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ABSTRACT

A DEEP LEARNING APPROACH TO SURFACE RECONSTRUCTION FOR
SURGICAL NAVIGATION DURING LAPAROSCOPIC, ENDOSCOPIC OR
ROBOTIC SURGERY

Zabardast, Amin
M.S., Department of Medical Informatics

Supervisor : Prof. Dr. Unal Erkan Mumcuoglu

August 2019, 102 pages

Minimally invasive surgical procedures utilize technology to provide surgeons with
more functionality as well as a better perspective to help them succeed in their tasks
and reduce operations risks. Surgeons usually rely on screens and cameras during
minimally invasive surgeries such as Laparoscopic, Endoscopic, or Robotic Surg-
eries. Currently, operating rooms use information from different modalities such as
Computer-Aided Tomography and Magnetic Resonance Imaging. However, the in-
formation is not integrated, and the task of extracting and combining features falls
under the surgeon’s expertise. Conventional cameras, although very helpful, are not
capable of transmitting every aspect of the scene including depth perception. Recently
stereo cameras are being introduced to operating rooms. Utilizing stereo endoscopic
equipment alongside algorithms to process the information can enable depth percep-
tion.The process of extracting depth information from stereo cameras, also known as
Stereo Correspondence, is still an active research field in computer science. Under-
standing depth information from the view is a necessary step for reconstruction of
the scene in a 3D environment. Ultimately, this reconstructed environment acts as a
basis to build an Augmented Reality with extra information baked into the scene to
help the surgeon. Artificial Neural Networks (ANNSs), specially Convolutional Neural
Networks (CNNs), have revolutionized the computer vision research in the past few
years. One of the problems that researchers tried to solve using ANNs was Stereo
Correspondence. There are variations of CNNs with excellent accuracy in Stereo
Correspondence problem. This thesis aims to achieve surface reconstruction from in
vitro stereo images of organs using Deep Neural Networks and in silico simulations.
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LAPAROSKOPiK, ENDOSKOPIK VE ROB OTiK CERRAHIDE NAVIGASYON
(YON BULMA) AMACIYLA DERIN OGRENME YAKLASIMIYLA ORGAN
YUZEYI OLUSTURMA

Zabardast, Amin
Yiiksek Lisans, Tip Bilisimi Boliimii

Tez Yoneticisi : Prof. Dr. Unal Erkan Mumcuoglu

Agustos 2019 , 102 sayfa

En-az-girisimsel cerrahi yontemler cerrrahlara uyguladiklar1 operasyonlarda yiiksek
basar1 saglamalarina, olasi riskleri azaltarak, onlara islevsel araglar kazandirma ve
daha iyi bir perpektif saglayan teknolojik imkanlar sunarlar. Cerrahlar en-az-girisimsel
cerrahi operasyonlar sirasinda (Laparoskopik, Endoskopik veya Robotik cerrahi) ge-
nellikle ekrandaki goriintiilere ve kameralara baglh calisirlar. Ameliyathanelerde farkli
goriintiileme kiplerinden gelen bilgi (goriintiiler) kullanilir (Bilgisayarli Tomografi,
Manyetik Resonans gibi). Ancak, bu bilgiler kamera goriintiileriyle biitiinlestirilmez
ve bu bilginin ¢ikartilarak birlestirilmesi ancak cerrahin deneyim ve yetenekleriyle si-
nirli kalir. Klasik kameralar, ¢ok faydali olmakla birlikte, olayin her yoniinii (mesela
derinlik bilgisi) iletmekte yeterli olmazlar. Son yillarda, steryo kameralar ameliyatha-
nelerde kullanima sunulmustur. Steryo endoskopik araglar ve beraberindeki algorit-
malar derinlik algilamasina yardimci olurlar. Derinlik bilgisinin steryo kameralardan
cikarimini saglayan yontemler (‘steryo uyusma’ olarak bilinir) halen bilgisayar bi-
limleri alaninda aktif bir arastirma alanidir. 3 boyutlu ortamin sayisal olusturulmasi
icin gerekli basamak derinlik bilgisidir. Bu bilgi, cerraha yardimci olacak olan ‘ek-
lenmis gergeklik’ ortami olusturmak i¢in temel tegkil eder. Yapay Sinir Aglar1 (YSA)
ve Ozellikle de Evrisimsel Sinir Aglar1 (ESA) son yillarda bilgisayarl gorii alanin-
daki aragtirmalarda ¢18ir acmistir. Arastirmacilarin YSA kullanarak ¢6zmeye calistigi
konularin arasinda ‘steryo uyusma’ da vardir. Steryo uyusma konusunda ESA’nin de-
gisik tiirleri oldukca iyi bagsarim gostermistir. Bu tez ¢alismasi, derin sinir aglar1 ve
bilgisayar benzetimleri kullanarak, hayvan organ dokularindan alinmis steryo goriin-
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tillerinde yiizey geri-catim problemini hedeflemistir.

Anahtar Kelimeler: Evrisimsel Sinir Aglari, Yiizey Geri-Catimi, Steryo Goriintii-

leme, Cerrahi Yonlendirme (Navigasyon), Eklenmis Gergeklik
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CHAPTER 1

INTRODUCTION

Computers have been a part of our daily lives for decades, and they are integrated
into all branches of science and technology. Nowadays, life without computers seems
like an impossible task. Moreover, all the fields and professions rely on computers,
whether directly or indirectly. The same is true about the applications of Computer
Vision (CV) and Artificial Intelligence (AI). This becomes more prominent when we
understand how much of the products we daily use utilize some amount of Al and CV
to function.

Machine Learning (ML) is an important subfield of Al that learns to do a range of
different tasks by experiencing either some representations of the data about the task
or the raw data itself. ML is a powerful tool that has enabled the automation of many
tasks that seemed to be impossible to code decades ago. We rely on the ML algorithm
on a daily basis without realizing it. For example, weather forecast, suggestions we
receive about products we may be interested in, our personalized search result on the
internet, and the spam filter in our emails are all some example os the influence of the
ML.

Deep Learning (DL) algorithms are a specific type of ML algorithms that are de-
signed to solve some intuitive tasks like object speech recognition that is easy for
humans to do but hard to describe using formal language [29]. In the past decade, we
witnessed a huge rise in research interest around this subject. Researchers are trying
to solve many complex problems using DL, and there are many successful examples
of these DL applications. For example, speech recognition, which was considered to
be a difficult problem to solve, is now integrated into our lives via mobile devices.
Also, autonomous drive vehicles have become a reality, and they utilize a lot of deep
learning in their systems.

The medical domain is also being affected by the rise of ML and DL. Expert systems
like IBM Watson are providing the doctors with second opinions on their patients.
DL also has been used to detect early stages of many illnesses like cancer and conse-
quently improved the quality of life for these patients alongside their longevity. There
are many expert systems that even do not rely on processed data and can work with a
patient’s raw data, like Computed Tomography (CT) and Magnetic Resonance (MR)
images.

This study aims to enable Augmented Reality (AR) based surgical navigation systems
by creating a three-dimensional visual representation of the surgical environment us-



ing DL. To achieve this, we should solve the Stereo Correspondence problem and
estimate the depth information.

1.1 Motivation

Depth estimation has been a highly active research field in computer vision for the
past few decades with numerous applications such as, but not limited to, object
tracking and detection [20], robot navigation [63], autonomous navigation and ob-
stacle detection for auto driving cars [38], minimally invasive surgery [79, 55], three-
dimensional surface reconstruction [68] and so on.

Currently, there are four main depth estimation methods:

LiDAR

Time Of Flight (TOF) Cameras

Structured Light (SL) Scanning

Stereo Cameras

LiDAR uses laser technology to estimate depth information. This makes LiDAR an
accurate depth measurement method. Although there are a lot of advances in LiDAR
technology, this method still has considerable limitations. The main issue with us-
ing LiDAR is that its equipment is bulky and expensive, which in turn making it less
practical and less accessible for common use. TOF cameras use an integrated light
source to create pluses which illuminates the scene and by observing the reflected
light, the distance estimation, or depth information, can be calculated. These cameras
are specifically designed for depth estimation, and there is no need for heavy digital
image processing while using them. However, the accuracy of estimation will be-
come much lower when the distance between object and camera increases [88, 41].
The resolution of images provided by TOF camera is low [47, 41], and multiple re-
flections from objects convex corners affects the camera’s functionality. Additionally,
ambient light (like and outdoors areas or a well illuminated operating room) will dis-
rupt TOF camera’s ability to calculate depth information. SL scanning method uses
projections of knows patterns of light, to calculate the depth estimation of a scene. SL
scanning uses structured patterns of light (usually grid, horizontal or vertical stripes)
to illuminated the scene. Then by capturing the scene with two other cameras from
different angles, the three-dimensional scene can be reconstructed. SL cameras have
many applications from entertainment to robotic assembly. However, they also have
some limitations. SL scanning has weak performance in a setting with ambient light
or if the scene has some distance from the projection source. Also, this method has a
low performance in the case of objects with a surface that reflects the light [65].

Many stereo matching algorithms have been developed with the purpose of calcu-
lating high-quality disparity map using only a stereo camera setup. Although the
price of this equipment is low, the computational power required to estimate the
depth information is high, and to this day, disparity calculation remains a resource

2



consuming computation. Moreover, computation complexity increases when using
high-resolution images or videos.

Despite heavy computational requirements, extracting depth information using stereo
cameras is an active branch of computer vision research. The convenience of the
equipment and some other factors such as relying solely on visible light makes ex-
tracting disparity map from stereo cameras an interesting topic for researchers. Many
new algorithms are developed and benchmarked on standardized datasets like Mid-
dlebury [84] and KITTI [27, 57, 58].

1.1.1 Stereo Imaging in Medical Field

Stereo Imaging techniques are being used in the medical field from as early as the
2000s, but research interest in using this type of imaging for medical purposes has
increased in recent years. This is because of advances in computation technology
and increase in the convenience of access. Use of Stereo Imaging can lead to an
improvement in surgical accuracy, increase in patient safety, and reducing operation
time [64]. Some applications of Stereo Imaging in the medical field are laparoscopic
surgery [11], surgical navigation, and robotic-assisted performances [62].

1.1.2 Stereo Matching and Machine Learning

Use of Machine Learning (ML) and Deep Learning (DL) to solve the stereo match-
ing problem is a relatively novel approach. Solving this problem with Convolutional
Neural Networks (CNN) gained attention after an article by Zbontar and Le Cun [98],
published in 2015. Authors of this article created a successful method to calculate the
matching cost of a stereo algorithm using Artificial Neural Network (ANN) and re-
ported that their method was the top performing method in KITTI dataset at August of
2014 [98]. Since 2015, more articles used CNN for disparity matching and currently
(July 2019) many CNN based methods are amongst the top performing methods in
Middlebury and KITTI leader boards some of which are mentioned in Tablel.1.

1.2 Objectives of this Thesis

Medical related environments have the potential to be drastically different than ev-
eryday scenery. This specificity requires specially designed algorithms, tuned to a
specific problem. An example is the use of stereo cameras in laparoscopic surgery.
Extracting depth information from the environment inside of a patient’s abdomen is
challenging in several ways. Firstly, the tissue on organs may have a homogeneous
structure which will make stereo matching difficult. Additionally, a certain level of
robustness is required for scenes with complex illumination or the presence of blood
or smoke in the field of view (FoV). Moreover, occlusions commonly happen by sur-
gical instruments [55] as viewed in Figure 1.1c.
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Tablel.1: CNN based methods among top 15 entries in KITTI 2015 [57, 58] leader
board as of July 2019.

Rank Method D1-all! Runtime
1 M2S_CSPN [17] 1.74 % 0.5s
2 GANet-deep[100] 1.81 % 1.8s
3 AMNet [23] 1.84 % 09s
4 AcfNet 1.89 % 0,48 s
6 RawStereoNet [42] 1.9 % 043s
7 ASNet_s 1.93 % 15s
8 MS_CSPN [17] 1.93 % 05s
9 GANet-15 [100] 1.93 % 0.36s
10 NCA-Net 1.94 % 0.5s
11 APMNet 1.95 % 0.5s
12 ASONet 1.97 % 1.5s
13 PSMNet_R [16] 1.98 % 0.5s
14 ASNet_t 2.0 % 1.5s
15 HD?-Stereo [97] 2.2 % 0.14s

(d

Figure 1.1: FOV examples in Laparoscopic Surgery.

The primary objective of this thesis is to study benefits and challenges of using DL
based algorithms for extracting depth information from Medical/Surgical environ-
ments and attempting to create Deep Neural Networks (DNN) to study this problem.
A secondary objective is to provide an open dataset to use in training ML algorithms
for medical operations. To the best of our knowledge, no one has attempted a similar
study before.

! Percentage of stereo disparity outliers in first frame
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1.3 Outline of this Thesis

The remainder of this thesis is divided into five chapters. In Chapter 2 basics of
Stereo Camera Models and Stereo Correspondence such as Epipolar Geometry, Cam-
era Calibration, and Rectification will be presented. Chapter 3 will cover the basics
of Machine Learning (ML), and some definitions/examples to familiarize the reader
about the topic. In Chapter 4, we analyze the problem domain and its characteristics
that make it difficult to work with images from this domain. We also look at exist-
ing datasets, their advantages, and their problems. Then we explain the hypothesis
and the reason for attempting simulation. The simulation characteristics and param-
eters are also explained in this section. In Chapter 5, we briefly review the concepts
behind Deep Neural Networks and their theory. Afterwards, we explain our method-
ology in solving the Stereo Correspondence problem using deep learning and report
the result of experiments on both synthesized data and real data. Finally, conclusion,
discussion, and future research possibilities are presented in Chapter 6.






CHAPTER 2

STEREO VISION

Computer vision is arguably amongst one of the most studied computer science sub-
jects. In the classic approach to computer vision, a single camera had been used as a
sensor to obtain information from the environment [80]. However, an advancement
to the field happened when multiple cameras were introduced to collect information
from the environment [24]. Most of the research in this area is focused around us-
ing two cameras, which mimics the human and countless other life forms’ visual
system. This approach to computer vision is known as Stereo Vision. This chapter
covers some basic knowledge about this subject. The content of this chapter would
be simple enough so that the reader can understand the basic concepts required in this
thesis.

There are a variety of challenges in stereo vision from camera calibration before im-
age acquisition to the extraction of useful information from acquired images. How-
ever, from a computational complexity point of view, the most challenging issue is
the Stereo Matching Problem. Stereo matching is the core research problem in this
thesis. Here we cover the related work and the previous research surrounding this
subject.

Computer Vision research aims to process the acquired images to create a represen-
tation of the environment and the objects residing in that environment [81]. This
can be achieved with a single view. There are industrial systems that use a single
view’s information to achieve tasks. However, by using multiple views, these appli-
cations experienced improvements in efficiency. This improvement is a direct effect
of three-dimensional reconstruction of the environment, which is not possible in a
single camera case (no depth perception). Most of the research in this area is around
two-camera models.

Two camera models are inspired by the biological model for stereo vision [10]. The
distance between the left and the right eye creates a disparity in corresponding views
of the same scene, which can be translated into depth information. This displacement
in the views of each eye is inversely correlated with the distance of that object from
the eyes (Figure 2.1).
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Figure 2.1: Different Cameras, c¢; and c;, with their representations of the point X as
x1 and x, respectively. The displacement of the representations can be translated to
distance.

2.1 Steps in the stereo vision process

Any stereo vision processing algorithms include a common set of steps. Depending
on the algorithm, some of the steps may not be required, but the order of the steps are
the same regardless of the approach [12]. All of the required steps will be explained
briefly in the following sections (as outlined in Figure 2.2).

Image System ; Depth
Acquisition Geometry Matching Calculation
A

Feature

Extraction

Figure 2.2: Steps Required for Stereo Vision Process. Dashed items are not required
by all algorithms.

2.1.1 Image Acquisition

Several approaches can be used in image acquisition. Either two images will be
captured synchronously, resulting in two representations of a scene at the same time,
or two images will be captured in fixed intervals by a moving camera. Each approach
is suitable for certain applications with different needs.



2.1.2 System Geometry

The system geometry is comprised of all cameras’ intrinsic and extrinsic parameters
alongside some between camera parameters such as baseline. The knowledge about
the system geometry is important during future steps and enables us to create some
restrictions for Stereo Matching problem. This knowledge is also useful for projecting
the depth knowledge into the three-dimensional environment. The system geometry
will be explained with more detail during future sections.

2.1.3 Feature Extraction

This step is necessary for some algorithms that rely on matching features extracted
from images of the scene. The output of this step is directly used in the next step.

2.1.4 The Matching Problem

The matching problem, also known as the stereo correspondence problem, is the most
important step in stereo vision. This problem consists of finding a unique map be-
tween the points or features in two different images (representations) of the same
scene. The essence of this step is a search problem, and from a complexity point of
view, this search problem is the most complex step is the stereo vision. Additionally,
the remaining steps are straight forward after a solution to the stereo correspondence
problem is found. So since the output of this search process is directly affecting the fi-
nal results, we will be having a deeper look at the matching problem in the remainder
of this section.

2.1.5 Depth Calculation

After the matching problem is solved, to calculate the depth values we only need
to do some triangulation. Also, by knowing the systems geometry and the epipolar
restrictions (which will be covered in section 2.3) this calculations will be as easy as
matrix multiplication.

2.1.6 Interpolation

Depending on the algorithm, if the depth map (Figure 2.3) of the previous step is
sparse, interpolation is necessary to complete the depth map. However, this step is
unnecessary if the result of the algorithm is a dense depth map.
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2.2 Stereo Correspondence Problem

As mentioned before, the Stereo Correspondence Problem is the most important prob-
lem of the Stereo Vision. In this problem, we are trying to find that for each three-
dimensional point, which point is its projection on each two-dimensional representa-
tions (images) of the scene. Figure 2.4 shows a depiction of the setup. The essence
of this problem is a search problem, but there is no efficient algorithm for solving this
issue, and it is still an active research subject. Deeper detail of the epipolar geometry
will be explained in section 2.3.

Figure 2.3: Disparity/depth map for a scene. Top: the scene. Bottom left: ground
truth. Bottom right: output from an example algorithm.)

So far, the core problem of stereo vision is a searching problem for corresponding
points on two images. However, a simple search of the whole image is computation-
ally expensive, if not infeasible, and yields a very poor result. We can improve the
result of the search, or the matching process, by defining some restrictions on the
search parameters. A certain amount of restrictions are introduced in the literature,
but the most common restrictions are mentioned below.
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Epipolar Plane « .

Sy .
"~/ Epipolar Line for x

Figure 2.4: Point correspondence geometry. (a) c; and ¢, are representing the cam-
eras. The camera centers, point X and their representations, x; and x; lie on a plane 7.
(b) Image point x; back projects into a ray in the three-dimensional space defined by
the camera center and point x. The line / is the image of this ray on the other camera.
Since the point X should be on this ray, its image point should be on the line / (source:

. Similarity Restriction: This restriction entails that representation of a three-
dimensional point on each image should have the same properties. These prop-
erties depend on the algorithm and can be the pixel intensities, shapes, edges,
corners, etc.

. Uniqueness Restriction: This restriction entails that each representation on
one camera has one and only one matching representation on the other camera.
However, applying this restriction may cause some problems. For example, in
the case of occlusions, not all the three-dimensional points may have represen-
tations on both cameras.

. Disparity Continuity Restriction: This restriction entails that the resulting
disparities from the algorithm are usually smooth with as little as possible dis-
continuities expected.

. Epipolar Restriction: This restriction helps the search process by reducing the
area on the image that is expected to have the matching representation. This is
a very important restriction because this restriction is only related to the system
geometry and not the features of each image. This restriction will be explained
in more detail section 2.3.

Depending on the algorithm, any number of these restrictions can be applied in dif-
ferent orders. Moreover, these restrictions may be named differently by other authors
or may be combined under the same branch, but they are representing the same re-
strictions.
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2.3 Epipolar Geometry

Up to this point, we briefly explained each step and process in stereo vision. The
key assumption we made was that calculating the depth information of the three-
dimensional scene is possible if we have two (or more) two-dimensional representa-
tions (images) of it. In this section we will explain the theory behind this assumption.
This section is not a complete overview of the theory since it needs much more de-
tailed explanations than we can achieve in this work. However, we will try to touch
the key points of the theory and, we will introduce extra reading material for the
readers who want a deeper understanding of the subject.

It is essential to have a clear definition of epipolar geometry. Hartley and Zisser-
man, authors of "Multiview Geometry In Computer Vision" [32], define the epipolar
geometry as follow:

“The epipolar geometry between two views is essentially the geometry of
the intersection of the image plains with the pencil of the plains having
the baseline as axis. The baseline is the line joining the camera centers.”

The image plans, baseline, and the plain, including baseline and the three-dimensional
point X, are visible in Figure 2.5.

The two views mentioned can either be acquired at the same time by using two cam-
eras (a stereo rig) or at a fixed interval using a moving camera. Both views have
a camera matrix associated with them. We name these matrices P; and P, for the
first and second view, respectively. For a point, X in the three-dimensional space, its
representation in each view can be calculated using its camera matrix,

X1:P1X

= PoX 2.1)

x; and x, are defined as corresponding points since they are representing the same
three-dimensional point, X, from different views.

2.3.1 Important Questions

In their book, Hartley and Zisserman [32] address three questions:

1. Given a point x; in one view, how can we constrain the location of the corre-
sponding point x; in the other view?

2. Given a set of corresponding points from both views {x} < xi},i = l..n, can
we calculate the camera matrices P; and P,?

3. Given two corresponding points x; < x, from two views and camera matrices
Py and P,, can we calculate the location of X (the original point) in three-
dimensional space?
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The epipolar geometry answers the first question. A point in one view defines a line,
known as an epipolar line, on the other view which the corresponding line resides. As
we have mentioned before, this restriction of the location of the corresponding point
is one of the most important restrictions in the stereo correspondence problem, and it
reduces the search issue’s complexity. The solution for the second question is useful
for calibration of cameras in a stereo vision setup. However, the camera calibration is
outside the bounds of this research, and throughout the research, we will assume that
the camera and system geometries are known. The solution for the third question is
directly related to the three-dimensional reconstruction of the scene.

2.3.2 Epipolar Restriction

Imagine X is a point in three-dimensional space and its projections in two views
are named x; and x,. As depicted in Figure 2.4a, the three-dimensional point X,
its representations x; and x,, and camera centers c¢; and ¢, are all on a plane called
epipolar plane, denoted by 7 (Figure 2.5). Knowing that this plane exists is paramount
to locating the correspondence point.

Now imagine that we only know the location of x;. We know 3 out of the 5 points
mentioned in the last paragraph. These points are two camera centers ¢y, ¢, and x;.
Using these we can calculate the epipolar plane 7. From the above, we also know that
the correspondence point x; lies on 7. Hence, x; lies on the intersection on second
image view and . This intersection line is called the epipolar line of x;, denoted by
L.

Going back to epipolar restriction, we only need to search alongside the epipolar line
[, to find the corresponding point of the x;.

Epipolar Plane n
RN

1 \ Iy | ; X

. . \ | \ - &/ /

A \
Baseline .. |Baseline

a ' ' b

Figure 2.5: Epipolar Geometry. (a) Any plane 7 containing the baseline is an epipo-
lar plane and its intersections with images are epipolar lines /; and ;. (b) Since the
location of the point X varies, the epipolar planes rotate with the baseline as their axis.
All epipolar lines intercet at the epipoles, denoted by e, and e,. (source: [32]).
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Table2.1: Summary of fundamental matrix properties

Property
Point Correspondence Vxiox, 3F @ x3Fx =0
Epipolar Lines llz_: IfT);
1= 2
. Fe; =0
Epipoles FT 612 ~0

2.4 Algebraic representation of epipolar geometry

In the previous section, we derived that in a pair of images, for any point x; in the first
view there exists an epipolar line /, in the second image and for any point, x; in the
second view there exists an epipolar line /; in the first image. This shows that there is
a map

X — b (2.2)

from a point in one image to a line in the other image. In this section, we will explore
the nature of this mapping.

2.4.1 The fundamental matrix F

Let us imagine we have two images that are acquired by two-cameras with different
centers; then the fundamental matrix F is a 33 homogeneous matrix of rank 2 which
satisfies

xg Fx; =0 (2.3)
for all corresponding points x; < x,.

We briefly review the properties of the fundamental matrix in table 2.1. The reader
can refer to [32] for a derivation of proofs. The Fundamental matrix can be used in
image rectification process, and it may be used to retrieve the camera matrices. Hence
it is a crucial part of any stereo system.

2.4.2 Estimation of fundamental matrix F

To enforce the epipolar restriction mentioned in section 2.3.2, a good estimation of
the fundamental matrix is needed. The fundamental matrix can be calculated from a
pair of images obtained from a very specific camera motion (refer to [32] for more
detail). However, it is also possible to estimate the matrix from a set of corresponding
points from the views.

From the definition of fundamental matrix we know that for any pairs of correspond-
ing points x, < x;, Equation 2.3 is satisfied. By writing x; and x, in homogeneous
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coordinates
XlT = (x1,y1, D
2.4)
Xg = (-x29y2’ 1)

and simplifying the equation above we will have

xiXofi1 + yiXofio + Xofi3 + Xiyafor + yiyafo +yafz + xifsi +yifr+ f13=0 (2.5)

To simplify, we write the Equation 2.5 as the following inner product

(X1X2, Y1X2, X2, X1¥2, Y1Y2, Y2, X1, Y1, 1) f =0 (2.6)

where

=0 fizs fi3s a1 o2, f235 f31, f32. f33) 2.7)

From a set of n matching points, we can obtain a set of linear equations
M 1 (D (D) (D MM (D (D (D) @® (D
X)X YU Xt XY, Yy, Yy a0 v 1
Af = : : : : 2 : : :f=0 (2.8)

W W W W W W ) m
X)Xy Y Xy Xy XYy Yy, Yy x oy 1

If matrix A has a rank of lower than or equal to eight, then a solution exists, and
if the rank is exactly eight then the solution is unique. Some algorithms can be de-
vised to automate this process by only taking two images as input without any extra
information. Some of the common steps [32] involved in this automated process are:

1. Isolating matching points on both images. This can be achieved by feature
matching algorithms such as [52] and [7].

2. Using the matching points to find an initial solution to equations in matrix A.

3. Utilizing an iterative approach with the initial solution as a seed to find a more
accurate solution.

Since the fore-mentioned topic is out of this research’s bounds, the reader can refer
to [32] for a detail explanation of possible approaches to estimating the fundamental
matrix F.

2.5 Image Rectification

In the section 2.4.1, we quickly mentioned that the fundamental matrix F can be used
for image rectification process. The goal of this process is to do an affine transfor-
mation on both images in a way that their epipolar lines become parallel with the
x-direction. These horizontally aligned epipolar lines are also called scan-lines be-
cause each row in both images can be scanned for matching points.
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This affine transformation is equivalent of rotating, and/or translating the cameras, so
they are completely parallel with each other. Both of the image planes will be lying
on a plane named rectified plane. The resulting images have a unique and advanta-
geous property. The epipolar lines are alongside the x-direction and the corresponding
points in two images will be alongside the same horizontal line. Figure 2.6 illustrates
this projection’s transformation. In this scenario, the search space for each corre-
sponding point becomes very limited, which reduces the complexity of the matching
process.

Since there can be an infinite number of rectified planes, there is no unique algorith-
mic solution for the rectification process. [33], [50], [25], and [56] are some of the
proposed algorithms for rectifying a pair of images. However, because the images
resulting in the rectification process are deformed and warped, and this causes the
images to lose detail, the focus is to achieve the rectification with the least amount of
deforming.

2.6 Matching Algorithms

From the previous discussion about the stereo matching problem in the section 2.2,
we know that some restrictions should be imposed on the system’s geometry to find
a solution for the matching problem, and these solutions may require high compu-
tational capacity. A common approach to Matching algorithms is to correspond the
pixels of one image to the pixels of the other image [15].

Matching algorithms can be divided into different categories depending on their at-
tributes. A high level division [15, 12] could be as follows:

1. Local Methods: In these types of methods, the restrictions will be applied to
a limited number of pixels in the target pixel’s vicinity. These methods are not
considered expensive from a computational point of view. However, they result
in a less coherent depth map since their knowledge of the image is very limited
at each step.

2. Global Methods: In these methods, the restrictions are either applied to the
entire image or applied to a meaningful portion of the image such as a scan-
line They yield much better results in comparison to local methods, especially
in some regions that have less detail. The global methods are very expensive,
computationally.

The above definitions may seem a bit arbitrary because all the existing algorithms
occupy a location in between the local-global spectrum. So a binary classification of
them requires some amount of arbitrary definitions. In the following section, We will
briefly describe some of the popular methods of stereo matching in the literature.
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Table2.2: Stereo Matching Methods

Method Type References
Block Matching Local [3]
Block Matching with Adaptive Window Local [40]
Feature Matching Local [94]
Dynamic Programming Global [8, 19, 67]
Intrinsic Curves Global [92, 93]
Graph Cuts Global [13, 45]
Belief Propagation Global [91]

S2

/ \

Figure 2.6: Image rectification setup. x; and x, are images of X. r; and r, are the
locations of x; and x, on the rectified images. Epipolar lines, /; and /,, are converted
to horizontal lines, s; and s,, in the rectified images.

2.6.1 Block Matching

The block matching algorithm tries to estimate the disparity map by comparing a
small patch of the first view with a series of patches with the same size from the sec-
ond view. This approach is classified as a local method. In block matching, the epipo-
lar restriction is very important, and it reduces the search space to a one-dimensional
search (Figure 2.7).

Different metrics are used by the algorithm for matching the patches. The most
popular ones are Zero Normalized Cross-Correlation (ZNCC), Normalized Cross-
Correlation (NCC), Sum of Squared Differences (SSD), Normalized Sum of Squared
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Differences (NSSD), Sum of Absolute Differences (SAD). Normalized Cross-Correlation
Y1, v) = 1)L+ d,v) — I)
Vi) = TP+ d.v) - LY

(2.9)

is the most used in the literature. It is normalized and more sensitive to the number
of changes in intensities. On the other hand, the Sum of Squared Differences (SSD)
and Sum of Absolute Distance (SAD) are efficient and simpler computationally. As-
chwanden and Guggenbuhl [3] have robustly compared all these metrics together.

Left Image ;Right Image:"-.,: Disparity Map

Cost

Minimum
Cost

0 Disparity Displacement

Figure 2.7: Block matching on two rectified images (source: [86]).

2.6.2 Block Matching with Adaptive Window

The size of the small patch around the target pixel in block matching is an important
factor in avoiding mismatches due to featureless areas or patches of similar patterns.
This window should be large enough to have adequate variation in disparities for a
good match, yet small enough so it will not be affected by projective distortions [40].

The window size can be optimized for the best size given the amount of variation is
in the window. This can be achieved by iteratively expanding the size of the window
when its variation is less than a threshold.

2.6.3 Feature Matching

The block matching approach is sensitive to depth discontinuities since the region
around them has pixels from more than one depth value. As mentioned before, It is
also sensitive to featureless regions with homogeneous texture. The feature match-
ing methods work with different low-level image features such as edges, curves, and
corners. A big issue related to feature matching approaches is that they produce a
sparse depth map and due to the need for dense maps in many applications, and im-
provements in efficient block matching algorithms, the interest for these methods are
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declined. Two types of popular feature-based stereo matching algorithms will be ex-
plained here: hierarchical feature matching and segmentation matching.

Hierarchical feature matching algorithms utilize different types of features such as
lines, vertices, edges, and surfaces. Venkateswar and Chellappa [94] have proposed
an algorithm that starts from matching the highest level of features and moves to lower
features. The algorithm initially extracts the features and creates a graph containing
them then match the features from top to bottom.

Another approach is to segment the image into different sections and then try to match
these segmented parts with each other. This approach, unlike the previous approach,
yields a dense depth map. However, this method is sensitive to the quality of the
segmentation algorithm.

2.6.4 Dynamic Programming

Dynamic programming is a computer science approach to solving optimization prob-
lems by dividing them into smaller sub-problems [18]. Using epipolar constraint, we
can determine the cost function as a minimum cost path through the disparity space
image (DSI). Figure 2.9 shows a depiction of DSI. The Optimal path can be obtained
recursively using partial paths.

Ohta and Kanade [67] and Cox et al. [19] defined the DSI by using each view’s scan-
lines as spacial axis, then using the dynamic programming to find the best path from
bottom left cornet or top-right corner.

In addition to optimizing the cost function for each scan-line, some constraints be-
tween the neighboring scan-lines can be used to reduce the ambiguity. Ohta and
Kanade [67] try optimizing a two-dimensional area around the scan-line. They have
integrated the between scan-line optimization into the original optimization process.
Belhumeur [8] approached this issue in two stages. First, optimizing the cost func-
tion for each scan-line then smoothing disparities between the scan-lines. Cox et
al. [19] proposed to reduce the inconsistencies between scan-lines by penalizing the
discontinuities.

Figure 2.8: Disparity map (right) created from image (left). The horizontal artifacts
are the byproduct of optimizing each scan line separately.
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The primary problem of the dynamic programming approach is the possibility that the
local error may propagate alongside a scan-line [15]. The horizontal artifacts created
by this problem are visible in figure 2.8.

A

Right Scan-line

' '
! LeftOcclusion
' '
| €——>

Left Scan-line

Figure 2.9: Disparity Space image. The solid line in the image represents valid
matches between the left and right scan-lines. This model inherently can detect oc-
clusions. (source: [19])

2.6.5 Intrinsic Curves

An alternative approach to finding an optimum map between two scan-lines is pro-
posed by Tomasi and Manduchi [93] using a features vector called an intrinsic curve.
An intrinsic curve is a vector representation of image descriptors. These descriptors
are defined by different operators such as edge and corner operators to a scan-line.

An intrinsic curve C € R" can be defined as

C={pl) [ xeR}

p(x) = (p1(x), pa(X), ..., pa(X)) (2.10)

Since the intrinsic curve consists of vectors, which in turn they consist of feature, this
method is technically a feature-based method. We formulate the search for disparities
in intrinsic curve space as the nearest neighbor problem. Any residual ambiguities,
especially in between the scan-lines, are solved by optimizing a global metric using
dynamic programming. See [92] and [93] for more detail.

2.6.6 Graph Cuts

A primary issue of using dynamic programming methods is that they cannot use
strong continuity constraints on both horizontal and vertical axes. To use both these
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constraints strongly, we can formulate the matching problem as a maximum flow
problem on a graph [18].

We define a directed graph G = (V, E) where V is the set of vertices and E is the set
of edges. The vertex set is

V=V"Ulst} 2.11)

where s is the source and ¢ is the sink and
Ve ={(x,y,d) | x € [0, Xmax], ¥ € [0, Ymax)s d € [0, dmax]} (2.12)

and the edges are defined as

(u,v) e V» x v* | llu—v||=1
E=4{ (5(x0) | x €0, Xmax] (2.13)
((x, Y, dmax)s 1) Iy €10, ymax]

Each node has a cost value, and each edge has a flow capacity associated with them.
The flow capacity is defined as a function of its adjacent nodes. A cut is defined as a
partition of the vertex set V into two subsets, separating the source from the sink. The
capacity of a cut is simply the sum of the edge capacities that make up the cut. The cut
with minimum capacity / maximizes the flow through the graph (Figure 2.10). This
minimum cut is analogous to the best path in the dynamic programming approach but
extended into three-dimensions.

Figure 2.10: A representation of max-flow/min-cut setup in stereo matching problem.
Source and sink are represented by S and T respectively (Source [15]).

Usually, the graph cut method is expected to have greater computational complex-
ity than dynamic programming. Fortunately, many efficient solutions are created for
this approach. Boykov and Kolmogorov [13] have created a Ford-Fulkerson style
augmenting paths algorithm which is much faster than standard approaches. Kol-
mogorov and Zabih [45] proposed a novel graph architecture in which the vertices
are pixel correspondences instead of pixels themselves, and they make it possible to
enforce uniqueness restrictions to handle occlusions.
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2.6.7 Belief Propagation

The stereo matching problem can be modeled using Markov Random Fields (MRF).
MREF is a sort of graphical models using undirected graphs which can have loops in
them. Figure 2.11 illustrates stereo matching problem modeled with MRF.

O

Figure 2.11: Stereo modeled with MRF. The white vertices, denoted by Y =
{y1,...,yn}, are the observed variables (pixel intensity values). The highlighted ver-
tices, denoted by X = {xi,...,x,}, are the hidden variables, which represents the

disparity values. The hidden variable values are more generally referred to as labels.
(Adapted from [91])

The edges of this graph represent a dependency for each vertex. For example, in the
model in Figure 2.11 each hidden vertex, only depends on its four closest neighbors.
This is called a Markov assumption.

The Belief Propagation (BP), like all the global methods mentioned before, optimize
a cost function to solve the stereo matching problem. The cost function can be for-
mulated as

C(X,¥) = > D(xy) + . S(xi,x)) (2.14)

JENG)

where D is the data cost of matching pixels from two images, S is the smoothness cost
of the adjacent hidden vertices that ensures the smoothness of the disparity, and N(i)
is the set of all the neighbors of the hidden vertex i. Observed and hidden variables
are denoted by Y and X respectively.

Belief propagation is a message passing algorithm; it means that a vertex, i, passes
a message to neighboring vertex, j, containing its belief about j’s label after gather-
ing all the messages from its neighbors (Figure 2.12). A detailed explanation of the
algorithm can be found at [91].
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Figure 2.12: Message Passing in Belief Propagation. Vertex x; waits for messages
from A, B, C, D then sends its message to x,. Note that it does not send the message
from x, — x; back to x, (Adapted from [91]).

2.7 Summary

The main goal of stereo vision research is to extract extra information from two-
dimensional representations (images) of a three-dimensional scene. This additional
information is the depth values of objects in the scene. By studying such systems’
geometry, we know that there is an inverse correlation between the disparity of the
objects in two scenes and their distances from the cameras.

There are multiple steps involved in extracting depth information. The main issue
within the approach to extract information from stereo images is the matching prob-
lem. This problem, also known as the stereo correspondence problem, is computa-
tionally expensive and there is no efficient algorithm to solve it. The solution for this
problem effectively determines the end approximation of the depth map.

It is shown that a naive approach to this problem is both inefficient and yields inaccu-
rate results. Hence, the ingenuity is necessary to create algorithms that approximate a
solution. Moreover, the fact that this problem is being researched for decades shows
that this is not an easy problem to solve.

Many algorithms are proposed to solve the problems. Some of the noteworthy ones
are Graph Cut and Belief Propagation, which try to approximate the depth map by
optimizing an energy function.
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CHAPTER 3

MACHINE LEARNING

In the earliest days of Artificial Intelligence (Al), the focus of researchers was on
problems that were very difficult for humans to solve but were very easy for the
machines to do. They involved any problem that can be formulated with a sequence
of formal and mathematical rules. However, as the field grew, researchers realized
that the real challenge of Al is to solve the tasks that are easy for humans to do, but
they are hard to describe or defined in an axiomatic manner, such as detecting various
objects in images or understanding speech.

The main task that stereo vision research is trying to solve, fits this description per-
fectly. Understanding depth from binocular (stereo) vision is something that comes
very easy for a human but, as discussed before, has been very hard to describe and
solve by the researcher formally. This problem is intensified when we realize that
humans combine their spatial awareness of the object in their view (even in case of
occlusions) with the information they receive from their eyes to understand the depth
and create a representation of the world in their mind. These ideas will be discussed
more deeply in future sections.

Engineering a solution for these challenges using logic and formal languages have
been proved very difficult . Researchers struggled to hard-code world’s properties,
even the relatively simple ones, with a set of logical statements and formal languages.
They realized that the solution to this problem is to let the machine extract and ac-
cumulate the knowledge it needs by itself. The ability of the machine in creating
its knowledge-base by extract these patterns from raw data is called Machine Learn-
ing (ML). This solution eliminated the need for humans engineering and hard-coding
every detail into the system.

Some Machine Learning systems are designed in a way so they can learn the world
and its features in a hierarchical concept. In this way, the higher-level concepts will
be built on lower-level concepts. We can create a graph which maps these concepts’
relations relative to each other. Such a graph would contain many layers and it would
be deep. Hence this approach to Al is called Deep Learning (DL) [29].

Deep Learning is classified as a specific Machine Learning (ML) approach. The Vaan
diagram in Figure 3.1 depicts this classification. It is not possible to discuss Deep
Learning without having knowledge of Machine Learning in general. The readers
who have an understanding of Machine Learning can skip this chapter. This chapter

! A famous example is the Cyc project [48].
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includes a general view of Machine Learning and is not meant to have deep discus-
sions. We will point the reader to other sources for a complete explanation if and
when required.

Representation Artificial
Learning Intelligence

Deep Learning

Figure 3.1: Relation of Deep Learning to Machine Learning and Al. Adapted from
[29]

3.1 Representation Learning

A simple ML algorithm can learn to predict the occupancy of a building unit [9],
predict people with a chance of colon cancer [37], and many other applications..

These simple algorithms can achieve tasks by receiving an interpretation, or repre-
sentation, of the data. These representations are pieces of relevant information made
available to the algorithm. For example, simple Machine Learning algorithms can
learn to predict the occupancy of a building unit using representations such as tem-
perature, CO2 levels, and humidity [71]. These data are presented to the algorithm,
and the algorithm does not observe and examine the room direly for occupancy. This
approach, as helpful as it is, does not have any control over how the representation or
how they are extracted.

Choosing the right representation is very important in the success of a machine learn-
ing algorithm. For example, arithmetic operations are easier for human when the
numerical system is in decimal format rather than any other formats such as hexadec-
imal or binary. Many Al tasks can be solved by simple algorithms given that the data
representation is fitting that specific task. However, knowing which representations
are useful is not always easy.

A solution to this problem is to task the machine itself to learn useful representation
from the raw data. This solution is called Representation Learning. This section of
the Machine Learning is complex by itself and, we highly recommend reading the
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review of Representation Learning by Bengio et al. [9] for a more comprehensive
discussion.

A major problem with tasking the computer to extract the information from raw data
is that in reality a set of data is affected by many factors of variation and tasking an
algorithm to extract high-level representations of is not always feasible. For example,
a person’s silhouette depends on the angle of view, a person’s pose, clothing, etc. A
solution to this problem is Deep Learning.

3.2 Deep Learning

Deep Learning is an approach to solve this fundamental problem of extracting mean-
ingful representation from raw data by defining each high-level representation in
terms of lower-level representation (Figure 3.2). This structure can be as deep as
necessary.

Arguably, the most famous example of Deep Learning is feed-forward Deep Neu-
ral Networks (DNN), or Multilayer Perceptron(MLP). Perceptron is a mathematical
function mapping a set of inputs into a single output.

There is a deeper discussion about Deep Neural Networks, their theories, applications,
and types in the methodology chapter. However, to understand the deep learning
well, an understanding of Machine Learning Basics is required. We assume that the
reader is familiar with some concepts of applied mathematics, such as Linear Algebra,
Probability, and Calculus. Additionally, some knowledge of Numerical Computations
will be helpful but not necessary.

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Figure 3.2: Building representations in a hierarchy by deep neural networks. Each
representation will be build from lower representation, extracted from raw data (im-
ages). (source: [29])
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3.3 Defining a Learning Algorithm

In his book titled "Machine Learning" [59], Mitchell has defined a learning algorithm
as:

“A computer program is said to learn from experience E with respect to
some class of tasks 7" and performance measure P, if its performance at
tasks in 7', as measured by P, improves with experience E.”

This is a very general definition. Some explanation is required to make this definition
more understandable for readers who do not have a prior familiarity with Machine
Learning Concepts.

3.3.1 TheTask T

As mentioned before, the goal of machine learning is to attempt to solve tasks that
are easy for humans to do, but difficult to define for a machine using some formal
language and logical structure. Interestingly, Task 7 is not the process of learning.
For example, when an algorithm learns to predict breast cancer, the task is predic-
tion breast cancer, not learning to predict breast cancer. Learning is just a means of
achieving it.

Goodfellow et al. [29] have composed an example set of tasks that can be achieved
by machine learning methods:

1. Classification: These types of tasks require the algorithm to map each input
into one of the k predefined classes

y=fx)
iR > {1,..,k} (3.1

where x is a n dimensional feature vector and y is a category identified by a
number. the output y can also be a vector of probability values which shows the
probability of x belonging to each class.

2. Classification with missing input: Sometimes, due to the nature of some prob-
lems, it is not guaranteed that all input vectors have all the values available. In
this case, instead of learning one function f, the algorithm must learn a set of

functions

f= e o) (3.2)
where each function f; should learn to accept a subset of the features as an
input.

3. Regression: These type of tasks require the algorithm to map each input into a
single numerical value

EFLN
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4. Transcription: These type of tasks require the algorithm to take a relatively
unstructured data and return a discrete textual format. An example of these
algorithms is Optical Character Reconstruction (OCR), which converts a pho-
tograph containing text into a string of characters.

5. Machine Translation: In this kind of tasks, the algorithm is asked to convert a
sequence of characters into another sequence of characters. This is commonly
used in natural language processing.

6. Structured Output: These types of tasks requires the algorithm to map each
input into a multi-part output (like a vector) that contains a relationship between
its different elements. An example of these algorithms is the picture caption-
ing programs that take the picture as input and outputs a coherent sequence of
words that makes a meaningful sentence.

7. Anomaly Detection: These type of tasks require the algorithm to scan a set of
inputs and decides which ones are anomalies.

8. Synthesis and Sampling: These type of tasks ask the algorithm to learn a set
of input values and then be able to synthesize a previously unseen example.

9. Imputation of missing values: These types of tasks require the algorithm to
predict a missing value x; given an input x € R".

10. Denoising: These types of tasks require the algorithm to map a faulty input
X € R" into a pristine input x € R”

f:R"—>R" 3.4

11. Probability Mass Function Estimation: These types of tasks require the al-
gorithm to estimate a Probability Mass Function (PMF)

Pmodel - R"—> R (35)

3.3.2 The Performance Measure P

In order to evaluate the learning process, any Machine Learning method needs a quan-
titative performance measure. Usually, each of the tasks mentioned above has specific
measures tailored to their data structure. For most of the classification methods, one
can use the accuracy of the method.

Correctly Labeled Data
All Data

Accuracy = 3.6)

A general performance measure can be the error rate of any algorithms. The error
rate for classification methods is

Wrongly Labeled Data
All Data

Error Rate = 3.7
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but for regression methods (with continues data) one of many formulation of error
rate, such Sum of Squared Errors

e= ) (u—1) (3.8)

can be used where x is the true value and % is the predicted value.
Confusion Matrix

To come up with better measures, we can use a specific matrix, known as The Con-
fusion Matrix. Figure 3.3 shows the matrix for binary classification. This idea can be
expanded to multi-class cases as well. The confusion matrix is often used to describe
the performance of classification models, and it is a good example of alternative per-
formance measures.

Using the binary matrix (figure 3.3), we can devise four useful performance measures:

1. Accuracy: A measure showing how often the classifier is correct.

TP + TN
Accuracy = ﬁ (39)
ota

2. Precision: A measure which shows how correct is the classifier out of all the
classes.

Precisi P (3.10)
recision = ———— .
CCISIon = 15 FP

3. Recall: A measure showing how correct is the classifier out of all the positive
classes.

Recall = — ¥ G.11)
= TP EN '

4. F-Score: A measure aimed for enabling comparing models by punishing mod-
els with extremely low Precision and High recall.

F-Score = 2 x Recall x Préc'ision (3.12)
Recall + Precision
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Predicted: Predicted:
Yes No
Actual: True Positive False Positive
Yes (TP) (FP)
Actual: False Negative | True Negative
No (FN) (TN)

Figure 3.3: Confusion matrix in binary classification.

Although Accuracy and Error Rate is good enough measures, there are specific cases
in which they are misleading. For example, imagine the case of a classifier that detects
a rare condition that is present in 0.2 percent of the population. The dataset in this
scenario is called an unbalanced dataset.

Let us imagine we have a classification algorithm that correctly identifies every in-
dividual with this condition, but it also has a False Positive rate of 0.2 percent. This
means the algorithm will miss identifying two people without this condition as posi-
tives. In this scenario, the accuracy is 99.8 percent. However, the precision is only 50
percent.

3.3.3 The Experience £

We can categorize the machine learning algorithm by what kind of Experience they
will have during learning [29]. A broad categorization is to divide them into Super-
vised and Unsupervised methods. It is important to know that these terms do not have
a clear definition, and their separating line is blurry.

e Supervised Learning Methods: These methods experience a dataset contain-
ing data points with the addition of their intended labels, also know as ground
truth.

e Unsupervised Learning Methods: These methods experience a dataset con-
taining unlabeled data point, and the goal is to learn useful information about
its distribution.

Unsupervised Methods try to understand the probability density p(x) of a distribution,
or some interesting features of the distribution, by studying data points x. On the
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other hand, Supervised Learning Algorithms try to predict the label y by observing
data points x which is done by estimating p(y | x)

Although many Machine Learning algorithms experience a fixed dataset, either com-
pletely or in small chunks, there are some approaches that have different experiences.
For example, Reinforced Learning is an approach to Machine Learning in which the
method interacts with an environment, This experience would be fluid and dependent
on the interactions.

3.4 Capacity of a Learning Algorithm

It is not easy to define the capacity of a learning algorithm since the learning al-
gorithm itself does not have a solid and formal definition. A crude definition of a
Learning Algorithm’s capacity can be its ability to learn a wide variety of functions.
We use the capacity to understand two important challenges in Machine Learning:
Overfitting and Underfitting. Knowing what is expected from a learning algorithm is
also important. The expectation from such methods is their ability to perform well on
previously unseen data points, also called Generalization.

3.4.1 Training and Testing Errors

We can define and calculate an error measure on the dataset containing training data
and aim to improve our learning algorithm to reduce this error measures, also known
as Training Error. This is simply an optimization problem. The separating factor
between Machine Learning and the Optimization problem is that in machine learning
approaches, the Testing Error should be low as well. Testing error is the expected
error of a previously unseen and new data. The testing data is used to evaluate the
generalization capabilities of the learning algorithm. Two items are important in the
process of learning (generalization):

1. Reduction of the training error

2. Reduction of the gap between training error and testing error

3.4.2 Opverfitting and Underfitting

Overfitting and Underfitting are terms describing the status of a method’s training.

e Underfitting: This happens when the learning method fails to learn the re-
quired task. Here, the model is unable to reduce the training error (Figures 3.4
and 3.5).

e Overfitting: This happens when the capacity of the model is so much higher
than required for the data, and the model starts to memorize the data instead
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of generalizing it. Here, the model is unable to reduce the gap between the
training and testing error (Figures 3.4 and 3.5).

— Model — Model — Model
— True function — True function — True function
s®s Samples s®s Samples e®s Samples

Figure 3.4: Examples of underfitting and overfitting. The data points are sampled
from a function with some gaussian noise added. From left to right: Underfitting,
Adequate Fitting, Overfitting.

' ——  Training Error

- --- Testing Error

\ Adequate Fit

Underfit Overfit

Error Rate
-

Epochs

Figure 3.5: Training Error and Testing Error in different fitting scenarios.

3.5 Supervised Learning Algorithms

In section 3.3.3, we briefly mentioned that A Supervised Learning Algorithm is an
algorithm that experiences a dataset containing data points x, with predefined labels
as ground truth $. The output of the algorithm will be "supervised" so its output y
gets as close to $ without sacrificing generalization. In this section, some of theses
algorithm will be briefly introduced, but there is not enough room for an extensive
explanation of each algorithm. Sources will be introduced for anyone interested in a
deeper study of them.

1. Linear Regression: In linear regression we are trying to devise a model to
predict one continues variable Y, using other continuous variable X and a linear
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model to predict ¥ formulated as

Y =bX+a (3.13)

Here the task is to predict the values of b € R and a € R. We can achieve this
task by using an iterative method and minimize a cost function

1 " .
Jb,a) = 5 TG0 =)’
(3.14)
argmin J(b, a)
b,a

where y € Y This method is called Least Mean Squared (LMS).

The LMS tries to minimize the error between the real value Y and the predicted
value Y by changing variables a and b (Figure 3.6).

X

Figure 3.6: The regression line calculated by Least Mean Squared algorithm. Left:
Regression line for continues variables x and y. Right: depicting errors y — y that the
algorithm tries to minimize.

2. Logistic Regression: In logistic regression, we are trying to devise a model to
predict a variable Y that follows a binomial distribution, using other continuous
variable X. It helps in finding the probability that a new instance belongs to a
certain class. The output of this method is a probability value between 0 and 1.
We can interpret the logistic regression as a special type of linear regression.

By applying the sigmoid function

1
= 3.15
p 1+e” ( )
to the linear regression we will have
= : (3.16)
P=17 e bX-a '

Figure 3.7 shows how modifying linear regression can be used for classification
purposes. For additional study in the subject, refer to [70].
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Figure 3.7: Comparing Linear Regression and Logistic Regression’s performance
with categorical data. According to Y, the data in the picture are in two categories.
Left: Linear Regression. Right: Logistic Regression.

3. Decision Trees: This is a graphical method that can classify data based on cre-
ating a tree structure called a decision tree. This tree partitions the dataset into
distinctive partitions, each falling under a category. Figure 3.8 is an example
of a decision tree. In this approach, the learning process is to figure out which
properties are the most descriptive and minimizing the generalization error.

Many trees can be induced from the same data depending on the approach and
criteria. There are many algorithms inducing decision trees such as ID3 [74],
C4.5 [75], CART [14].

Fast Food
Consumption

< Twice / Week > Twice / Week <3 Hours / Week >3 Hours / Week

- 0 =)

Figure 3.8: An example of a decision tree. This decision tree classfies people to two
classes, fit and unfit, using Age, Fast Food consumption and Exercise.

4. Random Forest: The aim of the random forest approach is to significantly
increase the accuracy of a classifying problem by using an ensemble of decision
trees (Figure 3.9). After generating a random amount of decision trees, each
tree will vote for a class, and the most popular choice will be the resulting
class.

For an in-depth study of Random Forests, refer to the Ph.D. Dissertation by
Louppe [51]
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Figure 3.9: Visual Comparison of Decision Tree and Random Forest Results. Col-
umn descriptions from left to right: Generated Data, Decision Tree Results, Random
Forest Results.

5. Naive Bayes: The Naive Bayes classifier is using the Bayes theorem to predict
membership probability for each class. In this case, Naive Bayes can be thought
of a Maximum A Posteriori (MAP) classifier. The promise is to maximize the
posterior probability of the hypothesis

argmax P(H | E)

argmax % (3.17)

argmax P(H) P(E |H)

where H is the hypothesis and E is the evidence. If we replace the evidence E
with data features x;,i = 1,...,n we will have

argmax P(H) P(xy, Xy, ..., X, | H) (3.18)
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For a more comprehensive study of this approach, check the article by Rish
[77].

. Support Vector Machines (SVM): Many believe SVMs are among the best
of supervised learning algorithms. SVM classifies the data points by finding
a hyperplane that maximizes the margin between the two classes. The vectors
(data points) that are crucial for defining the hyperplane are the support vectors.
What SVM tries to do is to maximize the separation margin between classes
(Figure 3.10).

In the simplest mode, SVM uses a n-dimensional hyperplane to separate the
data points. However, by using a kernel function, the SVM can map some data,
that is not separable linearly, into a higher dimension where they can be sepa-
rated by a hyperplane that translates to a non-linear region in the initial space.
This is called a kernel trick. The Support Vector Machine is an exceedingly
wide study subject. We recommend "Learning with kernels: by Scholkopf and
Smola [85] for extra reading.

Xy

Support Vectors

Margin
Width

%y

Figure 3.10: Visualizing the support vectors and separation plane created by SVM.
The hyper plane of this example is one-dimensional (line) since the space is two-
dimensional.

3.6 Unsupervised Learning Algorithms

A brief introduction to Unsupervised Learning Algorithms was attempted in section
3.3.3. An Unsupervised Learning Algorithm is a method that experiences a dataset
containing data points x to learn either the Probability Mass Function (PMF) of the
data’s distribution or to find useful information about it. In this section, some of
these algorithms will be briefly explained. Since there is not enough space for a
comprehensive explanation, we will direct the reader to sources for more studies.

1. Gaussian Mixture Modelling (GMM): In this approach to unsupervised learn-

ing, the goal is to define the dataset using k Gaussian distributions (Figure 3.11).
The probability for each point is determined with a mixture of Gaussian distri-
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butions

k
p(x) = > mNCx| ) (3.19)
i=1

The number k£ will not be calculated in the algorithm and will be assignes; al-
though, it is possible to find the best variables using a brute force method. This
is a probabilistic approach so the assignment of the data will be soft. The algo-
rithm used for fitting the models into the data is called Expectation Maximiza-
tion (EM). The EM algorithm consists of two steps, an E-step or Expectation
step and M-step or Maximization step.

The E-step is to compute the expectations of variables, and M-step is to com-
pute the maximum likelihood parameters according to these variables. These
two steps will be repeated until convergence.

2. K-means: In this method, the goal is to describe the dataset using k classes
(Figure 3.12). k-means can be views as a specific version of GMM where we
are trying to fit kK Gaussian distributions without taking variance and covariance
into account. Additionally, the class assignments in k-means algorithm is hard,
as opposed to soft assignment in GMM.

-4

-4 -2 0 2 4 6

Figure 3.11: A dataset described by the mixture of two Gaussian models.
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Figure 3.12: A dataset devided into 4 categories using k-means algorithm. The only
important variable for each class is the mean of the class. All the means are shown
with a star.

3.7 Gradient Descent

Anyone who is interested in machine learning, or deep learning, should study opti-
mization algorithms. Optimization is a vast topic on its own, and we cannot even
scratch its surface in this section. However, a quick introduction to Gradient-Based
Optimization in necessary to understand the Machine Learning.

We can crudely define the Mathematical Optimization as a field of mathematics in
which the task is to find the optimum (minimum or maximum) points of a function
f(x). A maximization task for f(x) is the equivalent of a minimization task for — f(x).

3.7.1 Gradient-Based Optimization

Imagine we have a function y = f(x) where x € R and y € R. This function’s

derivative is denoted by f’(x) or d—y and it is the slope of the function f at the point
X

x. In other words, it shows how the function f behaves when we change the x by a
small amount

fx+e) = f(x)+ef (%) (3.20)

This derivation is useful in the minimization task since it shows up how can we change
the x, so the overall value f(x) is improved (reduced) slightly. We know that for a
small amount € the following is true

f(x —esign(f'(x)) < f(x) (3.21)

so we can find a minimum point by moving x with small steps in the opposite direction
from the sign of the derivative. This method is called Gradient Descent.

A minimum point is any point x that is lower than all its neighbors. The points that the
derivative provides no information about the direction of descent, meaning f’(x) = 0
are called critical points.
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A local minimum point is a point that is lower than all its neighbors, but it is not the
lowest point possible for the function. The lowest point of a function is called a global
minimum.

For the functions with multiple inputs

fiR"SR (3.22)

we use the partial derivatives. A partial derivative is denoted with —f and it shows
Xi
the rate of change only for variable x;.

The gradient of f is a vector containing all the partial derivatives of the function,
denoted by V f(x). This vector is pointing to the steepest ascend, and the negative of
this vector points directly to the steepest descent.

Using this knowledge, we can devise that for a small step €, the steepest descent at
xV proposes a new point

2 = xV 4 eVF(x) (3.23)
where x® < x.

This small step € that was mentioned previously is called Learning Rate, and it des-
ignates how fast the algorithm descends to the minimum.

3.7.2 Stochastic Gradient Descent

The algorithm that drives the process of learning in, arguably, all of Deep Learning
approaches is Stochastic Gradient Descent (SGD). This is a specific type of Gradient
Descent algorithm. Using a large enough dataset is paramount for a successful gener-
alization. However, using a large dataset is not always feasible from a computational
or memory capacity point of view.

The cost function of a learning algorithm is often formulated as a sum of individual
error term. For example, the negative conditional log-likelihood can be formulated
like

1 m ; .
JO) = Brypou Lx3.0) = — 3 LG y0,6), (3.24)

i=1
where L is the loss L(x,y,6) = —log p(y| x; 0).

The gradient of J would be

1 & .
vI©) = Z VLD, y?, ) (3.25)
i=1

The cost of computing this gradient for a dataset with millions of data will take ex-
tremely long for each step. The insight of Stochastic Gradient Descent is that the gra-
dient is an expectation [29]. In this way, we can just calculate the gradient for a sub-
sample of the whole population. This sample is called a Minibatch B = {x!, ..., x")}
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Here, we can estimate the gradient as
1 & o
g=— Z VL, v, 6) (3.26)
m =

For a small enough m’, the cost of calculating the gradient is low and following this
modified gradient will lead to a minimum.

3.8 Summary

Artificial Intelligence (Al) is a very wide research area in Computer Science. The
necessity of enabling computers to gather their experiences from raw data rises from
failed attempts to hard-code the complicated environments of the real world as a set of
formal and logical sentences. This approach to Al is called Machine Learning (ML).

Broadly, we can categorize any ML methods into Unsupervised or Supervised Learn-
ing categories. In supervised approaches, we provide the machine with the data and
its correct labels and machine is tasked to learn a general representation of the data
in a way that optimizes a performance measure. In unsupervised approaches, we
allow the machine to experience the data and draw its conclusions about it. These
conclusions are usually in the forms of probability distributions of the data.

The current focus of Artificial Intelligence (Al) research is on problems which are
easy for humans to do but hard to describe using a set of formal definitions. Problems
like speech recognition or object detection are among fore-mentioned problems. The
main task of the stereo vision, which is to understand the depth of each object in the
scene, fits this description perfectly.

Simple machine learning methods are developed to receive the representations of the
data instead of using the raw data. Solving this problem requires processing raw data
(images) and extracting features from them in a hierarchical manner and use these
features to learn. Deep Learning approaches, especially Deep Neural Networks, are
unitized to solve such problems.
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CHAPTER 4

PROBLEM, DATA, AND SIMULATION

As it has been discussed in chapter 3, machine learning solutions are devised as an
alternative solution to hard-coding knowledge into expert systems. In machine learn-
ing approaches, we trust the algorithm to achieve a task by experiencing the data and
evaluate its expertise by some performance measure. This is a very formal definition
of machine learning. We also discussed possible tasks a machine learning algorithm
could undertake, how important it is to choose the right performance measure, and in
what ways an algorithm can experience the data.

In this chapter, we will discuss the problem we are facing and the data required for a
Deep Learning solution. Data plays a vital role in the machine learning process, and
its function is usually overlooked. Not all datasets are equally appealing for machine
learning approaches.

It is also essential to analyze the domain of the data, specified to the problem we are
attempting to solve with deep learning. We will study a real dataset from our problem
domain and analyze the dataset’s properties, its creators’ approach to data gathering,
and it’s advantages or shortcomings.

Afterwards, we will argue why it was necessary to use a simulated dataset. We will
discuss the simulation process, properties of the simulated dataset, and their possible
shortcomings. We will also include examples from the simulated dataset. Addition-
ally, any individual interested in obtaining the dataset will be guided on how they can
download it.
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4.1 Why Is Data Important?

To discuss the importance of the data, we should first be able to define it. Verbally,
data can be defined as "facts and statistics collected together for reference or analy-
sis"!. The origin of this word is Latin, and it is the plural of datum. This creates a
certain ambiguity since in science, especially informatics and data science, the word
dataset is used frequently instead or in place of data. This would be a plural of a
plural, i.e., a set containing data, which is in itself a collection of datum. We overlook
this ambiguity and use dataset because it is an established convention.

As important as dataset is for scientific disciplines and research, there is no formal
scientific definition for the dataset [76]. This is surprising because, despite the lack
of definition, its usage is unproblematic in the scientific community.

Renear et al. [76] define a dataset by its features:

1. Grouping: In an informal definition of the word dataset, the consensus is on
its structure treated collectively as a unit. From this point of view, words like
“set”, collection, containment are synonymous with the dataset.

2. Content: Most definitions imply that the constituents of a dataset are things of
some particular kind — for example, Records, Values, Images, Number, etc.

3. Relatedness: Although the datasets are thought as a group of constituents (data
points), their content is related in a way that is both beyond the definition of
grouping, and the identification of the grouped things as all being of the same
general kind of entity.

4. Purpose: Other than the obvious objective of recording information, datasets
are created with alternative reasons. These alternative reasons might be to prove
a hypothesis, or confirmation of the existing hypothesis, etc.

4.1.1 What Makes A Good Dataset For Deep Learning?

As mentioned before at section 3.3.3, a machine learning algorithm is experiencing a
dataset and learning its features. Logically, the minimum requirement in a machine
learning approach to solving a problem is to have access to a good dataset. But what
makes a dataset good?

The following are some of the features required in an effective dataset:

1. Quantity: This is one of the most, if not the most, important properties that
define a good dataset. How large of a data is necessary for a specific approach
is debatable, but the consensus is on having as much data as possible.

2. Variability: Although a dataset should contain data from a limited domain, it
is still important that the dataset would be a fair representation of its domain’s

! Definition from Oxford Dictionary.
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population. A dataset with enough variation helps the algorithm’s learning pro-
cess and generalization and reduces the chance of over or underfitting.

The fact that the age of big data has made the machine learning much easier shows
the importance of data. Goodfellow et al. [29] mention a rule of thumb on how much
data is necessary for a supervised approach on deep learning. To achieve acceptable
performance, around 5 thousand data point per class is needed, and an algorithm will
exceed human accuracy when there are about 10 million data points available for it to
experience. Working on databases that have less than this amount is an active research
area.

4.2 The Problem

Our research is focused on a specific problem related to Minimally Invasive Surgery
(MIS) and the domain of Surgical Navigation Systems. Minimally Invasive Surgery is
any surgical operations with the goal of minimizing the number of incisions needed
to access the interior of the body (Figure 4.1a). There are many different types of
minimally invasive surgeries. Laparoscopy, Endoscopy, Colonoscopy, Hysteroscopy,
and Robotic Surgeries are among the examples.

It is of little debate that the popularity of Minimally Invasive Surgeries (MIS) is rais-
ing among surgeons [5, 31]. This popularity is directly related to the benefits of
Minimally Invasive Surgery (MIS) such as [5]

e Reducing the length of hospitalization

Faster recovery time

Less chance of infections

Less interior and exterior scarring

Reducing blood loss

However, despite the proven benefits of MIS, a significant amount of operations is
still done as open and regular procedures [5]. Researchers are trying to reduce the
gap between potential patients and advanced surgical procedures, such as MIS, by
enabling the surgeon through the use of technology.

MIS is, by definition, a non-direct approach. Surgeons use many mediums to have ac-
cess or see the interior of the body (Figure 4.1b). Cameras and screens are a prominent
medium in such operations. However, watching through a camera have shortcomings
and inconveniences for the surgeon. Some of these shortcomings are

e A narrow field of view

e No sense of touch
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e Hindered depth perception

The surgeons usually rely on technology to overcome these difficulties. Image-guided
surgery (IGS) and Augmented Reality (AR) have been introduced in literature as
solutions for such shortcomings [5, 4].

(b)

Figure 4.1: Minimally Invasive Surgery (MIS). (a) The surgeons use small incisions
to access the interior cavity. (b) The camera and screens are vital mediums in these
surgical procedures.

Surgical Navigation Systems utilizing AR has been a popular choice in operations like
neurosurgery but using AR in abdomen surgeries such as Laparoscopy or Endoscopy
have been challenging since the target tissue within the abdomen deforms in a non-
rigid manner during the surgery [5].

Any attempt of augmenting information into the camera feed requires a certain aware-
ness about the camera itself and the environment that the camera resides. This in-
formation can be preoperative Computed Tomography (CT) or Magnetic Resonance
(MR) images of the operation target. This is to highlight points of interest in the sur-
geon’s view, such as veins, tumors, etc. Figure 4.2 depicts the information augmented
into the view of surgeon.

Figure 4.2: Augmented Reality in Minimally Invasive Surgery. (Source: [30])

As it was mentioned before, we use Stereo Cameras and Stereo Vision to reconstruct
a three-dimensional representation of the surgical environment. We studied the theo-
retical background in chapter 2. Figure 4.3 shows the road map to achieve AR from

46



preoperative information and real-time images of stereo-endoscope. The main focus
of this study is on solving the stereo correspondence problem (defined in page 10)
and surface reconstruction.

-
Camera Correite;z‘;ence Pre-operative
Calibration P Images
L Problem

Non-Rigid
Surface n-nigl )
Reconstruction > Registration 4’{ Augmentation 1

Problem

A&

Figure 4.3: Path to achieving Augmented Reality in MIS. Highlighted sections are
covered in this research.

4.3 Exploring The Problem’s Domain

Although the stereo vision is being utilized in many applications, not all of their
problem domains are equally challenging. To understand the challenges, we have
examined the real surgical footage that were available at [60, 89, 49, 90, 73, 28, 95,
96]%. A list of possible challenges are as follows:

1. Occlusion by surgical tools: During a surgical procedure, there are usually
multiple tools in between the camera and the scene. These tools occlude por-
tions of the target surface. Additionally, depending on how close they are to
the camera, the occlusion will be on a larger surface. There are examples of
surgical tools occluding the surface in Figure 4.4.

(b)

Figure 4.4: Occlusion of the surface by surgical tools. Captured frames from [60]
dataset.

2. Homogeneous Texture: As mentioned in the section 2.6, we know feature-
less areas of the images causing mismatches in local methods. Although global
methods are addressing this issue much better, it is far from being solved. Fig-
ure 4.5 shows some examples from featureless areas in surgical footage. This
issue is much greater in this domain when compared with other domains such
as Stereo Vision in Autonomous Driving Vehicles.

2 Surgical footage are available at http://hamlyn.doc.ic.ac.uk/vision/
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(@) (b)

Figure 4.5: Featureless tissues present in the view during MIS. Captured frames from
[60] dataset.

3. Reflection: Another important issue to address is the reflection. The reflec-
tions in this domain are not completely specular, and the wet surface diffuses
the reflections to an extent. However, the luminosity of the light source, and
illuminating a direct light on the surface usually creates an area with a high
amount of reflections. The issue with the reflections is that they will not match
on both images. Figure 4.7 illustrates this issue. Not only these large reflec-
tions usually cause algorithms to mismatch the immediate reflection area, but
they also make it harder for any method relying on optimization to find a mini-
mum for their cost function. Figure 4.6 shows some examples of reflections in
this domain.

(b)

Figure 4.6: Reflections from wet organ surface in MIS. Captured frames from [60]
dataset.

(b)

Figure 4.7: Non matching reflections on the surface of the organ from the same frame.
(a) Left view. (b) Right view. Captured frames from [60] dataset.

4. Insufficient Lighting: Lighting plays an important role in the matching proce-
dure. Without adequate lighting, the images of the scene might not have enough
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detail for the matching process. This causes a gradual reduction of luminosity
to darker areas (usually closer to the edges of the image) which in turn causes
the algorithm’s matching error to increase. Figure 4.8 shows some examples.

() (b)

Figure 4.8: Insufficient lighting in MIS. Captured frames from [49] dataset.

5. Smoke present in environment: During MIS, some tools are used to cut and
dissect the tissue. For example, Coagulating Hook is a device that uses electric-
ity to cut tissues. The byproduct of using these tools is smoke. The presence
of smoke in the camera view during the surgery is common. The smoke is
either reducing the visibility over the target surface, causing mismatches by al-
gorithms or completely occluding the surface. Figure 4.9 contains examples of
smoke’s effects.

(b)

Figure 4.9: Smoke present in the surgical environment. Captured frames from [28]
dataset.

6. Blood present in environment: Just like smoke, presence of blood in the
surgery environment is highly likely. The blood on any surface indirectly causes
sharper reflections, which reduces the capability of the algorithm. Additionally,
the blood on the surface will mostly appear as a featureless area, and that is an-
other challenge. Figure 4.10 shows some example of blood in surgical view.
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Figure 4.10: Examples of blood on organ surface in MIS. Captured frames from
[28, 89] datasets.

7. Water present in environment: Another substance that usually appears in the
surgical view is water. It is used to clean the surface that is covered in blood
or other chunks of tissues. Water is not opaque, but it still bends the light and
may cause problems for algorithms. Figure 4.11 shows the use of water during

surgery.

Figure 4.11: Use of water during MIS operation. Captured frame from [28] dataset.

8. Lens Distortion: The narrow field of view during the surgery compels the oper-
ator to use a lens that shows a wider view. This helps the surgeon viewing more
detail, but it also introduces more severe lens distortions. As we know from
section 2.3, almost all the algorithms used epipolar restrictions, and this re-
quires the images to become flat and lay down on the same plane. This process
will warp the image, and more distortions mean the image will be deformed
even more. This potentially causes the algorithm’s accuracy to drop, inversely
proportional to the distance from the center of the image. Figure 4.12 contains
examples of rectified and non-rectified images in this domain.
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\
(a) (b)

Figure 4.12: Example of lens distortion. (a) Original Image . (b) Rectified image
with the distortions visible around the edges of the image . Stereo Images from [55]
dataset.

9. Motion Blur: An additional problem that may affect the process of stereo
matching could be the blurring that happens when objects are moving too fast in
front of the camera, or from the camera movement itself. This has the potential
to reduce the details of the captured image, and less detail reduces the accuracy
of the mapping between the two images. Figure 4.13 shows some images with
blurred features due to the motion.

Figure 4.13: Motion blur visible in surgical footage in MIS. Captured frames from
[60] dataset.

4.4 Existing Datasets

As mentioned before in chapter 3, any machine learning approach to a problem re-
quires a good dataset. This is because the algorithms will experience the dataset and
create its knowledge base. In this chapter, we discussed the importance of the dataset,
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Table4.1: Openly available surgical endoscopic datasets. Adapted from [72]

Surgical Scenario  Organ Data Format Truth Information References
Videos
Phantom Organs Heart 2 Minutes 45 Seconds CT Scan [90, 73]
Porcine Liver,

. Kidney, Stereo Images

In-Virto Heart, 35 pairs CT Scan [55]
Fatty Tissue

. . Stereo Images

In-Vivo Kidney ~ 40, 000 pairs No Truth [96]
Spleen .
- ’ Stereo Images Point Cloud

Phantom Organs Kﬁ?‘l;:g’ 20 pairs From LIDAR [72]

and what makes a good dataset. Here we examine some of the existing datasets which
provide labeled data. Unfortunately, even if there are databases that contain stereo im-
ages from this domain, only a few of them include the truth information [72]. Table
4.1 is a short list of openly available surgical endoscopic datasets. Datasets without
the truth information are not useful in any supervised learning algorithms. We will
discuss one particular dataset in the following section.

4.4.1 TMI Dataset

The creators of this dataset [55], aimed to enable quantitative and comparative val-
idation for state-of-the-art three-dimensional surface reconstruction in laparoscopic
surgery. One of their principal goals is to establish the compatibility of results in
different methods. The dataset contains pairs of stereo images from several porcine
livers, kidneys, hearts, and fatty tissues’.

The ground truth data was generated from CT images of the objects. The dataset con-
tains images with varying distances from the surface (4cm to 7c¢m), different angles
(0°and 30°), with and without the presence of smoke and blood. Figure 4.14 contains
some examples of the dataset’s images.

Two stereo endoscope equipment were used in capturing the images, a commercial
SD stereo endoscope (image resolution of 720 x 576 pixels, baseline: ~ 4mm, optics:
30°) and a prototype HD stereo endoscope (image resolution of 1920 x 1080 pixels,
baseline: ~ 3.5mm, optics: 0°). The cameras are calibrated using a checkerboard
pattern, and all the calibration parameters are included in the dataset. Figure 4.15
shows an example from the data gathering process.

Alongside the ground truth information, the authors also included a validation tool
which makes evaluating and comparing the result of different algorithms reasonably
easy.

3 Dataset is available at http: //opencas.webarchiv.kit.edu/?q=tmidataset
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Unfortunately, a shortcoming of the TMI dataset is its small size. This crucial issue
makes the dataset unusable for machine learning approaches.

(b)

()
Figure 4.14: Examples from TMI dataset [55].

Figure 4.15: Image acquisition process of TMI dataset. In this image, the smoke is
being added to the scene (source: [55]).
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This dataset contains a subset of the issues we listed at 4.3. This includes

e Homogeneous Texture

Reflections

Insufficient Lighting

Smoke Present In Environment

Blood Present In Environment

Lens Distortion

4.5 Why In-Silico Simulation?

In the past few years, some results indicate that the current algorithms might be lim-
ited by the type and amount of labeled training data available to them and not by the
models themselves [26]. Moreover, the use of simulations to drive the training pro-
cess of Deep Learning (by synthesizing the training dataset) has gained attractions in
the past few years. So the question is: Why and when is it valid to use synthesized
data?

To answer the question above, we need to review three points:

1. As mentioned in chapter 3, the stereo matching (depth perception) is a sort of
problem that is intuitive to humans, but it is hard to define in a formal language.

2. We also mentioned in 4.1.1, the amount of data required for successful training
of a deep learning method is in thousands, or tens of thousands, of data points.

3. Capturing the ground truth (depth map) of the stereo images is very inconve-
nient [72]. This is, an even bigger problem since the machine learning ap-
proaches need a vast amount of data points.

Knowing these, although a deep learning approach is fitting the problem, the funda-
mental issue of a "good" training data is remaining. It is sufficient to say that there is
a fundamental lack of a "good" dataset for many problems that can be solved by deep
learning.

The rapid progress of Computer Graphics research alongside the Computer Vision
(CV) research allows the researchers to use synthesized datasets to train and evaluate
their models.

4.5.1 Related Research

As mentioned before, this trend of using synthesized data is gaining popularity in
recent years. In an article titled "The Reasonable Effectiveness of Synthetic Visual
Data", Gaidon et al. [26] state that this trend leads to
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“[...] exciting new research directions [...]”
and

“[...] turning the brute-force approach of manual labeling of ground truth
and costly sessions of data acquisition, into the generic scientific prob-
lem of how to train and test visual/sensorimotor models with synthetic
data so that we can ensure that they can ultimately operate in real-world
conditions.”

Although this research trend is novel, there are some scientific articles around this
subject. They include a wide range from synthesizing data to specific domains [39,
2, 83, 78, 34], to creating a virtual environment that can be used in data generation
for a variety of purposes [61]. We will not analyze each of these individual articles
but highly recommend follow up with them for anyone interested in this new research
trend.

4.5.2 A Hypothesis

We propose an in-silico simulation of the training dataset based on real datasets that
are publicly available. The central hypothesis of the research is to evaluate the ability
of a deep learning solution to stereo correspondence problem, that is trained using an
in-silico simulated dataset, on an in-vitro test dataset. In other words,

1. Whether if it is possible to train a deep learning regression algorithm on simu-
lated data?

2. Whether the algorithm is able to rival other established methods on real data?

The first question is the party answered by the new trend of research we mentioned
in the last session. However, to the best of our knowledge, there are no examples of
such simulations in the Minimally Invasive Surgery (MIS) domain.

4.6 In-Silico Simulation

First, we start with the simulation environment, then move on to simulation parame-
ters and dataset parameters. This dataset is also publicly available.

4.6.1 Simulation Environment

We can separate the simulation process into two stages. The first stage is to create
the 3D environment, including all the polygon meshes®*, locations of light sources,

4 In computer graphics terminology, a mesh is a collection of vertices, edges, and faces that describe the shape
of a three-dimensional object
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and cameras, etc. The second stage is to render the environment using shaders?,
materials®, etc.

Most of the research in this area (some mentioned in 4.5.1), uses a collection of pre-
made three-dimensional models, like cars and building, to populate the environment.
Our approach to the simulation was to populate the environment with our models. We
used Blender’ three-dimensional computer graphics software as both modeling and
rendering tools (Figure 4.16).

Figure 4.16: Blender three-dimensional computer graphics software as the simulation
environment.

Additionally, similar researches usually use a game engine, like Unreal Engine® or
Unity Engine’, as the rendering engine. The advantage of using such software is that
they do not need a huge computational capability. They can render many frames in a
second by using a technique knows as Rasterization. We used a Ray Tracing!'® Render
Engine, named Cycles!!, to render the images of the scene. The advantage of a ray
tracing engine is that it has the potential of creating more realistic images than any
solution relying on Rasterization. But, the downside of using ray tracing is that they
are computationally expensive and will take several seconds to render a single frame.
This decision was due to the importance of realistic reflections in our simulations.

4.6.2 Simulation Parameters

1. Mesh and modeling

5 In computer graphics terminology, a shader is a small program that receives a pixel’s coordinate, and returns
a color value.

6 In computer graphics terminology, the material is a system that defines how the lighting model interacts with
the surface of the objects.

7 Blender is open-source and available for free at https://blender.org/

8 Free for any project with revenue of less than 3.000 USD, quarterly. Available at https://unrealengine.
com/

° Free for any project with revenue or funding of less than 100.000 USD, annually. Available at https:
//unity.com/

10" A Ray Tracing rendering engine simulated the flow of light rays to create an image.

I https://cycles-renderer.org/
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We modeled the three-dimensional mesh of the organ surface in a pseudo-
random fashion. This mesh is extending over an area with a set of the stereo
camera directly observing the mesh (Figure 4.16). The cameras will scan the
mesh, and each frame will be saved.

. Displacements of the models

We know from chapter 2 that the depth is inversely related to the disparity.
We chose the TMI dataset [55] as a visual reference for simulation. To calcu-
late the minimum and maximum amount of mesh displacement in the direction
of depth, we need to know what is them minimum and maximum amount of
disparity in the TMI dataset’s images. However, this dataset does not provide
the ground truth information in the form of disparity maps. Since we will be
simulating rectified images, this geometry dictates that the minimum dispar-
ity would be 0. To calculate the maximum disparity, we used a method called
Semi-Global Matching [36] to calculate the disparities for each image in TMI
dataset. Figure 4.17 illustrates a single example. By using the same proce-
dure on all images and creating the histogram (Figure 4.19) we decided that the
maximum disparity is around 50 pixels.
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Figure 4.17: Disparity, calculated by Semi-Global Matching [36], and its histogram.
(a) The image from TMI dataset. (b) The resulting disparity map colored for visual
appeal. Disparities increase from colder colors to warmer colors. (¢) The histogram
of disparities. There are 4 main distributions within the histogram. The most warm
and the most cool parts are outside the circular area, and the distribution around 52
(yellow areas in image) are also outside the circular area. The majority distribution is
around 30 (light blue colors). (d) The distribution of disparities without the most and
the least values.
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Additionally, training rectified images will reduce the complexity of the dataset
since we do not need to account for different possible geometrical configura-
tions. In other words, since all the different stereo endoscope configurations
(camera and system geometry) can be reduced to a rectified geometry, we only
focus on the rectified model.

3. Simulating tissues with textures and materials

For our mesh to be realistic, we need to mimic the looks of the tissues using
textures. We have created several types of tissue textures using a handful of
original textures that all are gather/purchased from online resources.

(© (d)

Figure 4.18: An example texture used in the study. (a) The color map. (b) The normal
map. The purpose of the normal map, also know as a bump map, is to fake the bumps
on a surface to make it more believable without deforming the original mesh. (¢) The
Ambient Occlusion (AO) map. This map is to create soft shadows. (d) The gloss
map. This map is to define the roughness of the surface.

Additionally, the textures contain different types of maps designed to make the
mesh more realistic. Figure 4.18 contains an example. It is noteworthy that the
textures themselves cannot mimic realistic light disbursal, and they need to be
accompanied by material systems to become visually realistic. We argue that
simulating a vast set of organ textures are not necessary. We assigned all the
organs’ textures into several categories. Although expanding this library to be
more realistic can be useful, we evaluated our set to be adequate.
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Figure 4.19: Histogram for all of the TMI dataset disparities. (a) The complete his-
togram. (b) Two central distributions inside the histogram.

4. Simulating lighting

We know from section 4.3 that the reflections from the organs’ surface are
an issue for conventional matching algorithms. Hence, lighting simulation is
important. Alongside using Ray Tracing Engines for more realistic light sim-
ulation, we also tried to mimic the level of lighting observed in TMI Dataset
[55].

To this aim, we divided the lighting of the environment into three sources. One
source is static and perpetually illuminates the center of the scene, and the two
additional lightings are dynamically angled. Our dataset has three levels of
lighting: low, medium, and high. All of the types have the static light source,
but the medium and high levels each have additional dynamic sources added to
the scene.

5. Simulating smoke

Another important variable is the smoke simulation. We have already discussed
the presence of smoke in the scene. Although defogging is possible as a pre-
processing step [54], we have decided that the smoke should be simulated to
make it a controllable variable. This decision is because of the varying amount
of smoke that can be in the scene at any moment, sometimes covering the sur-
face completely (Figure 4.20).

Initially, the volumetric smoke simulation was attempted in the scene, but the
simulation of smoke proved to be extremely expensive. To overcome this, we
simulated the smoke separately then augmented the smoke into the surgical
view.
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(b)

Figure 4.20: Smoke examples from TMI dataset [55].

We tried to adjust the characteristics of the smoke, so the simulation is close to
TMI dataset [55]. As shown in figure 4.20, the smoke in the surgical scene is
a consistent stream that disperses into a fog like a plume similar to the smoke
rising from a cigarette. We used the smoke simulator of the Blender itself with
variables as follow:

(a) Density: 10~
(b) Vorticity: 1/4
(c) Temperature Difference: 1072

Additionally, a turbulence field was added so the smoke would disperse into the
environment in a pseudo-random manner.

. Simulating blood

We decided to skip the simulation of blood for two reasons. First, this deci-
sion was made because the essential problem with the blood is that its surface
resembles of the featureless regions, and those regions are included in simula-
tions. Second, we skipped the simulation in favor of time. It is sufficient to say
that the simulation of the featureless sections of the surface will compensate for
blood.

. Output image properties

The output images of the simulations would be with the spatial resolution of
512 x 512 pixels. This is by design since the images with the spatial resolution
that is a power of two are favorable when they are to be fed into a deep neural
network. This idea, alongside the solution on nonsquare input to the neural
network, would be explained further in section 5.2.4.

Additionally, the output images are not compressed. The changes to the images
during the compression process may seem insignificant to the human eye, but
they may affect the accuracy of the model. Hence, the stereo images are all in
uncompressed PNG (Portable Network Graphics) format. Figure 4.21 contains
examples.

60



(d (e) ()

Figure 4.21: Examples from simulations. (a)(b)(c) Simulated surfaces. (d)(e)(f)
Their respective ground truth, color coded for better visual appeal.

Although the disparity output format can be a conventional image, this would
be limiting. The disparity values of the simulation would be in floating point
numbers, but the conventional images consist of integer numbers. This would
result in a substantial loss of accuracy. Because of this, an image format has
been devised to contains pixels with floating point values. This is known as
PFM (Portable Float Map) format, which can be single-channel (gray-scale
images) or three-channel (color-images), but the single-channel type is being
used to store disparity values. Since this format is not conventional, it will not
be displayed on most computers but converting them to conventional formats
(to be human friendly) is easy.

4.6.3 Dataset Parameters

Our dataset contains 9504 stereo images with their respected disparities included,
summing up to around 25 GB of data (about 14 GB in compressed format). There are
three types of partitions on this dataset.

First, the necessary partition is to divide the dataset into a training set and a validation
set. The training set contains 90% of the dataset, where the remaining 10% 1is for
validation purposes. This type of division is commonly used in Machine Learning
and Deep Learning research.
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Table4.2: The partitions that divide the dataset into clusters of similar images.

Without Smoke With Smoke

. Al, A2, A3 D1, D2, D3

Low Amount of Light Ad. A5, A6 D4, D5, D6
. . B1, B2, B3 El, E2,E3
Medium Amount of Light B4, B5, B6 E4. E5. E6
High Amount of Light 8}1’ gg’ gz Eéll Eg’ Eé

The second partition is to divide the dataset into clusters of similar images. We have
three lighting levels with smoke simulation, overall six divisions. These partitioned
are designated with letters from A to E. Table 4.2 shows these divisions.

The third partition is to divide the dataset into clusters of data which are simulated

from the same environment. These partitioned are designated with digits from 1 to 6
(Table 4.2).

Figure 4.21 contains some examples of the simulated data. To see more samples or
gain access to the complete dataset, visit https://misview3d.aminzabardast.
com.

4.7 Summary

Two factors are contributing to the success of any deep learning solutions: The ade-
quacy and architecture of the learning algorithm itself, and the dataset it experiences.
A good dataset is as important as the algorithm itself, and without one, no solution
yields good result. A good dataset is a dataset that is large in quantity and has enough
variation that it can be a fair representation of the population it represents.

Like any other form of surgeries, Minimally Invasive Surgeries (MIS) have its short-
comings. These shortcomings are related to non-direct access during MIS. A pro-
posed solution to this problem is to enable the surgeon through the use of Augmented
Reality (AR). To achieve AR, a three-dimensional knowledge of the surgical scene is
necessary. The problem at hand is to create this virtual representation by extracting
depth information from stereo images.

By exploring the real datasets that are available publicly, it is clear that none of these
datasets are fit to be used in a supervised approach. This is mostly because of the
quantity of the data points, but also lacking the ground truth information. A solution
for these issues is to synthesize the dataset. This approach has gain attention in the
past few years.

We have synthesized a dataset containing nearly 10.000 data points in which the focus
is to create a simulation of the surgical footage. This dataset is designed to have
similarities to the in-vitro data from TMI dataset [55].
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CHAPTER 5

A DEEP LEARNING SOLUTION, AND RESULTS

Deep Learning was briefly defined in chapter 3 as an approach to Representation
Learning in which we create complex representations of the data using simpler repre-
sentations in a hierarchical manner [29]. This hierarchy can be viewed as a deep and
complex graph, hence Deep Learning.

One of the typical Deep Learning Algorithms is Multilayered Perceptron (MLP), also
known as Deep Neural Networks. In this chapter, we will start by briefly defining the
Deep Feed-Forward Networks, discuss their structure, and how can they learn from
experiencing the data. Then we review the different types of Deep Neural Networks
like Convolutional Neural Networks (CNN). We will also define a special structure for
Deep Neural Networks known as Auto-Encoders, Encoder-Decoder, or Hour Glass
Structures.

Afterward, we will present our Deep Learning approach to the problem that was de-
scribed in chapter 4. As we already know, the description of the problem fits in the
categories that Deep Learning is a fitting solution. However, in addition to the mul-
tiple different architectures we tried, we will discuss the training process, training
environment, and the hyperparameters and their optimization.

In the end, the evaluation results we obtained by this deep learning approach will be
presented. We will present two types of results. One would be the result of different
structures’ training in the validation dataset, and the other would be the result of using
the networks, that are trained on simulated data, on the in-vitro dataset.

As we mentioned in section 3.3.2, choosing the right metric to evaluate the perfor-
mance of methods is important. Hence, we will also introduce a family of metrics,
suggested by Scharstein et al. [84], that where used for the evaluation of the results
in this research.
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5.1 Deep Feed-Forward Networks

Any Machine Learning algorithm is, in its essence, like a mapping from one space, x,
to another space, y. Here, this map is denoted by the function f.

y=sx (5.1)

Deep neural networks are called "networks" because they have composed form differ-
ent layer connected to each other (output of one layer is the input to the other layer).

Another helpful analogy is to imagine each layer as a separate function f;,i = 1,...,n.
Then, the whole network can be viewed as nested functions
Y& folfu-1(o f1(2)) (5.2)

The learning process will dictate how the output layer (f,) should behave. How-
ever, the inner layers’ behavior is decided by the learning algorithm. These layers
in between the output and input are called the hidden layers. To go from one layer
to another, a set of units (neurons) calculate a weighted sum of their inputs; then a
non-linear function will be applied on the result. Currently, the most favorite non-
linear function is called Rectified Linear Unit (ReLU). Tangent hyperbolic function,
tanh(z), and Sigmoid function, o(x) = 1/1+¢7*, are some other examples of available
non-linearity functions (Figure 5.1).

(a) () (©)

Figure 5.1: Non-linearity (activation) functions commonly used in neural networks.
(a) Rectified Linear Unit (ReLU). (b) Tangent hyperbolic function. (¢) Sigmoid func-
tion.

One very important point is to understand that these functions, f;,i = 1,...,n -1,
have non-linear behavior and without it, the networks would not be able to learn the
features of complex datasets successfully.

5.1.1 Computational Graph

The nested functions described in the previous section are called a computational
graph. A computational graph is not a novel idea, and it dates back to before there
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was any talk of neural networks. To define a computational graph, we need to first
define tow other related terms: computational problem, and computational process. In
his article "Computational graphs and rounding error", Friedrich L. Bauer [6] defines
a computational problem as

“[...] a set of m functions

fixi,x0,...,x0), i=1,2,....m (5.3)
of n real variables xi, x,, ..., x, from which m real quantities are ob-
tained.”

He proceeded to define a computational process as

“[...] a tissue of number of functions ¢, of the form

Eio =@ (5:’,,,1,5[,,_2, . ,&M) (5.4)

where the functions are restricted to some relatively elementary ones,
mostly with two arguments, like addition or multiplication, and where
some of the & are the input data, and some others the output data of a
given computational problem.”

Such a computational process can be defined by a directed graph called computational
graph (Figure 5.2). A Deep Feed-Forward Network is essentially a vast and complex
computational graph. What makes an Artificial Neural Network (ANN) different than
a Computational Graph is the learning through Back Propagation.

Figure 5.2: An example computational graph for a> + 2ab + b*. There can be several
computational graphs for a computational problem.
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5.1.2 Back Propagation

The learning process in an artificial neural network is a simple stochastic gradient
descent which was reviewed in section 3.7.2. As long as each layer of the network
is a smooth function of its inputs and its internal weights [46]; the gradients can be
calculated using a procedure known as Back Propagation. In the Back Propagation,
the chain rule of derivatives is used to calculate the amount of change should be
applied to each weighs so the overall result is improved (the equivalent of reduced
error amount).

Back Propagation is a simple, practical use of the chain rule of derivatives. The
only important knowledge is that the gradient of each layer can be calculated by
working backward from the output to the input (Figure 5.3b). Once the gradients
are calculated, each layer of weights will be updated in the direction of the opposite
direction of the gradient. Then the process repeats until we diverge into a fair enough
optimum point.

Compare outputs with correct
answer to get error derivatives
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Figure 5.3: Feed Forward and Back Propagation on a simple Neural Network (source:
[46]). (a) The feed-forward pass within a network with two hidden layers. Output of
each layer is the weighted sum of its input values, W, that goes through an activation
function, f. (b) The back propagation calculations. At each hidden layer we compute
the error derivative with respect to the output of each unit, which is a weighted sum
of the error derivatives with respect to the total inputs to the units in the layer above.
We then convert the error derivative with respect to the output into the error derivative
with respect to the input by multiplying it by the gradient of f(z).

5.1.3 Convolutional Neural Networks

Convolutional Neural Network is a special type of Neural Networks designed to ac-
cept inputs in the form of tensors'. For example, language input as one-dimensional

' Simply put; Tensors are mathematical objects that are mostly thought of as a generalized matrix. A zero-
dimensional tensor would be a scalar; a one-dimensional tensor is a vector, a two-dimensional tensor is a matrix.
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tensors, images as two-dimensional tensors, etc. But the most important features of
a Convolutional Neural Network are two specialized types of hidden layers. These
layers are convolutional and pooling layer.

Convolution Operator

Convolution operator is an operation on two functions. This is like a weighted sum
on values of the function f, where the weights themselves are generated by another
function g. The function g is generally known as a kernel. The convolution operator
is denoted by *.

s =(FrM) = ) flagit-a) (5.5)

a=—o0

On a continuous form, this sum would be an integral,

() = f f@g(t - ayda (5.6)

Additionally, we often use convolutions over more than one axis at a time. In that
case, if we use an image [ as our input, which is two-dimensional, we probably also
want to use a two-dimensional kernel K

SG, j) =+ K)i, )= ). > 1m,m)K(Gi—m, j - n) (5.7)

Convolutional Layer

A convolutional layer is a special layer that uses a convolution operator in place of
simple matrix multiplications (Figure 5.4). Using this specialized layer can improve
the algorithm in several ways.

One of the most important improvements is that a convolutional neural network is
Invariant to Translations. This is especially useful when the input types are multi-
dimensional, like images.

0111 (OO 0.

olof1]afefo O] - 1]4]374 1]
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olof1]|1]o]o|0].. [1]0]1 1[3]3[1]1
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I K I+K

Figure 5.4: Example of Convolution Operator in a Convolutional Layer.

Pooling Layer

A three-dimensional tensor would be a cube-like structure populated by numbers.
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Convolutional layers are very good for extracting features, but the feature space they
create is not small enough to be meaningful. In other words, the extracted repre-
sentations should be smaller (in dimensions) than the input data. This is because
representations’ dimensionality should naturally be smaller than the raw data. Other-
wise, they are either as complex as the raw data, or many of them are not useful. This
can be viewed as an information reduction.

To achieve this goal, Pooling Layers are introduced. A pooling layer replaces the
output of a convolutional layer at a certain location with a summary statistic of the
nearby outputs (Figure 5.5). For example, the max pooling [102] layer returns the
maximum output within a rectangular vicinity. Other pooling layers can return an
average or a weighted average of the vicinity.

- W A =
N = O O
N = O N
B O 00 W
w
=

Figure 5.5: Max Pooling layer reduces the information in order to extract better fea-
tures.

In a typical Convolutional Neural Network (CNN), every convolutional layer is fol-
lowed by a pooling layer until the feature space is long, and the dimension of the
input is smaller. For example, a 128 x 128 image with color-channels (3) will convert
to a smaller but deeper representation like a 4 X 4 representation with 1024 channels
(feature space size). Figure 5.6 depicts a Convolutional Neural Network with the
aforementioned structure.

W

Figure 5.6: Example of a convolutional neural network structure. The input of net-
work is a color image with spacial dimensions of 128 x 128 (a tensor with size
128 x 128 x 3). The network creates a representation of the image with the size
of 4 x 4 x 1024, then inputs the image to a Fully Connected Neural Network for
classification.
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5.1.4 Auto-Encoders

Auto-Encoders are special neural network structures that are trained to copy their
input to their outputs. These structures have a hidden layer, 4, that describes a code
used to represent the input. These networks can be decomposed into components. An
encoder component

h=f(x) (5.8)

and a decoder component that is used to produce a representation

r=g(h) (5.9)

As mentioned before, Auto-Encoders can copy their input to their output, but a perfect
copy like g (f (x)) = x is not much useful. Figure 5.7 show this general structure. For
this reason, Auto-Encoders are designed in a way that they are unable to exactly copy
the input to the output.

Figure 5.7: General Structure of an Auto-Encoder.

Undercomplete Auto-Encoders

To extract useful information using an Auto-Encoder, we can constraint the encoded
representation, A, to have a smaller dimension than the input, x, and output r (Figure
5.8). Such and Auto-Encoder in which the encoded representation has a smaller di-
mension than the input is called Undercomplete. These structures are also known as
hour-glass structures because of the bottleneck in the middle of the structure (Figure
5.8). This constraint forces the Network to prioritize the feature learning only to keep
the necessary features from the input.

Choosing the right capacity for the encoded dimension is important because if the
capacity is too low, the network will not learn good features and if the capacity is
high, then the network learns to copy its input to the output. Of course, the complexity
of the data is another important factor in the end result.

The encoder and the decoder parts of the structures can be constructed using convo-
lutional layers, which makes them useful for computer vision purposes.
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Figure 5.8: An undercomplete Autoencoder. The smaller dimensionality of the en-
coded representation give an hourglass structure to the whole network.

The researchers have found very useful applications for auto-encoders. Noh et al.
[66] have used an Auto-Encoder with convolutional and pooling layers to achieve
semantic segmentation’. Other researchers have looked into the applications of auto-
encoders in denoising [101] and dimensionality reduction [35]. There is also some
research around creating super-resolution images [43, 21] using auto-encoders.

There is some related research about using deep neural networks, specially auto-
encoders to solve the stereo correspondence problem. Zbontar and LeCun [99] used
deep neural networks to calculate the matching cost function for local stereo match-
ing algorithms. This methods still need to be accompanied by a stereo matching
algorithm. A similar approach has been attempted by Luo et al. [53]. Pang et al.
[69] have attempted to find an end-to-end solution to the stereo correspondence prob-
lem using Auto-Encoders. A similar approach has also been attempted by Chang and
Chen [16].

Finally, all of the aforementioned related research’s datasets are unrelated to the Mini-
mally Invasive Surgeries (MIS) or Medical Fields. Most of the research is around Au-
tonomous Driving Vehicles. We assume this is because of the good datasets available
for this domain. Additionally, Autonomous Driving Vehicles research has gathered
attention in recent years.

2 In computer vision, image segmentation is the process of partitioning a digital image into multiple segments.
The goal of segmentation is to simplify and change the representation of an image into something more meaningful
and easier to analyze [87].
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5.2 The Solutions and Training Process

We also used Auto-Encoder structures for a solution to the main problem of this
research. This is due to the fact that Auto-Encoders solutions are end-to-end, so
there is no need for additional algorithms for stereo matching. Moreover, the related
research mentioned in the previous section, and the benchmarks mentions in chapter
1 are showing that the performance and accuracy of the Deep Learning approaches
are much better than any other methods.

5.2.1 Type S Network: The Simple Solution

The simplest solution is to use a pure Auto-Encoder with convolutional, deconvolu-
tional, layers. We have not used the pooling layers and replaced them with convolu-
tional layers with strides of 2. This means that the kernel slides two pixels at a time.
This essentially has the same effect as using a pooling layer after convolutional layer.

The network structure is shown in Table 5.1. The first part of the table is the structure
of the Encoder part of the network. The second part of the table is the structure of
the decoder part of the network. To be able to input two images into the network,
we attach the left and right images (both with 512 x 512 spacial dimensions, and 3
color channels) to create the input with the size of 512 X 512 X 6 (Table 5.1). The
representation created by the Encoder has the dimension size of 8 X 8 x 1024.

The purpose of the Type S Network is to learn all the representation by itself, hence
the simple solution.

5.2.2 Type C Network: The Correlational Layer Solution

This solution includes a correlational layer, which provides extra information about
the images, which is their correlations. We adapted this layer from Dosovitskiy et al.
[22]. The authors of this article created a network that takes two constitutive frames
and calculates the optical flow. Although the core problems of calculating the optical
flow and the stereo matching problem are different, both networks rely on two frames
as inputs. Additionally, the idea of the correlational layer has the same use in both
networks.

The correlation is calculated for two patches, one in the vicinity of x; from the left
image, and the other in the vicinity of x, from the right image, using the formula

cxx) = > (1% +0), b (% +0) (5.10)

o[-k k]x[—k,k]

for a square shaped patch with size K := 2k + 1. The difference between the convolu-
tional layer and this correlational layer is that in the convolutional layer, we convolve
with a kernel, but in the correlational layer, we convolve the data with other data.
Also, this layer has no trainable parameters.

3 Kernel Size
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Table5.1: Network Type S structure guide.

Layer K® S* Channels I/O’ I/O Input Layer
conv .1 7 2 6/64 512 x 512 /256 x 256 left+right
conv.2 5 2 64 /128 256 X 256 /128 x 128 conv_1
conv.3 15 2 128 /256 128 x 128 / 64 x 64 conv_2
conv.3 23 1 256 /256 64 x64/64 %64 conv_3 1
conv.4 13 2 256 /512 64 x64/32x%x32 conv_3 2
conv.4 23 1 512 /512 32x32/32x%x32 conv_4 1
conv.513 2 512 /512 32x32/16x%x 16 conv_4 2
conv.523 1 512 /512 16 x16/16x%x 16 conv_5_1
conv.6° 3 2 512/1024 16 x16/8 % 8 conv_5 2

pr_6 3 2 1024/ 1 8x8/16x%x 16 conv_6
deconv.53 2 1024 /512 8x8/16x%x16 conv_6

pr_5 3 2 1025/ 1 16 x 16 /32 x 32 deconv_5+pr_6+conv_5_
deconv. 43 2 1025/ 256 16 X16/32x%x32 deconv_5+pr_6+conv_5_
pr_4 3 2 513/1 32x32/64 x64 deconv_4+pr_5+conv_4_
deconv.33 2 513/128 32x32/64%x64 deconv_4+pr_5+conv_4_
pr_3 3 2 257/ 1 64 x 64 /128 x 128  deconv_3+pr_4+conv_3_
deconv. 23 2 257/ 64 64 x 64 /128 x 128  deconv_3+pr_4+conv_3_
pr_2 3 2 129/1 128 X 128 / 256 X 256 ~ deconv_2+pr_3+conv_2
deconv_15 2 129/32 128 x 128 / 256 x 256  deconv_2+pr_3+conv_2
pr_1 5 2 65/1 256 X256 /512x 512  deconv_1+pr_2+conv_1

Figure 5.9: The structure of the FlowNet and it’s correlational layer (source: [22])

4 Strides

3 Tnput/Output
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Table5.2: Network Type C structure guide.

Layer K’ S® Channels I/O° I/O Input Layer
conv_a_l 7 2 3/64 512 x 512 /256 x 256 left
conv._.a 2 5 2 64 /128 256 x 256/ 128 x 128 conv_a_l
conv_.a_3 5 2 128 /256 128 X 128 / 64 x 64 conv_a_2
conv.b 1 7 2 3/64 512 x 512 /256 x 256 right
conv.b 2 5 2 64 /128 256 X 256 /128 x 128 conv_b_1
conv.b3 5 2 128 /256 128 x 128 / 64 x 64 conv_b_2
cc - - 256/1681 64 % 64 / 64 X 64 conv_a_2
conv_b_2
conv_redir 1 1 64 /32 64 x64 /64 x 64 conv_a_?2
conv_.3_1 3 1 1713 /256 64 x 64/ 64 x 64 cc + conv_redir
conv.41 3 2 256 /512 64 x64/32x%x32 conv_3 1
conv.4 2 3 1 512 /512 32x32/32%x32 conv_4 1
conv.51 3 2 512 /512 32x32/16x%x 16 conv_4 2
conv.52 3 1 512 /512 16 x16/16x 16 conv_5_1
conv. 6 3 2 512/1024 16x16/8x8 conv_5 2
pr_6 3 2 1024/ 1 8x8/16x%x 16 conv_6
deconv_.5 3 2 1024 /512 8x8/16x%x 16 conv_6
pr_5 3 2 1025/ 1 16 x16/32 x 32 deconv_5+pr_6+conv_5_
deconv_4 3 2 1025/ 256 16 X 16 /32 x 32 deconv_S5+pr_6+conv_5_
pr_4 3 2 513/1 32x32/64 %64 deconv_4+pr_S5+conv_4_
deconv.3 3 2 513/128 32x32/64 x 64 deconv_4+pr_5+conv_4_
pr_3 3 2 257/ 1 64 x 64 /128 x 128  deconv_3+pr_4+conv_3_
deconv 2 3 2 257/ 64 64 x 64 /128 x 128  deconv_3+pr_4+conv_3_
pr_2 3 2 129/ 1 128 x 128 /256 x 256  deconv_2+pr_3+conv_2
deconv_1 5 2 129 /32 128 x 128 /256 X 256 ~ deconv_2+pr_3+conv_2
pr_1 5 2 65/1 256 X 256 /512 x 512  deconv_1+pr_2+conv_1

Table 5.2 contains the structure of the Type C Network. The network’s overall struc-
ture is similar to Figure 5.9. Two wings will process the left and right images sepa-
rately. Then their processed representations will be used to calculate the correlational
layer. The output of the correlational layer and the left image representation will be
concatenated and will go through an Auto-Encode structure.

In contrary to the Type S Network solution, we provide the network with some expert
data (correlations between image representations) to help the process.

7 Kernel Size

8 Strides
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5.2.3 Type CS Network: The Ensemble Solution

In Section 3.4, we discussed that there is a positive correlation between the depth of
a Deep Neural Network and its learning capacity. To create a Deeper Network with
higher learning capacity, we have created the Type CS Network as and an ensemble
of the two C and S networks, in the same order. The output of the C network, which
is a disparity map (with the size of 512 x 512 x 1), will be used to warp the right
image, r, into a pseudo left image, [. Afterward, the pseudo left image alongside the
disparity map, left, and the right image will be concatenated and used as initial input
to the Type S network. In this case, the input of the S network will be in the shape of
512 x 512 x 10. The rest of the networks are the same as the structures in the Tables
5.1and 5.2.

5.2.4 Network Input Size Issue

Since the input size of the network is 512 X 512, one might wonder how can an image
with a typical non-squared ration (4:3, 16:10, 16:9, etc.) be fed into the network. The
solution is to divide the image, process each chunk independently and then stitch them
together. This will not reduce the speed of the network by a considerable amount since
all the chunks can be stacked and fed to the network only once (as a Mini-Batch).

Additionally, the division does not need to be a partition, meaning that overlapping
areas are allowed to exist. In fact, by increasing the overlapping areas, more samples
will be calculated for the pixels around the center. Then, we can achieve a better
approximation of the disparity value by averaging all the samples.

In the future section, we explain the result of using the networks to calculate the depth
of the images in TMI dataset. We have used this technique to calculate the depth map
for the images with the size 720 X 576.

These images are divided into overlapping sections (Figure 5.10) and connected after
calculations by the networks.

5.2.5 Training Parameters

1. The Loss Function: The loss function we chose to train this neural network
with is Log-Cosh function

L(y,$ = ) log(cosh (5 = y)) (5.11)
i=1
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Figure 5.10: The divisions over a TMI dataset image. The concentration of the dis-
parity samples from the network are higher closer to the middle point.

The advantage of this loss function is that it approximates (x?)/2 around small
values of x, and |x| — log 2 for large x (Figure 5.11). This means that this loss
function works like Mean Squared Error (MSE) but it is not hugely effected
by the outliers. Also, the gradient will get smoother closer to the small values.
Additionally, This function is twice differentiable everywhere.
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Figure 5.11: The shape of Log-Cosh Loss Function.

2. Epochs and Mini-Batch Size:

We have trained all three models for 100 epochs. Since the data is vast and can-
not be loaded completely into the memory, a stochastic approach is attempted.
The data is fed to the network in Mini-Batches. Each Mini-Batch will have 15
pairs of images, 30 images overall.

3. Learning Rate:

To find the optimum learning rate, we implemented a call back system that
multiplies the learning rate by 0.5 whenever there is no improvement in loss
function within three consecutive epochs. Multiple tries showed up that the
best learning rate is, to begin with, 10~ and reduce the learning rate to 10~
after around 30 epochs.
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4. Optimizer:

We used Adam optimizer instead of the classic Stochastic Gradient Descent
(SGD). Adam was introduced by Kingma and Lei Ba [44] in 2014. The name
Adam is derived from adaptive moment estimation.

Some of the advantages of the Adam optimizer are:

Memory efficiency.

Effective against noisy or sparse gradients.

Well suited for problems that are large in terms of data and/or parameters.

Straight forward implementation.

In an article titled "An overview of gradient descent optimization algorithms"
[82], Ruder presents a comparative study of the optimizations methods for Ma-
chine Learning and Deep Learning. In a section titled “Which optimizer to
use?*, he recommends using Adam:

“Insofar, RMSprop, Adadelta, and Adam are very similar algorithms
that do well in similar circumstances. [...] its bias-correction helps
Adam slightly outperform RMSprop towards the end of optimization
as gradients become sparser. Insofar, Adam might be the best overall
choice.”

5. Implementation:
We implemented all three networks using TensorFlow [1] library, version 1.10.
The implementation of these networks are available at our repository on GitHub'
6. Training Environment and Time:

We trained the networks on a system using Ubuntu 16.04 operation system, and
equipped with two Nvidia GeForce GTX 1080 Ti'? GPUs. The training time,
using both GPUs, was around 25 hours for each network.

5.2.6 Training Process and Performance

As it is shown in the Figures 5.12 and 5.13, the loss value is being reduced for all
the networks during the training and reaches a flat state. This indicated a successful
training process.

By comparing the different networks, We see that the Type C Network is more stable
than the others. Especially in validation dataset this stable status is visible.

11 Repository available at https://github.com/
12" Around 11.3 Tera FLOPS of computational power for 32bit floating point numbers.
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Figure 5.12: The loss per epoch for the training dataset. The stochastic optimization
results in a jagged plot, hence we smoothed the plot for better visuals.
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Figure 5.13: The loss per epoch for the validation dataset. The stochastic optimization
results in a jagged plot, hence we smoothed the plot for better visuals.

Moreover, we can asses the performance of the networks by several performance
metrics. We utilized the performance metrics suggested by Scharstein et al. [84].
Table 5.3 contains these metric.
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Table5.3: The metrics used in this research. suggested by [84].

Metrics

Description

Bad 0.5 The percentage of bad pixels with disparity error greater than 0.5 pixels
Bad 1.0 The percentage of bad pixels with disparity error greater than 1.0 pixels
Bad 2.0 The percentage of bad pixels with disparity error greater than 2.0 pixels
Bad 4.0 The percentage of bad pixels with disparity error greater than 4.0 pixels
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Figure 5.14: The performance on training dataset, compared using different metrics.
(a) Bad 0.5 Metric. (b) Bad 1.0 Metric. (¢) Bad 2.0 Metric. (d) Bad 4.0 Metric.

On the training dataset (Figure 5.14), all the performance metrics are decreasing dur-
ing the training process. Type S network seems a bit more chaotic and tagged, but the
rest are more steadily decreasing.
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Figure 5.15: The performance on validation dataset, compared using different met-
rics. (a) Bad 0.5 Metric. (b) Bad 1.0 Metric. (¢) Bad 2.0 Metric. (d) Bad 4.0 Metric.

On the validation dataset (Figure 5.15), network Type C in decreasing less than the
rest and reaches a stable state, while the rest are more chaotic and jagged. This is
an indication that the network C is better at generalizing the learning, at least in the
current dataset.

5.3 Evaluation and Results

By knowing about the advances in computer graphics and related research in the Deep
Learning research community, we hypothesized (section 4.5.2) that it is possible to
simulate a dataset by which it is possible to train a neural network. Such a dataset
should include enough variation in data and should be large enough in quantity. In the
previous section, we explained the training process of three Deep Neural Networks,
and their performance on a validation dataset, which is a simulated dataset.

As an initial step, we will compare the Network’s result again two other control meth-
ods. This will enable us to evaluate the core issue of whether Deep Neural Networks
can learn the disparities better than some other methods that are established in the
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literature.

To evaluate our hypothesis, we used the three networks, alongside two control meth-
ods, to calculate the disparity values for each pair of images within the TMI dataset.
As we mentioned in the section 4.4.1, This dataset’s ground truth information are not
disparity maps, but rather three-dimensional mesh information extracted from CT im-
ages. Fortunately, the creators of the TMI dataset have enabled us with the validation
tool"® (Figure 5.16) which makes comparisons easier. To achieve this, we need to
convert disparity maps to point cloud formats required by the tool. Afterward, we can
compare the results of the networks on real data.
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Figure 5.16: The validation tool available for evaluating the results for TMI dataset.

5.3.1 Comparative Study and Control Methods

We chose two methods as control methods in this research. Both of them are fast and
reliable for real-time applications. But they are not state-of-the-art. Unfortunately,
many of the top performing methods are either not publicly available, or they are not
easy to configure and execute.

This is specially true about the other Deep Learning approaches. They are not straight
forward in their configuration and execution. They also need long training times
which is an additional complication. Overall, using other Deep Learning based meth-
ods are a lot more complicated.

We have implemented one of the chosen control methods ourselves, but in favor of
reliability and speed, we used the implementations available in OpenCV'# library.

The methods used as control methods are:

1. Block Matching:

13" Available at http://opencas.webarchiv.kit.edu/?q=node/23
14 Version 4.1.0 was used. Available at https://opencv.org/ and https://github.com/opencv/
opencv/tree/4.1.0/

80


http://opencas.webarchiv.kit.edu/?q=node/23
https://opencv.org/
https://github.com/opencv/opencv/tree/4.1.0/
https://github.com/opencv/opencv/tree/4.1.0/

This is a completely local method and a simple block matching algorithm. As
explained in section 2.6, these algorithms are not as accurate, but they are
widely being used because of their simplicity and speed. As the algorithm
settings, the number of disparities is 80!, and the window size is 11 x 111°,

2. Semi-Global Matching:

As the title stated, this method is not a local method and it tries to approximate
the disparity using visual clues and mutual information [36]. However, this
method is also very fast, and it is very reliable. As the algorithm settings,
the number of disparities, and the window size are the same as the previous
method. Additionally, There are two variables P;'7 and P,'®, that contribute
to the smoothness of the output. We used 100 for both of them! to output a
smoother map than the default values.

5.3.2 Validation Set Results

Before evaluating the TMI dataset, here we compare the performance of the networks
in comparison with the control methods, using our performance metrics. We can see
in Figure 5.17 that networks overperform the control methods in all of the metrics.

5.3.3 Back Projection To 3D Space

To use the validation tool provided by the creators of the TMI dataset, the Dispar-
ity Map should be transformed into a point cloud format. Point clouds are three-
dimensional data with the coordinates of the vertices in the three-dimensional envi-
ronment. The coordinate in use here should be relative to the camera.

We have already mentioned in Chapter 2 that there is a reverse correlation between
the disparity values and the depth of the points. This means that the displacement of
the object closer to the parallel stereo cameras will be more severe than the object
farther away.

This projection matrix is to convert the disparity into the depth values, and it requires
Cx,Cy @s camera’s principle point, f as the focal point, and b as the length of the
baseline between two cameras (baseline). u and v are the coordinates of the pixels,
and d is disparity of the pixel.

Z|=10 0 01 g (5.12)
w 00 — 0]l
b

5 numDisparities = 80

'6 blockSize = 11

17" This parameter controlling the disparity smoothness. P; is the penalty on the disparity change by plus or
minus one between neighbor pixels.

18 This parameter controlling the disparity smoothness. P, is the penalty on the disparity change by more than
one between neighbor pixels.

' P1 = 100 and P2 = 100
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If we work out the calculations we will reach

d
>X=u-c, Y=v-¢, Z=f, W:_E (5.13)
and since these values are in homogeneous coordinates (projective coordinates), they

should be converted to Cartesian coordinates.

To convert the homogeneous coordinates into Cartesian coordinates, we need to make
sure that the last coordinate equals to 1. So we divide all the previous coordinates by
the last one to get Cartesian coordinates in three-dimensional space.

(wu=cob ., W=cpb _  fb

Y =——— 7 = (5.14)
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Figure 5.17: The box plots comparing the performance of the different methods. In
this plot the lower value is better. (a) Bad 0.5 Metric. (b) Bad 1.0 Metric. (¢) Bad 2.0
Metric. (d) Bad 4.0 Metric.

5.3.4 TMI Dataset Results

In their article, the creators of TMI dataset use root mean square (RMS) distance
between corresponding points as the accuracy metric. We will use the same metric

82



since it is the output of the validation tool. By inputting the calculated point clouds
into the validation tool, we will get a CSV file containing the statistics. We will be
summarizing the statistics here.

As mentioned in Section 4.4.1, This dataset have been partitioned into sub-datasets
like

1. Varying Distances.
2. Presence of smoke in view.
3. Presence of blood in view.

4. Varying angles.

Since our simulations are not focused on distance or angle, we will present their result
later.

The evaluation result of the dataset, including all the partitions, is reported in Figure
5.18. There is a total number of 35 images in this category. This box plot shows that
the performance of the Type C and Type S networks rivals the performance of Block
Matching or Semi-Global Matching. There are no significant differences between
their means. However, we are also interested in the consistency of the whole data,
and the deviation of the error rate is much lower in Type S and Type C networks.

The performance of Type CS network is falling behind the rest of the method. We will
explore the reason in Section 5.3.5. For now, it is sufficient to say that Type CS net-
work, which had acceptable performance in the validation, was unable to generalize
its knowledge.

The evaluation result of the dataset for all the images with smoke in them is reported
in figure 5.19. There is a total number of 5 images in this category. As it is shown in
this plot, there is a significant difference in the performance of the Type S and Type C
network, comparing to the control methods. Even between two successful networks,
Type C network is significantly outperforming the Type S network. Type CS network
has the same issue which will be explored later.

The figure 5.20 compares the performance of all methods on the same surfaces with
and without the smoke. It is expected that all the algorithms perform better without
smoke than with smoke, which is validated by the result. We can observe that the
performance of Type C network is better compared to all the other methods.

The evaluation result of the dataset for all the images with blood in them is reported
in Figure 5.21. There is a total number of 2 images in this category. From the box
plot, it appears that the Block Matching algorithm performs better than the rest, but it
is little to none difference between the results (Type CS is an exception).

However, since the data points are too few (n = 2), this result is prone to statis-
tical variation and mistakes accompanied by the datasets with too few data points.
Nonetheless, we have included this result because it is helpful and necessary to ac-
knowledge the problems related to any research, whether it is from the methods or
the data.
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Figure 5.18: The RMS distance (mm) of all the images (n = 35) withing the TMI
dataset with their ground truth.
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Figure 5.19: The RMS distance (mm) of all the images with smoke in view (n = 5),
withing the TMI dataset with their ground truth.

The figure 5.22 compares the performance of all methods on the same surfaces with
and without the blood. As it is said before, the results are inconclusive because of the
limitation in the data.

Other than smoke and blood in the scene, the creators of the dataset included data
with different angular views and different distances. Although we have not simulated
such behaviors, in our training data, we will present the results.

Figure 5.23 shows a bar plot comparing the performances of different methods be-
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tween a 0°and 30°views. In this image, we can observe that the performance of the
Type C and Type S networks are better, as overall performance.

Additionally, Figure 5.24 shows a bar plot comparing the performance of different
methods between images captured as 7cm and 4cm. In this image, we can observe that
the networks’ performances are not consistent. The performance of Type C network
may be affected by many factors, and since we are not controlling this parameter
(distance), we cannot argue on the result or why one is drastically different than the
other.
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Figure 5.20: The RMS distance (mm) of all the images with smoke in view (n = 5),
withing the TMI dataset with their ground truth.
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Figure 5.21: The RMS distance (mm) of all the images with blood in view (n = 2),
withing the TMI dataset with their ground truth.
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Figure 5.22: The RMS distance (mm) of all the images with blood in view (n = 2),
withing the TMI dataset with their ground truth.
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Figure 5.23: The RMS distance (mm) of all the images with direct and angular views
(n = 10), withing the TMI dataset with their ground truth.
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Figure 5.24: The RMS distance (mm) of all the images with different distances (n =
10), with their ground truth.

Visual Evaluation

Although the statistical result is very important in the evaluation of the methods, we
believe an examination of the result for visual clues of performance, advantages, and
shortcomings of the methods is also important. Using statistics to assign a numeric
value of performance to a more complex output from a method and that may not
be enough to evaluate the local and partial performance of each method in different
regions of the image. The images below are comparing the Type C network and the
Semi-Global Matching [36] results. These results would be in point cloud format.
Figure 5.25 shows some examples.

Figure 5.25a contains a well lit environment with reflection on the surface. The result
of Type C network (left) is very smooth in comparison to the result of Semi-Global
Matching (right). Moreover, the surface on which the reflection appears have been
matched to a point much lower than the actual surface. We discussed this problem in
section 4.3.

Figure 5.25b contains an example with considerable amount of smoke in between the
camera and the surface. The Semi-Global Matching (right) has matched the smoke
covered surface to a location above the actual surface. Also, this method matched the
surface with reflection to a location lower than the actual surface. However, the Type
C network (left) resulted in a consistence surface.

Figure 5.25¢ contains a surface with a patch of blood on it. This patch of blood will
cover the features of the surface since it is featureless, conventional methods will
have a hard time matching it. The Semi-Global Matching (right) has completely mis-
matched the surface covered with blood and the reflection along side it to a location
beneath the actual surface. However, the Type C network (left) resulted in a consistent
surface.
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Figure 5.25: Comparing In-Vitro Reconstructions by Type C network (left) and Semi-
Global Matching (right). (a) Specular Reflection on the surface. (b) Smoke covering
the surface. (¢) Blood on the surface.

Since the TMI dataset contains data points of the same location with and without
special conditions like presents of blood and smoke, we can also compare each algo-
rihtm’s end results with and without those conditions.
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For example Figure 5.26a compares the result of Semi-Global Matching algorithm
with (right) and without (left) smoke in the view. As expected, the matching is
severely affected on the smoke covered surface. Also, the locations with the reflection
and the location with low illumination are mismatched.

However, as shown in figure 5.26b, the Type C network results in a consistence sur-
face which occupies the same space in both cases - not considering small fluctuations.

(b)

Figure 5.26: Comparing In-Vitro Reconstructions of a target scene with smoke (right)
and without smoke (left). (a) Reconstruction of Semi-Global Matching. (b) Recon-
struction of Type C Network.

Viewing a point cloud and comparing them on a two-dimensional images is not ideal
and Figures 5.25 and 5.26 might not convey the required information. Hence, The
results from all reconstructions of the TMI dataset’s data points (35 pairs of images)
are available at https://ms-thesis-result.aminzabardast.com.

5.3.5 Type CS Network’s Generalization Problem

In Chapter 5.3.4, we briefly mentioned that Type CS Network’s performance is falling
behind the rest of the networks, despite that it was performing well in the validation
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phase. We argue that the reason behind this behavior is the higher capacity of the Type
CS Network, alongside the simplicity of the synthesized dataset both in quantity and
in variation.

The Type CS Network have eventually learned to memorize the examples given to it.
Since the validation and training sets were not much different than each other, this
issue was not detected during the validation.

Moreover, if the simulated dataset becomes more complex then the Type CS Network
should be able to outperform the simpler networks, but in the current dataset, the
simple Type S and Type C Networks are having better results. This is because their
capacity is better matching the complexity of the dataset and they can generalize their
knowledge base.

The possible improvements to the generated dataset are discussed in Section 6.3.

5.4 Summary

We created three different types of deep neural networks to test the validity of the
dataset. Their architectures are based on the Auto-Encoder structures. This was be-
cause these structures can be designed to learn the whole process of the stereo match-
ing without using other algorithms to complete the process.

The result of the networks is disparity maps, so a projection to three-dimensional
space was required to make the data compatible with the TMI dataset validation tool.
The evaluation was done in different stages. Initially, the dataset was evaluated as a
whole, in which the performance of the networks was slightly better than the con-
trol algorithms. Type CS network was an exception, which will be addressed in the
discussion section.

The TMI dataset has four different subsets. We evaluated the presence of the blood
and smoke in the scene first since we included these variables in our simulations. In
the case of the smoke, the performance of the networks was way better than the result
of the control methods. But the result on the blood data was inconclusive. This can
be traced back to the insignificant number of data points in the case of blood.

Additionally, there are two other subsets, one on different distances of the camera
from the surface and the other on the different viewing angles. The overall perfor-
mance on different angles was satisfactory in the case of the networks. However, the
networks results varied on the distance subset.

One of the important results was that the results of the networks contain less variation
in the error values, and the networks perform much better when there is not enough
lighting in the scene, or the smoke has covered the surface of the organ.
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CHAPTER 6

CONCLUSION

The main purpose of this research study is to reconstruct a three-dimensional repre-
sentation of a surgical environment using Deep Neural Networks. The network will
be using a pair of stereo images as input values to calculate the depth information.
The core problem we are solving here is called the Stereo Correspondence problem,
and the output from solving this problem is the depth information for each pixel on
the camera images. This information is crucial to achieving Augmented Reality (AR)
during surgical navigation.

The target surgical environment of this research is abdomen Minimally Invasive Surgery
(MIS). However, working on the abdomen environment is difficult in comparison to
other environments. Currently, the latest and most accurate methods that solve simi-
lar problems (Stereo Correspondence problem on other domains like Autonomously
Driving Vehicles) are mostly Deep Neural Networks. However, Deep Neural Net-
works especially supervised learning methods, require a vast amount of data. Unfor-
tunately, There are no public datasets available in the surgical domain that meets the
requirements of a viable dataset to utilize.

To solve the dataset problem, we proposed to use in-silico simulations to create the
dataset. In the past few years, the interest in using a synthesized dataset to train Deep
Neural Networks is rising amount researcher. This approach is very novel, and there
has not been much research around this subject. The goal is to create a dataset that
a machine learning algorithm can experience and create a knowledge base from it,
which can be used in a real situation.

We synthesized around 10.000 data points (stereo images with their ground truth) to
use in the training process. These images are modeled after the data points in TMI
dataset. This is because we are aiming to test the result on this dataset to evaluate if
the networks were able to generalize their knowledge and use in real situations. We
chose the preceding as our hypothesis.

After the data simulation, we attempted to create three different Deep Neural Net-
works based on Auto-Encoder architecture. Their purpose is to evaluate the learn-
ing process and answer the hypothesis questions. The Type S network is a simple
Auto-Encoder structure. This network is trusted to experience the raw data, and au-
tonomously create its knowledge base. The Type C network is utilizing a specialized
layer, called correlational layer. The correlational layer is a specialized layer that
calculates the correlation for small patches of the input images. This network is sup-
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ported with this extra information, and the core structure is the same as the previous
network (Auto-Encoder). The CS network is an ensemble of the Type C and Type
S networks in the same order. The reason behind this structure was to evaluate the
behavior of a considerably deeper network.

Additionally, we used two other methods as control methods to be able to compare
the result of the networks to other established algorithms. These two methods are
Block Matching and Semi-Global Matching [36].

6.1 Summary Of Results

Figure 5.12 and 5.13 shows Loss per Epoch plots of the three networks during training
and evaluation.

We have used performance metrics suggested by [84] to evaluate the performance of
the networks. Figure 5.15 is a box plot of the performance metrics.

It is clear that the networks are performing well on the validation dataset. After-
ward, we tested our network’s performances against the two control methods. Un-
fortunately, since the creators of the TMI dataset provide their validation tool for the
dataset, we could not use our metrics. The metrics that this dataset uses are the root
mean squared (RMS) distance between the correspondence points in the ground truth
and the result. Figure 5.17 shows the comparison of the methods for all the data
points.

Furthermore, we also evaluated the result of the methods of smoke and blood subsets
separately. Their result are shown in figures 5.19 and 5.21.

6.2 Discussion

The overall decrease, visible in the figure 5.18, is the sign that the networks are suc-
cessfully creating knowledge about the dataset. Among the networks, Type C has the
most stable learning curve.

As it is shown in figure 5.19, the networks perform significantly better in case of
smoke. The results in the case of blood are inconclusive since the data points were
too few (2 data points).

Although establishing the realism of the synthesized dataset is not a part of this study,
it should be mentioned that it is possible to do this by asking expert opinions. Creating
a life like dataset is not the goal, neither it is necessary to spend resources achieving
hyperrealism. As we see in this study, using our dataset can yield the required result.
However, this should be discussed for the sake of completeness.

One can argue that using more and more realistic data can yield to better result. How-
ever, there is a certain trade off between spending the resources on hyperrealism and
the expected improvements on the models being trained by this data.
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In either case, we can evaluate the realism of our dataset by asking expect opinions
through a rating procedure of the images withing the dataset. Although, this process
of rating is subjective, it is the most available scientific method at hand for evaluation
of realism.

We should elaborate more on the issue of Type CS network failing to achieve an
adequate generalization. We observed that Type CS Network fails to generalize its
knowledge, while Type C and Type S networks are successful. The is the result
of overfitting. The higher potential of the CS network has caused the network to
memorize the data point of the training dataset. Hence, this network performs very
well on validation but fails in the TMI dataset. A possible solution to this problem
could be a larger and more varied dataset. However, larger quantities of data always
improve the learning process, and it is advised to have as much data as possible.

Additionally, the specific dimensions of our Auto-encoder structure’s bottleneck (8 X
8 x 1024) may also cause overfitting. The low spatial resolution (8 X 8) contributes
to this issue by removing the finer detail of the simulated images. The dimensions of
the bottleneck can be set up in a way to maximize saving of the finer details while
avoiding the over or underfitting.

6.3 Future Studies

The positive results of this study and the existing research around the use of data sim-
ulation in Deep Learning approach to a practical problem show that there is potential
in this research area. A possible future path to this study can be on improvement of
the synthesized dataset. This can be achieved in multiple ways:

1. An improvement in the performance of the methods trained by the synthesized
data can be achieved by synthesizing more realistic data. The recent advances
in computer graphics, as well as the availability of powerful computational plat-
forms, makes this approach more feasible. We argue that creating lifelike im-
ages are not necessary, and a compromise between realistic footage and easier
synthesizing process can be achieved. Nonetheless, if the computational and
creating process is not expensive, it is better to seek more realistic images.

2. The current version of the dataset was generated manually. This is the standard
procedure in most of the synthesized dataset. However, This is time-consuming
and prone to the bias of the creator. It is possible to create a procedural genera-
tion system to generate unique data points upon request. The algorithm would
take a randomized hashed key and generates the environment which ultimately
renders into stereo images and ground truth information. This process would
be a quasi-random process, meaning that the process will be guided by some
rules to generate the required surgical scene.

This procedural generation system will enable to use of adversarial approach to
deep learning.

3. Understanding the theoretical framework of synthetic datasets is important.
This knowledge can guide the generation process and help to synthesize a
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dataset that is fit to replace a real dataset for a real problem.

Unfortunately, there are no theoretical studies on this subject. However, as it
was mentioned before, more researchers are getting interested in the applica-
tions of synthesized datasets, and there is a growing amount of research around
this subject.

For example, the ability to quantify the realness of a dataset will be very useful.
Ideally, if we can compare two sets of data on how similar they are holistically,
then we can use this metric in the generation process. Then, some real data can
be used as seeds to generate more synthesized data.

Additionally, understanding the effects of different dataset characteristics will
be useful. This knowledge can help to fine-tune the data generation process.

For example, by accumulating this knowledge, we can create a dataset that is
varied enough to be a fair representation of its statistical population, and it can
also help by normalizing the distribution of the data points to avoid unbalanced
datasets.

. We have already mentioned that the Stereo Correspondence problem fit per-
fectly with a Deep Learning solution. Creating better architectures that can
understand and process the stereo input better and can yield a better result with
the data at hand can be a path to continue this research.

Experimenting with the depth (channels) and spatial resolution of the bottle-
neck can help in achieving better results while using the same training dataset.

. A human’s depth perception is a combination of visual clues and deduction of
the information. For example, we use our binocular vision to understand the
depth information from the disparities between the images our left and right

eyes receive. This is an approach like many of the methods discussed in Chapter
2.

However, when a three-dimensional space is mapped into several two-dimensional
representations, a huge amount of information will be lost. So going back to

a three-dimensional representation is not easy and needs processing for recon-
struction. Humans use the objects in their view and their knowledge about
the shapes and the orientation of objects to deduce the depth information and
reconstruct a mental image of the scene.

We can follow the same strategy by using a hybrid system containing a simple
stereo matching method and a Deep Neural Network component. The idea
would be to use the stereo matching method to feed seed point to the neural
network and then trust the neural network to reconstruct a dense depth map by
deducing the depth information from the images and the seeds provided as it
input.
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