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ABSTRACT

CREATING A GENERIC HAND AND FINGER GESTURE RECOGNIZER
BY USING FOREARM MUSCLE ACTIVITY SIGNALS

DEMİREL, UMUT
M.S., Department of Modelling and Simulation

Supervisor : Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

Co-Supervisor : Assist. Prof. Dr. Elif Sürer

August 2017, 87 pages

Hand and finger gestures are one of the most natural ways of non-verbal
communication. Apart from their daily use in different cultures, they are also
widely used in human-computer interaction. There are a variety of applica-
tions using gestures as inputs such as sign language recognition, robot con-
trol, mobile phone control, medical device control and video game control.
Advances in near-field wireless communications made it possible to design
and deploy low-cost, inconspicuous control devices which can be used to de-
tect certain predefined hand gestures for use in interaction. This thesis aims
to investigate and develop a generic hand and finger gesture recognizer by
processing forearm muscle activity signals from such a device which consists
of eight electromyography (EMG) and Inertial Measurement Unit (IMU) sen-
sors. Two main presuppositions of this thesis is that i) the muscle activity
on the forearm is a spatiotemporally bandlimited circular signal and that can
be sampled using a finite number of sensors, and ii) different gestures re-
sult in different but consistent patterns which are separable. The approach
used in this thesis is based on the extraction of features by joint processing of
signals obtained from a commercially available, low-cost EMG armband and
classification of the gestures by simple and low-complexity artificial neural
networks (ANNs). The dictionary of gestures were chosen from a canonical
catalog of expressive gestures of classical orchestra conductors. Two experi-
ments were carried out to assess the system performance: i) thirteen different
hand and finger gestures and one rest gesture are performed 5 times in the
same session by 10 different subjects, and ii) data was collected in an ecologi-
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cal study from a conductor during a practice session of a symphony orchestra.
It was found that the proposed method achieved an average classification ac-
curacy of 63.14% (maximum of 79.87%) when the data distribution for train,
test and validate parts of ANN used in classification process is separated by
sessions. An average classification accuracy of 96.09% (maximum of 98.8%)
was achieved when data distribution is random. Lastly, random data distri-
bution of the five different gestures and one rest gesture data collected in an
ecological study from a conductor resulted in 96.9% accuracy. All results were
obtained with session and subject dependent experiments.

Keywords: gesture recognition, electromyogram, muscle activity, neural net-
works, circular harmonic transform
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ÖZ

ÖN KOL KAS HAREKETLERİNDEN OLUŞAN SİNYALLERİ
KULLANARAK EL VE PARMAK İŞARETLERİNİ TANIYAN JENERİK BİR

SİSTEM GELİŞTİRME

DEMİREL, UMUT
Yüksek Lisans, Oyun Teknolojileri Bölümü

Tez Yöneticisi : Doç. Dr. Hüseyin Hacıhabiboğlu

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Elif Sürer

Ağustos 2017 , 87 sayfa

El ve parmak işaretleri, konuşmadan iletişim kurmanın en doğal yolların-
dan biridir. Bu işaretler farklı kültürlerde günlük yaşamda iletişim kurmak
için kullanılmalarının yanısıra, bilişim dünyasında insan-bilgisayar etkileşimi
alanında da sıklıkla kullanılmaktadır. El ve parmak işaret verileri; işaret dili
tanıma, robot kontrol etme, cep telefonu kontrol etme, medikal araç kontrol
etme ve video oyunu kontrol etme gibi alanlarda geliştirilen uygulamalarda
girdi olarak kullanılmaktadır. Yakın-alan kablosuz iletişim alanındaki geliş-
meler, önceden tanımlanmış el ve parmak işaretlerini tanıyan ucuz maliyetli
ve küçük boyutlu kontrol cihazlarını tasarlamayı olanaklı kılmaktadır. Bu tez
kapsamında, ön kol kas aktivitelerini ve hareketlerini ölçmek için 8 elektro-
miyografi (EMG) sensörü ve eylemsizlik ölçüm unitesi (IMU) kullanılarak ge-
nel bir işaret tanıma sistemi geliştirilmesi amaçlanmıştır. Bu tezin iki önvar-
sayımı i) ön kol kas aktiviteleri zaman-uzamsal limitli dairesel sinyallerdir
ve bu sinyaller sonlu sayıdaki sensörler ile örneklendirilebilir, ve ii) farklı el
ve parmak işaretleri, ayırt edilebilmeyi sağlayan birbirinden farklı ancak tu-
tarlı modellerle temsil edilebilir. Bu tezde kullanılan yaklaşım, ticari olarak
erişilebilir düşük maliyetli EMG kol bandı kullanılarak elde edilen sinyalle-
rin işlenmesiyle belirli özelliklerin özütlenmesini ve basit yapay sinirsel ağlar
kullanarak el ve parmak işaretlerinin sınıflandırılmasını temel almaktadır. El
ve parmak işaretleri kümesi, klasik müzik orkestra şeflerinin dışavurumcu
olarak kullandıkları el işaretlerinden oluşturulmuştur. Sistem performansını
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ölçmek amacıyla iki deney çalışması düzenlenmiştir: i) 13 farklı el ve parmak
işareti ve bir dinlenme pozisyonu aynı seans içinde 5er defa 10 test kullanı-
cısı tarafından gerçekleştirilerek veri toplanmıştır, ve ii) bir klasik müzik kon-
ser provasında orkestra şefi gerçek hareketlerini gerçekleştirirken veri top-
lanmıştır. Kullanılan yapay sinir ağını eğitirken, onaylarken ve test ederken
ağın beslenmesi için kullanılan verinin dağılımının seanslara göre yapılması
sonucu ortalama %63.14 (en yüksek %79.87) başarı oranı yakaladığı saptan-
mıştır. Veri dağılımının rastgele yapılması sonucunda ise ortalama %96.09 (en
yüksek %98.8) başarı oranı yakalandığı görülmüştür. Son olarak, orkestra şe-
finden toplanan 5 farklı el ve parmak işareti ve bir dinlenme pozisyonu ve-
rilerinin yapay sinir ağlarına rastgele dağılımı sonucunda %96.9 başarı oranı
yakalanmıştır. Bütün sonuçlara, kişiye ve seansa bağlı olan deneyler düzen-
lenerek erişilmiştir.

Anahtar Kelimeler: işaret tanıma, elektromiyogram, kas aktivitesi, sinirsel ağ-
lar, çembersel harmonik dönüşüm
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CHAPTER 1

INTRODUCTION

Communication has an essential role in the emergence and nourishment of
social life. It allows humans to coordinate their behavior with that of oth-
ers. The most obvious way of communication between individuals is spoken
language [1].

Besides, body language can be used as a common tongue between humans to
communicate without speaking. According to the results of the experiments,
Ekman [2] found out that although most of the facial expressions of emotions
are culture-specific, there is also a universal set of facial expressions of emo-
tion.

1.1 Body Language, Gestures and Postures

Body Language, also known as Kinesics is defined by Birdwhistell as

"Systematic study of visually sensible aspects of non-verbal inter-
personal communication"

in 1955 [3].

Another definition of body language came from Soukhanov in 1992 as

“[Body language consists of] the bodily gestures, postures, and
facial expressions by which a person communicates nonverbally
with others.”

Examples of bodily gestures are shrugging, raising arms or rotating head. In-
stances of postures can be bending the whole body or angular distance of the
upper body. Facial expression representations can be raising eyebrow, blink-
ing eye or smiling. Soukhanov goes on to define "gesture" as a sign, signal, or
cue used to communicate in tandem with, or apart from words [4]. Gestures
can be used not only for expressing feelings but also for giving messages to
others. For example, raising a hand with the palms towards someone means

1



“stop” or shaking the hand with fingers spread means “Goodbye” in many
cultures. For this example, "stop" sign is a posture of hand and it becomes a
conceptual gesture because it is used for communication. "goodbye" gesture
is formed with the combination of a hand posture and a hand movement.

1.2 Human Computer Interaction (HCI)

Unprecedented advances in information and communication technologies and
the need for more natural interaction modalities brought gesture and pos-
ture at the forefront as a possible means for controlling computing devices.
Gesture-controlled interfaces that were the stock of science fiction works as
seen in movies like "Minority Report" [5] have been achieved earlier than
predicted. Commercially available products such as Microsoft Kinect [6], Cy-
berGlove [7], Leap Motion [8] or Myo [9] were placed in the market together
with their own applications as well as SDKs for wider adoption. With their
affordable prices, these products can be used in end-user entertainment ap-
plications like games, Augmented Reality (AR) and Virtual Reality (VR) ap-
plications or controlling robots. Besides, these devices provide opportunities
for researchers to collect data for gesture recognition.

(a) CyberGloveTM (b) MyoTM (c) Leap MotionTM

(d) Microsoft KinectTM

Figure 1.1: Commercial HCI products

While many different signal processing and computer vision algorithms have
been developed to detect different types of gestures, technology companies
have been manufacturing cameras and portable devices making data collec-
tion process much easier. Thanks to the portability and integrability of Ar-
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duino platform [10] and its derivatives such as BITalino [11], researchers are
now able to create their own device prototypes by combining different types
of sensors [12, 13, 14, 15].

1.3 Gesture Recognition

Human hand can be moved to generate many different shapes and signs
and it is one of the most effective organ as a general purpose interaction
tool [16, 17]. Moreover, using hand and finger gestures as inputs is widely
used in human-computer interaction applications. There are variety of ap-
plications using gestures as inputs such as sign language recognition, hand
tracking, robot control, mobile phone control, medical device control, and
video game control. The reason why gestures may be more preferable than
other options is that they can be robustly recognised by using different tech-
niques providing application-level flexibility. These techniques can be cat-
egorized into two groups: vision based gesture recognition techniques and
sensor based gesture recognition techniques. For vision based gesture recog-
nition techniques, shape of the hand and fingers can be detected from a video
stream. One such approach involves the segmentation of the hand to its
constituent parts such as the palm and the fingers by using colored gloves
[18, 19, 20, 21, 22, 23]. Detection can also be done with regular, infrared or
depth cameras and which both require image/video processing techniques.
For sensor based gesture recognition techniques; flex sensors (that change
their impedance in response to flexure) for finger movements; inertial mea-
surement unit (accelerometer, gyroscope and magnetometer) for hand move-
ments, rotations and directions; electromyography (EMG) sensors for muscle
activity detection can be used. Data collection can be performed either with
sensors placed on fingers and arms or with commercialized data gloves and
armbands which accommodate the combination of some of the sensors men-
tioned above.

The sensor based approach typically involves measurements over the fore-
arm. Since the approach proposed in this thesis is also based on EMG sig-
nals acquired over the forearm, information on the forearm muscle structure
would be helpful. This is covered in the next section.

1.4 Forearm Muscles

Different gestures activate different muscles on the forearm. Posterior and an-
terior superficial forearm muscles [24, 25] can be seen in Figure 1.2. Table 1.1
explains responsibilities of each superficial forearm muscle.

To be more clear, anatomical definitions of muscle actions [26] are given as
follows:

• Flexion describes a bending movement that decreases the angle between
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Table 1.1: Actions of forearm muscles

Muscle Name Action

Posterior

Brachioradialis Flexes at the elbow
Extensor carpi radialis Extends and abducts

longus and brevis the wrist

Extensor digitorum Extends medial four fingers
at the MCP and IP joints

Extensor digit minimi Extends the little finger and
contributes to extension at the wrist

Extensor carpi ulnaris Extension and adduction of wrist

Anconeus Moves the ulna during pronation
and extends at the elbow joint

Anterior

Flexor carpi ulnaris Flexion and adduction at the wrist
Palmaris longus Flexion at the wrist

Flexor carpi radialis Flexion and abduction at the wrist
Pronator teres Pronation of the forearm

a segment and its proximal segment [27].

• Extension is the opposite of flexion, describing a straightening move-
ment that increases the angle between body parts [27].

• Abduction refers to a motion that pulls a structure or part away from
the midline of the body. Abduction of the wrist is also called radial
deviation [27].

• Adduction refers to a motion that pulls a structure or part toward the
midline of the body, or towards the midline of a limb. Adduction of the
wrist is also called ulnar deviation [27].

• Pronation at the forearm is a rotational movement where the hand and
upper arm are turned inwards [27].

Having the information of which muscles are activated while performing dif-
ferent gestures is important when EMG data is used for gesture recognition.
By placing electrodes of EMG sensors on specific muscles, gestures activating
different muscles can be detected. Good positions for electrodes can be speci-
fied by trying to place electrodes on different parts of forearm and evaluating
the level of the obtained signal (for example when a certain gesture is per-
formed). This approach is possible when using EMG devices with separate
electrodes. However, if the EMG device is an armband with EMG sensors lo-
cated in a circular order, accurate positioning on forearm muscles may not be
possible. The EMG armband, Myo, used in this thesis is an example of such a
sensor array. A representation of Myo on superficial forearm muscles can be
seen in Figure 1.3). Even small rotations of the armband on the forearm may
cause different signal patterns.
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1.5 Thesis Structure

The work described in this thesis involves the development of a generic hand
and finger gesture recognizer based on the joint-processing of EMG signals
which represent muscle activity. For data collection, Myo from Thalmic Labs,
a portable armband having 8 circularly distributed EMG sensors and an IMU,
is used. Placement positions of the EMG sensors on the forearm is important
for data acquisition under ideal conditions in the lab. However, the purpose
of this thesis is to make it possible to acquire signals and classify gestures
under less than ideal, ecological conditions (such as a user using the system
at home). Therefore, the proposed system requires calibration and is person
and session dependent.

The thesis consists of six chapters including this chapter. Gesture types and
steps of gesture recognition process are explained in the "Chapter 2: Back-
ground". These are followed by the discussion of the gesture recognition
usage areas and gesture recognition techniques together with the great ex-
amples in "Chapter 3: Previous Work". In "Chapter 4: Proposed Method", the
proposed solution is explained and studied. Conducted experiments and cor-
responding results of the study are discussed in "Chapter 5: Experiments and
Results". Finally in "Chapter 6: Conclusion and Future Work", shortcomings
of the proposed system are discussed, the conclusions are made and possible
future directions are pointed.
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(a) "The muscles in the superficial layer of the posterior forearm." by
TeachMeAnatomy.com, retrieved from http://teachmeanatomy.info/wp-
content/uploads/Muscles-in-the-Superficial-Layer-of-the-Posterior-Forearm-824x1024.jpg
Used under Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

(b) "The superficial muscles of the anterior forearm." by Teach-
MeAnatomy.com, retrieved from http://teachmeanatomy.info/wp-
content/uploads/Superficial-Flexor-Muscles-of-the-Anterior-Forearm.jpg Used
under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 In-
ternational license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Figure 1.2: Superficial forearm muscles
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Figure 1.3: Representation of Myo on superficial forearm muscles. Adopted
from "Cross section of the muscles of the distal forearm. Some ex-
tensor muscles, such as the anconeus, are not visible as they are sit-
uated proximally in the forearm." by TeachMeAnatomy.com, retrieved
from http://www.bartleby.com/107/Images/large/image417 .gif Used un-
der Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 In-
ternational license (https://creativecommons.org/ licenses/by-nc-nd/4.0/)
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CHAPTER 2

BACKGROUND

In this chapter, background information on gesture recognition process is
given. Gesture recognition is an application with a strong machine learning
component. Hence, machine learning steps can directly be applied to gesture
recognition process.

Gesture recognition process consists of 3 main steps and 2 optional steps (see
Figure 2.1).

Figure 2.1: Gesture recognition process

In the data collection step, physical gestures are converted into signals that
represent it. These signals are then digitized. The raw data can optionally
be pre-processed. Afterwards, feature vectors that summarize the gestures
are extracted from either raw data or pre-processed data. The next step is the
elimination of feature vectors. For performance issues, the cardinality of fea-
ture vectors are reduced by eliminating some elements which do not provide
a significant improvement and also reduce the generalization capacity of the
employed machine learning algorithm. Finally, the resultant feature vectors
are employed in the classification step.

In the following subsections, steps of gesture recognition process is explained
in detail. These include data collection practices, pre-processing techniques,
feature extraction methods and classification algorithms.
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Table 2.1: Types of data for each data collection method

Methods Data

Vision Based
Normal Camera RGB image

Depth Camera Infrared image
Depth image (depth value of each pixel)

Sensor Based

Accelerometer 3-tuple acceleration data
wrt x, y and z axes

Gyroscope 3-tuple rotation data wrt x, y and z axes
(roll, pitch, yaw respectively)

Magnetometer 3-tuple magnetic field intensity data
wrt x, y and z axes

Light Sensors A single emitted light value
for each channel

Air Pressure Sensors A single air pressure value
for each channel

Flex Sensors A single flexion and abduction value
for each channel

EMG Continuous muscle activity signal values
for each channel

2.1 Data Collection

Data collection is the first phase of gesture recognition process. Gesture recog-
nition is, in essence, the automatic labeling of signs. In order to recognize ges-
tures, these need to be represented digitally. This representation may consist
of data obtained from different sources. List of the different types of data and
their corresponding sources can be seen in Table 2.1.

If the initiation and completion instances of a gesture is not to be detected
but merely its presence, then each data collection session will start as the test
subjects start performing each gesture and completed as the test subjects com-
plete performing the gesture. To be more clear, steps of this type of data col-
lection is enumerated as follows:

1. The test subject is requested to perform one of the hand gesture.

2. The test subject starts performing the gesture.

3. Data collection process is started.

4. Data collection process is finished, gesture data are stored in HDD.

5. The test subject is requested to finish performing the gesture.

6. The test subject finishes performing the gesture, release her hand to put
it back to the rest position.

This type of data collection is mostly valid when hand rest position is in-
cluded in the gesture set to be recognized. Classifier is always active and
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returns one of the gestures or hand rest position as a result.

On the other hand, if the initiation and completion instances of gesture are
also of value, data collection session will start before the test subjects start
performing gestures and will be completed just after the test subjects finish
their performance and reach hand rest position. Steps of this type of data
collection is explained as follows:

1. Data collection process is started.

2. The test subject is requested to perform one of the hand gesture.

3. The test subject starts performing the gesture.

4. The test subject is requested to finish performing the gesture.

5. The test subject finishes performing the gesture, release her hand to put
it back to the rest position.

6. Data collection process is finished, gesture data are stored in HDD.

For this type of data collection, whether the test user is performing gesture
or having rest is detected with different methods. For example when using
EMG sensors, if the total muscle activity is less than a threshold value, then it
is assumed that the test user is having rest. When the total muscle activity ex-
ceeds the threshold value, then the classifier is activated and it decides which
gesture is being performed.

After data collection process is completed, collected data sets are then either
pre-processed, or if a further pre-processing stage is not necessary, used in the
feature extraction step.

2.2 Pre-processing

In some cases, collected raw data need to be processed prior to the feature
extraction step.

Due to the dimensionality and nature of the acquired signals, pre-processing
for vision and sensor based gesture recognition approaches are different. Some
of the pre-processing techniques for vision based systems used in researches
can be listed as follows:

• Interpreting the views and positions to create 3D model of hand from
2D images captured by different cameras [28]

• Applying Gaussian skin color model and normalized histogram on im-
age data for skin and background segmentation [29]

• Applying discontinuity and similarity image processing algorithms on
image data for hand shape segmentation [29]
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• Binarizing grayscale image and applying erosion and dilation to bina-
rized image to obtain clean binary images with required markers [23]

• Applying color filtering, erosion and smoothing techniques on images
to obtain clear hand shape [30]

For sensor based systems, pre-processing techniques are applied to unidi-
mensional signal data. Some of these techniques used in studies can be listed
as:

• Applying interpolation or extrapolation and scaling to normalize each
signal data to equal length and amplitude [14, 31, 32]

• Applying notch filter to eliminate the power line interference and ap-
plying low-pass filter to eliminate high frequency noise [33]

• Applying moving average filter to a signal for noise reduction [13, 34,
35, 36]

• Applying zero-mean and band-pass filters to remove the DC component
and unwanted interference from signal [37]

• Applying smoothing functions for denoising [38]

As can be observed, the main objectives of pre-processing step are to normal-
ize raw data and/or to remove/reduce unwanted noise components. Pre-
processing phase generally improves accuracy at the classification step as it
allows the calculation of better feature vectors in the feature extraction stage.

After the pre-processing stage, gesture recognition process continues with the
feature extraction step. Next subsection describes possible features to be ex-
tracted and used in the classification step.

2.3 Feature Extraction

Information embedded in raw or pre-processed data should be represented
more compactly in order for classification algorithms to be used. In general,
a feature vector is calculated for a signal in short time windows, resulting
in several feature vectors representing the same gesture. As long as they are
relevant, the diversity of features may also increase the classification accuracy.

Some of the feature extraction techniques are summarized in the following
subsections.

2.3.1 Raw or Pre-processed Data

Collected or pre-processed data can be used as a feature directly. For example,
output from each EMG sensor (number of sensors on device, e.g. 8 channels),
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accelerometer (x, y, z axes), gyroscope (x, y, z axes) or magnetometer (x, y,
z axes) can be separate feature vectors in sensor based systems. Similarly
for vision based gesture recognition, RGB or HSI channels of images can be
possible features vectors.

In this study, we represent a data vector as x(n) and its individual elements
as Xi(n) where n is the time index.

2.3.2 Inter-Element Difference (IED)

This feature is simply the differences of consecutive data values in each data
vector. Representation can be seen as follows:

IEDi(n) = Xi(n+ 1)−Xi(n) for n = 1, 2, . . . , N − 1 (2.1)

where N is the size of each data vector and i is the vector index (e.g. EMG
channel index).

2.3.3 Detected Markers

In vision based gesture recognition systems markers can be used and tracked
for identifying hand parts. The spatial relationships between these markers
can then be used as features. These include distances between pairs of de-
tected marker positions or angles between pairs of marker directions with
respect to a common origin. For example, assuming that fingertips and palm
of the hand are detected as in [18], distances between each fingertip marker
combinations can be used as separate features. Furthermore, five vectors rep-
resenting each finger can be generated by connecting each fingertip marker
with palm marker. Angles between those consecutive vectors can be used as
four separate features as well.

2.3.4 Mean Absolute Value (MAV)

Mean absolute value (MAV) is a measure of the strength of the signal. MAV
is calculated as in equation 2.2:

MAVi =
1

N

N∑
p=1

|Xi(p)| (2.2)

As an example, if MAV is applied to 8 EMG channels with i is the index of
channels and N is the number of elements in each channel, then a new value
set showing the average strength of the multichannel signal is obtained.
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Furthermore, MAV can be used to smooth multichannel data, which results
in the reduction of number of vectors. In that case, equation will become:

MAV(n) =
1

C

C∑
p=1

|Xp(n)| (2.3)

where C is the total number of channels.

MAV can also be used in vision based gesture recognition. MAV of all RGB
bits of an image as well as MAV of each column or row can be used as features.

2.3.5 Moving Averaging Window (MAW)

This technique is used for smoothing the signal data. A time window W (n)
with a finite duration of size M is applied to the data within the window. The
time window is typically symmetric around the origin:

MAWi(n) =
n+M−1∑
p=n

W (n)|Xi(p)| for p = 1, 2, . . . , (N −M + 1) (2.4)

As it can be seen in Equation. 2.4, after calculating each MAW value, the time
window is shifted by one sample in time resulting in a series of MAW values
which are smoother in time.

2.3.6 Root Mean Square (RMS)

If X2
i is used instead of |Xi| in equation 2.2, situations of whether performing

a gesture (active) or having rest (idle) can be more distinguishable assuming
that the signals are noisy. Roots of each value calculated in equation 2.2 with
aforementioned modifications give RMS values as in equation 2.5

RMSi =

√√√√ 1

N

N∑
p=1

Xi(p)2 (2.5)

2.3.7 Standard Deviation (STD)

STD of a vector shows the measure of how spread out data values are. In or-
der to calculate STD, first MAV of data vector must be obtained as in equation
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2.2. Then, variance of data vector must be calculated as follows:

Variancei(n) =
1

N

N∑
p=1

(Xi(p)−X ′i)2 (2.6)

where X ′i is the mean of the whole data or each segment. Finally, STD is the
square root of variance:

STD =
√

Variance (2.7)

2.3.8 Circular Harmonic Coefficients

Spherical harmonic functions are special functions defined on the surface of
a sphere and widely used in indirect lighting and modeling of 3D shapes
[39]. Similar to spherical harmonic functions which are defined on the sphere,
circular harmonic functions are defined on the contour of a circle. Circular
harmonics can be used to encode values that vary based on a single angle
instead of two like in spherical harmonics [40]. Moreover, circular harmonics
are very effective to recognize rotation invariant patterns.

In circular harmonic coefficient calculation, there are orthogonal and orthonor-
mal basis functions. For this thesis, basis functions used in the study of Hsu
and Arsenault [41] is used. It can be seen in Equation 2.8.

Bn(θ) = e−inθ (2.8)

which alternatively can be rewritten as

Bn(θ) = cos(nθ)− isin(nθ) (2.9)

where n is the order of circular harmonic function.

In order to obtain circular harmonic coefficients of a function, the function is
projected onto each of the basis functions as in Equation 2.10.

wn(θ) =

∫ 2π

0

f(θ)Bn(θ)dθ (2.10)

Using these coefficient values as feature vectors is sufficient for the scope of
this thesis, but further information on how to reconstruct original function by
using circular harmonic functions are explained briefly for the sake of com-
pleteness.

The original function is simply reconstructed by scaling the conjugate of basis
functions with corresponding weight values and adding them together as in
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Equation 2.11

f(θ) =
1

2π

( ∞∑
n=0

wn(θ)[Bn(θ)]
∗
)

(2.11)

After extracting features from data by using some of aforementioned tech-
niques, they can be used in the classification process directly. Alternatively
before classification, the number of feature vectors can be reduced by apply-
ing feature reduction methods some of which are described in detail in the
following subsection.

2.4 Feature Reduction

Feature reduction (also known as dimensionality reduction) is one of the op-
tional step of gesture recognition process. After features are extracted from
data, this step can be performed to reduce the number of feature vectors. This
step can be beneficial if the size of the data is big, because the main reason to
perform feature elimination is to reduce the storage space of the data and to
improve the performance of the system by reducing the execution time of the
classification algorithms.

In the following subsections, some of the feature reduction methods are ex-
plained briefly.

2.4.1 Principal Component Analyses (PCA)

One of the most common statistical feature reduction technique that is widely
used in vision based [42, 43, 44, 45] and sensor based [13, 32, 37, 46] ges-
ture recognition systems is PCA. By applying PCA, feature vectors are trans-
formed into a smaller number of linearly uncorrelated variables, called prin-
cipal components. For example, combination of 2 sensor data vectors, which
are extracted as 2 separate feature vectors have significant differences for dif-
ferent gestures. PCA method detects it and creates a new principal compo-
nent with the high variance value from these 2 feature vectors.

2.4.2 Singular Value Decomposition (SVD)

Another technique that can be used for dimensionality reduction is SVD.
Combination of feature vectors form a new matrix. This m-by-n matrix can
be represented with dot product of 3 matrices:

• m-by-r left singular vectors of the matrix

• r-by-r diagonal matrix containing singular values of the matrix
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• r-by-n right singular vectors of the matrix

If the singular values are ordered in descending order, some of the largest
singular values can form a new low order representation [47].

2.4.3 Random Projection (RP)

For very high dimensional data sets, RP is more preferable than any other
method [48]. k-by-N Random projection matrix is the dot product of k-by-
m random matrix and m-by-N matrix composed of m dimensional original
data sets [47, 49]. This method is based on Johnson–Lindenstrauss lemma
[50] which explains that small set of points in high dimensional space can be
represented in low dimensional space by preserving the distances between
points.

2.5 Classification

Classification is the final part of gesture recognition process. Once the fea-
tures have been extracted from signals or images in the feature extraction
step or the number of feature vectors with redundant information have been
reduced in feature reduction step, one of the classification methods or combi-
nations of some of them are applied to sort out performed gestures.

In machine learning applications, prediction methods can be categorized in 3
main groups:

• Supervised Learning is a system where inputs and outputs are pro-
vided by a supervisor [51]. By using training inputs and corresponding
outputs, system is trained and after that point, the trained system re-
turns a resulting class when a new input is provided.

• Unsupervised Learning is a system where pattern structures and regu-
larities are statistically found by looking at only inputs because outputs
are not provided [51].

• Reinforcement Learning is applicable for dynamic systems where set of
actions are output with respect to the created policy. In [51], Alpaydin
exemplified reinforcement learning with playing a chess game where
strategy and set of moves will bring victory instead of a single move.

There are plenty of learning and classification methods used in gesture recog-
nition applications. Some of the most well-known algorithms also mentioned
in the literature survey of this thesis are explained in detail in the following
subsections.
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2.5.1 Artificial Neural Networks (ANN)

Neuron is defined as an electrically excitable cell that processes and transmits
information through electrical and chemical signals [52]. ANN is an artificial
brain that is input with set of data and outputs a result. A simple representa-
tion of ANN can be seen in Figure 4.11.

Figure 2.2: Artificial Neural Network Representation

Some part of the data is used to train empty network. Amount of the data
used for training the network is significant for the accuracy of outputs.

There can be one or more hidden layers in the network and one or more neu-
rons in each layer. There is a trade-off between accuracy and performance,
hence the number of layers and neurons depends on the network model.

Each input has a value xi and corresponding weight value wi. Each neuron
also has weight value if the network has more than one layer. Inside of each
neuron, arithmetic summation which will be input of an activation function
is calculated as in Equation 2.12 [53].

net =
n∑
i=0

xiwi (2.12)

Some of the activation functions are listed in [54] as identity, logistic, hyper-
bolic, exponential, softmax, unit sum, square root, sine, ramp and step func-
tions.

There are also plenty of neural network types according to the algorithms
used. Five of them explained in [53] are Back-propagation Neural Network,
Bayesian Neural Network, Log-linearized Gaussian Mixture Network, Recur-
rent Network and Wavelet Neural Network.

In the literature review chapter of this thesis, it can be seen that in [14, 18, 55,
56, 57], neural networks were used for classification process.

18



2.5.2 Hidden Markov Models (HMM)

HMM was defined in [58] as a finite model that describes a probability distri-
bution over an infinite number of possible sequences. In the same research,
it is also mentioned that HMM is a general statistical modeling technique for
time series. Other than gesture recognition, HMMs have been widely used for
speech recognition, data compression, artificial intelligence, pattern recogni-
tion, genome sequencing, image sequence modeling and object tracking [59].

HMM is an extension of Discrete Markov Processes where all events are ob-
servable. The difference is that HMM has hidden events as well as observable
events. Viterbi algorithm can be used to reveal hidden event sequences by
looking observed sequences [60]. This algorithm basically calculates highest
probability of possible hidden state sequence on trained HMM with observa-
tions. More detailed example and visualization which is obtained from [61]
can be seen in Figure 2.3 [62].

Figure 2.3: HMM Example

In this example, doctor visits by a patient are simulated. The patient can be
in 3 observable states: dizzy, cold or normal. Also the patient can be in 2
hidden states: healthy or with fever. The system had been trained with some
observations of the doctor and transition probabilities which can be seen in
Table 2.2 and emission probabilities which can be seen in Table 2.3 were
obtained. Besides, there are starting probabilities of being healthy and with
fever given as 0.6 and 0.4 respectively.

The doctor observes the patient for 3 days and sees that the patient is dizzy
(day 1), normal (day 2) and cold (day 3). What the algorithm finds is that
whether the patient is healthy or fewer for each day.

In Figure 2.4 all possible sequences with corresponding probabilities can be
seen. It is obvious that the highest probability value is 0.01344 with the se-
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Table 2.2: Transition probabilities for the given example

Transition Probabilities
Healthy Fewer

Healthy 0.7 0.3
Fewer 0.4 0.6

Table 2.3: Emission probabilities for the given example

Emission Probabilities
Dizzy Cold Normal

Healthy 0.1 0.4 0.5
Fewer 0.6 0.3 0.1

quence of fewer - healthy - healthy.

As a result of the system, if dizzy - normal - cold is inputted into the trained
HMM, fewer - healthy - healthy is outputted.

Most of the studies mentioned in the literature review of this thesis use HMM
for gesture classification such as [31, 38, 63, 22, 64, 65, 66, 67, 68, 69, 70].

Figure 2.4: All the calculations of Viterbi algorithm for given example
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2.5.3 Support Vector Machines (SVM)

Boser et al. first presented SVM in [71] as a training algorithm that maximizes
the margin between the training patterns and the decision boundary. Firstly,
data points are distributed on a system. Then, support vectors are decided.
Finally, in the middle of the maximum margins between 2 classes, optimal
hyperplane is chosen. From that point, the class of the new data is decided
with respect to the chosen hyperplane.

Figure 2.5: Support Vector Machine Representation

Data points are not always linearly separable as shown in Figure 2.5. Thus, a
specific kernel transformation function can be applied to data to make them
linearly separable. Representation can be seen in Figure 2.6.

Number of classes can be more than 2. In that case, there are 2 strategies to
apply:

• one-vs-all is a method where one class is separated from other classes
by comparing with the rest of the data. In this setup, there are 2 classes,
one of which is the selected class and the other class consists of the re-
maining data. SVM is executed for each class separately and the highest
probability result decides the class of new data.

• one-vs-one is a method where classification algorithm is executed be-
tween every combination of classes. The highest summation of the prob-
ability scores of each class determines the class of new data.
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(a) With original data (b) After transformation

Figure 2.6: Kernel Transformation Function Representation

Figure 2.7: K-NN Example

Some of the studies (also mentioned in the literature review chapter of this
thesis) in which SVM was used for classification are [33, 35, 37, 72, 73].

2.5.4 K-Nearest Neighbor (K-NN)

K-NN is one of the easy-to-implement and low-complexity classifier algo-
rithms [28]. Features are represented in multidimensional space and the dis-
tances between new data and training data is calculated separately. Distance
algorithm can be Euclidean or Manhattan distance as well as any other cus-
tom distance calculation function. Then, the classes of K minimum distance
data, in other words, the closest K data are listed. If K=1, class of the closest
data is output. If K>1, majority vote decides the resulting class. At that point,
different weight values can be applied for each class or data for final clas-
sification. For example, more closer data may have higher weight for more
contribution of nearer neighbor.

To be more clear, a simple K-NN example is illustrated in Figure 2.7. In this
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illustration, 5 data points from each class are distributed over a coordinate
system. When a new data point comes, its classification will be performed by
calculating Euclidean distances between that data point and already classified
data points. Closeness of the classified data points to the new data point is
sorted in Table 2.4.

Table 2.4: Euclidean distances between classified data points and the new
point

Closeness 1 2 3 4 5 6 7 8 9 10
Class 1 2 2 2 1 1 2 2 1 1

Distance 1 2.83 2.83 3.16 4 4.47 5 5 5 6.08

Outputs of the K-NN algorithm with some possible parameters are listed as
follows:

• If k=1, class of the closest data point is 1. Therefore the new data point
is classified as Class 1.

• If k=5, there is no weight parameter and result depends on the majority
vote; the new data point is classified as Class 2. The reason is that there
are 2 data points from Class 1 and 3 data points from Class 2 in the 5
closest data points.

• If k=3 and the weight parameter is assumed to be inverse operation,
then the weighted effect of the closest data point is 1/1=1, 2nd closest
data point is 1/2.83=0.353 and 3rd closest data point is 1/2.83=0.353.
Due to the fact that total vote is calculated for each class as in Equation
2.13, the new data point is classified as Class 1 (1 > 0.353 + 0.353).

• If k=4 and the weight parameter is assumed to be inverse operation
again, then the the new data point is classified as Class 2 according to
the Equation 2.13 (1 < 0.353 + 0.353 + 0.316).

Total vote for class a =
N∑
i=1

Fweight(ai) (2.13)

where N is the number of data points in class a and Fweight is defined as in
2.14.

Fweight(x) =
1

x
(2.14)

[13, 36, 56, 72, 73, 74, 21, 75, 76] are the researches reviewed in this thesis
where K-NN algorithm is used in classification step of gesture recognition
process.
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CHAPTER 3

PREVIOUS WORK

Gesture recognition is an open area for many researchers not only there is
a hype on natural interfaces with the improvements of technology, but also
there are different types of powerful hardware devices which make researchers
achieve high accuracy on gesture recognition easily. There are several areas
using gesture recognition in HCI field since there exists many kind of de-
vices and techniques to recognize gestures. In this thesis, these techniques
are classified in 2 main groups with respect to data collection procedures :
vision based gesture recognition techniques and sensor based gesture recog-
nition techniques. This chapter discusses the literature review of all gesture
recognition techniques and their usage areas.

3.1 Vision Based Gesture Recognition Techniques

Vision based gesture recognition techniques mostly use cameras to detect
hand and finger shapes. This can be done in the following methods:

• Creating 3D model of hand

• Detecting bare hand by extracting 2D appearance of hand shape from
the background

• Detecting color patterns on fingers or palm of the hand when color
gloves (CG) are worn

The performance and accuracy of gesture recognition with cameras are neg-
atively affected by illumination and lighting changes, camera resolution and
movements, complicated backgrounds and depth of color. Due to the fact
that these environmental aspects are influencing the gesture recognition suc-
cess rate, a system may detect hand and gestures effectively in one specific
environment and the accuracy may decrease when the same system is set
up in a different environment. Moreover, cameras are not applicable for
portable environments because they may need cumbersome setups with ca-
bles or tripods. These negative conditions make environment factor a con-
straint for vision based gesture recognition systems.
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On the other hand, vision based techniques are affordable because no hard-
ware equipment is needed other than cameras. Furthermore, these techniques
have some advantages over other techniques. Hand shape is identical for
all healthy test subjects, which makes algorithms work subject independent.
Hand size or finger thickness of different subjects do not have any significant
effect on gesture recognition algorithms because the fundamentals of gesture
recognition algorithms are shape and appearance of hand which are identical
for any healthy subject. This makes any hand detectable by a single algo-
rithm.

3.1.1 Camera and Color Glove

Using CG is a cheap and effective solution for separation of hand parts. Fin-
gers and palm are painted with different colors to make them distinguishable.
Cameras track different colors and algorithms map each color with a specific
finger or palm of the hand so that they do not have to deal with separating
same color fingers from each other.

(a) CG used by Maraqa et al. [18] (b) CG used by Geebelen et al. [19]

(c) CG used by Lamberti et al. [20] (d) CG used by Wang et al. [21]

Figure 3.1: CG Examples

Maraqa and Abu-Zaiter [18] used simple white glove with painted fingertips
of the glove with different colors (see Figure 3.1a). There is also a purple band
on wrist to determine the pose of hand. Color segmentation was done with
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image processing algorithm using HSI color system. Feature vectors were
consisting of 4 information:

• angles between fingertips themselves,

• angles between fingertips and wrist,

• distance between fingertips themselves,

• distance between fingertips and wrist.

They used recurrent neural networks for classification because of the advan-
tages of applications requiring temporal processing. This system was devel-
oped to recognize Arabic Sign Language consisting of 28 letters.

Geebelen et al. [19] used similar white glove with Maraqa and Abu-Zaiter
however they painted the whole fingers instead of only fingertips (see Fig-
ure 3.1b). Also, they put 3 small orange markers on each colored fingers to
detect the direction of fingers and 1 small orange marker on palm to separate
the palm from the fingers. For hand shape data collection and traction, they
used a simple camera with a resolution of 640 x 480 pixels and 30 fps. Main
goal of the research was to reconstruct 3D model of the hand and track it in
real-time accurately.

Lamberti and Camastra [20] used a simple glove with only 3 colors. Pink
color was used to paint the palm of the hand and yellow and blue colors were
used to paint adjacent fingers as shown in Figure 3.1c. Hand shapes were
collected from the camera in RGB color space and converted into HSI color
space for segmentation. 5 lines were extracted from each segmented hand
shape, starting from the centroid of the hand, palm, to the each fingertip.
4 angles between those lines and length of 5 lines were used as feature sets.
LVQ was preferred as a classifier because it was said to have more advantages
of requiring moderate computational resources. Combination of 3 different
LVQ was experimented to recognize 13 different gestures and success rate
close to 98% was achieved.

Wang and Popović [21] used a different type of CG which has color patterns
on as shown in Figure 3.1d [77]. Patterns are different for inside and outside
of the hand, which makes the hand possible to be tracked rotation indepen-
dently. Their approach was slightly different from other researchers. They
created a database consisting of hand poses. They collected images of hands
by using a normal camera and converted them into tiny images consisting
of color bits. Afterwards, these tiny images were mapped to a specific hand
pose element stored in the database. This generic system was tested with
3 proof-of-concept applications. These applications are driving an animated
character, manipulating rigid bodies with physics and spelling American Sign
Language (ASL).

Keskin et al. [22] used a pure black glove to extract hand image from back-
ground easily assuming that all the experiment was performed with constant
light background. They used Kalman Filter [78] for noise reduction of the
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captured hand images from normal camera and the gestures were classified
with Hidden Markov Models (HMMs). All 8 gestures are based on track-
ing the same shape of the hand with different movements. The system was
tested with a paint application controlled with gestures and 98,75% accuracy
was achieved.

Diaz and Payandeh [23] presented hand pose and gesture estimation system
based on a glove with reflective markers. They used a normal camera to-
gether with an infrared illumination source to maximize the contrast of re-
flective markers on the glove in order to differentiate them from background.
Captured images were converted into binary images and marker shape poly-
gons were detected with sophisticated image processing algorithms. By do-
ing this, fingers, palm of the hand and backside of the hand could be identi-
fied. Gesture set to be recognized was chosen based on the number of fingers
shown and side of the hand. State machine was selected to determine hand
pose. Tracking the movement, size and direction of the hand were used to
recognize performed gestures in real-time.

3.1.2 Camera and Bare Hand

Recognizing hand gestures by detecting bare hand using normal cameras
does not require any other equipment for inputting the system, but advanced
image processing algorithms need to be developed for hand shape extraction.
It has an easy set up and is more generic for being suitable for any hand size
comparing to the CG method.

Binh et al. [67] developed a real-time system that can recognize 36 letters of
ASL with the accuracy of up to 98%. They extracted the hand from the im-
age by tracking the skin color. Similar to Keskin et al. [22], they also used
Kalman Filter [78] for identifying the image regions. Pseudo 2D HMM classi-
fier was used because captured images were in 2D. Experiments showed that
the system reached up to 98% accuracy in real-time.

Fang et al. [79] proposed a real-time robust hand gesture recognition method.
They used extended version of AdaBoost method [80] for hand detection. For
stable hand tracking, they used a multi-modal technique which is the combi-
nation of optical flow and color cue. Hand segmentation was performed by
describing hand color in HSV color space. Then, palm and fingers were found
by scale-space feature detection. 6 different gestures were tested with image
browsing application by using 320 x 240 pixel normal camera and 93,8% av-
erage recognition accuracy was achieved.

Rumyantsev et al. [45] proposed a hand sign detection method which com-
bines skin color detection, Principle Component Analysis (PCA) based hand
gesture detection and hand centroid movement tracking. Skin color detection
was performed in YCbCr and normalized RGB color spaces. Their hand de-
tection method started with masking skin color pixels from the acquired im-
age. It is followed with removing small and large holes in the mask. Largest
areas in the mask were determined as left and right hand bounding boxes.
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Lastly, found boxes were scaled to standardized dimensions to ensure size
invariance. 2D image dimension was reduced to 1D vector with PCA. Weight
vectors of each gesture were obtained at the end of training stage. Those vec-
tors were compared with the weight vectors obtained by real-time captured
images by calculating Euclidean distance between them to classify gestures
in the test stage.

Oka et al. [65] used a normal camera together with an infrared camera to
develop a system that can track fingertips and recognize hand gestures in
real-time. With the infrared camera and an appropriate threshold value, they
could detect both hands of human whose body temperature was within the
range from 30◦C to 34◦C. After hands were detected; wrists, fingertips and
palms were identified respectively by executing image processing algorithms.
For classification purposes, HMM was used. They created an augmented
desk interface system that lets users manipulate physical and virtual objects
with hand and finger gestures. 12 gestures of the system were tested and the
accuracy of single finger gestures were 99,2% while the accuracy of double
finger gestures were 97,5%.

3.1.3 Depth Camera

Recently, normal cameras and infrared cameras have been widely used for
data collection, until the first affordable depth camera is commercialized. Af-
ter Kinect cameras made publicly available in 2010, the number of conducted
researches about gesture recognition using depth cameras has been increas-
ing. Kinect for Windows has a powerful SDK that can detect hand shape and
finger joints. Researchers can use that SDK as a base for developing their
gesture recognition algorithms.

Li [29] was one of the first researchers who used Kinect for creating a hand
gesture recognition system. He used OpenNI Framework [81] and K-means
clustering algorithm for hand detection from the data captured by the depth
camera. After the detection of hand, fingers (with names) were identified
by calculating distances between points on the convex hull and hand con-
tour of the detected hand shape. Number of fingers, names of fingers and
angles between fingers were used as feature vectors in classification process.
Gesture recognition process started with a calibration gesture which is 5 fin-
gers spread to identify all fingers and names of fingers in the beginning. It
followed with the performing of a predetermined gesture and the system rec-
ognized that performed gesture. 2 sets of gestures were tested : 9 numbers
(from 1 to 9) and 9 common body language signs (victory, okay, thumb up
and down etc.). Recognition rate of the system was around 88% in average.

Frati and Prattichizzo [30] were the ones who use Kinect in early days of its
release for their research on hand tracking and rendering in wearable haptics.
Unlike Li, they used CLNUI Platform [82] for depth raw data, color depth
data and color RGB data collection from the camera. They used the proposed
system only for tracking the hand and the gesture of grasping an object.
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Du and To [83] developed a system that can recognize the numbers shown
with both hands individually, by using Kinect. Their system had a constraint
that the person’s hands should be in front of the body because they tried to
extract the hand shapes by looking their depth. After the hands were ex-
tracted from the background by applying vision algorithms to the original
depth image, convex and concave points of the resulting image were identi-
fied for finger detection. Those points were the elements of feature vectors
and number gestures were classified by counting the number of convex and
concave points.

Ren et al. [84] mentioned that Kinect sensor was capable of identifying human
body actions, but it needed to be improved to recognize hand gestures. There-
fore, they proposed a part-based hand gesture recognition system to be an al-
ternative for this open problem. This system’s constraint was to wear a black
belt on the gesturing hand’s wrist in order to simplify hand detection. They
found the hand contour and they converted this contour into time-series by
calculating the Euclidean distance between each point on the contour and the
center of the hand shape. Then, they applied an improved template matching
method, Finger-Earth Moving Distance, for classification of gestures. Their
system was tested with 10 subjects performing 10 gestures (numbers from 1 to
10) in a challenging environment to show that the system was robust to clut-
tered backgrounds. Furthermore, all time-series representations of the same
gestures with different rotations were similar to each other because starting
points of the obtained hand shape contours also rotated with the hand. This
led the system to be rotation invariant. Developed system was integrated
with arithmetic computation and rock-paper-scissors applications in order to
show that the system is applicable to real-life applications.

3.2 Sensor Based Gesture Recognition Techniques

3.2.1 Accelerometer Sensors

With accelerometer sensors, instead of gestures created by forming hand and
fingers in different shapes, gestures consisting of movements of hands or
arms can be recognized. Accelerometer sensors can be placed in armband
worn on an arm, they can be embedded into smart phones or they can be
a part of hand-held devices like Wii remote [85] by Nintendo or PlayStation
Move [86] by Sony. Wii remote has infrared sensors while Playstation Move
has a light ball, which are tracked by the cameras of their own systems in
order to combine the vision information with the data coming from their ac-
celerometer for accurate acceleration calculation.

Kela et al. [31] developed an acceleration based gesture recognition system
to use in designing applications. They applied a questionnaire to choose the
most natural gestures for controlling VCR device. After specifying 8 gestures
(Right Down-Left Down, square, left, right, up, down, Clockwise (CW) circle
and Counter Clockwise (CCW) circle) 3-axis acceleration data were collected
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(a) Wii Remote (b) PlayStation Move (c) SoapBox

Figure 3.2: Accelerometer Device Examples

by using a small sensor device called SoapBox [87]. Firstly, they pre-processed
the collected data to normalize the variation in gesture speed. Secondly, they
reduced 3D data to 1D by applying vector quantisation with K-means algo-
rithm. Lastly, they used HMM for classification of the gestures. They could
reach up to 98,9% success rate by increasing the number of training vectors.

Liu et al. [88] used Wii remote to collect acceleration data for their gesture
recognition system, uWave. The system converted the collected accelerom-
eter signal data into time series. With dynamic time warping method, con-
verted time series were compared with template time series for gesture match-
ing purposes. Updating the templates with input data made the system dy-
namic. They preferred to choose 8 gestures from previous research because
their aim was to be able to use the system in real-life applications and these
gestures were the most preferred ones to use with home appliance. They col-
lected data from subjects in different sessions through different days. The
same day data were compared with all days data in terms of the gesture
recognition accuracy. The developed system was integrated with a gesture
based user authentication application and mobile user interface application.

Another utilized custom hand-held accelerometer device came from Liu et al.
[38]. They used the device to collect data for their proposal of accelerometer-
based gesture recognition algorithm. In their method, 3-axis data was pre-
processed for quantification and clustered with k-medoids algorithm for be-
ing robust to noisy data. Discrete HMM was used for classification. Proved
with more than 94% average accuracy, the system was applied to a virtual
reality application where users interact with objects in 3D environment.

Akl et al. [48] used random projection method to improve other researches
about accelerometer-based gesture recognition. Combination of Dynamic Time
Warping (DTW) and affinity propagation was used for clustering in the train-
ing stage. Test data and exemplars (the output of the training stage) were pre-
processed with DTW again and random projection matrix was generated. By
using this matrix, the problem was formulated as `1-minimization problem
and the solution of the problem gave the recognized gesture. With the pro-
posed system, almost perfect accuracy was achieved in user-dependent tests
and the success rate of 94,6% was reached in user-independent tests. Results
seem to make the proposed method novel.

Wearable devices are becoming more popular these days and smartwatches
are the latest products of this popularity. These devices are equipped with

31



several sensors to use mainly for tracking the movements, geographic loca-
tion or sportive activities of their users. Wen et al. [73] used accelerometer,
gyroscope and linear accelerometer sensors of a smartwatch and presented
a unique system that recognizes 5 fine-motor finger gestures (pinching, tap-
ping, squeezing, waving and rubbing) to control the smartwatch itself. Raw
data and distances between each axes for each sensor formed the time-series
data set of the recognition system. 10 lower of 25 power bands produced
by taking FFT of calculated statistical features of obtained time-series data set
were decided to be feature vectors. For classification, they implemented 4 dif-
ferent classifier : Support Vector Machines (SVM), Naive Bayes Classifier, Lo-
gistic Regression and K-Nearest Neighbor (K-NN). The system was designed
to choose the best one according to the user. 83% accuracy was reached in
overall performance.

3.2.2 Flex Sensors

In gesture recognition studies, flex sensors are mostly used to detect finger
movements. These sensors are commonly located on the finger parts of spe-
cial data gloves. Each sensor converts the flexion and abduction of corre-
sponding finger to digital data.

(a) CyberGlove 2 (b) CyberTouch 2

(c) DG5 VHand 2.0 (d) JhaneGlove

Figure 3.3: Glove Examples Having Flex Sensors

Liang and Ouhyoıng [64] presented a real-time continuous gesture recogni-
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tion system that can output 250 vocabularies of Taiwanese Sign Language by
recognizing 51 hand gestures, 8 hand movements and 6 gesture orientations.
Detection of the starting and the end points of gesture was a problem because
the system was input continuously. They overcame this problem by defin-
ing a time-varying parameter and used this as a threshold value. They used
flexion data of 10 finger joints reported by DataGloveTM as posture features;
elevation data coming from the 3D tracker as position features; azimuth and
roll data obtained from a 3D tracker as orientation features; the normalized 10
connected vectors of motion trajectory as motion features. These four feature
sets are input to HMM for classification. They tested the recognition rate of
the system in three groups: isolated gestures, short sentences and long sen-
tences. Results showed that the success rate was decreasing down to 70%
with the increase in the number of vocabularies.

Sign language recognition systems are the most common applications of ges-
ture recognition research. Vamplew [56] proposed a system called SLARTI to
identify Australian sign language gestures. Data collection was similar to the
previous study except that in this study CyberGlove with 18 flex sensors was
used. Moreover, features were selected the same as the previous research,
they only were pre-processed with different algorithms. For this system in
the classification stage, feature vectors were fed to neural network with dif-
ferent properties. For each feature, the network which gave the best results
was chosen for the final system. The difference of this system was to have one
more classification step because each Australian Sign Language dictionary el-
ement consists of sequences which start with a starting gesture, are followed
by a motion of hand and finish with end gesture. 7 features were generated
for each sequence. Nearest-neighbor look-up algorithm with simple distance
measure and heuristic distance measure were applied for the final classifica-
tion. 90% average accuracy was achieved.

One of the beneficial comparison of classification methods was studied by
Parvini et al. [55]. They developed a gesture recognition system and com-
pared single layer neural networks, multiple layer neural networks and GRUBC
(gesture recognition by utilizing bio-mechanical characteristics) with differ-
ent numbers of training, validation and test sets. Gesture set was constructed
with 22 letters of ASL. CyberGlove was used in this study and the data col-
lected from its flex sensor channels were used as feature vectors. Results of
the single layer neural network with the configuration of one set for test and
the remaining sets for training were close to the results of GRUBC method
with the similar configuration. These methods had the highest accuracy among
others.

Kumar et al. [75] created a hand gesture recognizer to use in an interesting
application, air writing and sketching. They used DG5 VHand data glove
whose flex sensors are analog. Hence, they had to implement an analog-
to-digital converter. Output of this converter was used as features of K-NN
classifier. Their algorithm for hand pose detection did not require any signal
processing, they only checked whether the value of any specified flex sensor
was between 2 threshold values. The gesture set recognized by the system
contained 6 gestures (idle, left click, right click, dragging, rotating, pointing).
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Camastra and Felice [76] also used DG5 VHand data glove in their gesture
recognition research. In this study, Camastra preferred to use a data glove
instead of a CG which had been used in his previous study [20]. For feature
set, they used the data obtained from the data glove by applying bandpass
filter. LVQ with 3 different learning techniques were chosen for classification
process. Combination of the different LVQ classifiers which were giving the
best results was used for final results. The proposed system recognized 13
gestures with the accuracy of 99,31%, which was ≈7% better according to
their comparison with K-NN classifier. The system was used in VR course to
control a presentation program.

Contribution of Katzenelson and Karsenty [14] to the hearing/speaking dis-
ability research area is important. They described a smart glove having name
as JhaneGlove which is responsible for converting hand gestures to speech.
JhaneGLove consists of 5 flex sensors for each finger, 8 contact pad sensors to
detect contacts between fingers and the hand palm, accelerometer and gyro-
scope for motion and orientation of the hand. They designed the system as
a generic gesture recognizer to be able to identify custom gesture sets with a
simple calibration and training process. Neural network with back propaga-
tion algorithm was used as a classifier. The system was tested with 15, 20 and
30 signs separately and the accuracy dropped down from 92% to 80% as the
number of signs increased. Furthermore, they stated that their system would
need to be improved because natural sign language was much faster without
the glove although they achieved to recognize each gesture in ≈1 second.

3.2.3 EMG Sensors

Electromyograph is a device recording electrical activities produced by mus-
cles. Hand and finger gestures are activating forearm muscles when they
are performed. Hence, EMG sensors can be used to identify performed ges-
tures as they are activating different muscle groups with different frequencies.
EMG sensors can be used alone to recognize static hand poses as well as they
can be combined with accelerometer or IMU sensors to detect movements of
hands or arms.

3.2.3.1 Only EMG Sensors

One of the first research about using EMG signals for HCI was presented
by Wheeler [66] in 2003. two separate gesture sets were used for this study
: virtual joystick set consisting of left, right, up and down gestures; virtual
numeric pad set consisting of numbers from 0 to 9 and enter keyboard but-
ton. Number of electrode pairs and their locations were specified with respect
to the gesture sets. For the first gesture set, dry electrode pairs were used
while wet electrode pairs were preferred for the second gesture set. When
the electrode pairs were wet, quality of the signal was higher and noise of
the signal were less whereas placement of wet electrode pairs was possible
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to change unintentionally for each session. According to their tests, minor
displacements like 1-3 mm had no effect where major displacements like 1-2
cm ruined the success rate, which proves how sensibly EMG electrode pairs
have to be placed. Data collected from electrode pairs were digitized and pre-
processed with Bessel Filter [89]. One of the simplest feature space, moving
averages on time series representation of the signal, was selected for feature
extraction. Left to right HMM with Standard Baum-Welch training algorithm
was used for the pattern recognition. Results showed that EMG signals can
be used to control devices. However, in order to integrate such systems to
our daily life, this cumbersome process should be overcome by developing
portable EMG devices.

Another study about gesture recognition by processing surface EMG signals
was performed by Kosmidou et al. [90]. They collected 2-channel EMG data
with the frequency of 1 kHz. First, they defined 16 features in either time or
frequency space. Then, they decreased the number to 11 by applying discrim-
inant analysis based on the criterion of Mahalanobis distance. Lastly, they
identified 8 discriminant functions to represent those 11 features. Resulting
8 discriminant functions could classify 9 ASL gestures with the success rate
of 99,4%. Moreover, 2 of 11 features were eliminated because of their low
white noise tolerance. Classification with the updated discriminant functions
resulted in 97,7% accuracy.

A real life application that controls an RC car with hand gestures was devel-
oped for the experimental part of the study of Kim et al. [36]. The challenging
part of this research was that they used only 1-channel EMG sensor to obtain
muscle activity signals from different muscle groups which are responsible
for wrist and finger movements. They explained that the obtained signal had
minimum noise whereas it had an unstable baseline. Hence, they detrended
the raw signal data with a simple averaging function in pre-processing stage.
They faced detecting end of the pattern problem and they overcame it by
applying RMS function. For feature sets, not only time domain features like
mean value, variance and signal length were used; but also frequency domain
features like FFT and Fourier variance were included. The combination of K-
NN and Bayes classifiers with a decision tree was used to identify 4 simple
gestures : left, right, forward, backward. In order to specify each threshold
values used in feature extraction and classification stages, calibration process
had to be performed for each user. Although they provided general threshold
values, the system showed better performance with calibrated values because
they also experienced that EMG signals would vary from person to person.
Average success rate of 94% was achieved. They also compared the results by
grouping the test subjects according to their gender, height and weight.

A custom, low-cost, wearable and flexible EMG device with on board pro-
cessing capabilities was proposed by Benatti et al. [33]. They collected analog
data by using electrode pairs and applied notch filter for removing power
line interference and low pass filter for noise reduction. The composition of
8-channel pre-processed data was used as feature vectors. For classification,
they chose SVM because their preference was better accuracy more than com-
putational cost. 123 support vectors were trained with 10% of the collected
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data. The gesture set they tested consisted of 6 gestures (power grip, preci-
sion grasp, open hand, pointed index and the flexion/extension of the wrist)
and a hand rest position. 89,2% classification rate was achieved. Furthermore,
the accuracy results of different number of input channels and gestures were
compared. Moreover, the same developed algorithm was executed with the
inputs obtained from Myo device and similar accuracy rates were achieved.
They finished their comparison by stating that their device had advantages
in terms of processing capabilities while Myo has advantages for being more
portable and user friendly.

Savur and Sahin [91] used an advanced EMG device to collect data for their
ASL recognition system. Ten time domain features were extracted from 8-
channel, band-pass and notch filtered EMG data. These features were : MAV,
modified MAV, simple square integral, root mean square, log detector, aver-
age amplitude change, maximum fractal length, minimum value, maximum
value and standard deviation. One-vs-all SVM with Radial Basis Function
(RBF) kernels was used for classification. They found the best sigma value
which gave test and cross validation results closest to each other by testing
different sigma values of kernel function. Their system identified 26 ASL let-
ters with the accuracy of 91,73% in offline and 82,3% in real-time. Results
seem to be pretty accurate, but their experiment was performed by only one
test subject.

3.2.3.2 EMG + Accelerometer Sensors

Detecting only pose of hand or fingers is applicable with EMG data alone.
Most of the sign language letters can be represented with static gestures.
However, some letters or other applications necessitate the movement of the
hand too. For detecting dynamic gestures, only EMG data are not sufficient.
Therefore, other additional sensors are combined with EMG sensors to obtain
more features containing the hand motion. Accelerometers are commonly
used for this purpose.

Application areas of EMG + Accelerometer combination are not limited to
sign language recognition. Zang et al. [68] proposed a system that recognizes
3 hand pose (Little finger, thumb and fist) with 6 different circular movement (
CW and CCW with respect to x, y and z axis ). Controlling the virtual Rubik’s
Cube [92] with hand gestures is the experiment application of the system.
As mentioned earlier, hand poses were detected with EMG signals and hand
movements were detected with accelerometer sensors in this study. Starting
and end of gestures were identified by looking at the average of squared mul-
tiple channel EMG signals for being below or above of the predefined thresh-
old values. They labeled the areas between those identified points as active
areas to be used in gesture recognition process. Four-channel EMG device
and a standalone 3D accelerometer were used in the system. Results of the
combined system in offline was satisfactory because the number of gestures
in hand pose gesture set was limited to only 3 and very distinct gestures from
each other in terms of the activation of different muscle groups. Moreover, the
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hand movement they chose was a single circular movement in different axis
and directions, which made them easier to be recognized in comparison to the
more complex hand movements. Real-time test results were also successful
with the accuracy of 91,7%.

Two years later from their publication, Zang et al. upgraded their EMG data
collector device with 5-channel EMG sensors in order to cover the activities of
5 different forearm muscle groups: extensor digiti minimi, palmaris longus, ex-
tensor carpi ulnaris, extensor carpi radialis, and brachioradialis [70]. In this study,
they used multi-stream HMM classifiers together with a decision tree for re-
ducing the number of possible results, which showed great improvements
in terms of recognition time. The decision tree decides whether the gesture
is static or dynamic, whether the duration of the gesture is short or long,
whether the palm of the hand is looking up or down. As a result, with the
less number of HMM classifiers, more accurate and faster gesture recogni-
tion was achieved. With the proposed system, they tried to identify 72 Chi-
nese Sign Language words and 40 sentences formed by using some of these
words. More than 95% average recognition success rate was achieved. They
also proved the improvement on their previous study by testing the new sys-
tem with Rubik’s Cube application again. Average accuracy values of 97,6%
for user-specific experiments and 90,2% for user-independent were achieved.

The importance of gesture selection was studied in the research of Kosmidou
and Hadjileontiadis [93]. They proposed a gesture recognition system to iden-
tify 60 Greek Sign Language words. They broke down each word into small
parts in order to represent words with the sequences of movements. They
categorized 5 movements (extension, flexion, left rotation, right rotation and
pause) of three body parts (arm, fingers, hand) and each of the movement of
the body part was symbolized with a letter. Hence, they would be able to
match each gesture with the sequence of those letters. It was the reason to ob-
tain the similarities between word pairs. In order to recognize those 60 words,
they analyzed 5-channel EMG data together with 3D accelerometer data by
using intrinsic mode entropy. They stated that the number of EMG chan-
nels were optimal because according to the experiments, the increase in the
accuracy was not worth to increase the number of EMG channels where the
decrease of success rate was significant when less number of EMG channels
were used. Discriminant analysis based on Mahalanobis distance criterion
was used for classification. More than 93% accuracy was achieved with the
proposed system.

When the number of gestures to be recognized is high, different techniques
should be used to achieve high accuracy. Li et al. [63] proposed a system
whose two accelerometers and 8 EMG sensors were placed on both left and
right forearms. Their gesture recognizer was capable of identifying 121 Chi-
nese Sign Language subwords most of which must be performed by using
both hands. They used normalized 3-axis accelerometer data, Autoregres-
sive coefficients obtained by Hamming Window filtered EMG data and MAV
of EMG channels as feature vectors. For less computational complexity and
reduced recognition time, they used a decision tree combined with multi-
stream HMM for classification. Average results of their tests yielded to 95,78%
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success rate.

Lu et al. [34] put gesture recognition applications one step further by mov-
ing the system to mobile devices. While there may occur user experience
problems, they presented a system that recognized nineteen gestures to con-
trol mobile phone. They defined four of them (bending wrist to right or
left, spreading fingers and fist) as small-scale gestures which are different
forms of hand. The remaining fifteen gestures were defined as large-scale
gestures which can be performed by moving the hand performing a specific
small-scale gesture to different directions. Five of them represents the ar-
row keys and centering, ten of them represents numbers from 0 to 9. They
classified small and large scale gestures separately. For small-scale gestures,
Bayes linear classifier was used where for large-scale gestures, DTW was pre-
ferred than HMM in order to avoid latency. 95% average accuracy for user-
dependent and 89,6% average accuracy for user-independent results each was
reported within 300 ms showed the success of the proposed system. More-
over, a questionnaire applied on participants showed that controlling mobile
phones with hand and finger gestures recognized by the proposed system is
accurate, practical, enjoyable, natural and controller device needs improve-
ment to be more comfortable.

3.2.3.3 EMG + IMU Sensors

Georgi et al. [94] used EMG and IMU sensor combination in their gesture
recognition study. Their main purpose of using IMU sensors was to generate
more features by using gyroscope sensors. They wanted to create a generic
system that tried to identify 12 gestures, session and person independent. Re-
sults of their study showed that creating a person-independent generic sys-
tem with only EMG sensors was not possible with their technique because
they do not place EMG sensors precisely on muscles. They preferred to place
them in a regular pattern to make the hardware easily wearable like arm-
bands. However, with the contribution of IMU sensors, mean accuracy of
74,3% was achieved, which is significant for person-independent recognition
techniques.

3.2.3.4 Myo

Myo is a commercial device containing EMG and IMU sensors similar to the
hardware used in studies reviewed in previous section. There has been plenty
of research using Myo for data collection in recent years. Thus, it will be
reviewed in separate subsection.

Savur is one of the first researchers who used Myo to collect data for his study
[37]. Experiments of his previous research [91] was performed by using a cus-
tom EMG device as mentioned earlier. With this study, he was able to com-
pare the results of using these two devices. The custom device was less com-
fortable to wear because electrode pads were sticky and EMG electrodes were
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connected to main unit with cables although data transmission was provided
via Bluetooth. On the other hand, EMG electrode pads of the custom device
could be placed on muscles sensitively, which resulted in more accurate data
collection than Myo.

Sathiyanarayanan et al. [12] used Myo in their research for controlling an
unmanned ground vehicle. However, they only used gyroscope of Myo for
giving very simple 5 commands (up, down, left, right and halt) to the vehicle.
Instead of using a single gyroscope or IMU sensor, they benefited from Myo’s
portability by disregarding its EMG data collection feature.

Lee and Rao proposed a procedure of collecting data using Myo in their re-
search [95]. Their method only included the data structure to hold the col-
lected data in an order. Although they did not give any details on machine
learning classifier techniques, they tested their system with Naïve Bayes clas-
sifier. Success rate of 70% for one specific test user was achieved for recogniz-
ing 8 military gestures.

Boyali et al. brought a new point of view to the structure of collected data
for gesture recognition in their research [96, 97]. Instead of recording data for
each gesture separately, they tried to record the data of gesture pairs which
were performed continuously. Their experiment subjects were switching be-
tween two gestures during the data collection process for each gesture pair.
On collected gesture pairs, ordered subspace clustering based on sparse sub-
space clustering was used. Collaborative representation based classification
was able to identify 6 gestures (predefined Myo gestures + hand relax posi-
tion) with the accuracy over 97%.

Abreu et al. proposed a system to recognize some letters of Brazilian Sign
Language [35]. They excluded the letters whose gesture performance require
hand movements and included remaining 20 letters with stationary gestures
to form the gesture set of their research. Collected data was pre-processed
with inverting and smoothing algorithms. Then, binary SVMs were trained
with one-vs-all strategy for classification process. In this process, they tried
different values for RBF kernel parameters and chose the ones giving best
accuracy results which is more than 98%. The most valuable contribution
of their study was about performing gestures during data collection process.
They tested to perform the same gestures by applying different strengths with
fingers and found out that the EMG readings would vary for the same ges-
tures. Two different data sets for the same gesture can be compared from
Figure 3.4. These differences proved that performing gestures by applying
similar strength levels during the data collection is as important for better
accuracy as precise placement of EMG sensors on the skin.

Sánchez compared different pre-processing and classification (Decision Trees,
Random Forests, Error Correcting Output Codes and K-NN) algorithms in his
thesis study [13]. 7 different methods (Integrated EMG, MAV, SSI, Variance
of EMG, RMS, Waveform Length, Zero Crossing) were applied for feature ex-
traction. Sliding window filter and majority vote methods were applied to the
classified data to obtain smoother results. Gesture set he used was composed
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(a) Gesture is performed naturally (b) Gesture is performed with extra strength

Figure 3.4: EMG reading differences of the same gesture by applying different
levels of strength while performing gestures

Table 3.1: Active EMG sensors of Myo for each gesture

EMG Sensor Indexes
1 2 3 4 5 6 7 8

Wave Left X X X X
Wave Right X X X

Fist X X X X X
Fingers Spread X X

Double Tap X X X X

of 4 predefined Myo gestures (fist, wave right, wave left and spread fingers),
4 additional gestures (pinch, elder, voor and tiger) and 1 hand rest position.
Effects of collecting data with 2 different frequencies (10 Hz and 200 Hz) also
compared.

A contribution using Myo for medical researches was done by Abduo and
Galster. They implemented an interface to visualize and collect real-time data
in order to use for medical applications [98]. Main purpose of their study
was to find a new way to recover the lost abilities of hand amputees. Gesture
set used in this research was composed of finger and wrist movements, hand
postures and grasping of different objects.

Similar research for hand amputees was conducted by Ganiev et al. [99] to
control virtual robotic arm using Myo. Main topic of this study was not ges-
ture recognition, instead they would like to show that all sensors and features
of Myo were capable of being used as virtual arm. They used IMU data for
representing movements and orientation of the virtual arm and predefined
gestures detected by Myo’s system in real-time for actions such as grasping
(fist) or bursting balloons (double-tap). Important part of their study is that,
they specified which EMG sensors (out of 8 sensors) were active while per-
forming each gesture. Their specification can be seen in Table 3.1. This infor-
mation would be used in classification algorithms for gesture recognition.
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Usability of Myo for medical research was proven by Sathiyanarayanan and
Rajan [100]. They applied System Usability Scale (SUS) questionnaire to 24
medical students to quantify the experience of using Myo for physiotherapy.
Average SUS score of ≈ 70% was achieved, which is mentioned to be accept-
able.

Yeh et al. proposed a recognition system which can detect basketball referee
gestures [101]. Their first gesture set consists of 9 dynamic gestures, which
means they used EMG signals together with ACC signals collected using
Myo. They stated that using only EMG sensors for person independent ges-
ture recognition systems is challenging for two reasons:

• EMG signals can vary significantly from person to person.

• EMG sensors should be located precisely on muscles to obtain similar
signal patterns for the same gesture performances.

In the pre-processing step, they used removing the mean, rectification and
smoothing techniques. For feature extraction methods, they used DBN (Deep
Belief Network) with 4 RBMs (Restricted Boltzmann Machines) and autore-
gressive model coefficients. For classification, they tested HMM, SVM and
ANN. SVM was found to have the best classification ability among others.
Their proposed system achieved 97.9% accuracy with 5-fold cross valida-
tion technique, 90.5% accuracy with leave-one-participant-out cross valida-
tion technique. Their second gesture set consists of 5 stationary gestures.
These gestures are performed by fingers to show the numbers from 1 to 5.
The proposed system classified these 5 gestures with the accuracy of 54.3%
because only EMG data was used in the gesture recognition process.

Lastly, the study of Nymoen et al. [102] was about using Myo to control musi-
cal instruments with gestures. They did not implement a gesture recognizer,
instead they used predefined actions that Myo recognizes by itself. In their
research, they calculated the noise levels of acceleration and EMG data, rota-
tional drift of IMU data and time lag of data streams so that Myo was decided
to be eligible for controlling musical instruments. Results of their user testing
showed that misclassification problems occurred due to the fact that each test
user had different arm thickness. Nevertheless, test users were observed to
have fun using the system. The requirement of the precision while controlling
musical instruments was also mentioned to be significant.

These studies prove that Myo can be used as a data collection device for ges-
ture recognition. Its advantages can be listed as being portable, affordable,
powerful with 8-channel EMG and IMU sensors. There are also disadvan-
tages that can be summarized as precision problems while placing EMG sen-
sors, signal strength problems comparing to the devices use wet electrodes,
low EMG frequency comparing to the advanced devices and lack of embed-
ded computing capabilities comparing to the device used in [33].

By looking at all these researches and their application areas, it can be inferred
that gesture recognition is widely used for identifying sign language letters
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or words. Moreover, some examples on medical treatment for the ones with
physiological disabilities can be seen. Apart from these beneficial real life
examples, it can also be used just for fun as a controller for physical robots,
toys or abstract characters in video games.

Another fun application area of gesture recognition consists of virtual classi-
cal music orchestra conductor applications. In this type of applications, users
perform gestures to control musicians playing their instruments.

In 1991, Morita et al. laid the foundations of the first virtual orchestra applica-
tion. They implemented a computer music system which followed a human
orchestra conductor’s movements [103]. A conductor generally uses his dom-
inant hand to perform the tempo of the music by using a baton, and his non-
dominant hand to perform expressive gestures like crescendo, pianissimo or
forte [104] in order to operate musicians with the dynamics of the music. In
their research, they used infrared cameras to track the dominant hand for
tempo, and data glove to collect data from the non-dominant hand for detect-
ing gestures. The data glove used in this study has optical fiber cables located
on fingers and a magnetic position sensor which detects the movements of
hand and finger joints. For the non-dominant hand expressive gestures, 11
features they extracted were composed of the horizontal and vertical posi-
tions and velocities of hand; crooking of thumb, index and middle fingers;
rotation and direction of palm. Their application was tested by conductors
and musicians and they collected several feedbacks on tempo prediction and
compensation.

Furthermore, there are some studies on virtual orchestra conductor applica-
tions like [105, 106, 107, 108]. In those researches, only the algorithms that
predicted the tempo of the music by using dominant hand were studied.

Recognition of the non-dominant hand expressive gestures in a virtual clas-
sical music orchestra conductor application is the main topic of this thesis.
Methods applied to identify expressive gestures of conductors are explained
in the next chapter.
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CHAPTER 4

PROPOSED METHOD

In this chapter, a new algorithm for gesture recognition is presented. All steps
(except feature reduction) of gesture recognition process mentioned in the
background chapter of this thesis are performed. Before gesture recognition
process is started, gesture set is decided. Then, the training and testing data of
gestures in the set are collected. Collected data are preprocessed and features
are extracted. After that, the number of the feature vectors is reduced. Finally,
a classifier is fed with reduced set of features and resulting gesture classes are
output, which completes the gesture recognition process.

4.1 Selecting Gesture Set

Sign language recognition and device controlling are the most common ap-
plication area of gesture recognition. Hence, letters or expressions of different
sign languages and commanding gestures are the most recognized gestures.
In order to contribute to a totally new area, expressive gestures performed by
the non-dominant hand of a classical music orchestra conductor are chosen
for the experiment application part of this thesis [109]. These gestures are the
most commonly used gestures by conductors. Fourteen gestures including a
rest pose can be seen in Figure 4.1.

In order to distinguish gestures clearly, gesture set is mostly created by atten-
tively choosing specific gestures activating different muscle groups if EMG
devices are used for data collection process. However, for some cases, sets
can consist of already defined gestures some of which may have similarities.
For example in [35] and [37], some of the Brazilian and American Sign Lan-
guage letter representations are similar, which result in confusion on recog-
nizing those letters. The gesture set used in this thesis also has some similar
representations of some gestures. Similarity analysis will be explained in the
next chapter with the results of experiments.
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Figure 4.1: Expressive gesture set of classical music orchestra conductor

4.2 Collecting Data Using Myo

Myo from Thalmic Labs [9] is a revolutionary device that makes EMG data
collection very easy. It is a portable device that can be carried anywhere and
can be used by anybody. Putting Myo armband to the thickest part of the left
or right forearm is enough for starting data collection process. According to
its technical specifications [110], by the help of elastic bands and sizing clips,
it can be suitable for the forearms with circumference from 19cm to 34cm.

It is also stated in its technical specifications [110] that it has

• 8 Medical grade stainless steel EMG sensors which are used to recognize
5 gestures (spread fingers, fist, wave left, wave right and double tap)
with Myo’s build-in classifier,
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Figure 4.2: Flow Diagram that explains the steps of data collection process
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• Highly sensitive 9-axis IMU sensors which are used to detect the orien-
tation and position of the arm. IMU sensors contain

– 3-axis gyroscope
– 3-axis accelerometer
– 3-axis magnetometer

Some of the studies [95, 98, 99, 100, 102] mentioned in the "Previous Work"
chapter used those predefined gestures which are reported in real-time by
Myo SDK. After Thalmic Labs announced that the updated SDK would pro-
vide raw EMG data on December 2014 [111], many researchers started devel-
oping algorithms for their own gesture recognition studies.

Matlab scripts are used to collect data by using Myo. There is no official Mat-
lab SDK version by Thalmic Labs, however Mark Tomaszewski developed
Myo SDK Matlab Mex Wrapper that used C++ bindings of official Myo SDK
[112]. His wrapper is capable of streaming EMG data with the maximum fre-
quency of 200Hz which is equal to the Myo’s data acquisition frequency. His
algorithm does not ask device for one set of data for each constant interval of
1/200 seconds. Instead it asks less frequently but obtains more than one set
of data. It writes the obtained data to buffers, which prevents data loss.

In Figure 4.2, steps of data collection process are explained in detail.

At the end of the data collection process for each user, 560000 data points (5
seconds x 200Hz x 8 EMG channels x 14 gestures x 5 times) are collected with
EMG sensors. Sample EMG signals for the fist gesture collected in a single
session can be seen in Figure 4.3.
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Figure 4.3: 8-channel sample EMG signals for fist gesture
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4.3 Pre-processing

For the pre-processing step of the proposed gesture recognition system, Full-
Wave Rectification (FWR) and Moving Averaging Window (MAW) are ap-
plied to raw EMG signals, respectively.
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Figure 4.4: Signal plots after applying FWR to the data in Figure 4.3
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Figure 4.5: Signal plots after applying MAW to the data in Figure 4.4

The reason why FWR is applied is to obtain the energy level in the signal.
High values on EMG channel can correspond to more muscle activity on the
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muscles contacting with that specific EMG sensor. Sample data after applying
FWR is plotted in Figure 4.4.

After applying FWR to raw data, MAW is applied on pre-processed data.
The main purpose of applying MAW is to smooth the signal data. Plot of the
resulting signal can be seen in Figure 4.5.

Values from 20 to 100 is tested for window size and it is specified as 50 which
is found as optimal. When the window size is getting closer to 20, smoothness
decreases. When the window size is getting closer to 100, latency occurs while
detecting gestures.

Averaging window is applied to data by sliding it by one data point for each
iteration. When the window size is specified as 50, the new data with index 1
is equal to the mean of old data with index between 1 and 50. Similarly, the
new data with index 2 is equal to the mean of old data with index between 2
and 51. This algorithm is executed on the data set until the last data point is
included in the averaging calculation. MAW algorithm is explained in detail
in Equation 4.1

MAWi(n) =
n+M−1∑
p=n

W (n)|Xi(p)| (4.1)

where M represents the size of the window. An averaging window described
in Equation 4.2 was used.

W (n) =
1

M
(4.2)

This also reduces the size of data vector. It is calculated as in Equation 4.3.

#VectorSizenew = #VectorSizeold −M + 1 (4.3)

After applying two different pre-processing methods to collected data, the
system is ready for extracting features.

4.4 Extracting Feature Vectors

Feature vectors are the most effective element for accurate gesture recogni-
tion. Chosen features directly contribute to the success rate of the system.
Thus, feature vectors should be specified very carefully.

Including as many features as possible helps obtaining high accuracy results.
However, there is a trade-off between accuracy and performance. More fea-
ture vectors in number increase the size of the data for calculations, which

48



results in performance loss.

Results of many combinations of different feature vectors were investigated.
Finally, 5 feature vectors which gave the most accurate classification results
with low latency were decided to be used in the classification step.

4.4.1 Moving Averaging Window

Pre-processed data is directly used as the first feature vector. This pre-processed
8-channel EMG data hold the information of the energy exerted by forearm
muscles. When continuous EMG signals have been observed, it is seen that
different channels are activated during the performance of different gestures.
Hence, this information is regarded as valuable to select as a feature.

4.4.2 FWR of Inter-Element Differences

The second selected feature is FWR of inter-element differences. This feature
is calculated as getting second powers of values obtained with the Equation
2.1. This formula is applied to raw data instead of pre-processed data be-
cause IED is meaningful when signs of values of a signal changes rapidly.
Otherwise, the differences approach to 0 when the formula is applied to pre-
processed, in other words smoothed, data. Figure 4.6 shows the resulting
signal plots after applying IED to the raw data.
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Figure 4.6: Signal plots after applying IED to the data in Figure 4.3
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Squaring IED values emphasize the amount of differences. Therefore, FWR is
applied to the resulting signal which can be seen in Figure Figure 4.7.
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Figure 4.7: Signal plots after applying FWR to the data in Figure 4.6

MAW is also applied to the obtained data to smooth the signal. Resulting
signals of after applying MAW are plotted in 4.8.
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Figure 4.8: Signal plots after applying MAW to the data in Figure 4.7
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4.4.3 Circular Harmonic Coefficients

The main idea to use circular harmonic coefficients as a feature vector is that
the signal pattern of each gesture is unique and each signal can be represented
with combinations of circular harmonic functions. Thus, it is assumed that
the circular harmonic coefficients for each gesture signal are distinct enough
to distinguish one gesture from the other.

Circular harmonic coefficients are calculated according to the Equation 2.10
where the basis function is revealed in Equation 2.8.

Myo on the forearm is represented in polar coordinate system as in Figure
4.9. Myo’s 8 EMG channels are assumed to be placed on the polar coordinate
system with

π

4
differences.

Figure 4.9: Myo representation on polar coordinate system

In order to break the dependency of θ, integral in the Equation 2.10 is con-
verted into summation by dividing the range of 0 to 2π into 8 equal pieces
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with
π

4
differences. By changing f(θ) with corresponding EMG values and

placing the value of basis function, the equation becomes:

wn =
r=7∑
r=0

EMGr × e
−i×n×(r×

π

4
)

(4.4)

where n is the order of circular harmonic coefficient. 8 orders are calculated
and used to extract 3 different features. Resulting coefficients are complex
numbers which is in the a + bi form where a and b are real numbers and i is
the imaginary unit. The features extracted from circular harmonic coefficients
are:

1. Real part (a)

2. Imaginary part (b)

3. Magnitude (
√
a2 + b2 )

It should also be noted that pre-processed data filtered with MAW is used
instead of raw EMG signals for calculations.

At the end of feature extraction step, for each of 14 gestures, 5 different feature
vectors each of whose dimensions are 8 × 951 are obtained to use in classifi-
cation step.

4.5 Reducing the Number of Feature Vectors

At the end of the feature extraction step, 40-dimension-feature set was ob-
tained. In order to reduce the number of the dimensions, PCA was applied.
The algorithm was applied to one test subject’s data in order to determine the
optimal number of principle components (PCs). After applying PCA to the
data, a new 40-dimension-feature set containing PCs was obtained. In order
to find the effective principal components, classification step which will be
explained in the following section was applied. Forty different classifier was
initialized with different number of principal components, i.e., the first classi-
fier used the first principal component, the second classifier used the first and
the second principal components, the third classifier used the first, the second
and the third principal components. One more classifier was initialized with-
out applying PCA to the feature vectors to compare the classification results.
In Figure 4.10, results of PCA-applied-classification and PCA-not-applied-
classification can be compared.
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Figure 4.10: Comparison of the classification results with and without apply-
ing PCA

From Figure 4.10, it can be inferred that after the thirteenth principal com-
ponent the classification results are not significantly change as the number of
principal components are increased. In other words, the first thirteen prin-
cipal components can be used instead of the original 40-dimension-feature
set.

4.6 Performing Classification

For classification purpose, which is the final step of gesture recognition pro-
cess, ANN is used. Matlab’s Neural Pattern Recognition Tool [113] which
creates a two-layer feed-forward network with sigmoid hidden and softmax
output neurons is selected. patternnet function with default training function
trainscg and default performance function crossentropy is executed to create
the network. Different hidden layer sizes from 10 (default) to 50 are tested
for accuracy and performance. Twenty as the hidden layer size is found as an
optimal value. Resulting ANN can be seen in Figure 4.11.
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Figure 4.11: Resulting ANN with 14 principle components, 20 hidden layers
and 14 outputs

For data dividing function of the network, two different functions are used:

• dividerand distributes the input data randomly among training, validat-
ing and testing data sets.

• divideblock distributes the input data with blocks among training, vali-
dating and testing data sets with respect to the following ratios:

– divideParam.trainRatio

– divideParam.valRatio

– divideParam.testRatio

dividerand is the default data dividing function of the network. Data distri-
bution with dividerand is accurate when it is used with big sample sizes with
high number of outputs. For this study, number of outputs is the number of
gestures to be recognized.

divideblock is used when training, validating and testing data division is im-
portant. Reasons of using divideblock as a data division function, together
with the conducted experiments and obtained gesture recognition results are
explained in detail in the following chapter.
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CHAPTER 5

EXPERIMENTS AND RESULTS

This chapter presents conducted experiments and results of those experi-
ments for the proposed generic hand and finger gesture recognition system.
Three different experiments are conducted and details of each experiment are
explained in the following sections.

To be used in tables and figures; gesture name and abbreviation mappings
are given in 5.1.

Table 5.1: Gesture names and corresponding abbreviations

Gesture Name Abbreviation
rest R
fist F
o O

o-pursed OP
baby-o BO

baby-o-fingers BOF
c C

c spread CS
index I

index-l IL
flat FL

flat-bent FLB
spread-5 S5

spread-5-bent S5B

5.1 System Validation

The first experiment is the system validation experiment. In order to eval-
uate the success rate of the proposed system, person-dependent off-line ex-
periment was conducted. In this experiment, 10 volunteer test subjects were
chosen and gesture recognition process was executed for each test subject.
The process started with data collection step. For 14 gestures which can be
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seen in Figure 4.1, 14 steps of data collection mentioned in Section 4.2 were
performed.

In this experiment, test subjects were requested to perform each gesture by
exerting the similar (if it is possible, the same) strength. It was proved by
Abreu et al. in [35] that exerting different amount of strength would change
the structure of the signal obtained from EMG sensors.

At the end of the data collection step, data of 14-gesture-set was collected 5
times within the same half an hour session of each test subject.

Collected data were input to the proposed system. In classification step, 2
different methods were applied. Details of these methods are explained in
detail in the following subsections.

5.1.1 Using dividerand for ANN’s data dividing function

In the first method, dividerand was used for ANN’s data dividing function.
70% of the data was used for training, 15% of the data was used for validating
and 15% of the data was used for testing the network. The main feature of this
method is to randomly separate the whole data between training, validating
and testing phases. In the training phase of the classification part, 7 different
algorithms are compared. These algorithms are listed below:

1. scg: Scaled conjugate gradient backpropagation

2. bfg: BFGS quasi-Newton backpropagation

3. cgb: Conjugate gradient backpropagation with Powell-Beale restarts

4. cgf : Conjugate gradient backpropagation with Fletcher-Reeves updates

5. cgp: Conjugate gradient backpropagation with Polak-Ribiére updates

6. oss: One-step secant backpropagation

7. rp: Resilient backpropagation

Classification results of each test subject with 7 different training algorithms
can be compared in Table 5.2. In all calculations, PCA was applied to the
feature set and the first 14 principal components were used as features.
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Table 5.2: Classification results (in percentages) with 7 different training func-
tions (PCA was applied and the first 14 PCs were used)

scg bfg cgb cgf cgp oss rp
TS 1 93.9% 92.6% 94.4% 93.6% 94.1% 87.8% 92.1%
TS 2 92.9% 95.8% 95.7% 94.5% 94.5% 89.9% 92.2%
TS 3 94.7% 93.9% 93.5% 91.1% 95.1% 92.0% 90.5%
TS 4 96.2% 94.0% 93.8% 95.7% 96.0% 92.1% 94.2%
TS 5 98.2% 96.7% 98.3% 97.6% 98.1% 96.0% 96.6%
TS 6 96.6% 95.4% 96.2% 95.9% 96.4% 92.5% 94.3%
TS 7 97.1% 94.2% 96.0% 96.0% 96.8% 91.2% 93.3%
TS 8 89.1% 88.7% 87.1% 84.2% 88.8% 83.4% 85.5%
TS 9 95.4% 95.8% 95.4% 95.3% 95.3% 90.7% 93.5%

TS 10 96.4% 94.4% 95.9% 94.0% 95.0% 87.9% 91.7%
Avg 95.05% 94.15% 94.63% 93.79% 95.01% 90.35% 92.39%

Table 5.3: Training time results (in seconds) with 7 different training functions
(PCA was applied and the first 14 PCs were used)

scg bfg cgb cgf cgp oss rp
TS 1 129 182 298 233 352 218 116
TS 2 69 302 264 359 255 269 113
TS 3 117 204 165 145 307 307 115
TS 4 92 154 87 159 169 187 117
TS 5 107 144 169 160 220 320 75
TS 6 104 198 136 128 151 184 59
TS 7 124 138 168 189 235 181 102
TS 8 132 220 211 140 217 296 115
TS 9 79 199 176 128 148 164 108

TS 10 123 190 283 210 219 201 120
Avg 107.6 193.1 195.7 185.1 227.3 232.7 104.0

From Table 5.2 and Table 5.3, it can be seen that scg algorithm gives the high-
est classification results where rp algorithm gives the lowest training time
results comparing to other algorithms. There are 3.6 seconds difference be-
tween scg and rp algorithms in terms of average training time, which can be
regarded as insignificant. On the other hand, there are 2.66% difference be-
tween scg and rp algorithms in terms of success rate, which can be regarded
as significant. As a result, scg algorithm was preferred with the average suc-
cess rate of 96.09% because successful classification is more important than
training time in the scope of this thesis.
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Table 5.4: Classification results (in percentages) with 7 different training func-
tions (PCA was applied and the first 40 PCs were used)

scg bfg cgb cgf cgp oss rp
TS 1 95.6% 94.0% 95.4% 92.6% 96.0% 91.6% 94.3%
TS 2 95.5% 93.2% 91.1% 95.3% 95.3% 90.9% 92.3%
TS 3 95.6% 95.6% 96.2% 94.9% 95.1% 90.3% 91.9%
TS 4 96.2% 96.1% 96.2% 95.8% 96.4% 92.9% 95.7%
TS 5 98.8% 96.1% 98.6% 98.9% 99.0% 96.7% 98.2%
TS 6 97.9% 95.4% 97.0% 96.0% 97.3% 94.2% 96.1%
TS 7 97.4% 96.9% 97.7% 95.4% 94.6% 94.9% 94.4%
TS 8 89.4% 87.7% 90.4% 83.6% 90.9% 85.2% 86.4%
TS 9 97.7% 93.2% 95.4% 95.6% 96.2% 92.3% 93.9%

TS 10 96.8% 94.2% 95.6% 96.2% 95.4% 91.4% 93.4%
Avg 96.09% 94.24% 95.36% 94.43% 95.62% 92.04% 93.66%

Table 5.5: Training time results (in seconds) with 7 different training functions
(PCA was applied and the first 40 PCs were used)

scg bfg cgb cgf cgp oss rp
TS 1 137 321 303 200 425 337 136
TS 2 164 446 139 333 406 381 134
TS 3 139 609 411 279 266 260 117
TS 4 110 407 158 163 159 174 116
TS 5 145 227 211 290 370 265 126
TS 6 125 313 211 221 206 257 86
TS 7 208 442 302 473 193 358 145
TS 8 170 400 355 186 488 360 147
TS 9 253 248 169 206 280 222 95

TS 10 210 373 243 313 290 276 150
Avg 166.1 378.6 250.2 266.4 308.3 289.0 125.2

In Table 5.4 and Table 5.5, classification and training time results which were
obtained by applying PCA and using the total of 40 PCs as features were
shared. The comparison of using 14 and 40 PCs were given in Table 5.6.
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Table 5.6: Classification and training time comparison of using 14 and 40 PCs

scg bfg cgb cgf cgp oss rp
Average

classification
results

(14 PCs)
95.05% 94.15% 94.63% 93.79% 95.01% 90.35% 92.39%

Average
classification

results
(40 PCs)

96.09% 94.24% 95.36% 94.43% 95.62% 92.04% 93.66%

Difference
(in %) 1.04% 0.09% 0.73% 0.64% 0.61% 1.69% 1.27%

Average
training

time
results

(14 PCs)

107.6 193.1 195.7 185.1 227.3 232.7 104.0

Average
training

time
results

(40 PCs)

166.1 378.6 250.2 266.4 308.3 289.0 125.2

Difference
(in %) 35.21% 48.99% 21.78% 30.51% 26.27% 19.48% 16.93%

According to Table 5.6, there are 1.04% decrease in the classification success
rate where there are 35.21% improvement on average training time results
with the selected scg algorithm for training.

Gesture recognition accuracy results for the first experiment with dividerand
function used for ANN’s data dividing function seem satisfactory because the
system is configured person and session dependent. It is also evaluated off-
line, meaning that the data collection step is performed before classification
instead of being performed simultaneously.

5.1.2 Using divideblock for ANN’s data dividing function

In the second method, divideblock was used for ANN’s data dividing function
in order to check the consistency between collected 5 data sets for each test
subject. All permutations of data sets for cross testing can be seen in Table
5.7.

For each test subject, 20 ANNs were trained, validated and tested with the
corresponding data sets listed in Table 5.7. Minimum, maximum and average
results of each test subject are listed in Table 5.8.
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Table 5.7: Data set setups for ANN with divideblock dividing function

Setup 1 2 3 4 5 6 7 8 9 10
Train 1,2,3 1,2,3 1,2,4 1,2,4 1,2,5 1,2,5 1,3,4 1,3,4 1,3,5 1,3,5

Validation 4 5 3 5 3 4 2 5 2 4
Test 5 4 5 3 4 3 5 2 4 2

Setup 11 12 13 14 15 16 17 18 19 20
Train 1,4,5 1,4,5 2,3,4 2,3,4 2,3,5 2,3,5 2,4,5 2,4,5 3,4,5 3,4,5

Validation 2 3 1 5 1 4 1 3 1 2
Test 3 2 5 1 4 1 3 1 2 1

Table 5.8: Minimum, maximum, and average results for cross testing

Min Max Avg
TS 1 20.75% 74.40% 61.87%
TS 2 12.58% 72.82% 57.62%
TS 3 40.12% 74.21% 63.19%
TS 4 72.26% 85.48% 78.35%
TS 5 60.46% 85.74% 77.96%
TS 6 61.38% 84.28% 75.69%
TS 7 63.58% 77.61% 71.56%
TS 8 40.20% 70.23% 57.25%
TS 9 70.29% 87.08% 79.87%

TS 10 12.59% 74.80% 63.14%
Avg 45.42% 78.66% 68.65%

Average of the average cross testing results of 10 test subjects is 68.65%.

5.2 Basketball Referee Gestures

The second experiment was conducted by using a dataset consisting of bas-
ketball referee gestures. Portions of the research in this thesis use the My-
oBR signal dataset collected by Multimedia Information System Laboratory
(MISLab), Department of Computer Science and Information Engineering,
National Cheng Kung University.

Yeh et al. organized the data which they collected using Myo for their research
[101]. They decided to release it to advance the progress of HCI technology.

In their study, they collected 9 dynamic gesture data and 5 stationary gesture
data from 11 test subjects. For each test subject, they collected 3-channel-ACC
and 8-channel-EMG data in total of 10 different sessions. Number of collected
data for each gesture is ≈155 for ACC and ≈590 for EMG.
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A small part of the whole data was used in order to use with the proposed
algorithm in this thesis. 10-session-EMG data of 5 stationary gestures of the
first test subject were organized to match with the input layout of the pro-
posed algorithm. For each gesture data, first 580 8-channel-EMG data points
were considered to make all inputs have the same number of data. Then, the
data of all sessions were concatenated. The proposed algorithm was input
with the 100% of resulting dataset and success results can be seen in the first
column of Table 5.9.

Table 5.9: Classification results of the proposed algorithm which was input
with the basketball referee gesture data

100% of data

50% of data
(first 25%

and last 25%
were

excluded)

75% of data
(only first
25% were
excluded)

TS 1 68.5% 80.1% 89.4%
TS 2 66.7% 79.2% 90.5%
TS 3 74.8% 87.5% 91.9%
TS 4 69.2% 86.8% 88.0%
TS 5 71.5% 90.0% 93.5%
TS 6 76.7% 82.1% 93.1%
TS 7 65.0% 73.8% 82.9%
TS 8 76.9% 87.9% 90.1%
TS 9 69.2% 81.1% 87.8%

TS 10 65.9% 82.3% 86.4%
TS 11 64.1% 72.1% 87.7%
Avg 69.8% 82.1% 89.2%

Relatively low success rates comparing to the previous experiment were ob-
tained. The main reason for this was found to be the differences in the data
collection steps. In the scope of this thesis, data collection was started after
the test subject performs the gesture. However, in this study [101], firstly
data collection was started, then the test subject performs gesture. As a re-
sult, dataset for each gesture contains the data of the transition from hand
rest position and the related gesture.

Therefore, the same procedure was repeated two times with the dataset,

• whose first 25% and the last 25% were ignored (50% of the whole data).

• whose first 25% were ignored (75% of the whole data).

Results of these experiments can be seen in the second and third columns of
Table 5.9 respectively.
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Although the proposed gesture recognition system was not designed as sub-
ject independent, in order to compare the results with the results obtained
in the original study [101], another sub-experiment was conducted. Firstly,
Leave-One-Participant-Out-Cross-Validation (LOPOCV) was applied to the
whole data. 80% of data of 10 test subjects were used for training, 20% of the
data of the same 10 test subjects were used for validating. The data of remain-
ing 11th test subject were used for testing. Classification results can be seen
in Table 5.10. Average classification rate of 41.5% was achieved, which is not
surprising for person-dependent designed gesture recognition system.

Table 5.10: Classification results of LOPOCV

Out Participant Percentage of correctly
classified inputs

TS1 43.7%
TS2 40.1%
TS3 41.9%
TS4 41.2%
TS5 41.1%
TS6 41.5%
TS7 46.9%
TS8 38.6%
TS9 41.1%
TS10 39.8%
TS11 40.6%
Avg 41.5%

Second sub-experiment was conducted with the whole data of 11 test subjects
randomly distributed to ANN. Properties of this ANN was the same with the
one used in Section 5.1.1. scg algorithm was used for training the network.
52.1% classification accuracy was obtained. In the original study [101], 54.3%
success rate was obtained.

5.3 Classical Music Orchestra Conductor Gestures

The last experiment was conducted in a classical music concert practice. Data
collection process was performed naturally.

The classical music orchestra conductor was requested to wear the data col-
lection device, Myo, on his forearm of the non-dominant hand which he uses
to perform expressive gestures during his concert performances. Then he was
requested to perform the concert practice as usual. Neither he was informed
about any gestures in the scope of this thesis, nor he was guided about how
to perform gestures. All of his gesture performance were his natural charac-
teristic movements.
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Figure 5.1: A snapshot from the concert training captured with 3 different
cameras

Not all but the important parts of the concert practice were recorded with
three different cameras and an advanced sound recording microphone. One
of the cameras was a webcam of a computer where data collection algorithm
was executed. Vision and the EMG data were collected with time stamps and
they were mapped to each other while synchronizing the data. Other cameras
were used to capture the gesture performances from different angles of sight.
An advance sound recording microphone was used to record high quality
sound which was synchronized with vision data. At the end, 67-minute-video
clip was created with the combination of sound and vision data by using
iMovie application [114]. A snapshot from the resulting video can be seen
in Figure 5.1

After the synchronization of vision, sound and data; gesture performances
were manually labeled by the supervisor by watching every second of the
resulting video. Due to the fact that the data collection process was natural
which means the conductor’s hand movements were spontaneous, most of
the gesture performances were discarded. Only the obtained data while the
conductor was holding his hand obviously performing one of the gesture for
at least 2 seconds were added to the data set.

Not all 14 gestures in the gesture set were performed by the conductor. This
was expected because it was and mentioned in [109] that the gesture set was
the combination of expressive gestures by different conductors. The number
of labeled gestures performed by the conductor was 5. These gestures were
similar to o-pursed, index, spread-5-bent, c-spread and baby-o-fingers. Hand
rest position was also included as 6th gesture.

EMG data of labeled gesture performances are extracted from the vision-data
mapping operation performed earlier. Timestamps of the collected EMG data
and vision data were matched. Matching process was performed manually
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by the supervisor therefore numbers of samples of each gesture used in clas-
sification step varied. The gesture recognition system was input with 1992
samples of R, 1581 samples of OP, 986 samples of I, 1116 samples of S5B, 1029
samples of CS and 2032 samples of BOF.

In the classification step, ANN with dividerand as data dividing function was
used. 70% of the samples were used for training, 15% of samples were used
for validating and remaining 15% of samples were used for testing purposes.
At the end of the classification step, 96.9% accuracy was achieved for 5 ges-
tures and the hand rest position. Confusion matrix of the classification results
can be seen in Table 5.11.

Table 5.11: Classification results of the proposed algorithm which was input
with the conductor training data

Gesture Number of
inputs

Number of
correctly
classified

inputs

Number of
incorrectly
classified

inputs

Percentage
of correctly
classified

inputs
R 1943 1943 0 100.0%

OP 1532 1491 41 97.3%
I 937 917 20 97.9%

S5B 1067 948 119 88.8%
CS 980 969 11 98.9%

BOF 1983 1912 71 96.4%
ALL 8442 8180 262 96.9%
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter presents the conclusion of the thesis. General opinions on the
topic, experiments, results and contributions are discussed in this chapter.
Furthermore, potential additions for future work are offered.

6.1 Discussions

A generic gesture recognition system was developed in the scope of this the-
sis. However the developed system has also some shortcomings. These short-
comings and possible improvements can be summarized as follows:

• The system was developed as session dependent that means the users
of the system should not take off MYO from their forearms during the
whole data collection process. The reason is that the EMG sensors on
MYO cannot be located on specific muscles directly because of its porta-
bility feature.

When MYO is first worn on the forearm, its own software (MYO Con-
nect) performs an automatic calibration process for MYO’s specific posi-
tion on the forearm. This calibration process is called "warm-up". Dur-
ing that process, MYO is forming a strong electrical connection with the
muscles in its current user’s forearm [115]. When this connection gets
broken by taking off MYO from user’s forearm, it is almost impossible
to set up the same connection with the same parts of muscles. This leads
to obtain different sensor values for the same performances.

In order to break session dependency, an algorithm that loops through
the sensor channels was developed. The idea came from the experiment
conducted during the tests of algorithm. In that experiment, first, Myo
was placed on the forearm normally and data was collected. After the
first data collection session, Myo was removed from the forearm, it was
rotated 45◦CW and it was tried to be placed again carefully so that the
previous sensor prints on the forearm could match with shifted sensors.
Data collection in 8 sessions with different rotation values (0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦and 315◦) was performed. Before executing the pro-
posed gesture recognition algorithm, EMG channels of collected data
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were shifted by 0, 1, 2, 3, 4, 5, 6, 7 respectively. Table 6.1 clearly shows
the resulting EMG channel sequences for corresponding Myo rotation.

Table 6.1: EMG channel setup of Myo rotation experiment

Session Myo rotation
on forearm

EMG channel
shift amount EMG channel sequence

1 0◦ 0 1, 2, 3, 4, 5, 6, 7, 8
2 45◦ 1 2, 3, 4, 5, 6, 7, 8, 1
3 90◦ 2 3, 4, 5, 6, 7, 8, 1, 2
4 135◦ 3 4, 5, 6, 7, 8, 1, 2, 3
5 180◦ 4 5, 6, 7, 8, 1, 2, 3, 4
6 225◦ 5 6, 7, 8, 1, 2, 3, 4, 5
7 270◦ 6 7, 8, 1, 2, 3, 4, 5, 6
8 315◦ 7 8, 1, 2, 3, 4, 5, 6, 7

Then, the proposed algorithm was executed with the aforementioned
EMG channel setup. Gesture recognition results can be shown in Table
6.2.

Table 6.2: Classification results of the proposed algorithm which was input
with the rotation experiment data

Gesture Number of
inputs

Number of
correctly
classified

inputs

Number of
incorrectly
classified

inputs

Percentage
of correctly
classified

inputs
R 7608 7358 250 96.7%
F 7608 7589 19 99.8%
O 7608 6741 867 88.6%

OP 7608 7035 573 92.5%
BO 7608 7275 333 95.6%

BOF 7608 6712 896 88.2%
C 7608 6842 766 89.9%

CS 7608 7485 123 98.4%
I 7608 7488 120 98.4%

IL 7608 7559 49 99.4%
FL 7608 7434 174 97.7%

FLB 7608 7128 480 93.7%
S5 7608 7440 168 97.8%

S5B 7608 7608 0 100.0%
ALL 106512 101694 4818 95.5%

After obtaining the success rate of 95.5%, a real-time system was de-
veloped that detected and classified the performed gesture. Firstly, an
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ANN was trained with the collected data in 5 sessions. Secondly, a cali-
bration system was developed in order to detect the rotation of the Myo
on the forearm. When the test subject wore Myo, he/she was first re-
quested to perform a specific calibration gesture. This gesture was sim-
ilar to MYO’s predefined "wave right" gesture which was observed to
activate 2 sensors. Then the algorithm tried to find the rotation of MYO
on the forearm by checking which 2 sensors had activation. After the
rotation value of Myo was decided, EMG channels were shifted accord-
ing to Table 6.1. Results of the real-time experiment are shared in Table
6.3.

Table 6.3: Classification results of the real-time rotation detection algorithm

Gesture Number of
trials

Number of
correctly
classified

trials

Number of
incorrectly
classified

trials

Percentage
of correctly
classified

trials
R 10 10 0 100.0%
F 10 8 2 80.0%
O 10 4 6 40.0%

OP 10 3 7 30.0%
BO 10 7 3 70.0%

BOF 10 4 6 40.0%
C 10 5 5 50.0%

CS 10 3 7 30.0%
I 10 2 8 20.0%

IL 10 5 5 50.5%
FL 10 5 5 50.5%

FLB 10 3 7 30.0%
S5 10 8 2 80.0%

S5B 10 7 3 70.0%
ALL 140 74 66 52.8%

Relatively low results were obtained with respect to the results obtained
by rotating Myo on the forearm (Table 6.2). When Myo is placed on
the forearm randomly, it is assumed that it belongs to one of the eight
rotation degree listed in Table 6.1. However, placing EMG sensors of
Myo on forearm in the perfect order is not possible. This may be the
reason for the low results.
As a result, in order to avoid being session dependent, using advanced
EMG devices sensors of whom can be located on the same positions for
each session can be recommended.

• The system was developed as user dependent that means it requires a
calibration process for each user before they use the system. Not only
this is related to previously mentioned MYO’s sensor location problem,
but also the muscular and skeletal structure of every arm is unique.
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Time domain features as well as frequency domain features were used
to separate gestures from each other whereas the chosen features were
not enough to give accurate results for different users. The whole data
collected from 10 test subjects during the system validation experiment
mentioned in Section 5.1 were inputted to the developed system and
31,6% success rate is achieved, which proved that the system failed for
being user independent.

Detecting each user’s forearm muscle locations and using advanced
EMG devices on those specific locations may provide better time do-
main feature values but this will not be enough to solve this issue. Hence,
more useful frequency domain features may be determined to overcome
user dependency problems.

• The system works well when all calculations are performed off-line how-
ever real-time accuracy should be improved because most of the appli-
cations needs real-time gesture recognition. There are averaging filters
used in the system that makes gesture recognition more accurate but
with more delay. Different types of averaging filters such as Gaussian
Filter may be used to obtain higher success rates on real-time results.

• The gesture set used in this thesis may not be appropriate for gesture
recognition by using MYO device. It is aforementioned many times that
MYO is a restricted device in terms of sensor positioning. Thus, gesture
set should be formed by choosing distinctive gestures.

Table 6.4: Comparison of the minimum, maximum, and average results for
cross testing of 13+1 gesture data set and 5+1 gesture data set

13+1 gestures 5+1 gestures
Min Max Avg Min Max Avg

TS 1 20.75% 74.40% 61.87% 66.54% 91.87% 85.83%
TS 2 12.58% 72.82% 57.62% 71.58% 89.71% 81.20%
TS 3 40.12% 74.21% 63.19% 56.51% 86.41% 77.79%
TS 4 72.26% 85.48% 78.35% 78.75% 92.06% 84.68%
TS 5 60.46% 85.74% 77.96% 71.10% 90.82% 83.46%
TS 6 61.38% 84.28% 75.69% 74.90% 91.22% 85.96%
TS 7 63.58% 77.61% 71.56% 77.87% 91.07% 85.72%
TS 8 40.20% 70.23% 57.25% 50.54% 77.01% 68.95%
TS 9 70.29% 87.08% 79.87% 86.67% 93.39% 90.56%

TS 10 12.59% 74.80% 63.14% 71.46% 90.50% 82.17%

However in this case, the gesture set consists of real life gestures that
classical music orchestra conductors uses during concert performances.

Moreover, number of the gestures is another factor that reduces preci-
sion of the gesture recognition. This is the main reason why MYO devel-
opers limited the number of recognized gestures with only 5 gestures.
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Figure 6.1: Signal plots of pre-processed fist gesture data of TS8 during 5
consecutive data collection sessions

Table 6.5: Mean values of each EMG channel shown in Figure 6.1

EMG1 EMG2 EMG3 EMG4 EMG5 EMG6 EMG7 EMG8
S1 34 332 205 11 9 7 6 13
S2 21 335 270 9 6 5 4 4
S3 26 540 291 11 7 5 4 5
S4 16 207 226 7 5 5 4 6
S5 18 206 187 6 5 4 3 3
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In order to prove the increase in the accuracy with less number of ges-
tures, a sub-experiment was conducted. Data of 5 gestures and a hand
rest position used by the conductor in the experiment explained in Sec-
tion 5.3 were picked from the same dataset collected from 10 test sub-
jects as explained in Section 5.1. The same cross testing procedure was
executed with these set of data. The huge increase in the success per-
centages of minimum, maximum and average results can be seen in Ta-
ble 6.4.

• Consecutive data collection sessions may cause muscle fatigue for some
test subjects. Test subjects are requested to perform 14 gestures in 5
sessions. Each gesture performance takes 5 seconds. Figure 6.1 shows
the plots of pre-processed fist gesture data for 5 consecutive sessions of
TS8.
From Table 6.5, it can be inferred that the fist gesture cause more acti-
vation on the forearm muscles coupled with EMG2 and EMG3 sensors
for TS8. In third session, there is a significant increase in EMG2 sensor,
which is followed by a rapid decrease in forth session. Similar trend is
seen for EMG3 sensor yet slightly comparing to EMG2 sensor. The rea-
son can be that TS8 may get tired by performing gestures through the
consecutive sessions.

Table 6.6: Classification results with 1-second-gesture performances instead
of 5-second-gesture performances

Gesture Number of
inputs

Number of
correctly
classified

inputs

Number of
incorrectly
classified

inputs

Percentage
of correctly
classified

inputs
R 755 755 0 100.0%
F 755 753 2 99.7%
O 755 744 11 98.5%

OP 755 740 15 98.0%
BO 755 755 0 100.0%

BOF 755 743 12 98.4%
C 755 753 2 99.7%

CS 755 755 0 100.0%
I 755 755 0 100.0%

IL 755 750 5 99.3%
FL 755 754 1 99.9%

FLB 755 738 17 97.7%
S5 755 755 0 100.0%

S5B 755 755 0 100.0%
ALL 10570 10505 65 99.4%

One approach may be decreasing the gesture performance time. Test
subjects were requested to hold their hands and fingers stable during

70



the gesture performance which lasts 5 seconds for each gesture. Clas-
sification accuracy results of decreasing gesture performance time from
5 seconds to 1 second can be seen in Table 6.6. The reason for obtain-
ing almost perfect results can be the decreased total session time. How-
ever, when real-time application areas of the proposed system is consid-
ered, especially classical music orchestra conducting, the gesture perfor-
mances will be continuous. Moreover, the gesture performer hand and
fingers will be active during the concert. Therefore, the proposed sys-
tem should be trained and tested with the data collected during longer
sessions.

6.2 Contributions

Using circular harmonic coefficients and different variations of those coeffi-
cients as frequency domain feature sets is a novel approach, which increases
the gesture recognition accuracy 1.92% in average in comparison to using
only time domain feature vectors. Detailed comparison of the classification
results with different feature vector sets can be seen in Table 6.7

Table 6.7: Classification results with different feature sets

Circular Harmonic Coefficients

MAW FWR
of IED Real Imag. Magn.

MAW
+ FWR
of IED

All

TS 1 88.5% 74.8% 65.2% 70.9% 86.6% 90.6% 92.3%
TS 2 93.3% 86.6% 85.8% 79.3% 91.6% 90.3% 94.3%
TS 3 92.0% 79.3% 80.5% 76.9% 92.9% 95.0% 95.0%
TS 4 92.8% 82.9% 76.9% 71.3% 89.0% 94.7% 96.1%
TS 5 97.3% 93.5% 91.1% 85.2% 96.3% 98.0% 98.7%
TS 6 95.5% 86.1% 79.2% 82.9% 91.8% 95.4% 97.3%
TS 7 95.5% 89.1% 85.4% 81.4% 93.9% 95.9% 97.8%
TS 8 82.8% 77.2% 75.3% 64.9% 81.0% 85.0% 88.3%
TS 9 94.8% 81.3% 75.9% 83.4% 93.2% 94.3% 96.1%

TS 10 93.0% 80.8% 78.2% 76.5% 92.4% 93.3% 95.8%
Avg 92.55% 83.16% 79.35% 77.27% 90.87% 93.25% 95.17%

Using expressive gestures of a classical music orchestra conductor as a ges-
ture set in the gesture recognition system is unique. Instead of choosing the
gestures which can easily be distinguishable, using a natural set of gestures is
more beneficial for HCI studies because instinctive interactions always have
advantages on artificial interactions.

Cross testing of the collected data is a new approach for detecting the consis-
tency of each gesture performance subsession. Especially when using EMG
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devices for data collection process, the exerted strength during the perfor-
mance of the same gestures in different subsessions may vary intentionally
or unintentionally. These variations may cause inconsistently different data
values for the same gesture, which results in low success percentages. With
cross testing, problematic subsessions can be detected and omitted from the
final data set.

6.3 Future Work

With the advances in the AR and VR technologies, HCI is getting more and
more important. Due to the fact that gesture recognition is an inseparable
part of HCI, it is inevitable that more studies will be conducted on this area.

On top of the proposed system, IMU data can be taken into consideration in
order to obtain different feature vectors. Besides, IMU data can be used to
detect arm movements which can be combined with the currently recognized
gestures. It was mentioned that the expressive gestures are performed with
non-dominant hand. By using second MYO on the forearm of the dominant
hand, beat of the music can be controlled. In this way, this study can be used
as a base of a virtual orchestra system.
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