetes mellitus (DM) is a 

chronic disorder that can change carbohydrate, protein, and fat metabolism and 

caused by the absence of insulin secretion in the body. Obesity is highly 

correlated with the insulin resistance and pancreatic β-cell dysfunction; 
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therefore, there is a strong link between obesity and DM (Al-Goblan, Al-Alfi, 

& Khan, 2014). Especially in obese people, the amount of non-esterified fatty 

acids, glycerol, hormones, cytokines, and other substances that play a role in 

the development of insulin resistance, is increased. In women, early stages of 

obesity take favors the development of menses irregularities, chronic oligo-

anovulation and infertility during the adult life. The main factors may be insulin 

excess and insulin resistance that implicates the association between fertility 

and the obesity. Furthermore, in men, obesity is correlated with low 

testosterone levels. Obese individuals usually have reduced spermatogenesis 

associated with hypotestosteronemia, which can cause infertility (Pasquali, 

Patton, & Gambineri, 2007). These findings indicate a possible link between 

infertility in males and DM. However, a more detailed literature search and a 

structured research study should be conducted to discover whether there is 

biological mechanism behind it or not. 

•   Another interesting case study would be considering the connection between 

the “azoospermia” phenotype and cancer class disorders. There are various 

surveys in the literature indicating the relations between cancer risks and 

infertility. Although some studies have found eminent risks for some cancer 

types connected to infertility, the underlying biological reasons stands unclear. 

In the study handled by Brinton et al., in 2005, authors found that women 

diagnosed with infertility have 23% higher risks of uterine and ovarian cancers 

compared to the control group (Brinton et al., 2005). Furthermore, a 

retrospective cohort study was carried out to investigate the incidence of 

chronic medical conditions of men who have infertility (Eisenberg et al., 2016). 

Men diagnosed with male factor infertility had an important risk of developing 

chronic conditions such as hypertension, diabetes, hyperlipidemia, renal 

diseases, pulmonary disease, testis and prostate cancers etc. in the following 

years (Jacobsen et al., 2000; Walsh et al., 2009 & Walsh et al., 2010; Eisenberg 

et al., 2015). The findings again suggest a connection between different types 

of cancer and infertility, which requires immediate mechanistic studies. 
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•   As discussed in the case studies above, it is possible to find previously non-

reported links between various genes, phenotypes and diseases in 

Mouse2HumanNet, which may lead researchers to do a detailed literature 

search or even to design new experiments to test the biologically interesting 

links they’ve observed in our networks.  This way, laboratory scientists can 

benefit from Mouse2HumanNet to select targeted knock-out models to study a 

specific human disease by observing the genes of interest together with the 

related phenotypic traits and the affected systems. 

 

5.2 FUTURE DIRECTIONS 

•   We can divide the future directions of this study into two groups: i) potential 

projects to infer biological insight using Mouse2HumanNet, and ii) technical 

modifications to add new functions to the tool that would benefit the users. In 

terms of the first group of directions, we plan to investigate the generated 

networks to observe novel for selected genes and diseases. In the wet-lab 

laboratory of our group (i.e. Cancer Systems Biology Laboratory – CanSyl, 

METU) the focus is on liver cancers, especially hepatocellular carcinoma, and 

its related pathways such as the PI3K/AKT/mTOR pathway (Ersahin et al., 

2015).  One of the aims of CanSyl is investigating novel genes/proteins to 

target hepatocellular carcinoma and repurposing drugs for this purpose. We 

plan to employ Mouse2HumanNet to search the associated phenotypic traits to 

liver cancers and their connected mouse genes. In the case of discovering 

interesting novel connections, first a literature search will be performed and 

this may be followed by the construction of an experimental setup to test the 

candidates. The same methodology can be followed for other cancer group 

diseases, their phenotypic traits and potential target genes. 

•   First of the planned technical modifications is the generation of mono-partite 

disease-disease, gene-gene and phenotype-phenotype similarity networks. 

Disease-disease and gene-gene networks have previously been proposed in the 
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Diseasome study (Goh et al., 2007); however, here we plan to weight the edges 

between genes and between diseases using their hierarchical phenotypic 

similarities discussed in the results section. This way, more accurate networks 

can be obtained. Apart from that, phenotype-phenotype similarity networks are 

proposed for the first time as far as we are aware. These networks will give an 

idea regarding the similarities between abnormal traits such as symptoms and 

can be used in research on medical diagnosis. 

•   A secondary modification for adding new functionalities can be the addition of 

different types of nodes to the network along with the current disease, 

phenotype and gene nodes. For this purpose, we plan to add nodes correspond 

to pathways/systems, terms of the other ontological systems such as the Gene 

Ontology (GO) and HPO, and drug molecules. The connections between 

pathways and genes will correspond to membership of those genes in the 

corresponding pathways. The edges between pathway and disease nodes will 

mean that those pathways are affected during those diseases. This will add a 

redundancy to the networks as the MPO phenotype terms also include the 

system information, however, addition of multiple systems will increase the 

information coverage. The connections between diseases and drugs will 

display which drug compounds are currently used to treat which diseases, and 

the connections between drugs and genes will tell us what are the targeted 

genes/proteins of those drugs. Finally, addition of other ontological annotations 

will enrich the information stored in our network. As a result, researchers using 

our system will find comprehensive information regarding diseases, traits, 

genes and drugs that are used for treatment. 

•   The third possible direction is the construction of other networks similar to 

Mouse2HumanNet, this time using other model organisms and human. These 

networks can provide further insight regarding the human diseases and their 

phenotypic reflections, especially where the mouse models remain insufficient. 

These model organisms will most probably be more distant to the human 

compared to mouse from an evolutionary point of view; however, the 

construction of the networks can be done over evolutionarily highly conserved 
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functions. The comparison of these networks against Mouse2HumanNet would 

produce interesting results. Candidate model organisms can be animals such as 

drosophila or even bacteria such as E. coli.  

•   Another possible technical modification for Mouse2HumanNet web-service 

may be adding a functionality to display the phenotypes at the desired 

phenotypic level (i.e. parent or high-level phenotypes instead of asserted/child 

phenotypes, which is the only options now). This can either be achieved by 

generating an independent network for each level or just displaying the 

ancestor terms of a phenotype in the network, when the user clicks or just drags 

the cursor over the corresponding node. This modification will serve two 

purposes: i) the number of nodes on the networks will be reduced, which will 

provide a better perceptibility, and ii) the information about phenotypes will be 

condensed into more generic classes of phenotypic traits, to be able to analyze 

the relations on higher systemic levels. 

•   As the final potential direction, functional associations can be made for 

diseases, in the form of when function X is lost from the relevant genes due to 

mutations, disease Y occurs. These kinds of associations could be extremely 

useful to aid disease mechanism studies.  This can be done by selecting all the 

genes connected to a disease, and carrying out a functional enrichment analysis 

to observe the properties share between all or at least most of the genes in this 

list. If the resulting highly enriched property is a pathway, then we can 

conclude that the corresponding disease is caused by disruptions in this 

pathway. If the enriched property is a subcellular location, then we can infer 

that the corresponding disease is particularly effective in that location inside 

the body. If the enriched property is a biological process GO term, then we can 

say that the disease could be affecting this high-level system in the organism. 

In order to test this idea in a small-scale analysis, all of the genes annotated 

with Leukemia disease were downloaded from Mouse2HumanNet and 

analyzed with DAVID Functional Annotation Tool (Huang et al., 2009). The 

enrichment results were investigated and it was observed that many of these 

genes shared the same or similar annotations. For example, among the most 
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highly enriched ones were “Acute myeloid leukemia”, “Pathways in cancer” 

and “hemopoiesis” as expected. Along with those, the terms “protein binding”, 

“negative regulation of cell proliferation”, and “Acetylation” and many others 

were also enriched. This may indicate that the corruptions in these functions, 

due to mutations, may contribute to the appearance of Leukemia. Both the gene 

list and the significantly enriched annotations can be observed in the tables 

under Appendix C.2. One option as a future direction would be automatizing 

this process, to associate highly enriched functional properties with the 

diseases in the network. This type of analyses can also be used to discover 

novel candidate disease genes, by finding the other genes (i.e. the genes that 

were not connected to the corresponding disease in the first place), which were 

annotated with the corresponding disease associated functional properties. 
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APPENDICES 

 

 

                                                        APPENDIX A 

 

 

USER MANUAL FOR THE MOUSE2HUMANNET WEB-SERVICE 

 

 

 

Mouse2HumanNet is an open source of bioinformatics platform / web-service for the 

visualization and manipulation of the networks indicating the relationships between 

diseases, disease causing genes, and abnormal phenotypic traits in mouse and human 

organisms. In this network, diseases, phenotype terms and genes correspond to nodes 

(genes are modeled as edges in the alternative version of the network) and the pairwise 

relationships between these entities correspond to edges between the nodes. The first 

one of the networks is called “Genes-Node version network” and it can be accessed 

from the link: “https://nilaycan.github.io/mousepheno”. The second version, which is 

called “Genes-Edge version network” can be accessed from the link: 

“https://nilaycan.github.io/mousepheno/edges/”. 
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Mouse2HumanNet Manual 

 

1-) Introduction 

Mouse2HumanNet is a JavaScript based web-service to visualize the relations between 

human diseases, human/mouse orthologues genes and abnormal phenotypes (i.e. 

affected systems). The web based viewer is a modified version of Gexf js master tool 

((Velt, R. (2011), Gexf-js Gephi visualisation plugin, Github. Retrieved [04.06.2017] 

from [https://github.com/raphv/gexf-js]). Users may find various options on the 

interface such as zooming in and out, magnifying and displaying only selected nodes 

and its connections using the sub-network selector, a search bar to type the names of 

nodes, a small network (shown at the bottom right of the screen) functioning as a 

navigator to help user to find the current location while zoomed in, a color code table 

displaying different types of nodes in the network together with the number of nodes 

for the corresponding node types, ability to temporarily highlight the connections of 

nodes by dragging cursor onto them (without clicking), exporting the connections of 

any chosen node in .xlsx format and exporting the selected sub-networks in .png 

format. The interface of Mouse2HumanNet is shown in Figure 45 with explanations. 
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Figure 45: Interface of Mouse2HumanNet (Genes-Node version network). 

 

2-) Interpretation of Mouse2HumanNet Interface 

The first property that will be explained in this section is the search bar. When any 

letters are typed into the search field, all possible results (in terms of the node names) 

are listed in a window. Search column is not case sensitive. In Figure A.2 and Figure 

A.3, nodes names are displayed for example searches. 
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Figure A.2: Diseases are displayed with “disorder” term at the beginning. 

 

 

Figure A.3: Affected system (left) and gene (right) names as they appear in search 

window. 
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In Genes-Node version network (http://nilaycan.github.io/mousepheno), all biological 

entities (i.e. diseases, phenotypes and genes) are represented as nodes. When any 

mouse/human orthologue gene symbol is searched and the corresponding node is 

selected by clicking the gene symbol, the user can see its connected diseases and 

affected systems as listed on the left pane. If a disease term is typed into the search 

column and the corresponding node is selected, its related genes are revealed on the 

left pane. Also, if an affected system was searched and selected, its related genes are 

listed on the left pane. For any selected disease node, Total number of connected nodes 

can be seen under degree information on the left pane. The connections of a selected 

node can be exported with the “export nodes” button in .xlsx format. Furthermore, the 

displayed network can be exported in .png format with “export png” button. 

The size (area) of the nodes is proportional to the number of connections it possesses. 

The colors of the nodes are given according to the color table at the right side of the 

screen (Figure 9). There are 24 distinct node types in the Genes-Node network, which 

are mouse/human orthologues genes, mouse phenotypes (i.e. affected systems) and 22 

different human disorder classes. Mouse genes and affected systems are coded as red 

and black, respectively.  

The edge weights are given to only some of the node types. The weights between 

disorders and genes are constant; however, the weights between genes and affected 

systems change according to the number of diseases that gene is connected to, and 

visualized as edge thicknesses. Constant edge weights between the diseases and genes 

in Genes-Node network is illustrated under Figure A.4 and variable edge weights 

between affected systems and genes are shown in Figure A.5. 
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Figure A.4: Edge weights between genes and diseases in Genes-Node network. 

 

 

Figure A.5: Edge weight between affected systems and genes  

 

In Genes-Edge version (https://nilaycan.github.io/mousepheno/edges/), affected 

systems and diseases are represented as nodes and genes correspond to edges that 

connect affected system and disease nodes. Users can only search diseases and affected 

systems in this version. When any disease term is typed into the search column and 
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the corresponding node is selected, its connected affected systems are displayed on the 

left pane and the connected gene names appear in a list. Also, if any affected system 

is searched and the node is selected, its related diseases are displayed. 

There are 23 distinct node types in the Genes-Edge network, which are mouse 

phenotypes / affected systems and 22 different human disorder classes. Affected 

systems and genes are coded with black and red colors, respectively. Disorder and 

affected system node sizes are selected with respect to their corresponding number of 

connections. 

Different edge weights are applied according to the number of genes shared between 

a disease and an affected system. The edge weight property is visualized for 

“premature death” phenotype in Figure A.6. 

 

 

Figure A.6: Edge weights between premature death phenotype and its connected 

diseases. 
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3-) A use-case example 

Suppose a user is interested in breast cancer and starts typing the disease name in the 

search box in the Genes-Node version network. This will reveal the related disorder 

names in a window, from where the user selects “Disorder: Breast cancer” by clicking 

on it. This will open the page for the corresponding disease, where the Disease Id, 

disorder class, the degree (total number of connected nodes) and the symbols of the 

connected genes are listed on the left pane (Figure A.7, left). The user isolates only 

breast cancer and its connections on the network by clicking the subnetwork button 

(otherwise, the whole network will be displaed in the background). The user can also 

temporarily visualize the connections of genes (in terms of phenotypes and other 

diseases) that is connected to breast cancer node, by dragging cursor onto the 

connected gene nodes without clicking. For example, while not clicking any node, 

dragging the cursor over the “Trp53” gene node will temporarily visualize its 

connections (Figure A.8). So, it can be said that the temporarily displayed connections 

(i.e. phenotypes and other diseases connected to Trp53) are in-directly connected to 

the breast cancer node, which can provide additional insight while investigating breast 

cancer. 
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Figure A.7: “Disorder: Breast Cancer” page (left), “Trp53” gene page (right) in the 

Genes-Node version network. 

 

 

Figure A.8: Temporarily visualizing the connections of Trp53 gene node while on the 

‘‘Disorder: Breast Cancer’’ node. 
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When any node on the screen is clicked, the dedicated connections of the clicked node 

will appear on the screen. If the selected node is a gene in Genes-Node network, its 

connected affected systems and diseases will appear on the left pane. This is not the 

case for selected diseases and affected systems since these node types are not directly 

connected to each other on the Genes-Node network (they are directly connected in 

the Genes-Edge version). In Figure A.7 (right side), “Trp53” (orthologue of TP53 

human gene) node was clicked from the list of breast cancer’s connections. Users can 

see the node type, Entrez Id and the degree information of the chosen gene node.  

Edge thickness between genes and affected systems change according to the number 

of diseases connected to that gene. This is illustrated in Figure A.9 (top screenshot), 

as the edges are thicker between “Trp53” and its connections since “Trp53” is densely 

connected to diseases. In figure A.9 (bottom screenshot), edge thicknesses between 

“premature death” phenotype and gene nodes change with respect to the number of 

diseases that gene is connected to. This property indicates how critical a gene is, in 

terms of disease relations. 

In our example so far, the user has found out that Trp53 gene (human orthologue: 

TP53) is critical for breast cancer disorder and Trp53/TP53 is a hub gene that has been 

associated with many diseases along with breast cancer. Now the user can move on to 

investigate phenotypic traits for this gene. “Premature death” is an abnormal 

phenotype that is associated with Trp53, as shown in the left pane (the first black 

colored node on the list in Figure A.9, top screenshot). To have better idea, the user 

clicks “Premature death” link on the left pane which directs to the dedicated sub-

network for this phenotype (Figure A.9, bottom screenshot). The user now can observe 

the other gene nodes connected to “Premature death” phenotype, both on the left pane 

as a list, and as a network on the main window. The inference here is that, “Premature 

death” can be caused by many other genes along with Trp53. The user can further 

move on with selecting another interesting gene. Up to this point, one simple 

conclusion is that, the formation of breast cancer can be related to mutations in 

Trp53/TP53 gene, which can lead to premature death. 
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Figure A.9: “Trp53” gene (top) and “Premature death” affected system (bottom) pages 

in Genes-Node version network. 

 

Figure A.10 displays the interface for Genes-Edge version network. In this version, 

users can only search human disorders and mouse affected systems, because the genes 

are coded as edges and not as clickable as nodes, in this version. 

As an example, case, “Disorder: Papillary serous carcinoma of the peritoneum” disease 

was typed into search box and its connections are shown (Figure A.11, left). Disease 

Id, disorder class, total number of connected nodes to “Papillary serous carcinoma of 

the peritoneum” as degree and the connecting genes’ symbols (serving as edges in this 

network) are listed on the left pane. The user isolates only this disease’s connections 

by clicking subnetwork button.  The only connected gene is Brca1. Among the many 

listed connected phenotypes, “Uterus hyperplasia” was selected by clicking the 
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corresponding link (i.e. the name of the phenotype) as shown on the right side of Figure 

A.11. Now, the related diseases of “Uterus hyperplasia” phenotype (including 

Papillary serous carcinoma of the peritoneum) appears on the left pane. Here, the edge 

thicknesses between disease and affected system nodes change according to the total 

number of genes shared between them. At this point, the user can directly observe 

which diseases are related to Papillary serous carcinoma of the peritoneum over the 

connections with Uterus hyperplasia phenotype. At a very basic level, the user has 

learnt that the disease “Papillary serous carcinoma of the peritoneum” may cause 

“Uterus hyperplasia”, which is the increased uterus size, and the biological mechanism 

behind this process may lie within certain mutations in the BRCA1 gene. 

 

 

Figure: A.10: Interface of the Genes-Edge version network in Mouse2HumanNet with 

explanations for features and options. 
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Figure A.11: “Papillary serous carcinoma of the peritoneum” disease’s interface (left), 

and “Uterus hyperplasia” phenotype’s interface (right) on the Genes-Edge version 

network. 
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APPENDIX B 

 

SOURCE CODES 

 

B.1 GENES-EDGE VERSION 

 

import os 

import sys 

import time 

import math 

import xlrd 

from xlrd import open_workbook 

import random 

from sys import stdout 

from time import sleep 

#width2height=2.0 

area_density=0.05 

def bgr(minimum, maximum, value): 

    minimum, maximum = float(minimum), float(maximum) 

    ratio = 2 * (float(value)-minimum) / (maximum - 
minimum) 

    b = int(max(0, 255*(1 - ratio))) 

    r = int(max(0, 255*(ratio - 1))) 

    g = 255 - b - r 

    bgr=[] 

    bgr.append(b) 
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    bgr.append(g) 

    bgr.append(r) 

    return bgr 

def write_xml_header(file): 

    file.write('<?xml version="1.0" encoding="UTF-
8"?>\n') 

    #file.write('<gexf xmlns="http://www.gephi.org/gexf" 
xmlns:viz="http://www.gephi.org/gexf/viz">\n') 

    file.write('<gexf 
xmlns="http://www.gexf.net/1.2draft" version="1.2" 
xmlns:viz="http://www.gexf.net/1.2draft/viz" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.gexf.net/1.2draft 
http://www.gexf.net/1.2draft/gexf.xsd">\n') 

    #file.write('<graph type="static">\n') 

    file.write('  <meta lastmodifieddate="2014-01-
30">\n') 

    file.write('    <creator>Gephi 0.8.1</creator>\n') 

    file.write('    <description></description>\n') 

    file.write('  </meta>\n') 

    file.write('  <graph defaultedgetype="directed" 
mode="static">\n') 

    file.write('    <attributes class="node" 
mode="static">\n') 

    file.write('      <attribute id="0" title="Type" 
type="string"/>\n') 

    #file.write('      <attribute id="1" title="disease 
class" type="string"/>\n') 

    file.write('      <attribute id="1" title="Remarks" 
type="string"/></attributes>\n') 

    #file.write('<attributes class="node" 
type="static">\n') 

    #file.write('<attribute id="0" title="type" 
type="string"/>\n') 



113 

    #file.write('<attribute id="1" title="disclass" 
type="string"/>\n') 

    #file.write('<attribute id="2" title="Polygon" 
type="integer"/>\n') 

    #file.write('</attributes>\n') 

    file.write('    <nodes>\n') 

def 
write_a_node(file,_node_id,_label,_att1,_att2,_pos,_col,_
size): 

    file.write('      <node id="'+_node_id+'" 
label="'+_label+'"\n>') 

    file.write('        <attvalues>\n') 

    #if _att1=="gene": 

    #    att1="Mouse Gene" 

    #if _att1=="humandisease": 

    #    att1="Disease of Class: "+ 

    #    _att3="3" 

    file.write('          <attvalue id="0" 
value="'+_att1+'"></attvalue>\n') 

    file.write('          <attvalue id="1" 
value="'+_att2+'"></attvalue>\n') 

    #file.write('          <attvalue id="2" 
value="'+_att3+'"></attvalue>\n') 

    file.write('        </attvalues>\n') 

    file.write('        <viz:position x="'+_pos[0]+'" 
y="'+_pos[1]+'" z="0.0"></viz:position>\n') 

    file.write('        <viz:color b="'+_col[0]+'" 
g="'+_col[1]+'" r="'+_col[2]+'"></viz:color>\n') 

    file.write('        <viz:size 
value="'+_size+'"></viz:size>\n') 

    #file.write('<viz:shape value="triangle"/>\n') 

    file.write('      </node>\n') 
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    #file.write('\n') 

print "undirected graph generation human diseases to child 
affected names via genes" 

#can: the name of the workbook, be caution about the format 
of the book 

first_book_name="first_table_corrected_new.xls" 

first_book = xlrd.open_workbook(first_book_name) 

#can: the name of the active worksheet 

ws=first_book.sheet_by_name("Sheet1") 

#can: 

#can: a python dictionary conneting the genes (as keys=) 
to the humandiseases (=as values) 

#gene2humandis={} 

humandis2gene={} 

dis_class={} 

#can: flag for the while loop to recognize end of the excel 
sheet 

first_line=True 

#can: the start row 

current_row=1 

gene2entrez={} 

while first_line: 

    try: 

        current_entrezid=ws.cell(current_row,0).value 

    except: 

        first_line=False 

    else: 

        try: 

            
current_gene=ws.cell(current_row,1).value.strip() 
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        except: 

            pass 

        else: 

            gene2entrez[current_gene]=current_entrezid 

            
current_humandis=ws.cell(current_row,3).value.strip() 

            current_disclass=ws.cell(current_row,4).value 

            dis_class[str(current_disclass)]=1.0 

            
#current_tuple=(current_humandis,current_disclass,current
_row) 

            
current_tuple=(current_gene,current_disclass,current_row) 

            #if current_gene not in gene2humandis.keys(): 

            #    gene2humandis[current_gene]=[] 

            
#gene2humandis[current_gene].append(current_tuple) 

            if current_humandis not in 
humandis2gene.keys(): 

                humandis2gene[current_humandis]=[] 

            
humandis2gene[current_humandis].append(current_tuple) 

        current_row=current_row+1 

for l in range(len(dis_class.keys())): 

    dis_class[dis_class.keys()[l]]=float(l) 

second_book_name="second_with_parenting.xlsx" 

second_book = xlrd.open_workbook(second_book_name) 

ws=second_book.sheet_by_name("DENE") 

gene2affected={} 

mp2id={} 

second_line=True 
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prev_row=current_row 

current_row=1 

while second_line: 

    try: 

        current_mp=ws.cell(current_row,0).value 

    except: 

        second_line=False 

        print "here you have some 
problem"+str(current_row) 

    else: 

        try: 

            
current_gene=ws.cell(current_row,2).value.strip() 

        except: 

            pass 

        else: 

            current_affected=ws.cell(current_row,1).value 

            
#current_parent1_mp=str(ws.cell(current_row,3).value) 

            
#current_parent1_affected=str(ws.cell(current_row,4).valu
e) 

            #current_parent2_affected="noparent" 

            #try: 

            #    
current_parent2_mp=str(ws.cell(current_row,5).value) 

            #except: 

            #    current_parent2_mp="noparent" 

            #else: 
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#current_parent2_affected=str(ws.cell(current_row,6).valu
e) 

     
#affected_tuple=(current_affected,prev_row+current_row,cu
rrent_parent1_mp,current_parent1_affected,current_parent2
_mp,current_parent2_affected) 

            
affected_tuple=(current_mp,current_affected)#,current_par
ent1_mp,current_parent1_affected,current_parent2_mp,curre
nt_parent2_affected) 

 

            if current_gene not in gene2affected.keys(): 

                gene2affected[current_gene]=[] 

            
gene2affected[current_gene].append(affected_tuple) 

            if current_gene=="Flt3": 

                print "here:"+str(affected_tuple) 

            mp2id[current_mp]=prev_row+current_row 

            current_row=current_row+1 

print "numberofrows:"+str(current_row) 

 

gene2geneId={} 

prev_row=max(mp2id.values())+1 

current_row=1 

for gene in gene2affected.keys(): 

    gene2geneId[gene]=prev_row+current_row 

    current_row=current_row+1 

 

no_notaffected_genes=0 

max_radius=0 

max_disease="some" 
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total_area=0.0 

for gene_tuple_array in humandis2gene.values(): 

    for gene_tuple in gene_tuple_array: 

        
current_gene,current_disclass,current_row=gene_tuple 

        
current_gene,current_disclass,current_row=str(current_gen
e),str(current_disclass),str(current_row) 

        #print current_gene,gene_tuple 

        try: 

            x=len(gene2affected[current_gene]) 

        except: 

            no_notaffected_genes=no_notaffected_genes+1 

        else: 

            #if max_radius<x: 

            #    max_radius=x 

            #    for humandis in gene2humandis[gene]: 

            #        max_disease, dummy1, dummy2=humandis 

            total_area=total_area+float(x)*float(x)*3.14 

#print "the maximum radius and the corresponding disease 
(number of affected connected to disease) is: 
"+str(max_radius)+" of "+max_disease 

print "total area has been found to be: "+ str(total_area) 

#print no_notaffected_genes 

#compute heigth 

r=math.sqrt(total_area/area_density/3.14) 

print "the maximum radius of the window has been found to 
be "+str(r) 

outfile=open("dis2affected.gexf","w") 

write_xml_header(outfile) 
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debugfile=open("debugfile.log","w") 

nodedic={} 

missing=[] 

for humandisease in humandis2gene.keys(): 

    prev_missing_length=len(missing) 

    current_size=0.0 

    current_gene_list = [] 

    for gene_tuple in humandis2gene[humandisease]: 

        
current_gene,current_disclass,current_row=gene_tuple 

        current_gene_list.append(current_gene) 

        try: 

            
current_size=current_size+len(gene2affected[current_gene]
) 

        except: 

            missing.append(current_gene) 

    current_size=str(current_size) 

    first_gene_tuple=humandis2gene[humandisease][0] 

    
current_gene,current_disclass,current_row=first_gene_tupl
e 

    current_gene, current_att2, 
current_node_id=str(current_gene),str(current_disclass),s
tr(current_row) 

    current_label="Disorder: "+humandisease 

    current_att1="Disorder Class: "+current_disclass 

    current_att2="Number of Mouse Genes: 
"+str(len(humandis2gene[humandisease]))+" AND, "+"Genes 
are " + ', '.join(current_gene_list) 

    #angle=random.uniform(-3.14*2,3.14*2) 

    #radius=random.uniform(0,r) 
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#current_pos=str(radius*math.cos(angle)),str(radius*math.
sin(angle)) 

    
#current_col=bgr(0,len(dis_class.keys()),dis_class[curren
t_att2]) 

  
#current_col[0],current_col[1],current_col[2]=str(current
_col[0]),str(current_col[1]),str(current_col[2]) 

    seperator="**##" 

    
writenodestring=current_node_id+seperator+current_label+s
eperator+current_att1+seperator+current_att2+seperator+cu
rrent_size 

    
nodedic[current_node_id+seperator+current_label]=writenod
estring 

 

print "Total # of nodes appended: 
"+str(len(nodedic.keys())) 

print "# of nodes without MP Id appended: 
"+str(len(missing)) 

for k in missing: 

    debugfile.write(k+"\n") 

 

from collections import Counter 

from itertools import chain 

 

def rowToPairs(sheet, row): 

    """covert a sheet row to (affected_system, disease) pairs""" 

    affected_system = sheet.cell(row, 1).value.strip() 

    diseases = [d.strip() for d in sheet.cell(row, 
3).value.split(',')] 
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    aff_sys_disease_pairs = [(affected_system, disease) 
for disease in diseases] 

    return aff_sys_disease_pairs 

 

def sheet_to_pairs(sheet): 

    """convert the sheet to (affected_system, disease) pairs iterable""" 

    return (rowToPairs(sheet, row) for row in range(0, 
sheet.nrows)) 

 

def count_affected_in_sheet(sheet): 

    unique_pairs = 
set(chain.from_iterable(sheet_to_pairs(sheet))) 

    return Counter(aff_sys for (aff_sys, disease) in 
unique_pairs) 

 

# doc = 
open_workbook('second_disease_added.xlsx').sheet_by_index
(0) 

counter = count_affected_in_sheet(ws) 

for humandisease in humandis2gene.keys(): 

    for gene_tuple in humandis2gene[humandisease]: 

        gene,current_disclass,current_row=gene_tuple 

        try: 

            dummy=len(gene2affected[gene]) 

        except: 

            pass 

        else: 

            for affected in gene2affected[gene]: 

                #current_label, 
current_node_id,mp1,affected1,mp2,affected2=affected 
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                current_mp,current_affected=affected 

                # current_size=str(50.0) 

                current_size = 
str(counter.get(current_affected)) 

                #current_att1="Child affected system" 

                current_att1="Affected system" 

                current_att2=current_affected 

                angle=random.uniform(-3.14*2,3.14*2) 

                radius=random.uniform(0,r) 

                
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 

                current_col=str(68),str(68),str(238) 

                seperator="**##" 

                
current_target_node_id=str(mp2id[current_mp]) 

                current_affected=current_att2 

                
writenodestring=current_target_node_id+seperator+current_
affected+seperator+current_att1+seperator+current_att2+se
perator+current_size 

                
nodedic[current_target_node_id+seperator+current_mp]=writ
enodestring 

                ''' 

                try: 

                    
current_parent1_target_node_id=str(mp2id[mp1]) 

                except: 

                    pass 

                else: 

                    angle=random.uniform(-3.14*2,3.14*2) 
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                    radius=random.uniform(0,r) 

                    
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 

                    current_col=str(68),str(68),str(238) 

                    seperator="**##" 

                    current_att1="Parent affected system" 

                    current_att2=affected1 

                    mp1="Parent Affected System1: 
"+mp1.strip('\"') 

                    
writenodestring=current_parent1_target_node_id+seperator+
mp1+seperator+current_att1+seperator+current_att2+seperat
or+current_size 

                    
nodedic[current_parent1_target_node_id+seperator+mp1]=wri
tenodestring 

                    
#write_a_node(outfile,current_parent1_target_node_id,mp1,
current_att1,current_att2,current_pos,current_col,current
_size) 

                if mp2!="noparent": 

                    try: 

                        
current_parent2_target_node_id=str(mp2id[mp2]) 

                    except: 

                        pass 

                    else: 

                        angle=random.uniform(-
3.14*2,3.14*2) 

                        radius=random.uniform(0,r) 

                        
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 
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current_col=str(68),str(68),str(238) 

                        seperator="**##" 

                        current_att1="Parent affected 
system" 

                        current_att2=affected2 

                        mp2="Parent Affected System2: 
"+mp2.strip('\"') 

                        
writenodestring=current_parent2_target_node_id+seperator+
mp2+seperator+current_att1+seperator+current_att2+seperat
or+current_size 

                        
nodedic[current_parent2_target_node_id+seperator+mp2]=wri
tenodestring 

                        
#write_a_node(outfile,current_parent2_target_node_id,mp2,
current_att1,current_att2,current_pos,current_col,current
_size) 

 

                ''' 

#beneath is outcommented on purpose, since the genes will 
not be considered as nodes for this version 

''' 

for gene in gene2affected.keys(): 

    current_label="Mouse knock-out Gene: "+gene 

 

    current_node_id=str(gene2geneId[gene]) 

    current_att1="Mouse knock-out Gene" 

    try: 

        current_att2="Entrez Id: 
"+str(int(gene2entrez[gene])) 

    except: 
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        current_att2="Entrez Id missing" 

    #angle=random.uniform(-3.14*2,3.14*2) 

    #radius=random.uniform(0,r) 

    
#current_pos=str(radius*math.cos(angle)),str(radius*math.
sin(angle)) 

    #current_col=str(168),str(68),str(238) 

    seperator="**##" 

    current_size=str(len(gene2affected[gene])) 

    
writenodestring=current_node_id+seperator+current_label+s
eperator+current_att1+seperator+current_att2+seperator+cu
rrent_size 

    nodedic[gene+seperator+current_label]=writenodestring 

''' 

 

for n in sorted(nodedic.keys()): 

    seperator="**##" 

    current_node_string=nodedic[n] 

    
current_node_id=current_node_string.split(seperator)[0] 

    current_label=current_node_string.split(seperator)[1] 

    current_att1=current_node_string.split(seperator)[2] 

    current_att2=current_node_string.split(seperator)[3] 

    current_size=current_node_string.split(seperator)[4] 

    angle=random.uniform(-3.14*2,3.14*2) 

    radius=random.uniform(0,r) 

    
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 

    if current_att1.startswith("Disease Class:")==True: 
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        current_disclass=current_att1.split("Disease 
Class: ")[1] 

        
current_col=bgr(0,len(dis_class.keys()),dis_class[current
_disclass]) 

        
current_col[0],current_col[1],current_col[2]=str(current_
col[0]),str(current_col[1]),str(current_col[2]) 

    else: 

        if current_att1=="Mouse knock-out Gene": 

            current_col=str(9),str(9),str(9) 

        else: 

          current_col=str(68),str(68),str(238) 

    
write_a_node(outfile,current_node_id,current_label,curren
t_att1,current_att2,current_pos,current_col,current_size) 

outfile.write("    </nodes>\n") 

 

edgedic={} 

edge_counter=1 

humdis_counter=1 

for humandisease in humandis2gene.keys(): 

    first_gene_tuple=humandis2gene[humandisease][0] 

    
first_gene,current_disclass,current_row=first_gene_tuple 

    first_gene, current_att2, 
current_dis_source_node_id=str(first_gene),str(current_di
sclass),str(current_row) 

    #above is only required for determining the 
current_dis_source_node_id 

    #item="finished percentage: 
"+str(float(humdis_counter/len(humandis2gene.keys()))*100
.0) 
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    #print  item, "\r", 

    #sys.stdout.flush() 

    #sleep(1) 

    humdis_counter=humdis_counter+1 

    print humdis_counter 

    for gene_tuple in humandis2gene[humandisease]: 

        gene,current_disclass,current_row=gene_tuple 

        #if humandisease=="Leukemia": 

        #    print gene 

        try: 

            dummy=len(gene2affected[gene]) 

        except: 

            pass 

        else: 

            for affected in gene2affected[gene]: 

                current_mp,current_affected=affected 

                
current_mp,current_affected=str(current_mp),str(current_a
ffected) 

                #if humandisease=="Leukemia": 

                #    print "affected:"+current_affected 

                
current_target_node_id=str(mp2id[current_mp]) 

                #current_edge_string='      <edge 
id="'+str(edge_counter)+'" 
source="'+current_dis_source_node_id+'" 
target="'+current_target_node_id+'" label="'+gene+'">\n' 

                #current_edge_string='      <edge 
id="'+str(edge_counter)+'" 
source="'+current_dis_source_node_id+'" 
target="'+current_target_node_id+'" label=allgenes">\n' 
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                current_edge_string='" 
source="'+current_dis_source_node_id+'" 
target="'+current_target_node_id+'" label="allgenes">\n' 

                
#current_edge_string=current_edge_string+'        
<attvalues></attvalues>\n      </edge>\n' 

                #edge_counter=edge_counter+1 

                if current_edge_string not in 
edgedic.keys(): 

                    edgedic[current_edge_string]=[] 

                edgedic[current_edge_string].append(gene) 

                 

 

outfile.write("    <edges>\n") 

length_of_gene_keys={} 

for e in sorted(edgedic.keys()): 

    outfile.write('      <edge id="'+str(edge_counter)) 

    genestring="" 

    for st in range(len(edgedic[e])-1): 

        genestring=genestring+edgedic[e][st]+"," 

    genestring=genestring+edgedic[e][len(edgedic[e])-1] 

    outfile.write(e.replace("allgenes",str(genestring))) 

    length_of_gene_keys[len(edgedic[e])]=True 

    outfile.write('        <attvalues></attvalues>\n      
</edge>\n') 

    edge_counter=edge_counter+1 

    #outfile.write(e) 

print max(length_of_gene_keys) 

outfile.write('    </edges>\n') 

outfile.write('  </graph>\n') 
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outfile.write('</gexf>\n') 

 

print "finished" 
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B.2 GENES-NODE VERSION 

 

import os  

import sys 

import time  

import math 

import xlrd 

from xlrd import open_workbook 

import random 

area_density=0.05 

def bgr(minimum, maximum, value): 

    minimum, maximum = float(minimum), float(maximum) 

    ratio = 2 * (float(value)-minimum) / (maximum - 
minimum) 

    b = int(max(0, 255*(1 - ratio))) 

    r = int(max(0, 255*(ratio - 1))) 

    g = 255 - b - r 

    bgr=[] 

    bgr.append(b) 

    bgr.append(g) 

    bgr.append(r) 

    return bgr 

def write_xml_header(file): 

    file.write('<?xml version="1.0" encoding="UTF-
8"?>\n') 

    file.write('<gexf 
xmlns="http://www.gexf.net/1.2draft" version="1.2" 
xmlns:viz="http://www.gexf.net/1.2draft/viz" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
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xsi:schemaLocation="http://www.gexf.net/1.2draft 
http://www.gexf.net/1.2draft/gexf.xsd">\n') 

    file.write('  <meta lastmodifieddate="2014-01-
30">\n') 

    file.write('    <creator>Gephi 0.8.1</creator>\n') 

    file.write('    <description></description>\n') 

    file.write('  </meta>\n') 

    file.write('  <graph defaultedgetype="directed" 
mode="static">\n') 

    file.write('    <attributes class="node" 
mode="static">\n') 

    file.write('      <attribute id="0" title="Type" 
type="string"/>\n') 

    file.write('      <attribute id="1" title="Remarks" 
type="string"/></attributes>\n') 

    file.write('    <nodes>\n') 

def 
write_a_node(file,_node_id,_label,_att1,_att2,_pos,_col,_
size): 

    file.write('      <node id="'+_node_id+'" 
label="'+_label+'"\n>') 

    file.write('        <attvalues>\n') 

     

    file.write('          <attvalue id="0" 
value="'+_att1+'"></attvalue>\n') 

    file.write('          <attvalue id="1" 
value="'+_att2+'"></attvalue>\n') 

    file.write('        </attvalues>\n') 

    file.write('        <viz:position x="'+_pos[0]+'" 
y="'+_pos[1]+'" z="0.0"></viz:position>\n') 

    file.write('        <viz:color b="'+_col[0]+'" 
g="'+_col[1]+'" r="'+_col[2]+'"></viz:color>\n') 

    file.write('        <viz:size 
value="'+_size+'"></viz:size>\n') 
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    file.write('      </node>\n') 

    print "undirected graph generation human diseases to 
child affected names via genes" 

first_book_name="first_table_corrected_new.xls" 

first_book = xlrd.open_workbook(first_book_name) 

ws=first_book.sheet_by_name("Sheet1") 

humandis2gene={} 

dis_class={} 

first_line=True 

current_row=1 

gene2entrez={} 

while first_line: 

    try: 

        current_entrezid=ws.cell(current_row,0).value 

    except: 

        first_line=False 

    else:  

        try: 

            
current_gene=ws.cell(current_row,1).value.strip() 

        except: 

            pass 

        else: 

            gene2entrez[current_gene]=current_entrezid 

         
current_humandis=ws.cell(current_row,3).value.strip() 

            current_disclass=ws.cell(current_row,4).value 

            dis_class[str(current_disclass)]=1.0 
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current_tuple=(current_gene,current_disclass,current_row) 

            if current_humandis not in 
humandis2gene.keys(): 

                humandis2gene[current_humandis]=[] 

         
humandis2gene[current_humandis].append(current_tuple)         

        current_row=current_row+1 

for l in range(len(dis_class.keys())): 

    dis_class[dis_class.keys()[l]]=float(l) 

second_book_name="second_with_parenting.xlsx" 

second_book = xlrd.open_workbook(second_book_name) 

ws=second_book.sheet_by_name("DENE") 

gene2affected={} 

mp2id={} 

second_line=True 

prev_row=current_row 

current_row=1 

while second_line: 

    try: 

        current_mp=ws.cell(current_row,0).value 

    except: 

        second_line=False 

    else: 

        try: 

            
current_gene=ws.cell(current_row,2).value.strip() 

        except: 

            pass 
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        else: 

            current_affected=ws.cell(current_row,1).value 

            affected_tuple=(current_mp,current_affected) 

 

            if current_gene not in gene2affected.keys(): 

                gene2affected[current_gene]=[] 

            
gene2affected[current_gene].append(affected_tuple) 

            mp2id[current_mp]=prev_row+current_row 

            current_row=current_row+1 

gene2geneId={}        

prev_row=max(mp2id.values())+1 

current_row=1 

for gene in gene2affected.keys(): 

    gene2geneId[gene]=prev_row+current_row 

    current_row=current_row+1 

    no_notaffected_genes=0 

max_radius=0 

max_disease="some" 

total_area=0.0 

for gene_tuple_array in humandis2gene.values(): 

    for gene_tuple in gene_tuple_array: 

        
current_gene,current_disclass,current_row=gene_tuple 

current_gene,current_disclass,current_row=str(current_gen
e),str(current_disclass),str(current_row) 

        #print current_gene,gene_tuple 

        try: 

            x=len(gene2affected[current_gene]) 
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        except: 

            no_notaffected_genes=no_notaffected_genes+1 

        else: 

            total_area=total_area+float(x)*float(x)*3.14 

print "total area has been found to be: "+ str(total_area) 

r=math.sqrt(total_area/area_density/3.14) 

print "the maximum radius of the window has been found to 
be "+str(r) 

outfile=open("dis2affected.gexf","w") 

write_xml_header(outfile) 

debugfile=open("debugfile.log","w") 

nodedic={} 

missing=[] 

for humandisease in humandis2gene.keys(): 

    prev_missing_length=len(missing) 

    current_size=0.0 

    current_gene_list = [] 

    for gene_tuple in humandis2gene[humandisease]: 

        
current_gene,current_disclass,current_row=gene_tuple 

        current_gene_list.append(current_gene) 

        try: 

            
current_size=current_size+len(gene2affected[current_gene]
) 

        except: 

            missing.append(current_gene) 

    current_size=str(current_size) 

    first_gene_tuple=humandis2gene[humandisease][0] 
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current_gene,current_disclass,current_row=first_gene_tupl
e 

    current_gene, current_att2, 
current_node_id=str(current_gene),str(current_disclass),s
tr(current_row) 

    current_label="Disorder: "+humandisease 

    current_att1="Disorder Class: "+current_disclass 

    #current_att2="# of Mouse Genes: 
"+str(len(humandis2gene[humandisease]))+" AND 
"+str(len(missing)-prev_missing_length)+" of them do/does 
not have any MP Id on Jax Database"+". "+" Genes are " + 
', '.join(current_gene_list) 

    current_att2="This network aims to reveal the OMIM 
disorders and mouse affected system connections by using 
ortholog mouse knock out Diseasome genes as edges. The 
size of disease and affected system nodes are respectively 
proportional to the number of genes in it and number of 
disease it connects. Black nodes represent affected 
systems. Red nodes represents mouse genes and other colours 
show distinct 22 disorder classes."    

seperator="**##" 

writenodestring=current_node_id+seperator+current_label+s
eperator+current_att1+seperator+current_att2+seperator+cu
rrent_size 

nodedic[current_node_id+seperator+current_label]=writenod
estring 

print "Total # of nodes appended: 
"+str(len(nodedic.keys())) 

print "# of nodes without MP Id appended: 
"+str(len(missing)) 

for k in missing: 

    debugfile.write(k+"\n") 

from collections import Counter 

from itertools import chain 

def rowToPairs(sheet, row): 
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    affected_system = sheet.cell(row, 1).value.strip() 

    diseases = [d.strip() for d in sheet.cell(row, 
3).value.split(',')] 

    aff_sys_disease_pairs = [(affected_system, disease) 
for disease in diseases] 

    return aff_sys_disease_pairs 

def sheet_to_pairs(sheet): 

    return (rowToPairs(sheet, row) for row in range(0, 
sheet.nrows)) 

 

def count_affected_in_sheet(sheet): 

    unique_pairs = 
set(chain.from_iterable(sheet_to_pairs(sheet))) 

    return Counter(aff_sys for (aff_sys, disease) in 
unique_pairs) 

 

 

counter = count_affected_in_sheet(ws) 

for humandisease in humandis2gene.keys(): 

    for gene_tuple in humandis2gene[humandisease]: 

        gene,current_disclass,current_row=gene_tuple 

        try: 

            dummy=len(gene2affected[gene]) 

        except: 

            pass 

        else: 

            for affected in gene2affected[gene]: 

                current_mp,current_affected=affected 

                current_size = 
str(counter.get(current_affected)) 
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                current_att1="Affected system" 

                current_att2=current_affected 

                angle=random.uniform(-3.14*2,3.14*2) 

                radius=random.uniform(0,r) 

                
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 

                current_col=str(68),str(68),str(238) 

                seperator="**##" 

                
current_target_node_id=str(mp2id[current_mp]) 

                current_affected=current_att2              
writenodestring=current_target_node_id+seperator+current_
affected+seperator+current_att1+seperator+current_att2+se
perator+current_size 

nodedic[current_target_node_id+seperator+current_mp]=writ
enodestring 

for gene in gene2affected.keys(): 

    current_label="Mouse knock-out Gene: "+gene 

     

    current_node_id=str(gene2geneId[gene]) 

    current_att1="Mouse knock-out Gene" 

    try: 

        current_att2="Entrez Id: 
"+str(int(gene2entrez[gene])) 

    except: 

        current_att2="Entrez Id missing" 

    seperator="**##" 

    current_size=str(len(gene2affected[gene])) 

writenodestring=current_node_id+seperator+current_label+s
eperator+current_att1+seperator+current_att2+seperator+cu
rrent_size 
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    nodedic[gene+seperator+current_label]=writenodestring 

for n in sorted(nodedic.keys()): 

    seperator="**##" 

    current_node_string=nodedic[n] 

    
current_node_id=current_node_string.split(seperator)[0] 

    current_label=current_node_string.split(seperator)[1] 

    current_att1=current_node_string.split(seperator)[2] 

    current_att2=current_node_string.split(seperator)[3] 

    current_size=current_node_string.split(seperator)[4] 

    angle=random.uniform(-3.14*2,3.14*2) 

    radius=random.uniform(0,r) 

    
current_pos=str(radius*math.cos(angle)),str(radius*math.s
in(angle)) 

    if current_att1.startswith("Disease Class:")==True: 

        current_disclass=current_att1.split("Disease 
Class: ")[1] 

        
current_col=bgr(0,len(dis_class.keys()),dis_class[current
_disclass]) 

        
current_col[0],current_col[1],current_col[2]=str(current_
col[0]),str(current_col[1]),str(current_col[2]) 

    else: 

        if current_att1=="Mouse knock-out Gene": 

            current_col=str(9),str(9),str(9) 

        else:     

          current_col=str(68),str(68),str(238) 

    
write_a_node(outfile,current_node_id,current_label,curren
t_att1,current_att2,current_pos,current_col,current_size) 
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outfile.write("    </nodes>\n") 

 

edgedic={} 

edge_counter=1 

for humandisease in humandis2gene.keys(): 

    first_gene_tuple=humandis2gene[humandisease][0] 

    
first_gene,current_disclass,current_row=first_gene_tuple 

    first_gene, current_att2, 
current_dis_source_node_id=str(current_gene),str(current_
disclass),str(current_row) 

    for gene_tuple in humandis2gene[humandisease]: 

        gene,current_disclass,current_row=gene_tuple 

        try: 

            dummy=len(gene2affected[gene]) 

        except: 

            pass 

        else: 

            
current_gene_target_node_id=str(gene2geneId[gene]) 

            current_edge_string='      <edge 
id="'+str(edge_counter)+'" 
source="'+current_dis_source_node_id+'" 
target="'+current_gene_target_node_id+'" 
label="'+gene+'">\n' 

            current_edge_string=current_edge_string+'        
<attvalues></attvalues>\n      </edge>\n' 

            edge_counter=edge_counter+1 

            edgedic[current_edge_string]=1.0 

            
current_source_node_id=current_gene_target_node_id 

            for affected in gene2affected[gene]: 
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                current_mp,current_affected=affected 

                
current_mp,current_affected=affected=str(current_mp),str(
current_affected) 

                
current_target_node_id=str(mp2id[current_mp]) 

                current_edge_string='      <edge 
id="'+str(edge_counter)+'" 
source="'+current_source_node_id+'" 
target="'+current_target_node_id+'" label="'+gene+'">\n' 

                current_edge_string=current_edge_string+'        
<attvalues></attvalues>\n      </edge>\n' 

                edge_counter=edge_counter+1 

                edgedic[current_edge_string]=1.0 

outfile.write("    <edges>\n") 

for e in sorted(edgedic.keys()): 

    outfile.write(e) 

outfile.write('    </edges>\n') 

outfile.write('  </graph>\n') 

outfile.write('</gexf>\n') 

 

print "finished"  
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B.3 REMOVING NUMBERS 

 

Function RemoveNumbers(t As String) 

    Dim i As Long, newString As String 

     For i = 1 To Len(t) 

        If Not IsNumeric(Mid(t, i, 1)) Then 

            newString = newString & Mid(t, i, 1) 

        End If 

    Next i 

    RemoveNumbers = newString 

End Function 
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APPENDIX C 

 

C.1 HUMAN AND MOUSE PHENOTYPES FOR TP53 AND TRP53 

ORTHOLOGUE GENES 
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C.2 LIST OF GENES ASSOCIATED WITH LEUKEMIA DISEASE & DAVID 

FUNCTIONAL ENRICHMENT RESULTS 

 

Gene symbols 
Abl1 
Arhgap26 
Arhgef12 
Arnt 
Bcl2 
Bcr 
Ccnd1 
Cebpa 
Chic2 
Flt3 
Gata1 
Hoxd4 
Kit 
Kras 
Lpp 
Nbn 
Nf1 
Npm1 
Nqo1 
Numa1 
Nup214 
P2rx7 
Picalm 
Pml 
Ptpn11 
Runx1 
Stat5b 
Tal1 
Tal2 
Whsc1l1 
Zbtb16 
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