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ABSTRACT

A WINDOW-BASED CHARACTERIZATION METHOD FOR BIOPHYSICAL 

TIME SERIES

Katırcıoğlu, Deniz

Ph.D., Department of Medical Informatics

Supervisor : Prof. Dr. Nazife Baykal

May 2017, 96 pages

In thesis, we propose a robust similarity score-based time series characterization 

method, termed as Window-based Time series Characterization (WTC). Specifically, 

WTC generates domain-interpretable results and involves remarkably low computa-

tional complexity thereby rendering itself useful for densely sampled and populated 

time series datasets. In this study, we apply WTC to a proprietary action potential 

(AP) time series dataset on human cardiomyocytes and three precordial leads from a 

publicly available electrocardiogram (ECG) dataset. We, then, compare WTC with 

shapelet transform and fast shapelet transform (which constitutes an accelerated vari-

ant of the former), in terms of predictive accuracy and computational complexity. The 

results indicate that WTC achieves a slightly higher classification performance with 

significantly lower execution time when compared to its shapelet-based alternatives. 

With respect to its characterization capability, WTC has a potential to enable medical 

experts to explore definitive common trends in novel datasets.

Keywords: time series analysis, feature extraction, cardiac action potential, atrial 

fibrillation, electrocardiography
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ÖZ

BİYOFİZİKSEL ZAMAN SERİLERİ İÇ İN PENCERE TABANLI NİTELEME 

YÖNTEMİ

Katırcıoğlu, Deniz

Doktora, Tıp Bilişimi Bölümü

Tez Yöneticisi : Prof. Dr. Nazife Baykal

Mayıs 2017, 96 sayfa

Bu tezde, WTC adında, benzerlik puanı tabanlı gürbüz bir zaman serisi niteleme 

yöntemi önerilmektedir. WTC, etkinlik alanı kullanıcıları tarafından yorumlanabilir 

sonuçlar üretir. Kayda değer düşüklükte hesaplama karmaşıklığına sahip olması se-

bebiyle de, yoğun örneklenmiş ve kalabalık zaman serisi veri kümeleri için 

uygundur. WTC, insan kardiyomiyositlerinden edinilen özel mülkiyetli bir aksiyon 

potansiyeli zaman serisi veri kümesine ve genel erişime açık, üç adet prekordiyal 

derivasyondan oluşan bir EKG veri kümesine uygulanmıştır. Sonrasında WTC, 

sınıflandırma doğruluğu ve hesaplama karmaşıklığı açısından, şekilcik dönüşümü ve 

bu dönüşümün hızlandırılmış bir türevi olan hızlı şekilcik dönüşümü metotlarıyla 

karşılaştırılmıştır. Sonuç olarak, WTC’nin şekilcik tabanlı alternatiflerine göre 

kayda değer düşüklükte hesaplama karmaşıklığıyla beraber nispeten yüksek 

sınıflandırma performansı elde ettiği gösterilmiştir. Niteleme yeteneği sayesinde, 

WTC, tıbbi uzmanların yeni zaman serisi veri kümelerinde tanımlayıcı ortak 

eğilimleri incelemesini kolaylaştırma potansiyeline sahiptir.

Anahtar Kelimeler: zaman serisi analizi, öznitelik çıkarımı, kardiyak aksiyon potan-

siyeli, atriyal fibrilasyon, elektrokardiyogram
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives of the Thesis

In the medical domain, biophysical signals in the form of time series are frequently
used for diagnostic and prognostic purposes and are specifically relevant to docu-
menting the history [1] and clinical course of a disease [2], [3]. Many decisive traits
emerge from biophysical signals as rules of thumb suggested by health profession-
als based on a visual inspection [4]. Conversely, computer-aided methods extract
common patterns among time series and establish a more objective data assessment
framework. Thus, they are of immense practical value in interpreting data with re-
spect to diagnostic, prognostic, and therapeutic perspectives [5].

Computerized analysis of medical data is an active and inter-disciplinary research
area. Moreover, data mining studies involving time series data, whether it is medical
or not, demand efficient extraction of powerful features. Medical experts, on the other
hand, are expected to interact with and contribute to this feature selection process bet-
ter once the selected features are “human readable”. We define human readability as
the convenience in the interpretation of the extracted features by the medical experts
who are capable of and competent in inspecting the time series data of interest as
suggested by their conventional medical training. On the other hand, computational
complexity of any feature extraction method operating on time series data potentially
suffers from the curse of dimensionality as the number of sample points and the num-
ber of time series instances increase.

The results of this thesis are expected to have beneficial impact on the research com-
munity interested in characterization of and feature extraction from medical time se-
ries. As such; we hope that addressing the aforementioned points about medical time
series, this study will yield a method recognized as an essential analysis tool for the
experts.

1.2 Contribution of the Thesis

In this section, after reviewing the literature about time series analysis methods from
a medical domain perspective, we explain the contribution of this thesis.
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Recent all-purpose time series analysis studies have revealed a wide variety of ap-
proaches borrowing techniques from computational geometry, Gaussian process mod-
eling, morphology analysis, template matching, scale space representation, shapelet
discovery, etc. The choice of approach for the analysis of a particular time series de-
pends on the desired representation of the time series data [6] or the domain (spatial
or spectral) in which the decomposition is to be performed.

In the computational geometry domain, it is assumed that “B-spline” constitutes one
of the most efficient surface representation methods [7], [8]. Significant curve re-
construction efforts focused on using various spline paradigms [9], [10] especially in
the cardiac domain [11]. The proposed methods are usually based on the continuous
B-Spline representation for describing the curve instances in continuous-time rather
than discrete-time for which (re-)sampled points of the curve instances are used. Al-
though continuous B-spline representation or other types of splines mostly avoid the
sampling errors and achieve a high level of accuracy, using them for describing bio-
physical signals to assess the differences that are indicative of a certain condition is
not very suitable, as they do not produce human-readable and summarizing models.

Another concept from computational geometry is the “turning functions” examined in
[12]. This approach is motivated by the fact that any digitized curve can be regarded
as a polygon (possibly with a large number of vertices) without loss of information.
The possible distortions can be obviated by approximating the original curve with the
one having a similar perceptual appearance. Three types of free matching methods,
namely, plain, polygonal and penalty, that use the turning functions are discussed
for curve representations. These methods basically search for the best “angle of ori-
entation” between the curves in order for their turning function distances to be the
smallest. In the case of biophysical time series, however, finding the best angle is
not a forefront necessity and the observation that the method may exhibit poor per-
formance with “near-to-closed curves” and especially for curves with strong turns in
different directions limits the use of turning functions in many real-life cases [12]. In
addition to that, a scaling effort is deemed necessary with the cases of scale mismatch.
To remedy such cases, a scaling step is performed on the basis of curve length. How-
ever, this step only achieves its goal when a priori knowledge of scale of the curve is
available.

“Correspondence-based matching” is another approach for designing a time series
descriptor [13]. This method incorporates each point in a time series as a candidate
feature, potentially resulting in an extremely large feature set. Since all points are
assigned as features, performance of this method is undesirably sensitive to noise
in the data. For the matching part of this feature set, Hausdorff distance is used
[14]. An advantage of using Hausdorff distance is that time series instances can be
partially matched. Nevertheless, exact matching is computationally expensive due to
the invariance in translation, scale and rotation.

Another widely used descriptor is the “convex hull” which is the minimal convex
cover of a shape. In the extraction of the convex hull, both boundary tracing methods
and morphological methods can be used [15]. Convex deficiency, a concept brought
by the convex hull, is a useful approach for finding similar features among boundaries
of the curves and shapes. It is defined as the set difference between the convex hull
and the boundary it encompasses [16]. Simply by following the trajectory of a curve’s
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boundary and determining points falling into the area of convex deficiency, features
for establishing similarity criteria among different curves, such as the points of devi-
ation, can be extracted. Then, curves become eligible to be classified by the selected
features in their “convex deficiency trees” [17]. Irregularities in signal digitization,
possible artifacts and noise that are inherent in the majority of the biophysical signals
make this approach and its utilities quite misleading in terms of curve classification
owing to their sensitivity to the boundary features.

In addition to the convex hull, contour descriptors such as “circular” and “elliptical
variances” are apt for comparing a time series with a predetermined template [18].
They are elements of directional statistics [19] where circular variance is defined as
the variance of pointwise deflection of all points on a shape’s contour from a circle
with the same area as the shape of interest. In a similar fashion, elliptical variance is
the variance of pointwise deflection from an ellipse having an equal covariance matrix
with the same shape. These classic features are used for irregularity comparison and
defect classification [20]. Such simple circular and elliptical templates, however, lack
in generalizing biophysical time series with highly irregular contours. For this par-
ticular case, a suitable approach might be piecewise template generation with various
features which in turn would increase the computational complexity [20].

Furthermore, the “scale space” method is proposed with the purpose of extracting
hierarchical traits out of the curves [21]. The scale space representation of a curve
is created by tracking the position of inflection points along the curve filtered by
low-pass Gaussian filters of variable widths. The wider the Gaussian filter, the more
the inflections eliminated from the boundary and smoother the shape becomes. The
inflection points that remain present in the representation are expected to be “sig-
nificant” object characteristics, defined as corners, smooth joints, ends, cranks, and
bumps [22]. Even though this method requires a threshold setting to be given in order
to produce an intended degree of characterization, it stands as a successful summa-
rization tool.

Various “symbolic curve matching” paradigms listed in [6] deal the time series in
spectral domain whereas some stay strictly in time domain. They are basically pro-
posed to improve signal representation just as the local and piece-wise polynomial
models constructed for an efficient representation of time series datasets [23], [24].

Recently, Gaussian Process modeling has gained attraction for analyzing time series,
especially in the medical domain. Within a Bayesian framework, [25] makes an anal-
ysis by solving a regression problem assuming a dataset consisting of observations
and outcome variables. The analysis considers first a function mapping the observed
data to an outcome variable regardless of the ordinality of the observed data. Then,
a curve fitting step is taken assuming the outcome variable is controlled by the ob-
served data in order to extrapolate the hypothesized curve based on the observed data.
This approach is suitable for predicting the missing outcome values of biological time
series which often suffer from the irregularities in sampling and missing observations
[25], [26].

Another characterization method has recently been developed to discover significant
subsequences called “shapelets” from a time series dataset [27], [28]. A shapelet is a
time series subsequence identified as the representative of a certain dataset. Discover-
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ing shapelets requires a brute-force traversal of all overlapping subsequences whose
length and number parameters are left to the users of the method. Shapelet trans-
form produces human readable outputs and therefore we use them for benchmarking
purposes in this study. We elaborate on the shapelet transform in Section 2.3.

In this thesis, we address the problem of extracting definitive time-domain features
from a given time series dataset to be used in data mining applications with the ulti-
mate goal of devising a computationally efficient algorithm. We propose a time series
characterization method called Window-based Time Series Characterization (WTC),
which is the main contribution of this thesis, summarizing the class-dependent behav-
ior within consecutive time windows and deriving an overall similarity score for this
behavior. In this context, characterization refers to the effort of representing informa-
tion content of time series data in a compact and graphical way to reveal behaviors
(i.e. patterns or trends) that pertain to class labels. In a manner similar to other
characterization approaches in [29], [30], [31], [32] , [33], [34] and [35], the aim of
the proposed method involves identifying temporal features that define the charac-
ter of instances in a certain target class that are later used to discriminate between
instances among other classes. In order to demonstrate the effectiveness of the pro-
posed method, we employ a human cardiac action potential (AP) dataset and an ECG
dataset consisting of recordings from three different leads.

Cardiac APs are bioelectrical signals that are recorded from cardiac tissue obtained
during heart surgery from patients with defined heart rhythms. Based on a patient’s
heart rhythm at the time of surgery, APs may either exhibit a “spike-and-dome” shape
for physiological sinus rhythm (SR) or a triangular shape for atrial fibrillation (AF)
[36]. AF is known to be the most common arrhythmia in clinical practice with an
approximate prevalence of 0.4 − 1% in the general population and is usually associ-
ated with stroke, heart failure, and a significant increase in all-cause mortality [37].
Patients with AF are diagnosed based on thorough clinical examinations and ECG
recordings. The resulting AP signals, however, may exhibit SR characteristics de-
pending on the stage of the disease. As a highly information bearing signal, cardiac
AP attracts significant attention from the researchers primarily motivated to reveal dy-
namics of the cardiac ion channels governing the electrical activity within the heart.
Understanding the dynamics of the ion channels is essential for identifying the effects
of certain agents in related drug studies [36]. AP signal acquisition is a labor-intensive
task appearing as a limiting factor for widespread studies especially in the area of sta-
tistical time series analysis. There have been studies producing desired AP properties
by fitting empirical models, [9], in order to simulate the real-life behavior of AP. In
this thesis, apart from validating the proposed model, AP dataset serves for the pur-
pose of stress testing the proposed method for a dataset consisting of crowded and
densely sampled time series. To the best of our knowledge, this is the first study in
which a data mining analysis is conducted on a cardiac AP time series dataset.

Conversely, the ECG dataset, consisting of patients with acute myocardial infarc-
tion and control subjects, is specifically selected to present a clinical application of
the proposed method. As a fatal cardiac disease, myocardial infarction (MI) corre-
sponds to irreversible loss of the heart muscle due to ischemia caused by blood flow
interruption [38]. Prominent guidelines recommend the use of ECGs especially for
emergency cases in addition to certain cardiac biomarkers with their superior sensi-
tivity to MI [39]. ECG is an effective and non-invasive technique for the confirmation
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of MI diagnosis during initial evaluation. Particularly for ST elevation myocardial
infarction (STEMI), 12-lead ECGs exhibit certain morphological changes in the ex-
pected waveform such as ST-segment elevations or depressions and wave inversions
or losses in different leads depending on the localization of MI [40]. There are public
repositories publishing anonymized digital datasets in the form of time series. “Phy-
sioNet” is one such repository consisting of a large and balanced amount of MI and
control subjects [41]. In this thesis, we study a particular selection of PTB Diagnostic
ECG Database available in the PhysioNet repository [42].

1.3 Organization of the Thesis

The rest of the thesis is organized as follows: In Chapter 2, we provide background
information about the biophysical signals and the benchmark methods studied in this
thesis. In Chapter 3, we explain the proposed Window-based Time Series Character-
ization (WTC) method. Throughout Chapter 4, we present the results for the classi-
fication experiments performed for the proposed WTC method along with two other
shapelet-based benchmark methods using the cardiac AP and the three-lead ECG time
series datasets. In Chapter 4, we also compare computational complexities of these
methods. The medical and technical aspects of the results generated in Chapter 4 are
discussed followed by the concluding remarks in Chapter 5.
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CHAPTER 2

BACKGROUND

In this chapter, background information about the key elements covered in the course
of this thesis is given. The first two sections introduce the domains to which the
two time series datasets used in the evaluation of the proposed method belong. Sec-
tion 2.1 starts with the electrophysiological concept of “action potential” (AP) of the
heart muscle cells and their crucial role in the autonomous contraction that physically
creates the “heart rhythm” phenomenon. Following that, the rhythm disorder called
atrial fibrillation and its brief etiology that accompanies the impairment of this sen-
sitive electrophysiological mechanism are explained. Section 2.2 focuses on prelimi-
nary definitions of acute “myocardial infarction” (MI) and how the ECG examinations
assist in diagnosing early to advanced stage infarcts, while describing expected mor-
phologies in disease-related ECG leads. Finally, Section 2.3 provides detailed insight
for the shapelet-based time series feature extraction methods used for benchmarking
in the classification experiments throughout Chapter 4.

2.1 Cardiac Action Potentials (AP) in Atrial Fibrillation (AF)

Almost all eukaryotic organisms have voltage differences (transmembrane potential)
across their cell membranes [43]. While the resting conditions are in effect (i.e., no
stimulation), the “resting membrane potential” (RMP) values generally vary between
-10 and -100 mV [44], [45]. This state of electrical polarization is maintained and
governed by ion transporters and voltage-sensitive ion channels, situated in the cell
membrane, that open and close in accordance with the changes in the voltage across
the membrane [46]. Unlike the others, the nerve and muscle cells in animals exhibit
brief directional changes in the polarization of their membranes, leading to the fluc-
tuations in the voltage levels. These fluctuations create the cyclic phenomenon of AP
that begins with a rapid take-off of the voltage difference (depolarization) followed by
a rapid decline called repolarization. The cardiac AP is a particular type that belongs
to the cell membrane of heart cells called “myocytes”. Unlike APs in other tissues,
the cardiac AP is not initiated by nervous activity [47]. In order to pump blood, all
parts of the heart must contract in concert, and electrical excitation of the cardiomy-
ocytes is a prerequisite for coordinated contraction. The first impulse is produced
by the sinoatrial node (SA node) in the heart. SA node is made up of specialized
pacemaker cells located murally on the right atrium of the heart [48]. From these
pacemaker cells initiating the electrical activity, APs propagate throughout the heart
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Figure 2.1 : Schematic illustration of a human cardiac AP in 5 phases, namely, phase 0: rapid
depolarization; phase 1: early rapid repolarization; phase 2: “plateau”; phase 3: final repolarization;
phase 4: resting membrane potential (adapted from [52]).

by gap junctions [49] which enable the passage from one cell to the next and stimu-
late the myocardium to trigger the contraction [50]. At rest, around 60 to 100 APs are
generated per minute in humans [51].

Figure 2.2 : Schematic of human cardiac APs (upper row), ion channels (middle row), and major ion
current flows (lower row) (adapted from [52]). Nav1.5, cardiac Na+ channel conducting Na+ current
(INa); Kv4.3, K+ channel conducting transient outward current (Ito); Cav1.2, L-type Ca2+ channel
conducting L-type Ca2+ current (ICa,L); Kv11.1, K+ channel conducting rapidly activating, delayed
outward rectifier K+ current (IKr); Kv7.1, slowly activating outward rectifier K+ current (IKs); Kir2.1,
Kir2.3, inward rectifier K+ current (IK1).
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Each cardiac AP exhibits distinct phases (see Fig. 2.1): the resting membrane poten-
tial (phase 4), the rapid depolarization (“upstroke”, phase 0), early rapid repolariza-
tion (phase 1), the “plateau” (phase 2); final repolarization (phase 3) and return to the
resting membrane potential (phase 4). Excitable cells possess an inside-negative rest-
ing membrane potential due to electrochemical gradients of the cations Na+ and K+

across the cell membrane maintained by ion pumps, and voltage-dependent ion chan-
nels which open and close in a voltage- and time-dependent manner (see Fig. 2.2).
We note that, the plateau phase of the cardiac AP is more extended than that of the
typical neuronal AP [53].

When the threshold for activation is reached by a small depolarization of the cell
membrane, Na+ channels open rapidly and allow Na+ to enter the cell. The influx
of positive charge further depolarizes the cell membrane which in turn depolarizes
neighboring cardiomyocytes triggering a domino effect. Following this activation,
repolarization is caused by efflux of K+ through various K+ channels of different
kinetics. Influx of Ca2+ via L-type Ca2+ channels triggers the release of further Ca2+

from intracellular stores, which is required for activation of the contractile machinery.
Thus, the shape of an AP is governed by the superposition of all membrane currents
flowing through various ion channels depicted along the lower row of Fig. 2.2.

Depolarization and repolarization phases of cardiac myocytes are quite different from
those of other cells. In subjects with normal sinus rhythm (SR), the fact that the repo-
larization phase lasts relatively longer inhibits rapid stimulation of cardiac cells, pre-
venting rhythmic disorders of the heart [54]. One such disorder, atrial fibrillation (AF
or sometimes AFib) is known to be one the most common arrhythmias of tachycardic
nature with supraventricular (i.e., above the ventricles of the heart) origin. Frequently
diagnosed with three types, namely, paroxysmal, persistent and permanent, AF is
more prevalent among higher age groups [55] and is closely associated to mortal-
ity [56] and comorbidities [57] such as hypertension, diabetes, heart failure, chronic
obstructive pulmonary disease (COPD), chronic renal failure, ischemic stroke and
major haemorrhage [58]. During AF, the SA node malfunctions yielding irregularly
fast atrial rates (at the upper chambers of the heart) around 400-600 bpm. Conduction
of these AP impulses to the ventricles (lower chambers of the heart) eventually causes
an irregular ventricular rate around 100 to 200 bpm [59].

During assessment, if any irregularity in the heart rhythm is felt by the patient him/her-
self or noticed by a medical professional upon checking the pulse, patient is led to
have an ECG to confirm the primary diagnosis of AF [60], [61]. Specifically, typical
ECG (see Fig. 2.3 for an example 12-lead ECG of an AF patient) of a patient having
an AF episode shows variable heart rate, no obvious P waves but rather smaller fib-
rillatory F waves [62] and varying R-R intervals[63]. The increase in the atrial rate
causes the generated APs to fail in reaching their expected amplitude, which in turn
results in the absence of the P waves (see Fig. 2.6 for an annotated ECG waveform).

Atrial APs from SR patients have a characteristic “spike-and-dome” shape. During
AF, electrical activity becomes very fast and uncoordinated, leading to remodeling
processes that change - amongst others - the expression of ion channels in the atrial
cardiomyocytes and give rise to the typical triangular-shaped AP reflecting the short-
ened AP duration and effective refractory period (see Fig. 2.4), [36], [65]).
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Figure 2.3 : An example ECG (by James Heilman, MD - own work [64], CC BY-SA 3.0) of a patient
in AF.

Figure 2.4 : Typical “spike-and-dome” shaped AP from right atrial tissue of an SR patient (top) and
triangular shaped AP from an AF patient (bottom) (adapted from [66]).

2.2 Electrocardiograms (ECG) in Acute Myocardial Infarction (MI)

Acute MI (also AMI) corresponds to irreversible loss of the heart muscle due to is-
chemia caused by blood flow interruption [38]. This interruption is usually caused by
a coronary blockage associated with intravenous plaque accumulation or embolism

10



[67]. Sometimes undiagnosed, MI can occur as a chronic lifelong condition, or as a
severe event that causes sudden death [68]. One of the underlying causes of MI is
known to be the coronary artery disease [69].

ECG is the most commonly used diagnostic tool to assess the presence and extent of
infarction and its anatomical location [70]. It is a non-invasive and non-risk bearing
cardiac procedure which basically records the electrical activity arising from the de-
polarization and repolarization of the cardiac muscle. ECG is recorded from the body
surface via probes fixed at several specific locations [71]. The ECG analysis provides
a deeper understanding of the underlying dynamics of the cardiac pathophysiologies.
As the magnitude and direction of the electrical field evolves in time, ECG captures
the resulting signal and produces its tracing output. MI causes alterations in the gener-
ated electrical field that are observable in ECG traces. As depicted in Fig. 2.7 ECG is
the superposition of the action potentials occurring during the contractions of cardiac
myocytes.

Table 2.1 : Lead configurations in conventional 12-lead ECG

Lead Types Lead Names

Bipolar limb leads (Einthoven)
I
II
III

Augmented leads (Goldberg)
AvL
AvR
AvF

Unipolar chest leads (Wilson)

v1
v2
v3
v4
v5
v6

1 2

4 5 63

(a) Precordial (chest) leads

I
aVR aVL

aVF

+

++

-
- -

II III

(b) Extremity leads

Figure 2.5 : Precordial (a) and extremity leads (b) in conventional 12-lead ECG (adapted from [72])

During a conventional 12-lead ECG, the electrical potential is measured from 12 dif-
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ferent angles with 10 distinct probes mounted on the body surface (i.e., skin) as shown
in Figs. 2.5a and 2.5b with the lead configuration in Table 2.1.

A single ECG cycle representing a single heart beat is made up of a typical P wave
(reflects atrial depolarization), QRS complex (atrial repolarization and ventricular de-
polarization happening simultaneously) and a T wave (reflects ventricular repolariza-
tion) as depicted in Fig 2.6.

PR
segment

ST
segment

R

P
T

Q

S
QRS

complex

Figure 2.6 : An ECG depiction with annotated elementary waveforms and intervals

ECGs of emergency patients with signs indicating ST-segment elevation acute MI
(STEMI) provide prognosis, therefore, help confirming the eventual diagnosis. Obvi-
ously, ECG eases the detection of life-threatening arrhythmias by enabling effective
triage [74], [75]. As shown in Fig. 2.6, the ST segment reflecting the ventricular re-
polarization marks the specific interval starting from the completion of the S wave
and ending before the onset of the T wave [76]. The ECGs performed on the pa-
tients with STEMI exhibit a progressively distinct pattern compared to those of the
healthy patients. This progressively changing pattern usually begins with the appear-
ance of hyper-acute (taller) T waves, soon to be followed by ST segment elevation
and negative T waves. At later stages, pathological Q waves may be observed [77],
even though such Q waves may also appear at the very beginning [40]. Pathologi-
cal Q waves are not one of the earliest manifestations of MI. They rather indicate a
possible prior history of MI for that patient [68]. In cases where ST elevation is not
observed (as in NSTEMI), certain cardiac biomarkers such as troponin are examined
to diagnose MI [78]. STEMI accounts for about 25 to 40 percent of acute coronary
syndrome cases [39].

The abnormal patterns expected during STEMI in a 12-lead ECG are diversified de-
pending on the localization of the myocardium [79]. For STEMI, with anterior or
anteroseptal localizations, hyper-acute T waves either exist solely in leads V2-V4 or
they are accompanied by the loss of R wave height (see Fig. 2.8b) in leads V2-V6
(predominantly in V2 and V3). For anterior localization, subtle ST segment elevation
may be observed in leads I, aVL and V5, with reciprocal ST depression in lead III as
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Figure 2.7 : Combined sum of APs from various parts of the heart forming the ECG signal (adapted
from [73])
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(a) Hyperacute Anterior STEMI

(b) Hyperacute Anteroseptal STEMI

Figure 2.8 : ECG abnormalities (indicated with arrows) for (a) anterior and (b) anteroseptal STEMI
captured with 12-lead ECG

depicted in Fig. 2.8a. T waves from the normal ECGs are expected to be asymmet-
rical [80]. As such cardiac abnormalities appear, they tend to be more symmetrical,
taller, biphasic or inverted [81]. Yet, these alone do not reveal much about the severity
of the cardiac condition.

2.3 Shapelet-based Feature Extraction Methods

Shapelet transform is a feature extraction method to discover the so-called “shapelets”
[28] from a given time series dataset. A shapelet is a defined as a subsequence iden-
tified as the representative of a certain time series dataset. Shapelets are essentially
subsequences extracted from the time series instances themselves through an exhaus-
tive sliding window-based search operation. Let L denote the desired shapelet length
(specified by the user) of the shapelet transform. For K number of time series in-
stances of length N, there exist (N − L + 1) subsequences, i.e., shapelet candidates,
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from each time series making a total of (N−L+1)K candidates. The distance between
each subsequence - time series pair is computed. A single distance computation re-
quires sliding the subsequence across the time series of interest in all possible ways to
find the closest possible match (see Figs 2.9a, 2.9b) for a generic illustration). Thus,
a distance vector to all time series instances belonging to all class labels is obtained
for each subsequence. A distance threshold is then determined for each subsequence
yielding the most homogenous separation of instances, i.e., the highest information
gain, regarding the class labels. Finally, user specified number of subsequences (with
the highest information gain) are designated as shapelets (see Fig 2.9c).

The corresponding distance vectors of the chosen shapelets, then, become the feature
vectors generated by the shapelet transform. These feature vectors, i.e., the trans-
formed dataset, are used to train the classifier of interest. A novel time series instance
to be classified is transformed into the feature space by taking its distance to each
chosen shapelet to obtain its feature vector which is then feed into the trained classi-
fier.

(a) (b)

1st

2nd

3th

4th

(c)

Figure 2.9 : Illustration of the (a) search for the best matching location with (b) the smallest Eu-
clidean distance of candidate shapelet S in time series instance T. An example dictionary of the selected
shapelets (c) ordered according to their information gain (adapted from [28]).
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A great deal of research has been devoted to accelerate the aforementioned shapelet
transform which is referred to as “brute-force shapelet transform” hereinafter. Among
them are the logical shapelets [82], fast shapelets [83], ultra-fast shapelets [84] and
random-shapelet discovery [85]. In this thesis, we concentrate on the so-called “fast
shapelet transform” [83], the fastest variant to the best of our knowledge, along with
the brute-force shapelet transform. For the relatively high computational complexity
of the brute-force shapelet transform, the most prominent weakness of the algorithm,
the proposed remedies are reducing either the number of instances in the training set
or the sampling rate of these instances.

As part of the latest efforts put into further speeding up the training phase of the brute-
force shapelet transform, the fast shapelet transform is introduced in [83]. In this ap-
proach, whole dataset is projected onto a discrete and low-dimensional representation
referred to as Symbolic Aggregate approXimation (SAX) [86]. The distance metrics
defined for this projected version of the time series instances are claimed to lower
bound the same metrics used for the original time series instances. Before projecting
the instances into discrete symbols with SAX, a preliminary step called Piecewise
Aggregate Approximation (PAA), [87], is taken. PAA divides the entire duration
of an instance into a predefined number of window frames of equal support. Each of
these window frames is assigned the average value of the sample points falling inside.
Fig. 2.10 shows this approximation on an example time series instance.

Figure 2.10 : PAA of an example time series with a linear combination of box basis functions (adapted
from [87]).

The values of PAA are assumed to follow Gaussian distribution. The so-called “al-
phabet size” parameter denoting the number of distinct symbols representing the time
series instances is then used to fix thresholds along the distribution such that the re-
sulting area under the corresponding segments of the Gaussian curve are equal to each
other. Fig. 2.11 illustrates how the PAA-transformed instances are further mapped
into discrete symbols called SAX.

16



a

b

dddd

cc

b
b

a

Figure 2.11 : PAA approximation of an example time series with the corresponding SAX symbols
for an exemplary alphabet size of 4 (adapted from [87]).

As the original time series instances are projected onto the symbol space of SAX, the
distance between each projected instance pair is stored in and used from a look-up ta-
ble that lower-bounds the Euclidean distance [86]. Using several dataset applications,
SAX representation is shown to successfully represent the general morphologies of
the original datasets. Nevertheless, there exists no guarantee that the best perform-
ing shapelets of its brute-force counterpart can always be chosen. This can simply be
attributed to the representational heuristic incorporated by the fast shapelet transform.

Shapelets, in a general context, are proposed to be a time series data mining “prim-
itive” that can be used to assess similarity based on small common shapes occurring
at arbitrary locations of a time series. It is often emphasized that shapelet transform
produces interpretable outcomes enabling a better understanding of the data in hand
[28]. In this thesis, we find shapelets worthy of inspection, since its operating do-
main is temporal and the primitives are extracted from the dataset itself. However,
the temporal location of a shapelet is disregarded by the very nature of the shapelet
extraction process, which may hinder the interpretation of the results particularly in
the medical domain.
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CHAPTER 3

METHOD

In this chapter, the proposed Window-based Time Series Characterization (WTC)
method is explained in a stepwise manner. Initially, Section 3.1 describes the neces-
sity of the pre-processing performed on the time series instances and how important
this preliminary step is to the proposed method. Following that, Section 3.2 entails
the proposed method step by step by elucidating its components that constitute a ba-
sis for it. The mathematical expressions for the major components are also predicated
with pseudocodes for a further grasp of the computational complexity calculated at
the end of this chapter. Table 3.1 summarizes the notation presumed throughout this
chapter. The detailed definitions are given in the following subsections.

3.1 Dataset Pre-processing

The proposed characterization method requires processing of the local features in the
time series of interest. For that reason, time series instances are registered both in time
and signal amplitude. Registration in time refers to aligning time series to a fixed and
known position such as the time instant at which a certain event is expected to occur
for a single-cycle phenomenon (e.g. ex-vivo action potential recordings) or the epoch
of a cycle for a cyclic phenomenon (e.g. ECG and phonocardiogram recordings).
Registration in signal amplitude, on the other hand, facilitates time series analysis to
be made irrespective of the offset and scale of the recorded signal which may well
depend on the experimental setup. We denote each instance in a time series dataset
S by S k where k ∈ [1,K] and K denotes the total number of instances available. For
the rest of this section, we presume the whole dataset S is registered to obtain the
dataset T whose instances are denoted by Tk. Since registration is a data-dependent
step, we describe how to obtain T from S in Chapter 4, where AP and ECG time
series datasets used for the validation of the proposed method are introduced.

3.2 Proposed Analysis

For notational simplicity, we explain the proposed WTC method for a single class
label throughout this chapter. We note that WTC can be independently run for each
class for a multiple class scenario as in Chapter 4 where datasets with two class labels
are examined.
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Table 3.1 : Symbols in alphabetical order.

Symbol Explanation
A The maximum amplitude of the time series instances in T
α j The trajectory-based weight of S CB j based on I j,k

β j The distance-based weight of S CB j

c The PMF resolution
D PMF of the deterministic distribution with atom at zero
D(., .) Distance between two PMFs
d j,k The Euclidean distance of time series instance Tk to T A within S CB j

γ j The weight of the distance-based component of the similarity score for S CB j

I j,k The indicator of inclusion for time series instance Tk within S CB j, where I j,k ∈ {0, 1}
J Number of shape confidence bands
l? Cut-off index in DCT domain
K Number of time series instances
M Number of perceptually important time points (PIPs) in the class representative time

series
N Number of sample points in a time series instance
p Confidence level for the confidence interval
P j Distance PMF for S CB j

r PIP oversampling ratio
S Time series training set
S CB j jth shape confidence band
Z j The ensemble average similarity score for S CB j

Z j,k The individual similarity score of time series instance Tk for S CB j

Z(d)
j,k Distance-based component of the similarity score of time series instance Tk for S CB j

Z(t)
j,k Trajectory-based component of the similarity score of time series instance Tk for S CB j

T Registered time series instances in the training set
T A Class representative average time series
Tk kth time series instance in the registered training set T
T L Lower bound of the confidence interval with the level p around the class representative

time series T A

T U Upper bound of the confidence interval with the level p around the class representative
time series T A

U PMF of the uniform distribution with support [0,
√

wA]
w Number of sample points in an W j except for the last one
W j jth time window
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3.2.1 Determining the Local Time Window

Even after registration, time series instances exhibit some degree of inter-subject vari-
ation. Averaging registered time series instances makes the proposed method robust
against noise and distortions stemming from trajectory variability and possible arti-
facts [88]. In this respect, we average out the registered time series instances, Tk, in
order to obtain a class representative average time series denoted by T A as follows:

T A(n) =
1
K

K∑
k=1

Tk(n) (3.1)

where n denotes the sample point index of the time series. Restricting the averaging
step to time series instances bearing the same class label emphasizes local dynamics
and their significance in defining the class behavior.

The resulting representative trajectory constitutes the base time series from which
the local features of the time series are extracted. Obtaining local features requires
determination of suitable time windows, preferably to be extracted from the time
series itself. We define the domain of locality as non-overlapping and contiguous
time windows denoted by W j of fixed length w, where j ∈ {1, 2, . . . , dN/we} and N
being the total number of sample points in T A. We note that these time windows span
the entire time series and the last time window, WdN/we, may have a length smaller than
w. In order to choose w, we resort to the so-called “Perceptually Important Points”
(PIPs) [89], [90] and well-known Discrete Cosine Transform (DCT) as heuristic tools.
Next, we briefly review the concept of PIP and then describe how it is complemented
by DCT to choose w.

 

 
original timeSeries
PIPs with 10 %
PIPs with 20 %

Figure 3.1 : Sample points marked on a generic time series determined as the first 10% and 20% of
the PIPs.
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PIPs are defined to be the observational points in a time series that have relatively
more important influences on human vision [91]. PIP approach is useful in dimen-
sionality reduction while indicating a hierarchy among the data points based on their
visual importance. The identification of PIPs is as follows [90]: Given that the first
and the last data points in the time series are identified as the first two important points
in the so-called importance hierarchy, the next PIP is found to be the data point having
the largest distance to them. Recursively, each candidate PIP at a particular iteration
is the data point with the largest distance to its two adjacent PIPs determined so far.
PIP selection process continues until all data points in the time series are exhausted.
In the original work, the distance between PIPs is proposed to be measured by any
of the Euclidean, vertical and perpendicular distances. In this study, we employ the
Euclidean distance. Fig. 3.1 shows the first 10% and 20% of the PIPs found on a
generic time series.

In our context, determining PIPs in a time series fits closely to the aim of extracting
class-representative patterns from time series dataset. Essentially, the PIP algorithm
sorts the data points of a given time series of total length N based on their perceptual
importance. The procedure is summarized in the steps of Algorithm 1.

Algorithm 1 PIPIndices ( T A )
1: PIPIndices← {1,N}
2: TimeS eriesIndices← {2, 3, . . . ,N − 1}
3: for all n ∈ TimeS eriesIndices do
4: find n such that
5:

√
(n − n1)2 + (T (n) − T (n1))2 +

√
(n − n2)2 + (T (n) − T (n2))2

6: is maximum where n1 < n < n2

7: for maximum n1 ∈ PIPIndices AND minimum n2 ∈ PIPIndices
8: end for
9: append n to PIPIndices
10: remove n from TimeS eriesIndices
11: PIPIndices← sortPIPIndices(PIPIndices)
12: return PIPIndices

Next, we choose the “most important” M data points out of those N points. For this
purpose, it is assumed that M = bN/rc, where r denotes the oversampling ratio of the
signal that is defined as follows:

r = fs/ fN (3.2)

The terms fs and fN in Equation 3.2 are the sampling and the Nyquist rates of the
signal of interest, respectively. We employ the well-known one-dimensional DCT to
calculate r = N/l? where r ∈ [1,N] and l? ∈ {1, 2, . . . ,N}. The term l? is the lowest
(cut-off) frequency index in the DCT domain representation of the signal below which
δ percentage of its total energy is contained. Let DT A denote the one-dimensional
DCT of the time series T A, then l? can be found with the following expression:

arg min
l?

∑l?
l=1 |DT A

l|
2∑N

l=1 |DT A
l|

2
≥ δ (3.3)

The best choice for the threshold parameter δ is explored in Chapter 4 together with
the remaining parameters of our proposed method.
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Extracting M number of PIPs from the time series, we finally set w to the maximum
horizontal length between the consecutive PIPs so that at least one PIP is guaranteed
to appear in W j for all j. The corresponding steps are detailed in Algorithm 2.

Algorithm 2 LocalTimeWindows ( P, r )
1: maxDist ← 0
2: for all n ∈ {1, 2, . . . ,N − 1} do
3: if (P(n + 1) − P(n)) > maxDist then
4: maxDist ← P(n + 1) − P(n)
5: end if
6: end for
7: w← maxDist
8: J ← dN/we
9: for all j ∈ {1, 2, . . . , J} do
10: n j1 ← ( j − 1) × w + 1
11: if j < J then
12: n j2 ← j × w
13: else
14: n j2 ← N
15: end if
16: W j ← {n j1, n j1+1, . . . , n j2}

17: end for
18: return W

3.2.2 Distance-based Similarity

Determining local time windows W j, we calculate a distance-based similarity score
for each. The Euclidean distance of a particular time series instance k to T A within the
support of W j is denoted by d j,k = ‖T A(n)−Tk(n)‖, where n ∈ W j and d j,k ∈ [0,

√
wA].

Distance-based weight β j belonging to W j is expressed as follows:

β j =

∑K
k=1 µ j,k∑J

j=1
∑K

k=1 µ j,k
(3.4)

where,

µ j,k =
√

wA − d j,k (3.5)

The term µ j,k in Equation 3.5 falling in the interval [0,
√

wA] corresponds to the re-
ward associated with the proximity of the time series instance Tk to T A for the implied
time window W j. The term µ j,k provides a standardized scale for all local time win-
dows spanning the time series. Thus, they can be weighted against each other as in
Equation 3.4. We note that, the closer the time series instances to T A for a particular
W j, the higher the associated weight becomes. The distance-based similarity score
denoted by Z(d)

j,k for time series instance Tk and time window W j is calculated based
on µ j,k as follows:

Z(d)
j,k = β j

µ j,k
√

wA
(3.6)
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3.2.3 Trajectory-based Similarity

We complement and reinforce the distance-based similarity with the so-called trajectory-
based similarity. The average class representative time series is used to obtain a
similarity band for characterizing the class representative trajectory. Assuming each
sample point of the registered time series to follow Gaussian distribution as in [86],
we form an upper (lower) time series denoted by T U (T L) whose sample points are
higher (lower) than those the average time series T A dictated by a confidence level, p.
Consequently, we define the aforementioned similarity band as the one bounded by
T U and T L which is then partitioned into time localized bandlets called Shape Confi-
dence Bands (SCBs). Each SCB denoted by S CB j is related to the corresponding W j
as follows:

S CB j := {(n, y)|n ∈ W j ∧ y ∈ R ∧ T L(n) < y < T U(n).} (3.7)

The procedure for extracting SCBs are summarized in the pseudocode Algorithm 3.

Algorithm 3 extractSCBs (T U ,T L,W)
1: J ← |W |
2: for all j ∈ {1, 2, . . . , J} do
3: S CB j ← (T U (n) , T L(n)) such that n ∈ {W j}

4: end for
5: return S CB

S CB j is essential in deciding whether the temporally coinciding part of a time series
of interest aligns with the class representative average time series within W j. The ra-
tionale of SCBs is to quantify the similarity of trajectory by restricting the orientation
of an instance to be aligned with that of the average time series T A allowing some
margin for error. For that purpose, each subsequence of a time series is tested for
being completely residing within the boundaries of the corresponding S CB j. Let I j,k
be the indicator of inclusion for time series instance Tk within S CB j, which is defined
as follows:

I j,k =

1, Tk(n) ∈ S CB j ∀ n ∈ W j,
0, otherwise.

(3.8)

Finally, we express the trajectory-based similarity score denoted by Z(t)
j,k for each time

series instance Tk and S CB j as follows:

Z(t)
j,k = I j,kα j (3.9)

where,

α j =

∑K
k=1 I j,k∑J

j=1
∑K

k=1 I j,k
(3.10)

The term α j in Equation 3.10 is defined as the trajectory-based weight of S CB j calcu-
lated over all time series instances which reside within S CB j. We note that the higher
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Figure 3.2 : An example case with two time series instances Tk1 and Tk2 with similar Euclidean
distances from the representative average time series T A yet following different trajectories.

the number of time series instances follow the trajectory of S CB j, the higher the as-
sociated weight becomes. In Fig. 3.2, we give an example scenario emphasizing the
difference between distance and trajectory metrics discussed so far. Although time
series instances Tk1 and Tk2 are of similar distances to T A, unlike Tk2 the trajectory of
Tk1 falls out of the band S CB j.

3.2.4 Overall Similarity

Linearly combining the trajectory-based and the distance-based similarity scores Z(t)
j,k

and Z(d)
j,k , we devise a single similarity score of time series Tk for each S CB j denoted

by Z j,k as follows:

Z j,k = (1 − γ j)Z
(t)
j,k + γ jZ

(d)
j,k , (3.11)

where (1 − γ j) and γ j are the associated weights of the trajectory-based and distance-
based components, respectively. Thus, the average similarity score for each S CB j is
defined as follows:

Z j =

K∑
k=1

Z j,k. (3.12)

The steps for calculating the overall similarity scores, Z, are denoted in Algorithm 4.

We propose to calculate γ j based on the probability mass function (PMF) of time
series distances within S CB j denoted by P j, as in the following equation:

γ j =
D(D,P j)

D(D,P j) +D(U,P j)
, (3.13)
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Algorithm 4 SimilarityScores ( T ,T U ,T L, ᾱ, β̄, γ̄ )
1: I ← TrajectoryInclusionIndicators(T,T U ,T L) . Equation 3.8
2: Z(t) ← TrajectoryBasedSS(ᾱ, I(t)) . Equation 3.9
3: Z(d) ← DistanceBasedSS(β̄, I(d)) . Equation 3.6
4: Z ← calculateSS(γ̄,Z(t),Z(d)) . Equation 3.12
5: return Z

The terms U and D in Equation 3.13 are the PMFs corresponding to the uniform and
deterministic distance distributions, respectively. D is the operator computing the dis-
tance between two PMFs based on the Algorithm 1 presented in [92]. The aforemen-
tioned PMFs are constructed with a signal level resolution denoted by c. Throughout
this study, we set c to 0.001. The PMF U is defined over the support [0,

√
wA] and

D is an impulse at zero. Random variable associated with the PMF U (D) has the
maximum (minimum) entropy for its support. The rationale of Equation 3.13 is to
assign a weight to the distance-based (trajectory-based) similarity score of S CB j in-
versely proportional to the distance of P j to U (D). Trajectory-based similarity scores
are calculated over the time series instances residing within each S CB j. On the other
hand, distance-based similarity scores are calculated over the entire set of time series
instances which are more dispersed out of the confidence band of interest. For the ex-
treme cases where P j tends to U (D), the distance-based (trajectory-based) similarity
scores dominates the overall similarity score.

The overall algorithm is outlined in Algorithm 5 and the related source codes are
accessible online via [93].

Algorithm 5 WTC (T , p )
1: [T A,T U ,T L]← RepresentativeTimeSeries(T , p) . Equation 3.1
2: r ← PIPCompressionRatio(T A) . Equation 3.2
3: P← PIPIndices(T A) . [90]
4: W ← LocalTimeWindows(P, r) . Section 3.2.1
5: S CB← extractSCBs(T U ,T L,W j) . Equation 3.7
6: α← SCBWeightsAlpha(T , S CB,W) . Equation 3.10
7: β← SCBWeightsBeta(T ,T A,W) . Equation 3.4
8: γ ← SCBWeightsGamma(T , S CB,W) . Equation 3.13
9: Z ← SimilarityScores(T , α, β, γ,W) . Equation 3.12
10: return [S CB,Z]

A block diagram is depicted in Fig. 3.3 showing input parameters of WTC and its
major steps with their respective interim and main outputs. One prominent advantage
of Algorithm 5 is its relatively lower complexity, which we analyze next. Step 1
of Algorithm 5 involves point-wise mean and confidence level computations which
have O(KN) complexity. Steps 2 and 3 require the computation of DCT and the
execution of the PIP algorithm over the single times series T A, which are O(N log N)
when N is a power of 2 (O(N2) otherwise) [94] and O(N2) [90], respectively. Steps
4 and 5 have obviously O(N) complexity. Suggested by the corresponding equations,
Steps 6, 7, 8 and 9 are all of O(KN) complexity. We conclude Algorithm 5 to have
an O(KN + N2) quadratic complexity summing up the individual complexities of its
constituent steps. We note that, it is possible to improve the efficiency of Step 3,
the most computationally intensive part of the overall algorithm, by abandoning the
related iterations as soon as finding the 100/r percentage of PIPs.
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Figure 3.3 : A block diagram showing the major algorithmic steps of WTC
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CHAPTER 4

EXPERIMENTS AND RESULTS

We evaluate the proposed WTC method in Sections 4.1 and 4.2 for AP and ECG time
series datasets, respectively. The corresponding results are compared with those of the
brute-force shapelet transform [28] and its accelerated variant, the fast shapelet trans-
form [83]. The details on the operating principles of these shapelet-based algorithms
are given in Chapter 2. The overall computational complexity of the brute-force
shapelet transform is stated to be O(K2N4) [82], [27]. To speed up the training time
of the brute-force shapelet transform, the so-called fast shapelet transform is intro-
duced [83]. In this approach, a complete dataset is projected to a lower-dimensional
representation that is referred to as SAX [86] such that the entire shapelet discovery is
completed in O(KN2) time at the expense of a degradation in performance in terms of
accuracy. By avoiding exhaustive distance computations, the fast shapelet transform
does not guarantee to reach the same set of shapelets as its brute-force counterpart.
We refer the reader to Section 2.3 for further details. The proposed WTC method
with O(KN + N2) complexity clearly outperforms (see Fig. 4.1) the family of shapelet
methods in that regard. In this study, we employ an open-source Java solution [27]
to obtain results for the brute-force shapelet transform and a proprietary C++ based
implementation [83] for the fast shapelet transform.

A series of classification experiments are performed to facilitate a comparison of
the proposed WTC and the benchmark methods (brute-force and fast shapelet trans-
forms). The following methods within WEKA framework [95] are selected to main-
tain a broad coverage among the available classifiers: the well-known Naive Bayes
classifier, J48 pruned tree (an implementation of the well-known C4.5 algorithm),
random decision forest [96], adaptive boosting (AdaBoost.M1) [97], classification via
regression (employing a type of decision tree with linear regression functions at the
leaves [98]), bagging [99], multi-boosting (MultiBoostAB) [100], locally weighted
learning (LWL) [101], partial decision tree classifier (PART) [102], ensemble of
nested dichotomies (END) [103], decision stump [104], simple classification and re-
gression tree (CART) [105], a proprietary algorithm termed as “ranking instances
by maximizing the area under the ROC curve (RIMARC)” [106], Bayesian network
learning, dagging [107], random subspace method [108], decision table majority clas-
sifier, ripple-down rule learner (RIDOR) [109], alternating decision tree (ADTree)
[110], and random tree construction and multi-class alternating decision tree with
a logit-boost strategy (LADTree). The similarity scores Z j,k and the shapelet dis-
tances to time series instances constitute transformed feature vectors for WTC and
the benchmark methods, respectively. The classification accuracy results are obtained
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Figure 4.1 : Computational complexities of WTC (green), the fast shapelet (blue) and brute-force 
shapelet discovery methods.

with a 10-fold cross validation. In this Chapter, we describe the datasets and then ex-
plain the details of registration, evaluate the performance of the WTC method and 
compare with those of the benchmark methods for each studied dataset.

4.1 Cardiac Action Potential (AP) Dataset

As an application of the proposed method to a real-life dataset, we use AP recordings 
obtained from human right atrial biopsies [66].

4.1.1 AP Dataset Description

Within the scope of a project entitled “The European Network for Translational Re-
search in Atrial Fibrillation (EUTRAF)” [111] that is funded by the European Com-
munity’s Seventh Framework Programme, the AP dataset was collected in the period 
from January 2006 to February 2014. Each patient’s written informed consent was ob-
tained, and thus the study conforms to the Declaration of Helsinki and was approved 
by the ethics committee of Dresden University of Technology (No.EK790799). The 
time series instances of the dataset are clinically attributed to the class label AF if it is 
considered that a patient is in chronic atrial fibrillation (ICD-10 code I48.2) and to the 
class label SR with respect to control patients with a normal sinus rhythm. Patients 
with paroxysmal or intermittent AF are excluded. The presence of AF is confirmed 
with pre-operative ECGs throughout the data collection. Eligible AP recordings are 
obtained from a total of 341 unique patients that comprise 142 AF (aged from 47
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years to 85 years with a mean of 72.29 years and 37.68% female, 62.32% male) and 
199 SR (aged 22 years to 86 years with a mean of 67.12 years and 23.98% female, 
76.02% male) patients. A common temporal sampling rate of 10 kHz is used for all 
recordings K = 202 (K = 219) that belong to the AF (SR) class.

4.1.2 AP Dataset Registration

AP time series instances are single event-triggered and acyclic, therefore require no 
segmentation for registration. We register all AF and SR instances in time accord-
ing to the instant at which membrane potential of each time series peaks, i.e., end 
of phase 0. The time window length of a time series from its peak membrane po-
tential to the resting membrane potential actually constitutes a differentiating factor 
between AF and SR classes due to ion channel activities under investigation. For that 
reason, AP registration is done with respect to the time course of the acquired signal 
by avoiding techniques such as re-sampling and dynamic time warping. Time domain 
alignment provides human-readability and brings localized time windows into promi-
nence, thereby easing decision making in real-life practice. Time domain alignment 
is followed by truncating each time series instance based on members with the short-
est support at each side of the peak membrane potential sample point. Hence, the 
common AP time series length N corresponds to 4303 sample points for both classes.

The next step comprises of registering signal amplitudes. With respect to the AP 
dataset, a single cycle begins with the voltage level that indicates a resting membrane 
potential and ends with almost the same ground value after an AP is triggered. Given 
this fact, the peak membrane potential occurring at the end of the rapid depolariza-
tion phase, i.e., phase 0, and the resting membrane potential phase, i.e., phase 4, of 
the experiment are considered as reference points for signal amplitude registration. 
Specifically, the registered time series T k is obtained as follows:

Tk(n) =
S k(n) − S k(N)

max{S k(n)} − S k(N)
(4.1)

In Fig. 4.2, all registered instances of AF (blue) and SR (red) classes are shown.

Time series instances in Fig. 4.2 manifest substantial intra-class variability for both
classes that corresponds to a coherent observation with the study in [112].

4.1.3 WTC Results for AP Dataset

In order to assess the performance of the proposed WTC method, the AP dataset is
subjected to a training phase that is subsequently followed by a testing phase. The
training set consists of 50 AF and 50 SR time series instances that are arbitrarily
chosen. The same set is also used to train the brute-force shapelet transform and fast
shapelet transform methods for benchmarking. A complementary set with 152 AF
and 169 SR instances is spared to test all three methods.
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Figure 4.2 : Registered AP time series instances of AF (202 instances) and SR (219 instances) having
4303 sample points each.

In this section, we fix the energy threshold parameter δ and confidence level parameter
p of the proposed WTC method as a preliminary step for benchmarking. For this
purpose, we train the proposed WTC method for the Cartesian product of the sets
δ ∈ {0.9900, 0.9990, 0.9999} and p ∈ {0.95, 0.99}.
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Figure 4.3 : Identified PIPs, with δ set to 0.9990, from the class representative average time series of
AF and SR classes.

The resulting classification accuracies are tabulated in Table 4.1 for the aforemen-
tioned test set and various classification methods offered by WEKA. Except for a
few entries in Table 4.1, WTC yields accuracies falling in 5% vicinity of each other
which underlines relative insensitivity of WTC to its parameters. For the majority of
the cases, the success rate of WTC exceeds 94%.
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Table 4.1 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to AP dataset for different values of the energy threshold δ, the confidence level p and for the
selected classifiers.

δ = 0.9900 δ = 0.9990 δ = 0.9999
p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99

Naive Bayes 74.766% 81.620% 92.212% 92.212% 89.720% 90.031%
J48 91.589% 92.212% 93.770% 93.458% 93.458% 94.081%
Random forest 93.770% 93.770% 94.704% 94.704% 93.146% 94.081%
AdaBoost.M1 93.146% 93.146% 95.639% 95.639% 95.639% 95.950%
Classif. via regr. 95.327% 95.327% 95.327% 95.016% 93.458% 93.146%
Bagging 94.393% 94.393% 94.704% 94.704% 94.704% 94.704%
MultiBoostAB 93.458% 93.458% 94.704% 94.704% 94.704% 94.704%
LWL 90.654% 90.654% 94.081% 94.704% 94.393% 94.704%
PART 94.081% 94.081% 95.639% 95.639% 94.081% 93.770%
END 91.900% 92.212% 93.458% 93.146% 92.835% 93.458%
Decision stump 90.654% 90.654% 95.016% 95.016% 95.016% 95.016%
Simple CART 92.835% 92.835% 94.704% 94.704% 94.393% 94.704%
RIMARC 94.081% 94.081% 95.016% 95.016% 94.704% 94.704%
Bayes NET 92.835% 92.835% 93.458% 93.458% 94.081% 94.081%
Dagging 94.393% 93.770% 94.704% 94.081% 92.835% 94.704%
Random SubSpace 93.770% 93.458% 93.146% 94.081% 94.081% 93.458%
Decision Table 92.523% 93.770% 92.523% 92.212% 93.146% 93.458%
Ridor 92.523% 92.523% 94.704% 94.393% 93.770% 94.081%
ADTree 94.393% 94.081% 94.393% 94.393% 95.016% 95.016%
LAD Tree 93.146% 93.458% 94.393% 94.393% 95.016% 95.327%
Random Tree 90.343% 91.277% 94.704% 92.523% 93.146% 90.966%
AVERAGE 92.123% 92.553% 94.333% 94.200% 93.873% 94.007%

Based on the individual accuracies and the highest ensemble average accuracy (94.333%)
presented in Table 4.1, we fix δ to 0.9990 and p to 0.95. This particular choice for δ
results in oversampling ratio r equals to 27.0629 and 21.4078 for AF and SR, respec-
tively.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

 n (sample points)

re
gi

st
er

ed
 v

ol
ta

ge

SCB

 

 

AF TU

AF TA

AF TL

SR TU

SR TA

SR TL

Figure 4.4 : Confidence bands with p = 0.95 overlaid for AF and SR classes.
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In Fig. 4.3, selected PIPs from the class-representative average time series based on
these values of r are shown for both AF and SR classes. For the other choices of δ,
such as 0.9900 and 0.9999, we refer to the Appendix A.1 for the Figs. A.2 and A.3
depicting the corresponding PIPs.

The values of the localized time window length, w, which corresponds to the maxi-
mum horizontal separation between the adjacent PIPs, involve 329 and 169 sample
points corresponding to 32.9 ms and 16.9 ms for AF and SR, respectively. The win-
dow length determination step is immediately followed by constructing confidence
bands (see Fig. 4.4) with a chosen confidence level corresponding to p = 0.95. For an
alternative construction of confidence bands with p = 0.99, we refer to Appendix A.1
for Fig. A.1.

Next, we segment these confidence bands as suggested by the local time windows
W j into SCBs for each class. The calculated weights, namely α j, β j and γ j, for the
corresponding W j are depicted in Figs. 4.5a and 4.5b, for AF and SR, respectively.
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Figure 4.5 : The weights α j, β j and γ j for SCBs in (a) AF and (b) SR.

With respect to both classes, the results indicate that the distance-based weights β j are
close to each other, and this implies that the rewards given based on the proximity to
the class average for the corresponding S CB j exhibit a similar trend. Trajectory-based
weights α j, on the other hand, vary more drastically for changing S CB j and even de-
creasing to zero for higher indexed SCBs for both classes. This behavior indicates
the failure of all time series instances to be completely encapsulated by the corre-
sponding SCBs. The calculated weights γ j are much closer to 0 than to 1, thereby
indicating that they favour the trajectory-based component of the similarity score for
both classes. In Appendix A.1, the weights of α j, β j and γ j for SCBs constructed with
the remaining combinations of p ∈ {0.95, 0.99} and δ ∈ {0.9900, 0.9990, 0.9999} are
also depicted in Figs. A.4a, A.4b to A.8a, A.8b.

In order to visualize the predictive power of WTC in terms of Z j, color map plots are
presented in Figs. 4.6a and 4.6b for AF and SR, respectively. These figures constitute
the most interpretable output of WTC and show the similarity scores Z j calculated by
averaging over all AF and SR time series instances in the test set. The more reddish
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Figure 4.6 : Color map plots for the average values of Z j for the test set.

tones imply regions with higher similarity, and thereby SCBs with higher predictive
power. These figures also depict the double-sided confidence bands of the class rep-
resentative average time series and the extracted S CB j. For the purpose of complete-
ness, the color maps constructed for AF and SR with the remaining combinations of
p ∈ {0.95, 0.99} and δ ∈ {0.9900, 0.9990, 0.9999} are depicted in Figs. A.9a, A.9b to
A.13a, A.13b.

4.1.4 Comparative Results for AP Dataset

The following experiments are performed using the aforementioned training and test
sets in Section 4.1.3. So as to achieve a meaningful level of parameter exploration
for the brute-force shapelet transform in a reasonable time, a range for the shapelet
length L (in units of sample points) is quantized as shown in Table 4.2. We note that
the chosen values for L span a wider range when compared to the values reached by
the proposed WTC method for its time localized window length, w, with the aid of
DCT domain filtering. We resort to the default value of the Java implementation [27],
which is 100, for the number of shapelets to be extracted.

As seen in Table 4.2, the brute-force shapelet transform yields varying test set clas-
sification accuracies for variations in L irrespective of the deployed classification
method. The first 100 shapelets with L = 400 yielding the most favorable ensemble
average accuracy level (93.057%) are shown in Fig.4.7 along with the class average
time series, T A, for both AF and SR. The figures reveal that the selected shapelets
from different instances substantially overlap with each other for both classes. This
observation is also interpreted as a redundancy in the computations since majority of
subsequences corresponds to a narrow time interval.

Next, we evaluate the performance of the fast shapelet transform. The fast shapelet
procedure acts as an extension to the brute-force shapelet transform method and builds
an internal decision tree termed as a “fast shapelet tree” with nodes that are ordered
based on the information gain that they individually offer. The resulting classification
accuracies of the fast shapelet transformed test dataset are presented in Table 4.3. The
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Table 4.2 : Individual and ensemble average classification accuracies of the brute-force shapelet
transform applied to AP dataset for variations in shapelet length, L, and the selected classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 74.766% 86.293% 89.408% 90.654% 91.900% 92.835% 93.146% 93.458%
J48 85.358% 87.851% 90.966% 89.408% 94.393% 93.770% 92.835% 92.523%
Random forest 86.293% 90.654% 93.458% 92.835% 94.393% 95.639% 94.393% 94.704%
AdaBoost.M1 81.308% 88.785% 90.966% 91.277% 94.081% 94.081% 94.704% 95.016%
Classif. via regr. 83.489% 90.654% 90.966% 92.835% 95.327% 94.704% 94.081% 95.327%
Bagging 87.851% 90.654% 92.212% 92.212% 94.393% 92.835% 93.146% 93.770%
MultiBoostAB 84.424% 88.474% 91.589% 92.212% 94.393% 94.081% 95.016% 94.704%
LWL 81.620% 81.932% 88.474% 87.851% 91.277% 87.227% 87.227% 90.031%
PART 81.308% 90.031% 90.654% 89.408% 94.081% 92.212% 93.458% 93.770%
END 85.358% 87.851% 90.966% 89.408% 94.393% 93.770% 92.835% 92.523%
Decision stump 81.620% 81.620% 88.785% 88.162% 88.785% 89.097% 90.654% 89.097%
Simple CART 84.112% 86.916% 91.277% 89.097% 94.081% 91.900% 92.835% 92.835%
RIMARC 83.801% 90.654% 92.523% 91.900% 91.900% 93.458% 94.393% 94.393%
Bayes NET 82.866% 89.097% 90.966% 90.654% 90.031% 91.900% 91.589% 93.146%
Dagging 83.489% 92.212% 93.146% 92.523% 95.016% 95.950% 94.393% 95.950%
Random SubSpace 80.685% 88.785% 91.589% 90.966% 90.343% 91.589% 91.589% 93.458%
Decision Table 67.601% 72.586% 79.128% 78.505% 83.801% 77.882% 80.685% 83.178%
Ridor 84.424% 92.523% 90.966% 89.097% 94.393% 92.212% 94.704% 92.835%
ADTree 83.489% 89.720% 91.589% 91.277% 94.081% 95.016% 95.327% 96.573%
LAD Tree 87.851% 87.851% 90.966% 91.277% 94.393% 93.770% 94.704% 93.146%
Random Tree 80.685% 88.474% 88.785% 89.408% 90.031% 90.654% 92.835% 93.770%
AVERAGE 82.495% 87.791% 90.447% 90.046% 92.642% 92.123% 92.598% 93.057%
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Figure 4.7 : Top 100 brute-force shapelets extracted with L = 400 from AF (a) and SR (b) instances,
and the single fast shapelet (c) with L = 300 selected only among SR instances, overlaid with the
associated class representative average time series T A.

distance values obtained from the “fast shapelet tree” are considered as inputs for the
listed classifiers of WEKA. It is assumed that L possesses the same range of values
as those for the brute-force shapelet transform for the purpose of fairness.

According to Table 4.3, ensemble average classification accuracy (90.269%) peaks at
L = 300 for which the single discovered shapelet among the instances of SR is shown
in Fig. 4.7.
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Table 4.3 : Individual and ensemble average classification accuracies of the fast shapelet transform
applied to AP dataset for variations in shapelet length, L, and the selected classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 80.062% 81.308% 85.358% 86.604% 88.474% 90.654% 92.523% 88.474%
J48 78.193% 82.555% 86.293% 87.851% 88.474% 90.031% 90.966% 87.227%
Random forest 72.274% 82.866% 79.751% 81.620% 82.866% 87.227% 90.031% 78.816%
AdaBoost.M1 77.882% 80.997% 86.916% 87.851% 88.785% 90.654% 90.031% 86.604%
Classif. via regr. 79.439% 79.751% 85.358% 85.981% 89.720% 90.031% 90.966% 88.474%
Bagging 78.193% 84.112% 86.293% 87.227% 89.097% 91.277% 89.720% 87.851%
MultiBoostAB 77.570% 82.555% 87.851% 88.474% 88.785% 90.654% 89.720% 86.916%
LWL 78.816% 80.997% 85.047% 87.851% 88.785% 90.031% 89.408% 87.227%
PART 77.259% 82.555% 85.981% 87.851% 88.474% 90.343% 91.589% 87.227%
END 78.193% 82.555% 86.293% 87.851% 88.474% 90.654% 90.966% 87.227%
Decision Stump 78.816% 78.505% 87.227% 87.851% 88.785% 90.654% 90.343% 86.293%
Simple CART 78.505% 81.620% 86.604% 84.424% 89.097% 90.031% 90.343% 87.227%
RIMARC 80.062% 85.981% 87.227% 88.162% 90.654% 91.589% 93.458% 89.720%
Bayes NET 76.324% 82.866% 86.916% 87.851% 88.785% 90.654% 89.408% 86.604%
Dagging 78.505% 78.816% 78.193% 86.604% 89.408% 90.031% 90.654% 86.293%
Random SubSpace 77.570% 71.651% 86.916% 87.851% 88.785% 90.654% 84.735% 86.604%
Decision Table 78.816% 81.932% 86.916% 87.851% 88.785% 90.654% 88.474% 86.604%
Ridor 77.570% 82.243% 83.489% 85.358% 87.227% 90.031% 88.162% 85.670%
ADTree 77.259% 82.866% 84.735% 87.227% 88.474% 91.277% 90.654% 87.539%
LAD Tree 75.389% 82.243% 85.047% 85.981% 87.227% 91.277% 90.654% 87.851%
Random Tree 71.963% 80.685% 78.505% 81.620% 82.555% 87.227% 89.097% 79.128%
AVERAGE 77.555% 81.412% 85.091% 86.664% 88.177% 90.269% 90.090% 86.456%

The proposed WTC method is self-sufficient in predicting a time localized window
length, w. However, results are also obtained by artificially enforcing a window length
to reach complete coverage when compared to the two shapelet approaches. For this
particular case, SCB extraction is performed by “by-passing” the computation part
for w. In Table 4.4, the accuracies for variations in the enforced SCB lengths and for
the selected classifiers are presented.

A comparison of Tables 4.1 and 4.4 for the columns corresponding to (δ = 0.9990,
p = 0.95) and w = 200 (also for w = 150), respectively, reveals the success of
the PIP and DCT-based heuristic pursued by the proposed WTC method to deter-
mine the value of the local time window length w. Based on the results in Ta-
bles 4.1, 4.3 and 4.4, the classification accuracies calculated for WTC are around
4% higher than those of the fast shapelet transform. On the other hand, despite its
exhaustive search with an impractical computational complexity, the peak ensemble
average classification accuracy of the brute-force shapelet transform (93.057%) for
L = 400 turns out to be slightly lower than that of WTC both for the enforced case
with w = 200 (also for w = 150) (94.125%) and for the unenforced, i.e., the original
case (94.333%).

4.2 ECG Dataset

In this section, an ECG dataset is examined to demonstrate the potential of the pro-
posed WTC method from a clinical perspective. ECG is a highly clinically relevant
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Table 4.4 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to AP dataset for varying enforced SCB length, w, and for the selected classifiers.

w = 50 w = 100 w = 150 w = 200 w = 250 w = 300 w = 350 w = 400

Naive Bayes 91.277% 90.966% 92.212% 91.589% 91.277% 90.654% 90.654% 90.031%
J48 93.770% 90.654% 93.458% 93.770% 94.081% 94.393% 93.458% 93.146%
Random forest 94.081% 94.704% 94.393% 94.393% 94.081% 93.770% 94.081% 93.458%
AdaBoost.M1 94.704% 95.016% 95.950% 94.393% 95.639% 94.393% 96.262% 95.327%
Classif. via regr. 94.393% 95.016% 95.950% 96.885% 95.327% 95.327% 95.950% 95.639%
Bagging 94.704% 95.016% 95.016% 94.704% 94.393% 94.704% 94.393% 94.393%
MultiBoostAB 95.016% 95.016% 94.704% 95.016% 94.704% 94.704% 93.770% 93.458%
LWL 93.770% 94.704% 93.770% 94.393% 92.835% 94.081% 91.589% 91.900%
PART 93.146% 92.212% 91.589% 91.900% 94.081% 92.835% 94.704% 94.704%
END 93.458% 90.031% 93.458% 93.458% 94.081% 94.704% 93.146% 93.146%
Decision stump 94.393% 95.016% 93.770% 95.016% 94.081% 95.016% 91.900% 91.900%
Simple CART 95.327% 95.016% 94.081% 93.770% 93.458% 96.262% 93.146% 94.704%
RIMARC 95.327% 95.327% 95.327% 95.327% 95.327% 95.327% 95.327% 95.327%
Bayes NET 94.081% 93.770% 94.393% 94.081% 94.081% 94.081% 94.393% 94.081%
Dagging 93.458% 92.212% 94.393% 94.081% 91.900% 93.146% 92.835% 92.835%
Random SubSpace 93.770% 93.770% 94.393% 94.081% 93.770% 93.458% 94.393% 94.081%
Decision Table 94.081% 91.277% 90.343% 92.212% 93.146% 93.770% 92.523% 94.393%
Ridor 94.081% 91.900% 95.016% 94.704% 94.393% 94.081% 94.081% 94.393%
ADTree 93.146% 95.016% 96.573% 95.327% 94.704% 94.393% 94.393% 94.393%
LAD Tree 94.704% 94.704% 95.639% 94.704% 93.770% 94.704% 95.016% 94.393%
Random Tree 92.835% 90.654% 92.212% 92.835% 94.704% 92.212% 92.835% 92.835%
AVERAGE 93.977% 93.428% 94.125% 94.125% 93.992% 94.096% 93.755% 93.740%

and therefore one of the most studied biophysical signal types.

4.2.1 ECG Dataset Description

The ECG dataset used in this thesis is compiled from Physikalisch-Technische Bunde-
sanstalt DataBase (PTBDB), a publicly available repository of physiological signals
in PhysioNet [42]. PTBDB contains 549 12-lead ECG time series recordings from
290 unique patients. Each time series is digitized with 1 kHz sampling rate and 16-bit
resolution over a signal amplitude range of ±16.384 mV. PTBDB contains instances
with a wide variety of labels including myocardial infarction, cardiomyopathy/heart
failure, dysrhythmia, myocardial hypertrophy and myocarditis. The largest subset of
PTBDB is comprised of time series instances belonging to patients diagnosed with
acute myocardial infarction (MI). There exist identified differences in the expression
of P-QRS-T sequences of the ECG signal recorded from the precordial leads during
MI [113]. Furthermore, ECG is known to contain noise originating from different
sources [114],[115] and [116]. For this reason, we find this dataset suitable for test-
ing robustness of the proposed WTC method against noise. Hereafter, the time series
instances of this dataset will be referred to as MI and NR corresponding to patients
diagnosed with acute MI and control patients with normal heart rhythms, respectively.
In this context, out of 148 instances of MI patients, a sub-group of 40 unique patients
(aged 37 to 85 with mean 61.03 and 22.50% female, 77.50% male) are randomly
selected to obtain a balanced set against the 40 available NR patients (aged 17 to 81
with mean 45.59 and 25.00% female, 75.00% male). The record identifications of the
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Figure 4.8 : Registered and annotated ECG lead v2 time series instances of (a) MI (40 instances) and
(b) NR (40 instances) having 1308 sample points each.

selected instances are listed in Table B.1. For readers who are interested in further de-
tails on these patient instances as well as the localizations of their myocardial infarct,
the medical records are accessible via PhysioBank ATM under the PTBDB “Record
Description” section [117].

4.2.2 ECG Dataset Registration

All MI and NR time series instances are registered to prepare the same for the pro-
posed method. Each cyclic ECG time series instance is first segmented into multiple
single-cycle P-QRS-T sequences beginning from an S point to a subsequent point. In
contrast to the acyclic recordings in the AP dataset, ECG recordings are self-repeating
and their periodicities are determined by the heart rate of the patients. However, it is
the signal variation among the P-QRS-T sequences as opposed to the heart rate vari-
ability that differentiates MI patients from NR patients. Hence, heart rate variability
(i.e., length of the time series from an S point to a subsequent point) is compensated
by incorporating a signal processing technique termed as re-sampling. Re-sampling
essentially warps the specified time series, which constitutes a single-cycle ECG sig-
nal in this specific case. Each single-cycle P-QRS-T time series is re-sampled in
order to extend its length to that of the longest one. It is assumed that S k(n) denotes
the re-sampled single-cycle P-QRS-T time series, and the registered time series Tk(n)
is obtained by normalizing their amplitude as follows:

Tk(n) =
S k(n) −min{S k(n)}

max{S k(n)} −min{S k(n)}
. (4.2)

We study the three precordial leads of v2, v3 and v4 separately. In Figs. 4.8a and 4.8b,
Tk(n) of MI and NR classes are shown, respectively, for lead v2.
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4.2.3 WTC Results for ECG Dataset

Out of 40 MI(NR) patients, 25 are reserved for the training set, and this leaves 15
patients for the test set. With respect to the training set, a single P-QRS-T sequence is
allowed from each patient. However, multiple (either 3 or 4) sequences are collected
from each patient to reach a total of 50 sequences for the test set.

As discussed in Section 4.1.3, the energy threshold δ and the confidence level p pa-
rameters are explored within a range of values to select the combination that yields
the highest average classification with respect to the aforementioned 21 classifica-
tion algorithms within WEKA. Classification accuracies for the lead v2 are presented
in Table 4.5 for varying δ and p. Table 4.5 reveals that the average accuracy for
lead v2 of ECG dataset peaks (98.095%) at the same parameter values (δ = 0.9990
and p = 0.95 ) with the AP dataset in Section 4.1.3. Tables 4.6 and 4.7 show the
individual accuracy values for varying parameters of δ and p, for leads v3 and v4
respectively. As seen form these tables, the aforementioned parameters δ = 0.9990
and p = 0.95 are exceeded by at most 0.285% and 0.524% for leads v3 and v4 re-
spectively. Therefore, we fix δ = 0.9990 and p = 0.95 for the leads v3 and v4 as well
proceeding with a single set of parameters for the rest of this thesis. With the chosen
confidence level p = 0.95, the confidence bands constructed for the leads v2, v3, and
v4 are shown in Figs. 4.9a, 4.9b and 4.9c, respectively.

Table 4.5 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v2 of ECG dataset, for different values of the energy threshold δ, the confidence level
p and for the selected classifiers.

δ = 0.9900 δ = 0.9990 δ = 0.9999
p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99

Naive Bayes 95.000% 99.000% 96.000% 95.000% 96.000% 94.000%
J48 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
Random forest 100.000% 100.000% 100.000% 99.000% 100.000% 99.000%
AdaBoost.M1 98.000% 98.000% 98.000% 98.000% 100.000% 100.000%
Classif. via regr. 99.000% 99.000% 100.000% 100.000% 94.000% 93.000%
Bagging 100.000% 99.000% 97.000% 97.000% 97.000% 97.000%
MultiBoostAB 100.000% 99.000% 98.000% 98.000% 98.000% 98.000%
LWL 93.000% 95.000% 97.000% 96.000% 99.000% 99.000%
PART 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
END 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
Decision stump 93.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Simple CART 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
RIMARC 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Bayes NET 100.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Dagging 91.000% 94.000% 94.000% 94.000% 96.000% 90.000%
Random SubSpace 96.000% 96.000% 99.000% 98.000% 98.000% 98.000%
Decision Table 98.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Ridor 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
ADTree 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
LAD Tree 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
Random Tree 98.000% 96.000% 98.000% 86.000% 92.000% 95.000%
AVERAGE 97.524% 97.810% 98.095% 97.286% 97.810% 97.476%
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Table 4.6 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v3 of ECG dataset, for different values of the energy threshold δ, the confidence level
p and for the selected classifiers.

δ = 0.9900 δ = 0.9990 δ = 0.9999
p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99

Naive Bayes 95.000% 97.000% 92.000% 83.000% 88.000% 84.000%
J48 97.000% 97.000% 98.000% 98.000% 99.000% 99.000%
Random forest 99.000% 100.000% 99.000% 99.000% 100.000% 100.000%
AdaBoost.M1 98.000% 98.000% 99.000% 99.000% 100.000% 100.000%
Classif. via regr. 94.000% 95.000% 99.000% 99.000% 100.000% 100.000%
Bagging 96.000% 97.000% 99.000% 99.000% 99.000% 99.000%
MultiBoostAB 96.000% 94.000% 99.000% 99.000% 100.000% 100.000%
LWL 89.000% 92.000% 99.000% 99.000% 100.000% 100.000%
PART 97.000% 97.000% 98.000% 98.000% 99.000% 99.000%
END 97.000% 97.000% 98.000% 98.000% 99.000% 99.000%
Decision stump 86.000% 86.000% 99.000% 99.000% 100.000% 100.000%
Simple CART 94.000% 94.000% 99.000% 99.000% 100.000% 100.000%
RIMARC 99.000% 99.000% 99.000% 99.000% 99.000% 99.000%
Bayes NET 96.000% 96.000% 99.000% 99.000% 100.000% 100.000%
Dagging 94.000% 93.000% 93.000% 95.000% 96.000% 94.000%
Random SubSpace 95.000% 96.000% 99.000% 99.000% 99.000% 99.000%
Decision Table 97.000% 99.000% 99.000% 99.000% 99.000% 99.000%
Ridor 93.000% 93.000% 100.000% 99.000% 100.000% 100.000%
ADTree 98.000% 98.000% 100.000% 99.000% 100.000% 100.000%
LAD Tree 96.000% 96.000% 100.000% 97.000% 100.000% 100.000%
Random Tree 91.000% 90.000% 100.000% 90.000% 96.000% 96.000%
AVERAGE 95.095% 95.429% 98.429% 97.381% 98.714% 98.429%

For the sake of completeness, the confidence bands constructed with p = 0.99 are
depicted in Appendix B.2 in Figs. B.1a, B.1b and B.1c for each ECG lead. In
Figs. 4.10a, 4.10b and 4.10c, selected PIPs along with the class-representative av-
erage time series are shown for both MI (red) and NR (blue) classes for leads v2, v3
and v4, respectively.

For the remaining values of δ equals 0.9900 and 0.9999, the PIPs for each ECG
lead are depicted in Appendix B.2 in Figs. B.2a, B.2b, B.2c and Figs. B.3a, B.3b,
B.3c, respectively. Next, the confidence bands of each class are divided into SCBs as
suggested by the local time windows W j found after the PIP extraction step. Similar
to the calculations made in Section 4.1.3, the weights α j, β j and γ j are found for each
W j and depicted in Figs. 4.11a, 4.11c and 4.11e for MI and Figs. 4.11b, 4.11d and
4.11f for NR, respectively for leads v2, v3 and v4. In Appendix B.2, the weights α j,
β j and γ j of the corresponding SCBs constructed with the remaining combinations of
p ∈ {0.95, 0.99} and δ ∈ {0.9900, 0.9990, 0.9999} are depicted for MI and NR and for
all leads in Figs. B.4a to B.4f, B.5a to B.5f, B.6a to B.6f, B.7a to B.7f and B.8a to
B.8f.

The resulting similarity scores, Z j, found with Equation 3.12 are shown in the form
of color map plots for both MI and NR and for the three studied leads in Figs. 4.12a
through 4.12f.
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Table 4.7 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v4 of ECG dataset, for different values of the energy threshold δ, the confidence level
p and for the selected classifiers.

δ = 0.9900 δ = 0.9990 δ = 0.9999
p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99

Naive Bayes 97.000% 96.000% 96.000% 95.000% 91.000% 93.000%
J48 96.000% 94.000% 97.000% 97.000% 100.000% 100.000%
Random forest 98.000% 98.000% 99.000% 97.000% 100.00% 97.000%
AdaBoost.M1 98.000% 98.000% 97.000% 97.000% 99.000% 99.000%
Classif. via regr. 96.000% 96.000% 94.000% 94.000% 99.000% 97.000%
Bagging 95.000% 95.000% 95.000% 95.000% 96.000% 96.000%
MultiBoostAB 98.000% 98.000% 94.000% 94.000% 94.000% 96.000%
LWL 92.000% 93.000% 97.000% 97.000% 99.000% 99.000%
PART 96.000% 94.000% 97.000% 97.000% 100.000% 100.000%
END 96.000% 94.000% 97.000% 97.000% 100.000% 100.000%
Decision stump 92.000% 92.000% 94.000% 94.000% 97.000% 97.000%
Simple CART 96.000% 97.000% 95.000% 95.000% 96.000% 96.000%
RIMARC 99.000% 99.000% 99.000% 99.000% 99.000% 99.000%
Bayes NET 98.000% 99.000% 94.000% 94.000% 94.000% 96.000%
Dagging 88.000% 93.000% 94.000% 94.000% 90.000% 94.000%
Random SubSpace 98.000% 99.000% 93.000% 94.000% 94.000% 95.000%
Decision Table 96.000% 96.000% 97.000% 98.000% 93.000% 95.000%
Ridor 93.000% 93.000% 98.000% 98.000% 95.000% 95.000%
ADTree 98.000% 98.000% 99.000% 99.000% 98.000% 98.000%
LAD Tree 96.000% 96.000% 99.000% 99.000% 99.000% 99.000%
Random Tree 89.000% 87.000% 93.000% 92.000% 86.000% 88.000%
AVERAGE 95.476% 95.476% 96.095% 96.000% 96.143% 96.619%

These figures depict the degree of descriptiveness of the WTC method within each
time window as mentioned in Section 4.1.3. The obvious difference in the thickness
of the confidence bands when compared to those of the AP dataset indicates a higher
variability of amplitude among the ECG instances.

As before, the color maps constructed for all leads of MI and NR with the remaining
combinations of p ∈ {0.95, 0.99} and δ ∈ {0.9900, 0.9990, 0.9999} are depicted in
Figs. B.9a to B.9f, B.10a to B.10f, B.11a to B.11f, B.12a to B.12f and B.13a to B.13f,
in Appendix B.2. The color maps relate to the weights in power of defining the intra-
class similarity.

Characterizing intra-class similarity along the temporal dimension for each SCB,
WTC also points out the morphological differences between the time series classes
of interest. It is known in the prevalent cardiological literature that the earliest signs
of acute MI include increased T-wave amplitude (defined as “hyper-acute”) over the
affected area. These so-called hyper-acute T-waves are most evident in the anterior
precordial chest leads [68] (see Fig. 4.13a for the mentioned MI behavior in leads v2,
v3 and v4). MI SCBs around the T-wave (Fig. 4.12a, 4.12c and 4.12e) are in rel-
atively deeper red color. This observation aligns with the characteristic hyper-acute
T-wave pattern expected to appear in the early phases of MI accompanied by the loss
of R-wave amplitude in the anterior chest leads v2, v3 and v4 [40], [118].
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Figure 4.9 : Confidence bands with p = 0.95 overlaid for the MI and NR classes in (a)v2 (b)v3 and
(c)v4 leads of ECG dataset.
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Figure 4.10 : Identified PIPs from the MI and NR class representative average time series from (a)v2
(b)v3 and (c)v4 leads of ECG dataset.
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Figure 4.11 : The weights α j, β j and γ j for SCBs in leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure 4.12 : Color map plots for the average values of Z j of leads v2, v3 and v4 for (a,c,e) MI and
(b,d,f) NR.
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(a) patient036 s0111lre (b) patient116 s0302lre

Figure 4.13 : (a) Typical “hyper acute” T-waves in ECG recordings collected from precordial leads
v2, v3 and v4 indicating the condition of MI during early stages (record id: patient036 s0111lre) and
(b) waveforms from corresponding leads of a control patient (record id: patient116 s0302lre). Each
unit cell represents 0.2 sec in time and 0.5 mV in amplitude. (Source: PhysioBank ATM)

4.2.4 Comparative Results for ECG Dataset

The following evaluations are performed separately on the leads v2, v3 and v4 of
aforementioned training and test sets, comprising 25 MI and 25 NR and 15 MI and
15 NR, time series instances, respectively. As in Section 4.1.4, we sample a range for
the desired shapelet length while obtaining results for the brute-force and fast shapelet
transforms and limit the number of shapelets to be extracted to 100. Tables 4.8 and
4.9 tabulate the individual accuracies achieved by the chosen set of classification al-
gorithms for the test set of lead v2 using features extracted by the brute-force and fast
shapelet transform methods, respectively.

As shown in Table 4.8 and 4.9, the success of both the brute-force and fast shapelet
transforms are highly sensitive to L. The first 100 shapelets with L = 300 that yield
the highest ensemble average accuracy (94.381%) for the brute-force shapelet trans-
form and lead v2 are depicted in Fig. 4.14 overlaid with the class average time series,
T A, for MI and NR. In Fig. 4.14, the fast shapelets of L = 150 with the highest
ensemble average accuracy level (95.143%) are also shown. For the purpose of com-
pleteness, we present the resulting classification accuracies obtained for lead v3 and
v4 in Tables 4.10 through 4.13 for the benchmark methods by noting that similar
observations with lead v2 are performed.

Considering the accuracy results of the proposed WTC method presented in Section
4.2.3, it is apparent that the brute-force and fast shapelet transforms yield relatively
lower accuracies for all three leads of the ECG dataset. The brute-force and fast
shapelet transform methods attain accuracies of (94.381%, 95.190%, 95.190%) and
(95.143%, 94.667%, 88.286%) for leads (v2, v3, v4), respectively, exceeded by those
of the proposed WTC method which are (98.095%, 98.429%, 96.095%).

Although the proposed WTC method is self-sufficient in determining a proper local
time window length, w, we also obtain results by artificially enforcing a window
length in order to reach a complete coverage in comparisons with the two shapelet
approaches. For this particular case, SCB extraction is performed by “by-passing”
the computation part for w. In Tables 4.14, 4.15 and 4.16 the accuracies for varying
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Table 4.8 : Individual and ensemble average classification accuracies of the brute-force shapelet
transform applied to lead v2 of ECG dataset for variations in shapelet length, L, and the selected
classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 92.000% 95.000% 94.000% 90.000% 92.000% 90.000% 90.000% 90.000%
J48 91.000% 93.000% 94.000% 93.000% 93.000% 96.000% 93.000% 94.000%
Random forest 92.000% 96.000% 97.000% 97.000% 98.000% 99.000% 98.000% 97.000%
AdaBoost.M1 91.000% 96.000% 97.000% 96.000% 98.000% 97.000% 95.000% 97.000%
Classif. via regr. 92.000% 95.000% 95.000% 91.000% 94.000% 95.000% 93.000% 94.000%
Bagging 92.000% 93.000% 91.000% 93.000% 94.000% 93.000% 93.000% 92.000%
MultiBoostAB 92.000% 93.000% 91.000% 93.000% 93.000% 93.000% 93.000% 93.000%
LWL 87.000% 94.000% 98.000% 95.000% 96.000% 90.000% 95.000% 94.000%
PART 92.000% 93.000% 94.000% 93.000% 94.000% 96.000% 93.000% 94.000%
END 91.000% 93.000% 94.000% 93.000% 93.000% 96.000% 93.000% 94.000%
Decision stump 85.000% 93.000% 95.000% 90.000% 94.000% 93.000% 92.000% 93.000%
Simple CART 90.000% 93.000% 95.000% 91.000% 96.000% 96.000% 92.000% 95.000%
RIMARC 95.000% 94.000% 94.000% 93.000% 94.000% 93.000% 93.000% 93.000%
Bayes NET 92.000% 93.000% 92.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Dagging 91.000% 93.000% 93.000% 93.000% 93.000% 92.000% 89.000% 92.000%
Random SubSpace 92.000% 93.000% 93.000% 94.000% 93.000% 93.000% 92.000% 92.000%
Decision Table 83.000% 88.000% 84.000% 86.000% 86.000% 87.000% 87.000% 85.000%
Ridor 86.000% 93.000% 95.000% 92.000% 91.000% 96.000% 96.000% 95.000%
ADTree 91.000% 96.000% 97.000% 98.000% 98.000% 97.000% 98.000% 97.000%
LAD Tree 90.000% 97.000% 97.000% 96.000% 97.000% 98.000% 97.000% 98.000%
Random Tree 87.000% 90.000% 91.000% 94.000% 93.000% 99.000% 98.000% 96.000%
AVERAGE 90.190% 93.524% 93.857% 93.048% 93.952% 94.381% 93.476% 93.714%

Table 4.9 : Individual and ensemble average classification accuracies of the fast shapelet transform
applied to lead v2 in ECG dataset for variations in shapelet length, L, and the selected classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 81.000% 90.000% 96.000% 91.000% 90.000% 86.000% 86.000% 93.000%
J48 82.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
Random forest 80.000% 85.000% 98.000% 92.000% 92.000% 93.000% 88.000% 87.000%
AdaBoost.M1 85.000% 89.000% 98.000% 91.000% 93.000% 92.000% 92.000% 93.000%
Classif. via regr. 81.000% 90.000% 92.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Bagging 85.000% 90.000% 90.000% 93.000% 93.000% 93.000% 93.000% 94.000%
MultiBoostAB 85.000% 91.000% 93.000% 93.000% 93.000% 93.000% 93.000% 94.000%
LWL 80.000% 90.000% 98.000% 93.000% 93.000% 93.000% 92.000% 94.000%
PART 80.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
END 82.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
Decision stump 85.000% 90.000% 98.000% 93.000% 93.000% 93.000% 92.000% 94.000%
Simple CART 82.000% 90.000% 98.000% 91.000% 93.000% 94.000% 88.000% 94.000%
RIMARC 85.000% 92.000% 99.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Bayes NET 85.000% 91.000% 91.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Dagging 80.000% 88.000% 93.000% 93.000% 86.000% 83.000% 89.000% 91.000%
Random SubSpace 76.000% 87.000% 84.000% 84.000% 81.000% 93.000% 75.000% 84.000%
Decision Table 85.000% 90.000% 98.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Ridor 83.000% 90.000% 98.000% 91.000% 90.000% 92.000% 91.000% 89.000%
ADTree 84.000% 85.000% 96.000% 92.000% 93.000% 95.000% 89.000% 88.000%
LAD Tree 81.000% 85.000% 97.000% 92.000% 93.000% 94.000% 90.000% 89.000%
Random Tree 83.000% 83.000% 96.000% 92.000% 92.000% 94.000% 88.000% 87.000%
AVERAGE 82.381% 88.571% 95.143% 91.857% 91.571% 92.190% 90.190% 91.667%
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Table 4.10 : Individual and ensemble average classification accuracies of the brute-force shapelet
transform applied to lead v3 in ECG dataset for variations in shapelet length, L, and the selected
classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 95.000% 95.000% 96.000% 95.000% 96.000% 100.000% 100.000% 100.000%
J48 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Random forest 96.000% 94.000% 97.000% 99.000% 100.000% 100.000% 100.000% 100.000%
AdaBoost.M1 97.000% 95.000% 96.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Classif. via regr. 97.000% 93.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Bagging 95.000% 95.000% 94.000% 96.000% 96.000% 100.000% 100.000% 100.000%
MultiBoostAB 95.000% 95.000% 94.000% 96.000% 97.000% 100.000% 100.000% 100.000%
LWL 93.000% 90.000% 93.000% 100.000% 97.000% 100.000% 99.000% 99.000%
PART 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
END 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Decision stump 96.000% 92.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Simple CART 96.000% 92.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
RIMARC 98.000% 96.000% 96.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Bayes NET 95.000% 95.000% 94.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Dagging 90.000% 91.000% 84.000% 90.000% 90.000% 92.000% 89.000% 90.000%
Random SubSpace 95.000% 95.000% 96.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Decision Table 85.000% 77.000% 85.000% 79.000% 71.000% 79.000% 83.000% 85.000%
Ridor 97.000% 91.000% 94.000% 99.000% 97.000% 98.000% 98.000% 98.000%
ADTree 97.000% 95.000% 94.000% 100.000% 98.000% 98.000% 98.000% 98.000%
LAD Tree 96.000% 92.000% 94.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Random Tree 91.000% 91.000% 90.000% 94.000% 95.000% 99.000% 99.000% 98.000%
AVERAGE 94.714% 92.095% 93.238% 96.809% 95.809% 97.476% 97.762% 97.857%

Table 4.11 : Individual and ensemble average classification accuracies of the fast shapelet transform
applied to lead v3 in ECG dataset for variations in shapelet length, L, and the selected classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 95.000% 92.000% 84.000% 81.000% 69.000% 81.000% 74.000% 76.000%
J48 94.000% 89.000% 82.000% 87.000% 77.000% 74.000% 74.000% 77.000%
Random forest 94.000% 87.000% 82.000% 91.000% 73.000% 68.000% 67.000% 72.000%
AdaBoost.M1 96.000% 91.000% 86.000% 87.000% 75.000% 80.000% 71.000% 78.000%
Classif. via regr. 95.000% 88.000% 81.000% 88.000% 76.000% 65.000% 73.000% 76.000%
Bagging 96.000% 88.000% 83.000% 87.000% 69.000% 78.000% 69.000% 71.000%
MultiBoostAB 97.000% 89.000% 82.000% 88.000% 73.000% 71.000% 70.000% 74.000%
LWL 97.000% 89.000% 82.000% 88.000% 72.000% 70.000% 74.000% 73.000%
PART 94.000% 89.000% 83.000% 86.000% 72.000% 74.000% 73.000% 77.000%
END 94.000% 89.000% 82.000% 87.000% 77.000% 74.000% 74.000% 77.000%
Decision stump 97.000% 89.000% 84.000% 88.000% 66.000% 69.000% 73.000% 76.000%
Simple CART 96.000% 91.000% 83.000% 88.000% 69.000% 76.000% 75.000% 76.000%
RIMARC 98.000% 94.000% 85.000% 93.000% 87.000% 86.000% 81.000% 81.000%
Bayes NET 97.000% 89.000% 83.000% 88.000% 71.000% 71.000% 73.000% 77.000%
Dagging 74.000% 73.000% 67.000% 73.000% 62.000% 60.000% 59.000% 67.000%
Random SubSpace 97.000% 71.000% 73.000% 86.000% 65.000% 71.000% 72.000% 73.000%
Decision Table 97.000% 89.000% 83.000% 88.000% 75.000% 80.000% 73.000% 78.000%
Ridor 94.000% 88.000% 83.000% 83.000% 71.000% 76.000% 72.000% 72.000%
ADTree 96.000% 89.000% 84.000% 88.000% 80.000% 75.000% 74.000% 71.000%
LAD Tree 96.000% 90.000% 83.000% 88.000% 71.000% 79.000% 76.000% 72.000%
Random Tree 94.000% 89.000% 85.000% 87.000% 76.000% 75.000% 70.000% 70.000%
AVERAGE 94.667% 87.762% 81.905% 86.667% 72.667% 73.952% 72.238% 74.476%
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Table 4.12 : Individual and ensemble average classification accuracies of the brute-force shapelet
transform applied to lead v4 in ECG dataset for variations in shapelet length, L, and the selected
classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 84.000% 74.000% 70.000% 80.000% 77.000% 89.000% 95.000% 95.000%
J48 97.000% 92.000% 88.000% 87.000% 94.000% 96.000% 99.000% 96.000%
Random forest 89.000% 92.000% 88.000% 90.000% 96.000% 99.000% 99.000% 99.000%
AdaBoost.M1 96.000% 94.000% 82.000% 84.000% 87.000% 99.000% 99.000% 97.000%
Classif. via regr. 94.000% 93.000% 83.000% 85.000% 88.000% 93.000% 99.000% 96.000%
Bagging 73.000% 72.000% 81.000% 79.000% 82.000% 84.000% 90.000% 90.000%
MultiBoostAB 89.000% 74.000% 78.000% 78.000% 80.000% 86.000% 91.000% 91.000%
LWL 98.000% 91.000% 85.000% 84.000% 90.000% 94.000% 100.000% 95.000%
PART 97.000% 92.000% 87.000% 89.000% 92.000% 96.000% 99.000% 96.000%
END 97.000% 92.000% 88.000% 87.000% 94.000% 96.000% 99.000% 96.000%
Decision stump 98.000% 91.000% 83.000% 84.000% 89.000% 93.000% 99.000% 96.000%
Simple CART 98.000% 94.000% 83.000% 84.000% 89.000% 97.000% 99.000% 96.000%
RIMARC 91.000% 94.000% 86.000% 84.000% 85.000% 87.000% 95.000% 95.000%
Bayes NET 78.000% 74.000% 80.000% 78.000% 81.000% 86.000% 92.000% 91.000%
Dagging 72.000% 74.000% 76.000% 81.000% 80.000% 83.000% 85.000% 86.000%
Random SubSpace 77.000% 74.000% 79.000% 77.000% 81.000% 85.000% 89.000% 91.000%
Decision Table 91.000% 67.000% 72.000% 72.000% 74.000% 76.000% 83.000% 81.000%
Ridor 96.000% 93.000% 84.000% 88.000% 89.000% 92.000% 99.000% 94.000%
ADTree 96.000% 92.000% 88.000% 90.000% 93.000% 97.000% 99.000% 97.000%
LAD Tree 95.000% 91.000% 86.000% 87.000% 95.000% 97.000% 99.000% 98.000%
Random Tree 79.000% 71.000% 73.000% 77.000% 70.000% 91.000% 90.000% 95.000%
AVERAGE 89.762% 84.810% 81.905% 83.095% 86.000% 91.238% 95.190% 93.857%

Table 4.13 : Individual and ensemble average classification accuracies of the fast shapelet transform
applied to lead v4 in ECG dataset for variations in shapelet length, L, and the selected classifiers.

L = 50 L = 100 L = 150 L = 200 L = 250 L = 300 L = 350 L = 400

Naive Bayes 58.000% 71.000% 88.000% 81.000% 85.000% 77.000% 77.000% 77.000%
J48 58.000% 75.000% 90.000% 79.000% 84.000% 74.000% 81.000% 82.000%
Random forest 59.000% 70.000% 91.000% 71.000% 81.000% 65.000% 64.000% 70.000%
AdaBoost.M1 64.000% 70.000% 87.000% 81.000% 86.000% 74.000% 77.000% 83.000%
Classif. via regr. 57.000% 72.000% 90.000% 81.000% 81.000% 75.000% 80.000% 83.000%
Bagging 53.000% 70.000% 88.000% 76.000% 83.000% 70.000% 79.000% 83.000%
MultiBoostAB 49.000% 70.000% 88.000% 77.000% 82.000% 74.000% 80.000% 83.000%
LWL 60.000% 74.000% 90.000% 76.000% 87.000% 73.000% 80.000% 83.000%
PART 58.000% 75.000% 90.000% 78.000% 83.000% 74.000% 81.000% 82.000%
END 58.000% 75.000% 90.000% 79.000% 84.000% 74.000% 81.000% 82.000%
Decision stump 55.000% 74.000% 90.000% 78.000% 87.000% 75.000% 80.000% 83.000%
Simple CART 61.000% 74.000% 88.000% 79.000% 82.000% 72.000% 80.000% 83.000%
RIMARC 77.000% 78.000% 97.000% 86.000% 89.000% 80.000% 83.000% 85.000%
Bayes NET 49.000% 68.000% 87.000% 78.000% 84.000% 75.000% 80.000% 83.000%
Dagging 57.000% 68.000% 82.000% 80.000% 80.000% 74.000% 77.000% 75.000%
Random SubSpace 49.000% 67.000% 78.000% 74.000% 76.000% 75.000% 80.000% 83.000%
Decision Table 58.000% 74.000% 87.000% 79.000% 87.000% 75.000% 80.000% 83.000%
Ridor 58.000% 71.000% 81.000% 77.000% 87.000% 72.000% 71.000% 81.000%
ADTree 68.000% 73.000% 93.000% 85.000% 77.000% 71.000% 77.000% 82.000%
LAD Tree 64.000% 73.000% 93.000% 82.000% 82.000% 72.000% 75.000% 81.000%
Random Tree 50.000% 70.000% 86.000% 70.000% 69.000% 72.000% 70.000% 67.000%
AVERAGE 58.095% 72.000% 88.286% 78.429% 82.667% 73.476% 77.762% 80.667%
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Figure 4.14 : Top 100 brute-force shapelets extracted with L = 300 from (a) MI and (b) NR instances,
and (c) the fast shapelets with L = 150 selected only among MI instances, overlaid with the associated
class representative average time series T A of lead v2.

enforced SCB lengths and for the selected classifiers are presented.

Similar to the results for AP in Section 4.1, the enforced window length of WTC
performs better than the shapelet-based methods.

4.3 Statistical Evaluation

We conclude the performance evaluation of the proposed WTC method by present-
ing a critical difference (CD) diagram [119]. The CD diagram is a representation
that enables statistical evaluation of multiple methods over multiple datasets. Briefly,
methods of interest are ranked for each dataset to obtain corresponding rank vec-
tors that are subsequently averaged to determine average ranks. Methods whose rank
differences exceed the value of CD are termed as “critically different”. The CD is
calculated as follows:

CD = qα

√
F(F + 1)

6R
, (4.3)

where F, R and qα denote the number of methods, number of datasets and “critical
value”, respectively. In our present study, we use F = 3 methods, R = 4 datasets and
q0.1 which is equal to 2.052 for a two-tailed Nemenyi test. We refer the reader to [119]
for further details about the CD diagram. In this analysis, we rank methods based on
their average classification accuracies taken over 21 classification algorithms. We
favor the benchmark methods by choosing their “best” L yielding the highest average
classification accuracy for each dataset as tabulated in Table 4.17.
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Table 4.14 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v2 of the ECG dataset for varying enforced SCB length, w, and for the selected classi-
fiers.

w = 50 w = 100 w = 150 w = 200 w = 250 w = 300 w = 350 w = 400

Naive Bayes 95.000% 98.000% 97.000% 96.000% 97.000% 95.000% 90.000% 95.000%
J48 99.000% 98.000% 96.000% 97.000% 97.000% 98.000% 95.000% 98.000%
Random forest 99.000% 99.000% 99.000% 100.000% 99.000% 99.000% 98.000% 99.000%
AdaBoost.M1 97.000% 99.000% 98.000% 98.000% 98.000% 97.000% 96.000% 98.000%
Classif. via regr. 95.000% 94.000% 97.000% 98.000% 100.000% 97.000% 94.000% 98.000%
Bagging 97.000% 97.000% 100.000% 100.000% 99.000% 100.000% 99.000% 99.000%
MultiBoostAB 97.000% 98.000% 100.000% 100.000% 100.000% 100.000% 100.000% 99.000%
LWL 96.000% 100.000% 99.000% 97.000% 99.000% 94.000% 89.000% 95.000%
PART 99.000% 98.000% 96.000% 97.000% 97.000% 98.000% 95.000% 98.000%
END 99.000% 98.000% 96.000% 97.000% 97.000% 98.000% 95.000% 98.000%
Decision stump 93.000% 93.000% 92.000% 93.000% 93.000% 90.000% 88.000% 92.000%
Simple CART 100.000% 100.000% 99.000% 98.000% 100.000% 97.000% 95.000% 97.000%
RIMARC 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Bayes NET 97.000% 98.000% 100.000% 100.000% 100.000% 100.000% 100.000% 99.000%
Dagging 92.000% 92.000% 96.000% 98.000% 94.000% 94.000% 91.000% 90.000%
Random SubSpace 96.000% 96.000% 99.000% 100.000% 100.000% 100.000% 98.000% 98.000%
Decision Table 98.000% 96.000% 100.000% 98.000% 99.000% 98.000% 99.000% 99.000%
Ridor 100.000% 100.000% 98.000% 96.000% 100.000% 97.000% 95.000% 97.000%
ADTree 100.000% 100.000% 99.000% 98.000% 100.000% 97.000% 95.000% 97.000%
LAD Tree 100.000% 100.000% 99.000% 99.000% 100.000% 97.000% 96.000% 97.000%
Random Tree 94.000% 98.000% 99.000% 97.000% 97.000% 98.000% 98.000% 99.000%
AVERAGE 97.286% 97.714% 98.048% 97.952% 98.381% 97.333% 95.524% 97.238%

Table 4.15 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v3 of the ECG dataset for varying enforced SCB length, w, and for the selected classi-
fiers.

w = 50 w = 100 w = 150 w = 200 w = 250 w = 300 w = 350 w = 400

Naive Bayes 86.000% 92.000% 96.000% 97.000% 95.000% 97.000% 97.000% 97.000%
J48 97.000% 100.000% 99.000% 96.000% 97.000% 98.000% 99.000% 97.000%
Random forest 99.000% 100.000% 99.000% 99.000% 99.000% 100.000% 99.000% 99.000%
AdaBoost.M1 98.000% 99.000% 99.000% 97.000% 100.000% 99.000% 98.000% 98.000%
Classif. via regr. 98.000% 95.000% 99.000% 94.000% 97.000% 96.000% 97.000% 95.000%
Bagging 98.000% 98.000% 97.000% 99.000% 98.000% 97.000% 99.000% 98.000%
MultiBoostAB 99.000% 100.000% 98.000% 98.000% 99.000% 97.000% 97.000% 97.000%
LWL 98.000% 95.000% 94.000% 95.000% 96.000% 91.000% 94.000% 94.000%
PART 97.000% 100.000% 99.000% 96.000% 97.000% 98.000% 99.000% 97.000%
END 97.000% 100.000% 99.000% 96.000% 97.000% 98.000% 99.000% 97.000%
Decision stump 98.000% 95.000% 93.000% 95.000% 96.000% 88.000% 94.000% 88.000%
Simple CART 98.000% 96.000% 97.000% 94.000% 96.000% 97.000% 98.000% 97.000%
RIMARC 99.000% 97.000% 97.000% 99.000% 100.000% 97.000% 97.000% 97.000%
Bayes NET 99.000% 100.000% 98.000% 98.000% 99.000% 97.000% 96.000% 97.000%
Dagging 95.000% 93.000% 93.000% 94.000% 94.000% 94.000% 95.000% 97.000%
Random SubSpace 99.000% 98.000% 97.000% 100.000% 98.000% 96.000% 96.000% 97.000%
Decision Table 97.000% 98.000% 97.000% 94.000% 97.000% 97.000% 96.000% 98.000%
Ridor 98.000% 97.000% 100.000% 94.000% 99.000% 95.000% 98.000% 93.000%
ADTree 98.000% 98.000% 99.000% 99.000% 99.000% 98.000% 97.000% 98.000%
LAD Tree 98.000% 97.000% 98.000% 97.000% 98.000% 99.000% 98.000% 98.000%
Random Tree 95.000% 93.000% 91.000% 94.000% 97.000% 90.000% 92.000% 97.000%
AVERAGE 97.190% 97.190% 97.095% 96.429% 97.524% 96.143% 96.905% 96.476%
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Table 4.16 : Individual and ensemble average classification accuracies of the proposed WTC method
applied to lead v4 of the ECG dataset for varying enforced SCB length, w, and for the selected classi-
fiers.

w = 50 w = 100 w = 150 w = 200 w = 250 w = 300 w = 350 w = 400

Naive Bayes 93.000% 92.000% 93.000% 97.000% 97.000% 97.000% 97.000% 97.000%
J48 99.000% 98.000% 98.000% 98.000% 100.000% 96.000% 97.000% 98.000%
Random forest 100.00% 98.000% 97.000% 99.000% 98.000% 97.000% 97.000% 99.000%
AdaBoost.M1 99.000% 100.000% 99.000% 98.000% 98.000% 94.000% 98.000% 98.000%
Classif. via regr. 97.000% 99.000% 95.000% 97.000% 97.000% 93.000% 92.000% 95.000%
Bagging 95.000% 96.000% 97.000% 97.000% 98.000% 95.000% 98.000% 98.000%
MultiBoostAB 96.000% 97.000% 97.000% 99.000% 98.000% 98.000% 98.000% 98.000%
LWL 98.000% 99.000% 95.000% 99.000% 100.000% 96.000% 96.000% 94.000%
PART 99.000% 98.000% 98.000% 98.000% 100.000% 96.000% 96.000% 98.000%
END 99.000% 98.000% 98.000% 98.000% 100.000% 96.000% 97.000% 98.000%
Decision stump 97.000% 97.000% 95.000% 94.000% 97.000% 88.000% 91.000% 91.000%
Simple CART 96.000% 96.000% 95.000% 95.000% 96.000% 94.000% 89.000% 94.000%
RIMARC 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 97.000%
Bayes NET 96.000% 99.000% 97.000% 99.000% 98.000% 98.000% 98.000% 98.000%
Dagging 87.000% 90.000% 94.000% 90.000% 96.000% 95.000% 94.000% 97.000%
Random SubSpace 96.000% 98.000% 96.000% 98.000% 98.000% 94.000% 98.000% 95.000%
Decision Table 97.000% 97.000% 93.000% 98.000% 98.000% 94.000% 97.000% 93.000%
Ridor 93.000% 94.000% 97.000% 96.000% 98.000% 91.000% 93.000% 94.000%
ADTree 99.000% 100.000% 99.000% 96.000% 97.000% 95.000% 98.000% 98.000%
LAD Tree 98.000% 100.000% 99.000% 99.000% 98.000% 96.000% 95.000% 98.000%
Random Tree 91.000% 92.000% 94.000% 93.000% 94.000% 81.000% 90.000% 94.000%
AVERAGE 96.429% 97.048% 96.476% 97.048% 97.905% 94.476% 95.667% 96.286%

Table 4.17 : Values of the shapelet length, L, used for critical difference diagram for the brute-force
and fast shapelet transforms.

Brute-force shapelet Fast shapelet

AP 400 300

ECG lead v2 300 150

ECG lead v3 400 50

ECG lead v4 350 150

The resulting CD diagram is shown in Fig 4.15. The horizontal axis in the diagram
represents the average ranks of each feature extraction method. The average rank
based on classification accuracy improves from left to right.

Figure 4.15 : Critical difference diagram based on the average classification accuracies achieved by
WTC, the brute-force and fast shapelet transforms.
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The CD is marked above the axis and corresponds to an indicator in rank magnitude
that is required for the compared methods to differ such that they are termed as “crit-
ically different”. The connecting blue lines in the diagram represent the groups of
methods that are not critically different. As far as the datasets of this study are con-
cerned, the proposed WTC method performs “critically better” than the fast shapelet
transform. Although WTC has a higher average rank than the brute-force shapelet
transform, the difference is not critically different.
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CHAPTER 5

DISCUSSION AND CONCLUSION

In this study, we propose a feature extraction termed as WTC to characterize the
signals in the form of time series. WTC is applied to a cardiac AP dataset with
labeled SR and AF patients and three precordial leads of an ECG dataset that consist
of control subjects and patients diagnosed with acute MI. Extracted feature vectors
from these datasets are then examined for their classification accuracies that yield
favorable results. Subsequently, brute-force and fast shapelet transforms are used to
compare the performance of WTC in terms of predictive accuracy and computational
complexity. Critical Difference (CD) analysis is performed on the datasets to reveal
that WTC is “critically better” than fast shapelet transform. Although WTC and brute-
force shapelet transforms are not “critically different”, the performance of the former
is slightly better.

Analog signal acquisition and digitization involve thermal and quantization noise and
biophysical signals that are not exceptions in this aspect. Noise caused by motion arti-
facts resulting from electrode, probe, sensor, equipment, and even from patient move-
ments constitutes disturbances in the desired signal in addition to thermal noise. Fur-
thermore, almost all biophysical signals exhibit individualized polymorphism among
instances to a certain extent as mentioned by [120] for ECGs, and this may hamper
interpretation. WTC constructs the class representative time series as an ensemble av-
erage of all instances sharing a common class label and devises a mean trajectory that
the population statistically follows within a confidence bound to mitigate the noise
originated effects and variability among individual instances. Hence, as opposed to
directly extracting features from the instances themselves, WTC uses a class repre-
sentative trajectory for this purpose. The study findings indicate that this approach
yields favorable results for AP and ECG datasets, and the latter is recognized as a
signal that is usually contaminated with high levels of noise [114], [115], [116].

The DCT representation of the time series in conjunction with the extraction of per-
ceptually important points (PIPs) constitutes a central part of the proposed WTC
method since it allows the determination of a proper window length for local fea-
tures. Briefly, DCT is utilized as a robust heuristic to feed a cut-off percentage to
select the PIPs from the class representative average time series. As a widely used
digital processing technique [121], DCT serves for the purpose of eliminating redun-
dancy in the processed data. We note that, WTC determines the time windows and
also assigns scores to indicating an order based on their descriptive power.

The presented results from completely different datasets reveal that the values of the
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energy threshold (δ) and the confidence level (p) parameters that yield favorable re-
sults for the WTC method are almost the same, thereby demonstrating its consistency.
In contrast to the length parameter (L) of the shapelet-based methods, the parameters
of the WTC method are unitless and relatively less sensitive to the dataset of interest.
Moreover, the accuracy cost of deviation from the values is relatively less when com-
pared to those involved in the benchmark methods. The results of the study indicate
that it is possible for prospective users of the WTC method to use the recommended
values of the parameters (δ = 0.9990 and p = 0.95) for different datasets without
engaging in the parameter exploration step.

Execution time is an important criterion for online applications and especially for
those involving big datasets. The O(KN + N2) complexity of the proposed WTC
method outperforms the benchmark methods of brute-force, [28] and fast shapelet,
[83] transforms in terms of computational complexity. In addition to the time-consuming
training phase of shapelet-based transforms, [28], the discovered shapelets may not
belong to the time windows associated with the expected morphologies of the class
label of interest. Unconstrained selection of subsequences based solely on their min-
imum distance to other subsequences from arbitrary time intervals may hinder ac-
curate assessment of the underlying dynamics. Moreover, the temporal location of
a subsequence is typically associated with a specific importance for clinical inter-
pretation that may be disregarded by the very nature of time series shapelets. For
instance, if a shapelet is extracted from a temporal interval between sample points n1
and n2 on a time series instance and matched with another location between n3 and
n4 as depicted in Fig. 5.1, then the ordinality of the sequence is lost. Additionally,
the necessity of providing the shapelet length and total number of shapelets requires
preliminary knowledge as well as forming assumptions about the dataset of interest.

n1 n2 n3 n4

Figure 5.1 : An extracted shapelet from an example time series matching to multiple time windows
([n1, n2] and [n3, n4]) along the entire time series instance.

Our study indicates that time windows of WTC that coincide with phases 2 and 3
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of the AP signal (Fig. 2.1) are most predictive for both classes. The plateau of AP
(phase 2) is governed by the balance between calcium influx through L-type Ca2+

channels and potassium efflux via a plethora of K+ channels, whereas late repolar-
ization (phase 3) is dominated by K+ current (IK1) through inward rectifier channels
(compare Fig. 2.2). The more positive potentials during early repolarization and the
rapid final repolarization in AF correspond to reduced transient outward current and
enhanced IK1, respectively as induced by remodeling in chronic AF [36]. The high
predictive power of phases 2 and 3 as shown in the present study (with reference to
color maps in Figs. 4.6a and 4.6b) is in good agreement with a previous study on
human atrial APs that introduced the analysis parameter “plateau potential” (PLT20)
that is defined as the average membrane potential of a time window between 20% and
30% of the AP duration at 90% of repolarization (APD90) [122]. In fact, PLT20 (mV)
and APD90 (ms) were ranked 5th and 1st, respectively, out of 62 features in classifying
an instance as positive for AF [66]. The ability to classify an AP as AF or SR allows
the formation of conclusions with respect to the underlying changes in ion channel
properties and is of significance to predict antiarrhythmic drug action [123]. The find-
ings on AP dataset do not point to a clinical outcome, but they hold an experimental
relevance. Thus, it provides good real-life biophysical data to test the discriminative
power of the WTC method aided by the preserved locality of the extracted features.

In addition to the AP dataset, analysis of the three chest leads of an ECG dataset is
suitable for demonstrating the usability of the proposed method for clinical applica-
tions. With respect to the MI that corresponds to the condition of interest, certain
leads in ECG recordings are expected to undergo predictable morphological and tem-
poral changes including an elevation of the ST-segment (during STEMI) [68] and
is usually preceded by subtle changes in the T-wave shape and size [124] and suc-
ceeded by a loss of the R-wave amplitude [40]. The distribution of the similarity
scores across the time windows in Figs. 4.12a, 4.12c and 4.12e is coherent with the
aforementioned morphologies expected to be observed in anterior chest leads of v2,
v3 and v4, respectively. On the other hand, the resulting shapelets of the brute-force
shapelet transform for lead v2 of MI time series instances (Fig. 4.14) do not partic-
ularly highlight any clinically relevant time windows. In a manner similar to the AP
dataset, the resulting classification accuracies of brute-force shapelet transform for
the ECG dataset (Tables 4.8, 4.10 and 4.12) show considerable variation with respect
to the input parameter of shapelet length.

We believe WTC has potential clinical benefits including its integration related to
emergency, ambulatory, inpatient, and home care online expert systems that com-
monly suffer from the misinterpretation of different symptoms [125]. Cases demand-
ing urgent decision making, such as MI, require a digital assessment of the available
measurements and decision support for triage. Early diagnosis and determining the
severity of MI is vital for the patients, [126]. Prior to in-hospital interventions, it is
advantageous to perform a preliminary analysis of the prehospital ECGs through mo-
bile expert systems to alert patients, caregivers, or primary healthcare professionals
[118]. Recently, ECG devices are equipped with various diagnostic detection mech-
anisms such as ST-segment monitoring to detect silent ischemia. Specifically for the
case of ischemia, it is possible for the course of the disease to change rapidly and
therefore a single randomly performed ECG may be insufficient to describe its ex-
tent. In order to devise a reasonable plan for treatment, extant studies indicate that
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a continuum of ECGs should be assessed [127]. In addition to pointing out the in-
cidence of a disorder, WTC is also suitable for distinguishing the various types of
morphologies. For example, it is necessary to differentiate tall and symmetrical T
waves that are observed during hyperkalemia from broad and rather skewed hyper-
acute T waves that typically occur in the early stages (within the first 30 minutes) of
STEMI [128]. Furthermore, WTC can also contribute to the education of medical
professionals in the course of their training. The “human readability” aspect of the
algorithm allows practitioners to recognize patterns more easily and study underlying
dynamics and possible “cause-and-effect” relations that require emphasis. Moreover,
its modest computational complexity is such that it can be integrated with any kind of
mobile or centralized framework as well as stand-alone offline units that require the
rapid examination of densely sampled time series data.

The findings of this study indicate that WTC emerges a robust, fast, interpretable,
and accurate time series feature extraction method based on the results presented for
the atrial AP and ECG time series datasets. In addition to achieving relatively higher
classification accuracies and lower execution times, the proposed method highlights
the underlying dynamics that are typical of the inspected class label. WTC yields
results in accordance with extant studies concerning atrial AP and ECG.

In conclusion, WTC emerges as a promising analysis tool with an unbiased param-
eter determination for biomedical researchers to conduct objective data mining anal-
ysis. Future studies will focus on the application of WTC to other biophysical time
series such as heart auscultation, spirogram (for assessing pulmonary disabilities),
electromyogram and electroneurogram recordings, event-related brain potentials, and
regular measurements of blood pressure and blood sugar (for detecting hypo/hyper-
glycemic periods).
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APPENDIX A

Extended Results for AP Dataset

A.1 Figures for Cardiac Action Potential (AP) Dataset
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Figure A.1 : Confidence bands with p = 0.99 overlaid for AF and SR classes.
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Figure A.2 : Identified PIPs with δ = 0.9900 from the class representative average time series of AF
and SR classes.
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Figure A.3 : Identified PIPs with δ = 0.9999 from the class representative average time series of AF
and SR classes.
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Figure A.4 : The weights α j, β j and γ j calculated with p = 0.95 and δ = 0.9900 for for SCBs in (a)
AF and (b) SR.
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Figure A.5 : The weights α j, β j and γ j calculated with p = 0.95 and δ = 0.9999 for for SCBs in (a)
AF and (b) SR.
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Figure A.6 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9900 for for SCBs in (a)
AF and (b) SR.
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Figure A.7 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9990 for for SCBs in (a)
AF and (b) SR.

73



2 4 6 8 10 12 14 16 18 20
 j (SCB index)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

w
ei

gh
ts

α
j

β
j

γ
j

(a) AF

10 20 30 40 50 60
 j (SCB index)

0

0.05

0.1

0.15

w
ei

gh
ts

α
j

β
j

γ
j

(b) SR

Figure A.8 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9999 for for SCBs in (a)
AF and (b) SR.
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Figure A.9 : Color map plots for the average values of Z j calculated with p = 0.95 and δ = 0.9900
for the test set.
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Figure A.10 : Color map plots for the average values of Z j calculated with p = 0.95 and δ = 0.9999
for the test set.
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Figure A.11 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9900
for the test set.
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Figure A.12 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9990
for the test set.
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Figure A.13 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9999
for the test set.
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APPENDIX B

Extended Results for ECG Dataset
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B.1 PTBDB ECG Dataset Instances

Table B.1 : Record identifications for the time series instances analyzed in Chapter 4 from PTB
Diagnostic ECG Database (https://physionet.org/cgi-bin/atm/ATM)

MI PATIENTS CONTROL SUBJECTS

patient004-s0020are patient104-s0306lre

patient005-s0021are patient116-s0302lre

patient006-s0022lre patient117-s0291lre

patient007-s0026lre patient121-s0311lre

patient010-s0036lre patient122-s0312lre

patient012-s0043lre patient156-s0299lre

patient013-s0045lre patient165-s0322lre

patient019-s0077lre patient166-s0275lre

patient024-s0084lre patient169-s0328lre

patient025-s0087lre patient170-s0274lre

patient026-s0088lre patient172-s0304lre

patient027-s0089lre patient173-s0305lre

patient029-s0122lre patient174-s0300lre

patient032-s0102lre patient180-s0374lre

patient034-s0109lre patient182-s0308lre

patient036-s0111lre patient184-s0363lre

patient039-s0129lre patient198-s0402lre

patient042-s0135lre patient233-s0457-re

patient046-s0156lre patient235-s0461-re

patient048-s0171lre patient236-s0462-re

patient058-s0216lre patient238-s0466-re

patient061-s0210lre patient239-s0467-re

patient063-s0214lre patient240-s0468-re

patient075-s0242lre patient241-s0469-re

patient076-s0250lre patient242-s0471-re

patient082-s0267lre patient243-s0472-re

patient091-s0357lre patient245-s0474-re

patient094-s0370lre patient246-s0478-re

patient096-s0379lre patient247-s0479-re

patient098-s0398lre patient248-s0481-re

patient099-s0387lre patient251-s0486-re

patient101-s0400lre patient252-s0487-re

patient120-s0331lre patient255-s0491-re

patient138-s0005-re patient260-s0496-re

patient139-s0223-re patient263-s0499-re

patient211-s0433-re patient266-s0502-re

patient223-s0446-re patient267-s0504-re

patient265-s0501-re patient276-s0526-re

patient268-s0505-re patient277-s0527-re

patient270-s0507-re patient284-s0551-re
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B.2 Figures for ECG Dataset
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Figure B.1 : Confidence bands with p = 0.99 overlaid for the MI and NR classes in (a)v2 (b)v3 and
(c)v4 leads of ECG dataset.
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Figure B.2 : Identified PIPs from the MI and NR class representative average time series with δ =

0.9900 from (a)v2 (b)v3 and (c)v4 leads of ECG dataset.
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Figure B.3 : Identified PIPs from the MI and NR class representative average time series with δ =

0.9999 from (a)v2 (b)v3 and (c)v4 leads of ECG dataset.
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Figure B.4 : The weights α j, β j and γ j calculated with p = 0.95 and δ = 0.9900 for SCBs in leads
v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.5 : The weights α j, β j and γ j calculated with p = 0.95 and δ = 0.9999 for SCBs in leads
v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.6 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9900 for SCBs in leads
v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.7 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9990 for SCBs in leads
v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.8 : The weights α j, β j and γ j calculated with p = 0.99 and δ = 0.9999 for SCBs in leads
v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.9 : Color map plots for the average values of Z j calculated with p = 0.95 and δ = 0.9900
for the leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.10 : Color map plots for the average values of Z j calculated with p = 0.95 and δ = 0.9999
for the leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.11 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9900
for the leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.12 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9990
for the leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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Figure B.13 : Color map plots for the average values of Z j calculated with p = 0.99 and δ = 0.9999
for the leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR.
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E. Karaagaoglu, A. Güvenir, E. Ertugay, R. Koselerli, A. Bürkan, M. Kuruca,

Y.G. Ilhan, J.A. Camm, A. Oto “Hospitalization for Atrial Fibrillation In-

creases in the Elderly: Recent Analysis From TuRkish Atrial Fibrillation

Data Base, Circulation, Nov. 2013.

8. N. Ata, B. Yavuz, E. Oto, D. Katircioglu Öztürk, K. Aytemir, E. Karais-
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