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ABSTRACT 

TREE CROWN DETECTION USING MULTISPECTRAL SATELLITE 

IMAGERY 

 

ONAĞ, Mehmet Mert 

MSc., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

 

 

May 2018, 76 pages 

 

Forests have an essential place in our lives because they provide various components 

for source of life. In parallel with the growing environmental awareness, the 

importance of forests has increased in recent years. Forestry policy of a country 

predominantly depends on its regional forest inventory. However, the establishment 

of forest inventories in areas with large forest areas is a demanding time-consuming 

and expensive process due to physical constraints.  

This thesis aims to detect trees in very high resolution multispectral satellite images, 

in particular WorldView-2 and WorldView-3 which provide eight spectral bands in 

the visible near infrared (VNIR) region. The first step of tree detection process is 

detecting vegetated areas from satellite imagery. For this purpose, different vegetation 

indices used by other researchers as well as some novel vegetation indices and their 

combinations are analyzed. In this step, different thresholds are experimented for 

vegetation indices to improve accuracy. Tree crowns in vegetated areas are determined 

by local maxima of NIR1 band of the satellite images. In this step, local maxima 

algorithm is utilized for detecting treetops. Low pass filtering is applied before local 

maxima detection to improve accuracy. After finding local peaks, shadowy areas are 

detected and their positions are validated by the trees detected earlier to eliminate false 

detections such as grass. The proposed method achieved better overall performance 

when compared with similar tree detection methods. 

Keywords: multispectral satellite imagery, WorldView, NDVI, tree crown detection, 

shadow detection 
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ÖZ 

MULTISPEKTRAL UYDU İMGELERİNDEN AĞAÇ TAÇLARININ TESPİT 

EDİLMESİ 

 

ONAĞ, Mehmet Mert 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

 

 

Mayıs 2018, 76 sayfa 

 

Ormanlar hayatımızda önemli bir yere sahiptir, çünkü ormanlar yaşamın kaynağı olan 

çeşitli bileşenleri sağlar.  Son yıllarda artan çevre bilincine paralel olarak, ormanların 

önemi daha da artmaya başlamıştır. Bir ülkenin ormancılık politikası, ağırlıklı olarak 

bölgesel orman envanterine bağlıdır. Ancak, geniş ormanlık alanlarda orman 

envanterlerinin tespit edilmesi, fiziksel kısıtlamalar nedeniyle zaman alıcı ve pahalı bir 

süreçtir. 

Bu tez, görünür yakın kızılötesinde sekiz spektral bant sağlayan WorldView-2 ve 

WorldView-3 çok yüksek çözünürlüklü multispektral uydu imgelerinden ağaçların 

tespit edilmesini hedefler. Ağaç tespit sürecinin ilk adımı, uydu görüntülerinden bitki 

örtüsü içeren alanları tespit etmektir. Bu amaçla, diğer araştırmacılar tarafından 

kullanılan farklı bitki örtüsü indeksleri ve bazı yeni bitki örtüsü indeksleri ve bunların 

birleşimleri analiz edilmiştir. Bu adımda, doğruluk oranını artırmak için farklı eşik 

değerleri denemiştir. Bitkisel alanlardaki ağaç taçları, uydu görüntülerinin yakın 

kızılötesi bandının yerel maksimumu ile belirlenmiştir. Bu adımda, ağaç tepelerinin 

tespiti için yerel maksimum algoritması kullanılmıştır. Doğruluğu iyileştirmek için 

yerel maksimum bulma işleminden önce düşük frekans geçişli filtreleme 

uygulanmıştır. Yerel maksimumları bulduktan sonra, çim gibi yanlış tespitleri ortadan 

kaldırmak için gölgeli alanlar ve tespit edilen noktalara göre bu alanların yerleri tespit 

edilmiştir. Önerilen yöntemin genel performansı, benzer ağaç algılama yöntemleri ile 

karşılaştırıldığında daha doğru sonuçlar verdiği görülmüştür. 

Anahtar Sözcükler: multispektral uydu imgesi, WorldView, normalize edilmiş fark 

bitki örtüsü indeksi, ağaç tacı tespit etme, gölge tespit etme 
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CHAPTERS 

CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Motivation 

Research in the area of remote sensing is one of the most popular topics of the recent 

years. With the development of very high resolution multispectral satellite sensors, 

more information about earth surface like sea, soil, vegetation, or manmade objects is 

extracted from satellite images in a cost effective way. 

While green vegetation absorb solar radiation in the visible red band to do 

photosynthesis, they reflect solar radiation in near infrared spectral region to avoid 

over-heating and harm themselves [1]. Since many multispectral satellite sensors 

provide information on infrared spectral bands as well as on visible bands, detecting 

individual tree crowns from satellite imagery using this contrast has begun to be one 

of the valuable research areas in satellite image processing. Moreover, detection of 

tree crowns can help to keep inventory of trees and to analyze number of them through 

the time in both urban and rural areas. 

Tree crown detection process starts with detecting vegetated areas from satellite 

imagery. To investigate this phenomenon, vegetation indices are developed for 

determining the pixels belonging to vegetation areas. Since tree crowns and other 

vegetated areas like grass or shrub show similar spectral characteristics, discriminating 

tree crowns and other vegetated areas is a challenging problem. Therefore, without 

discriminating tree crown and other vegetated areas, acquiring accurate results may 

not be possible. Thus, the main objective of treetop detection is identifying the trees in 

satellite imagery when other vegetated areas are present. On the other hand, the 

requirement of tree crown detection from identified vegetated areas is also a 

complicated process. Because, when the frequency and variations in the size of tree 

crowns increases, identification of treetops becomes more demanding. 
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1.2 Scope and goal 

This study is dedicated to detecting tree crowns from remotely sensed data. 

WorldView-2 and WorldView-3 multispectral images that provide 8 different spectral 

bands with high spectral resolution are used. Seven different scenes (four WorldView-

2 and three WorldView-3) are cropped from these images for experiments. The main 

objectives of this study are listed below: 

 To identify of tree crowns from vegetated areas that extracted by the vegetation 

indices. 

 To determine the vegetation index that gives best results among other 

vegetation indices.  

 To propose some novel vegetation indices to detect vegetated areas accurately. 

 To analyze local maxima detection algorithm for detecting treetops by using 

different window sizes and low pass filters. 

 To analyze the contribution of treetop validation by shadowy areas according 

to their positions to discriminate treetops and grass. 

 

1.3 Outline of thesis 

This thesis is organized as five chapters including introduction, background, 

methodology, experiments and conclusion. In Chapter 2, literature survey on pan-

sharpening, vegetation indices, tree crown detection, and shadow detection is 

provided. Moreover, the data that is used in this study, the proposed tree crown 

detection method, pre-processing method, and vegetation indices are described in 

Chapter 3. Also, novel vegetation indices are proposed in this chapter. Chapter 4 

presents experiments, accuracy results and their comparison for the proposed methods. 

Finally, the thesis is finalized with a summary of our research and possible future work 

for this study is stated in Chapter 5.  
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CHAPTER 2 

 

2 BACKGROUND  

 

Remote sensing is the term that refers to gathering information about physical objects 

from a distance without physical contact. This valuable information about earth surface 

can be acquired by sensors stationed on ground vehicles, aircraft (airborne) or satellites 

(spaceborne) [2]. These sensors can be classified into two primary categories as active 

and passive sensors. The active types of sensors transmit pulses of energy and receive 

the reflected pulses of energy from the Earth’s surface. On the other hand, the passive 

type of sensors measure emitted energy from the atmosphere, surface or transmitted 

from the subsurface [3]. Depiction of passive and active remote sensing can be seen in 

Figure 1. Since different objects can show different spectral reflectance by reflecting 

or absorbing different wavelengths, these objects can be classified according to their 

spectral reflectance [2]. 

 

Figure 1: Passive and active remote sensing 
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Most of the active sensors make use of microwave part of the electromagnetic 

spectrum, whereas the majority of the passive sensors operate in the visible, infrared, 

thermal infrared, as well as the microwave part of the electromagnetic spectrum [4]. 

Figure 2 shows the electromagnetic spectrum. 

 

Figure 2: Electromagnetic spectrum 

Optical and infrared passive remote sensors can be classified into three different 

categories according to the spectral bands used in the sensing process. These systems 

are called panchromatic imaging systems, multispectral imaging systems, and 

hyperspectral imaging systems. 

Panchromatic imaging systems utilize a single channel sensor. This sensor is sensitive 

to radiation within a wide wavelength range. These systems measure the apparent 

brightness of the objects disregarding the spectral information. Consequently, the 

result of imaging system shows a "black-and-white" image. WorldView-1, IKONOS 

PAN, and QuickBird PAN are examples of this type of imaging systems. 

Multispectral imaging systems use multichannel sensors with three or more spectral 

bands. These channels usually sense the radiation within a narrow bandwidth. The 

output images contain both spectral and brightness information. IKONOS MS, 

LANDSAT MS, WorldView-2 MS are examples for multispectral imaging systems. 

Hyperspectral imaging systems, which are also known as “imaging spectrometers”, 

have typically 100 or more spectral contiguous bands. These imaging systems provide 

precise spectral information about target objects. Hyperion, ROSIS and AVIRIS are 

some examples of hyperspectral imaging systems [5]. 
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In recent decades, multispectral very high spatial resolution satellites were launched, 

hence detailed information of the objects on earth’s surface can be easily accessed [6]. 

Vegetated areas are effectively extracted using VNIR (visible and near infrared) and/or 

SWIR (short-wave infrared) bands. Multispectral satellites can often gather 

information about these bands. Figure 3 shows spectral response patterns -also called 

spectral signatures- of grass, soil and water. 

 

Figure 3: Spectral response patterns 

There are some issues in multispectral image processing. Firstly, spectral signature of 

the same object can be different in different images due to positioning and properties 

of the sensor, meteorological conditions, or image acquisition date and time. Also, 

there is a trade-off between spatial and spectral resolution. The square of ground 

imaged by a single pixel corresponds to the spatial resolution of a sensor, whereas the 

spectral resolution can be defined as the granularity of the electromagnetic spectrum 

that a sensor will detect. Although one pixel of a multispectral image can store more 

spectral information than panchromatic images, it has lower spatial resolution as 

illustrated in Figure 4. 
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Figure 4: Spectral vs. spatial resolution 

These challenges can be overcome by various multispectral image processing 

methods. For instance, pan-sharpening methods can be used to incorporate higher 

spatial resolution of the panchromatic images into corresponding multispectral image. 

These techniques fuse the low spatial resolution multispectral image and high spectral 

resolution multispectral image and produce higher spatial resolution multispectral 

image. 

 

2.1 Literature Survey 

In this thesis, multispectral imagery is pre-processed using a pan-sharpening algorithm 

for higher spatial resolution. Hyperspherical Color Sharpening (HCS) method is 

utilized for this purpose. For vegetation detection from multispectral satellite imagery, 

various vegetation indices are experimented for masking non-vegetated areas. 

Furthermore, local maxima detection method is utilized as tree crown finder from 

masked satellite imagery. Finally, shadows are detected to eliminate the trees which 

are presupposed as tree crowns. 

 

2.1.1 HCS Pan-Sharpening 

In high resolution multispectral imagery, panchromatic image has usually higher 

resolution than multispectral image. Therefore, most of the researchers utilized various 

pan-sharpening algorithms for obtaining high resolution multispectral images. I 

preferred to take advantage of HCS algorithm designed by Padwick et al. in this study. 
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They reported that the HCS algorithm can handle any number of input spectral bands 

and so the method is suitable for WorldView-2 imagery. This algorithm gets all of the 

bands of imagery as input and produces same number of sharpened spectral bands. 

They proposed two modes of algorithm: naïve and smart mode[7].  

Immitzer et al. utilized the HCS algorithm for sharpening WorldView-2 image to 

classify tree species using Random Forest classifier [8]. Another study that utilized 

HCS algorithm is performed by Karlson et al. They implemented the HCS algorithm 

on WorldView-2 image as preprocessing step of tree crown mapping process [9]. 

Detailed information about this algorithm is described in Section 3.2. 

 

2.1.2 Vegetation Indices 

Vegetation index is a spectral transformation of two or more bands to detect vegetated 

areas or to determine vegetation properties [10]. Since number of spectral bands 

provided by multispectral sensors increased through decades, different vegetation 

indices utilizing different spectral bands derived. In this study, I examined thirteen 

different vegetation indices utilized by other researchers for extracting tree crowns on 

multispectral imagery. These will be introduced in this section. I found out Normalized 

Difference Vegetation Index (NDVI) utilizing NIR1 band of WorldView-2 and 

WorldView-3 imagery produced better results than others.  

 

2.1.2.1 Excess Green 

Excess green index (ExG) is visible spectral band based vegetation index designed by 

Woebbecke et al. (1995) to identity greenness of vegetation [11]. Calculation of Excess 

Green starts with applying normalization of spectral components. 

 𝑔 =  
𝐺

𝑅+𝐺+𝐵
 , 𝑟 =  

𝑅

𝑅+𝐺+𝐵
 , 𝑏 =  

𝐵

𝑅+𝐺+𝐵
 (1) 

These normalized values (g, r, b) are in the range [0, 1]. Then, Excess Green index is 

computed according to following equation: 

 𝐸𝑥𝐺 = 2𝑔 − 𝑟 − 𝑏 (2) 
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Guijarro et al. used ExG index for segmentation of textures in agricultural images that 

include green plants, soil and the sky. The authors combined ExG index with other 

indices for detecting green plants. The index gave acceptable results for greenness 

detection [12]. Srestasathiern and Rakwatin used the index as candidate feature for 

detecting oil palm trees. However, ExG index produced very poor results for detecting 

oil palm trees [13]. Yang et al. utilized ExG index to identify greenness of crop images. 

Usage of the index in general produced good performance [14]. 

 

2.1.2.2 Excess Red 

Excess red index (ExR) is visible spectral band based vegetation index that is proposed 

by Meyer and Neto (1998) for vegetation separation [15]. Calculation of ExR index 

starts with applying normalization of spectral components.  

 𝑔 =  
𝐺

𝑅+𝐺+𝐵
 , 𝑟 =  

𝑅

𝑅+𝐺+𝐵
 , 𝑏 =  

𝐵

𝑅+𝐺+𝐵
 (3) 

These normalized values (g, r, b) are in the range [0, 1]. Then, ExR index is computed 

according to following equation. 

 𝐸𝑥𝑅 = 1.4𝑟 − 𝑔 (4) 

Guijarro et al. also used the ExR index. The authors utilized the index especially for 

soil detection [12]. On the other hand, Srestasathiern and Rakwatin considered ExR 

index for discriminating oil palm trees from background. The total dissimilarity metric 

of ExR index showed that ExR index was relatively good for discriminating oil palm 

trees and background but better results were obtained from other vegetation indices 

[13]. 

 

2.1.2.3 Excess Blue 

Excess blue index (ExB) is visible spectral band based vegetation index that is 

proposed by Guijarro et al. (2011) as a simple translation of ExR index. They used the 

ExB index to identify blueness for detecting sky parts of agricultural images [12]. The 

ExB index is calculated by changing red component of ExR index by the blue one. 

 𝐸𝑥𝐵 = 1.4𝑏 − 𝑔 (5) 

Another index which was analyzed by Srestasathiern and Rakwatin is excess blue. The 

index produced average result for discriminating oil palm trees and background [13]. 
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2.1.2.4  Excess Green - Excess Red 

Excess Green - Excess Red index (ExGR) is derived by subtracting ExR index from 

ExG index and introduced by Neto (2004) [16]. Formulation of the index is shown 

below: 

 𝐸𝑥𝐺𝑅 =  𝐸𝑥𝐺 − 𝐸𝑥𝑅 =  2𝑔 − 2.4𝑟 − 𝑏 (6) 

 

They used the index to separate pigweed and velvetleaf from soil background. Meyer 

and Neto utilized the index for automated crop imaging applications. The ExGR index 

showed better results for vegetation separation when compared to other vegetation 

indices that are analyzed in the study [15]. Srestasathiern and Rakwatin used the index 

as candidate index for oil palm tree detection. But, their analysis showed that the ExGR 

index gave poor results for oil palm tree detection [13]. Guijarro et al. also utilized this 

index to identify three components of scenes including green plants, soil and sky in 

agricultural images. They obtained satisfying results by using the index for greenness 

detection for segmenting and classifying vegetated areas [12]. 

 

2.1.2.5 Normalized Difference Index 

Normalized Difference Index (NDI) is firstly proposed by Tucker (1979) as “Green – 

Red Vegetation Index” for assessing the relationships between the vegetation index 

and biomass, leaf water and chlorophyll content. [17]. Perez et al. utilized this 

vegetation index for weed detection in cereal fields [18]. NDI is calculated by using 

green and red bands and is given as: 

 
𝑁𝐷𝐼 =  

𝐺 − 𝑅

𝐺 + 𝑅
 (7) 

Falkowski et al. utilized the index for characterizing and mapping forest fire fuels [19]. 

Motohka et al. used the index as vegetation phenological indicator. Their study showed 

that NDVI is not sensitive enough to seasonal color changes of leaves. They utilized 

NDI to monitor leaf coloring [20].  NDI is also among the vegetation indeces utilized 

by Waser et al. It is used in a classification algorithm (multinomial logistic regression 

technique) as an explanatory variable [21]. Srestasathiern and Rakwatin used the index 

as candidate index for oil palm tree detection and this index had the highest 

dissimilarity metric in the study [13]. Meyer and Neto utilized the index with Otsu 

threshold for automated crop imaging applications. Although the index showed poor 

results for vegetation detection, it worked well for the bare soils [15]. 
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2.1.2.6 Green Normalized Difference Vegetation Index 

Green Normalized Difference Vegetation Index (GNDVI) is proposed by Gitelson et 

al. (1996) by replacing the red component of NDVI with the green component [22]. 

GNDVI is calculated by using NIR and green bands and is given as: 

 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 (8) 

 

Srestasathiern and Rakwatin utilized the index for oil palm tree detection. The result 

of discrimination analysis of the index showed that GNDVI produced poor 

dissimilarity metrics [13]. Waser et al. used the index as another explanatory variable 

of classification algorithm that classifies seven different tree species and different 

levels of damaged ash [21]. Hunt et al. utilized the index to measure crop biomass 

remotely. They proposed to use the index instead of NDVI in NIR-green-blue in digital 

images that lack the red bands [23]. 

 

2.1.2.7 NIR2-Yellow Vegetation Index 

NIR2-Yellow Vegetation Index (NYVI) is used by Waser et al. (2014) to classify tree 

species and levels of ash mortality. The index is employed in explanatory variables of 

multinomial logistic regression [21]. The calculation of the index is based on 

normalized difference of NIR2 and yellow components of multispectral imagery and 

calculated as given below: 

 
𝑁𝑌𝑉𝐼 =  

𝑁𝐼𝑅2 − 𝑌

𝑁𝐼𝑅2 + 𝑌
 (9) 

Nouri et al. investigated five combinations of eight spectral bands of WorldView-2 

images for finding relationship between vegetation indices and temporal urban 

landscape evapotranspiration factors and one of the combinations was NYVI. 

However, results of their analysis showed that NDVI is the most reliable vegetation 

index among the five vegetation indices [24].  

 

2.1.2.8 RedEdge-Yellow Vegetation Index 

RedEdge-Yellow Vegetation Index (REY) was firstly proposed by Gwata in 2012 for 

terrain classification purposes. Gwata analyzed also new spectral bands of 

WorldView-2 for vegetation detection [25]. Calculation of REY is similar with NDVI 

except that RedEdge and Yellow bands are used as components of the vegetation index 

for the calculation. 
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𝑅𝐸𝑌 =  

𝑅𝐸 − 𝑌

𝑅𝐸 + 𝑌
 (10) 

Waser et al. also used the index as one of the variable of multinomial logistic 

regression techniques [21]. 

 

2.1.2.9 NIR1-Red-yellow Ratio Vegetation Index 

Gwata defined and utilized the NIR1-Red-yellow Ratio Vegetation Index (NIRRY) as 

input for classification algorithm in 2012. Gwata’s study showed that the index was 

successful for differentiating healthy and unhealthy vegetation [25]. The index is 

calculated as given below: 

 
𝑁𝐼𝑅𝑅𝑌 =

𝑁𝐼𝑅1

𝑅 + 𝑌
 (11) 

Waser et al. utilized the index for classifying trees and detecting different levels of tree 

damage [21].  

 

2.1.2.10 Normalized Red Index 

Within the recent decades, Normalized Red Index (NR) was firstly proposed by 

Sripada for defining in-season nitrogen needs for corn [26]. NR is calculated by 

normalizing red band and is given as: 

 
𝑁𝑅 =  

𝑅

𝑁𝐼𝑅1 + 𝑅 + 𝐺
 (12) 

Srestasathiern and Rakwatin utilized NR as a candidate index for oil palm tree 

detection. However, the index did not provide sufficient distinctive results for oil palm 

tree detection [13]. NR is also used by Verma et al. for classification of LISS IV 

imagery. The index took place in proposed decision tree as a node and finally they 

produced eight classes (water, fallow, settlement, poplar tree, orchard, sugarcane, 

paddy, sorghum) [27].  
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2.1.2.11 Normalized NIR1 Index 

Another vegetation index which was proposed by Sripada (2005) is Normalized NIR 

index (NNIR). The index is used for the same purposes as NR [26]. NNIR is calculated 

by normalizing NIR1 band as given below: 

 
𝑁𝑁𝐼𝑅 =  

𝑁𝐼𝑅1

𝑁𝐼𝑅1 + 𝑅 + 𝐺
 (13) 

NNIR is also used by Srestasathiern and Rakwatin for oil palm tree detection. 

However, NNIR gave poor results according to calculated dissimilarity metrics [13]. 

Another study that used the index is made by Verma et al. to classify LISS IV imagery. 

One node of proposed decision tree included NNIR value for classification [27]. 

2.1.2.12 Normalized Difference Vegetation Index 

Normalized difference vegetation index (NDVI) was firstly developed in 1973 by 

Rouse et al. for monitoring vegetation conditions in the Great Plains [28]. The index 

defined as the difference of NIR band and red band divided by their sum as shown 

below: 

 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (14) 

NDVI has been the choice of many researchers for vegetation detection over the years 

[29]. Nouri et al. utilized NDVI for investigating relationship between different 

combinations of normalized difference vegetation indices and temporal urban 

landscape evapotranspiration factors. Their study showed that NDVI with NIR1 of 

WorldView-2, hence NDVI1, gave best results among the five combinations of 

normalized difference vegetation indices [24]. Gwata used the index for vegetation 

detection and as input for classification algorithm to extract various vegetation classes 

using different bands of WorldView-2 imagery [25]. Verma et al. also utilized the 

index in decision tree classification to classify water, fallow, settlement and five 

different species of vegetation. They employed Indian satellite IRS-P6, LISS-IV 

sensor’s forth band as NIR band [27].  

As WorldView-2 satellite has two different NIR bands, some researchers have 

investigated the potential of each NIR band. Eckert referred normalized difference 

vegetation index-2 (NDVI2)  

 
𝑁𝐷𝑉𝐼2 =  

𝑁𝐼𝑅2 − 𝑅

𝑁𝐼𝑅2 + 𝑅
 (15) 

to develop biomass and carbon estimation models for humid rainforest. However, 

NDVI2 did not show good correlation between biomass and carbon [30].  
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Marshall et al. tried to detect buffel grass and for that purpose utilized the index for 

extracting vegetation components of land cover from the WorldView-2 multispectral 

satellite image [31]. However, Santos and Freire reported that NDVI2 did not capture 

photosynthetic activity as well as the NDVI1 [32]. The same issue is also addressed 

by Nouri et al [24]. 

 

2.1.3 Local Maxima Detection 

In order to find treetops from the multispectral satellite imagery, local maxima 

detection algorithm is used by various researchers. The main idea of detecting treetops 

by using local maxima detection algorithm is based on two principal assumptions. The 

first assumption is that the spectral reflectance of the treetop is higher than the other 

parts of tree crown. As for the second assumption, the spectral reflection decreases 

along the downward direction from the treetop [33]. Wulder et al. performed study for 

investigating the use of local maximum filtering for detecting tree locations from high 

spatial resolution imagery. They correctly detected 67% of the trees within the focused 

area [34]. As is seen in Figure 5, treetops show higher spectral reflectance. Since tree 

crowns on multispectral satellite images are often not unimodal a Gaussian low pass 

filter is applied on the multispectral satellite image before local maxima detection 

process [35]. 

 

Figure 5: Digital surface of a forest stand 

Smits et al. performed a study on examined local maximum algorithm to determine 

individual tree positions from the imagery that was sensed from aerial photography 

camera. They reported 71.3% of the trees were correctly identified [36]. Another study 

that utilized the local peak detection algorithm is performed by Srestasathiern and 

Rakwatin. Their study aims to detect oil palm trees from multispectral satellite 

imagery. They detected the location of oil palm tree by using local peak within the oil 
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palm tree area. F-measure values of their proposed method is ranging from 0.897 to 

0.993 for different areas [13]. Khalid et al. utilized the local maxima detection for 

locating the trees in Ampang Forest Reserve. They reported usage of local maxima 

with multiresolution image segmentation detects tree positions accurately [37]. 

In the proposed method, I validated candidate treetops detected by local maxima 

detection using their shadows. Consequently, I searched for a shadow detection 

algorithm for detecting shadows on multispectral imagery. 

2.1.4 Shadow Detection on Multispectral Image 

Tsai suggested an approach for detecting shadows in color aerial images. He 

transformed the RGB images to different invariant color spaces. Then several ratios 

are proposed for these transformed images and some thresholds are applied for 

identifying shadowy areas. They reported that hue, saturation, and intensity (HSI); 

luma, inphase, and quadrature(YIQ); and YCbCr color models produced better results 

[38]. 

Khekade and Bhoyar carried out a study on detection of shadows in color aerial images 

based on RGB and YIQ color spaces. They proposed a development on study of Tsai 

by adding a three step post processing method including histogram equalization, box 

filtering and thresholding using Otsu’s method. Their study showed that proposed 

method produces better visual performance [39].  

Sevim also utilized several color spaces for detecting shadowed areas on WorldView-

2 imagery [40]. To utilize the additional bands WorldView-2 provides, she also 

transferred false color images including the NIR bands into different color spaces. She 

converted RGB color space to NIR2-R-G color space. Sevim reported that improved 

results are obtained by using false color images on YUV and YIQ color spaces. Also, 

using new NIR band of WorldView-2 imagery, (NIR2), yields improved accuracy 

[40]. Sevim also investigated false color images on C1C2C3 color space for detecting 

shadows. However, this color space did not produced satisfying results in this study 

[41]. 

Previous research has guided us in detecting tree crowns in multispectral imagery. In 

next chapter, the study area and proposed methodology is presented. 
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CHAPTER 3 

 

3 METHODOLOGY 

 

In this research, I investigated the effects of vegetation indices and shadow based 

validated local maxima detection algorithm for detecting tree crowns from very high 

resolution multispectral imagery. Some cropped scenes of WorldView-2 and 

Worldiew-3 multispectral images were used to evaluate the performance of the 

proposed method. Detailed information about the data is presented in Section 3.1. 

Since, some changes are occurred through the time the ground truth data was extracted 

from the scenes visually. 

Multispectral data has often lower spatial resolution compared to panchromatic data. 

For this reason, data fusion via pan-sharpening was used to increase the spatial 

resolution of multispectral data. Pan-sharpening is described in Section 3.2. Thirteen 

different vegetation indices were tried that were described in Chapter 2. Novel 

vegetation indices are introduced and compared their performances. Also, 

combinations of these vegetation indices were examined for better performance. All 

of the vegetation indices are described in Section 3.3. 

The effects of usage of Gaussian Filter with different spread value, window size and 

selection of spectral bands before applying local maxima detection algorithm were also 

examined to achieve more accurate results. Details of this method are described in 

Section 3.4. 

Moreover, detected local peaks were validated according to shadowed areas around 

the peak. Removal of false detections in non-tree areas was aimed in this step. Details 

of the method of treetop validation based on shadows are defined in Section 3.5. 

The overall tree crown detection process flowchart is presented in Figure 6. 
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Figure 6: Flowchart of tree crown detection process 
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3.1 Data 

In this study, WorldView-2 and Worldiew-3 multispectral images are used. Test 

Scene-1, Scene-2, Scene-3 and Scene-4 are acquired by WorldView-2 sensor. Scene-

5, Scene-6 and Scene-7 are acquired by WorldView-3 sensor. 

 

3.1.1 WorldView-2 

The WorldView-2 sensor was launched on October 8, 2009 and owned by 

DigitalGlobe, Inc., USA. The WorldView-2 data includes a high spatial resolution 

panchromatic band and eight multispectral bands. These multispectral bands consist 

of coastal, blue, green, yellow, red, red edge, near-infrared 1 and near-infrared 2 with 

approximate spatial resolution of 2 meters. As for the panchromatic band, it provides 

about 0.5 meters spatial resolution. The spectral ranges of bands are listed in Table 1. 

The WorldView-2 image that is used in this study was acquired on November 18, 2010 

(09:54Z). Pan-sharpened WorldView-2 imagery used in this study centered at 

39°53'41.4"N, 32°47'02.5"E. 

Table 1: Spectral bands of WorldView-2 

Spectral Band Wavelength (nm) 

Panchromatic 450-800 

Coastal 400-450 

Blue 450-510 

Green 510-580 

Yellow 585-625 

Red 630-690 

Red Edge 705-745 

Near Infrared 1 770-795 

Near Infrared 2 860-1040 

3.1.2 WorldView-3 

The WorldView-3 sensor was launched on August 13, 2014 and owned by 

DigitalGlobe, Inc., USA. The WorldView-2 and WorldView-3 data includes same 

multispectral bands with same spectral ranges in the VNIR bands. However, the 

WorldView-3 data provides 0.31 meters panchromatic resolution and 1.2 meters 

multispectral resolution. On the other hand, WorldView-3 sensor provides eight new 

SWIR bands as listed in Table 2. These new bands yield 7.5 meters spatial resolution. 

These new SWIR bands are not utilized in this research. The WorldView-3 image that 

is used in this study was acquired on July 16, 2016 (08:58Z). Pan-sharpened 

WorldView-3 imagery used in this study centered at 39°53'41.4"N, 32°47'02.5"E. 
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Table 2: New spectral bands of WorldView-3 

Spectral Band Wavelength (nm) 

SWIR-1 1195-1225 

SWIR-2 1550-1590 

SWIR-3 1640-1680 

SWIR-4 1710-1750 

SWIR-5 2145-2185 

SWIR-6 2185-2225 

SWIR-7 2235-2285 

SWIR-8 2295-2365 

3.1.3 Study Area 

The campus of Middle East Technical University located in Ankara, Turkey, is chosen 

as the study area. In order to evaluate the accuracy of the proposed methods seven 

different scenes are selected within the WorldView-2 and WorldView-3 multispectral 

images. However, since acquisition time of the imageries is different, I did not prefer 

to select same areas for WorldView-2 and WorldView-3 multispectral images. Also, 

three more images are extracted from WorldView-2 and WorldView-3 imagery for 

visual analysis. Since ground truths do not exist for these images, detected treetops 

and validated treetops marked and presented for visual analysis on APPENDIX A. 

 

3.1.3.1 Scene-1: METU Dense Forest 

Scene-1 is cropped from WorldView-2 imagery and consists of 188x256 pixels. 

Ground truth of Scene-1 for calculating vegetation indices accuracy is created by 

detecting the pixels that belong to trees visually. The number of pixels belonging to 

trees and other areas is presented in Table 3. 

Table 3: Number of pixels of ground truth for Scene-1 

# Class Number of Pixels 

1 Tree 15809 

2 Other 32319 

Furthermore, tree crowns that are located in Scene-1 are counted visually. According 

to ground truth of Scene-1, the image includes 176 tree crowns. Spectral plot of some 

of these tree crowns and other vegetated areas like grass are shown in Figure 7. The 

values of corresponding bands are the average of pixels within a 5x5 neighborhood. 
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Figure 7: Spectral plot of sample trees and grass in Scene-1 

The visual of Scene-1 and ground truth for it is represented in Figure 8. 
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Figure 8: (a) Scene-1 RGB image (b) Scene-1 false color image (c) Ground truth image for vegetation 

indices (d) Ground truth image for treetops 

 

3.1.3.2 Scene-2: METU Thin Forest 

Scene-2 is also acquired by WorldView-2 multispectral sensor and consists of 

352x460 pixels. Ground truth of Scene-2 created by investigating the imagery pixel by 

pixel for detecting the trees visually. The pixels classified into two classes; tree crowns 

and others. The number of pixels belonging to trees and other areas can be seen in 

Table 4. 

Table 4: Number of pixels of ground truth for Scene-2 

# Class Number of Pixels 

1 Tree 39315 

2 Other 122605 

 

(a) (b) 

(c) (d) 
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In addition to pixel based ground truth, tree crowns that are located in Scene-2 are 

counted visually. According to ground truth of Scene-2, the image includes 547 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

can be seen in Figure 9. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

 Figure 9: Spectral plot of sample trees and grass in Scene-2 

Figure 10 includes the visual of Scene-2 and ground truth image of Scene-2. 
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Figure 10: (a) Scene-2 RGB image (b) Scene-2 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.1.3.3 Scene-3: METU Urban Area 

Scene-3 is also acquired by WorldView-2 and consists of 260x264 pixels. Scene-3 

ground truth is created by investigating the image pixel by pixel for detecting the trees 

visually. The pixels are classified into two classes; tree crowns and others. The number 

of pixels belonging to trees and other areas can be seen in Table 5. 

Table 5: Number of pixels of ground truth for Scene-3 

# Class Number of Pixels 

1 Tree 11936 

2 Other 56704 

 

(a) (b) 

(

c

) 

(c) (d) 
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In addition to pixel based ground truth, tree crowns that are located in Scene-3 are 

counted visually. According to ground truth of Scene-3, the image includes 100 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

is shown in Figure 11. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

 Figure 11: Spectral plot of sample trees and grass in Scene-3 

Figure 12 depicts Scene-3 and its ground truth. 
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Figure 12: (a) Scene-3 RGB image (b) Scene-3 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.1.3.4 Scene-4: METU Stadium 

Scene-4 is also acquired by WorldView-2 and consists of 350x360 pixels. Scene-4 

ground truth created by investigating the imagery pixel by pixel for detecting the trees 

visually. The pixels are classified into two classes; tree crowns and others. The number 

of pixels belonging to trees and other areas can be seen in Table 6.  

 

 

(a) (b) 

(c) (d) 
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Table 6: Number of pixels of ground truth for Scene-4 

# Class Number of Pixels 

1 Tree 30046 

2 Other 95954 

In addition to pixel based ground truth, tree crowns that are located in Scene-4 are 

counted visually. According to ground truth of Scene-4, the image includes 262 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

can be shown in Figure 13. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

 Figure 13: Spectral plot of sample trees and grass in Scene-4 

Figure 14 includes the visual of Scene-4 and ground truth image of it. 
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Figure 14: (a) Scene-4 RGB image (b) Scene-4 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.1.3.5 Scene-5: METU Regular Forest 

Scene-5 is acquired by WorldView-3 multispectral sensor and consists of 228x271 

pixels. Scene-5 ground truth created by investigating the imagery pixel by pixel for 

detecting the trees visually. The pixels classified into two classes; tree crowns and 

others. The number of pixels belonging to trees and other areas are listed in Table 7. 

 

 

(a) 

(c) 

(b) 

(d) 
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Table 7: Number of pixels of ground truth for Scene-5 

# Class Number of Pixels 

1 Tree 11791 

2 Other 49997 

In addition to pixel based ground truth, tree crowns that are located in Scene-5 are 

counted visually. According to ground truth of Scene-5, the image includes 163 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

can be shown in Figure 15. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

 Figure 15: Spectral plot of sample trees and grass in Scene-5 

Figure 16 depicts Scene-5 and ground truth of it. 
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Figure 16: (a) Scene-5 RGB image (b) Scene-5 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.1.3.6 Scene-6: METU Urban Area 

Scene-6 is also acquired by WorldView-3 multispectral sensor and consists of 

312x376 pixels. Scene-6 ground truth created by investigating the imagery pixel by 

pixel for detecting the trees visually. The pixels classified into two classes; tree crowns 

and others. The number of pixels belonging to trees and other areas can be seen in 

Table 8. 

Table 8: Number of pixels of ground truth for Scene-6 

# Class Number of Pixels 

1 Tree 37607 

2 Other 79705 

(a) (b) 

(c) (d) 



29 

 

In addition to pixel based ground truth, tree crowns that are located in Scene-6 are 

counted visually. According to ground truth of Scene-6, the image includes 64 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

can be shown in Figure 17. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

Figure 17: Spectral plot of sample trees and grass in Scene-6 

Figure 18 includes the visual and ground truth image of Scene-6. 
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Figure 18: (a) Scene-6 RGB image (b) Scene-6 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.1.3.7 Scene-7: Urban Area 

Scene-7 is acquired by WorldView-3 multispectral sensor and consists of 548x965 

pixels. Scene-7 ground truth created by investigating the imagery pixel by pixel for 

detecting the trees visually. The pixels classified into two classes; tree crowns and 

others. The number of pixels belonging to trees and other areas are represented in Table 

9. 

Table 9: Number of pixels of ground truth for Scene-7 

# Class Number of Pixels 

1 Tree 85519 

2 Other 444301 

(a) (b) 

(c) (d) 
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In addition to pixel based ground truth, tree crowns that are located in Scene-7 are 

counted visually. According to ground truth of Scene-7, the image includes 171 tree 

crowns. Spectral plot of some of these tree crowns and other vegetated areas like grass 

can be shown in Figure 19. The values of corresponding bands are the average of pixels 

within a 5x5 neighborhood. 

 

 Figure 19: Spectral plot of sample trees and grass in Scene-7 

Figure 20 includes the visual of Scene-7 and ground truth image for Scene-7. 
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Figure 20: (a) Scene-7 RGB image (b) Scene-7 false color image (c) Ground truth image for 

vegetation indices (d) Ground truth image for treetops 

 

3.2 Preprocessing with HCS Pan-Sharpening 

The spatial resolution of multispectral imagery is increased by using a new pan-

sharpening method that is called Hyperspherical Color Sharpening (HCS). Although 

naïve mode of HCS is easy to implement, it causes some color distortion in the pan-

sharpened image. However, Padwick et al. reported smart mode of HCS did show 

acceptable performance of imitating the original colors of multispectral image [7]. 

Thus, I utilized smart mode of HCS algorithm in this study. In smart mode, firstly 

panchromatic band is smoothed using sliding window convolution filter. This filter is 

applied with a 7x7 square window. In this window output value of center pixel is the 

mean of all pixel values in the 7x7 neighborhood. Smoothed version of the 

panchromatic band is formed as follows: 

 𝑃𝑎𝑛𝑠𝑚𝑜𝑜𝑡ℎ = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑃𝑎𝑛) (16) 

 

 

 

 

(a) (b) 

(c) (d) 



33 

 

Next, the square of the multispectral intensity (I2), the square of the panchromatic 

intensity (P2) and the square of the smoothed version of the panchromatic band (PS2) 

are computed, as given in Equations 17-19. Xi denotes the ith spectral band of the 

multispectral image. 

 
𝐼2 = ∑ 𝑋𝑖

2

𝑛

𝑖=1

 (17) 

   

 𝑃2 = (𝑃𝑎𝑛)2 (18) 

   

 𝑃𝑆2 = (𝑃𝑎𝑛𝑠𝑚𝑜𝑜𝑡ℎ)2 (19) 

Next, transformation of native color space to the hyperspherical color space is 

performed. For an image having n input bands, one forms a single intensity component 

and n-1 angles on the hypersphere. Equations 20-23 give the transformation into HCS 

from an n-band color space: 

 
𝐼 = √𝑋1

2 + 𝑋2
2 + ⋯ + 𝑋𝑛

2 (20) 

   

 
𝜑1 = 𝑡𝑎𝑛−1 (

√𝑋𝑛
2 + 𝑋𝑛−1

2 + ⋯ + 𝑋2
2

𝑋1
) (21) 

   

 
𝜑𝑛−2 = 𝑡𝑎𝑛−1 (

√𝑋𝑛
2 + 𝑋𝑛−1

2

𝑋𝑛−2
) (22) 

   

 
𝜑𝑛−1 = 𝑡𝑎𝑛−1 (

𝑋𝑛

𝑋𝑛−1
) (23) 

In the transformation, the angular (φn) variables describe the color or hue, the radial 

(I) part describes the intensity of the color. 
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Next, the algorithm intensity matches both PS2 and P2 signal to the I2 signal using the 

Equations 24-25. In this equation µ0 and σ0 represent mean and standard deviation of 

I2, µ1 and σ1 represent mean and standard deviation of PS2. 

 𝑃𝑆2 =
𝜎0

𝜎1

(𝑃𝑆2 − 𝜇1 + 𝜎1) + 𝜇0 − 𝜎0 (24) 

   

 𝑃2 =
𝜎0

𝜎1

(𝑃2 − 𝜇1 + 𝜎1) + 𝜇0 − 𝜎0 (25) 

The adjusted intensity is given by the Equation 26 where the Iadj is the pan-sharpened 

intensity. 

 

𝐼𝑎𝑑𝑗 = √
𝑃2

𝑃𝑆2
𝐼2 (26) 

Finally, the pan-sharpened intensity is transformed back into the original color space 

as: 

 𝑋1 = 𝐼𝑎𝑑𝑗 𝑐𝑜𝑠 𝜑1 (27) 

   

 𝑋2 = 𝐼𝑎𝑑𝑗 𝑠𝑖𝑛 𝜑1 𝑐𝑜𝑠 𝜑2 (28) 

   

 𝑋𝑛−1 = 𝐼𝑎𝑑𝑗 𝑠𝑖𝑛 𝜑1 𝑠𝑖𝑛 𝜑2 … 𝑠𝑖𝑛 𝜑𝑛−2 𝑐𝑜𝑠 𝜑𝑛−1 (29) 

   

 𝑋𝑛 = 𝐼𝑎𝑑𝑗 𝑠𝑖𝑛 𝜑1 𝑠𝑖𝑛 𝜑2 … 𝑠𝑖𝑛 𝜑𝑛−2 𝑠𝑖𝑛 𝜑𝑛−1 (30) 

I employed ERDAS Imagine 2015 built in HCS function with 7x7 pixel smoothing 

filter in this study. The original multispectral image and pan-sharpened image can be 

seen in Figure 21 in RGB color space. 
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Figure 21: (a) Original WorldView-2 PAN image (b) Original WorldView-2 MS image (c) HCS 

sharpened image 

The spectral plot of sample pixel of original multispectral imagery and the 

corresponding pixels of pan-sharpened multispectral imagery are depicted in Figure 

22. 

 

Figure 22: Spectral plot of sample pixels of original and pan-sharpened multispectral imagery 

(a) (b) 

(c) 
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3.3 Vegetation Indices 

In the context of this study, masking non vegetated areas by applying vegetation index 

threshold is suggested by many researchers. While Mei and Durrieu utilized the NDVI 

for identifying non-vegetated areas [42], Perez et al. used NDI for detecting weed [18]. 

In this method, firstly, the vegetation index is calculated by using pixel values in 

different spectral bands. After vegetation index matrix created a threshold is defined 

for masking out the non-vegetated area. This threshold value can be calculated 

experimentally. For example, Daliakopoulos et al. revealed 0.37 as NDVI threshold 

produced better accuracy for selected sample area, but in different scenes this threshold 

value has not worked well and needed to be changed [1]. I examined different threshold 

values for different scenes. The best threshold value is searched in steps of 0.01 within 

the range of minimum and maximum values of the vegetation index. The flowchart of 

finding best threshold value for a vegetation index can be shown in Figure 23. 

 

Figure 23: Flowchart of vegetation index threshold detection 

After detecting the best threshold value for the vegetation index, non-vegetated areas 

are masked out in the image. Consequently, masking the image by thresholding 

vegetation indices produced non vegetated area free image for detecting tree crown. 

The created image after masking out the non-vegetated areas for scene-1 is shown in 

Figure 24.  
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Figure 24: (a) Original WorldView-2 PAN image (b) Masked image with NDVI1 

It can be seen in Figure 24 that vegetation indices detect vegetated areas. However, 

these areas contain not only tree crowns, but also grass. This is a challenge for 

detecting tree crowns. Because, some areas that do not contain tree crown can be 

detected as tree crown in local maxima method. Thus, I try to find the best vegetation 

index or combination of vegetation indices that does not detect the grass or other areas 

that does not contain tree crown. Figure 25 shows spectral plot of a pixel that belongs 

to a tree crown and a pixel that belongs to grass. 

 

Figure 25: Spectral plot of tree and grass pixel 

(a) (b) 
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Spectral signature of grass and tree crown is almost same as can be seen in Figure 25. 

So, the issue of discriminating grass and tree crowns using vegetation indices is 

difficult. For this reason, potential of various vegetation indices are investigated using 

different threshold values. 

The pre-defined vegetation indices and their calculation formulas can be seen in Table 

10. 

Table 10: Pre-defined vegetation indices 

  Vegetation Index Formula 

1 Excess Green1 2g - r -b 

2 Excess Red2 1.4r - g 

3 Excess Blue3 1.4b - g 

4 Excess Green - Excess Red Excess Green - Excess Red 

5 Normalized Difference Index (G - R) / (G + R) 

6 Green Normalized Difference Vegetation Index (NIR1 - G) / (NIR1 + G) 

7 NIR2-yellow ratio (NIR2 - Y) / (NIR2 + Y) 

8 RedEdge yellow ratio (RE - Y) / (RE + Y) 

9 NIR-Red-yellow ratio (NIR1) / (R + Y) 

10 Normalized Red R / (NIR1 + R + G) 

11 Normalized NIR NIR1 / (NIR1 + R + G) 

12 Normalized Difference Vegetation Index-1 (NIR1 - R) / (NIR1 + R) 

13 Normalized Difference Vegetation Index-2 (NIR2 - R) / (NIR2 + R) 

In addition to predefined vegetation indices, combinations of these indices are 

examined for better results. For double combination, after applying threshold to 

vegetation indices, if both vegetation indexes vote a pixel as vegetated area, the pixel 

is taken as vegetated area. Otherwise, the pixel is taken as non-vegetated area. 

At the same time, ratios of spectral bands, ratio of one spectral band to sum of two 

spectral bands and ratio of one spectral band to sum of three spectral bands is 

calculated for creating vegetation indices. Also, some self-developed vegetation 

indices are calculated to get better results. I changed the spectral bands of excess green, 

excess red, excess blue vegetation index with red, red edge and near infrared-1 bands 

of WorldView-2 multispectral imagery to get new vegetation indices. The self-

developed vegetation indices and their formulas of them can be seen in Table 11. 

                                                                                                                                           

1 g = G / (R + G + B) 

2 r = R / (R + G + B) 

3 b = B / (R + G + B) 
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Table 11: Self-developed vegetation indices 

  Vegetation Index Formula 

1 index1 2nir - re - r 

2 index2 2.5nir - re - r 

3 index3 1.4re - nir 

4 index4 1.74r - nir 

5 index5 nir - r 

6 index6 2nir - 1.4r 

7 index7 nir – re 

8 index8 (((2NIR1 + NIR2) / 3) - R) / (((2NIR1 + NIR2) / 3) + R) 

Nir, re, and r components of indices 1-7 are computed as: 

 𝑛𝑖𝑟 =  𝑁𝐼𝑅1 / (𝑁𝐼𝑅1 +  𝑅𝐸 +  𝑅) (31) 

   

 𝑟𝑒 =  𝑅𝐸 / (𝑁𝐼𝑅1 +  𝑅𝐸  +  𝑅) (32) 

   

 𝑟 =  𝑅 / (𝑁𝐼𝑅1 +  𝑅𝐸 +  𝑅) (33) 

   

3.4 Local Maxima Detection 

Local maxima detection method seeks local maximum pixels in windows. However, 

applying this method to masked image directly can result some false detections. Since 

some local peaks are located at flat-topped area, these peaks cannot be detected by this 

method. So, many researchers utilized Gaussian filter for overcoming this challenge. 

Applying Gaussian low pass filter also reduces the multiple peaks in the local area. 

The Gaussian low filter is defined in 2-D as given below and the distribution is shown 

in Figure 26. 

 
𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  (34) 
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Figure 26: 2-D Gaussian Distrubiton 

The Gaussian filter is examined with different window size and sigma values. In this 

filter, sigma value corresponds to blurring effect. Higher sigma values result more 

blurred image. On the other hand, window size has an effect on blurring with correct 

pixels. 

After applying the Gaussian filter to the image, local maxima detection algorithm runs 

for detecting treetops as local peaks. This algorithm traces peaks in local areas that is 

defined as (2n+1) x (2n+1) windows. The parameter n is estimated as average size of 

trees in the image. This parameter is most important parameter for local maxima 

detection algorithm. If the parameter n is too large, the local area will include too many 

local peaks. 

The local maxima detection algorithm works as sliding window. It compares the center 

pixel with other pixels within the window and if the center pixel has higher brightness 

value than the other pixels, it marks the center pixel as local peak. However, if the 

window has a pixel that has higher brightness value than the center pixel it passes to 

other pixel and seeks neighbor pixels within the window again. Hereby, the local 

maxima detection algorithm seeks all pixels image except that n pixels in the edges of 

image. 

The overall flow of local maxima detection algorithm as follows; 

 For each pixel; 

 Go to first pixel of image which is not belongs to n pixels in the edges of 

image. 

 Initialize coordinate (x, y). 

 Define the neighbor pixels within (2n+1) x (2n+1) pixels. 

 Compare the brightness value of the pixel with the other pixels in the 

window. 
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 If there is no pixel that has higher brightness value than main pixel, mark 

the pixel as local peak. 

 If there is a pixel that has higher brightness value than main pixel, pass to 

the next pixel. 

After of local maxima detecion algorithm runs, detected treetops in scene-1 can be 

seen in Figure 27. 

 

Figure 27: Detected treetops in Scene-1 

 

3.5 Treetop Validation Based on Shadows  

In the final step of proposed method, I tracked shadowed pixels on the image for 

removing false detections that actually belong to non-tree area. The main idea of this 

step is based on the fact that there should be a shadowy area if there is no other high 

object like a tree or building in the vicinity of the tree. Ok proposed a novel 

methodology to detect buildings from multispectral imagery in this manner [43]. 

Consequently, I tracked the shadowy areas to validate the detected treetops. 
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For this step, firstly, I utilized shadow detection method based on YIQ color space to 

detect shadowed areas. In first step of this method, RGB color space was transformed 

to YIQ color space according to the conversion given below [40]: 

 
[
𝑌
𝐼
𝑄

] = [
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

] [
𝑅
𝐺
𝐵

] (35) 

In this study, false color image formed by using Green, Red and NIR2 bands was used 

as input image of YIQ transformation. Since both I and Q components of YIQ color 

space have low values on shadowy pixels of false color images, the following ratio is 

proposed: 

 
𝑅𝑎𝑡𝑖𝑜 =  

𝑌 − min (𝑌)

max(𝑌) − min (𝑌)
 (36) 

After calculating the ratio, automatic threshold point is calculated according to Otsu’s 

method [44]. In this method the assumption that every scene includes shadowed areas, 

is made. In this step, Otsu’s method is applied twice. First, the method is applied for 

detecting candidate shadowed areas. Then, it is applied for a second time to candidate 

shadowy pixels for detecting final shadowy pixels. First and second threshold values 

produced by Otsu’s method for each scene is listed in Table 12. 

Table 12: Threshold values for each scene 

  First Threshold Second Threshold 

Scene-1 0.30 0.16 

Scene-2 0.35 0.22 

Scene-3 0.13 0.06 

Scene-4 0.32 0.18 

Scene-5 0.41 0.25 

Scene-6 0.20 0.11 

Scene-7 0.20 0.09 

After detecting shadowy pixels, every detected local peak is analyzed according to 

shadows. In this step, position of shadows given as input to algorithm and the 

algorithm seeks shadowy pixels near the detected local peaks. If shadowy pixels are 

located near the local peak, the peak is approved as a treetop; otherwise the algorithm 

looks for another local peak in the focused area as the trees may be close to each other. 

Thus, the peak is also approved as treetop. If neither shadowy pixel nor local peak is 

detected in the focused area, that local peak is removed and is not labeled as a treetop. 
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In Figure 28, sample local peaks are denoted as numbers. The blue squares point out 

focus area. The focus area is determined according to shadow positions in the 

multispectral imagery. For instance, when the algorithm investigates the first local 

peak, it tracks the pixels in the square that is above the local peak. Then, it would detect 

shadowy pixels in the square and approves the local peak as treetop. On the other hand, 

when the algorithm passes the second local peak it will investigate the square above 

the peak and it cannot detect any shadowy pixel or local peak in the focused area. Thus, 

second local peak will not be claimed as treetop. Also, when the algorithm examines 

the third local peak, it cannot detect any shadowy pixel in the focused area, but it catch 

a local peak in the focused area and will approve the third local peak as treetop.  

 

Figure 28: Sample of treetop validation based on shadows 

 

 



44 

 

  



45 

 

 

 

CHAPTER 4 

 

4 EXPERIMENTS 

 

In this chapter, the experimental results of detection of pixels that belong to tree crown 

by vegetation indices and accuracy of detected treetops are demonstrated. The 

accuracy of vegetation indices and local maxima detection are calculated separately. 

The results of accuracy assessment of vegetation indices are demonstrated in Section 

4.2. On the other hand, accuracy assessment of local maxima detection algorithm is 

demonstrated in Section 4.3. Lastly, the performance of treetop validation method is 

demonstrated in Section 4.4. 

 

4.1 Measurement Metrics 

Accuracy assessment for vegetation indices and local maxima detection can be done 

by various approaches. I used vegetation index accuracy for evaluating the accuracy 

of truly found pixels in the image. I calculated the accuracy as number of truly detected 

pixels divided by total number of pixel. The equation can be seen below: 

 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 Pixels
 (37) 

I used precision, recall and F-Measure metrics to evaluate the performance of tree 

crown detection method. Before defining these metrics some terms that are related 

with them are introduced below: 

True Positives (TP) is the number of correctly detected treetops. 

False Positives (FP) is the number of incorrectly detected treetops. This metric 

includes the treetops that located more than one in tree crown.  

False Negatives (FN) is the number of tree crowns that is not detected by the method. 
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Precision is the ratio of number of correctly detected tree crowns to number of all 

detected tree crowns. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (38) 

Recall is the ratio of number of correctly detected tree crowns to number of tree crowns 

in the ground truth. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (39) 

F-measure is defined as weighted harmonic mean of its precision and recall. 

 
𝐹𝛼 =

(1 + 𝛼)  𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝛼 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (40) 

The α parameter is a non-negative scalar and in this study it is set to 0.5. 

 

4.2 Experimental Accuracy Results of Vegetation Indices 

Main goal of this section is determining the performance of detecting the pixels that 

contain tree crown correctly and discriminating them from other vegetated areas by 

using vegetation indices. Detailed information about this process is provided in 

Chapter 3. The analysis is made by comparing performance of different vegetation 

indices by calculating vegetation index accuracy due to extracted ground truth data. 

I conducted the experiments by trying different threshold values for obtaining better 

results for each vegetation index. Firstly, I experienced performance of the vegetation 

indices developed by other researchers for vegetation detection. As mentioned before, 

I try to evaluate not the performance of detecting vegetated areas, but the performance 

of detecting only tree crown areas. 

For the first experiment, thirteen vegetation indices are tested. In Table 13, accuracy 

of known vegetation indices can be seen. 
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Table 13: Accuracy of the known vegatation indices 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

NDVI1 87.17% 92.60% 93.49% 56.91% 86.62% 81.44% 92.07% 

NIRRY 86.59% 91.43% 93.05% 56.20% 86.83% 81.51% 91.83% 

normalizedRed 86.47% 88.60% 93.36% 56.54% 85.47% 81.45% 91.90% 

normalizedNIR 83.85% 90.03% 91.17% 53.84% 87.15% 80.49% 91.50% 

NDVI2 83.01% 84.78% 91.00% 55.80% 83.88% 80.36% 91.15% 

ExGR 82.84% 83.71% 85.11% 52.84% 83.03% 75.27% 84.02% 

ExG 82.53% 86.73% 82.61% 48.08% 81.89% 72.90% 84.02% 

REY 82.03% 84.64% 90.12% 53.25% 84.00% 78.22% 89.63% 

NYVI 81.93% 85.13% 89.87% 54.34% 83.29% 79.78% 89.70% 

GNDVI 79.56% 85.92% 88.66% 47.18% 85.45% 78.55% 90.20% 

ExR 68.75% 77.72% 82.61% 51.48% 82.37% 76.87% 84.97% 

NDI 67.22% 77.72% 82.61% 50.99% 82.32% 77.03% 84.89% 

ExB 67.15% 77.72% 82.61% 44.05% 80.93% 71.69% 84.02% 

Figure 29 shows the chart of average accuracy of the known vegetation indices. The 

analysis of the Figure 29 showed the NDVI1 produced better results when compared 

to other vegetation indices. Also, the vegetation indices using NIR1 spectral band of 

WorldView multispectral imagery produced satisfying results. However, the 

vegetation indices utilizing only visible spectral bands (red, green, blue) produced poor 

results. 

 

Figure 29: Average accuracy of the known vegatation indices for all scenes 
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Second experiments are conducted double combinations of these vegetation indices. 

In these experiments a pixel is marked as tree crown area when both of the vegetation 

indices votes that pixel as a tree crown. In Table 14, accuracy of double combination 

of vegetation indices can be seen. When I analyzed the accuracy results of double 

combinations of vegetation indices, some of them produces slightly better results than 

NDVI1. However, when I look at the Table 14 I cannot obtain significant upswing in 

accuracy. 

Table 14: Accuracy of double combinations of vegetation indices 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

normalizedRed NDVI1 87.24% 89.06% 93.85% 57.72% 86.45% 81.73% 92.09% 

NIRRY normalizedRed 87.05% 88.70% 93.58% 57.91% 86.23% 81.98% 91.99% 

NIRRY NDVI1 86.90% 91.66% 93.22% 57.05% 86.43% 81.76% 91.96% 

normalizedRed normalizedNIR 86.58% 88.19% 92.67% 56.73% 87.09% 81.64% 91.95% 

normalizedNIR NDVI1 86.48% 90.82% 92.18% 55.95% 87.26% 81.31% 91.90% 

NIRRY normalizedNIR 86.06% 90.49% 92.10% 55.20% 86.98% 81.28% 91.82% 

GNDVI normalizedRed 85.42% 86.14% 90.04% 52.27% 86.39% 80.91% 90.87% 

GNDVI NDVI1 85.31% 87.93% 89.53% 51.46% 86.54% 80.51% 90.78% 

GNDVI NIRRY 84.94% 87.74% 89.44% 50.76% 86.22% 80.37% 90.75% 

ExGR NDVI1 84.75% 86.45% 90.43% 57.48% 84.88% 77.45% 92.07% 

Since accuracy results of double combinations of vegetation indices did not show 

significant improvements, I started to investigate different combinations of spectral 

bands for getting better results. Firstly, I tried to get better results by changing spectral 

bands of NDVI. Sample equation for proposed method is given below: 

 
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  

𝐵𝑎𝑛𝑑1 − 𝐵𝑎𝑛𝑑2

𝐵𝑎𝑛𝑑1 + 𝐵𝑎𝑛𝑑2
 (41) 

Table 15 indicates accuracy results of combinations of different spectral bands. 

Table 15: Accuracy of different combinations of spectral bands 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

(NIR1 - Y) / (NIR1 + Y) 85.01% 89.32% 91.94% 55.16% 85.64% 80.88% 91.28% 

(RE - R) / (RE + R) 83.70% 83.27% 92.32% 55.34% 84.42% 79.75% 91.46% 

(RE - Y) / (RE + Y) 82.03% 84.64% 90.12% 53.25% 84.00% 78.22% 89.63% 
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Another experiment to find better vegetation index is conducted by calculating ratios 

of spectral bands as vegetation index. Sample equation for proposed method is given 

below: 

 
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  

𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑2
 (42) 

Accuracy results for proposed method can be seen in Table 16. When I analyzed the 

results, ratio of NIR1 and red bands gave better results. However, their accuracy for 

discrimination of grass and tree crowns were not as high as NDVI1. 

Table 16: Accuracy of simple ratio of spectral bands 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

NIR1 / R 87.2% 92.59% 93.53% 56.88% 86.62% 81.45% 92.07% 

NIR1 / Y 85.00% 89.36% 91.95% 55.08% 85.66% 80.90% 91.27% 

RE / R 83.73% 83.27% 92.35% 55.40% 84.48% 79.76% 91.47% 

After that experiment I tried to get better results as normalizing a spectral band with 

sum of two spectral bands. Sample equation for proposed method is given below: 

 
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  

𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑1 + 𝐵𝑎𝑛𝑑2
 (43) 

Table 17 shows the top ten accuracy results of proposed method. Better results 

obtained by using red and NIR1 band of WorldView multispectral imagery as can be 

seen in Table 17. However, NDVI1 was still produce better results. 

Table 17: Accuracy of ratio of double spectral bands vegetation indices 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

R / (R + NIR1) 87.15% 92.55% 93.51% 56.66% 86.62% 81.40% 92.05% 

NIR1 / (R + NIR1) 87.12% 91.97% 93.47% 56.69% 86.62% 81.44% 92.05% 

R / (Y + NIR1) 86.92% 90.36% 93.60% 56.94% 85.05% 80.70% 91.70% 

R / (NIR1 + NIR2) 86.83% 90.62% 93.11% 56.85% 85.63% 81.03% 91.78% 

R / (G + NIR1) 86.46% 89.57% 93.34% 57.01% 85.53% 81.35% 91.88% 

R / (RE + NIR1) 86.35% 89.75% 93.47% 56.55% 86.06% 80.99% 92.04% 

Y / (G + NIR1) 86.15% 87.29% 92.69% 56.67% 84.29% 80.85% 91.04% 

NIR1 / (R + RE) 85.53% 87.90% 92.88% 56.59% 85.06% 79.55% 89.94% 

Y / (RE + NIR1) 85.08% 89.63% 91.57% 54.67% 85.77% 80.32% 91.04% 

Y / (NIR1 + NIR2) 85.06% 89.33% 91.66% 55.23% 85.25% 80.60% 90.76% 
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Sixth experiment conducted by normalizing a spectral band with sum of three spectral 

bands. Sample equation for proposed method is given below: 

 
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  

𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑1 + 𝐵𝑎𝑛𝑑2 + 𝐵𝑎𝑛𝑑3
 (44) 

Table 18 shows the top ten accuracy results of proposed method. Better results 

obtained by using yellow, red and NIR1 band of WorldView multispectral imagery as 

can be seen in Table 18. However, NDVI1 still produced better results. 

Table 18: Accuracy of ratio of triple spectral bands vegetation indices 

Vegetation Index 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

R / (R + NIR1 + NIR2) 86.77% 90.51% 93.04% 56.92% 85.55% 81.02% 92.05% 

R / (Y + R + NIR1) 86.68% 90.47% 93.41% 56.55% 84.89% 80.66% 92.05% 

R / (G + NIR1 + NIR2) 86.65% 89.17% 93.50% 57.48% 85.27% 81.13% 91.70% 

NIR1 / (Y + R + NIR1) 86.59% 91.16% 92.96% 56.29% 86.82% 81.51% 91.78% 

Y / (B + RE + NIR1) 86.39% 87.60% 93.44% 57.30% 84.87% 81.09% 91.88% 

Y / (G + RE + NIR1) 86.36% 89.13% 92.39% 56.38% 84.80% 80.61% 92.04% 

R / (Y + NIR1 + NIR2) 86.29% 88.98% 93.19% 57.12% 84.83% 80.75% 91.04% 

R / (R + RE + NIR1) 86.28% 89.74% 93.37% 56.44% 86.02% 81.00% 89.94% 

Y / (G + NIR1 + NIR2) 86.27% 88.79% 92.55% 56.71% 84.54% 80.71% 91.04% 

Y / (B + NIR1 + NIR2) 86.17% 87.03% 93.21% 57.54% 84.47% 80.97% 90.76% 

Finally, some self-developed vegetation indices are tested for better detection 

accuracy. The proposed vegetation indices and their formulations are described in the 

Section 3.3. Table 19 indicates accuracy results of proposed vegetation indices.  
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Table 19: Accuracy of self-developed vegetation indices 

Vegetation Index Formula 
Accuracy 

Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 

index1 (2 * nir) - re - r 85.5% 87.92% 92.85% 56.61% 85.06% 79.54% 89.93% 

index2 (2.5 * nir) - re - r 85.54% 87.9% 92.86% 56.47% 85.01% 79.54% 89.94% 

index3 (1.4 * re) - nir 78.09% 81.51% 89.53% 54.48% 81.45% 73.87% 87.08% 

index4 (1.74 * r) - nir 87.19% 92.61% 93.50% 56.83% 86.57% 81.45% 92.02% 

index5 nir - r 86.98% 92.12% 93.41% 56.79% 86.57% 81.26% 91.91% 

index6 (2 * nir) - (1.4 * r) 86.81% 91.43% 93.31% 56.91% 86.41% 81.01% 91.67% 

index7 nir – re 80.16% 82.53% 90.64% 55.40% 82.09% 75.32% 87.81% 

index8 

(((2 * NIR1 + 

NIR2) / 3) - R) /  

(((2 * NIR1 + 

NIR2) / 3) + R) 

87.06% 91.32% 93.22% 56.75% 85.71% 80.89% 91.73% 

 

4.3 Experimental Accuracy Results of Local Maxima Detection 

The second stage of the proposed method is detecting local maxima as the treetop in 

the preprocessed image. In this step, each detected treetop actually refers to a tree 

crown. For evaluating the local maxima detection method different window sizes, 

different sigma values for Gaussian filter and different spectral bands of satellite 

imagery are examined. Since NDVI1 produced relatively better results for detecting 

tree crown pixels, the experiments were made on the image that is masked by NDVI1 

threshold. For evaluating the performance of the method, precision, recall and F-

Measure metrics are calculated. If local maxima detection algorithm detects a pixel 

within a tree crown, that hit is taken as TP. 

First experiment is conducted for evincing the best spectral band for local maxima 

detection algorithm. Appropriate window size and sigma value is selected for each 

scene in this step. Since vegetation employs red and near infrared bands for 

photosynthesis, only red, red edge, NIR1 and NIR2 bands of multispectral imagery are 

tested. In addition these bands green band is also tested. Table 20 indicates 

performance metrics of desired experiment. The accuracy results show that NIR1 band 

of the WorldView imagery is the best spectral band for local maxima detection in tree 

crown areas. 
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Table 20: Performace metrics of different spectral bands 

Scene Spectral Band F-Measure Precision Recall 

1 

NIR-1 89.16% 91.93% 84.09% 

Red Edge 79.20% 81.48% 75.00% 

NIR-2 77.48% 81.17% 71.02% 

Green 76.20% 70.67% 90.34% 

Red 72.48% 68.57% 81.82% 

2 

NIR-1 92.70% 96.51% 85.92% 

Red Edge 84.98% 88.80% 78.24% 

NIR-2 83.32% 86.12% 78.24% 

Green 83.60% 83.01% 84.83% 

Red 77.72% 76.76% 79.71% 

3 

NIR-1 89.60% 89.90% 89.00% 

Red Edge 85.57% 85.86% 85.00% 

NIR-2 83.33% 82.52% 85.00% 

Green 72.93% 67.18% 88.00% 

Red 67.04% 62.02% 80.00% 

4 

NIR-1 51.74% 41.86% 98.09% 

Red Edge 34.55% 26.54% 87.02% 

NIR-2 39.13% 31.34% 77.86% 

Green 22.90% 16.85% 81.30% 

Red 26.80% 20.29% 74.81% 

5 

NIR-1 91.90% 95.24% 85.89% 

Red Edge 80.79% 81.65% 79.14% 

NIR-2 80.39% 83.11% 75.46% 

Green 83.09% 84.52% 80.37% 

Red 82.45% 83.87% 79.75% 

6 

NIR-1 66.67% 61.73% 79.37% 

Red Edge 58.67% 54.32% 69.84% 

NIR-2 62.11% 57.32% 74.60% 

Green 47.55% 41.58% 66.67% 

Red 43.64% 37.74% 63.49% 

7 

NIR-1 77.16% 76.57% 78.36% 

Red Edge 67.11% 66.48% 68.42% 

NIR-2 70.73% 71.01% 70.18% 

Green 59.47% 56.85% 65.50% 

Red 55.71% 52.40% 63.74% 
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Secondly, NIR1 band and appropriate sigma value for each scene are used in order to 

trace effects of different window sizes for local maxima detection algorithm. The 

accuracy results for different window sizes are presented in Table 21. 

Table 21: Performace metrics of different window sizes 

Scene Window Size F-Measure Precision Recall 

1 

3x3 86.50% 84.95% 89.77% 

5x5 89.16% 91.93% 84.09% 

7x7 83.11% 91.79% 69.89% 

2 

3x3 92.70% 96.51% 85.92% 

5x5 92.14% 97.63% 82.82% 

7x7 90.69% 97.53% 79.52% 

3 

3x3 85.45% 81.74% 94.00% 

5x5 89.60% 89.90% 89.00% 

7x7 85.71% 88.89% 80.00% 

4 

3x3 51.74% 41.86% 98.09% 

5x5 52.40% 45.03% 77.86% 

7x7 50.97% 47.31% 60.31% 

5 

9x9 91.06% 91.82% 89.57% 

11x11 91.90% 95.24% 85.89% 

13x13 90.48% 95.68% 81.60% 

6 

15x15 64.20% 57.78% 82.54% 

17x17 66.67% 61.73% 79.37% 

19x19 64.19% 60.53% 73.02% 

7 

15x15 75.41% 72.77% 81.29% 

17x17 77.16% 76.57% 78.36% 

19x19 76.06% 77.64% 73.10% 
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Finally, different sigma values are tested for better detection accuracy and tracing 

effects on the proposed method. NIR1 band and relevant window is used for this 

experiment. The accuracy results for blurring effects can be seen in Table 22. 

Table 22: Performace metrics of different sigma values 

Scene Sigma Value F-Measure Precision Recall 

1 

0.3 87.65% 89.22% 84.66% 

0.5 89.16% 91.93% 84.09% 

0.7 87.76% 92.16% 80.11% 

1.5 83.63% 91.30% 71.59% 

2 

0.3 92.23% 95.19% 86.84% 

0.7 92.70% 96.51% 85.92% 

1.5 91.82% 96.23% 84.10% 

3 

0.3 85.58% 83.96% 89.00% 

0.7 88.41% 88.12% 89.00% 

0.9 89.60% 89.90% 89.00% 

1.5 87.58% 87.88% 87.00% 

4 

0.3 45.25% 35.64% 98.09% 

0.7 51.74% 41.86% 98.09% 

1.5 51.62% 42.67% 88.93% 

5 

0.3 88.54% 90.26% 85.28% 

0.7 91.90% 95.24% 85.89% 

1.5 87.59% 93.38% 77.91% 

6 

1.5 63.64% 58.33% 77.78% 

2.0 66.67% 61.73% 79.37% 

2.5 62.79% 59.21% 71.43% 

7 

1.5 74.59% 72.11% 80.12% 

2.0 77.16% 76.57% 78.36% 

2.5 75.15% 75.90% 73.68% 

Finally, although the values for parameters of local maxima detection are directly 

related with tree crown sizes on the multispectral imagery, the values listed in the Table 

23 is recommended for study area according to experimental results for local maxima 

detection. 

Table 23: Recommended values for parameters of local maxima detection 

Imagery Spectral Band Window Size Sigma Value NDVI Threshold 

WorldView-2 NIR1 5x5 0.7 0.23 

WorldView-3 NIR1 15x15 2.0 0.40 
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4.4 Experimental Accuracy Results of Treetop Validation 

In the last step of tree detection process, I attempted to remove false detections by 

using shadows on the scenes. Further explanation about this method can be seen in 

Section 3.5. The accuracy results of before applying this method and after applying 

this method for each scene is listed in Table 24. 

Table 24: Performance metrics of shadow based treetop validation 

Scene 

Before/After 

Treetop 

Validation 

F-Measure Difference Precision Difference Recall Difference 

1 
Before 89.16% 

3.00% 
91.93% 

6.05% 
84.09% 

-1.70% 
After 92.16% 97.97% 82.39% 

2 
Before 92.55% 

1.11% 
96.49% 

2.44% 
85.56% 

-0.91% 
After 93.66% 98.93% 84.64% 

3 
Before 89.38% 

4.09% 
90.63% 

7.10% 
87.00% 

-1.00% 
After 93.48% 97.73% 86.00% 

4 
Before 51.74% 

42.76% 
41.86% 

51.82% 
98.09% 

-1.91% 
After 94.50% 93.68% 96.18% 

5 
Before 91.90% 

0.40% 
95.24% 

0.65% 
85.89% 

0.00% 
After 92.31% 95.89% 85.89% 

6 
Before 66.67% 

20.08% 
61.73% 

32.39% 
79.37% 

-4.37% 
After 86.75% 94.12% 75.00% 

7 
Before 77.16% 

0.90% 
76.57% 

1.34% 
78.36% 

0.00% 
After 78.06% 77.91% 78.36% 

Comparison of F-Measures for each scene can be seen in Figure 30. It can be inferred 

from Figure 30 the validation process of detected local peaks leaded to an increase of 

F-Measure. 
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Figure 30: Comparative F-Measures of the each scene 

Sample precision recall curve for Scene-2 is depicted in Figure 31. This curve shows 

precision and recall values for different NDVI threshold. The larger area under the 

curve indicates a better performance. Thus, when score of the NDVI, treetop detection 

using local maxima detection algorithm and treetop validation by shadows is analyzed, 

it can be clearly seen from the Figure 31 that each step of the proposed method helps 

to improve accuracy. In addition, better accuracy results are achieved by applying 

NDVI with threshold value of 0.19. Moreover, lower threshold value causes higher 

recall and lower precision, whereas higher threshold value produces higher precision 

but reduces recall. 
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Figure 31: Precision Recall Curve 

Results of proposed method is compared with local maxima detection method 

proposed by Daliakopoulos et al. [1]. The comparative results is listed in Table 25. It 

is seen that the proposed method outperforms [1] for all scenes and all measures. 

Table 25: Comparison of tree crown detection methods 

Scene 
Proposed Method The Method of Daliakopoulos et al. [1] 

F-Measure Precision Recall F-Measure Precision Recall 

1 92.16% 97.97% 82.39% 80.94% 80.79% 81.25% 

2 93.66% 98.93% 85.56% 90.83% 95.94% 82.08% 

3 93.48% 97.73% 86.00% 82.65% 83.51% 81.00% 

4 94.50% 93.68% 96.18% 50.30% 45.60% 63.36% 

5 92.31% 95.89% 85.89% 79.01% 77.78% 81.60% 

6 86.75% 94.12% 75.00% 49.14% 45.24% 59.38% 

7 78.06% 77.91% 78.36% 58.73% 56.06% 64.91% 

The final detected trees, undetected trees, the peaks that are incorrectly detected as 

treetops and removed local peaks by treetop validation process for each scene are 

represented in Figure 32-38. In these figures, rightly detected treetops are shown by 

green plus sign, the undetected treetops are marked as red multiplication sign, the 

incorrectly detected treetops are pointed with yellow circles, and the removed local 

peaks by shadow based validation are marked as blue circles. All of the scenes in the 

Figure 32 - Figure 38 represented as both true and false color image. 
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Figure 32: (a) Results of Scene-1 RGB image (b) false color image 

(a) 

(b) 
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Figure 33: (a) Results of Scene-2 RGB image (b) false color image 

(a) 

(b) 
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Figure 34: (a) Results of Scene-3 RGB image (b) false color image 

(a) 

(b) 
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Figure 35: (a) Results of Scene-4 RGB image (b) false color image 

(a) 

(b) 
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Figure 36: (a) Results of Scene-5 RGB image (b) false color image 

(a) 

(b) 
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Figure 37: (a) Results of Scene-6 RGB image (b) false color image 

(a) 

(b) 
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Figure 38: (a) Results of Scene-7 RGB image (b) false color image 

 

 

 

  

(a) 

(b) 
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CHAPTER 5 

 

5 CONCLUSION 

 

5.1 Summary 

In this study, thirteen different vegetation indices and their pairwise combinations are 

analyzed for detecting trees on very high resolution multispectral imagery. In addition 

to these vegetation indices, different combinations of spectral bands and 

transformation of some vegetation indices are investigated for better performance. 

Also, the effects of Gaussian filter, different window sizes and different spectral bands 

on local maxima detection algorithm analyzed and better values of these variables are 

investigated for treetop detection. Moreover, the detected local peaks are validated 

according to existence of shadows in their neighborhood. Seven different areas are 

extracted from multispectral imagery for aforementioned experiments. First four 

scenes were acquired by WorldView-2 sensor. The other three scenes were acquired 

by WorldView-3 sensor. HCS pan-sharpening method were applied to all scenes to 

increase spatial resolution of multispectral imagery. 

Vegetation indices and their different variations are analyzed in order to evaluate 

performance of detecting only tree crowns instead of whole vegetated areas. Accuracy 

of different vegetation indices produced similar results for the tested scenes. The 

vegetation indices that occupy only visible spectral bands gave poor results when 

compared with the vegetation indices that occupy near infrared bands. NDVI1 which 

is commonly used vegetation index by other researchers produced satisfying results, 

but combination of NDVI1 and with different vegetation indices produced slightly 

better results. For instance, while using combination of NDVI1 and normalizedRed 

produced increased accuracy for Scenes 1, 3, and 7; using combination of NDVI1 and 

normalizedNIR produced limited increment on accuracy for Scene-5. 

On the other hand, replacing the spectral bands of NDVI1 with different spectral bands 

could not present any melioration for detecting tree crown pixels. Another analyzed 

vegetation index was simple ratio of two different spectral bands. When I analyzed the 

result of this type of vegetation index, ratio of NIR1 and red produced slightly better 

results than NDVI1. However, it was not significant. Our research continued with 

tracking improved accuracy with vegetation indices that normalize a spectral band 

with sum of two or three spectral bands. However, none of the experimented 

vegetation indices improved performance when compared to NDVI1. 
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Moreover, some vegetation indices developed in this research by conducting some 

equations utilizing different spectral bands. Among this self-developed vegetation 

indices, so-called Index4 produced slightly better result than NDVI1 for all scenes 

except Scene-4 and Scene-7. However, these results could not meet our expectations 

for removing grassy areas from vegetated regions. Furthermore, when I analyzed the 

overall results for usage of new multispectral bands of WorldView-2 and WorldView-

3 multispectral imagery in vegetation indices did not produce better results. On the 

other hand, since Scene-4 and Scene-6 includes more grassy regions compared to other 

scenes, vegetation indices represented poorer performance for these scenes. 

Local maxima detection method was the second stage of tree crown detection process. 

The best results for this method were obtained by using NIR1 band. Additional NIR2 

band of WorldView-2 and WorldView-3 multispectral imagery did not produce better 

results for treetop detection as most of tree crowns analyzed in this study have higher 

reflectance in the NIR1 bands. This can be seen on the figures showing the spectral 

plot of sample trees between Figure 7 - 19. 

Furthermore, experiments for different window sizes for local maxima detection are 

conducted. While smaller window sizes produced better performance for the scenes 

cropped from WorldView-2 imagery, higher window sizes improved the accuracy for 

the scenes selected from WorldView-3 imagery. The main reason of this issue is the 

different spatial resolution of WorldView-2 and WorldView-3 imagery. Also, since 

the tree crowns have higher diameter size on Scenes-6 and 7, higher window size 

produced better performance. Hence, window size should be selected with spatial 

resolution and crown sizes on the image. Consequently, while selection of higher 

window sizes caused underestimation of the treetops, lower window sizes caused 

overestimation of treetops. 

In addition to analysis on different window sizes, different blurring ratios for Gaussian 

filter are practiced. When the results of experiments are investigated, higher sigma 

values produced higher accuracy for Scene-6 and 7. On the contrary, lower sigma 

values produced better performance for the other scenes. Experiments showed that 

optimum sigma value is affected by the size of the tree crown. Since larger tree crowns 

could include more than one local peak, optimum sigma value is set to be large so that 

clusters of peaks are grouped together. Too high resulted in degradation of detecting 

treetops, whereas frequent tree crowns caused poorer accuracy results due to overlaps 

of tree crowns.  

Furthermore, the local maxima detection algorithm produced better accuracy in the 

scenes including mainly coniferous trees (Scene-1 to 5). The conical shape of 

coniferous trees mostly gives only one treetop in the tree crown, whereas deciduous 

trees can have more than one treetop in the tree crown. Consequently, one reason for 

poorer performance in Scene-6 and 7 is that these scenes include more coniferous trees 

than the other ones. 
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In final stage of proposed method, since I could not eliminate grassy areas completely 

using vegetation indices, I decided to validate detected local peaks by tracing shadows 

around the detected local peaks. I utilized a shadow detection method to identify 

shadows on the study area. Experiments showed that this method can cause 

considerable improvement on precision. As a result of improved precision, F-Measure 

was increased. If a scene contains wide grassy areas, F-Measure increases more. For 

instance, analysis on Scene-4 showed that this validation causes almost 43% 

improvements on F-Measure. Thus, this method is suitable for scenes that contain wide 

grassy areas. 

The results of conducted experiments can be summarized as listed below: 

 Utilizing vegetation indices is not efficient way for discriminating tree crowns 

and other vegetated areas on the multispectral imagery. 

 Usage of new spectral bands of WorldView-2 and WorldView-3 multispectral 

imagery in vegetation indices does not provide an improvement for selection 

of tree crowns. 

 Local maxima detection algorithm is suitable for the scenes which include 

almost same size of tree crowns.  

 Utilizing local maxima algorithm for the scenes that contains cone-shaped 

coniferous trees are more practical owing to shape of the crown. 

 Designation of window size and sigma value appropriately would produce 

better performance. 

 Removal of incorrectly detected treetops by using shadows can ensue 

significant improvement on treetop detection process on grassy areas. 

Although proposed method produced satisfying performance in the conducted 

experiments, some limitations of this method can be listed as below: 

 Since the experiments were conducted on the multispectral images that are 

acquired in July and November, the proposed method may produce different 

performance on the images acquired in spring due to higher spectral reflectance 

of grass in near infrared spectra. 

 Since the study area of this study includes similar vegetation cover, the 

proposed method could produce different performance for different vegetation 

cover. 

Finally, I compared the tree crown detection results with literature. Since there is no 

prepared datasets and ground truth, researchers were used different multispectral 

images from different areas. Also, most of them extracted their ground truth data by 

themselves. I acquired reasonably 92.71% for detecting tree crowns in forested area, 

88.20% for detecting tree crowns in urban area. Srestasathiern and Rakwatin utilized 

NDI before local maxima process for detecting oil palm trees and their F-measure 

values ranging from 0.897 to 0.981 for different scenes of WorldView-2 imagery. 

Since the oil palm trees in their scenes do not overlapped and show regular form, their 

algorithm produced very accurate results [13]. Daliakoloulos et al. combined red band 
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and NDVI thresholds with Laplacian of Gaussian blob detection. The error rate shows 

their algorithm extracted 86.7% of the actual trees [1]. Gomes and Maillard attempted 

tree crown identification in a tropical environment by using NDVI and region growing 

method. They reported an accuracy over 80% [45]. Mohour et al. utilized grey-level 

blob detection and scale-space blob detection for detecting trees and they acquired 

81.6% and 90% of the trees for two different areas [46]. 

 

5.2 Future Work  

I employed the tree crown detection method on seven remotely sensed imageries. 

Although the results that are obtained in this study are promising, experiments with 

different scenes should also be performed to support these results. The performance 

under different location, time and weather conditions should be determined. On the 

other hand, extracting ground truth data accurately is very important for accuracy 

calculation. For this reason, publishing public multispectral datasets and ground truth 

will make measuring and comparing proposed methods easier. 

Thresholds for vegetation indices can be determined by automated processes. On the 

other hand, further improvements for using local maxima algorithm with adaptable 

window size are needed. 

Finally, since usage of shadows for validating detected treetops is a novel method, 

further research should be conducted on different datasets. Also, different shadow 

detection algorithms and shape based shadow-tree pairing can be studied in further 

studies. 
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APPENDICIES 

 

APPENDIX A 

 

TREE DETECTION RESULTS 

In this section, four more different images which are cropped from WorldView-2 and 

WorldView-3 multispectral imagery are represented for further visual inspection. 

Since ground truth data does not exist for these scenes, only detected treetops and 

removed treetops marked. In Figure 39-41, detected treetops are shown as red plus 

sign and the removed local peaks by shadow based validation are marked as blue 

circles. 
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Figure 39: Results of sample WorldView-2 scene 
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Figure 40: Results of sample WorldView-3 scene 
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Figure 41: Results of sample WorldView-3 scene 
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