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ABSTRACT

ONLINE DETECTION OF PILOT WORKLOAD BY USING FNIR SENSORS

Vural, Murat
MSc., Department of Information System
Supervisor: Assist. Prof. Dr. Murat Perit Cakir

March 2018, 190 pages

Measuring mental workload of pilots and evaluating such measurements are important
concerns in the aviation domain that requires high safety critical precautions. However,
obtaining valid online measures without reducing operational capabilities of pilots
remains to be an active area of research in human factors and aviation psychology. The
aim of this thesis is to develop online measures for monitoring the changes of pilots’
mental workload and establish a basis for follow-up studies that may use these
measurements to implement new types of safety precautions in the cockpit. Since
Functional Near-Infrared Spectroscopy (fNIRS) technology has been successfully
employed in recent human factors studies and fNIRS sensors have an ergonomic design
that minimizes the discomfort of pilots as compared to other brain imaging methods,
fNIRS optical brain imaging technology is employed in this thesis study. Firstly,
changes in the mental workload of pilots are studied as performing offline analyses in
well-defined test scenarios in order to devise physiological patterns and algorithms for
mental workload assessment. Afterwards, a software that can make online mental
workload assessment by using these algorithms is developed and tested. The results
indicate that models that are trained over data sampled from all pilots’ sessions yielded
the highest classification accuracy. SVM with RBF kernel function, LSTM and RNN
which are used during the model development yield the highest accuracy scores with the
given order, albeit with similar results.

Keywords: fNIR, Mental Workload, Pilot Workload, Online Detection
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FNIR SENSORLER ILE PILOT iS YUKUNUN CEVRIMICI TESBITI

Vural, Murat
Yiiksek Lisans, Bilisim Sistemleri Bollimii

Tez Yoneticisi: Yrd. Dog. Dr. Murat Perit Cakir

Mart 2018, 190 sayfa

Havacilik gibi emniyet tedbirlerinin kritik oldugu bir alanda, pilotlarin mental is
yiikiinlin dogru bir sekilde olgiiliip yorumlanmasi operasyonun giivenli bir sekilde
tamamlanmasinda kullanilacak 6énemli bir metottur. Ancak dogru 6l¢iimleri ¢evrim igi
olarak pilotun ucus kabiliyetlerini sinirlandirmadan yapabilmek insan faktorii ve
havacilik psikolojisi agisindan tlizerinde calisilan aktif bir ¢alisma alani haline gelmistir.
Bu tez c¢alismasinda pilotlarin mental is yiikiiniin simiilasyon ortaminda ve ¢evrim igi
olarak oOlc¢iilmesi ve bu Olglimlerin kullanilarak gerekli tedbirlerin alinmasina vesile
olacak ¢alismalara zemin hazirlanmasi hedeflenmistir. fNIR (Functional Near Infrared
Spectroscopy) teknolojisinin insanli uygulamalardaki basarisi ve sensorlerinin diger
beyin goriintiileme yontemlerine gore pilotu rahatsiz etmeyecek daha ergonomik yapisi
nedeniyle dlgiimler fNIR sensdr ve kontrol iiniteleri ile yapilmistir. Iyi tammlanmis
cesitli test senaryolar ile dnce ¢evrim dis1 olarak dl¢limler yapilip algoritmalar tiretilmis,
daha sonra da bu algoritmalar1 kullanarak g¢evrim i¢i sonuglar iiretecek bir yazilim
gelistirilmigtir. Elde edilen bulgular dogrusal olmayan algoritmalar kullanilarak tim
pilotlardan kismi verilerle gelistirilen modellerin test sonuglarinin olduk¢a basarili
olduguna isaret etmektedir. Yiiksek dogruluk skorlar1 veren modeller sirastyla ancak bir
birine ¢ok yakin olarak RBF ¢ekirdek fonksiyonlu SVM, LSTM ve RNN makine
O0grenmesi algoritmalariyla gelistirilmistir.

Anahtar Sozciikler: fNIR, Mental Is Yiikii, Pilot Is Yiikii, Cevrimici Tespit



To My Family

Vi



ACKNOWLEDGEMENTS

| would like to deepest appreciate my supervisor Assist. Prof. Dr. Murat Perit Cakir.
Without his support and knowledge this thesis would not be successfully completed.

| am also grateful Turkish Aerospace Industry (TAI) that is generous to utilize its
resources and facilities.

| thank to my colleagues and my tactfully managers at TAI.

Lastly, I will always remember emotional support of my mother and sister.

vii



TABLE OF CONTENTS

ABSTRACT .ottt bbbt bbbt b bbbt iv
OZ ettt v
DEDICATION ...ttt bbbttt bbb Vi
ACKNOWLEDGEMENTS ..ottt vii
TABLE OF CONTENTS ...ttt viii
LIST OF TABLES ...ttt bbbt bbb X
LIST OF FIGURES. ......coiiitiiiiieertei ettt et Xii
LIST OF ABBREVIATIONS ....oiiiiiiiiiiieienie ettt XVi
INTRODUCTION ...ttt ettt ettt et et b et bene s 1
2. LITERATURE REVIEW ....cooiiiiiiiiiiee ettt 5
2.1, Mental WOTKIOAA ........coveiviiiiiiiiiicieiee e 5
2.2.  Measurement Methods of Mental Workload.............cccooeiiiiiininiiiniiccn 6
2.3.  Brain Computer Interface Without TNIRS............coooiiiiiiii 9
2.4.  Measurement Method Based on fNIRS ..., 12
2.5.  Aviation World and fNIR Based BCl Applications ...........ccccooeveniniiinieieenn, 13
2.5.1. Cognitive Processes on Flight Performance..........ccccoceeeveniiininininnene. 14
2.5.2.  Enrichment of Simulators with Neurophysiologic Measurements ............ 14
2.5.3.  fNIR Applications in Aviation DOMAIN...........cccreiiiienineneeseeeeeeeens 16

. METHOD ...t e e s e e e e aaae e 23
3.1.  Experiment Environment and ProtoCol............cccoviiiiiiiiiniicnece 24
3.2. fNIR Device and COBI StUAIO ........coiiieiiiiirieiesieseeee s 27
32,1, NIR SEBNSOIS ..ttt ettt b et nre s 28
3.2.2.  fNIR Control Box and COBI.........ccccooiiiiiiiieiieseee e 29

330 FNIRSOL. e 34
3.4.  Model Processing ApPliCAtioN...........ccoveiieiiieiie e 42
3.4.1.  DISCriMant ANalYSIS.......cccciiuiiiiiiieiiie et 42
3.4.2.  Processing APPHCAtION..........ccviiiiiiieiie e 45



3.4.3. Inadequacies of Processing Application based on Discrimant Analysis ...47

344, SVIM ANAIYSIS....cciiiieiiieieeie et 50
3.4.5.  Artificial Neural Network Analysis .........ccoooviiiiiiinnieese e 51
3.4.6. LDA, SVM and ANN Analysis with Mixed Data ............cccccoeeivevveiiieennnnn, 54
34T, LSTM ANGIYSIS.....iiiiieiiitiitcie e 59

N 1 0 1 1 USSR 63
4.1. LDA with Primitive Methods ..........cccouiviiiiiiseee e 63
411, SPSS RESUIS ..ot 63
4.1.2.  EXPeriment RESUIS ....cc.ocviiiiiicit e 65

4.2.  Mental Workload DiStribDULIONS ..........cccceiiiinininiiisieeee e 75
4.3.  LDA with Enhanced Methods ...........cccuieiiiiiiiiiienieeee e 79
A4, SVIM RESUITS ..ottt bbbt 84
A5, ANN RESUITS.....oiiiiiiiiieieieiieiie et 92
4.6. LDA and SVM Analysis with Mixed Data.............cccccvvveeiiveieiicieese e 97
4.7, RNN RESUIS ..ottt e 103
4.8, LSTM RESUIS ..ottt b 106
5. DISCUSSION AND CONCLUSION .....ccoiiiie et 109
REFERENGCES ..... ..ot e e et e e et e e e neeeanneas 119
APPENDICES ... ..ottt e e e e saa e e e e e e e e e naeeaneaeas 127
APPEND X A e nnraes 127
N o N 1 ] ) G = RS 137
APPENDIX €ttt sttt e et e e nna e e e aa e e nae e e naaeanea e 145
N e 1 ] ) G I3 SR 149
N o 1 ) G RS 171
N e 1 ] ) G RS 175
APPENDIX G ettt sttt sttt nna e e aa e e e e e na e e e naa e 185



LIST OF TABLES

Table 1: Comparison of BCI Techniques[19]. ......ccceeiiiiiieiiee e 8
Table 2: Spatial and Temporal Sensitivity Comparison of BCI Techniques[20].............. 8
Table 3: Eigenvalues of Two Canonical Discriminant FUNCLIONS...........cccceveevieiieennenn. 63
Table 4: Wilk’ Lambda Results Specifying Weight of the Functions.............ccccevvenen. 63
Table 5: Success Rate 0f ClassifiCatioN...........ccovveiiieiiiie e 64
Table 6: Success Rate on Matching of Actual vs. Expectation Mental Workload.......... 74
Table 7: Mental Workload Distributions on the Pilots...........ccccceveiiiiniiiiiiieenn 75
Table 8: Mental Workload Distributions Based on Test SCENArios ..........cccccovvrveieennnnn 76
Table 9: Eigenvalues of Two Canonical Discriminant FUNCtionS..............ccccccveiveiieenen, 79
Table 10: Wilk’ Lambda Results Specifying Weight of the Functions..............c...coc...... 80
Table 11: Standardized Canonical Discriminant Function Coefficients................c........ 80
Table 12: Success Rate of ClasSIfICatioN...........cccveveiieiieiiie e 82
Table 13: Success Rate of Classification for SUDJECE 5..........ccoviiiiiiiiiice, 82
Table 14: Success Rate of Classification for SUDJECE 6...........ccceevviviieiiiie i, 83

Table 15: Confusion Matrix — Normalized Data, C: 1, Gamma: 0.5, function: RBF ..... 92
Table 16: Confusion Matrix — Training Data: 60%, Validation Data: 20%, Test Data:

20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient ............cccccevveveiieeieene e 93
Table 17: Eigenvalues of Two Canonical Discriminant FUNCLIONS............cccovveveiieennene. 97
Table 18: Wilk’ Lambda Results Specifying Weight of the Functions..............c..coc...... 98
Table 19: LDA - Standardized Canonical Discriminant Function Coefficients.............. 98
Table 20: LDA - Success Rate of Classification (with kfold:3 cross validation is
A5.07%0) ovoveoeeeeeeeeeeeeeeeee et 100
Table 21: Confusion Matrix — Mixed Data, C: 5, Gamma: 0.5, function: RBF, Cross
Validation Accuracy: 81% (Kfold: 3) ......coveiiiiiiiece e 103

Table 22: Confusion Matrix — Mixed Data, Hidden Node: 60, Epochs: 362, Batch size:
16, Raw Data: hbo, hbr, Features: mean, slope, range, standard deviations, Cross
Validation Accuracy: 71.67% (KFold: 3) ....cooviiiiiiiieeee e 104
Table 23: Confusion Matrix — Mixed Data, LSTM Number: 90, Epochs: 724, Batch size:
8, Loss Function: Categorical Crossentropy, Activation: Softmax, Raw Data: hbo, hbr,
Features: mean, slope, range, standard deviations, Cross Validation Accuracy: 77.03%

[(Za0] [0 1A ) SO PSR STOS 106
Table 24: Parameter List With IDS..........coooiiiiiiiie s 137
Table 25: Effects Of Parameters on Mental Workload (0: No Exist, 1: Exist).............. 138
Table 26: LDA Success Rates with Input Combinations............cccceevvevieiiievie e 145
Table 27: Accuracy of Cross Validation vs Discriminant Rate for LDA — kfold:3...... 148
Table 28: SVIM INUEX L ...ocieeieiiecieee ettt sre e nns 149
Table 29: SVIM INUEX 2 ...ttt sttt snaenee e nnes 151



TaADIE 307 SVIM INUEX 3 oottt e e et e et e e e e e e e e e e e eaeens 152

Table 31: SVIM INAEX 4 ... bbb 154
Table 32: SVIM INAEX 5. bbb 157
Table 33: SVIM INABX B ...ttt 159
TabIe 34: SVIM INUBX 7 ...ttt sttt nas 162
Table 35: SVIM INABX 8 ...t et 164
Table 36: SVIM INABX ... e nas 165
Table 37 Accuracies of Cross Validation vs Test for SVM — kfold:3 ..............ccooenee. 167
Table 38: ANN Success Rates with Input Combinations.............ccccccevveveiieiecre s, 171
Table 39: RNN Success Rates with Input Combinations — Loss ons: Categorical
Crossentropy, Activation: SOfIMAaX ..........ccceiieiiiiiiiece e 175
Table 40: Accuracies of Cross Validation vs Test for RNN — kfold:3............c..ccceee.. 183
Table 41: LSTM Success Rates with Input Combinations..............cccceveverencienennnnn 185
Table 42: Accuracies of Cross Validation vs Test for LSTM — kfold:3 (Loss Func.:
Categorical Crossentropy, Activation: SOftMaXx) .......cccccceevivereiiniieeiess e 189

Xi



LIST OF FIGURES

Figure 1: Subsystems of a BCI SyStem[25]. .....ccccveiiiiiiiiie e 10
Figure 2: Absorption Spectrum in Near Infrared[42].........ccccoiiiiiiiiiniiiieeee, 13
Figure 3: Designed Simulator EnvVironment[S9] .........ccoiiiiiiiiiiiiieec e 16
Figure 4: Left: Changes on fNIR Measurement in Time, Right: Performance vs. Mental
EFFOrt in TIME[AL] ... 17
Figure 5: Left: Average Oxygenation Changes on hbo vs. n-back Test Level, Right:
Average Oxygenation Changes on hbo vs Number of Aircrafts[2] .........ccccocevveiiiiennn, 18
Figure 6: Screenshot of the Durantin’s Experiment Setup[70] .......cccooveiiirieerinniiennens 20
Figure 7: Results of 0ptode3[70].......coviiiiieiiiie et 20
Figure 8: fNIR Signals from Optodes (Gray lines: each optode values, Black lines: mean
OF @ll OPLOAES) [7L] ..o bbb bbbt 21

Figure 9: Classification Acc. vs. Window Length for Couple of Difficulty Levels (Left
side) Classification Acc. vs. Window Length for All Difficulty Levels (Right side)[71]

......................................................................................................................................... 22
Figure 10: Structure of the SYStemM ........ccoiieiiie e 24
Figure 11: Test ENVIFONMENT[74] ......ooviiieieeece et 25
Figure 12: fNIR Model 1100 SYStEIM.....cuiiieiriiieieesie e sieeste e ste e sre e ens 28
Figure 13: fNIR Sensor Pad[59]......ccoiiiiiiiiiiieieiese e 28
Figure 14: Photon Path[75] ......ccvoieiiiieiiieseeeeee e 29
Figure 15: COBI Setting WINGOW ...........coiiiiiiieieieie et 30
Figure 16: COBI Signal MONITONING. .......coviiiiiiiieiesie e 30
Figure 17: Placement OF the SENSOT.........coiiiiiiiiieee e 31
Figure 18: .nir File FOrMat[76]..........coiiiiiiiieiicie et 32
Figure 19: .oxy File FOrmat[76] ........cccooiiiieiieie e 33
Figure 20: fnirSoft Main Interface[78]........ccccvoviiieiiiiceec e 34
Figure 21: fnirSoft Signal Demonstration Together with All Optode...........c.ccocvvvenene. 35
Figure 22: fnirSoft Signal Demonstration Optode by Optode..........ccoeviiiiiiiieneenen, 35
Figure 23: fRIrSOTt DAtaSPaCE. ........coveiviitiiiiieiceieeie et 36
Figure 24: Online Data Processing APProach ...........cccoeiiiiiinieienenese s, 37
Figure 25: fnirSoft DAQ Station Window[79] ..., 38
Figure 26: fnirSoft DAQ Station Component[79].......ccccovveviiieiiieiieie e 39
Figure 27: fnirSoft Script used for processing the incoming raw optical signals ........... 41
Figure 28: test.tXt File CONENt.......c.ooiiiiicce e 42
Figure 29: Training Data Preparation With ELAN .........c.cccoe i 44
Figure 30: Sequential Diagram of Model Processing Application..............cccccocvvvvnennen. 46
Figure 31: Input Format for AIgOrithms..........cooviiiiiii e, 49
Figure 32: SVM Classification Visualization............ccccveiiriiinieiiienesc e, 50

xii



Figure 33:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:

SVM Kernel: Polynomial Figure 34: SVM Kernel: RBF........ 51
Artificial Neural Network StruCtUIe ........ccooeveveiiiiieeeee s 52
Mixed TrainiNg Data...........cccveiiiieiieie e 55
MiIXEU TESE DALA......ceveeieieieiiieie ettt sb e 55
Recurrent Neural Network StruCtUIe ..........cccooeviiiniiisceee s 57
LSTM SErUCTUIE[B5] ... s 59
LSTM — Data To Be Transferred Decision Structure[85] ..........cccocevvrvrinnne. 60
LSTM — Data To Be Stored Decision Structure[85] .........cccevvevverviiieseennns 60
LSTM — Cell Updating Structure[85] .......cceevviieiieiiiieseeie e 60
LSTM — Weight Updating Structure[85]........cccevverviiieiieie e 61
Distribution of the Data in 2 DIMENSIONS ........ccccviiiiiinieieie e 65
Test Subjectl, Scenariol Graph..........ccccooeiiiiiiiiiisee s 65
Test Subjectl, Scenariol Graph..........cocooeiiiiiiiiiiiee s 66
Test Subjectl, Scenario2 Graph.........ccooccoeeeiiiiiiinceeee s 66
Test Subjectl, Scenario3 Graph..........cccooeieieniiiiinieeee s 66
Test Subject2, Scenariol Graph..........cccceevveieieiiieie e 66
Test Subject2, Scenariol Graph.........cccccveiveieieiieeie e 67
Test Subject2, Scenario2 Graph...........ccveieeieieeie e 67
Test Subject2, Scenario3 Graph...........cccvecveieiiieie e 67
Test Subject3, Scenariol Graph..........cccccoeveiiiiiiiiiice s 67
Test Subject3, Scenariol Graph.........cccccoeieiiiiiiiiee s 68
Test Subject3, Scenariol Graph.........cccccoeieiiiiiiii s 68
Test Subject3, Scenario3 Graph.........cccceeeieiiiiiie s 68
Test Subject4, Scenariol Graph..........cccoeieiiiiiiiie s 68
Test Subject4, Scenariol Graph.........cccccveieeieiiiiecie e 69
Test Subject4, SCenario2 Graph.........c.cccvevveieeieeie e 69
Test Subject4, Scenario3 Graph.........cccccveeveieieeie e 69
Test Subject5, Scenariol Graph...........cccveeeeiieiiiie e 69
Test Subject5, Scenariol Graph.........ccccooeieiiiiiie s 70
Test Subject5, Scenario2 Graph.........cccceoeeieiiiiiie s 70
Test Subject5, Scenario3 Graph.........cccccoeiiiiiiie s 70
Test Subject6, Scenariol Graph..........cccccoeoiiiiiii s 70
Test Subject6, SCeNArio2 Graph.........c.cccveveeiieieeie e 71
Test Subject6, Scenario3 Graph...........ccccv i 71
Test Subject7, Scenariol Graph...........cccce e 71
Test Subject7, Scenariol Graph..........cccccv i 71
Test Subject7, Scenario2 Graph.........cccceeieieiiiiii s 72
Test Subject7, Scenario3 Graph.........ccccevieiiiiiiiiee s 72
Test Subject8, Scenariol Graph.........cccceieiiiiiiiii s 72
Test Subject8, Scenario2 Graph.........cccccceveieiiiiiiiiieee s 72



Figure 74: Test Subject8, Scenario3 Graph.........ccccevveveiieiesie s 73

Figure 75: A sample of Test Result Evaluation..............ccccocveveiiieiieic i 73
Figure 76: A sample of Test Result Evaluation..............cccccccveveiievieic i 74
Figure 77: Mental Workload Distribution on All TeStS ......ccccevveiiiienieieee e 77
Figure 78: Mental Workload Distribution on All SCenariols ..........cccocevierinineneennen. 78
Figure 79: Mental Workload Distribution on All SCENArio2s ..........cccoeveriieiineeeennen, 78
Figure 80: Mental Workload Distribution on All SCenario3s ..........ccccoeveiirininieneennen, 79
Figure 81: Distribution of the Data in 2 DIMENSIONS .........cccecvveiieieeiiesieeseeie e 82
Figure 82: Distribution of the Data in 2 Dimensions for Subject 5..........cccccocevvveivenenne. 82
Figure 83: Distribution of the Data in 2 Dimensions for Subject 6............ccccccevvevvenenne. 83
Figure 84: Accuracy vs SVM Parameter Index1 (C, gamma), Kernel Function: rbf,
sigmoid, Raw Data: No Mixed hbo, hDr ..o 85
Figure 85: Accuracy vs SVM Parameter Index2 (C), Kernel Function: Linear, Raw Data:
No Mixed hbo, hbr Note: Both two raw data outputs are Same. ..........ccocevererereneenenn 86
Figure 86: Accuracy vs SVM Parameter Index3 (C, gamma), Kernel Function:
Polynomial, Raw Data: No Mixed hbo, hDr ..o 87
Figure 87: Accuracy vs SVM Parameter Index4 (C, gamma), Kernel Function:
Polynomial, Raw Data: No Mixed hDt.........cccooviiiiiiice e 88
Figure 88: Accuracy vs SVM Parameter Index5 (C, gamma), Kernel Function:
Polynomial, Raw Data: No Mixed Normalized hbo, hDr ... 89
Figure 89: Accuracy vs SVM Parameter Index6 (C, gamma), Kernel Function:
Polynomial, Raw Data: NO IMIXEA OXY ....c.evueririiiiiieiiesiesie e 90
Figure 90: Accuracy vs SVM Parameter Index7 (C, gamma), Kernel Function: RBF,
Sigmoid, Raw Data: No Mixed hbo-hbr, oxy, hbt, normalized hbo-hbr......................... 91
Figure 91: Error Histogram — Training Data: 60%, Validation Data: 20%, Test Data:
20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient ...........ccccccevvveveiieeieere e 94
Figure 92: Validation Performance — Training Data: 60%, Validation Data: 20%, Test
Data: 20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient............c.cccccecvevveiiereiiennnn 94
Figure 93: Receiving Operating Characteristic — Training Data: 60%, Validation Data:
20%, Test Data: 20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient .............c......... 95
Figure 94: ANN Summary — Training Data: 60%, Validation Data: 20%, Test Data:
20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient ...........ccccoeveiineieiinenieeee, 96
Figure 95: ANN Results for Four Classes (-1, 0, 1, 2) ...ccovevieiieiieie e 96
Figure 96: ANN Results for Three Classes (0, 1, 2) .cocovvevieiiiiniie i 97
Figure 97: LDA - Distribution of the Data in 2 DIMeNSIONS..........ccccoovvevveiiieeseesneenn, 100

Figure 98: Accuracy vs SVM Parameter Index8 (C), Kernel Function: Linear, Raw Data:
Mixed hbo-hbr, oxy, hbt, Note: All three raw data output are same until Index 12, At

Index 13 oxy output decreases, Others are SAME. ........cccecvereerieiieereeriesee e e 101
Figure 99: Accuracy vs SVM Parameter Index9 (C, gamma), Kernel Function: RBF,
Linear, Raw Data: Mixed hbo-hbr, oxy, hbt, .......ccccoeiriiii e, 102

Xiv



Figure 100
Figure 101
Figure 102
Figure 103
Figure 104
Figure 105
Figure 106
Figure 107
Figure 108
Figure 109
Figure 110
Figure 111
Figure 112
Figure 113
Figure 114
Figure 115
Figure 116
Figure 117
Figure 118
Figure 119
Figure 120
Figure 121
Figure 122
Figure 123
Figure 124
Figure 125
Figure 126

T RNN RESUILS ... 105
T LSTM RESUILS ...ttt 107
2 AlQOrithm ACCUIACY SCOTES......ccuveiiiieieeiesiesieeseesee e ie e sreesae e sraenee s 116
- SUDJECTL, SCENAMTOL ... et 127
- SUDJECTL, SCENAIOZ ...ttt 127
- SUDJECTL, SCENAITO3 ...t 128
© SUDJECT2, SCENAMOL ...t e 128
- SUDJECT2, SCENATIOZ ..ot sra e 128
- SUDJECT2, SCENAMIOS ...t 129
- SUDJECES, SCENAMIOL ... e 129
- SUDJECE3, SCENAMIOZ ......eeveeeieciee et 129

- SUDJECTS, SCENAITO3 ...t 130

- SUDJECTA, SCENAMTOL ...t 130
- SUDJECTA, SCENAITOZ ...o.veeveeeie ettt ne s 130
- SUDJECTA, SCENAITO3 ...ttt ee s 131
- SUDJECED, SCENAMIOL ... 131
- SUDJECED, SCENAMOZ .....oeeveeieciie et 131
- SUDJECED, SCENAIIOS ... 132
: SUDJECED, SCENAMIOL ..o 132
- SUDJECTD, SCENAITOZ ......eevieniieie ettt ee s 132
- SUDJECTD, SCENATTO3 ... .o 133
- SUDJECTT, SCENAITOL ... 133
- SUDJECTT, SCENATTOZ ...ttt ee s 133
- SUDJECET, SCENATTO3 ...t 134
- SUDJECES, SCENAMIOL ... 134
- SUDJECES, SCENAMIOZ ..ot 134
- SUDJECES, SCENATIOS ......ocvieieciece e 135

XV



ACROSS
ANN
API
ATC
BCI
CPDLC
ECG
EEG
EMG
EOG
ERP
FCU
fMRI
fNIR
GSR
hbo
hbr
hbt

IR
LDA
LED
LSTM
MACD
MFD
MW

LIST OF ABBREVIATIONS

Advanced Cockpit for Reduction of Stress and Workload
Artificial Neural Network

Application Brain Interface

Air Traffic Controller

Brain Computer Interface

Controller Pilot Data Link Communication
Electrocardiography
Electroencephalography

Electromyogram

Electro Oculogram

Event Related Brain Potential

Flight Control Unit

Functional Magnetic Resonance Imaging
Functional Near Infrared Spectroscopy
Galvanic Skin Response

Hemoglobin with Oxygen

Hemoglobin without oxygen

Total Hemoglobin Density

Infrared

Linear Discriminant Analysis

Light Emitting Diode

Long Short Term Memory

Moving Average Convergence Divergence
Multi-Functional Displays

Mental Workload

XVi


http://tureng.com/tr/turkce-ingilizce/electrooculogram

NAN Not A Number

NIR Near Infrared Spectroscopy

OXxy Subtraction of Hemoglobin with Oxygen Density and Hemoglobin
without Oxygen Density

PET Positron Emission Tomography

RBF Radial Bases Function

RNN Recurrent Neural Network

ROC Receiving Operating Characteristic

ROI Region Of Interest

SSCP Set of Sums of Cross Product

stdev Standard Deviation

SWAT Subjective Workload Assessment Technique

SVM Support Vector Machine
TAI Turkish Aerospace Industry
TLX Task Load Index

UAV Unmanned Air Vehicle

Xvii






CHAPTER 1

INTRODUCTION

In the aviation domain, the ability of pilots and operators to vigilantly perform their tasks
is critically important for flight safety. Due to its influence on pilot’s vigilance and
situational awareness during both routine and critical episodes of flight, the mental
workload levels of pilots have a direct influence on safe and successful fulfillment of
flight tasks. Therefore, methods for reliable monitoring of the changes in the mental
workload levels of pilots are strongly emphasized in the aviation community. Such
methods not only enable the implementation of more effective precautions for improving
flight safety, but also have the potential to guide the design of future cockpit layouts and
additional functions for aircrafts which will cause minimum drawbacks for the pilots.
However, there is no widely accepted definition for the concept of mental workload and
existing measures are primarily based on subjective survey-based instruments. Therefore,
developing mental workload monitoring methods is still a subject of extensive research
both in academia and industry.

Despite the lack of consensus on a common definition for the term mental workload in
the aviation psychology and human factors domains, in the literature several methods
have been proposed to estimate mental workload of pilots in the lab setting. The current
methods primarily focus on the offline analysis of collected data in controlled lab settings
during psychological test batteries that do not reflect the complexities of flight scenarios.
Therefore, there is a need for online algorithms that can estimate and monitor changes in
operators’ mental workload in more ecologically relevant settings in aviation, such as
during real or simulated flight scenarios.

Another important issue in this domain is to develop measures and methods that will not
disrupt the pilot’s operational performance. The excessive use of wired sensors attached
to the head and the body of the pilot, and the additional adjustments needed to be made to
ensure data quality (e.g. injection of conductive gels to improve electrode contact for
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EEG) may affect the pilot’s performance. In contrast, functional near-infrared
spectroscopy (fNIRS) devices offer hardware configurations that allow the design of
hand-band like sensors that are less intrusive and disruptive as compared to other brain
imaging modalities such as EEG, Therefore, due to their portability and ergonomic
design, fNIRS sensors offer advantages for the non-invasive monitoring of neural activity
in the prefrontal cortices of pilots during simulated and real flight scenarios.

In an effort to address some of the gaps mentioned above, this thesis study aims to
develop an online mental workload monitoring application based on fNIRS recordings
obtained from real airline pilots while they were performing flight scenarios inside a
certified Airbus A320 flight simulator. The data was obtained through the FP7 framework
project called ACROSS (Advanced Cockpit for the Reduction of Stress and Workload).
fNIRS is chosen as the brain imaging modality due to its ergonomic, portable and reliable
design with a good balance of spatial and temporal resolution. Data collected from real
pilots in a simulator environment is then tagged with mental workload levels in the time
domain by considering factors affecting their mental workload levels that were designed
into the flight scenario. Machine learning methods are then employed and contrasted with
each other to find out to what extent changes in mental workload can be detected online
by processing the features derived from optical brain imaging signals.

The rest of the thesis is organized in the following way. In the literature review chapter,
firstly various mental workload definitions are given from the literature. Secondly,
measurement methods of mental workload are illustrated in the aviation domain. Next,
cognitive processes underlying the flight performance are explained. The findings of
studies carried out with neurophysiologic measurements techniques in simulator
environments are summarized. Lastly, fNIR applications/studies in the aviation domain
are investigated thoroughly.

In the methodology chapter, the simulation environment and the experimental protocols
used in this study are explained. Scenario definitions designed to create realistic flight
operations are described. Then, the fNIR device used in the thesis is introduced. In
particular, the scientific principles behind the fNIR technology, working mechanism of
the fNIR device and outputs of this device are clarified briefly. The fNIR Soft program
which provides a scripting tool that can process the streaming output of the device online
is described. After that algorithms to predict mental workload levels of the test subjects
are expressed. Firstly, an exploratory model is developed only by monitoring collected
signal changes in the time domain with Linear Discriminant Analysis (LDA). The
model’s predictive power is evaluated over the data set and the observed inadequacies of
this approach are discussed. In order to address the identified limitations, a new approach
is developed by considering the factors affecting mental workload of the pilots and
reports prepared by the test pilots after completion of the flight scenarios. The
classification methods employed in this study, including LDA, support vector machines
(SVM), multilayer artificial neural networks (ANN), recurrent neural networks (RNN)
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and long-short term memory (LSTM) as well as the ways in which these methods are
configured and tested in the context of this study are introduced.

In the results chapter, graphs and tables derived from the analyses explained in the
method chapter are reported. SPSS results of primitive method with LDA and online
process graphs indicate mental workload changes considering with pilots’ signals are
reported. After that enhanced method results are given. Mental workload distributions on
each scenario and each test pilot are shown. Furthermore general workload distributions
are also given with both tables and graphs. All graphs, confusion matrix tables are
illustrated based on the used algorithms separately. The effects of the algorithms’ inputs
can be observed on these graphs.

In the discussion and conclusion chapter, results derived from the methods chapter are
discussed. Selection of used inputs (raw data types, features, and voxel numbers) is
explained, and the LDA, SVM, ANN, RNN, LSTM algorithms are compared in terms of
their classification accuracy. Advantages and disadvantages of each approach is
evaluated. Parameter tunings (C, gamma for SVM, number of hidden nodes in ANN etc.)
are handled. Feature weights for LDA are expressed. Tools, hardware and software
environment for analyses and running of algorithms are detailed. Finally, in this chapter,
crucial findings are emphasized. The study concludes with the limitations of the thesis
and an outline of possible future works .

Supplementary materials that complement the analyses and the data collection process are
presented in the appendices. In the appendix part, test pilots’ self-evaluation plots of their
mental workload levels during each mission are provided. Moreover, parameters that are
found to significantly affect the mental workload level during the flight are listed. The
combinations of these parameters which are derived from performed tests vs. manually
assigned mental workload levels are given. Furthermore, model input combinations vs.
accuracy scores for each algorithms used in all analyses are listed. Graphs presented in
the results chapter are derived from these tables.






CHAPTER 2

2. LITERATURE REVIEW

In this chapter, major concepts and phenomena used in the thesis will be explained in
reference to the related literature. Firstly a summary of the mental workload literature is
given. Then, brain-computer interface (BCIl) studies related to mental workload
monitoring are reviewed. Moreover, background information on flight procedures and
pilot tasks which contribute to pilots’ mental workload are provided. Next, the importance
of workload monitoring of pilots during flight is illustrated. Finally, the working
principles of the fNIRS portable optical imaging technology employed in this study for
mental workload monitoring are described.

2.1. Mental Workload

Although the use of the term “mental workload”, which is also called as cognitive
workload, has become widespread since 1970s, it has no commonly held definition in the
literature [1]. Since direct observation of this abstract concept is not possible[1], multiple
mental workload definitions have been proposed. One of the proposals define mental
workload as the working ratio of the brain to overcome the given tasks, which can be
independent of successful completion of those tasks[2]. Thus, performance measurements
of operators are not enough to identify the level of their mental workload. For instance,
during an experiment two participants may complete the same task with similar
performance scores, but one of them may have used less mental resources and had more
free cognitive reserves to be allocated on different parallel tasks. On the other hand, the
second subject may have dedicated all of his mental capacity for the single task.
Therefore, the mental workload level of the second participant can be higher than the first
one, even though their behavioral performances appear to be similar[3].

Hancock and Chignell give two different statements for mental workload,;

- Mental workload shows a process whose inputs determined by specific
requirements and aim is to meet these requirements with mental effort by
independent of operators (experimenters)[4].

- Mental workload indicates relationship of task difficulties and mental sources
which are allocated to handle these difficulties. Mental workload depends on
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specific operators (experimenters). Even past performance of an individual
operator affects evaluation of over all workload detection[4].

Cain provided the following list of mental workload definitions obtained from related
literature[1]:

1) “Mental workload refers to the portion of operator information processing capacity or
resources that is actually required to meet system demands.”[5]

2) “... mental workload may be viewed as the difference between the capacities of the
information processing system that are required for task performance to satisfy
performance expectations and the capacity available at any given time.”[6]

3) “... the mental effort that the human operator devotes to control or supervision relative
to his capacity to expend mental effort ... workload is never greater than unity.”[7]

4) “... the cost of performing a task in terms of a reduction in the capacity to perform
additional tasks that use the same processing resource.”[8]

5) “... the relative capacity to respond, the emphasis is on predicting what the operator
will be able to accomplish in the future.”[9]

All these definitions prove that, people do not agree with each other to get universal
mental workload definition.

It is also important to state that there is a very strict relationship between emotional
strains and mental workload. While Gaillard explains that both workload and stress are
arisen depending on peripheral factors, implying two different theories lie behind to these
concepts. He notes that workload can be represented better with a two dimensional model
consisting mental — emotional strains[10].

One of the most interesting points of view was developed by Colle and Reid. They imply
that, mental workload should be evaluated by considering the related task and
performance which are extended over a period of time. According to them, mental work
average (not instant measures) provides more accurate mental workload detection[11].
Although they tried to specified a specific time interval to find best mental workload
estimation with three experiments, they could not exactly achieve this aim[1]. Time
interval for mental workload evaluation issue is also studied in this thesis.

2.2. Measurement Methods of Mental Workload

It has not found that a general measurement method of mental workload which indicates a
scalar quantity and applicable for all samples yet. Therefore in the literature, there are
several disparate methods. On the other hand Jex states that mental workload is released
based upon cognitive activities such as focusing on interacting task accomplishment,
deciding on strategy, difficulty level and making effort. Starting from this point of view
Cain implies that it is possible to develop a generic cognitive measurement strategy such
that workload can be defined as a function with single variable and estimate mental
workload with any character[1], [12].



Roscoe, Ellis, and Chiles, first time (1979) studied on mental workload measurement
methods. They tried to understand state of the art by reviewing the literature starting date
is 1950s. At the end, they concluded that mission requirements, experimenter capabilities
affect mental workload[13]. In 1987, same team made another studies and achieved to
categorize mental workload measurement techniques as “Objective Techniques” (has two
subcategories: Performance Measures, Analytic Techniques), “Subjective Techniques”,
“Physiological Techniques”, “Combined Techniques”[14].

In one of the articles, Ayaz clearly summarized that there are four major methods to
evaluate mental workload[3].

The first one is personal scoring. In this method, experimenters are asked to evaluate
performance of themselves and difficulties of task levels. Test subjects report how they
have difficulty in the task. This method is very practical and commonly used. However it
has an important disadvantage. If they are required to evaluate task and their mental effort
during task execution, they can give unhealthy report due to intrusive situations. Else if
they are asked after the task, they can make subjective evaluation. Therefore, result can
be distorted[3]. SWAT (Subjective Workload Assessment Technique) is widely used
rating scale measurement method example[1]. It uses predefined, useful criteria. At the
first phase of SWAT, scales of predefined properties are determined by training of the
experimenters. At the second phase, the experimenters are asked to evaluate task
difficulty and their performance[15]. NASA Task Load Index which was designed by
Hart and Staveland is another example of self-scoring method[16].

The second method is workload evaluation by observing behavior of the test subject
during task execution. Speed of response, correct task performance and score are used
criteria to measure experimenter mental workload[3]. For instance, Dick de Waard used
this method by measuring drivers’ mental workload [17]. He records standard deviations
of lateral positions of drivers and steering wheel movements. After that, he associates the
results with mental workload levels of drivers.

Usage of secondary task loading while the participant performs primary task is another
workload measurement method[3]. For instance consider the task which we used in this
thesis. While the pilot performs flight procedure in the cockpit simulator environment,
experiment instructor interrupt the task and asks the pilot a question irrelevant with the
task. Response of the pilot gives valuable information about the mental workload to
which he is subjected. For example, sequential reaction — time tasks are used as dual task
which are primary and secondary in study of Schvaneveldt, Gomez and Reid[18].
However they also imply that it is not possible to be sure which task is treated as primary,
which task is treated as secondary by test subjects.

Final methodology is physiological measurements. Changes in certain body functions
such as iris movements, pupil dilation, eye blinks, blood pressure, heart rate, skin
temperature can reflects mental workload level[3]. Measurements of these physiological
factors with specific devices during task execution not only give continuous (online)
information about mental workload but also provide objective results. However its
drawback is that, physiological activities mentioned above can have several kinds of
sources different than mental workload. For example, drinks, medicine taken before the
task can change skin temperature or reflexive response which can be irrelevant with



mental workload might affect eye blinks etc. In that point data fusion should be applied
carefully to get mental workload data through different measurement sources.

In the following tables, features of physiological techniques to be explained are given.

Table 1: Comparison of BCI Techniques[19].

Spatial Temporal Source of Restrictions Invasive
Resolution ~ Resolution Signal on Subject
EEG Approx. ms Post-Synaptic ~ Seated No
lcm Potentials

PET 4-6mm >10s Tracers in Injectionor  Yes
blood used inhalation of
to measure radioactive
glucose/oxygen tracer
metabolism

fMRI 2mm >|s Paramagnetism Complete No
of rest
deoxy- supine
hemoglobin

N1R Approx. >ls Hb/HbO Seated/supine No

lcm changes slight

(slow optical movement
signal) allowed
Neuronal firing
(fast optical
signals)

Table 2: Spatial and Temporal Sensitivity Comparison of BCI Techniques[20].
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Measurement techniques on neural system such as EEG (Electroencephalography), ERPs
(Event Related Brain Potentials) handle this problem with using electromagnetic signals.
Information obtained from these technologies includes purer mental workload data with
high temporal resolution (refresh frequency of a single scanned object). However they
have restricted spatial resolution (region to be scanned in a unit)[21]. Moreover they are
very sensitive to electromagnetic fields artifacts. To isolate electromagnetic interference,
special test equipment should be used[22]. It places a burden to set test environment, test
execution.

Unlikely EEG and ERPs, PET (Positron Emission Tomography) and fMRI (Functional
Magnetic Resonance Imaging) consider hemodynamic response instead of
electromagnetic signals. Besides, they avoid from effects of electromagnetic fields
artifacts. Another advantages of PET and fMRI with respect to EEG and ERPs, they
provides high spatial resolution. Since PET and fMRI deal with hemodynamic activities,
their working mechanisms are slower than electrical signals handling on neurons
mechanism which is principle of EEG and ERPs. Hence, PET and fMRI have lower
temporal resolution[20]. Furthermore, usage of radioactive isotope in PET method causes
unrepeatable experiment. It also limits usage of PET for children[3]. In contrast, fMRI is
safer and more noninvasive neuroimaging than PET. Measurements of fMRI are very
accurate with high resolution. Due to these advantages, fMRI is accepted as “gold
standard” among mental activation monitoring techniques[3]. Handicap of fMRI is
needed costly and cumbersome equipment. In aviation sector, it can be used in ground
control station but in the cockpit environment current fMRI technology is impossible to
use due to both uncapacious and uncomfortable structure. Moreover it requires a large
well qualified staffs. Therefore, in the literature there are fewer mental workload
measurement studies using fMRI than studies using EEG or fNIR. Similar to fMRI, fNIR
works based hemodynamic measurement. However fNIR has more portable system to
fMRI. It makes sensitive measurement. Although fMIR measurements are more accurate
and called as “golden standard”, size of fNIR equipment and practical usage make it as an
optimum method for many platforms.

2.3. Brain Computer Interface Without fNIRS

Brain Computer Interface is a system that collects neurophysiological signals from human
brain and gives them as input to special devices which processes to control external
environment [23]. BCI is applied also for measurement of brain activities to use them for
several studies [24]. Mechanism of BCI system can be figured as shown in Figurel.
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Figure 1: Subsystems of a BCI System[25].

Formerly BCls are generally designed for dealing with health problems of human. People
who cannot move their muscles due to disease such as Lou Gehrig’s disease are supplied
to communicate with the medium by interpreting thoughts in their minds or by controlling
their arms, foots thanks to BCls. Later, with improvement of software applications and
hardware devices, usage of BCIs became widespread in different areas such as
entertainment sector. Controlling of keyboards, monitors without touching them can be
possible. Therefore healthy people started to be familiar with BCls for fun[25]. Moreover
BCls are used for reducing workload of people who are very busy with several different
tasks which should be done in a specific time. Measurement of human brain signals for
different recoveries is another area of BCI which we studied on in this thesis. Meanwhile
Allison mentions an issue on BCI concept. He notes that, getting usage areas and number
of people gaining insight about BCI larger and larger brings same negative feedback. End
users get unrealistic wrong expectations and have wrong idea without doing sufficient
research. In the media, unsafety and unethical reports are released, even in scientific
literature. Therefore he believe that an infrastructure containing terms, definitions,
methods, ethical issues etc. should be developed[25]. Whereas, Allison thinks that BCI
lives its “Golden Age” thanks to new applications, and devices support flexible and
reliable measurements[25].

Sourina, Wang, Liu and Nguyen developed a concentration and stress management
training system by using EEG signals[25]. Collected EEG signals from the brains are
processed by fractal based algorithms and obtained values are used as inputs to the virtual
reality games which test subjects play during the experiments. Experimenters are tested
and trained with two applications; “Shooting” game is designed for measuring of stress.
The mission of this game is to shoot flying objects. “Breaking Wall” is second
application; the wall is broken according to concentration level of the experiment. With
the feedback mechanisms between the applications and measured brain signals, 2D/3D
games are changed dynamically and experimenter response is updated. Usage of fractal
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algorithms in this experiment provides more accurate and efficient results with respect to
other traditional neurofeedback algorithms. Being real time experiment is another
advantage of the experiment. However the limitations come from nature of EEG
mentioned in section 2.2 (Measurement Methods of Mental Workload) are drawbacks of
this experiment.

Chaouachi, Jraidi and Frasson created mental workload model with EEG signals for
intelligent systems[26]. They purpose to detect cognitive workload of the learners and
improve communication and interaction methods. By this way Chaouachi, Jraidi and
Frasson believe that an intelligence tutoring system could be developed. The experiment
is performed in non-laboratory environment with two phases. At the first phase, brain
signals are collected from test subjects via 6-channel EEG headset, two video feeds and
devices. Beginning of the phase, all the subjects (17 participants) close their eyes during 5
second and keep eyes open in following 5 second to take baseline used determination of
neural reference. Then, three tasks are given successively to derive workload indexes. At
the second phase, obtained indexes are analyzed and validated to train mental workload
model using Gaussian Process Regression which is a machine learning technique.
Developed workload model is also supported by NASA TXL subjective workload
technique to compare results and examine their correlations. At the end of the study
authors observed that model results are correlated with NASA_TXL result. Moreover
they conclude that performance scores and mental workload level are not linearly related
with each other opposed to laboratory condition. Having offline analysis approach and
not considering experimenter profiles to detect threshold signals, tasks are accepted as
vulnerabilities of this study by authors. For future work, they plan to study on these
issues.

Moreover in the article of this experiment, authors mentioned that developing EEG index
for workload assessment was studied before with different machine learning technique.
Wilson achieved 90% of classification accuracy of workload level using Neural Network
Artifact on pilots during flights[26], [27]. Kohlmorgen performed similar study on drivers
with Linear Discriminant Analysis[26], [28]. Besides, Support Vector Machine technique
is used in different study but same aim by Heger. Results are satisfied with 92% of
classification accuracy[26], [29]. However they are only two classes which are low and
high mental workload state. Three level classifications (low, medium, high) as we tried to
determine causes more complex result to handle.

There are few studies on cognitive workload detection with fMRI due to the reasons
explained in the previous section (2.2 Measurement Methods of Mental Workload).
Korsnes and his colleagues made an experiment to monitor mental workload in
occipitotemporal, lateral precuneus and medial precuneus regions[30]. In this study
authors asks 16 participants to detect real and unreal objects visually. Two presentations
are performed. Behavioral procedures, fMRI measurements and ROI (region of interest)
analyzing are performed. For fMRI measurement top-hat elliptical quadrature birdcage
head-coils are placed on experimenters’ heads. Then bite-bars, formed with each
participant’s dental impression are used to eliminate noisy signals due to head movement.
For data processing, SPM2 statistical analysis tool (www.fil.ion.ucl.ac.uk SPM) is used.
After analyzing of the result, authors conclude that, occipitotemporal, lateral precuneus
regions are related with object priming. Whereas medial precuneus is more related with
mental workload activations. Moreover they realized that repetitive events reduce brain
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activities including mental workload. In fact this reduction is observed more on
unfamiliar objects than familiar objects. Although mental workload is measured in this
study, it is not a main mission. Moreover investigated brain regions are different than
prefrontal cortex which we in interested in this thesis. In the literature, there is no any
kind of study to focus on prefrontal cortex to detect mental workload by using fMRI.
However many labors focusing brain activations except for workload are placed in the
literature. For instance, in 2008, Rota studied on brain activations driven by language
processes with fMRI. He evaluates data in real time[31], [32]. Real time processing is an
important development. Indeed, until 2004 there were no any online BCI with fMRI due
to time consuming data analysis[33]. In 2004, Yoo implement one of the first real time
BCI applications with fMRI. He also mentioned in the article about his study that fMRI is
economically unfavorable[34]. Sitaram worked on emotional behaviors of criminal
psychopaths with fMRI and gave therapeutic support for patients[35].

2.4. Measurement Method Based on fNIRS

Near Infrared Spectroscopy is an optical measurement method to capture brain activations
by monitoring cerebral oxygenation changes. It was firstly introduced to the literature by
Jobsis in 1977[36]. In 1990s, functional near infrared (fNIR) technology became a viable
alternative to existing brain imaging modalities due to the fact that it provides safe, non-
invasive and low cost imaging of the brain. [37][21][38][39]. With the improvement of
hardware and software usage of fNIR including on adults and children was spread
dramatically in 2000s[40][41].

Working principle of fNIR is based on absorption of infrared waves through tissue. Light
with 700-900 nm wavelengths are absorbed mostly through hemoglobin molecules in
erythrocytes (Figure 2). Other molecules such as water in the blood tissue cause minimum
absorption. Also skull and other tissues have semi translucent features for 700-900 nm
near infrared. By considering of these facts, characters of reflected lights emitted with an
infrared light source placed on skin, give valuable information about hemodynamic
changes in blood. Photons from light sources to skin influence tissues. Light intensity
decreases while passing through tissues due to refraction and absorption. With infrared
detectors which are also placed on skin strategically with respect to light source reflected
photons are captured. Monitoring of light intensity changes by this method provides
calculation of optical specifications of the region between light detectors and tissues
where light passing through. Since blood flow and blood absorptions are the most
influencing factors of light intensity changes, it is possible to monitor hemoglobin
intensity changes via fNIR technology.
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Figure 2: Absorption Spectrum in Near Infrared[42]

Most effectively, photons are refracted and absorbed partially during interferences of the
lights and hemoglobin. Absorption intensity of the light is directly proportionate to
amount of methemoglobin (oxy hemoglobin). As is known, oxygen which is needed for
working of neurons is transferred with hemoglobin. With working of brain, oxygen
demand consequently arterial blood supply is increases. Increasing of arterial blood flow
and volume mean increasing of oxy hemoglobin number. This reactions cause infrared
light to be absorbed much more. fNIR principled to this physical mechanism enables to
trace changing of cognitive functions which are related with working of nerve cells.

2.5. Aviation World and fNIR Based BCI Applications

Flight simulators have critical roles in contemporary flight training since they not only
provide pilots to use realistic flight instruments but also allow make mistake. Simulators
help pilot candidates prepare actual flights by specializing on flight controllers. They
enable experienced pilots to keep their knowledge and skills on flight procedures fresh.
Moreover simulators provide training of the cases which cannot be tested on real platform
due to containing life critical dangers but having occurrence probabilities. These cases
can be performed safely and with low cost via simulators. Another advantage is that new
developed avionic design alternatives can be tested by pilots with usability perspective on
simulator platforms more easily before serial production.

Although improvements on aviation technology support pilots with high-tech equipment
and decrease workload on pilots, it is expected from pilots that they should maintain their
situational awareness, detect possible problems/failures on time and make whatever it
takes, and perform related procedures. According to statistics of accident investigation
reports of International Civil Aviation Organization (ICAO), 26% of all aviation
accidents have been occurred because of the factors affecting cognitive states of
pilots[43]. When considering accidents involving death, this ratio increases much more.
Also The British Civil Aviation Authority reported than only in 2009, 32 recorded events
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occurred when pilots were incapacitated during flights[44]. For these reasons
improvement of the systems which are able to monitor cognitive workload of pilots safely
are very important to prevent potential accidents.

2.5.1. Cognitive Processes on Flight Performance

In the literature of human factors in aviation, basic cognitive components on pilot
performance are expressed with cognitive concepts such as cognitive workload,
situational awareness, divided attention, mental fatigue/incapacitation and drowsiness. In
the simulator environments these kind of cognitive processes are evaluated mainly with
behavioral information. Behavioral information is analyzed via:

- measuring of correct answers to the questions which are asked to check awareness
of pilots about current situation by flight trainers stopping flight scenario,

- success level of the tasks and

- submitting of surveys to take idea of pilots how much having difficulty during the
tasks subjectively such as NASA-TLX.

While studies on simulator trainings show that experiences on those platforms make a
great contribution on real pilotage experiences, in the literature it is stated that
comprehensive and innovative approaches are needed to increase effectiveness of
simulator trainings[45][46][47]. Draw backs of behavioral information is one of the major
reason to be in searching of new approaches. For instance, performance of some pilots
could decrease sharply in flight scenarios including secondary task such as mental
arithmetic with routine flight task (primary task), while performance of same pilots are
very similar with others during normal flight missions. This shows that pilots can become
different with each other based on mental workload capacity with same performance[48].
In 2011, Borghini observed that same flight missions could be caused different mental
workload on different pilots, so pilots using more mental workload capacity responded to
events during the task with delay. However more training provides increasing of overall
mental workload capacity and decreasing of the capacity using in the same task. By this
way, pilots could manage to events more successfully[49]. This kind of results impossible
to derive from behavioral information promotes to find different methods to make more
healthy deductions. Therefore in the literature, interest in mental measurement
techniques, especially evaluation of pilot cognitive workload objectively is increased
every passing year[50].

2.5.2. Enrichment of Simulators with Neurophysiologic Measurements

Processing and usage of neurophysiological data obtained from pilots and making it a part
of trainings on new generation flight simulators is objective of major part of R&D
researches which are conducted to meet needed explained above (2.6.1 Cognitive
Processes on Flight Performance). Pioneer studies on this area investigate relationship
between neurophysiological parameters such as brain waves oscillation, heart rate
rhythm, frequency of eye blinking, eye focusing, muscle activity, skin conductivity with
cognitive states of pilots by using electroencephalography (EEG), electrocardiography
(ECG), electro oculogram (EOG), electromyogram (EMG) and electro dermal
(GSR/EDA)[51][52][53][27][54]. Obtained results refer that changes of pilot’ cognitive
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states could be monitored by pattern recognition algorithms and statistical models
developed based on the neurophysiological data[55].

Neurophysiological projections of cognitive processes having critical importance from
the point of aviation are studied with EEG, ECG, EMG, EOG and GSR data. They are
classified as direct methods focusing brain activities (EEG) and indirect methods
monitoring physiologic effects of neural systems on body (ECG, EMG, EOG, GSR). In
the studies using indirect methods, when workload of pilots increases, changes such as
increasing of heart rate and eye focusing, decreasing of eye blinking frequency are
observed[50]. However existence of other no cognitive factors having similar effects
create difficulty on measuring of cognitive workload with a single type detector. For
example, light intensity change in the cockpit and light emitted from flight instruments
can affect blinking frequency similarly with cognitive factors[51]. Likewise breathing
rate, anxiety, and muscle weakness cause changing of heart rate similarly with cognitive
factors. For this reason, usages of indirect methods together with direct methods come to
the forefront in the literature recently.

Studies with EEG most usage method among direct methods show that when attention
deficit exists, power distribution on theta band decreases and changes happened on alpha
band. When attention level increases because of mission level, power increases on theta
band where monitoring on electrodes in pre-medium lateral and top-medium
lateral[56][49][50].

Although important results and approaches are developed with pioneer studies, needs for
realistic applications which would use the available data by combining it meaningfully

and integrate neurophysiologic data with simulators have not been met yet[50].
One of the problems of current available methods is practical difficulties to collect data
due to complex technical designs of aviation nature and simulators. Moreover data
analyzing and evaluation are performed with offline methods after experiments. Still,
online cognitive data processing simulators are not available in the market. It is expected
that online data processing methods will be developed better by integrating in continuing
R&D projects such as Advanced Cockpit for Reduction of Stress and Workload
(ACROSS) project[57]. ACROSS offers an insight into designing of new generation
cockpits for the future. Project partners create a civil aircraft simulator and
integrate/demonstrate their studies on this cockpit.

ACROSS project aims to:

- improve situational awareness of crew,

- increase automation in cockpit,

- improve human machine interaction in cockpit,

- improve support in the case of abnormal conditions during flight[57].

In this project we study on collection of pilot’s brain waves by using optical monitoring
technique with fNIR, processing collected data and calculate a mental workload level
continuously. Performing all processes with online and fNIR method create a great
advantage to use this technology in the near future practically.
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2.5.3. fNIR Applications in Aviation Domain

In the scope of a research project managed in Drexel University fNIR application was
developed to train unmanned air vehicle (UAV) operators and monitor cognitive
workload of them. It is observed that measures derived from prefrontal cortexes varied
statically across test subject group according to their experience levels[41][58][59]. For
inexperienced participants, approach and landing test scenarios are performed repeatedly
in the simulator environment (Figure 3) during three weeks. These exercises include 9
seasons and each season takes an hour. Used scenarios are designed to reveal
neurophysiologic effects of beginner pilots’ behavioral development over time. It is
achieved by preparing realistic and having great importance tasks. In the first scenario,
test subjects are asked to aviate the UAV based on directives indication on the screens
and return the UAV runway again. In the second scenario, successful landing of UAV
approaching to the runway is the mission. In both scenarios, experimenters are subjected
to bad air conditions and they are expected to follow some speed and roll angle
constraints.

Figure 3: Designed Simulator Environment[59]

It is checked that whether there are meaningful changes on total hemoglobin density
(hbT) of participants collected from prefrontal cortex by monitoring via fNIR according
to experience levels (beginner, intermediate, advanced) which improving day by day with
ANOVA for single factor. Since findings deduced from previous studies[41] illustrate
that inferior frontal gyrus of left prefrontal cortex region (AF7 region according to
universal 10-20 system) measured from second channel gives stable respond, AF7 is
focused area for this research. Statistical results prove that hbT quantities measured from
second channel decrease with respect to increasing of experience levels (F (2,24) = 1.26,
p<0.01). These results shows that improvement of experiences and skills gained in
simulator environment and in time are possible to monitor from prefrontal cortex with
fNIR. Also changes on fNIR signals with level variety are observed; at the beginner level
fNIR signal trends increase (so neural activities increase) in time, but fNIR signal trends
decrease (so neural activities decrease) when experience level upper and upper (Figure 4).
Since real pilots do not participate in this study, it can be only said that effects of
repetitive performances on mental workload capacity usage are shown. On the other hand,
Figure 4 (on left side) presents distribution of fNIR signal trends on experience levels. At
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the same time, it implies quantitative expression of cognitive reserve. In other words,
getting more experience results with less mental capacity usage. Hence, pilots can
respond to unexpected events faster with remaining mental capacity and this change can
be displayed on prefrontal cortex with fNIR.

Beginner Intermediate Advanced

NN
- - - ‘,__ _‘

L

Total Hb Changes (umolar)
i

Normalized Inverse Bank Angle Changes

2 3 4 5 68 T 8 9 2

D{iys Nermalized HBT Changes

Figure 4: Left: Changes on fNIR Measurement in Time, Right: Performance vs. Mental Effort in Time[41]

In another study, changes on cognitive workload while performing given tasks in
ecological valid environments are monitored with fNIR. One group air traffic controllers
are submitted n-back tests and perform air traffic control missions with two different user
interfaces[2]. In n-back test parts, air traffic controllers are asked to press a button
according to repetition frequency of characters which are displayed on the screen and test
subjects watch. During test, participants press button when same characters displays
successively in 0-back case, press button when displayed character is same as previous
step in 1-back case, press button when displayed character is same as two steps before in
2-back case and so on. Since number of characters should be keep in mind increase with
increasing of n-back level, this test is used often in neuropsychology and human factors
literatures[60]. In air traffic controlling test parts, operators use two types of interfaces
between pilots and controllers. In the first missions, controllers contact with pilots via
voice based interface. In the second missions, controllers contact with pilots via text
based interface. Mission difficulties are increased by increasing number of aircrafts to be
followed as 6, 12, and 18 systematically[61][62]. Results generated from measurements
of fNIR signals on prefrontal cortexes are shown in figure 5. When related graphs are
analyzed, it shown that activation levels on prefrontal cortexes increase parallel with task
difficulties. Besides, results show us voice based user interface causes more activations
on prefrontal cortexes than text based user interface. Therefore this study also explained
that fNIR methods can be used for designing of new interfaces to consider mental
workload of pilots.
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Figure 5: Left: Average Oxygenation Changes on hbo vs. n-back Test Level, Right: Average Oxygenation
Changes on hbo vs Number of Aircrafts[2]

Gateau and colleagues completed a study in 2015[63]. Their objective is to development
of an online fNIR based interference system to asses working memory. For those purpose,
nineteen pilots are joined to experiments. Test scenarios involve listening ATC messages
and dialing corresponding flight parameters in the autopilot systems by using four knobs
of Flight Control Unit (FCU) which are speed, heading, altitude and vertical speed
controllers in a flight simulator. For fNIR monitoring, fNIR100 with 16 channels device
is selected and its software interface COBI Studio is used. This device and tool are same
as what we selected for our thesis. fNIR100 collects fNIR data from prefrontal cortex and
COBI processes and monitors signals for each channels. It is also mentioned that channels
8 and 10 are removed because of saturation. Moving Average Convergence Divergence
(MACD) filter is applied in processing of first part to distinguish task states of pilots (on
task — not on task). Moreover MACD eliminates trending, low frequency drifts, high
frequency physiological and measurement noise of raw signals. With the help of
literature, as features: 1-means of hemoglobin with oxygen (hbo) and hemoglobin without
oxygen (hbr) changes, 2- mean amplitudes of hbo & hbr, 3- kurtosis (peakedness of
probability distribution) of hbo & hbr, 4- skewness (asymmetry of probability
distribution) of hbo & hbr are selected[64][65][66][67]. In the second part of processing
phase, assessing of working memory levels (low - high) is trying to achieve. For this aim
Support Vector Machine (SVM) machine learning algorithm is used. Low working
memory tasks are defined by asking participants to set one major digit of flight parameter
values such as 15 for speed 150, heading for 150 and altitude for 1500. In high working
memory tasks, successive flight parameters are different with each other. For example
ATC asks pilots to set speed 164, heading 235, altitude 8700 and vertical speed -1600.

For real time process Gateau and colleagues used sliding window. First 20 trial data in
this window is used to train pilots and determine decision boundary of SVM. Next second
20 data placed also in the window determines working memory level of the pilot. MACD
based state estimation results with 61.74% time, 58.24% mean specificity and 71.88%
mean sensitivity accuracy. Latency is negligible because of speed of MACD processing
(< 0.4 ms). SVM based MW load estimation results give 89.5% mean specificity and
72.1% mean sensitivity accuracy. Due to 16 second maximum sliding window offset, 15
second maximum sliding window length and 2 second total process time, working
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memory load estimation is updated nearly each 32 second. Classification response is
available in the worst case less than 3.3 second after pilot’s response window[63].

Moreover, based on obtained result authors state that MW decreases when instructions
are remembered. They also extract a topology maps to see neural activity of prefrontal
cortex. From the map, it is observed that task difficulty changes modularity of
oxygenation level in especially left and right dorsolateral of prefrontal cortex. They
conclude that fNIRS is an appropriate methods for monitoring of MW load level.

At the end of the study authors explain some limitations. They illustrate that working
environment is not realistic cockpit. It is simplified PC-based simulations and ATC
communications were tried to be realistic. They also assert that delay time could be
decrease with deeply study. Furthermore, accuracy of estimations could be increase by
trying different model such as Hidden Markov Model. In fact using of more than one
model at same time could be give more consistent results[63][68][69]. Another constraint
is period of training part. Gateau and colleagues think that duration of training process
should be decrease to use in real operations. Some real operational factors will affect
working mechanism of designed system. For instance G-Force will affect blood flow or
pilot’s head movement will created motion artifact. Although last limitation is also valid
for our study, it is out of scope since real aircrafts and movable simulators are not
considered as our working environment.

In 2013, another offline experiment was designed to investigate mental workload during a
simulated piloting task by using fNIR[70]. Durantin and his friends set a PC based
simulation environment. During the tests, participants are expected to track target
aircrafts labelled with color names. When any of the color name is indicated at right edge
of the screen, test subject should approach the correct labelled target aircraft which placed
at left edge of the screen by moving controllable own aircraft via joystick (Figure 6). 20%
of indicated words are not color names such as read, grin to create possibility of making
mistakes. Two different classifications are designed for the experiment; difficulty of
control (easy, hard) and processing load (low, high). Difficulty of control is specified by
varying the strength of the crosswind (no crosswind in the easy condition, strong
crosswind in the hard condition) and the inertia of the plane (low vs. high). Processing
load is specified with N-back-like sub task. For low processing load (in terms of working
memory), tester should follow the aircraft labelled with color indicated at right (similar
with 0-back). For high processing load, the aircraft labelled with color indicated at right
but one cycle before (similar with 1-back). HbO> (hbo) concentrations from prefrontal
cortex are measured with fNIR monitoring method and fnirSoft software tools. Hbo mean
values are calculated via Matlab and these values are used to determine mental work
level. Moreover heat rates of test subjects are measured parallel with fNIR measurement.
After the tasks, NASA-TLX subjective evaluations are also performed.
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Figure 6: Screenshot of the Durantin’s Experiment Setup[70]

Major effect of control difficulty is observed on optode 6 with ANNOVA results: F (1,
11) = 5.82 and p<0.05 showing an increase in hbo with an increase in control difficulty.
Moreover it is observed that hbo concentration increases when high processing load in
easy control condition is performed while hbo concentration decreases with high
processing with hard control. (optode 3: ANNOVA results: F (1, 11) = 5.11 and p<0.05).
This cause - effect is detected most clearly in optode 3 which placed in the left
dorsolateral prefrontal cortex (Figure 7 left side). In fact same observation is made in all
optodes with smooth changes. Important information gained from optode3 results is
computing of correlation between measured data and performance scores. When highest
level of hbo changes are measured, best scores are recorded shown in figure 7 (right side).
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Figure 7: Results of optode3[70]

Authors also point that, hbo concentration vs task difficulty level graph has a U-shape. It
means normalized hbo change increases correlated with task difficult level for a while,
but then inverse proportion is seemed between hbo and task level. Durantin bases this
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result on frustration on the participants in the very difficult tasks. Lastly they conclude
that task performances are not enough to evaluate mental workload solely. fNIR
measurement technique is suitable to monitor cognitive signals and gives important clues
to detect mental work levels. In the future work, suggestion is using fNIR and another
measurement technique such as eye movement, operator’s response time.

In Karlsruhe Institute of Technology (Germany) a mental workload monitoring study is
completed in 2014[71]. This study has provided continuously workload monitoring with
fNIR and classification of workload with three different levels. Herff and other authors
have also proposed to develop dynamically adaptable with behavior of the interface.
Although experiments are designed based on n-back tests only (no another flight
simulator etc.), three classes for mental workload levels and continuous measurement
approach which are major objectives of this study are also our thesis goals. Used
headband has 4 light sources, 8 receivers (2 sources& 4 receivers are left eye above, 2
sources& 4 receivers are right eye above) different than which we use. N-back tests are
applied 10 test subjects whom did not experience before with n-back. In order to avoid
from trend effect which is observed especially long term tasks, moving average filter is
used by subtracting mean of 120 second before and after every sample from every Hbo
(hemoglobin with oxygen) and Hbr (hemoglobin without oxygen) data point. Moreover,
wavelet artifact removal method is used to compensate head movement effects. Although
in the article of the study, it is stated that mean value of the signal in a specific window or
mean changes between windows is simple and effective feature[71][72], Herff and
colleague prefers slope of straight line fitted in a window as feature to able to use linear
regression with a least square approach. Furthermore they reduce 16 features (8 channel *
2 data type — hbo/r) by using Mutual Information[73] and Linear Discriminant Analysis
to classify data. In order to specify classes, optode signals are monitored and following
graphs are obtained.
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Figure 8: fNIR Signals from Optodes (Gray lines: each optode values, Black lines: mean of all optodes)
[71]
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As seen figure 8, positive slopes increase from easiest task (1-back) to most difficult task
(3-back) for hbo and vice versa for hbr. Therefore slope feature is seen as a good choice
to classify mental work level. Another important result is observation of offset between
tasks. For 44 second tasks 10 second relaxes time give best classification accuracies. If
relax time is not given between tasks, classification accuracies decrease since without
offsets (relax time) test subjects are just beginning to memorize stimuli and work load is
not experiencing yet. As expected classifications in 3-back vs relax phase has maximum
accuracy value with 81%. Windows size using to process data and output a mental
workload level is also affect accuracy level. As shown in figure 9, with 25 second —
window length maximum accuracy score obtained. Decreasing of classification accuracy
after 25 second is related with decreasing of instance number according to authors. Again
in figure 9, it is shown that classification success between 1-back and 3- back is highest
since difficulty difference between 1 — 3 back tests is highest.
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Figure 9: Classification Acc. vs. Window Length for Couple of Difficulty Levels (Left side) Classification
Acc. vs. Window Length for All Difficulty Levels (Right side)[71]

It is conclude that even though further investigation is need to distinguish workload levels
between each other more clearly, continuous monitoring and three level classification
(this case is founded rarely in the fNIR literature) have been achieved. Authors point that
fNIR has great potential to supply mental workload evaluation in daily life. In my thesis
similar classifications are performed in aviation domain with real pilot fNIR data and in a
realistic cockpit environment.
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CHAPTER 3

3. METHOD

In this chapter the experiment environment and all system components are explained.
Figure 10 shows the general structure of the system starting from data acquisition and
ending with mental workload level estimation. After description of the experiment
environment, details of each subsystem and used algorithms which are supervised
learning algorithms are explained separately in next sections.
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Figure 10: Structure of the System

3.1. Experiment Environment and Protocol

- Reduction of workload of flight crew in critical parts of flights,

- Removal of cross-check activities,
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All data for this thesis is collected by using the infrastructure of the ACROSS (Advanced
Cockpit for Reduction of Stress and Workload) project. The ACROSS project was carried
out within the scope of European Union Seventh Framework Program. At the end of the
project the following capabilities were aimed to be achieved:

- Reduction of communication problems among human pilots and air traffic controllers by
automatization of intercommunication between aircrafts and air traffic controllers,



- Monitoring of mental workload and situational awareness of pilots during flight and
suggesting interventions during emergency cases,

- Increasing of flying safety by using innovative feedbacks, controlling with voice,
recognition of pilots’ voice and faces[57].

With the goals listed above, a single-pilot cockpit concept is aimed to be developed for
civilian aviation. Turkish Airspace Industry (TAI) joined the ACROSS project to lead the
work package on pilots’ online mental workload estimation by using fNIRS. Due to the
information sharing restrictions of TAI and the overall project, not all details of the
project and the conducted studies could be given.

Technologies for the project were developed by a consortium including tens of companies
and universities. They are verified through acceptance tests designed by the project lead
and the project is officially concluded in 2017.

From measuring of pilot mental workload to recognition of pilot face, several studies
were conducted on the subjects. A certified Airbus A320 aircraft simulator is used for this
purpose. The following figure illustrates the test environment and the employed operator
monitoring technologies.
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Figure 11: Test Environment[74]

8 test subjects were separately involved in the identical flight scenarios which we use to
collect data. Test subjects were experienced pilots having 10712 of flight hours on
average (minimum value of flight hours is 3500, maximum value of flight hours is 17000.
Standard deviation is 5057). All of them are male. Test subject 5 is left handed and the
others are right handed. They were asked to aviate the aircraft simulator based on the test
procedure.
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Each test consists of four scenarios. They are designed to be realistic by taking of aviation
specialists and pilots.

Scenario0 - Free Play: It is designed to help test subjects to get used to the test
environment. They familiarized themselves with the equipment and experienced the
simulator instruments. They performed a simple flight that took about half an hour. Two
test pilots did not participate in the free play scenario since they had already been familiar
with the test environment during development of the simulator.

Scenariol - Normal Workload Flight: This scenario included the execution of a normal
landing on a runway after the cruise phase. It did not include a significant emergency
event to create out of ordinary action. It includes all phases of a standard flight from
takeoff to landing. It takes about an hour.

Scenario2 - Landing with Workload: The scenario started from cruise phase and
included non-routine ATC directives in approach and landing phases (e.g. passing the
airstrip and executing a fly-around) which are expected to increase the mental workload
level of the pilot. The scenario took nearly half an hour.

Scenario3 - Landing with High Workload: Similar to scenario2 it started in cruise
phase, but was carried out in bad weather conditions such as poor visibility. Moreover in
approach and landing phases, the scenario included equipment fails and abnormal ATC
directives. It takes about half an hour.

ACROSS Project members detail all scenarios as following below[74]:
Scenario0:

= “Start the simulation with aircraft on ground, at Airport 1

= Crew performs take-off from Airport 1

= Free flight from Airport 1 (for at least 15 min)

= At the end of the session, crew performs the descent, approach and uneventful
landing at Airport 1. Good visibility and weather.”

Scenariol:

= “Start the simulation in cruise, on normal long haul flight to Airport 1 (e.g. trans-
oceanic cruise)

* No unexpected event during cruise (for at least 30min), pilot’s solicitation (and
workload) shall be minimal. No weather threat.

= 5 minutes before Top of Descent, crew performs the Descent briefing.

= Crew performs the descent, approach and uneventful landing at airport 1. Good
visibility and weather.”

Scenario2:

= “Start the simulation in cruise, in cruise to Airport 1, 15 min before the Top of
Descent (same flight plan than in scenario 1, as a resuming of the previous
mission - TBC).

= 5 minutes before Top of Descent, crew performs the Descent briefing.
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= Crew performs the descent, and begins approach to Airport 1. Good visibility and
weather.

= When A/C is at about FL100, ATC requests the flight to divert to Airport 2 (never
flown by the crew).

= Crew re-route the aircraft, performs the briefing, descent, approach and landing to
Airport 2. During this operation, PNF is expected to be less skillful than usual
(then, perform his duty slower than usual, to increase PF's workload). Good
visibility and weather.”

Scenario3:

= “Start the simulation in cruise, in cruise to Airport 1, 15 min before the Top of
Descent (same flight plan than in scenario 1, as a resuming of the previous
mission - TBC).

= 5 minutes before Top of Descent, crew performs the Descent briefing.

= Crew performs the descent, and begins approach to Airport 1. Very low visibility,
foggy weather. During the descent, attempt to distract the pilot with
questions not directly related to the mission duty.

= When A/C is below Decision Height, late aircraft incursion on runway (just ahead
of the aircraft) that triggers a sudden Go-Around.

= Crew flies the Missed Approach procedure.

= During the climb, during flaps retraction operation, an unexpected system failure
occurs (flaps remain blocked in extended position).

» Crew performs a new landing attempt at Airport 1 (same or other runway).”

Each scenario is executed in given order above.

3.2. fNIR Device and COBI Studio

fNIR Model 1100 manufactured by fNIR Devices Company is used to image non-
invasive oxygenation and blood volume trends in the prefrontal cortex. This product
consists of a control box, a silicon headband housing the fNIR sensors with 16 channels,
power cable/adapter and USB cable as seen in figure 12. COBI Studio software that is
provided by the manufacturer was used for the visualization and initial processing of the
data.
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Figure 12: fNIR Model 1100 system

3.2.1.fNIR Sensors

The optical sensor pad contains 10 photo detectors and 4 IR light sources (LEDs) which
are integrated into an elastic band as shown in figure 13. Each number represents
channels. They are also called optodes or voxels. Therefore with fNIR sensor pad, 16
different regions in the prefrontal cortex of the human brain can be monitored.

Figure 13: fNIR Sensor Pad[59]

For optical brain imaging 730 nm and 850 nm wavelength infrared rays are used. These
wavelengths are selected by considering optical window of near-infrared range where
most biological tissues absorb except for hemoglobin molecules. In order to check and
measure the undesired ambient noise another wavelength 805 nm near infrared ray is used
as third spectrum. When photons are emitted towards human head by the sources, some of
them are scattered through the skin, skull, water and other tissues, but also most of them
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are absorbed by hemoglobin with oxygen and without oxygen. Detectors placed at a
certain distance away from the sources receives reflected lights whose characters are
changed because of scattering and absorbing. During this activity, photons follow a kind
of a banana path from the light source to the detector as shown in figure 14.

Figure 14: Photon Path[75]

3.2.2. fNIR Control Box and COBI

The sensor pad is connected to the fNIR control box via 2 proprietary signal interface
cables. Through these cables signals are received from sensor. In control box, they are
digitized and transmitted to computer where COBI Studio runs via USB cable.

Cognitive Optical Brain Imaging (COBI) Studio provides the user an interface to manage
control box functions. With this tool many settings such as light source density, detector
gains and frame rate of light are tuned. In our experiments:

- frequency of light: 2 Hz. Therefore data samples from 16 optodes are obtained
every 500ms.

- LED current: Adjusts the amount of current running through the LED lamps,
which in turn adjusts the brightness of the light source. Typical values range from
10-25 mA which is selected based on the skin color of the participant.

- Detector gain: Adjusts the sensitivity of the photo detectors.

- Get ambient light is ticked. It allows the experimenter to see ambient light levels
in order to check for environmental noise due to poor contact between the sensor
and the skin.

- Quarterl, 2, 3, 4 are ticked to obtain data collection from all 16 optodes. Optodes
are organized into groups of 4, and depending on the experiment some of these
groups can be turned off if they are not the focal regions. Figure 15 displays
setting window of COBI.

- Port number: 6343. Since COBI is used as server to transfers all data to fNIRSoft
tool, their networking is provided on a port which 6343 as default.
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Figure 15: COBI Setting Window

After that, it starts running of control box. Continuous signals are monitored
optode by optode at COBI screen as in figure 16. These signals are still raw data.

It means processing for fnir imaging is not applied yet. Therefore they are in terms
of millivolts.

Figure 16: COBI Signal Monitoring

It is important that signals should not be saturated (exceeding of 4000 mV) and
should not be very low (lower than 700 mV) to carry useful information about
brain hemodynamics. Therefore, before starting the experiment, it is ensured that
all optodes are placed well. If there is a weak sensor-skin contact, the signals
obtained from the corresponding optode will be saturated or if there is not enough
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IR isolation from the environment, signals will be too noisy. Figure 17 shows
parts of the preparation of an experiment including inspecting the signal levels at
each optode and the placement of the sensor pad.

Figure 17: Placement of the Sensor

Once the setup is ready with acceptable signal strengths at each optode, a new
experiment is started to record the collected data. The COBI takes baseline
measurements for a duration of 10 seconds before it starts data recording.
Recorded signals values are stored in a file whose extension is “.nir”. When this
file is opened with Notepad/++ or Excel, following form in figure 18 is seen. At
each 500ms one line of data is generated. The meaning of all data columns are
explained briefly in figure 18. When the experiment is finished, data acquisition
process should be stopped with COBI to finalize the data file.
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fnirusB.dll log file Header and date
Start Time Mon Mar 30 15:10:34 2009 [ |

Start Code 4603.724 4603246 High resolution timer initial counter and frequency,
Freq Code 14318180 . «  LED current and initial gain parameters
Current: 15 o
Gains: 10
Other: none First column is the time in seconds from start...
-2 Baseline Started - . . . . . ’
2.681 5009 5005 SR . 5001 5001 4993 5012 5009 5001 4999 5007
3.176 5004 e 2988 4999 4994 4952 5006 4999 5002 5003 4999 4995
3.677 o 5008 5000 5003 5000 5012 4991 4996 4995 4989 4999 4995
4.188 5000 4991 4993 4994 4987 5002 4992 4995 4990 493938 5000 5003
4.68 4998 5003 500 4991 4935 5000 5003 4999 4999 5003 4997 4998
5.174 2 m m 5002 5000 5004
5.674 5000 5003 6 5001 4 5 4391
6175  soos | Optodel sop2| Optode2 jg  s5pp3| Optode3 4 4994
6.673 4995 TITU TITY 5000 TFIIT SU03 5009 JUUT SoUd 5004 5004 4592

7.17 4999 5000 5001 4998 4998 49398 4984 4997 4998 5000 5005 4995
7.672 5004 5001 4998 5002 5005 2002 2005 4996 5003 4999 4995 4935
8.18 5007 5003 4537 4996 5007 49350 5008 5006 4999 4998 5007 4996

8.677 5004 S007 4994 9387 5004 4954 4997 5000 49906 5004 5000 4591
9.167 SY07 5003 5001 4996 %398 saas anna 998 4999 5009 4998
9.78 5005 4992 5003 5007 5006 Optode 1, Raw 850nm D18 5005 5001 5009
10.35 4994 4954 5005 4999 4994 Soo5 e ST %992 5005 5000 4994
10.667 5002 4995 5002 Soa2 h 5000 5007 5011 4995

1117 4999 498 5008 asgs | Optode 1, Raw Ambient | 4992 4999 4999 4594
11.843 4997 4991 N, 5002 4999 4938 4999 5002 4992 5002 5009 5009 5002
12.165 5010 5000 801 4396 4995 4983 4999 5007 4995

-3 Baseline values Optode 1, Raw 730nm
0 5001.65 0 4999.45  4998.7 0 4998.8  4999.5 0 4998.85 5001.25 0 4997.15
-4 Baseline end

13.01 5002 5003 5004 5004 5000 4999 4995 5003 5000 5000 5006 4994

13.509 5004 4998 5001 4999 4994 4997 499 4999 4991 5003 5003 5003

14.008 5007 4956 5005 4599 5005 4959 5009 4597 5002 5001 5000 5000
14.508 5008 S003%_ s 5004 5001 5000 4992 4997 4990 4936 5006 4994
15.007 5001 4998 4994 =2 5009 4995 4995 4995 4998 4999 5001 4557

After record button is pressed, (Baseline is set) All data follows...

Figure 18: .nir File Format[76]

As mentioned before .nir file contains raw signals. In order to convert raw optical signals
to cortical oxygenation measures, the modified Beert — Lambert Law (mbll) is used.

According to mbll, received light intensity is expressed as:

I =GE, e (eneCup+anpo, Crpo, )L

where G is constant for measurement geometry. L is photon path composing of
absorption pa and scattering s constants. Cnxg and Creo2 are deoxy — hemoglobin and oxy
— hemoglobin concentration in the blood. axs and ansoz are molar extinction coefficients
for the oxy- and deoxy-hemoglobin molecules[77].

Optical density is expressed as:

I
AOD = log TF = auAChp + tupo, AChgos

32



where Iy is light intensity measured at initial time (baseline) and 1 is light density at
time=t. Since two wavelengths are used, the two unknowns AChg and AChgo2 Can be
calculated. Moreover oxygenation is computed as subtracting deox-hemoglobin
concentration changes from oxy-hemoglobin concentration changes. Total blood volume
Is summation of these two variables.

Oxygenation = ACypo, — AChp
BloodVolume = ACH&OE + .ﬁCHB

COBI Studio provides another log file which is obtained by applying mbll to raw signals
with respect to the default baseline measures whose extension is .oxy. This file includes
two values for each optode; the first one is related to oxy-hemoglobin concentrations
whereas the second is related to deoxygenated hemoglobin concntration . Generally it has
similar format with .nir file as shown in figure 19.

Header and date
fnirusB.dll Hb/HbO2 file
Start Time Mon Mar 30 15:10:34 2009
High resolution timer initial counter and frequency,

Start Code 4603.724 4603246 L 1 0 LED current and initial gain parameters

Freq Code 14318180 -

Current: 15

Gains: 10 First column is the time in seconds from start...

Other: none = i
13.01 -0.05744  0.06254 __=»0.02633 -0.05019 0.013032 0.054374 -0.03663 -0.05141 0.05667 -0.02936 0.006273
13.509 0.021°7 —wot7 0.018786 -0.0814 0.06572 -0.04624 -0.08449 0.043121 0.026565 0.000223 0.041029 -0.02873

14.00°,  c.osve5-0.008067 -0.02163 0.032816 0.024506 -0.01931 -0.0175 0.032318 -0.04857 0.093323 0.074272 -0.07792
14.507 _ 0.013666 0.010582 -0.01007 -0.02966 _-0.05314 0.0808%4 0.033777 -0.02317 0.025841 0.017189 0.049705 -0.02341
15.006 -0. A o 0. . £ 0.046021 -0.1025 -0.02073 0.014647 -0.01459 0.0241
15.505 0. 0.021 0222 0.048579 0.006359 -0.05
16.004 -0 Optodel Optode 2 Optode 3 | 073 3849 -0.01856 0.048614 -0.05017
16.503 0.0UU3U7  -U.URIIUZ U.UGZI7/6 -U.US3J1 -U.UI3U6 U.UZ7ZII 0.005257 -U.U3I99 U.U22229 -0.00244 0.022965 -0.02242
17.002 -0.07442 0.095645 0.04915 -0.06286 0.029933 0.010115 0.055803 -0.0705 0.04211 0.00106 -0.01386 0.007131
17.501 -0.00366 -0.000078 -0.04472 0.053404 -0.02171 0.021879 0.061957 -0.05806 -0.04351 0.079005 0.088721 -0.10382

18 0.006072 0.032043 0.033988 -0.02001 -0.0062 0.022729 0.06701 -0.07234 0.009225 -0.01042 0.055481 -0.05466
18.499 -0.07503 0.008126 -0.07748 0.041841 -0.01666 0.00759 0.044978 -0.02499 0.059406 -0.09259 0.028021 -0.03671
18.998 0.050153 O:8A2858 0.020599 -0.07163 -0.03217 0.006743 -0.00378 0.023357 -0.0204 0.058406 -0.03621 0.010749
19.497 \.0.01722.0 0.008884 0.024222 -0.05206 0.041477 -0.05236 0.075695 -0.06704 0.02331 0.024343 0.022597 -0.0661
19.996 0.060654 -0.047598 9000015 0.046173 -0.03257 0.067454 -0.0135 -0.00875 0.068094 -0.0873 0.061245 -0.08587
20.495 0.03426%,_ -0.002879 -0.05%16 0.118716 -0.05925 0.068387 0.060444 -0.12835 0.030842 -0.10132 0.052235 -0.03056
20.994 0.052679 ™\0.069836 0.040855 “%).0245mAR00000umnt:0000unf-000062ue0.01238 -0.07345 0.104073 0.001656 0.007986

Optode 1, Oxy-Hb

Optode 1, Deoxy-Hb

Figure 19: .oxy File Format[76]

While the data is recorded and streamed by COBI, other components of the systems
run in parallel. The next sections explain the fNIRSoft and application elements that
process the incoming stream from COBI.
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3.3. fNIRSoft

fnirSoft is a stand-alone software package designed to process, analyze and visualize
functional near infrared (fNIR) spectroscopy signals through a graphical user interface
and/or scripting (for automation). Below is the main window of fnirSoft with common
user elements and tools identified (figure 20).

Open a new Open Create a new Topograph
editor to Organizer (Spatial visualization/registration)
. . Open an
view/edit p Y Tool
scripts fnirSoft file View/Process Variables
i frirSoit - “
Gie View Teok ‘lindow Help [N Fsokt

& Edior | [ B 0pen | k) Organceer [ Gallery | | Lightgraph & Ovoreh @ Topograph E‘Dms:a:e (7 Eor “impent
Dataspace | Diectory | History
_—
Welcome to fnirSoft Professional
| MName Content Siz
| Please enter your commands below and press enfer’ key telexecuty thy

Create a new Oxygraph
(View & Process OXY files)

Type About o see version info and fo check any availabi updaias

|
Type Help or HelpExplarer or the command name for m| re infamat

Create a new Lightgraph Dataspace
(View & Process NIR files) .
Directory
History
Panes
Command output pane
Load Save -~ | Delete - Import Refresh _
Ready... 0 vars, 0 lightgraphs, D cxygraphs, 0 topographs
Command status Command prompt Dataspace status

Figure 20: fnirSoft Main Interface[78]

By clicking Lightgraph -> Load File, .nir files recorded by COBI can be visualized in two
different formats for offline analysis:

1- Raw light intensity measures obtained from all 16 optodes at 3 different
wavelengths can be displayed altogether in a single graph as shown in figure 21.
Signals colored in pink and purple represent raw measurements obtained at
wavelengths 750nm and 830nm respectively. Moreover the blue colored signals
correspond to ambient light measurements recorded at 805nm. Yellow and green
markers tagged with numbers are used to mark key events during the experiment,
such as the beginning and end of a mission, or the onset of engine failure. Markers
can be triggered through the keyboard or can be automatically set through the
stimulus presentation system.These keys are defined before the experiment based
on a dictionary of significant events in the experiment. For instance, the marker
for the event engine failure can be visualized in this way to observe its
hemodynamic effects on the pilot.
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Figure 21: fnirSoft Signal Demonstration Together with All Optode

2- Each optode can be visualized separately. Thereby, problematic optodes such as
saturated channels can be distinguished and eliminated. For instance optode 8 and
10 are saturated and eliminated in figure 22.

| - '
» -
5 ; -
Lo
Enlarge
Update
. Reject

>

§ Pen—

Figure 22: fnirSoft Signal Demonstration Optode by Optode

fnirSoft global memory is called Dataspace. All data variables (numeric, string, lists) and
all objects (Lightgraph, Oxygraph) are created and stored in the Dataspace (figure 23).
Processing Tool allows applying various functions/processing methods through user
interface. All these functions are also available as commands through fnirSoft scripting.
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fmiri31]

Dataspace | Directory | History

Enter text to filter

Name Content Size Date/Time Labels
lightgraph1 {Lightgraph} 4936 x 16 x 3 1/23/2016 1:32:51 P...
lightgraph1.raw.Bl... Light 4935 x 48 1/23/2016 1:33:28 P... DATA
lightgraph1.raw.Ti... Time 4935 x 1 1/23/2016 1:33:28 P... TIME

Figure 23: fnirSoft Dataspace

fnirSoft presents many functions to process on signals. Applying mbll, filters such as low
pass filter, creating of data block to study specific parts of the signals, exporting
generated variables and signals in txt or Matlab formats are a few of them. Moreover the
scripting support allows the use of all these functions automatically. fnirSoft scripting
functions also support the calculation of signal features such as mean, slope, standard
deviation etc.

As explained in literature review chapter, the motivation for this thesis is to develop an
online algorithm for monitoring the changes in mental workload of operators . It means
that workload is estimated and updated continuously during the experiment. fnirSoft
provides its features not only for offline analysis but also for online analysis thanks to
scripting and DAQ Base Station plugins.

For online measurement, we need to collect brain signals through the control box and
COBI continuously. Hemodynamic changes take time due to the fact that when neural
activity increases in a brain region, an increased supply of oxygenated hemoglobin is
supplied to that region by the vascular system. Since this occurs in the order of seconds,
fNIRS can monitor slowly materializing hemodynamic changes due to neural activity.
Although this is a limitation for tracing neural events that occur at higher temporal
resolution, relatively slowly accumulating effects such as mental workload changes can
be effectively traced by fNIRS.

Another important aspect of online analysis is to select an appropriate data buffer size,
which is also referred as window size selection [63][71]. In order to detect meaningful
changes in the streaming signals, they should be processed in reference to an extended
period of past data point [63][71]. In the current literature online estimations of cognitive
workload typically rely on window size of 30-60 seconds, where the duration is based on
the task and the features considered for classification[63][71]. If the window size is too
small, then the mental workload measure will be oversensitive and affected by instant
unavoidable noise, head motions etc. If the window size is too large, the old data in the
buffer will be too dominant and render the current hemodynamic response undetectable.
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Figure 24: Online Data Processing Approach

By considering the literature and these facts, we selected a window size of 60 seconds. At
every 5 second:

- new raw signals are received from the control box,

- they are processed by fnirSoft and exported in a text file,

- oldest 5 seconds of data placed at the begginning of the window is removed
- new 5 seconds of data is placed at the end of the window

- the updated text file is fed into the model processing algorithm

- anew workload estimation is generated

Therefore every 5 seconds, the sliding window is shifted and mental workload estimation
is updated (figure 24).

In order to collect raw signals from the control box continuously, fnirSoft DAQ Base
Station is used. fnirSoft DAQ tool is launched by clicking on Tools -> DAQ Base Station
Tool on the main window of fnirSoft. Base Station window is shown below (figure 25),
which has two main sections: Sources (Input) are on the left hand side where as Actions
(Outputs) are on the right hand side of the window.
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Data Acquisition and Online Processing Base Station

LN
(f Source\ ( Action \
fNIR Remote Data l A |v| Save

¢Bdy COBY Studio Riw and Processed Data
Ept A with fainlASBinet
S
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Por 6343 Receive event markers

Connect Port 6350
Start

|| 15 DAQ Remote Markers tart Basel
Focalvaavant o nd Baselin) |+| Export
Frocessed Data to Workspace

6345
Start Samples of 20 -

Fort

[¥| Exacute script file

\[ J L)

I_ Enable/Disable/Connect I_ Enable/Disable Actions to
to Data Sources. be done on the Data
(Output options).
Log output at the
bottom reports on Log output at the bottom
status reports on status

Figure 25: fnirSoft DAQ Station Window[79]

Available data sources and actions in the Base Station Tool are illustrated in figure 26.
Clicking on checkbox enables and disables individual components when Base Station is
idle.
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Figure 26: fnirSoft DAQ Station Component[79]

With fnirSoft DAQ, raw signals which are being sent by COBI Studio received by
fnirSoft and are kept in Dataspace. Since both COBI Studio and fnirSoft typically run on
the same PC, IP Address is set to default value 127.0.0.1. If they run on a different
computer, the IP address would be set to IP belonging to COBI PC. The port should be
set as the same as the COBI port value, which can be customizd via COBI settings. By
ticking the “enable” and the “sample of” boxes, we can select the frequency of transferred
raw data. Since we want to transfer new data at every 5 seconds, 10 is entered as the
parameter value here. COBI Studio digitizes raw data at a frequency of 2 Hz. Therefore
“10” represents 10-lines of raw data, which implies 5-seconds of new data. Clicking on
the execute script file prompts the user to select the script to be used, which is executed
for each new chuck of raw data sampled from the incoming stream.

Since we need to process (applying mbll etc.) raw signals to convert them into
oxygenation measures to be fed into our mental workload estimation algorithm, we used a
custom fnir script, which is illustrated in figure 27.
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0O =] @y G s f b

£ {

/{ delete Time.hbo, Time.hbr from fnirScoft Dataspace since they are not used
Delete (Find (name "Time"));
/{ define a wvariable to control Block(l,2,...).hbo and Block(l,2,...).hbr
J =83 + 1;
// to avoid deleting of blockll,12... with blockl
if (§==1)
{
Block0l = Find (name "Blockl™);
Delete (Find name "Blockl");
}
/f wait until first 12 data blocks(each of them is 5 =econd data) are obtained
Pif (5 »= 12)
// get data name of data block
//DRQ server should be sending raw nir files every 5 seconds
//these wvalues are read into the 12 wvariables below
// to avoid deleting of blockll,12... with blockl
if (4 == 12)
myStringl = "Bleock01 1";
else -
myStringl = "Block"+(3-11);
myString2 = "Block"+ (] Vi
myString3d = "Block"+ ;
myString4 = "Block"+(j H
myStrings = "Block"+ ;
myStringé = "Elock™+ ;
myString7 = "Block"+(jJ ;
myStringd = "Block"+(J ;
myString% = "Block"+(j-3);
myStringl0d = "Block"+(J-2);
myStringll = "Block"+(j-1);
myStringl2 = "Block"+(]);
//concatenate nir files to get 60sec long raw data block
appendNir = Append (Find (content "light"));
//apply modified beer lambert law on combined raw infrared file
//the first 20 rows of the block is considered as the baseline
//we dont need baseline correction anymore, since we compute mbll from scratch
mbll out = Mbll (appendNir settings [20]);
// find mean of hbo & hbr
hboMeanVarl = MeanWithin (Find (name "mbll.out" label "hbo"));
hbrMeanVarl = MeanWithideind{name "mk1l.ocut"™ label "hbr“}m
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// find slopes of hbo & hbr

hboSlopeVarl = SlopeWithin (Find(name "mbll.out™ label "
hbr3lopeVarl = SlopeWithin (Find(name "mbll.out™ label "h
// find standart deviations of hbo & hbr

hboStdevVarl = StdWithin(Find (name "mbll.out" label "hbo™"
hbrstdevVarl = StdWithin(Find (name "mbll.out" label "hbr™

// find min & max values of hbo & hbr

hboMinVarl = MinWithin(Find (name "mbll.out" label "
hboMaxVarl = MaxWithin (Find (name "mbll. label
hbrMinVarl = MinWithin (Find (name "mbll.ocut" label
hbrMaxVarl = MaxWithin (Find(name "mbll.cut" label "

of hbo & hbr

/f £ind range

=
hboRangeVarl = hboMaxVarl - hboMinVarl;
hbrRangeVarl = hbrMaxVarl - hbrMinVarl;
// append the 60 second hbo and hbr data block features which were calibrated with new baseline.
outputVarl = Append (hboMeanVarl hboSlopeVarl hboStdevVarl hboRangeVarl hbrMeanVarl hbrSlopeVarl hl
// apend the 60 second hbo and hbr data block wvali which were calibrated with New baselins.
outputVar2 = Append (Find(name "mbll.out" label
outputVar3 = Append (Find(name "mbll.out" label
// apend all wvalues to export txt file
outputVar4 = Append (outputVarl outputVar2 outputvVar3);
/{ export the calibrated hbo and hbr data to the path above by test.(1,2,3,...).txt name. TAI app
Export2txt ("C:\Users\Administrator\Desktop\ACROSS_SW\trunk\ACROSS_TestBed\ACROSS\TAIApplication\a
// delete first 5 second data block
// to avoid deleting of blockll,12... with blockl
if (§ = 12
{

Delete (Find (name "Block0O1™
i
else
{

Delete Find (name myStringl

I
Delete appendNir) ;
Clear;

Figure 27: fnirSoft Script used for processing the incoming raw optical signals

The script coded and shown above firstly waits 60 seconds to fill the buffer (sliding
window). After that it performs the following operations:

It converts raw signals into hbo and hbr measures by using mbll by considering
the first 10 seconds as baseline. In fact, COBI can also apply mbll on raw signals
and record hbo/r measures in .oxy signal as explained before. Since we perform
online processing, pure raw signals are received and processed with this script.
Baseline is taken to find reference values of hbo and hbr measures. Furthermore,
10 second baseline at every 60 second not only protects trending of data but also
provides eliminating of instantaneous ambient impulse.

It computes the means, slopes, standard deviations and ranges of hbo and hbr data.
They are used as features in our machine learning model.

All found features (mean, slope etc.) and hbo / hbr data are exported in a text file
at every 5 seconds. These text files are named as “test. [.txt, test.2.txt, test.3.txt, ...,
test.n.txt”. An example of text file content is shown in figure 28.
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1 7 = i - 187 7197 - 7 =i

2 = = |

3 |1.35547330885177 0.587475356452935 0.344863576994033 0.426798310893845 0]
- iz emimen ¢ smvmoremres o piteoesTrorane 0 paomaervener 0
5 [5.68779778242819 1.39463891510244 0.954334344652221 1.14562574734769 1]
9 |0.0570758641132795 -0.164683321479209 -0,49063093142749]1 -0,249322230327204 I

10 |0.0199395366208475 -0.146553544308677 -0.315591034194982 -0.17228500453%582 -

11 }-0.101725217236826 -0.0841176041563185 -0.182046717968999 -0.138058412488706 -

12 |-0.16753%293778308 -0.0766673342137775 -0.0632858284095691 -0.0545473808891%22 0

13 |-0.19223941848671 -0.0648011396082816 -0.00194493225425866 -0.00750083223652°

14 |-0.137653281544976 -0.0633131217178533 0.0586223866898825 0.011902354680689 0

5 |-0.412930722490434 -0.263102156913119 -0.207123971443456 -0.4340054513765%8 0

1é |0.00209223072363204 0.063221151042707 0.152769058055048 0.16454229141983 0

17 |0.126318546853656 0.116950448776749 0.214138871187996 0.181792426475338 0

18 |0.335893750288631 0.105052636278457 0.200682280343303 0.243807862289381 0

15 |0.363785939449915 0.158863157471582 0.247222133687358 0.27359605166455 0

20 10.208589471178062 0.1356%01440165902 0.155747723999058 0.23124674625%6236 0

21 |-0.000292378469930349 0.148938955849777 0.110869819768602 0.188746205750947

22 |-0.151511818994863 0.167072711534¢68 0.142242251008321 0.19337386043189 0

:I Hbo means of optodel.2... 16

[] Hboslopesofoptodel2... .16

:I Hbo stDev of optodel 2,...,16

[] Hborangesofoptodel,2, .16

- Hbrmeans of optodel 2,16

- Hbr slopes of optodel 2, .. 16

- Hbr stDev of optodel 2, .16

:I Hbrranges of optodel.2,.. 16

I:l Hbo/r values of optodel,2,....16 for each 500 ms

Figure 28: test.txt File Content

3.4. Model Processing Application

Model processing application is designed to feed the data generated by fnirSoft script into
a Discriminant Analysis model and return the calculated mental workload estimation as
an output in terms of three ordinal categories, namely low (0), medium (1), and high (2).

3.4.1. Discrimant Analysis

Discriminant Analysis (DA) is a statistical technique and used in machine learning to find
features to separate data into classes. DA falls into supervised learning model and uses
training data to find linear functions (canonical functions) that determine data sample that
belongs to which group. Since we want to separate the data into three classes, two
canonical functions are used (number of classes - 1). Canonical function is expressed as
follows:
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f = Uo+ UiXs+ UaX2 + U2X3+... + UjXj
where Xj,2,...j are data and Ug,1,2,...j are coefficients of the features belonging to Xy,2,...j .

X1,2,...j are generated from fnirSoft and model processing application received them as

text file format. Ug,1,2,...j are found by using training data. Mathematical formulas lying
behind of coefficient calculation are expressed below[77].

g
J.',l - Z Z rkm - —Yi--) (—Xjkm - -‘YJ'--)
=1 m=1
where
- tijtotal covariance matrix of SSCP (Set of Sums of Cross Product) matrix,
- is number of group,
- N is total number of training data in group K,
- Xikm is the value of variable(feature) for mu data in group k,
- Xi.. mean value of variable i.
q b
ij = E E Lm - X i k- ) (—\ jkm — X gk )
k=1 m=1
where
- Wij within group covariance matrix of SSCP (Set of Sums of Cross Product)
matrix,
- { is number of group,
- Nk s total number of training data in group K,
- Xikm is the value of variable(feature) for my data in group k,
- Xik. mean value of variable i for all training data in group k.
B=T-W
where

- B is between group covariance matrix,
- T is total covariance matrix,
- W is with group matrix.

Once B and T are calculated, find the solutions (vi) to the following equations:
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> bv; = XD wiv;
> bov; = XD we;

> bpiv; = A wp;
Finally, coefficients (weights of features) are found with following formula:
U = Vi\/n. — g

IBM SPSS (Statistical Package for the Social Sciences) tool is used to carry out
discriminant analysis. SPSS is feed with training data, number of target classes, feature
types and model type. It uses inputs and calculates coefficients of features and class
centroids.

Training data is prepared based on one of the test subject signals. After the experiment
(offline analysis), collected data and experiment video are synchronized with ELAN
which is a professional tool for the creation of complex annotations on video and audio
resources. After the sync process, voiced video is played parallel with signals monitoring.
A screenshot of training data preparation is displayed in figure 29. Moreover the
experiment logs some important event and we focus on them. By watching video to see
behavior of the test subject and by investigating test logs and sync signals, mental
workload level is assigned for every 500 millisecond manually. By this way, output of
each training data is prepared.

Figure 29: Training Data Preparation with ELAN
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After preparing of training data, it inputs to SPSS with other parameter stated above.
SPSS analyzes the given data and outputs success rate of classification, feature
coefficients and class centroids of mental workload (centroid of low workload, centroid
of medium workload and centroid of high workload).

Selected features as follows:

{mean_hbo

mean_ HDbR

std_dev_ hbo

std _dev_ hbo

Feature Vector = slope_ hbo

slope_ hbo

range__ hbo

range_ hbo}
The selection of the features is guided by our literature review. Since we have 16 optodes,
a total number of 128 (16x8) features are used. However optode8 and oprodel0 which are
located over lower fronto-polar regions of the prefrontal cortex are removed and feature
weights (coefficients) belonging to these optodes are taken as 0. This was because
optode8 and optodel0 were saturated due to the way the sensor pad is placed on the
forehead of the participant where we obtained the training data. Since the related
literature states that the optodes at the left and right edges corresponding to inferior
frontal gyri carry information for mental workload information more than the central
optodes, information loss for the decision is negligible.

Output of the LDA model computed in SPSS is given in section 4.1.1 of the Results
chapter. Obtained feature coefficients and centroids’ coordinates are recorded in a
configuration file in xml format. This configuration file is input together with text files
generated by fnirSoft to model the mental workload processing application. The purpose
was to design a generic application valid for all test subjects.

3.4.2.Processing Application

Model processing application is developed on Visual Studio 2010 by using C++
programming language and running on Windows 7. It

- waits until the first text file generation,
- reads configuration file in a specific path and takes centroids’ coordinates, feature
coefficients at the beginning of execution,
- Periodically at every 5 second,
o receives text file whose format is in figure 28 and parse containing data.
Each features value is kept for calculation and each hbo-hbr values are
kept for analysis.
o calculates canonical functions (f1 and f2) by using feature values parsed
from text file and feature coefficients taken from configuration file,
o considers f1 and f2 results as x-y coordinate and find Euclidean distances
from each centroid coordinates,
o selects the centroid whose distance from the calculated coordinate is the
smallest one and outputs label of the centroid (0, 1 or 2).
o waits until next text file generation.
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All these actions are demonstrated in figure 30.

After application is completed, it is run and target mental workload values which are
assigned before by using ELAN and predicted mental workload values which are
calculated by the application is compared by selecting random 69 test instances. Perfect
matches and mismatches are compared by considering conditions of the test instances.
Results are given 4.1.2 of the result chapter.

xmlParser : readsML modelProcessor Lt Parser @ readTeT

'
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- readConfigInfol)

Configuration ;
File L RO

Loop: true [if Firsk test.l.ixt file[does not exist]: wait()
B B >
Text Files ; :
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<<createx >
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Figure 30: Sequential Diagram of Model Processing Application
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3.4.3. Inadequacies of Processing Application based on Discrimant Analysis

The methodology explained in 3.4.1 and 3.4.2 has two inadequacies to achieve a de facto
conclusion. One of them is that, while methodology is being developed, all of the test
sessions were not analyzed. There are eight test subjects and each of them performed
four test scenarios. Since scenario 0 is designed to make test subjects to be familiar with
the test environment, excluding these initial sessions leaves 24 (8 test subject x 3 test
scenario) test sessions, which are convenient to collect data to develop a good analytic
design. However, in the methodology whose phases are detailed above, a few test
sessions could be analyzed and classifications were designed based on their data. The
reason is that cognitive analysis on the test sessions is tedious. Each test video should be
watched second by second. Pilot situations should be observed and their conversations
should be listened very carefully. Moreover test observations, test logs which were
recorded during tests and pilot evaluations which were reported by the test subjects after
each test session should be matched and analyzed. Pilot evaluation reports include
feedbacks of the test subjects about the realism of the test scenarios, perceived difficulty
levels, comfort of fNIR sensor pad etc. Graphs drawn by the pilot to evaluate his own
mental workload are placed in Appendix A - SUBJECTIVE WORKLOAD GRAPHS OF
TEST PILOTS.

Second inadequacy of the methodology was the absence of generic flight parameters to
determine the mental workload levels of the pilot. When mental workload level is
assigned for a test moment, the pilot’s situation as captured in the video recording was
considered. However, conditions causing this situation could not be studied
systematically from the simulator logs, since the complete data set including simulator
log files were not shared with the project partners only after the completion of the project.
The workplan required us to train a model based on a single subject and test the algorithm
on the remaining experiments. Therefore, the first algorithm trained on a single pilot
turned out to be inadequate for training a mental workload monitoring tool applicable to
multiple pilots.

3.4.3.1 Parameters Influencing Mental Workload

In order to address the limitations of the previous methodology, each test sessions is
analyzed second by second. Since saturated signal levels were observed across many
optodes during the entire sessions of the first test subject and the first scenario data of the
second test subject, these instances were removed from the dataset. Therefore a total of 20
test sessions conducted with 7 pilots are investigated in the second stage of our analysis:
(pilot2: sce2,3) + (pilot3,4,5,6,7,8: scel,2,3). During test session analysis, each video is
watched and each sound (talking, simulator environment warnings etc.) is analyzed. By
considering pilot situations and their reports, mental workload values are assigned for
each half second. While mental workload is tagged, pilot, flight and environment
conditions are also noted, to form annotations in the format <MW: 1, flight phase: cruise,
ATC (air traffic controller) talks with the pilot>. These parameters are determined based
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on the related literature in aviation human factors. According to Committee on Human
Factors (Panel on Workload Transmission), unexpected events, equipment failures,
response demand on short time (Go Around phase for instance in our scenario), deviation
in flight plan such as route recalculation, warning tones, voice message such as ATC
communication, dual task (take notes, controlling checklist etc.), control with eye (flight
instrument control) can be considered among the most important factors contributing to
an increase in the mental workload of the pilots[80]. They also give specific results for
some of these conditions. For instance, system failures can increase mental workload of
the pilots by 30%, which also causes an increase in error rate by 16%. Moreover, despite
their short duration, during approach and take off/landing phases pilots’ mental workload
level tend to increase due to the stress of low altitude flight [80]. A study of lijima,
Funabiki and Nojima corroborated with the report of Committee on Human Factors,
where they detected the cases causing high mental workload as descent, approach flight
phase and pilot interaction with MFDs and CPDLCs[81]. Skybrary which is an electronic
repository of safety knowledge related to flight operations, air traffic management (ATM)
and aviation safety in general lists periods of high mental workload as descent, approach,
landing (especially during any go around), unexpected situations such as equipment
failure[82]. On the other hand, Committee on Human Factors’ study also pointed that
during prolonged and monotonous tasks pilots typically experience low mental
workload[80]. In addition, designers of the ACRROSS Project prepared all scenarios (so
test scenarios of this thesis study also) concordantly with these results. Besides they
consulted with many airliner pilots to improve the validity of the experimental
design[74].

After analysis of all test sessions are completed, 16 generic conditions (flight phase,
drowsiness, unexpected failure etc.) are defined for annotating the flight videos. These 16
behavioral dimensions aimed to characterize the mental workload level of the pilots in
our test environment based on the recommendations of related work reviewed above.
Moreover, cross checks between each test session of each pilot is also performed to
ensure reliability. For example, if a combination of 16 conditions “1110010101100000”
specifies a mental workload level of 1, it is ensured that this mental workload output of
this combination is consistent in among all test sessions. If the same combination of
binary features are mapped to a different mental workload level in a different test session,
they are analyzed again to remove the inconsistency. If there is a difference due to a
newly discovered factor between the two cases, a new dimension that affect the mental
workload outcome is added to the annotation scheme. If there is no difference, most
suitable mental workload assignment are done in both test instances. By that way back
propagation correction is performed and a generic (valid for all test session) answer key is
prepared for mental workload assessment. Through iterative analysis we observed that 16
binary dimensions were sufficienct to capture the relevant factors identified in the
literature. Moreover fourth mental workload class is specified as “-1” to represent
extraordinary situations such as too much head motion, weak skin contact etc. These
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phases are tagged with a special marker since signal changes belonging to these parts are
unreliable, so the relation between these signals and mental workload output is not clear.
All these parameters and their relationship to mental workload levels are summarized in
detail in Appendix B - PARAMETERS AFFECTING MENTAL WORKLOAD.

3.4.3.2 LDA Result with Total Data Based on Answer Key Parameters Conditions

After all tests are tagged based on the prepared answer key (16 conditions determining the
mental workload), all 20 tests sessions are given input to LDA analysis on SPSS. Test
subject 2,3,4,5 are used as training data, test subject 6,7,8 are used as test data. SPSS
input is prepared as an excel format in figure 31. However opcodes 1,3,5,11,13,15 are
considered during LDA analysis since the fNIRS signals obtained from these optodes
were the least affected ones by the other infra-red sources in the cockpit (e.g. the eye
tracking cameras and the Kinect body trakcer). Standard deviations, ranges, means, slopes
of hbo and hbr in these optodes are used as features. Calculations of these parameters are
explained in 3.3 of this chapter. Since all algorithms in this thesis use the same parameter
set and their combinations such as hbt(hbo-hbr), oxy(hbo-hbr), the inputs will not be
stated again in the remaining algorithms such as artificial, neural network, svm to avoid
duplicate explanation.

When the LDA algorithm is run on SPSS, it is dramatically observed that training success
decreases to 47.2%. Moreover it is also thought that pilot specific model might be more
successful. Therefore two test subjects are selected (pilot 5 for right handed test subject
and pilot 6 for right handed test subject). Their data is trained separately and derived two
results. Although results increase comparing to the model derived from data of more
pilots, they are still not satisfactory (training rate: 65.6% of pilot 5 - cross validation
72.23% with kfold 3 and training rate: 62.1% of pilot 6 - cross validation 68.37% with
kfold 3). Results of these analyses can be seen in part 4.3 of Result chapter and Appendix
B - ACCURACY SCORES OF LDA. Therefore alternative machine learning algorithms
are investigated.

Iw X Y 1z JA
angeHbt13 RangeHbt1l4 RangeHbtlS RangeHbtle B_MW
3.600620813 6.64427567 2.959402203 5.564554384
3.600620813  6,64427567 2.959402203 5.564554384
3.600620813  6.64427567 2959402203 5.564554384
3.600620813 6.64427567 2.959402203 5.564554384
3.600620813  6.64427567 2.959402203 5.564554384
3.600620813  6.64427567 2959402203 5.564554384
3600620813  6.64427567 2.959402203 5.564554384
3.600620813 6.64427567 2.959402203 5.564554384
3.600620813 6.64427567 2959402203 5.564554384
3600620813  6.64427567 2959402203 5.564554384
3600620813  6.64427567 2959402203 5.564554384
3.600620813 6.64427567 2.950402203 5.564554384
3.600620813 6.64427567 2.959402203 5.564554384
3.600620813  6.64427567 2.959402203 5.564554384
3.600620813  6.64427567 2950402203 5.564554384

cocoooocoo0ooco0oo0O0

o oo

Figure 31: Input Format for Algorithms
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3.4.4.SVM Analysis

Support Vector Machine (SVM) is a commonly used machine learning algorithm for
classification problems. SVM is also used in the mental workload measurement
literature[63]. SVM is a supervised learning algorithm. In the training phase SVM tries to
find a decision boundary to separate predefined classes as seen in figure 32.

Figure 32: SVM Classification Visualization

In figure 32, red triangles represent class 1 and blue circles represent class 2. SVM aims
to separate these classes with optimum decision boundary like A,B,C,D by considering
margin value of nearest support vector (a red triangle or a blue circle). It calculates
margin (maximum is the best to reserve space for new test supports) and error tolerance
(red triangle area with minimum blue circles and blue circle area with minimum red
triangles). However there is a trade off between margin and error tolerance. If SVM keeps
the margin too much, error tolerance increases and vice versa. Therefore with tuning of C
and gamma parameters, optimum decision boundaries should be found. Moreover, by
selecting the kernel function, decision boundary can be shaped. For example polynomial
kernel function defines a boundary polynomial as seen in figure 33. For polynomial
kernel function the degree parameter sets the degree of the decision boundary. Another
kernel function example is rbf (radial bases function). With this function, the
classification area could be radial based as seen in figure 34.
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Figure 33: SVM Kernel: Polynomial Figure 34: SVM Kernel: RBF

By adjusting kernel function types, gamma, C, and the degree value more powerful
models can be developed. After a model is designed with training data and the given
parameters, the test data is given as input to observe prediction score. In this thesis, for
the SVM model, Keras library SVM functions are used in Python programming language.
In addition, Keras svm functions have the capability to analyze not only two classes but
also multiple classes. Therefore four mental workload classes (-1,0,1,2) could be modeled
in this framework.

Overall, the SVM algorithm provided higher classification accuracy than the LDA model.
The most optimal configuration produced 64.24% accuracy. However, the confusion
matrix shows that this model is not strong enough to separate data in four classes given
their non-uniform distribution in the dataset. Since there are lots of mental workload 0O
cases in the dataset, a default algorithm predicting only 0 as the outcome would obtain
nearly the same accuracy score. Again similar approach with LDA, pilot specific model is
studied. Pilot 5 and 6 models give good training results (Cross Validation: 88.29% with
kfold 3 for pilot 5 and Cross Validation: 86.27 with kfold 3 for pilot 6). However results
of test processes are not good (60.39% for pilot 5 and 60.43% for pilot6). Therefore,
alternative algorithms are investigated. SVM results with different parameter
combinations can be seen in 4.4 part of the Result chapter and Appendix D - ACCURACY
SCORES AND INDEXIES OF SVM.

3.4.5.Artificial Neural Network Analysis

Artificial Neural Network is another supervised machine learning algorithm. Since it is
used from medical area to e-commercial sector and applied also in human computer
interface literature[27], it is also employed in this thesis study. Figure 35 illustrates a
simple structure of a 3-layered feedforward ANN with 2 inputs, 3 hidden and 2 output
nodes.
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Figure 35: Artificial Neural Network Structure

In ANNSs, nodes (circles in figure 35) are used to find the output. Each node value is
calculated with its inputs multiplied with weights plus bias value. Bias value (b,
threshold) can be changed and its effect is analyzed on the outcome value. Initially, the
connection weights are assigned randomly. While the model is trained, following
calculations are performed:

0 if wxl*x1+b<=0

N1 Value =

1 if wxl*x1+b>0

0 if wx2*x2+b<=0
N2 Value =

1 if wx2*x2+b>0

0 if wi3*N1+w23*N2+b<=0
N3 Value =

1 if wi3*N1+w23*N2+b>0
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0 if wil4*N1+w24*N2+b<=0

N4 Value =
1 if wld*N1+w24*N2+b>0
0 if wi5*N1+w25*N2+b<=0
NS5 Value =
1 if wi5*N1+w25*N2+b>0
0 if w36*N3+w46*N4+w56*N5+b<=0
N6 =yl Value =
1 if w36*N3+w46*N4+w56*N5+b>0
0 if w37 *N3+w47*N4+w57*N5+b<=0
N7 =y2 Value =

1 if w37 *N3+w47*N7+w57*N5+b>0

Outputs y1 and y2 is calculated as 0 or 1. If y1 and/or y2 mismatches with the target
value, the backpropagation learning method is applied to update the weights. During the
computations of the formulas above, generally node values and weight multiplications are
given as input to a sigmoid function or tanh function together with a threshold so that the
output of each node is kept in between 0 and 1, which simulates the behavior of
biological neurons.

Let N1 error is called as Error_y1 and updated w36 is w36’. The basic calculation is
w36’ = w36 + Error_yl * N3

This formula is applied for all weights and N1, N2, N3, N4, N5, N6, N7 are calculated
again. If any mismatch occurs for yl1 and y2, back propagation procedure is repeated
again. After an optimum iteration count is reached (shortly before saturation and
overfitting by avoiding local minima), model training is completed and test phase is
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started. Final updated weights obtained during the training phase are used in the test
phase without back propagation.

In order to analyze test subjects data with artificial neural network, Matlab neural network
toolkit is used in this study. This tool kit uses Scaled Conjugate Gradient method to
update weight in back propagation. For each input a node is designed. For output (-1, 0, 1,
2), four node is decided. Outputs are represented as binary.

-1: 0001
0: 0010
1: 0100
2:1000

In order to decide the optimum number of hidden layer nodes, we experimented with
different number of nodes and observed the performance of the network. Moreover,
different combinations are applied by changing the training data versus the test data
percentages. All parameter combinations and success rates obtained during these trials
can be seen in 4.5 of Result chapter and Appendix E - ACCURACY SCORES OF ANN.

Result of this algorithm also is not satisfactory. 70.4% success rate is derived as the
highest score. Similar to SVM, the confusion matrix of artificial neural network shows
that it is incapable of separating the four different classes. (Part 4.5 of result chapter)

3.4.6.LDA, SVM and ANN Analysis with Mixed Data

All three algorithms are unsatisfactory with unified data. Unified data means that for
example test subject 2,3,4,5 are used for training data and test subject 6,7,8 are used for
test data. Therefore it is suspected that models could not learn inputs — output correlation
if training data does not contain the specific test subject. For this reason it is decided that
all data is mixed. In other words, train data contains all test subjects data partially as well
as test data contains all test subjects’ partially. Hence all data is mixed as seen in figure
36 and figure 37.
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A B S
1 Test Scenario Block MeanHbol
2 8 1 251
3| 3 209
4| a 1 49
i 4 1 720
6| 3 2 41
7| 3 3 355
8| 7 1 57
9| 8 2 444
10| 2 3 161
11| 4 1 325
12| 6 1 292
13 3 2 302
4| 4 1 536
15[ 6 1 268
i 2 2 72
17| 2 3 277
18| 4 1 185
19| s 2 354
20| 6 1 11
21| 4 1 100
2| 6 1 409
23| 7 2 399
24| a4 1 248
25| 6 2 435
26| s 3 260
27| 8 3 393
28| 3 2 384
29| s 2 10
30| s 3 315
31| 4 2 132
32 7 1 792
4 4 » ¥ | train test T

D

B
MeanHbo3

-0.600760251 -0.343054499
-0.33644866 -0.034110328
-0.206336885 0.067656192
0.598720909 0.391200145
-0.561095119 -0.607371728
-0.107715344 0.216024604
-3.991284307 -2.332079016
-0.110635981 -0.2406724
-0.516436195 -1.236568171
-0.568080433 -0.978701316
-2.068762275 -1.19505398
0.049583698 -0.066231266
-0.578579668 -0.007232145
-0.093338663 -0.39518676
-0.814503118 0.428510863
-0.123476358 -0.325934682

-0.557643811 -0.404320883
-0.225516643 0.048391249
0.076685848 -0.179560008

-0.872958025 -0.751928328
0.344934344 0.619945203

-0.505761627 -0.510171442
0.653207271 0.288328272

1.293073989 0.753050315

0.837495075 0.712450805

-0.055722177 0.131892059
0.035241945 0.028459339

0.868775332 -0.287631193

-0.117656789 0.040523584
0.869742309 0.927023997

-0.7785983 -0.704451161

Figure 36: Mixed Training Data

A | B | ¢

1 |Test Scenario Block
2| 8 3 409
i 5 2 190
4| 3 3 313
5 | 7 1 509
6 | 4 2 211
7| 7 2 127
8 | 3 2 246
9| 8 3 102
10 | 7 2 406,
11| 6 2 67
12| 3 1 522
13 3 1 428
14 | 5 2 206
15| 4 3 362
16 | 3 3 149
17| 5 3 135
18| 2 3 329
19| 7 1 341
20| 5 2 247
21 7 1 343
22| 6 1 601
23| 7 1 540
24| 4 3 92
25| 5 3 271
26| 3 1 519
27| 4 1 774
28| 7 3 166
29| 5 1 525
30| 6 1 201
31| 6 1 121
32 6 1 216
4 4 » M| wan | test ¥3

Figure 37: Mixed Test Data

D

E
MeanHbo5
-0.093972162
0.171075087
0.668026468
-0.033764047
-0.387852082
-0.004220932
-4.625128744
-0.062400174
0.925902586
2.68622464
-0.297669165
0.140878287
0.186873024
-0.287041373
-1.016731663
0.084674293
-0.186480607
0.432884772
-0.4976599
0.219340047
0.107959105
-0.495947161
-0.37332504
1.489576294
0.776496827
-0.26281005
-0.188623997
0.186952734
0.217115975
-0.804239506
-0.438779497

E

G

MeanHbo11
0.254370375
-0.05787385
0.511685331
-0.026515745
-0.378173304
0.090956878
-3.759390027
0.457284594
2.00811637
1.0465057
0.163132131
-0.11648114
-0.120687584
-0.483049557
-0.000796793
0.590577398
-0.712874176
0.836593587
-0.791360804
-0.424550242
0.201141896
-0.439051716
0.041242107
1.092056984
0.897455831
0.096791201
-0.032730202
-0.087935366
0.029584273
0.604990117
-0.348667464

F

MeanHbo1_test MeanHbo3_test MeanHbo5_test

-0.706222598
-0.794788665
-0.220347691
1.350955203
0.3255801
-0.221107853
-0.75327045
1.39694837
0.449627253
1.10366358
0.346073611
0.565276704
0.908026387
0.032026714
0.288792735
-0.297685296
0.03241512
0.713444942
-1.17365296
0.470887214
-1.421591564
-1.158344197
0.078515601
-0.538763209
-0.044657592
-0.384651186
0.017954487
-0.948988815
0.635931168
-0.833715843
-0.163987177

-0.69166725
-0.765081849
0.000160356
0.562410512
0.622844756
-0.46047333
-0.23941389
1.354042787
0.425106853
0.840658745
0.460821095
0.286003263
0.740944501
-0.419354126
0.372414176
-0.132466221
-0.187518515
0.530305394
-0.719059733
-0.159934062
-1.999595666
-0.51055554
-0.072447633
-0.353191169
-0.377295293
-0.261351332
0.072884123
-0.571880901
0.665417254
-0.946192725
0.185994575

-0.976222822
-0.342471188
-0.177142443
1.145919467
1.749359145
-0.381393948
0.367169856
1.374215589
0.525503009
0.805753906
0.142232459
0.069758637
0.758851348
-0.162498284
-0.100082452
-0.344058501
-0.022456876
0.735708252
0.104368105
-0.419968371
2.118235929
-1.132461699
-1.120901319
-0.023549237
-1.004995908
0.590425759
0.44592263
-0.329983341
0.180951734
-0.129216203
0.673422817
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After preparing of this data LDA was run on SPSS again. A slight improvement was
observed due to change in the training strategy, where the highest accuracy percentage
obtained was 50%. All related result table and graphs can be seen in 4.6. part of Result
chapter and Appendix C - ACCURACY SCORES OF LDA.

Since ANN analysis was conducted in Matlab, the test and training data had already been
selected randomly. Therefore it is not repeated again.

When mixed data is given as input to SVM algorithm, the accuracy have dramatically
increased from 64s% to 86%. Moreover the confusion matrix is also derived very
effectively. All classes can be classified with reasonable accuracy. All related results table
and the graphs can be seen in 4.6. part of Result chapter and Appendix D - ACCURACY
SCORES AND INDEXIES OF SVM.

Forming a training set that included samples of data from all participants was found to
have a significant effect on mental workload prediction based on fNIRS measures. It is
observed that for developing a model, training data should include partial data of the test
subject whose mental workload would be predicted. Overall, SVM outperformed the
LDA and ANN classifiers. It is thought that LDA’s relatively poor performance could be
due to its reliance on linear factors for classification, which apparently could not handle
the nonlinear nature of the mental workload dataset.. As compared to LDA, ANNs
provide more flexibility to account for the nonlinear relationships in the data. The new
training strategy slightly increased the accuracy of the ANN classifier. However, a simple
feedforward network cannot take into consideration the sequential dependencies within
the data. Since mental workload changes have a temporal dimension, ANNs that can
realize temporal dependencies such as recurrent neural nets (RNN) and their deep
learning counterpart called long short term memory (LSTM) are also considered in this
thesis.

Recurrent Neural Network Analysis

Recurrent Neural Network provides us to feed previous hidden layer to current hidden
layer values calculation. By this way, effects of previous inputs (not only current
timestamp - 1) are considered in current calculations. Although slide window design
mentioned in part 3.3 of this chapter (figure 24) reflects historical data of the pilot in
current data, same approach would be beneficial in the prediction of changes in mental
workload levels.
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Figure 38: Recurrent Neural Network Structure

Differences of between figure 35 and figure 38 are the three extra nodes feeding hidden
layer. And calculations in 3.4.5 Artificial Neural Network part are updated as:

N1 Value = same with ANN
N2 Value = same with ANN
0 if wi3*N1+w23*N2+w83*N8+w93*N9+wl03*N10+b<=0
N3 Value =
1 if w13 *N1+w23*N2+w83*N8+w93*N9+wl03*N10+b>0
0 if wl4™*N1+w24*N2+w84*N8+w4*N9+wl04*N10+b<=0
N4 Value =

1 if wl4*N1+w24*N2+w84*N8+wo4*N9+wl04*N10+b>0
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0 if wl15*N1+w25* N2+ w85* N8+ w95 * N9 +w105*N10+b<=0
N5 Value =

1 if wl5* N1+ w25*N2+w85*N8+w95*N9+wl05*N10+b<=0

N6 =yl Value = same with ANN
N7 =y2 Value = same with ANN
N8 = N3

N9 = N4

N10 = N5

Where

w83 is weight between node 8 (N8) to node 3 (N3)
w93 is weight between node 9 (N9) to node 3 (N3)
w103 is weight between node 10 (N10) to node 3 (N3)
w84 is weight between node 8 (N8) to node 4 (N4)
w94 is weight between node 9 (N9) to node 4 (N4)
w104 is weight between node 10 (N10) to node 4 (N4)
w85 is weight between node 8 (N8) to node 5 (N5)
w95 is weight between node 9 (N9) to node 5 (N5)
w105 is weight between node 10 (N10) to node 5 (N5)

During the application of the formulas given above, the weigted sum of node values and
the connection weights are given as input to a sigmoid function or tanh function so that
their outputs are kept in between 0 and 1.

In order to apply recurrent neural network into this study, Keras library functions such as
model.compile(), model.fit(),model.evaluate(),model.predict_classes() are used in python
programming language. With parameter tuning (batch size, hidden layer nodes), several
analyses are performed. For loss function categorical crossentropy, for activation
softmax functions are used. Even though 84% accuracy is obtained as the highest score,
its hidden node number is too much(1000 hidden nodes) causing the algorithm to be slow
for practical use. Therefore 78% with hidden layer node number 102 was found to be an
optimal combination for the RNN model. Also its confusion matrix is satisfactory (enable
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to separate all four classes). 4.7 part of Result chapter and Appendix F - ACCURACY
SCORES OF RNN indicate all results of RNN analyses with different inputs.

3.4.7. LSTM Analysis

Recurrent neural network is a powerful ANN method that can take into account previous
data just a few timestamps before the current time calculation into the classification
results. However, when a longer data history needs to be used, exploding or vanishing
gradient problems occur in standart RNNSs, and therefore the model cannot learn the input
— output correlations that occur for a longer period of time, leading to a low prediction
accuracy [83]. In order to solve this problem LSTM (Long Short Term Memory) which is
a kind of deep learning algorithm can be used. It is actually a special form of recurrent
neural network and introduced to the literature by Hochreiter and Schmidhuber[84].

In the classical recurrent neural network hidden layer consists of nodes. However LSTM
uses memory units instead of nodes. Each memory cell includes cells which are formed
from a sigmoid/tanh function and scalar operator as seen in figure 38.

[o] [@h] (o]

Figure 39: LSTM Structure[85]

These cells decide:

- which data is transferred to next layer,
- which data is stored into this memory,
- how weights are updated,

with following formulas in figure 40,41,42,43.
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fe=0Wpg-[hy—1,2] + by)

) it =0 (Wi-[he—1,2e] + by)
C, =tanh(We-[hi—1, 2] + bo)

he1

Figure 41: LSTM — Data To Be Stored Decision Structure[85]

V
Ai=1

(X)
f‘T ' Cy = fixCioq +ip = Cy

Figure 42: LSTM — Cell Updating Structure[85]
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8
hy = oy * tanh (C})

he s
A

Figure 43: LSTM — Weight Updating Structure[85]

After understating philosophy of LSTM, again Keras library functions are used in this
study with Python programming language. Although several functions which are used
before for RNN are same, different functions such as LSTM() have to be managed.

After analyzing the model with different input combinations (LSTM number, batch size)
very similar results with RNNs are obtained. For instance, highest accuracy is 82% with
LSTM number 100, batch size 8. All analyses results are given in 4.8 part of Result
chapter and Appendix G - ACCURACY SCORES OF LSTM.
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CHAPTER 4

4. RESULTS

In this chapter, the results obtained from each machine learning model employed are
summarized and evaluated.

4.1. LDA with Primitive Methods

This part shows the results of the primitive method which is illustrated in Method chapter
3.4.1 and 3.4.2. The method employed the LDA algorithm which was trained on a single
pilot and applied over the remaining test data.

4.1.1. SPSS Results

Table 3: Eigenvalues of Two Canonical Discriminant Functions

Eigenvalues
Function Eigenvalue & of Variance Cumulative % Canocnical
Correlation
1 1.816° 732 732 0.803
2 0.666° 268 100.0 06832

a. First 2 canonical discriminant functions were used in the analysis.

Table 4: Wilk’ Lambda Results Specifying Weight of the Functions
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Wilks’ Lambda

Test of | Wilks’ Lambda Chi-square df Sig.
Function(s)

1 through 2 0213 1047319 208 0.000
2 0.600 345810 103 0.000

Tables 3 and 4 suggest that the LDA model produced a model with 2 discriminant
functions that can significantly differentiate the given workload categories. Table 5 below
summarizes the classification accuracy obtained for the training sample, where the linear
functions could categorize 91% of the cases correctly. In the first modeling attempt only 3
mental workload levels, namely low, medium and high, were considered. This is why the
predicted group membership part is a 3 by 3 matrix. Figure 44 below shows the centroids
for the 3 categories formed by the LDA algorithm.

Table 5: Success Rate of Classification

Classification Results?

Predicted Group Membership
Workload Total
0 1 2
Original Count 0 480 32 1 513
1 20 152 8 180
2 0 4 35 39
% 0 93,6 6,2 02 100,0
1 11,1 84 4 44 100,0
2 0,0 10,3 89,7 100,0

a. 91.1% of original grouped cases correctly classified.
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Canonical Discriminant Functions
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Figure 44: Distribution of the Data in 2 Dimensions

4.1.2.Experiment Results

The model processing application is executed for 8 test subjects and 30 experiments to
test the LDA classifier described above as if it was running real-time during an
experiment. Results are analyzed with graphs and evaluated by looking at specific events
where mental workload changes are expected. Following 30 graphs shows hbo/hbr signal
changes and corresponding workload level changes. Moreover specific events are put into
the graphs. These events are logged during test executions and illustrate the critical events
occuring at those times. However, in tests 7 and 8 no such additional information was
present in the dataset, so only the videos are used to evaluate the matching of expected
mental workload levels with actual mental workload levels in those cases. Furthermore,
only the optodes located at the edges (i.e. close to dorsolateral prefrontal cortex) are
displayed in the graphs below, since these are the optodes that most significantly
contributed to the LDA model, possibly due to these regions role in working memory
management [70].
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Figure 45: Test Subjectl, Scenario0 Graph
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Figure 55: Test Subject3, Scenariol Graph
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Figure 56: Test Subject3, Scenario3 Graph
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Figure 57: Test Subject4, Scenario0 Graph
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Figure 63: Test Subject5, Scenario2 Graph
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Figure 74: Test Subject8, Scenario3 Graph

The graphs displayed above capture the modulation of buffered fNIRS signals in relation
to predicted mental workload levels and critical events during the entire session. In order
to illustrate how the accuracy analysis was conducted, a shorther excerpt is illustrated in
the examples below. Figures 62 and 63 are the sessions from which these two samples
were obtained. We evaluated the test results by considering whether the actual mental
workload level matches with the expected workload level for each specific event. For
this analysis, test videos were played in parallel with hbo, hbr signals while deciding
whether there is a robust correspondence between signal change and workload levels.
Moreover, the events logged by the experimenters are also considered while counting
matching and mismatching cases.

Event #1.3.2 : Flight phase = GO-AROUND - Time: 15:50:08

Expected Workload : HIGH

Predicted Workload : HIGH

Assessment : MW rises from low-to-high as expected. The pilot starts piloting with side
stick.

Figure 75: A sample of Test Result Evaluation
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Event #5.2.3 : Pre-Approach: 14:26:38

Expected Workload : HIGH

Predicted Workload : HIGH

Assessment : Before the approach phase, pilot fullfils settings by looking at the check list /
flight manual on his knee. Hemodynamic changes are observed and MW is measured HIGH
as expected.

Figure 76: A sample of Test Result Evaluation

After analyzing 69 test events sampled from 18 tests with 6 test subjects, we obtained the
following results.

Table 6: Success Rate on Matching of Actual vs. Expectation Mental Workload

Predicted * Expected Crosstabulation
Expected Total
0 1 2
Predicted 0 Count 13 2 5 20
% of Total | 18.8% 2.9% 7.2% 29.0%
1 Count 0 5 0 5
% of Total | 0.0% 7.2% 0.0% 7.2%
2 Count 11 4 29 44
% of Total | 15.9% 5.8% 42.0% 63.8%
Total Count 24 11 34 69
% of Total | 34.8% 15.9% 49.3% 100.0%
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Of the 69 cases we analyzed, in 68.1% of the cases there was a perfect match between the
predicted and expected mental workload levels. The highest number of mismatches
occurred when the model predicted a high MW case, whereas the expectation was low
MW. As indicated under specific instances above, such cases arose due to fluctuations in
the raw oxygenation measures due to excessive head motion or noise in some of the
optodes that contribute to the model.

In our first analysis the 69 test cases were handpicked from the data, especially to check
for the model’s performance in high workload critical situations generated in the
simulator. The cases included 24 low, 11 medium and 34 high mental workload cases,
and the model could accurately predict 68% of these special cases. This analysis focuses
on the high predictions mainly, to understand whether the model could predict high load
cases, and to what extent it generates false alarms. The results suggested that the model
succeeded in capturing 29 out of 34 high MW cases, misclassified 5 medium and 11 low
MW cases as high MW. Moreover, in 5 instances the model predicted low workload,
where the expectation was high. Although the handpicked examples were important for
proof of concept analysis, it did not reflect the actual distribution of events observed
during the tests. For that reason, the analysis is expanded even further with a more
sophisticated multidimensional annotation scheme and more advanced machine learning
algorithms.

4.2. Mental Workload Distributions

Following two tables shows mental workload level distributions of the test subjects in all
test scenarios. As you can see in the graphs, mental workload level 0 is most common
mental workload level to be met. Due to test scenario design, most mental workload level
2 is observed in scenario3. Moreover mental workload level -1 is very few in all scenarios
of all test subjects since the sensor was in general accurately placed over the forehaed,
especially the signals obtained from odd-numbered optodes corresponding to the top row
were successfully shielded from other infra-red sources, and the pilots performed minimal
excessive head movements.

Table 7: Mental Workload Distributions on the Pilots

Test
Subject MW Count %

-1 24 | 2.973977695
500 | 61.95786865
207 | 25.65055762

76 | 9.417596035
Total 807 100
3 -1 22 | 1.337386018

NINININ
o
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3 0 1279 | 77.75075988
3 1 306 | 18.60182371
3 38 | 2.310030395

Total 1645 100
4 -1 28 | 1.677651288
4 0 1115 | 66.80647094
4 469 | 28.10065908
4 57 | 3.415218694

Total 1669 100
5 -1 35 | 2.092050209
5 0 1139 | 68.08129109
5 1 465 | 27.79438135
5 34 | 2.032277346

Total 1673 100
6 -1 28 | 1.664684899
6 0 931 | 55.35077289
6 1 652 | 38.76337693
6 71 | 4.221165279

Total 1682 100
7 -1 40 | 2.37953599
7 0 1146 | 68.17370613
7 1 413 | 24.5687091
7 82 | 4.87804878

Total 1681 100
8 -1 19 | 1.528559936
8 880 | 70.79646018
8 303 | 24.37650845
8 41 3.29847144

Total 1243 100

Table 8: Mental Workload Distributions Based on Test Scenarios

Test
Scenario MW Count %
1 -1 107 | 2.494754022
1 3248 | 75.72860807
1 1 934 | 21.77663791
1 0 0
Total 4289 100
2 -1 37 | 1.158422041
2 0 1983 | 62.08515967
2 1 1173 | 36.72510958
2 2 1] 0.031308704
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Figure 77: Mental Workload Distribution on All Tests
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Figure 80: Mental Workload Distribution on All Scenario3s

4.3. LDA with Enhanced Methods

This part illustrates results of the LDA algorithm explained in the Method chapter 3.4.3
(Training Data does not include data samples from all pilots). As you can see in the tables
and figures below, LDA results are not satisfactory when expanded over the entire
dataset. Moreover different input combinations of LDA and accuracy results are given in
Appendix C. Following results are sample of all analysis in Appendix C (Training Data:
2,3,4,5, Raw Data: hbo, hbr, features: mean, stdev, slope, range).

Table 9: Eigenvalues of Two Canonical Discriminant Functions

20

Function

Eigenvalue

% of Variance

Cumulative %

Canonical

Correlation

1

2

3

1232

.079?2

.0382

51.0

33.0

16.0

51.0

84.0

100.0

.331

271

.192

a. First 3 canonical discriminant functions were used in the analysis.
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Table 10: Wilk’ Lambda Results Specifying Weight of the Functions

80

Test of Function(s) Wilks' Lambda Chi-square df Sig.
1 through 3 .795 1325.678 144 .000
2 through 3 .892 657.775 94 .000
3 .963 217.234 46 .000
Table 11: Standardized Canonical Discriminant Function Coefficients
Function
1 2 3
MeanHbol -121 .238 486
MeanHbo3 -.166 -.067 -.394
MeanHbo5 .093 .060 .071
MeanHbol1 -.312 .002 .050
MeanHbo13 .103 -.276 -.068
MeanHbol5 .305 213 117
StdevHbol 541 -.210 -577
StdevHbo3 -.209 -.052 .138
StdevHbo5 .455 .243 -.188
StdevHbo11 -.591 -1.323 .676
StdevHbo13 .904 .085 -.561
StdevHbo15 -.142 -111 -.405
SlopeHbol -.809 -117 -.160
SlopeHbo3 .669 .025 .352
SlopeHbo5 -.293 -.106 -.013
SlopeHbo11 .393 .052 -.286
SlopeHbo13 -.386 .707 192
SlopeHbo15 121 -.232 -.418
RangeHbol -.586 178 1.114
RangeHbo3 139 .566 -.591
RangeHbo5 =177 .228 372
RangeHbol1 493 .988 -.848
RangeHbo13 -.435 -.260 -.002
RangeHbol15 -.256 117 175
MeanHbrl .287 -.201 -.263
MeanHbr3 -.500 -.219 174
MeanHbr5 171 .104 .105




Function 2

MeanHbr11
MeanHbr13
MeanHbr15
StdevHbrl
StdevHbr3
StdevHbr5
StdevHbrll
StdevHbr13
StdevHbr15
SlopeHbrl
SlopeHbr3
SlopeHbr5
SlopeHbrll
SlopeHbr13
SlopeHbr15
RangeHbrl
RangeHbr3
RangeHbr5
RangeHbr11
RangeHbr13

RangeHbr15
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Figure 81: Distribution of the Data in 2 Dimensions

Table 12: Success Rate of Classification

Classification Results?

Predicted Group Membership

B_MW -1 0 1 2 Total
Original Count -1 71 14 11 13 109
0 395 1807 1124 707 4033
1 68 386 708 285 1447
2 2 26 30 147 205
% -1 65.1 12.8 10.1 11.9 100.0
0 9.8 44.8 27.9 17.5 100.0
1 4.7 26.7 48.9 19.7 100.0
2 1.0 12.7 14.6 71.7 100.0

a. 47.2% of original grouped cases correctly classified.
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Figure 82: Distribution of the Data in 2 Dimensions for Subject 5
Table 13: Success Rate of Classification for Subject 5
Classification Results?
Predicted Group Membership
B_MW -1 0 1 2 Total
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Original Count -1 26 7 1 1 35
0 66 723 257 93 1139
1 5 95 320 45 465
2 0 0 5 29 34
% -1 74.3 20.0 29 29 100.0
0 5.8 63.5 22.6 8.2 100.0
1 1.1 20.4 68.8 9.7 100.0
2 .0 .0 14.7 85.3 100.0
a. 65.6% of original grouped cases correctly classified. (kfold:3 = 72.23%)
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Figure 83: Distribution of the Data in 2 Dimensions for Subject 6

Function 1

Table 14: Success Rate of Classification for Subject 6

Classification Results?
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Predicted Group Membership

B MW -1 0 1 2 Total
Original Count -1 19 4 5 0 28
0 31 571 261 68 931
1 28 207 400 17 652
2 2 12 3 54 71
% -1 67.9 14.3 17.9 .0 100.0
0 3.3 61.3 28.0 7.3 100.0
1 4.3 31.7 61.3 2.6 100.0
2 2.8 16.9 4.2 76.1 100.0

a. 62.1% of original grouped cases correctly classified. (kfold:3 = 68.37%)

4.4. SVM Results

This section summarizes the results of the SVM algorithm explained in Method chapter
3.4.3 (Training Data does not include data sample of all pilots). All graphs are derived
from tables placed on Appendix D. Although results of analyses are seen to have high
score (64%), their confusion matrixes show that separations of the classes are not good.
Developed models are able to predict only class 0. A sample of the confusion matrixes
can be seen first next table.
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Figure 84: Accuracy vs SVM Parameter Index1 (C, gamma), Kernel Function: rbf, sigmoid, Raw Data: No
Mixed hbo, hbr
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Figure 85: Accuracy vs SVM Parameter Index2 (C), Kernel Function: Linear, Raw Data: No Mixed hbo,
hbr Note: Both two raw data outputs are same.
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Figure 86: Accuracy vs SVM Parameter Index3 (C, gamma), Kernel Function: Polynomial, Raw Data: No
Mixed hbo, hbr
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Figure 87: Accuracy vs SVM Parameter Index4 (C, gamma), Kernel Function: Polynomial, Raw Data: No
Mixed hbt
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Figure 88: Accuracy vs SVM Parameter Index5 (C, gamma), Kernel Function: Polynomial, Raw Data: No
Mixed Normalized hbo, hbr
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Figure 89: Accuracy vs SVM Parameter Index6 (C, gamma), Kernel Function: Polynomial, Raw Data: No
Mixed oxy
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Figure 90: Accuracy vs SVM Parameter Index7 (C, gamma), Kernel Function: RBF, Sigmoid, Raw Data:
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Table 15: Confusion Matrix — Normalized Data, C: 1, Gamma: 0.5, function: RBF

-1
0
0.00%

Target
0 1 2

64.20%
0.00%

Predict

0
0.00%

0.00%

Total
64.20%

4.5. ANN Results

This part illustrates the results of the ANN algorithm. The training data includes data
samples obtained from all pilots. Confusion matrix, error histogram, validation
performance, receiving operating characteristic are put for a sample (Training Data: 60%,
Validation Data: 20%, Test Data: 20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient)
of all analyses. ANN result graph is derived from the table placed on Appendix E.
Although results of analyses are seen to have high score (near to 70%), their confusion
matrixes show that separations of the classes are not good. Developed models are able to
predict only class O well. Other classes’ predictions are wrong. A sample of the confusion
matrixes can be seen first next table.

92



Table 16: Confusion Matrix — Training Data: 60%, Validation Data: 20%, Test Data: 20%, Raw Data: hbo,
hbr, Scaled Conjugate Gradient

Training Confusion Matrix Validation Confusion Matrix

Output Class
Output Class

1 , 3 4 1 . 3 4
Target Class Target Class
Test Confusion Matrix All Confusion Matrix

Output Class
Output Class

1 2 34 1 2 3 4
Target Class Target Class
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Figure 91: Error Histogram — Training Data: 60%, Validation Data: 20%, Test Data: 20%, Raw Data: hbo,
hbr, Scaled Conjugate Gradient
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Figure 92: Validation Performance — Training Data: 60%, Validation Data: 20%, Test Data: 20%, Raw
Data: hbo, hbr, Scaled Conjugate Gradient
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Figure 93: Receiving Operating Characteristic — Training Data: 60%, Validation Data: 20%, Test Data:
20%, Raw Data: hbo, hbr, Scaled Conjugate Gradient
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Figure 94: ANN Summary — Training Data: 60%, Validation Data: 20%, Test Data: 20%, Raw Data: hbo,
hbr, Scaled Conjugate Gradient
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Figure 95: ANN Results for Four Classes (-1, 0, 1, 2)

96



Accuracy vs #Hidden Node

A

/ \

A

K

Accuracy (%)

. \A A
69 R

¥

25 30

35 40 45

50 55 60

Number of Hidden Nodes

Figure 96: ANN Results for Three Classes (0, 1, 2)

4.6. LDA and SVM Analysis with Mixed Data

This part illustrates the results of the LDA and SVM algorithms explained in Method
chapter 3.4.6 (Training Data includes data sample of all the all pilots). All graphs are
derived from tables placed on Appendix C (last line of the table) and Appendix D —
Index8, 9. Mixing of the training data does not increase success rate of prediction for
LDA (success rate: 50% with kfold:3 cross validation score is 45.07%). However SVM

65 70

75

——hbe-hbr, training data
70%

—#—hbo-hbr, training data
60%
hbt, training data 70%

oxy, training data
70%

results increase dramatically with this method. Confusion matrix of highest score (85.5%,

with kfold:3 cross validation score is 81%) placed on first next table demonstrate that

class separation power of this model is strong.

Table 17: Eigenvalues of Two Canonical Discriminant Functions

Function

Eigenvalue

% of Variance

Cumulative %

Canonical

Correlation

1

2

3

.0962

.0902

.0662

38.1

35.5

26.3

38.1

73.7

100.0

.296

.287

.249

a. First 3 canonical discriminant functions were used in the analysis.
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Table 18: Wilk’ Lambda Results Specifying Weight of the Functions

Test of Function(s) Wilks' Lambda Chi-square df Sig.
1 through 3 .785 1390.847 216 .000
2 through 3 .861 863.272 142 .000
3 .938 369.814 70 .000
Table 19: LDA - Standardized Canonical Discriminant Function Coefficients
Function
1 2 3
MeanHbol .053 .144 .047
MeanHbo3 -.004 .001 -.123
MeanHbo5 .031 -.010 .088
MeanHbol1 -.022 -.130 -.110
MeanHbo13 -.406 430 .202
MeanHbol5 314 -.333 -.140
StdevHbol -.119 -.625 -.982
StdevHbo3 -1.132 1.350 -1.616
StdevHbo5 .699 .504 -.445
StdevHbo11 -1.369 447 2.358
StdevHbo13 1.925 -1.355 -747
StdevHbo15 -.944 -.228 -.201
SlopeHbol -.311 404 .235
SlopeHbo3 .199 -.088 151
SlopeHbo5 .228 .207 118
SlopeHbo11 -.031 -.049 -131
SlopeHbo13 .486 -.156 -.296
SlopeHbo15 -.410 .158 -.005
RangeHbol 313 -.195 176
RangeHbo3 AT5 .288 769
RangeHbo5 -.796 -731 1.609
RangeHbo11 .967 -511 -.001
RangeHbo13 -1.500 .398 -.024
RangeHbol15 421 -.001 .383
MeanHbrl -.109 -.215 -.071
MeanHbr3 -.028 .029 117
MeanHbr5 .029 -114 -.044
MeanHbr11 -.226 .065 .080
MeanHbr13 .103 -.239 -.116
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MeanHbr15
StdevHbrl
StdevHbr3
StdevHbr5
StdevHbrll
StdevHbr13
StdevHbr15
SlopeHbrl
SlopeHbr3
SlopeHbr5
SlopeHbril
SlopeHbr13
SlopeHbr15
RangeHbrl
RangeHbr3
RangeHbr5
RangeHbril
RangeHbr13
RangeHbr15
StdevOxy1l
StdevOxy3
StdevOxy5
StdevOxy11l
StdevOxy13
StdevOxy15
RangeOxy1l
RangeOxy3
RangeOxy5
RangeOxyl11l
RangeOxy13
RangeOxy15
StdevHbt1
StdevHbt3
StdevHbt5
StdevHbt11
StdevHbt13
StdevHbt15
RangeHbtl
RangeHbt3
RangeHbt5

RangeHbt11

-129
2.125
-244
380
-1.635
401
-148
229
-110
-.109
336
-.145
101
2.070
217
-637
1.492
-537
271
-072
532
-560
379
-611
374
365
-.062
502
-.276
209
-221
1.662
369
-.066
718
-1.063
1.065
-1.877
.066
1.077

-.493

99

.202

-.863

.500

1.412

-.464

-.640

.005

-.208

.065

.323

.039

.055

-.279

-.450

.693

-1.492

.059

.834

-.504

.075

-476

-.530

.181

.236

-.224

-.066

.097

327

.293

.018

.702

.855

-1.748

-.866

-.910

1.100

931

.952

-.128

1.225

1.218

.200

-.657

-.187

.403

1.385

-1.399

2.362

-.054

-.081

.158

-.008

.072

=277

-.612

-.302

.165

.036

1.313

-1.471

-.090

752

-.664

.254

-577

462

.316

-.355

447

-1.085

474

-.785

1.398

2.277

-.250

-2.985

1.187

- 761
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-1.440
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Figure 97: LDA - Distribution of the Data in 2 Dimensions

Table 20: LDA - Success Rate of Classification (with kfold:3 cross validation is 45.07%)

Classification Results?

Predicted Group Membership

MW_Total -1 0 1 2 Total
Original Count -1 68 17 15 10 110
0 324 1989 1124 499 3936
1 127 464 721 211 1523
2 4 53 47 121 225
% -1 61.8 15.5 13.6 9.1 100.0
0 8.2 50.5 28.6 12.7 100.0
1 8.3 30.5 47.3 13.9 100.0
2 1.8 23.6 20.9 53.8 100.0

a. 50.0% of original grouped cases correctly classified.
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Accuracy vs SVM Parameters with Different
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Figure 98: Accuracy vs SVM Parameter Index8 (C), Kernel Function: Linear, Raw Data: Mixed hbo-hbr,
oxy, hbt, Note: All three raw data output are same until Index 12, At Index 13 oxy output decreases, others
are same.
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Table 21: Confusion Matrix — Mixed Data, C: 5, Gamma: 0.5, function: RBF, Cross Validation Accuracy:
81% (kfold: 3)

Target
-1 0 1 2

21
0.46%

2948
Predict 64.00%
861

18.69%

4.7. RNN Results

This part illustrates results of RNN algorithm explained in Method chapter 3.4.7
(Training Data includes data sample of all the all pilots). The graph is derived from table
placed on Appendix F. As you can see in the graph and the confusion matrix which is a
sample (Mixed Data, Hidden Node: 60, Epoches: 362, Batch size: 16, Raw Data: hbo,
hbr, Features: mean, slope, range, standard deviations, with kfold:3 cross validation score
is 71.67%) confusion matrixes obtained from the developed analyses, results can be
considered acceptable for practical use.
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Table 22: Confusion Matrix — Mixed Data, Hidden Node: 60, Epochs: 362, Batch size: 16, Raw Data: hbo,
hbr, Features: mean, slope, range, standard deviations, Cross Validation Accuracy: 71.67% (kfold: 3)

Target

Predict

14.24%
2 87
1.89% | Total

27.06% | 89.03% | 50.77% | 50.29% | 75.66%
72.94% | 10.97% | 49.23% | 49.71%
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Figure 100: RNN Results

105



4.8. LSTM Results

This part illustrates results of the LSTM algorithm explained in Method chapter 3.4.8
(Training Data includes data sample of all pilots). The graph is derived from table placed
on Appendix G. As you can see in the graph and the confusion matrix which is a sample
(Mixed Data, LSTM Number: 90, Epoches: 724, Batch size: 8, Loss Function:
Categorical Crossentropy, Activation: Softmax, Raw Data: hbo, hbr, Features: mean,
slope, range, standard deviations with kfold:3 cross validation score is 77.03%) confusion
matrixes obtained from the developed analyses, results are good.

Table 23: Confusion Matrix — Mixed Data, LSTM Number: 90, Epochs: 724, Batch size: 8, Loss Function:
Categorical Crossentropy, Activation: Softmax, Raw Data: hbo, hbr, Features: mean, slope, range, standard
deviations, Cross Validation Accuracy: 77.03% (kfold: 3)

Target
-1 0 1 2
-1
0 2710
Predict 58.84%
1

2 107
2.32% | Total

27.06% | 89.03% | 50.77% | 50.29% | 81.59%
72.94% | 10.97% | 49.23% | 49.71%
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CHAPTER 5

5. DISCUSSION AND CONCLUSION

The main goal of this thesis study is to develop online algorithms based on fNIRS
measures to estimate changes in the mental workload levels of pilots while they are
performing realistic flight scenarios. In other words, instead of analyzing and detecting
mental workload changes after data collection is completed (i.e. offline analysis), we
aimed to monitor changes in the mental workload of the pilots during flight scenarios in
real time. For this purpose, realistic cockpit simulators and test scenarios were used in the
context of a broader research project. By considering the related literature, feedback
obtained from the pilots who participated in the ACROSS project as subjects, and the
insights developed via in depth qualitative analysis of flight videos, 16 parameters that
affect the mental workload of pilots were specified. The data obtained from fNIR sensor
during all test procedures are integrated and tagged by the scenario id, test subject id, time
info and predefined mental workload level (detected with 16 parameters). This large data
set includes 4 types of fNIRS based oxygenation measures (i.e. hbo, hbr, hbt, oxy),
obtained from 16 optodes over the prefrontal cortex, and 4 features (i.e. slope, mean,
range, standard deviation) measured at every half second from 8 experienced pilots while
they flew 4 different scenarios. This data set formed the backbone of the online
estimation algorithms developed and tested as part of this thesis.

After the annotation of the data with 16 behavioral parameters, it was observed that that
67.26%, 27.06% and 3.84% of the data was assigned a mental workload level of low (i.e.
0), medium (i.e. 1) and high (i.e. 2) respectively. Only 1.89% of the data was assigned a
“-1” tag, which correspond to cases where the signals were modulated due to artifacts
such as excessive head movements. The distribution of mental workload levels were
compatible with the test scenario design and pilots’ self-evaluations after each scenario.
Generally parameters that correspond to high mental workload instances covered a small
proportion of the entire dataset, since such cases typically took a short period of time
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during adverse events. For example, in scenario 3 the percentage of high level mental
workload was observed as 13.65%, due to the fact that this scenario included mentally
demanding, non-routine tasks for the pilots such as performing a go around, dealing with
malfunction of instruments, engaging in new route calculations etc. On the other hand,
mental workload level 0 reaches 75.73% in scenariol, which included a routine flight
operation. Nearly all drowsiness cases were observed in scenariol whose cruise phases
were longer than those of other scenarios, and it was performed just after the pilots had
their lunch.

Since the aim is to design a generic mental workload estimation model applicable for all
test subjects, we focused on the optodes from which the best quality data was obtained
during the experiments. The flight simulator included additional sensors besides fNIRS,
some of which relied on infra-red sources such as eye trackers and Kinect cameras.
Although the fNIRS sensor was shielded with a special cap, even numbered optodes that
were closer to the eyebrows of the participants were subjected to the highest levels of
interference. In contrast, the fNIRS signal quality was consistently better across all
subjects at odd numbered optodes which cover areas within the frontal cortex close to the
hairline. For this reason, the models developed in the thesis focused on optodes 1, 3, 5,
11, 13, 15 only for model development, which cover areas within left and right
dorsolateral (1,3,13,15) and dorsomedial (5, 11) prefrontal cortex and dorsomedial
prefrontal cortex. Therefore cognitive data types used for mental workload estimation for
each half second was reduced to 96 dimensions (i.e. 4 biosignals (hbo, hbr, hbt, oxy), 6
optodes, 4 features (slope, mean, range, standard deviation)).

For the initial attempt based on LDA, 91.1% training accuracy and 70% test accuracy
scores were obtained over a hand-picked set of cases that emphasized high workload
instances. This approach was aimed at investigating how such a basic model trained over
a single pilot could succeed in detecting the high workload instances for other pilots, and
to what extent it would generate false alarms (i.e. mistakenly classifying low MW
instances as high MW). However, this approach was not sufficient for a more general
purpose model that estimates the MW changes during the entire flight in a continuous
manner. Moreover, the mental workload level assignments were made without using the
scheme with 16 dimensions. Therefore, the LDA approach was re-evaluated over the
entire dataset that was manually annotated with the new categorization scheme. These
changes led to a significant decrease in the accuracy of the LDA model, which was
dropped to 51.86% on average. In these trials nearly 60% of all the data was used as
training data. When training data was narrowed to a single subject’s dataset (14%), the
training accuracy reached around 77% on average. For some individuals, the training
accuracy was as high as 90%. These results suggest that LDA’s prediction power
decreases dramatically when the training data size is increased. In addition to this,
including training data samples from all pilots did not improve LDA model’s accuracy,
which was around 60%.
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LDA analyses were performed by using SPSS. Since SPSS provides standardized
discriminant  function coefficients for each input (e.g. hbo_slope voxel 1,
hbr_mean_voxel_4 etc.), the predictive effect of each parameter on the developed model
can be compared. Based on the analysis results in which high accuracy scores were
obtained (e.g. when single subject data is used as training data), it was observed that slope
features of hbo and hbr were the stongest predictors of mental workload. Overall, LDA
models turned out to be more suitable for personalizing a mental workload prediction
scheme in this domain.

The SVM algorithm with non-mixed training data had higher accuracy scores than LDA.
C and gamma parameters for RBF and Sigmoid kernel functions, C, gamma, degree
parameters for polynomial kernel function and C parameter for linear kernel functions
were tuned in the analyses. C and gamma values from 0.00001 to 10000 and degree
values from 2 to 6 were used. Since representations of all analysis results (tables, graphs)
would take hundreds of pages, only the narrowed parameter range results were reported in
this study (Appendix D and derived SVM graphs in the results chapter). The
abovementioned ranges produced the highest accuracy scores. Although higher accuracy
scores were obtained with SVM than LDA, confusion matrices showed that SVM was not
good at separating the four classes (-1, 0, 1, 2). Generally all SVM models predicted 0 for
most data points. Since 67.26% of all data is classified as mental workload level 0, the
accuracy scores are misleading.

All results obtained by using a linear kernel function with hbo and hbr had the same
accuracy percentage(67%). The average accuracy with the RBF function was 63.12%
among 400 analysis results. Highest accuracy percentage obtained was 64.24% with (C:
0.6, gamma: 2, data type: hbo, hbr) and (C: 10, gamma: 5, data type: hbt), and (C: 0.5,
gamma: 0.1, data type: oxy) and (C: 1, gamma: , data type: normalized hbo and hbr).
Lowest score is 51.98% with (C: 10, gamma: 0.05, data type: hbt). Whereas, the average
score with the sigmoid function was observed to be 63.19% among 400 analyses results.
Highest score is 64.63% with (C: 0.01, gamma: 1, data type: oxy). Lowest score is
50.41% with (C: 1, gamma: 0.5, data type: normalized hbo, hbr).

Average accuracy percentage obtained with the sigmoid function was 58.95% among the
1600 data points in the dataset. The highest score was 64.22% (C: 5, gamma: 0.005,
degree: 2, data type: hbt) and (C: 10, gamma: 0.005, degree: 2, data type: hbt) and (C:
0.05, gamma: 0.05, degree: 2, data type: hbt) and (C: 0.1, gamma: 0.05, degree: 2, data
type: hbt) and (C: 0.0005, gamma: 0.5, degree: 2, data type: hbt) and (C: 0.001, gamma:
0.5, degree: 2, data type: hbt). The lowest score was 33.93% with (C: 0.05, gamma: 0.5,
degree: 5, data type: hbo, hbr).

The previous models were constructed by splitting the pilots into training and test groups,
so that after training the models would be tested on other pilots’ fNIRS measurements.
When the training set included samples from all pilots, not only the accuracy scores got
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better but also class separation power of SVM had increased. Moreover with the previous
model (with non-mixed data) pilot specific models were also developed. However an
efficient model could not be obtained. Not only for this reason but also having aim to
develop generic workload estimation model, mixed data approach is adopted. Since it is
observed that previous approach is not appropriate for generic model development, other
algorithms (ANN, RNN and LSTM) are not applied on non-mixed approach any more.

40 different analyses with linear kernel function resulted in similar accuracy scores with
the score obtained by using a non-mixed data set; 66.3%. However, when RBF and
Sigmoid functions were used the accuracy scores varied from 53.1% (C: 10, gamma: 0.1,
data type: oxy, function: sigmoid) to 85.5% (C: 5, gamma: 0.5, data type: hbo, hbr,
function: RBF) in 600 analyses. Since C is only a parameter having impact on the result
for the linear kernel function, the number of analysis is smaller than RBF and Sigmoid
kernel functions whose effective parameters are C and gamma.

The results suggest that linear function is not appropriate for a generic mental workload
estimation algorithm suitable for multiple individuals. In fact LDA (success rate 50%,
kfold:3 cross validation is 45.07%) whose rates are very low according to SVM with RBF
or sigmoid is similar with SVM with linear function. In addition, the graph in figure 96
shows analyses outputs with RBF increase compared to the others with sigmoid decrease.
Therefore it might be stated that SVM with RBF by using mixed training data set is
favorable method for our study. Also best prediction score 85.5% is obtained with C: 5,
gamma: 0.5, data type: hbo, hbr, function: RBF with kfold:3 cross validation score is
81%. Confusion matrix belonging to the best score (Table 19) indicates that the most
confusion of class separation is lower than 10% (prediction O, target 1). There is another
remarkable result in Table 19 is low percentage of -1 separation: 24%. Only 21 of 87
samples assigned to -1 class are predicted correctly. Whereas, 64 sample (74%) is
predicted as 0. The reason of this unsatisfactory result is guessed as cases whose outputs
are targeted to -1 have different internal factors. Thus, weak skin contact cases cause to
acquire too low signal from fNIR sensors and excessive head motion cases cause to
acquire too high signal from fNIR sensors are considered as being member of same class:
-1. This approach is bought into since, both cases are same for our aim; they are cannot be
used to calculate clear mental workload level. Therefore weak skin contact and excessive
head motion cases are not assigned to different classes such as class -1 for weak skin
contact and class -2 for excessive head motion. Finally, as indicated by the graph
presented in Figure 96, it was observed that the use of hbo, hbr as input is more
successful than the use of hbt or oxy.

For ANN trials, Matlab’s neural network toolkit was utilized. Scaled Conjugate Gradient
was used as default. Number of hidden nodes ranged from 12 to 75, percentage of
training data was 60% or 70%, and input data types were hbo-hbr, hbt, and oxy. The
Matlab toolkit randomly selects the training and testing data. 31 analyses were performed
and the average accuracy rate was 67.64%. The highest prediction score came from the
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case “#of hiden nodes 35, training data set 60%, data type hbo-hbr” combination and
worst score was derived from the case “#of hiden nodes 70, training data set 60%, data
type hbo-hbr”. According to the graph in figure 93, hbo-hbr usage as input data type
produced higher prediction accuracy than hbt or oxy. Moreover analyses with 60%
training data generally provided better accuracy than analyses with 70% training data.
Although the sharpest decline in accuracy was observed in the case of 60% training data
as well (66.9% accuracy with 70 hidden nodes), the sharpest increase was also observed
in a configuration using 60% training data with a different number of hidden nodes
(68.8% accuracy with 35 hidden nodes). Another evaluation of the graph is that number
of hidden nodes effect depends on other parameters such as percentage of training data set
and input data type. However in the range of hidden node number between 45 and 75,
behaviors of the analyses with 60% and 70% training data hbo-hbr are similar. Moreover
32 analyses with the same input combinations are performed for three classes (0, 1, 2) by
deleting of data tagging with -1. These analyses are studied due to investigate effect of
class number and effect of class -1. Neither significant effect is not observed between
three classes or four classes nor investigation of analyses without class “-1” is not
meaningful. Since in real time processing it is not possible to expect that “-1” class due
to weak skin contact or excessive head motion is not occurred. Always incalculable data
should be considered and take precaution for this case. In table 14 shows that, even
though ANN has stronger power than LDA to separate classes each other, it is not enough
accuracy percentage for this issue. Especially the model confuses too much to separate
class 0 from class 1.

One hidden layer usage might be an important reason of unsatisfactory ANN results.
Number of hidden layer selection is controversial issue. Kolmogorov’ Theorem says that
one hidden layer is sufficient for universal approximation[86], and Cybenko also did
research whose results promote this theorem[87]. However, according to Reed and
Marks, limitations of Kolmogorov and Cybenko indicate that one hidden layer is not
always enough[88]. Sontag explains that there are some functions which cannot be
approximated with one hidden layer, thus two hidden layers are needed for these
models[89]. Besides Lippmann show that two hidden layers capable of separate
classification regions in any shape[90]. Since in this thesis Matlab 2014a ANN package
containing single hidden layer design is used, advantage of two hidden layers is not
observed. If multiple hidden layers were used, accuracy rate of ANN might be increased.

Another critical selection for ANN design is hidden layer nodes number which affects
network architecture directly and it is a big question. Reed and Marks state that although
m — 1 hidden nodes supply exact learning for m training data, inefficiency of it is obvious.
Therefore new approach are sought to detect hidden node number. They list several
methods for this issue[88]. However they expressed that, these methods are only
guidelines, not strict rules to must be obeyed. One of these methods is calculated by
Windrow and Lehr as[91]:
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where;
Ny: output node number (4 for our case)
Np: number of pattern (5794 for our case)
NX: input node number (48 for hbo, hbr ,6 optodes and 4 features)
Nw: number of weights (number of hidden nodes * (48 + 4) for our case).

From this formula number of hidden nodes for our study should greater than 34 and
smaller than 496.

Karsoliya gives other rule of thumbs for hidden layer nodes which matched with the
studies of Panchals. They say[92],[93]:

- hidden layer nodes should be in the range of output and input layer nodes ( 4 <
#hidden nodes < 48, for our study)

- hidden layer nodes contains 2/3 nodes of input layer + output layers (#hidden
nodes =48 * 2/3 + 4 = 36, for our case)

- hidden layer nodes should not exceed twice of input layer nodes (#hidden nodes
<=48 * 2 = 96 for our case).

As seen in the literatures, although there is no certain calculation of hidden nodes due to
several dependencies such as training pattern size, character of data etc., as far as
possible, hidden layer is designed by considering of these approaches in this thesis.

207 analyses with different combination of model inputs listed in Appendix F are
performed for RNN algorithm. Their average score is 72.12% with kfold:3 cross
validation score is 72.12%. Nearly 60% of all data is used for training which is supplied
to model as batch size * epochs. These parameters and number of hidden nodes are tuned.
Highest score is obtained with “batch size: 16”, “epochs: 362” and “number of hidden
nodes: 1000” as 84%. However 1000 hidden nodes are not rational according to Windrow
and Lehr[91]. Therefore, more realistic higher score can be acceptable as 79% whose
tuned parameters are “batch size: 4”7, “epochs: 1448” and “hidden nodes: 114”. Worst
accuracy rate is 10% with “batch size: 57947, “epochs: 17 and ‘“hidden nodes: 66”. In
order to understandability and readability, only batch size 4, 8, 16, 32, 64, 128, 256 —
analyses are expressed on the graph in figure 98. As seen in this graph, prediction power
of RNN is increased by decreasing of batch size. Moreover success rate is increased by
increasing of hidden node number until 100 approximately. After this point, accuracies
are seen to be saturated. Only 84% accuracy with 1000 hidden nodes which is extremely
high is arisen for this reason. Another note about RNN analyses is that while decreasing
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of batch size, performing of analysis takes more and more time. In fact “batch size: 17
and “batch size: 2” studies cannot be resulted due to taking hours. Our analysis PC has 8
GB RAM, Intel i7-4600U CPU, 2.10 GHz and 64 bit Windows 7 installation. For
implementation, Keras libraries on Python 2.7.13 environment are used. Moreover, class
separation capabilities of analyses having satisfactory prediction outputs are significant.
Confusion matrix derived from analysis “batch size: 167, “epochs: 362” and ‘“hidden
nodes: 60 is given in table 20 as an example.

LSTM results are measured as slightly better than RNN. Average accuracy score of 92
analyses which are formed with combination of LSTM number from 42 to 120
(increasing step size is 6 LSTM units) and batch size 2" (n variants from 2 to 8) is 74.65%
with kfold:3 cross validation score is 73.51%. While choosing number of LSTM units
same references are consulted with ANN’s[88][91][92][93]. 82% is highest score
obtained with “LSTM memory cell number: 90, batch size: 8” and “LSTM memory cell
number: 100, batch size: 8”. Lowest score is 67% with “Nearly all LSTM memory cell
number and batch size: 256”. Similar to RNN behavior, LSTM algorithm run time also
takes longer time when batch size is getting smaller. In fact batch size 2 — analyses also
cannot be completed with same analyses environment and PC with RNN’s. Again in
parallel with RNN results, the graph in figure 99 shows that accuracy rates increase when
batch sizes decrease. Moreover, while increasing of LSTM number, prediction power is
stronger and saturation level is reached at the point of 90-100 LSTM number. Class
separation is also satisfied in consideration of confusion matrixes. Table 21 illustrates an
example confusion matrix derived from the analysis whose model inputs are LSTM
Number: 90, epochs: 724, Batch size: 8.

Following graph illustrates a summary of the average prediction accuracies observed
across all algorithms tested in this thesis.
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Figure 102: Algorithm Accuracy Scores

Green line pointing to 25% represents average prediction score with four optional
outputs; -1, 0, 1, 2. Mean of accuracies for all algorithms are higher than this line which
means that all algorithms give better results than random prediction. Red lines represent
best scores for the algorithms separately. Standard deviations are marked as line
segments. Large standard deviations belonging to ANN, LDA, LSTM, RNN and SVM
indicate very large variations of input combinations are tried for these models. Although
several analyses are performed for ANN also, narrow standard deviation of it means
stacked cases occurred for ANN. Therefore different new approaches should be applied
for ANN to observe effects of ANN inputs. Mean accuracy of SVM is seen smaller than
LSTM, RNN and ANN due to no-mixed data. When mixed data is used and correct
parameters are selected, highest accuracy score is obtained by SVM which is 85% and
marked as red line.

In short, all algorithms considered in this study can be ordered in terms of their prediction
accuracy as SVM > LSTM > RNN > ANN > LDA based on the highest accuracy
percentage obtained in a trial. However there are small differences between SVM, LSTM
and RNN. RNN and LSTM give previous data to current mental workload calculation as
an input. Since the sliding window approach including a buffer of 60 seconds already
makes use of historical data, the advantages of RNN and LSTM for temporal data might
not be fully reflected in the study.
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One of the most important findings of this thesis is that pilot specific model development
for online mental workload detection gives much more effective results than generic
models. If any pilot data is not used during training phase of the models, test results
decreases significantly due to the fact that developed model is not learnt behavior of this
specific pilot. If all pilots’ data is partially fed to the training of the model, the accuracy
percentage and class separation power of the model were found to increase dramatically.

Studies carried out in this thesis aimed to determine mental workload level of the pilots as
online by using fNIR optical brain imaging technology. Measurement of online pilot
mental workload might be a crucial input to take precautions for unexpected conditions. If
out of ordinary mental workload is detected during the flight, pilots can be stimulated or
autopilot can take control of the aircraft. Even warning signals can be sent to ATCs or air
control towers. Moreover this technology can provide diverse capabilities like comparing
different cockpit designs by sorting the workload induced on specific test pilot during the
operational use.

In order to improve this work, some future studies may focus on the following aspects.
For instance, in this thesis slope, mean, standard deviation and range features were
selected as the main predictors based on our literature survey. These four features and
their combinations are used in all analyses. For feature extraction, more research can be
done and different features can be used such as kurtosis, skewness etc.

Working principle of fNIRS bases on monitoring of hemodynamic activities on the brain
by transmitting and receiving infrared waves via the sensors touched on forehead.
Therefore, instant changes of blood volume or untouched infrared sensors can cause
misleading prediction of mental workload. -1 classification in this thesis is arisen from
this phenomenon. In order to overcome this problem, different filters can be designed. By
this way oxy-deoxy hemoglobin change detection originating from only mental activities,
not head motion or weak skin contact can be specified and more robust design can be
developed. This improvement also creates a chance for using of fNIR technology on
different platforms exposing pilots to high G such as fighters.

Moreover, in this thesis, 60 second buffer is created and it is shifted at each 5 second
(sliding window technique). Buffer size is detected by researching of the related literature
and 5 second is identified by trying a few periods. Additional studies focusing on
different buffer sizes and shifting periods could be beneficial for obtaining more
acccurate mental workload estimation results.

While SPSS tool is used for LDA, Matlab is used for ANN and Python Keras libraries are
used for SVM, RNN and LSTM. When using of SPSS, all feature and voxel weights on
the models could be extracted so that the contribution of each feature on the models can
be analyzed. However due to the constraints of Matlab ANN package and Python Keras
libraries, feature and voxel weights cannot be investigated while developing and
experimenting with ANN, SVM, RNN and LSTM models. Therefore, there is a need for
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tools that allow researchers to better observe the internal structures of these algorithms to
better grasp which features were the most effective predictors of mental workload levels.
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APPENDICES

APPENDIX A

SUBJECTIVE WORKLOAD GRAPHS OF TEST PILOTS

After completion of each test scenario on simulator environment, test subject evaluates
his own mental workload in time domain. It is also asked them to mark critical events on
the graphs. Although these graphs represent subjective evaluation, they give input to
determine the parameters affecting mental workload level.
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APPENDIX B

PARAMETERS AFFECTING MENTAL WORKLOAD

Following first table lists determined parameters with their IDs which affect mental
workload. Second table illustrates how their combinations affect mental workload.

Table 24: Parameter List with IDs

Flight phase

ATC talking about standard flight info

ATC talking about unexpected event (go around etc.)

CPT talks to ATC

CPT talks to pilot

Pilot talks to CPT

Pilot chats with CPT

Unexpected event (flap failure etc.)

Pilot sets/controls instrument (AP panel, g, flap etc.)

Pilot sets/controls instrument (throttle, CDU, speed breaker, etc.)

Pilot reads/writes paper(checklist)

Pilot is confused

Drowsiness

Head movement, weak skin contact

Cockpit warnings (1000 feet etc.)

Poor visibility
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Table 25: Effects Of Parameters on Mental Workload (0: No Exist, 1: Exist)

—|H OO0 |O|O|0O|0O|O|0O|0O0|Oj0O|0O|00O|0O|0|OO|0O|d|O/O|d|OCOO | ||| ||| ||| ||
OoOl0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC
OoOl0O|0O0|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC
ol0o|0O|0O|0O|0O|O/O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
OoOl0O|0O|0O|O|O0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
o|o|lo|lo|jo|jo|jo|o|o|o|lo|o|jo|jo|o|o|o|lo|lo|d|H|O|O|Oo|O|lO|H|O|O|O|O|O|lO|O|0O|O|O|O|O|O|O
ol0o|0|O|d|O|O/O|O|dH|O|O|Hd|H/OO|O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|O|O|O|H|O|O|O|O
—|O|H/O|0O|O|d|O|O|O(0O|0O|O|0O|0O|dH|dH|d|O|OO|O|H|d|d|OO|d|H/OO|O|H|d|d|O/O|O | |O|O
oOl0O|0|0O|0O|0O|O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
oOl0o|0|0O|0O|0O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|O|O|O|O|O|O
o|lo|jo|jlo|o|d|OoO|O|d|d|O|O|O|O|O|d|O|H|O|dH|O|d|d|O|O|O|O|O|d|O|dH|O|O|O|d|O|O|O|H|Hd|H
—"J|0O|Oo|0o|l0o|Oo|O|0O|d|dA|d|O|d|d|O|d|O|O|O|O|O|dH|O|d|O|O|dH|O|O|O|O|O|O|O|O|O|O|O|H|H|O
ool |O|O|0O|O/O|O|0O|O|d|O|O|IOIO|H|O|d|O|OIO|d|d|d|O|O|O0O|O|O|d|d|OH|O|H|+H|O|O|O
oOl0O|0O|0O|0O|0O|O|O|0O|0O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
ool |O|O|0O|O|O|O|d|O|O|dH|O|H/O|O|O|d|O|OO|d|O|d|O|O|O|d|O|O|d|d|O|H|O|H|O||O |

Pl |l 2|l ||| 2|+
eeeeeeeeeeeeeeeeeeeeeeeeeeeemmmmmmmmmmmmm
LI LYY LYY NN NNRNNNIOI0000101010]10]0]00/0
G|5|5|5|5|5|5|5|8|5|5|8|8|5|5|5|5|5|8|5|8|5|5|5|5|5|5|5|&|E8 €88 LL8 L8 88

138



—A|lH |1 OO0 0O|OO|O|O|O(O|O|O|O|O|0O|IO(O|dH|dH|d|O|O|O|O|O|O|O|O|O|IO|H|O|H|H|H|H|O|O|O
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O(O|O|O|O|O|O|O|O|O|O
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O(O|O|IO|O|O|O|O|O|O|O
O|0O|0O|l0O|0O|0O|0O|d|O|HO|O|O|H[HO|OO|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|O0O|0O|0O|0O|0O|O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O(O|O|IO|O|O|O|O|O|O|O
OoO|l0O|0O|0O|0O|0O|O|0O|O|O|0O|O|O|O|O|O|O|O|O|O|O|O|dH|dH|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
— | OO0 |O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OjO|O|O|O|O
O|ld|O|d|O|O|d|O|O|O|O|d|H|O|O|O|O|dH|O|d1|O|d|d[O|dA|dA|d|d[O|O|d|O|O|H1|O|d|dH|O|O|O|OCO|O|O |
O|0O|0O|l0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
O|0O|0O|l0O|0O|0O|O|0O|O|O|O|O|O|O|CO|O|O|O|O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|H|O|O|H|O|O
—|O|d|O|O|O|O|O|O|O|d|d|d|O|O|IO|d|O|dA|d[O|d|[O|d|d|O|d|d|d|O| 1 |O(d|/O(d|d1|O|O|O|d|dH|O|O|O
OO0 |0O|0O|0O|0O|0O|0O|0O|HO|H|O|IO|IO|dH|O|O|OCOICOICO|dH|dH|O|H|O|d1|O|H|"d1/OO(OIO|H|O|O|O|H|O|O|O
—HA| A A | OO|O|O|d|dA|O|I0OIO|d|dA/O|dA|dA| A O|d1|O|dA|dA|[d|OO|O|dA[dH|O(O|O|dH|dH|d/O|O|O|O|O|OCO|O|O|O
O|0O|0O|l0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
oO|0olOo|d|O|0O|O|d|d|O|O|O|H|O|d|O|d|d|/O|d1|O|d|d|d|O|dA|O|O|O|d|d|O|O|O|dH|O|O|O|O|O|O|O|O|O

Lc|lc|jc|jc|c|c|c
L ||| ||| |||l 2|22 Q||| O|O|0O[0Q
c|c|jlc|jlc|lc|jlc|lc|jc|c|leclclc|lclclclc|jclcljlcjcljlcljlcjlc|jlc|jlc|jlc|jcjcjlcjlcjlcjlcjlcjlCc|]lc|]lc|lc|l@®|@®|@O©|@O|@O|®|®
v|lv|lovjlv|jlv|lv||v|V|lv|lv|jw|lv|w|lw|lV|lv|lvjw|v|V|V|lVv V|l ||lV|V|V|lV|lV|lV|V|V|V|V|O|O|O|O0|O0|0]|O0O
QO[O O|O[O0O]|O|O|O[O|O[O[O|O|O[O]|O|O[O[O]|OQO|O[O|O|O|[O[O|O|O[O]|OVO]|O|O[IO|O|O|V| LSSl s
nlunlnlun nlununlununlunuvnunlununlnlunnlunlunlununlunlununlununlnunlunununlununlnunlonunlolaoaolaolalaol
V| V(||| V(||| (V||| V|IQ|V|IQ|V(IQ| (V||| olaolol D
||| 0|0 ||| ||| ||| O] O] ||| ||| ||| ||| |TC|©|@©|(@|(@|@|@OC| @

139



o T O T I O O T R T R O I O e O O e e Y I O O T R T N I O O I I I o I |
O|0O|0O|0O|0O|0|H(O|H|H|dH|O|O|O(CO|O|OIO|O|d|d|O|O|OO|O|0O|ICOO|H|"H|dH/O|O|IOO|O|O|O|H|H|O|O|O
oO|lo|0o|l0oOj0O|0O|0O|0O|jO|O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
oO|0o|0O|l0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
O|0O|0O|l0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
o|lo|lo|jo|lo|o|o|jo|o|jo|o|lo|o|o|o|o|o|jo|o|o|o|oo|o|o|lo|dH|OoO|l0O|O|d|d|O|O|O|O|O|O|O|O|O|O|O|O|O
o|lo|lo|o|lo|o|o|jo|o|o|o|lo|o|o|lo|o|O|d|HA|H|dHA|HA|H|H|d|O|O|O|O|O|O|O|O|H|O|O|H|O|H|H|O|O|O|O
oO|Oo|0O|l0O|0O|0O|0O|0O|0O|O|dH|O|O|ICOICO|IO|HO|H|O|IO(dA|d1|OHO|H|dA|d1 OO |O|H |+ O| | O|O |||
OoO|lO|d|d|O|d|O|O|O|dH|O|lO|O|O|O|O|O|O|O|d|d|O|O|O|d|dH|O|d|d|O|d|O|d|O|d|O|O|O|dH|O|dH|dH|O|H
O|0O|0O|l0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
O|0O|0O|l0O|0O|0O|0O|O|0O|O|CO|O|H|O|dH|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
—A | O d|O|d|d|O|O|O|O|OCO|OIO|d|OIO|d|d|O|dA|dA|dA|d|O|1O| A | A | A | A | A | A | A | A | O A |dA|dA A A [O|[H|[H|[H|O
—"|O|0O|OoO|l0O|0O|OoO|0O|0O|O|Oo|0O|O|dH|O|O|d|d|O|d|d|O|d|O|O|dH|O|d|d|d|/O|d|O|O|d|O|dHd|d|d|O|H|Hd|O|O
O|H|O|0O|0O|H|H|H | O|O(OCO|O|O|O(O|O0O|OO|0O|0O|H(O|O|HOO|O|O(H|O|O|O(H|OIOCO(OCO|O|O|OCO|H|H|O ||
O|0O|0O|l0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|O|O|OC|O
O|0O|0O|lH|O|0O|H|HdH|H|OO|O|O|O|O|O|O|O|O|O|H|O|O|H|O|O|O|O|H|O|O|OCO|O|dH|O|O|O|O|O|H|O|O ||

00| bo| o

SlE|E

T[T | T
clc|lc|lelc|lc|lclc|<c|<|<c|<|2|5I5IS
OO0 O0I0IVIV|0|OIOILIL| 3|22 = R e N T I N I T )
o|c|oc|oc|c|oc|c|oc|c|c|oc| o — . clclc|lc|lclec|lec|le|lc|lecle|lc|lclc|c
O|lO0O|lO|O|O|O|O|O|O|O|0O|O m o|lo|lo|Y|Ov|(iV|QV|OV|O|V|QV|OV|V|V|(V(V|V|OV|jOV|OV|V|OV|lOV|V|OV|lv|lV|lV|O|lO]| O
Sl sl lslslsl @ wniui N L LI LI ALV LI LILIOCIOVIVIOVIVILV|ILO|IOIOOIOIOIOIVlOV|O
[eRpeoNNoR NoR ol o NoRNoRNoN NoRNoRNoN T[T |IT|'S5|5|5|I5I5[5|5|5|5|5|5|5|[5|9vnvnunlunun gnanunlunluunlunlnlan
o|lojlaojlajalajlalaojlajla|lajao|lo|lc|lc|c|lc|lo|jc|lo|lslc|lolc|lojlc|lo|lslc|lQ|OQ|IQ(O| Q0| Q||| V(0| OD
C|C|(@|@C|@©|O0C|@OC|(O0C|OC|(O0C|OC|OC|WV(V|V|O|lO|O|lLO|LO|LO|LO|O|LV|LO|LO|LVILO|T|T|T|T|TD|T|TD|T|T|©T|T|(T|T|T|T

140



o I I T O I I O O T R I R N O Y T T R O R e Y e T, T R O N O o O I O R R N Y Y T, T R O e Y e O O R T e O e A B o B I o B I B |
OoO|0o|0O|l0O|0O|0O|0O|O|H|H|O|O|O|O|CO|O|OICO|O|0O|IO|d|dH|OCOIO|d|dHA|[dA|HA|—dA|d|HdA |1 OO|O|OO|O|O|O|OC|O
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|O0O|O0O|0O|0O|0O|O|O|0O|O|O|O|O|O|O0O|O|O|O|O|O|O|O|HO|O|IO|IO|IO|H|O|H|O|O
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O(O|O|IO|O|O|O|O|O|O|O
O|0O|0O|l0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
OO0 |0O|0O|0O|0O|0O|0O(0O|0O|0OI0OI0O|I0O|H|H|OO|O(O|O|OIOI0O|I0O|H|O|dH|O|O|O(O|O(O|O|IO0O|O|O|O|O|O|O|O
A H|IO|HA|dA|A|HA | A A HA | H A O|HA|dA|d|d |1/ OO /OOOIO0O|IO0O|O0O|O|O|O|O|O|O|O(O|O|O|O|O|O|O|O|O|O
—A|O|"|O|O|0O|CO|CO|0O|COICOIO|d|dA|[dA A |OO(HA|HdA|dA A |d|O|d | d|O|O(O|O|"1|OO|OICO|dH|O|H|O| | [O|
O|l0O|0O|0O|d|dH|O|O|O|O|O|O|O|O|O|O|O|d|O|d|d|[d|[O|d|O|IO|d|d|O|d|O|dA|[d|d[d|d|O|d1|O|d|O|O|+H|O
O|0O|0O|l0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
O|0O|0O|l0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
O|ld|d|d|d|O|d|O|O|d|O|O|O|O|O|O|d|O|d|d|O|d|d|[O|O|O|d1|O[d|d|[O|d1|O|O|d|d|O(O|d1|O|H|O|H |
O0|H|H"A|d1|O|1|O(O(H/OOI0OI0O|I0O|0O|dH|O|H"H|O(OOICOIOI0O|IO0O|H|O|Hd|H"1|O(O(HO|(H|dH|O|O|H|O|O|O|O |
—A|O0O|"H|d|O|d |10 0O|O|H|H|d1|O(OCO|O|OO|H|d1|O(O|O|O|H|/O|O|H(O|O|"|OO|O|O|H|O|H|O|O|O|O |+ |O
O|0O|"W|O|0O|0O|O|O|0O|O|H|O|O|O|H|O|OO|O|dH|O(O|O|H|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OC|O
— OO0 |H|O0O|"1|O|0O(0O(0O0O|dH|O|Hd|H|O|O0O|O|1|O(0OCOICOIO|Hd|H1|O|d1|O|O|H|["d1/OO(O|H|O|H|O|O|OC|O ||

L|lc|lc|jc|jcjcjcjcjclc|lc|c|c|lc|lc|c|c|c
e B e e e e e I I e O O e S B e e B B T T I B T T S B I I B e R e e S S e e e e e e e e N N N NS N NN RS
c|lc|jlc|j]c|lc|jlc|lc|jc|jc|leclclc|lclclclcjclcljcjcjlc|jlcjlcjlc|lc|lc|®©| @®©C| @O O©|OC| OO OC|OC|OC|OC|OC|OC|O©|@OC|@O©|@®©| @®©
Siglglgig|glalglg|clelg alelglaleg|glelglglelglglalelelcelelglelelglelelg|elelglelelgle
nlunlnlun nlununlununlunuvnunlununlnunnlunlunlununlnunununnlojlolaolalolaolaololalolololaololalol
VIV |V|QV|V| V||V V(||| |V| V| V|IV|IVIVIV|lV|IOo|lao|lo|lo|lo|lojlaolaojlaojlaolaolaolaololololo] D
||| || ||| ||| ||| O] ||| |©|(@©|(@©|(@|(@|(@|@O|@C|@O|@|@|@|@O|[@|M@fMO|O| D

141



o I T I IO I O O T O e I O e O A R O I T O o O T I O N O O e O O T O e R T I O o O O O I Y O O e N O T I O O T O o O O I I O B o |
O0O|I0|H|H|H|O|O|O|O|O|O|O|IO|O|IO|I0O|IO|HA|HA[HA|HA|HAO|H|O|O|O|O|O|H|H|(HA|HA|HA|H|d|O|O|O|O|O|O|O
o|lo|d|o|lo|d|o|o|o|o|o|o|o|o|o|d|H|o|ld|o|o|o|o|o|o|o|o|o|d|o|lo|o|o|lo|o|o|o|lo|o|o|H|o|o|O
o|lo|o|lo|o|o|jo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|jo|o|o|o|o|o|o|o|jo|o|o|o|lo|o|o|o|lo|o|o|o|o|o|o
O0O|I0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O
o|lo|o|lo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|lo|o|o|jo|o|d|o|o|o|o|o|jo|o|o|o|lo|o|o|o|lo|o|o|o|o|o|o
o|lo|o|lo|o|o|jo|o|d|d|d|d|Hd|HdH|o|lo|o|d|Oo|Oo|H|Oo|lo|O|H|H|O|O|O|0|O|O0|0|lo|Oo|+H|H|O|O|O|O|O|O|O
O|ld|d|o|lo|d|Oo|ld|d|d|O|ld|d|d|d|d|d|O|d|d|H|O|O|O|O|O0|O|O|O|O|d|O|O|O|O|0|O|O|0|O|H || |H
—A|HA|—H|Hd | |Oo|Oo|+|O|H|—H|O|O|lO|+H|+H|O|lO|lO|O|O|H|+H|O|lO|dH|H|HA|H |+ |O|O|d|+H|+H|O|H|O|+|O|O|O|O|O
o|o|o|lo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|lo|o|o|o|o|o|o|o|o|o|o|+H|o|o|o|lo|o|o|o|lo|o|o|o|o|o|O
o|lo|o|lo|o|o|jo|+|o|o|o|o|o|o|o|o|o|o|o|o|o|jo|o|o|o|o|o|o|o|+H|o|o|o|lo|o|o|o|lo|o|o|o|o|o|o
—A (A |dA| A /OO0O|dA|dA|dA|dA OO A1 |O|dA|dA|A|A (A | A |O[dA A | A |OO|HA|dA A (A | A |A|A|HA|A A || O|O(O|O|O |
—A[(AO|dA| A (OO |dA|dA (A |dA|OO|dA|dA A |dA|A|A (A | A |O(dA | A |O|O[HA|A|A|dA (O |HA|dA|d|O|HdA|dA |1/ O|O(O|O ||
o|lo|o|lo|o|o|jo|+|o|H|o|dH|o|d|H|Oo|0o|o|lo|o|o|o|H|o|o|H|Oo|H|O|+H|O|O|O|lOo|+H|O|O|lO|H|O|O|O|O|O
o|o|o|lo|o|o|d|o|o|o|o|o|o|o|o|o|o|o|lo|o|o|o|o|o|o|o|o|o|o|jo|o|o|o|lo|o|o|o|lo|o|o|o|o|o|o
—|o|lo|ld|Hd|o|lo|d|o|H|o|+d|o|H|o|lo|o|o|lo|o|o|H|+H|o|lo|—H|o|o|lo|-|o|lo|H|lo|d|H|Oo|lOo|H|H|O|lO|O|O
cleclclc|c|lec|lelclc|lc|lec|lec|c|c|c|ec|leclc|lc|c|c|lec|c|c|c|lc|lc|c|<c|<|BIEIE|2|I2|I2|2|2|2|2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCccuuuuuuuuuu

C| o/ ©c|©C|oCc|(@C|C|C|®C|OC|OC|©C|C|OC|®©C|C|OC|C|®C|OC|C|OC|GC|OC|®©|OC|OC|OC|O|O Q0 bo| bo| &0
o|lo|lo|o|o|o|lo|o|o|lo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|lo|o|o|lo|lo|lo|olo|lo|oliolcelcelcle
| W G B Y D G I Y D U s GE DO S D G B Y D G D GRS D S D G D SR D S DN U D SR DGR D VS D G D GEE DR Y D SR DGR O VSR D U D G O YR I W
glao|lgalalalala|lalala|ala|alalala|la|lalalalalalalalalo|alglala|®|®C|®| @ ® O @O O 0T D) TIT
alalalajlalalalajalalalalalalalalalalalajalalalalalalalalalalo|o|lo|olo|lolo|lolo|lolSISISIS
©c|(®©c|(@OC|@C|@O©C|OC|@O©C|(@OC|@C|@OC|@OC|OC|OC|(OC|(@OCG|@OC|@OC©|OC|OC|(@C|(@T|@OC|@OC|@O©| O©|M@M|MO@|@|@O©| O©| O[O O O O] O] O] W[V V| —|—=]|—=|—

142



R [ [ iy iy e —
LI I I Y N AN N N N A AN A B B |
O|ld|d|O0O|"1/O|"1/O|HA|dA|[dA|dA|dA A |dA A |OO|O|OIO|H|HA|HA|dA|H|dA/[O|O(O|O|O|O|O(O|O|O|H|O|O|H|[H|O
o|lo|o|o|o|d|o|lo|o|o|o|o|o|o|o|o|o|o|o|lo|o|o|o|o|o|o|o|o|lo|o|o|lo|jo|o|o|o|o|lo|jo|o|o|o|o|o
o|lo|o|o|o|o|o|lo|o|o|o|o|o|o|o|o|o|lo|o|lo|o|o|o|o|o|o|o|o|o|o|o|o|jo|o|o|d|d|d|d|d|d |||
oO|0oO|l0O|l0O|0O|0O|O|O|O|lO|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OjO|O|O|O|O
olo|d|H|+H|o|lo|-w|o|+|H|O|d|H|O|lO|H|H|O|O|+|O|O|O|O|O|O|O|O|+H|O|O|O|+H|O|Oo|O|O|O|O|O|O|O|O
olo|d|o|o|o|o|lo|o|o|o|o|o|o|o|o|o|lo|o|lo|o|o|o|o|o|o|o|-|o|o|o|lo|jo|o|o|o|o|lo|jo|o|o|o|o|o
—A|O0OO|d|d|O|O|H|O|O|IO|d|O|OH"|O0O|d[HA|A|A|dA|O(O|d|dA|O|d(/[O|O(O|H|O|H|OO|O|O|O|O|OCO|O|O|O
olo|d|o|lo|d|d|d|d|H|Oo|d|d|d|O|d|o|d|o|lo|Oo|d|Oo|d|d|d|O|O|d|d|dH|d|d|O|d|-|O|d|Oo|Oo|o|o|O|O
O|ld"H|/O|0O0O|d|d|O|O|O|O|O|O|H|O|dH|O|O|dH|O|O|O|O|O|O|O|O|O|O|O|dH|O|O|H|O|O|O|O|OjO|O|O|O|O
oO|0oOl0oO|l0Oj0O|0Oj0O|O|O|lO|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OjO|O|O|O|O
Ald || |o|o|d|d|Oo|d|d|d|o|lo|d|d|d|d|d|ld|d|d|d|d|A|dA|dA|A || |H|O | |O|d | |O|lO|O|O||O|=|O
—d|o|d|d|o|lo|d|d|o|lo|lo|d|o|lo|d|d|ld|d|d|ld|d|d|d|d|dA|d | |dA | |O|H|O|=|O|O|d|O|lO|O|-||Oo|O|O
OoO|0OlO|d|dH|OO|O|O|H|O|O|H|O|O|O|O|H|O|O|O|O|O|d|HO|H|OO|H|O|dH|O|dH|dH(/O|O|O|O|O|OCO|O|O|O
O|ld|O|O|O|O|O|O|dH|O|O|O|O|O|H|O|O|H|O|O|O|O|H|O|O|O|O|O|O|O|O|O|H|O|O|O|O|O|OjO|O|O|O|O
olo|lo|d|d|o|o|lo|lo|-|o|d|H|o|lo|o|o|o|o|+-|o|o|lo|d|H|o|+|Oo|lo|w|Oo|+-|Oo|H|-|Oo|O|lO|Oo|Oo|Oo|Oo|O|O
Qo
=
oS
c o|lo|loc|oc|o|loc|oc|o|loc|o|o|lo|o|lo|loc|o|o|lo|o|o|lo|o|o|o|o|O
c|S5|5|S5|5IS5|5|16|65lcjclc|lc|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c ololo
C|le|3|e|e|s|ele|e|2|3|3|3(2|3|3(3|3|3|3|3|3(3|3|3|2|3|3|3|3|3|2|3|3|3 A R-AR=
o|lo|olololololololgle|e|lelele|gleleleigleleleleigleleleielelelelelelflv|vjvivio|violala
slalalalalalsalalg|c|c|c|c|c|c|c|c|c|c|(c|c|/c|oc|c|c|m|c|oc|/oc|c|/c|o|c|c|o|L|2.22.2.2 Q2
clala|alalalalalalo|lo|lo|lo|lo|lolo|o|lo|lolo|olo|oclo|olo|lolo|lolo|lolo|lololo|l2|2|2|2|2|2|0|0|O®
U|m|mc|mc|mo|®|©|mo|m| 6o to| ab| ab| tb| to| o| Bo| Bo| to| to| to| to| to| to| to| to| to| Gto| G| G| Bo| BO| 0| W| W| G| G| G| G| G| C|T|T|T

143



Al el rl rill Il Al il Al el vl Il Il vl Il Al vl el Al sl Al Al il el Arl sl Al A ns
OO0 0O|H|H|HO|OCO|O|d|O(O|d1|O0O|0O|O|O(O|O|H|(O|H|O |
OO0 |0O|0O|0O|0O|0O|0O|0O|0O|0O|O|0O|I0O|O0O|O|O|O|O|O|O|O|O|O|O|H|O
R R e A R e e e e e N e e e e A R e e R e N N N R e B |
—A OO0 |0O|0O|0O|0O|0O|O|O|0O|O|O|O|O|O|O|O|O|O(O|O|O|OCO|O|O|O
OO0 |0|0O|0O|0O|0O|0O(0O|0O|0O|0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O |
O0O|I0|0|0O|0O|0O|0O|0O|0O|0O|O|O|O|0O|O|O|O|O|O|O|O|H|O|O|O|O|O
O|0O|0O|0O|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|H|O|O|O|O|OCO|O|O |
O0O|I0O|H|0O|I0O|0O|HO(HH/OOO0O|I0O|0O|I0O|0O|0O|O0O|"1/O|OCO(O|H|H|O|
O|0O|0O|0O|0O|0O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O(H|O|O|OC|O|O|O
O|0O|0O|l0O|0O|0O|0O|O|H|O|O|O|O|OCO|O|dH|O|O|H|H|OO|O|O|OCO|O|O|O
OlHd|Hd|dA|O0O|H|O |1 /OO0 |I0O|0O|I0O|H|O|O (1O |O|v | |||
OH|O0O|H|O0O|H|H|"1O(O0O0OOCOO0O|I0O|0O|0O|d|O|O|OCO(OC|O| | |||
O|0O|0O|0O|H|O|O|0O|0O|O|dH|H|O|O(O|O|H|O|O|O|H([O|O|O|OCO|O|O|O
O|0O|0O|0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|H|[O|O|O|OCO|O|O|O
OoO|0O|l0O|0O|0O|0O|0O|0O|0O|O|O|dH|O|O|H|O|dH|O|O|O|O|O|O|O|O|O|O|O

Lc|lc|jc|jc|c|c|c|c L |lc|c <
P I e I I e I B B e I I B e I e R R e R S R S R S S N N N N e e e NS RS NS O
clc|lc|lc|lclec|lc|lclc|lc|lc|lc|m|oc|m|m|oc|oc|m|oc|c|lc|lc|o|m|oc| ¥ ©
siglglgig|glalelg glelg elelglelelg|elelglglelele cls|e
SSSSSSSSSSSSppppppppSSSpppump
eeeeeeeeeeeeppppppppeeepppap
||| o] ||| |T|T|T|m|®|©|@©|@©|(@O(@OC|(OC|[T|T|(T|@O|@OC|@OC©|—=| (@

144



APPENDIX C

ACCURACY SCORES OF LDA

Following table lists accuracies of LDA algorithm with different combination of inputs
which are training data, raw data, features, and consideration of class -1.

Table 26: LDA Success Rates with Input Combinations

2345 hbo mean_stdev_slope_range -1 extracted
2345 hbr mean_stdev_slope_range -1 extracted
2345 hbt mean_stdev_slope_range -1 extracted
2345 oxy mean_stdev_slope_range -1 extracted
2345 hbo_hbr mean_stdev_slope_range -1 extracted
2345 hbo_hbt mean_stdev_slope_range -1 extracted
2345 hbo_oxy mean_stdev_slope_range -1 extracted
2345 hbr_hbt mean_stdev_slope_range -1 extracted
2345 hbr_oxy mean_stdev_slope_range -1 extracted
2345 oxy_hbt mean_stdev_slope_range -1 extracted
2345 hbo_hbr_oxy mean_stdev_slope_range -1 extracted
2345 hbo_hbr_hbt mean_stdev_slope_range -1 extracted
2345 hbr_oxy_hbt mean_stdev_slope_range -1 extracted
2345 hbo_oxy_hbt mean_stdev_slope_range -1 extracted
2345 hbo_hbr_oxy_hbt mean -1 extracted
2345 hbo_hbr_oxy_hbt stdev -1 extracted
2345 hbo_hbr_oxy_hbt slope -1 extracted
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2345 hbo_hbr_oxy_hbt range -1 extracted
2345 hbo_hbr_oxy_hbt mean_stdev -1 extracted
2345 hbo_hbr_oxy_hbt mean_slope -1 extracted
2345 hbo_hbr_oxy_hbt mean_range -1 extracted
2345 hbo_hbr_oxy_hbt stdev_slope -1 extracted
2345 hbo_hbr_oxy_hbt stdev_range -1 extracted
2345 hbo_hbr_oxy_hbt slope_range -1 extracted
2345 hbo_hbr_oxy_hbt mean_stdev_slope -1 extracted
2345 hbo_hbr_oxy_hbt mean_stdev_range -1 extracted
2345 hbo_hbr_oxy_hbt mean_slope_range -1 extracted
2345 hbo_hbr_oxy_hbt stdev_slope_range -1 extracted
2345 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 extracted
2345 hbo_hbr mean_stdev_slope_range -1 extracted
2345 hbo mean_stdev_slope_range -1 not considered
2345 hbr mean_stdev_slope_range -1 not considered
2345 hbt mean_stdev_slope_range -1 not considered
2345 oxy mean_stdev_slope_range -1 not considered
2345 hbo_hbr mean_stdev_slope_range -1 not considered
2345 hbo_hbt mean_stdev_slope_range -1 not considered
2345 hbo_oxy mean_stdev_slope_range -1 not considered
2345 hbr_hbt mean_stdev_slope_range -1 not considered
2345 hbr_oxy mean_stdev_slope_range -1 not considered
2345 oxy_hbt mean_stdev_slope_range -1 not considered
2345 hbo_hbr_oxy mean_stdev_slope_range -1 not considered
2345 hbo_hbr_hbt mean_stdev_slope_range -1 not considered
2345 hbr_oxy_hbt mean_stdev_slope_range -1 not considered
2345 hbo_oxy_hbt mean_stdev_slope_range -1 not considered
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2345 hbo_hbr_oxy_hbt mean -1 not considered
2345 hbo_hbr_oxy_hbt stdev -1 not considered
2345 hbo_hbr_oxy_hbt slope -1 not considered
2345 hbo_hbr_oxy_hbt range -1 not considered
2345 hbo_hbr_oxy_hbt mean_stdev -1 not considered
2345 hbo_hbr_oxy_hbt mean_slope -1 not considered
2345 hbo_hbr_oxy_hbt mean_range -1 not considered
2345 hbo_hbr_oxy_hbt stdev_slope -1 not considered
2345 hbo_hbr_oxy_hbt stdev_range -1 not considered
2345 hbo_hbr_oxy_hbt slope_range -1 not considered
2345 hbo_hbr_oxy_hbt mean_stdev_slope -1 not considered
2345 hbo_hbr_oxy_hbt mean_stdev_range -1 not considered
2345 hbo_hbr_oxy_hbt mean_slope_range -1 not considered
2345 hbo_hbr_oxy_hbt stdev_slope_range -1 not considered
2345 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 not considered
2345 hbo_hbr mean_stdev_slope_range -1 not considered
2345 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
2345 hbo_hbr mean_stdev_slope_range -1 considered
2345 oxy mean_stdev_slope_range -1 considered
2345 hbt mean_stdev_slope_range -1 considered
2678 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
2678 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
2678 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
2 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
6 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
7 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
8 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
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2.2 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
2 3 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
6_1 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
6 2 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
6_3 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
71 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
72 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
73 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
81 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
82 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
8 3 hbo_hbr_oxy_hbt mean_stdev_slope_range -1 considered
5 hbo_hbr mean_stdev_slope_range -1 considered
6 hbo_hbr mean_stdev_slope_range -1 considered
61,72,

8_3 hbo_hbr mean_stdev_slope_range -1 considered
Mixed hbo_hbr mean_stdev_slope_range -1 considered

Table 27: Accuracy of Cross Validation vs Discriminant Rate for LDA — kfold:3

Mixed (~¥60% | hbo_hbr | mean_stdev_ | -1 classis
data) slope_range | considered
5 hbo_hbr | mean_stdev_ | -1 classis
slope_range | considered
6 hbo_hbr | mean_stdev_ | -1 classis
slope_range | considered
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APPENDIX D

ACCURACY SCORES AND INDEXIES OF SVM

Following tables list accuracies of SVM algorithm with different combination of inputs.
Moreover they give SVM Index 1 to 9 which are used obtain mental workload vs Input

graphs in Result chapter (4.4 and 4.6).

Table 28: SVM Index 1
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u
o
N

0.5 0.8
0.6 0.8
0.7 0.8
0.8 0.8
0.9 0.8
1 0.8
2 0.8
3 0.8
4 0.8
5 0.8
0.5 0.9
0.6 0.9
0.7 0.9
0.8 0.9
0.9 0.9
1 0.9
2 0.9
3 0.9
4 0.9
5 0.9
0.5 1
0.6 1
0.7 1
0.8 1
0.9 1
1 1
2 1
3 1
4 1
5 1
0.5 2
0.6 2
0.7 2
0.8 2
0.9 2
1 2
2 2
3 2
4 2
5 2
0.5 3
0.6 3
0.7 3
0.8 3
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Table 29: SVM Index 2
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Table 30: SVM Index 3
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10 0.01
0.0005 0.05
0.001 0.05
0.005 0.05
0.01 0.05
0.05 0.05
0.1 0.05

0.5 0.05

1 0.05

5 0.05

10 0.05
0.0005 0.1
0.001 0.1
0.005 0.1
0.01 0.1
0.05 0.1
0.1 0.1

0.5 0.1

1 0.1

5 0.1

10 0.1
0.0005 0.5
0.001 0.5
0.005 0.5
0.01 0.5
0.05 0.5
0.1 0.5

0.5 0.5

1 0.5

5 0.5

10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1

0.5 1

1 1

5 1

10 1
0.0005 5
0.001 5
0.005 5
0.01 5

153



0.05 5
0.1 5
0.5 5

1 5

5 5

10 5
0.0005 10
0.001 10
0.005 10

0.01 10

0.05 10
0.1 10
0.5 10

1 10
5 10
10 10

Table 31: SVM Index 4
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0.005 0.005
0.01 0.005
0.05 0.005

0.1 0.005

0.5 0.005

1 0.005

5 0.005

10 0.005
0.0005 0.01

0.001 0.01

0.005 0.01
0.01 0.01
0.05 0.01

0.1 0.01

0.5 0.01

1 0.01

5 0.01

10 0.01
0.0005 0.05

0.001 0.05

0.005 0.05
0.01 0.05
0.05 0.05

0.1 0.05

0.5 0.05

1 0.05

5 0.05

10 0.05
0.0005 0.1

0.001 0.1

0.005 0.1
0.01 0.1
0.05 0.1

0.1 0.1

0.5 0.1

1 0.1

5 0.1

10 0.1
0.0005 0.5

0.001 0.5

0.005 0.5
0.01 0.5
0.05 0.5

0.1 0.5
0.5 0.5
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Table 32: SVM Index 5
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5 0.01

10 0.01
0.0005 0.05
0.001 0.05
0.005 0.05
0.01 0.05
0.05 0.05
0.1 0.05
0.5 0.05

1 0.05

5 0.05

10 0.05
0.0005 0.1
0.001 0.1
0.005 0.1
0.01 0.1
0.05 0.1
0.1 0.1
0.5 0.1

1 0.1

5 0.1

10 0.1
0.0005 0.5
0.001 0.5
0.005 0.5
0.01 0.5
0.05 0.5
0.1 0.5
0.5 0.5

1 0.5

5 0.5

10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1
0.5 1

1 1

5 1

10 1
0.0005 5
0.001 5
0.005 5

158



0.01 5
0.05 5
0.1 5
0.5 5

1 5

5 5

10 5
0.0005 10
0.001 10
0.005 10
0.01 10
0.05 10
0.1 10
0.5 10

1 10

5 10

10 10

Table 33: SVM Index 6
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0.001

0.005

0.01

0.05

0.0005

0.001

0.005

0.01

0.05

0.0005

0.001

0.005

0.01

0.05

0.0005

0.001

0.005

0.01

0.05

0.0005

0.001

0.005

0.01

0.05

0.1




0.5 0.5

1 0.5

5 0.5

10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1
0.5 1

1 1

5 1

10 1
0.0005 5
0.001 5
0.005 5
0.01 5
0.05 5
0.1 5
0.5 5

1 5

5 5

10 5
0.0005 10
0.001 10
0.005 10
0.01 10
0.05 10
0.1 10
0.5 10

1 10

5 10

10 10
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Table 34: SVM Index 7
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0.1 0.01
0.5 0.01

1 0.01

5 0.01

10 0.01
0.0005 0.05
0.001 0.05
0.005 0.05
0.01 0.05
0.05 0.05
0.1 0.05
0.5 0.05

1 0.05

5 0.05

10 0.05
0.0005 0.1
0.001 0.1
0.005 0.1
0.01 0.1
0.05 0.1
0.1 0.1
0.5 0.1

1 0.1

5 0.1

10 0.1
0.0005 0.5
0.001 0.5
0.005 0.5
0.01 0.5
0.05 0.5
0.1 0.5
0.5 0.5

1 0.5

5 0.5

10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1
0.5 1

1 1

5 1

10 1
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0.0005 5
0.001 5
0.005 5

0.01 5
0.05 5
0.1 5
0.5 5
1 5

5 5

10 5

0.0005 10
0.001 10
0.005 10

0.01 10
0.05 10
0.1 10
0.5 10
1 10

5 10

10 10

Table 35: SVM Index 8
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Table 36: SVM Index 9
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10 0.01
0.0005 0.05
0.001 0.05
0.005 0.05
0.01 0.05
0.05 0.05
0.1 0.05

0.5 0.05

1 0.05

5 0.05

10 0.05
0.0005 0.1
0.001 0.1
0.005 0.1
0.01 0.1
0.05 0.1
0.1 0.1

0.5 0.1

1 0.1

5 0.1

10 0.1
0.0005 0.5
0.001 0.5
0.005 0.5
0.01 0.5
0.05 0.5
0.1 0.5

0.5 0.5

1 0.5

5 0.5

10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1

0.5 1

1 1

5 1

10 1
0.0005 5
0.001 5
0.005 5
0.01 5
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0.05 5
0.1 5
0.5 5

1 5

5 5

10 5
0.0005 10
0.001 10
0.005 10

0.01 10

0.05 10
0.1 10
0.5 10

1 10
5 10
10 10

Table 37 Accuracies of Cross Validation vs Test for SVM — kfold:3
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0.01 0.005
0.05 0.005
0.1 0.005
0.5 0.005
1 0.005
5 0.005
10 0.005
0.0005 0.01
0.001 0.01
0.005 0.01
0.01 0.01
0.05 0.01
0.1 0.01
0.5 0.01
1 0.01
5 0.01
10 0.01
0.0005 0.05
0.001 0.05
0.005 0.05
0.01 0.05
0.05 0.05
0.1 0.05
0.5 0.05
1 0.05
5 0.05
10 0.05
0.0005 0.1
0.001 0.1
0.005 0.1
0.01 0.1
0.05 0.1
0.1 0.1
0.5 0.1
1 0.1
5 0.1
10 0.1
0.0005 0.5
0.001 0.5
0.005 0.5
0.01 0.5
0.05 0.5
0.1 0.5
0.5 0.5
1 0.5
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5 0.5
10 0.5
0.0005 1
0.001 1
0.005 1
0.01 1
0.05 1
0.1 1
0.5 1
1 1
5 1
10 1
0.0005 5
0.001 5
0.005 5
0.01 5
0.05 5
0.1 5
0.5 5
1 5
5 5
10 5
0.0005 10
0.001 10
0.005 10
0.01 10
0.05 10
0.1 10
0.5 10
1 10
5 10
10 10

169






APPENDIX E

ACCURACY SCORES OF ANN

Following table lists accuracies of ANN algorithm with different combination of inputs.

Table 38: ANN Success Rates with Input Combinations

0,1,2 70 15 15 25 hbo, hbr

0,1,2 60 20 20 25 hbo, hbr

0,1,2 70 15 15 30 hbo, hbr

0,1,2 60 20 20 30 hbo, hbr

0,1,2 70 15 15 35 hbo, hbr

0,1,2 60 20 20 35 hbo, hbr

0,1,2 70 15 15 40 hbo, hbr

0,1,2 60 20 20 40 hbo, hbr

0,1,2 70 15 15 45 hbo, hbr

0,1,2 60 20 20 45 hbo, hbr

0,1,2 70 15 15 50 hbo, hbr

0,1,2 60 20 20 50 hbo, hbr

0,1,2 70 15 15 55 hbo, hbr

0,1,2 60 20 20 55 hbo, hbr

0,1,2 70 15 15 60 hbo, hbr

0,1,2 60 20 20 60 hbo, hbr

0,1,2 70 15 15 65 hbo, hbr
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0,1,2 60 20 20 65 hbo, hbr
0,1,2 70 15 15 70 hbo, hbr
0,1,2 60 20 20 70 hbo, hbr
0,1,2 70 15 15 75 hbo, hbr
0,1,2 60 20 20 75 hbo, hbr
-1,0,1,2 70 15 15 25 hbo, hbr
-1,0,1,2 60 20 20 25 hbo, hbr
-1,0,1,2 70 15 15 30 hbo, hbr
-1,0,1,2 60 20 20 30 hbo, hbr
-1,0,1,2 70 15 15 35 hbo, hbr
-1,0,1,2 60 20 20 35 hbo, hbr
-1,0,1,2 70 15 15 40 hbo, hbr
-1,0,1,2 60 20 20 40 hbo, hbr
-1,0,1,2 70 15 15 45 hbo, hbr
-1,0,1,2 60 20 20 45 hbo, hbr
-1,0,1,2 70 15 15 50 hbo, hbr
-1,0,1,2 60 20 20 50 hbo, hbr
-1,0,1,2 70 15 15 55 hbo, hbr
-1,0,1,2 60 20 20 55 hbo, hbr
-1,0,1,2 70 15 15 60 hbo, hbr
-1,0,1,2 60 20 20 60 hbo, hbr
-1,0,1,2 70 15 15 65 hbo, hbr
-1,0,1,2 60 20 20 65 hbo, hbr
-1,0,1,2 70 15 15 70 hbo, hbr
-1,0,1,2 60 20 20 70 hbo, hbr
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-1,0,1,2 70 15 15 75 hbo, hbr
-1,0,1,2 60 20 20 75 hbo, hbr
0,1,2 70 15 15 12 oxy
0,1,2 70 15 15 18 oxy
0,1,2 70 15 15 24 oxy
0,1,2 70 15 15 30 oxy
0,1,2 70 15 15 36 oxy
-1,0,1,2 70 15 15 18 oxy
-1,0,1,2 70 15 15 24 oxy
-1,0,1,2 70 15 15 30 oxy
-1,0,1,2 70 15 15 36 oxy
0,1,2 70 15 15 12 hbt
0,1,2 70 15 15 18 hbt
0,1,2 70 15 15 24 hbt
0,1,2 70 15 15 30 hbt
0,1,2 70 15 15 36 hbt
-1,0,1,2 70 15 15 12 hbt
-1,0,1,2 70 15 15 18 hbt
-1,0,1,2 70 15 15 24 hbt
-1,0,1,2 70 15 15 30 hbt
-1,0,1,2 70 15 15 36 hbt
-1,0,1,2 70 5 25 60 hbo, hbr
-1,0,1,2 60 5 35 60 hbo, hbr
-1,0,1,2 70 5 25 35 hbo, hbr
-1,0,1,2 60 5 35 35 hbo, hbr
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APPENDIX F

ACCURACY SCORES OF RNN

Following table lists accuracies of RNN algorithm with different combination of inputs.

Table 39: RNN Success Rates with Input Combinations — Loss ons: Categorical Crossentropy, Activation:
Softmax

24 724 8
30 724 8
36 724 8
42 724 8
48 724 8
54 724 8
60 724 8
66 724 8
72 724 8
78 724 8
84 724 8
90 724 8
96 724 8
102 724 8
108 724 8
114 724 8
120 724 8
126 724 8
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132 724 8
138 724 8
144 724 8
150 724 8
156 724 8
162 724 8
168 724 8
174 724 8
180 724 8
186 724 8
250 724 8
350 724 8
500 724 8
42 362 16
48 362 16
54 362 16
60 362 16
66 362 16
72 362 16
78 362 16
84 362 16
90 362 16
96 362 16
102 362 16
108 362 16
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116 362 16
124 362 16
130 362 16
136 362 16
142 362 16
148 362 16
154 362 16
160 362 16
166 362 16
172 362 16
178 362 16
184 362 16
250 362 16
350 362 16
500 362 16
1000 362 16
42 181 32
48 181 32
54 181 32
60 181 32
66 181 32
72 181 32
78 181 32
84 181 32
90 181 32
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96 181 32
102 181 32
108 181 32
114 181 32
120 181 32
42 90 64
48 90 64
54 90 64
60 90 64
66 90 64
72 90 64
78 90 64
84 90 64
90 90 64
96 90 64
102 90 64
108 90 64
114 90 64
120 90 64
42 72 80
48 72 80
54 72 80
60 72 80
66 72 80
72 72 80
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78 72 80
84 72 80
90 72 80
96 72 80
102 72 80
108 72 80
114 72 80
120 72 80
42 60 96
48 60 96
54 60 96
60 60 96
66 60 96
72 60 96
78 60 96
84 60 96
90 60 96
96 60 96
102 60 96
108 60 96
114 60 96
120 60 96
42 45 128
48 45 128
54 45 128
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60 45 128
66 45 128
72 45 128
78 45 128
84 45 128
90 45 128
96 45 128
102 45 128
108 45 128
114 45 128
120 45 128
42 30 192
48 30 192
54 30 192
60 30 192
66 30 192
72 30 192
78 30 192
84 30 192
90 30 192
96 30 192
102 30 192
108 30 192
114 30 192
120 30 192
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42 25 224
48 25 224
54 25 224
60 25 224
66 25 224
72 25 224
78 25 224
84 25 224
90 25 224
96 25 224
102 25 224
108 25 224
114 25 224
120 25 224
42 24 240
48 24 240
54 24 240
60 24 240
66 24 240
72 24 240
78 24 240
84 24 240
90 24 240
96 24 240
102 24 240
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108 24 240
114 24 240
120 24 240
42 22 256
48 22 256
54 22 256
60 22 256
66 22 256
72 22 256
78 22 256
84 22 256
90 22 256
9% 22 256
102 22 256
108 22 256
114 22 256
120 22 256
42 1448 4
48 1448 4
54 1448 4
60 1448 4
66 1448 4
72 1448 4
78 1448 4
84 1448 4
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90 1448 4
96 1448 4
102 1448 4
108 1448 4
114 1448 4
120 1448 4
66 1 5794
66 11 512

Table 40: Accuracies of Cross Validation vs Test for RNN — kfold:3

42 724 8 71.081221
48 724 8| 71.65028433
54 724 8| 70.80531133
60 724 8 71.926194
66 724 8| 72.90912233
72 724 8| 72.92636633
78 724 8 72.598724
84 724 8 73.219521
90 724 8| 74.28867067
96 724 8 74.185204
102 724 8| 74.46111433
108 724 8| 74.78875667
114 724 8| 75.35782033
120 724 8| 74.25418167
42 362 16 | 71.78823933
48 362 16 71.322642
54 362 16 | 72.80565633
60 362 16 | 71.66752867
66 362 16 | 72.47801367
72 362 16 | 72.20210367
78 362 16 72.840145
84 362 16 | 73.06432133
90 362 16 | 73.46094167
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96 362 16 73.823073
102 362 16 | 72.70219033
108 362 16 | 73.85756133
116 362 16 74.323159

42 181 32 70.012071

48 181 32| 70.78806667

54 181 32 71.374375

60 181 32| 70.42593533

66 181 32| 71.11570967

72 181 32 72.02966

78 181 32| 72.04690467

84 181 32 72.70219

90 181 32| 72.40903633

96 181 32| 73.61614067
102 181 32 72.943611
108 181 32 72.202104
114 181 32 73.564408
120 181 32 73.478186

42 90 64 | 69.06363167

48 90 64 | 69.44300767

54 90 64 69.615451

60 90 64 | 70.02931533

66 90 64 70.04656

72 90 64 70.788067

78 90 64 70.16727

84 90 64 69.960338

90 90 64 | 71.20193133

96 90 64 | 71.27090867
102 90 64 | 70.75357833
108 90 64 | 71.15019833
114 90 64 | 71.94343867
120 90 64 71.477841
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APPENDIX G

ACCURACY SCORES OF LSTM

Following table lists accuracies of LSTM algorithm with different combination of inputs.

Table 41: LSTM Success Rates with Input Combinations

mean_absolute_error -
24 181 32
mean_absolute_error -
48 181 32
mean_absolute_error -
60 181 32
mean_absolute_error -
70 181 32
mean_absolute_error -
65 181 32
mean_absolute_error -
75 181 32
mean_absolute_error -
100 181 32
mean_absolute_error -
150 181 32
mean_absolute_error -
100 362 16
mean_absolute_error -
100 724 8
1448 4 mean_absolute_error -
100
5794 1 mean_absolute_error -
100
362 18 categorical_crossentropy | softmax
100
724 8 categorical_crossentropy | softmax
100
categorical_crossentropy softmax
42 22 256
categorical_crossentropy softmax
48 22 256
categorical_crossentropy | softmax
54 22 256
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categorical_crossentropy

softmax

60 22 256

categorical_crossentropy | softmax
66 22 256

categorical_crossentropy | softmax
72 22 256

categorical_crossentropy | softmax
78 22 256

categorical_crossentropy | softmax
84 22 256

categorical_crossentropy | softmax
90 22 256

categorical_crossentropy | softmax
96 22 256

categorical_crossentropy | softmax
102 22 256

categorical_crossentropy | softmax
108 22 256

categorical_crossentropy | softmax
114 22 256

categorical_crossentropy | softmax
120 22 256

categorical_crossentropy | softmax
42 45 128

categorical_crossentropy | softmax
48 45 128

categorical_crossentropy | softmax
54 45 128

categorical_crossentropy | softmax
60 45 128

categorical_crossentropy | softmax
66 45 128

categorical_crossentropy | softmax
72 45 128

categorical_crossentropy | softmax
78 45 128

categorical_crossentropy | softmax
84 45 128

categorical_crossentropy | softmax
90 45 128

categorical_crossentropy | softmax
96 45 128

categorical_crossentropy | softmax
102 45 128

categorical_crossentropy | softmax
108 45 128

categorical_crossentropy | softmax
114 45 128

categorical_crossentropy softmax
120 45 128
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categorical_crossentropy

softmax

42 90 64

categorical_crossentropy | softmax
48 90 64

categorical_crossentropy | softmax
54 90 64

categorical_crossentropy | softmax
60 90 64

categorical_crossentropy | softmax
66 90 64

categorical_crossentropy | softmax
72 90 64

categorical_crossentropy | softmax
78 90 64

categorical_crossentropy | softmax
84 90 64

categorical_crossentropy | softmax
90 90 64

categorical_crossentropy | softmax
96 90 64

categorical_crossentropy | softmax
102 90 64

categorical_crossentropy | softmax
108 90 64

categorical_crossentropy | softmax
114 90 64

categorical_crossentropy | softmax
120 90 64

categorical_crossentropy | softmax
42 181 32

categorical_crossentropy | softmax
48 181 32

categorical_crossentropy | softmax
54 181 32

categorical_crossentropy | softmax
60 181 32

categorical_crossentropy | softmax
66 181 32

categorical_crossentropy | softmax
72 181 32

categorical_crossentropy | softmax
78 181 32

categorical_crossentropy | softmax
84 181 32

categorical_crossentropy | softmax
90 181 32

categorical_crossentropy | softmax
96 181 32

categorical_crossentropy softmax
102 181 32
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categorical_crossentropy

softmax

108 181 32

categorical_crossentropy | softmax
114 181 32

categorical_crossentropy | softmax
120 181 32

categorical_crossentropy | softmax
42 362 16

categorical_crossentropy | softmax
48 362 16

categorical_crossentropy | softmax
54 362 16

categorical_crossentropy | softmax
60 362 16

categorical_crossentropy | softmax
66 362 16

categorical_crossentropy | softmax
72 362 16

categorical_crossentropy | softmax
78 362 16

categorical_crossentropy | softmax
84 362 16

categorical_crossentropy | softmax
90 362 16

categorical_crossentropy | softmax
96 362 16

categorical_crossentropy | softmax
102 362 16

categorical_crossentropy | softmax
108 362 16

categorical_crossentropy | softmax
114 362 16

categorical_crossentropy | softmax
42 724 8

categorical_crossentropy | softmax
50 724 8

categorical_crossentropy | softmax
60 724 8

categorical_crossentropy | softmax
70 724 8

categorical_crossentropy | softmax
80 724 8

categorical_crossentropy | softmax
90 724 8

categorical_crossentropy | softmax
100 724 8

categorical_crossentropy | softmax
110 724 8

categorical_crossentropy softmax
42 1448 4
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categorical_crossentropy | softmax
50 1448 4

categorical_crossentropy | softmax
60 1448 4

categorical_crossentropy | softmax
70 1448 4

categorical_crossentropy | softmax
80 1448 4

categorical_crossentropy | softmax
90 1448 4

categorical_crossentropy | softmax
40 2897 2

categorical_crossentropy | softmax
50 2897 2

categorical_crossentropy | softmax
60 2897 2

categorical_crossentropy | softmax
70 2897 2

categorical_crossentropy | softmax
80 2897 2

categorical_crossentropy | softmax
90 2897 2

categorical_crossentropy | softmax
100 2897 2

categorical_crossentropy | softmax
120 2897 2

Table 42: Accuracies of Cross Validation vs Test for LSTM — kfold:3 (Loss Func.: Categorical
Crossentropy, Activation: Softmax)
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102 16 362
42 32 181
48 32 181
54 32 181
60 32 181
66 32 181
72 32 181
78 32 181
84 32 181
90 32 181
96 32 181

102 32 181
42 64 90
48 64 90
54 64 90
60 64 90
66 64 90
72 64 90
78 64 90
84 64 90
90 64 90
96 64 90

102 64 90
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