OPTIMIZATION OF ADVANCED ENCRYPTION STANDARD (AES) ON
CUDA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
MIDDLE EAST TECHNICAL UNIVERSITY
BY

BURAK CELIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF CYBER SECURITY

SEPTEMBER 2019

Approval of the thesis:

OPTIMIZATION OF ADVANCED ENCRYPTION STANDARD (AES) ON
CUDA

Submitted by BURAK CELIK in partial fulfilment of the requirements for the
degree of Master of Science in Cyber Security Department, Middle
East Technical University by,

Prof. Dr. Deniz Zeyrek Bozgahin

Dean, Graduate School of Informatics

Assoc. Prof. Dr. Aysu Betin Can
Head of Department, Cyber Security

Assist. Prof. Dr. Cihangir Tezcan
Supervisor, Cyber Security, METU

Examining Committee Members:

Prof. Dr. Ali Aydin Selguk
Computer Engineering Department, TOBB

Assist. Prof. Dr. Cihangir Tezcan
Cyber Security, METU

Assoc. Prof. Dr. Banu Giinel Kilig
Information Systems, METU

Date:

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules and
conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last name : BURAK CELIK

Signature

ii

ABSTRACT

OPTIMIZATION OF ADVANCED ENCRYPTION STANDARD (AES) ON
CUDA

CELIK, BURAK
MS¢, Department of Cyber Security

Supervisor: Assist. Prof. Dr. Cihangir Tezcan

September 2019, 89 pages

This thesis presents several optimization techniques of AES implementations on
CUDA. 6 different CUDA kernels are implemented for AES-128 exhaustive search
with different software designs and they are compared with each other using Nsight
experiment results. Outcome of these results are used for finding the best CUDA
implementation and from it, AES-128, AES-192 and AES-256 versions are created for
exhaustive search, on the fly CTR and file encryption. They are compared with CPU
implementations in order to decide whether GPU or CPU is the fastest considering
these topics. For this comparison, two different type of CPU implementations are
created which are AES-NI, using new instruction set of Intel, and basic C++. 1, 2, 4
and 8 threads versions of these implementations are compared with CUDA and results
are shared. According to them, CUDA is 21, 19 and 18 times faster than the best
CPU implementations for exhaustive search with respect to key length. These ratios
are 4 times for CTR implementations in which 37.52 GBs of data can be encrypted
each second while using CUDA. File encryption for CUDA is 22, 19 and 17 times
faster than the best CPU implementations. CUDA can encrypt 31.24 GBs of data per

second in this regard without considering I/O operations.

Keywords: AES, GPU, CUDA, AES-NI

iv

0z

CUDA KULLANARAK GELISMIS SIFRELEME STANDARDI (AES)
OPTIMIZASYONU

CELIK, BURAK
Yiiksek Lisans, Siber Giivenlik Boliimii

Tez Yoéneticisi: Dr. Ogr. Uyesi Cihangir Tezcan

Eyliil 2019, 89 sayfa

Bu tez, CUDA iizerinde yazilan AES uygulamalar ile ilgili optimizasyon tekniklerini
sunmaktadir. Farklh yazilim tasarimlarina sahip AES-128 i¢in yazilmig 6 farklh CUDA
kapsamli arama uygulamasi geligtirilmis ve Nsight deney sonuclari kullanilarak
birbirleriyle kargilagtirilmigtir. Sonuglar, en iyi CUDA uygulamasini bulmak igin
kullanilmigtir. AES-128, AES-192 ve AES-256 siiriimleri i¢in kapsaml arama, CTR
ve dosya sifreleme uygulamalarn bulunan en iyi CUDA siirimii {izerinden
geligtirilmigtir. Bu konular géz 6niinde bulundurularak, GPU ve CPU uygulamalar
kargilagtirilmigtir. Bu kargilagtirma igin yeni Intel komut seti (AES-NI) ve temel C++
olmak iizere iki farkli CPU uygulama seti gelistirilmigtir. Bu uygulamalarin 1, 2, 4 ve
8 ig parcacikli versiyonlar1 CUDA ile kargilagtirilip sonuglar paylagilmigtir. Elde edilen
sonuglara gore, CUDA, anahtar uzunluguna goére kapsamh arama i¢in en iyi CPU
uygulamalarindan 21, 19 ve 18 kat daha hizli olarak bulunmustur. Bu oranlar CTR
modu ile gifreleme igin 4 kata diigmiig olarak hesaplanmigtir. Bu modda, CUDA
saniyede 37.52 GB veri gifreleyebilmektedir. Dosya gifreleme kisminda ise CUDA 22,
19 ve 17 kat daha hizli olarak dl¢iilmiigtiir. CUDA, bu konuda ise saniyede 31.24 GB

veriyi gifreleyebilir.

Anahtar Kelimeler: AES, Ekran karti, CUDA, AES-NI

ACKNOWLEDGMENTS

I would like to thank Dr. Tezcan for his perpetual support and wisdom from
the inception of this thesis to its conclusion for he spared none while working
with me. Without him, this research would not be as meticulously detailed as
it is. He always encouraged me to set sail in uncharted waters and steered me
into the proper course when I faced a rub along the way.

I also wish to extend my gratitude to my father, my mother and my brother.
They are the ones who raised me and made me the person who I am today.
Without them, I would have never been involved in computer software and
this thesis would not exist.

vi

TABLE OF CONTENTS

ABSTRACT (o iv
ACKNOWLEDGMENTS ..o vi
LIST OF TABLES. ... X
LIST OF FIGURES ... xii
LIST OF ABBREVIATIONS ..ot XV
CHAPTERS
1. INTRODUCTION Lottt 1
1.1, Cryptography ooeeeiiie e 1
1.2, Block CIphers oot 2
1.2.1. Mode of OPErationsouuuiiiiiiiieiiiiiaaa et e e e e e 4
Lo A S e e e e 5
Lo A SN e 6
L0 G U e e 7
LaB. D A s 9
LT OVEIVIBW . ettt ettt 10
1.8, Related WOrK .oooiiiiiiii e 11
1.9, Our Contribution..........eoiiiiiiiiiiiii e 13
2 A S et aaas 15
2.1, Design Specifications.........uuuuuiiiiiiiiiiiiiiiiis e 15
2.1.1. SubBytes Transformationceeiiieiiiiiiiiiiiiinieeiiiiiiiee e, 16
2.1.2. ShiftRows Transformationcceeeeeeiiiiiiiiiiiinieeiiiiiiiiiies e, 18
2.1.3. MixColumns Transformationcccceceevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees 18
2.1.4. AddRoundKey Transformationcccoeeuuriiiinireiiiiiiiiiiaee e 19
2.2, Key Schedule ... 19
2.2.1. AES-128 Key Schedule...........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 20

2.2.2. AES-192 Key Scheduleuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii 21
2.2.3. AES-256 Key Scheduleuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii 22
2.3. Implementation ASPECESoeiiiiiiii e 23
2.3.1. Creating Look-up Tablesccuuuiiiiiiiiiiiiiiiiiiiin i 27

B U D A Lttt 29
3.1, Thread Hierarchyoiiiiiiiiiiii it 29
3.2, Compute Capability ..ooooiiiiiii e 32
3.3, Memory HIierarchyoooiiiiii e 33
R O 111U 0 Y- N1 USSP 37
4. CUDA IMPLEMENTATION OF AES ..., 39
4.1, Exhaustive Searchc.ouiiiiiiiiiiiiiiiiiiiii et 39
4.1.1. AES-128 Implementations for CUDAcooiiiiiiiiiiie e, 39
4.1.1.1. O CCUPANCY ettt ettt ettt ettt 44
4.1.1.2. Instruction Statisticseeeriiiiiiiiiiiiiii e 45
4.1.1.3. Branch Statisticsccoeuuiiiiiieeiiiiiiiiii e 48
4.1.1.4. Issue Efficiency ... 48
4.1.1.5. Achieved TOPS ... 50
4.1.1.6. Pipe Utilizationccoooiiiiii e 51
4.1.1.7. Memory StatisSties. ... i 52
4.1.1.8. OVEIVIEW teiiiiiiiiiiiiiiii 59
4.1.2. AES-128 COMPATiSOni. . ciiieeeiiiiiiiiiaaa e e e e ieeiiiaaa e e e e e eeeeeeiaaeeeeeeenennnnns 60
4.1.3. AES-192 COMPATiSOn. . ciiieeeiiieiiiiiiaa e e e et e e e e et eeeeeeeennanns 61
4.1.4. AES-256 COMPATISON...uuiiieeiiiiiiiiiiiaa e e ettt e e e et eeeeeeeennnnns 62
4150 OVETVIEW Leeiiitiiiiiiiiiiiie ettt e et 63
4.2, CTR Implementationoieuuireriiii et e e e e e e 65
4.2.1. AES-128 COMPATISON..uuuniiiiiiiiiiiiiaaaeeeeettiiiiiiaaaaeeeererraeiaaaaaeaeaersnnnnns 66
4.2.2. AES-192 COMPATISON..uuuniiieeiiiiiiiiiaaaeeeeeriiiiiiiieaaaeeeererresiaaaaaeeeaersnnnnns 67
4.2.3. AES-256 COMPATISON..uuuniiiriiiiiiiiiiaaaaeeeetiiiiiiiieaaeeeeererriaiaaaaeeeeaarsnnnnns 68
.24, OVETVIEW weeiiiieieiiiiiiiie e ettt e e et 69
4.3, File ENCIYDION «uueeiiiiiiiiiiiii e 71
4.3.1. AES-128 COMPATISON. ..uuiteeetiiiiiiiiiae e e et eeeiiaa e e e et eeeeiaaa e e eeeeeeeenenns 73

4.3.2. AES-192 COMPATISOT o eeeeeiiiiiiiiiaaeeeee e e et a e e e e e ens 75

4.3.3. AES-256 COMPATISOT . .eeeeiiiiiiiiiaaeeeeee e e et eeieaa e e e e e 76
.34, OVETVIEW..uuiitiiiiiiiiiie ettt et 7

5. CONCLUSIONS AND FUTURE WORKccooiiiiiiiiiiiiiieeeeeee, 81
5.1 ConClUSIONSceiiiiiiiiiiiiiii 81
5.2, Future WOork. ... 84
REFERENCES i, 85

ix

LIST OF TABLES

Table 1.1: GPU Market share changes [17].....cccocciiiiiiiniiiiniiiiiiieine e 9
Table 2.1: AES Key-Block-Round Combinations............cooooeeiiiiiiiiiiiiiin. 15
Table 2.2: AES S-Box: Substitution values for bytes (in hexadecimal format)........ 17
Table 2.3: Round constants for key scheduling (in hexadecimal format)................. 20
Table 2.4: AES-128 key schedule test vector for zero valued key.....................o. 21
Table 2.5: AES-192 key schedule test vector for zero valued key........................ 22
Table 2.6: AES-256 key schedule test vector for zero valued key.......................... 22
Table 3.1: Kernel Qualifiers for CUDAo 29
Table 3.2: CUDA compute capabilities [32]cooooiiiiiiiniiiiiiiniiiieciee e 32
Table 3.3: CUDA memory space specifiers for variablescccooooiiiiiiiiiiiiiinneeennn. 34
Table 4.1: AES-128 kernel function properties.......coovviiiiiiianieeeeiiieiieee e eeeeeeeees 40
Table 4.2: CUDA Nsight occupancy results for 27 AES-128 keys......ccoovvvvvvvveennenn. 45
Table 4.3: CUDA Nsight instruction statistics for 227 AES-128 keys......cooevvvvvennn... 47
Table 4.4: CUDA Nsight issue efficiency stat statistics for 2 AES-128 keys.......... 49
Table 4.5: CUDA Nsight issue stall reasons for 227 AES-128 keys.......cccocvvereennnne.. 50
Table 4.6: CUDA Nsight achieved IOPS statistics for 227 AES-128 keys................. 51
Table 4.7: CUDA Nsight achieved IOPS statistics for 227 AES-128 keys................. 52
Table 4.8: CUDA Nsight global memory statistics for 22" AES-128 keys................. 53

Table 4.9: CUDA Nsight shared memory store statistics for 2 AES-128 keys 57
Table 4.10: CUDA Nsight shared memory load statistics for 2% AES-128 keys 58
Table 4.11: CUDA Nsight shared memory bank conflicts statistics for 27 AES-128

RS e ettt e e 59
Table 4.12: CUDA, AES-NI and C++ exhaustive search results.......cc.ccccoooeeiiiieie. 64
Table 4.13: CUDA, AES-NT and C++ CTR resultsovvvviieeeeeeeiiiiiiiiiieeeeeeeeeeeeins 71
Table 4.14: CUDA, AES-NI and C++ file encryption results...........cccccccce. 79

Table 5.1: AES experiment results

Xi

LIST OF FIGURES

Figure 1.1: Secret Key Cryptographiy «..oooueeeeeiieiiiiiiiiiiiincccciiiiiii e 2
Figure 1.2: Public Key Cryptographyeeiiieiiiiiiiiiiiii e 2
Figure 1.3: Hash FUnctions.......coooiiiiiiiiiiiii e 2
Figure 1.4: DES Feistel Network block cipherceeiiiiiiiiiiiiiiiiiiiiiiiiie 3
Figure 1.5: The CTR mode [6]......ccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiii i 5
Figure 1.6: The difference between a CPU and a GPU [11] cc.ocoviiiiniiiiniiiiniiininens 7
Figure 1.7: Training days for AlexINet [13]. ..ottt 8
Figure 1.8: Steam GPU usage statistics [18] ..eivviiiiiiiiiiiiiiiiriiiiniiiiiieciiere e 9
Figure 2.1: State and cipher key layout for block size of 128 bits and key of 192 bits

[9] coveercineen A A 15
Figure 2.2: SubBytes applies the S-box to each byte of the state..........ccccooeeiiiiiil. 17
Figure 2.3: ShiftRows cyclically shifts the last three rows of the state.................... 18
Figure 2.4: MixColumns operates on the state column by column..........c............... 18
Figure 2.5: Matrix for multiplication in MixColumns transformation 19

Figure 2.6: AddRoundKey XORs each column of the state with a word from the key

SCREAULE ...cce it et ettt eeeans 19
Figure 2.7: AES-128 key schedule algorithm [28]ccoviiiiiiiniiiiiiiiiiiiniiec e, 20
Figure 2.8: AES-192 key schedule algorithm [28]ccoiiiiiiiiniiiiiiiiiiiiciniieeeee 21
Figure 2.9: AES-256 key schedule algorithm [28]ccoviiiiiiiniiiiiiiiiiiciiiiee e, 23

Figure 2.10: Four look-up table implementation for the first column of the state with

BADLE AT ATIONIS ettt 24

Figure 2.11: Four look-up table implementation for the second column of the state

WIth $aD1E ANTIOTATIONIS ceuen ittt 24

Figure 2.12: Four look-up table implementation for the third column of the state

With $aDle ANIIOtATIONS . in it 24

xii

Figure 2.13: Four look-up table implementation for the fourth column of the state

With table annOtATIONS «.iu i 25

Figure 2.14: One look-up table implementation for the first column of the state with

table annotations as bitwise shifting ... 25

Figure 2.15: One look-up table implementation for the second column of the state

with table annotations as bitwise shiftingcooooiiiiii 26

Figure 2.16: One look-up table implementation for the third column of the state

with table annotations as bitwise shiftingccooooiiii 26

Figure 2.17: One look-up table implementation for the fourth column of the state

with table annotations as bitwise shiftingccooooiiii 26
Figure 2.18: Look-up table definitions [29]ccccooiiiiiiiiiii, 27
Figure 3.1: Grid of Thread Blocks [30].......ccccooiiiiiiiiiiiiiii, 30
Figure 3.2: CUDA parallel thread indexing pattern example [31]......c.ccccceeeniineeennn 31
Figure 3.3: Memory access pattern without bank conflicts [34]cco. 35
Figure 3.4: Memory access pattern creating bank conflicts [34]........ccccccvieinniiiiins 35
Figure 3.5: CUDA memory hierarchy [35].....cccooiiiiiiiiiiiiiiiiiiiiice e 36
Figure 3.6: Traditional and unified memory access models [36].......cccccevvureeninianne. 37
Figure 3.7: CUDA occupancy calculator for block size [32]ccocoociiiiiiiiiinniiiiennn 38
Figure 3.8: CUDA occupancy calculator for registers per thread [32]ccocceeen. 38
Figure 4.1: AES-128 CUDA 2% exhaustive search results in terms of seconds......... 44

Figure 4.2: Array allocation visualization on shared memory without extension 55
Figure 4.3: Array allocation visualization on shared memory with extension 55

Figure 4.4: Shared memory access map of warp threads for non-extended and

EXEENIAECA ATTAYS. ..t eeeitiiiiiiis e ettt e e e ettt e e e e eeeaaaaas 56
Figure 4.5: Array allocation visualization on shared memory with partly extension 56

Figure 4.6: Shared memory access map of warp threads for partly extended arrays.

Figure 4.10

Figure 4.11:

Figure 4.14:
Figure 4.15:

encryption

Figure 4.16:
Figure 4.17:

encryption

Figure 4.18:
Figure 4.19:
Figure 4.20:

: CUDA, AES-NI and C++ exhaustive search performance difference .. 64
CUDA, AES-NI and C++ AES-128 CTR durations for 2% encryptions

.. 69
CUDA, AES-NI and C+4++ CTR performance difference...................... 70
Thread allocation difference between exhaustive search, CTR and file

.. 72
CUDA, AES-NI and C++ AES-128 file encryption durations............. 74
CUDA memcpy and unified memory difference on AES-128 file

.. 75
CUDA, AES-NI and C++ AES-192 file encryption durations............. 76
CUDA, AES-NI and C++ AES-192 file encryption durations............. 7
CUDA, AES-NI and C++ file encryption performance difference....... 80

xiv

LIST OF ABBREVIATIONS

AES Advance Encryption Standard

AES-NI AES New Instructions

AMD Advanced Micro Devices

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Mode

CPU Central Processing Unit

CTR Counter Mode

CUDA Compute Unified Device Architecture
DES Data Encryption Standard

ECB Electronic Codebook Mode

FIPS Federal Information Processing Standard
GCN Graphics Core Next

GPU Graphics Processing Unit

IDE Integrated Development Environment
IEC International Electrotechnical Commission
IPC Instruction Per Clock

IPW Instructions Per Warp

ISO International Organization for Standardization
v Initialization Vector

MD5 Message Digest Algorithm 5

NIST The National Institute of Standards and Technology
PCle Peripheral Component Interconnect Express
RAM Random Access Memory

S-box Substitution box

SHA-1 Secure Hash Algorithm 1

SHA-2 Secure Hash Algorithm 2

SHA-3 Secure Hash Algorithm 3

SM Streaming Multiprocessor

SP Streaming Processor

SPN Substitution Permutation Network
TDEA Triple Data Encryption Algorithm
VRAM Video Random Access Memory

XV

CHAPTER 1

INTRODUCTION

1.1. Cryptography

Since the beginning of human interactions, securing valuable messages or concealing
the communication data has been one of the most important complications of
civilizations. Due to this need of protecting sensitive information, cryptography has
been developed. Its initial traces go back to the Egyptians 4000 years ago [1]. Since
then, it has been a crucial part of human civilizations. It played a critical role in both
world wars. In the time of the World War II, cryptographic mechanical cipher
machines were used widely. The most notable one of them is called the enigma
machine used by Nazi Germany to transmit messages. Its cryptanalysis played a vital

role on the course of the war.

The basis of cryptography is built on concealing valuable data from unwanted eyes.
By using various cryptographic techniques, the communication should look like
rubbish to eavesdroppers. However, the right person, whom the message is meant for,

could decode the gibberish communication into meaningful message.

Before the computer era, cryptography was solely based on linguistic patterns. With
the emergence of computers which made the old ciphers easy targets, cryptographic
algorithms have been designed based on some mathematical theories, making these
algorithms hard to break in practice. Ergo, newfound ciphers began to expand their

complexity in order to be more secure. Thus, modern cryptography was born.
Modern cryptographic algorithms consist of mainly three topics. These are called:

o Secret Key Cryptography: Uses a single key for both encrypting and
decrypting the data, also called as symmetric encryption. Dating back to
Ancient Rome where it is used as Caesar cipher to communicate in secret.
Some examples are: AES, DES, Blowfish, Serpent and A5/1

(”’S_}:TIITI gtric key

plaintext —| Encryption Algorithm Decryption Algorithm plaintext
ciphertext

Figure 1.1: Secret Key Cryptography

o Public Key Cryptography: Uses one key for encryption and one for
decryption purposes, also called as asymmetric encryption. Also used for

authentication and key exchange for symmetric encryption.

plaintext Encryption Algorithm — Decryption Algorithm plaintext
ciphertext

public key private key

Figure 1.2: Public Key Cryptography

e Hash Functions: Uses some transformations to irreversibly transform the
data so that the output becomes the fingerprint of the plaintext. Mostly used

for message integrity concerns. Some examples are: MD5, SHA-1, SHA-2 and
SHA-3

plaintext Hash Function message digest

Figure 1.3: Hash Functions

1.2. Block Ciphers

Block ciphers are deterministic cryptographic algorithms, operating on fixed length of
data. They belong to secret key cryptography section since they use one key for
encryption and decryption purposes. Most of the modern designs are based on iterated

ciphers in which each round of cipher algorithm is iterated over some predetermined

number. Usually, each round takes different round keys produced from the secret key
via key scheduling algorithm of the related cipher. The purpose of this key scheduling
process is to create different sets of keys in order to be used in round functions. In

this way, each round has a completely different key.

There are several design paradigms for block ciphers. One of them is called Feistel
Networks. In this pattern, the block to be encrypted is divided into two equal sized
halves. A dedicated round function is applied to one half using the round key while
the other half is XORed with the result of the round function half. Then, the two
halves are swapped with each other. DES is the quintessential Feistel block cipher
adopted in 1976 as a FIPS for the United States of America, which is illustrated in
Figure 1.4. It operates on 64 bits of blocks with 16 rounds while having the same key
size length [2]. However, it only provides 56 bits of security since the least significant
bits of each byte is a parity bit which are used for error detection. Due to its short
key size, security of the basic form of DES is compromised [3]. Moreover, NIST
publicly withdrew DES in 2005 while proposing a newfound secure version of the same
cipher, TDEA [3].

r R
Figure 1.4: DES Feistel Network block cipher

TDEA, also known as Triple DES, is basically three DES iterations where each
iteration uses different keys. Thus, total of three DES keys are used for one TDEA
iteration. NIST only allows using TDEA with three different keys since other options

decrease the security of the cipher [4]. Encryption works like series of encrypt-decrypt-
encrypt blocks while decryption is achieved through decrypt-encrypt-decrypt
operations while using different keys for each DES iteration. Each triple process
encrypts one block of 64 bits of data just like DES. Nevertheless, OpenSSL believed
in 2016 that the security of TDEA was considered low and removed from the default

cipher options. In order to use it, “enable-weak-ssl-ciphers” config must be given [5].

The other most known paradigm for block ciphers is called SPN. It is the direct
implementation of confusion-diffusion paradigm proposed by Claude Shannon who is
considered as the father of information theory [3]. Basically, in each round, confusion
and diffusion functions operate on input block. Besides that, round keys are added to
ciphertext in each round. Confusion paradigm makes the resulting ciphertext depend
on the input plaintext in such a way that it should not be exploitable. This increases
the vagueness of the ciphertext while making the relation between plaintext and
ciphertext as complicated as possible. Substitution part of SPNs, mostly utilizes on S-
boxes, provides confusion on the ciphertext. On the other hand, diffusion makes sure
that each piece of the input should influence many of the different ones in the output.
In this way, the redundancy of the plaintext is increased so that it should be obscure
enough to prevent attempts to deduce the key. In SPNs, permutation layers make
sure the diffusion paradigm is applied to the block cipher. The most notable SPN
block cipher is AES, also known as Rijndael.

1.2.1. Mode of Operations

Since block ciphers only work on fixed lengths of block sizes, operation modes are
needed for transforming encryption of a single block of data into a complete encryption
algorithm. Basically, a mode of operation gives instructions on how to connect blocks
in order to form a large data block. There are various modes of operations for different
purposes like ECB, CBC, CFB or CTR. Most of these modes of operations are
published by NIST with the correct implementation options and test vectors [6].

Some of the operations use IV for each encryption or decryption. IV must be random
and non-repeating in order to ensure of producing distinct ciphertexts for each block
when using the same key. This is considered a common problem for ECB. In ECB,
every block is encrypted with the same key, thus, resulting in the same ciphertext for
the blocks with the same plaintext. This creates a huge disadvantage since the
encryption of whole block is compromised due to lack of diffusion. NIST encourages

not to use this mode if this property is not desirable [6].

In this research, CTR mode (Figure 1.5) is selected since it allows parallelization of

both encryption and decryption. Parallelization is needed for CUDA implementations

4

as well as CPU ones. CTR mode uses successive values of a predefined counter. These
counter values are encrypted as a sequence of output blocks and they are XORed with
the plaintext to produce ciphertext, and vice versa. Each sequence counter must be
unique in order to create diffusion among input blocks. This is recommended by NIST
[6]. There are several methods for generating counter numbers but in this research,
the standard incrementing function proposed by NIST [6] is used. Basically, given an
initial counter block for a message, successive counter blocks are derived by applying

an incrementing function.

INPLUT BLOCK 1 INPUT BLOCH 2 INPUT ELOCK n
E‘ CIPH, CIPH, .o CIPH,
uf‘- QUTPUT ELOCK 1 QUTPUT BLOCK 2 QUTPUT BLOCK n
4
i

INPUT ELOCK n

CIPH,

OQUTPUT BLOCK n

INPFUT BLOCK 1

CIPH

OUTPUT BLOCK 1

COUNTER 2

INPUT BLOCK 2

CIPH, | « + + + &

DECRYPT

Figure 1.5: The CTR mode [6]

1.3. AES

Advanced Encryption Standard is a symmetric block cipher established by NIST in
2001. It’s the subset of the Rijndael block cipher which is developed by two
cryptographers from Belgium, Vincent Rijmen and Joan Daemen. AES has been
adopted by the U.S government and used worldwide. It became a U.S. federal
government standard [7] in 2002 and is included in the ISO/IEC 18033-3. AES is
approved by the NIST for protecting sensitive (unclassified) information that requires

cryptographic protection [8].

When NIST announced a competition for choosing a successor to Data Encryption
Standard (DES) which was starting to become vulnerable to brute-force attacks, the
international cryptographic community took the interest and sent several algorithms
to NIST in order to be evaluated. NIST expected all new algorithms to be blocks
ciphers with block size of 128 bits and key sizes of 128, 192 and 256 bits. After the
announcement in 1997, NIST accepted several symmetric key algorithms submitted

by the world cryptographic community.

In 1999, NIST selected five algorithms from the contestants for extensive analysis.
Implementations were tested for these five block ciphers considering speed, reliability
and resistance to various attacks both in hardware and software. After substantial
discussions, Rijndael cipher was selected as the proposed algorithm in 2000 [9] and
published by NIST as an encryption standard [7]. In 2003, the U.S. government
announced that AES could be used to protect sensitive information and after that it

became a U.S. encryption standard for data encryption.

After its successful use by the U.S. government, usage of AES has been immensely
increased in private sector. Since NIST used transparent selection process for the
election of candidates, security and cryptography experts put high level of confidence
in AES. This has allowed AES to become the most popular block cipher since its
release. Today, it is used in many protocols such as Secure Sockets Layer (SSL),
Transport Layer Security (TLS) and Hyper Text Transfer Protocol Secure (HTTPS).

1.4. AES-NI

Since AES is widely used for cryptographic purposes and considered the current
dominant block cipher, CPU manufacturers such as Intel and AMD proposed an
extension in 2008 to the x86 instruction set architecture, known as Advanced
Encryption Standard New Instructions Set, shortly AES-NI. These new instructions
enable fast and secure data encryption and decryption using AES defined by FIPS
publication number 197 [7]. Since the encryption and decryption processes happens
on the hardware level inside CPU, AES-NI has significant performance benefits
considering its software implemented rivals. AES-NI supports every standard key
length of AES using the standard block size.

Intel suggests that AES-NT increases performance by more than an order of magnitude
for parallel modes of operation such as CTR and provides roughly 2-3 fold gains for
non-parallelizable modes like CBC [10]. It provides six new instructions for AES that
offer full hardware support. These instructions consist of processing each round and
key scheduling. In the White Paper document [10] provided by Intel Corporation,

examples implemented in C programming language can be found for each key size.

6

Besides improving performance, AES-NI provides some security benefits such as
preventing side channel and cache-based attacks since it does not rely on table-based
lookups for each AES round processing. In addition to that, it is easier to implement
AFES-NI version of the cipher concerning the software implementation due to prepared

instructions, reducing the overall code size.

1.5. GPU

GPU is a piece of electronic circuit that is specialized in fast graphics rendering
especially in computer games and image processing. GPUs are widely used in
embedded systems, personal computers, mobile phones and game consoles. They are
originally used solely for gaming. However, the processing power residing inside these
cards unveiled a new approach. Modern GPUs have advanced capabilities which are
being harnessed more broadly for accelerating computational workloads. Their highly
parallel structure makes them more efficient than CPUs for processing large blocks of

data in parallel.

In terms of architecture, GPU is composed of hundreds of cores that can handle
thousands of threads simultaneously. On the other hand, CPU has just a few cores
with lots of cache memory that can handle a few software threads at a time [11].
Basically, CPU has extremely intelligent sparse cores while GPU has surplus of cores

with shortage in cleverness in terms of instructions.

Figure 1.6: The difference between a CPU and a GPU [11]

GPUs have been becoming more and more popular nowadays. The reason for that can
be interrelated with several topics. One of them is crypto mining. GPUs offer efficient
cryptocurrency mining due to its architecture considering CPU. When cryptocurrency
algorithms were launched around 2014, the demand for GPUs on the market

skyrocketed. This also increased the price tags of GPUs.

Another topic can be considered as deep learning. Deep learning is a subset of Al and
machine learning that uses multi layered artificial neural networks to deliver

improvised accuracy in tasks such as object detection, speech recognition etc. Since

the training part of neural networks take too much time, using GPU comes in handy
on this topic. Considering CPU, GPU offers a huge performance difference on the
training of deep learning algorithms. For instance, training times for AlexNet, a
convolutional neural network designed by Alex Krizhevsky and the winner of 2012
ImageNet contest by a huge margin due to the utilization of GPUs during training
[12], can be found in Figure 1.7 which shows that using a high-end GPU results in
being almost 15 times faster than using a high-end CPU [13]. This just shows how

much power GPUs have in store.

Training AlexNet

7
6
5
4
3
2
1
0

16-core Xeon CPU Titan Titan Black Titan X
cuDNN cubDNN

Figure 1.7: Training days for AlexNet [13]

GPUs are widely used for cryptographic purposes since most of the modern
cryptographic algorithms are embarrassingly parallel and can easily be implemented
for multithreaded architectures. In this regard, the power that can be extracted from
GPUs can greatly enhance the output performance as they offer greater efficiency in
terms of parallelism with respect to CPUs. For instance, the first SHA-1 collision was
found with the help of GPUs by combining many special cryptanalytic techniques.
The computational effort spent in this attack was equivalent to 2% SHA-1
compressions [14]. According to their calculations, this would take approximately
6,500 CPU years or 100 GPU years. GPU shortens the total time spent on the attack
by 65 times. Moreover, another research proved that optimizations can even further
improve the efficiency that GPUs offer as 9 days of brute force attack on CRYPTO1
stream cipher was able to be decreased to less than 5 hours with various techniques
[15]. This shows that GPUs provide great performance output and it can even be
extended with special implementation techniques. There is also a research concerning
chosen-prefix collision attack on SHA-1 and MD5 [16]. While the computation cost of
this attack is somewhat practical, it still requires huge computational power which

means thousands of GPUs in order to obtain the chosen-prefix collision in a reasonable

time. Research also shows that collision attack on MD5 has a complexity of 2*° which

is very feasible to do for a GPU. Thus, GPUs are very useful in terms of cryptographic

algorithms and offer a lot of power.

Table 1.1: GPU Market share changes [17]

GPU Market share in Market share in Market share in
Supplier 2017 Q3’18 Q4’18
NVIDIA 66.3% 74.3% 81.2%

AMD 33.7% 25.7% 18.8%

There are two big GPU manufacturers in the world: NVIDIA and AMD. GPU market
is fairly divided to these two corporations. However, according to Jon Peddie
Research; NVIDIA has the overwhelming share with 81.2% in Q4 2018 while AMD
only has 18.8% [17]. Moreover, Steam, a popular digital distribution platform
developed by Valve Corporation for purchasing video games, provides user statistics
on GPU usage. According to this usage statistics, NVIDIA GPUs dominate the gaming
market as well with 75.02% share as of February of 2019 [18]. Due to this dominance
among the GPU market, in this research, CUDA developed by NVIDIA is selected for

parallel processing platform.

PC VIDEO CARD USAGE BY MFG

Figure 1.8: Steam GPU usage statistics [1§]

1.6. CUDA

CUDA is a parallel computing platform and programming model developed by
NVIDIA for GPUs, introduced in 2006. Its main purpose is to solve complex
computational problems in a more efficient way than a CPU can. GPU accelerated
applications developed by using CUDA are programmed with popular languages like
C, C++, Fortran, Python and MATLAB. CUDA enables developers to speed up the
computation by using the impressive floating-point performance of GPUs. Since GPUs

have a lot of compute intensive cores, it allows CUDA to harness the highly

parallelizable data processing potential. General power of CUDA comes from parallel

computations where the same program is executed on many data elements.

CUDA utilizes threads on GPU cores so that large data sets can be processed at the
same time. Basically, it allows developing applications which scales its parallelism to
leverage the increasing number of GPU cores. Without CUDA, it would take lots of
time to code something onto the GPU. So, it can be considered as an efficient

framework for writing complex programs for GPU architecture.

1.7. Overview

In this research, CPU and GPU implementations of AES are compared with each
other and their performance is evaluated. Several GPU implementations are developed
in order to reach the highest throughput and their performance values are also assessed
with each other to find the best GPU implementation among them. Several topics like
occupancy, cache hit rate and bank conflicts related to CUDA are discussed for these
GPU implementations. Besides that, CPU implementations are implemented on C++.
They can be divided to two pieces: base C++ implementation and AES-NI version on
C++.

Implementations are developed on a 64-bit Operating-System, Microsoft Windows 10
Home Edition, with 16 GB RAM and x64-based processor, Intel Core i7-4770K CPU
with the base processor frequency of 3.50 GHz. This CPU can increase the frequency
of its cores with Intel Turbo Boost Technology to 3.90 GHz. It is fairly an old CPU
launched on Q2’13. Moreover, it has Intel AES New Instructions deployed which

enables to encrypt or decrypt using just CPU instructions.

For GPU implementations, NVIDIA GTX 970 graphics card is used. This card has
the compute capability version of 5.2 and 1664 CUDA cores with the base clock
frequency of 1,050 MHz. It has 4 GB GDDRJ5 memory, VRAM, with 256-bit memory
interface [19]. CUDA version 9.2 is used with this card. This GPU comes with a
software called GPU Tweak which provides an intuitive interface to access serious
functionalities of GPU. From this software, GPU clock frequency is boosted to 1,400
MHz which increases the overall performance output of the card. Every
implementation in this research is run with this specification. According to our
calculations, this boost creates approximately 16% performance increase for each
CUDA implementation. Furthermore, CPU can also be overclocked like this case but
the performance difference between GPU and CPU is so much that even with

overclocking the CPU, its output cannot reach the performance level of CUDA.

10

While developing the implementations, Microsoft Visual Studio 2017 IDE Community
Edition is used. C++ and AES-NI implementations are compiled with Visual C++
2017 compiler. AES-NI development is prepared with the help of AES-NI White Paper
published by Intel Corporation [10]. For the whole process of development, a private
GitHub repository is used for the version control of the code. CUDA part of the
implementation is developed using C++ with Visual C++ 2015 compiler. The reason
for selecting a different compiler for CUDA considering CPU implementations is that
CUDA version 9.2 was not supported by the newly Visual C++ 2017 compiler.
Therefore, Visual C++ 2015 compiler is selected for CUDA implementations.

Three types of implementations are developed for AES-128, AES-192 and AES-256
individually. First of them is exhaustive search in which the application tries to find
the correct key for given a plaintext and a ciphertext. Secondly, on-the-fly encryption
using CTR mode is developed. After that, file encryption using this CTR

implementation is developed. The performance difference between them is discussed.

For GPU implementations, several distinct optimization techniques are applied on
exhaustive search implementation of AES-128. These different techniques are
examined, and their advantages and disadvantages are discussed. From the obtained
results, AES-192 and AES-256 implementations are developed for CUDA.

1.8. Related Work

GPUs are widely used for several researches in order to show that they are the better
choice when it comes to cryptographic algorithms. In the paper named as
“Cryptanalysis of the Full AES Using GPU-Like Special-Purpose Hardware”,
researchers investigated the feasibility of a hypothetical supercomputer consisting of
3.10" GPU-like AES processors which can reach a throughout of up to 10" AES
operations per seconds [20]. Although the speed is very promising, they concluded that
the cost of building such hardware is so high it would be roughly 1.5 trillion USS$ in
2009. Another research, “Fast software AES encryption”, showed that GPU has the
best performance among other processors like 8-bit and 32-bit microcontrollers [21].
NVIDIA 8800 GTX card is used in that research which has 575 CUDA cores. Its pre-
computed key scheduling encryption, like CTR case, produces throughput of 23.3
Gb/sec on AES-128, which is approximately 2.91 GB/sec. Since they did not release
source codes, it is not feasible to exactly compare our results with theirs. However,
our CUDA implementation can reach 37.52 GB/sec. Considering their GPU has 575
CUDA cores and ours has 1664 CUDA cores, almost 3 times of improvement is
expected considering normal cases. However, advancement margin is huge, and it is

not only because we use a more up-to-date card, but because of our better optimization

11

techniques. Moreover, that research shows throughput of 12.9 GB/sec when key
schedule is not pre-computed just like exhaustive search case. This equals to
approximately 1.61 GB/sec while our best exhaustive search implementation can reach
26.3 GB/sec throughput.

“Acceleration of AES encryption on CUDA GPU” paper investigated GPU capability
of AES encryption on CUDA [22]. They were able to achieve 35.2 Gbps AES encoding
throughput with NVIDIA GeForce GTX 285 (240 CUDA cores) which strongly shows
the great potential of CUDA for cryptographic accelerator in that research. This ratio
equals to 4.4 GB/sec and it is nowhere near to our results on CUDA AES-128 CTR
mode which is 37.52 GB/sec. They also suggested the best case for storing look-up

tables and round keys is shared memory which is the case of our research.

Another research was conducted on the power efficiency evaluations of block ciphers
on Kepler and AMD GCN [23]. According to the experiment results which are done
on GTX 680 (1536 CUDA cores) and Radeon HD 7970 (2048 cores), HD 7970
consumed approximately 30% more power than GTX 680 on all variants of AES.
However, Radeon HD 7970 produced more throughput as expected since it has many
more CUDA cores than GTX 680. The search is concluded that Kepler architecture
is designed to be effective and less power consuming while GCN is focused on the

throughputs of arithmetic and logical instructions.

Researchers from AMD investigated the computing resources of GPU, AMD HD 2900
XT (320 cores), in “Symmetric Key Cryptography on Modern Graphics Hardware”
paper [24]. According to them, this single graphics card is able to achieve data rates
of 3-30 Gbps. It also speeds up symmetric key implementations by 6-60 times with
respect to high performance CPUs. This indicates the power difference between GPU
and CPU. However, their CUDA result which is up to 3.75 GB/sec is still not better
than our findings. Another research is done on GPU acceleration of block ciphers
(AES, Blowfish, IDEA, DES) in OpenSSL library [25]. Results show that GPU brings
about 8-10 times improvement in speed considering CPU. Therefore, they were able
to accelerate symmetric block ciphers using GPUs compared to traditional CPU
implementations. Considering full disk encryption, a research named as “Fast disk
encryption through GPGPU acceleration” is done on XTS mode of operation applied
together with Twofish algorithm within TrueCrypt suite [26]. NVIDIA GTX 260 (192
CUDA cores) is used in that research and it is found that GPU outperforms a four
core CPU by 67%. They stated that using GPU as co-processor for disk encryption is
proved to be an effective accelerator for both single users and network area storage

systems.

Intel also published a paper “Breakthrough AES Performance with Intel AES New
Instructions” concerning the speeds of AES-NT implementations on CPU [27]. In that

12

research, authors showed the excellent performance of AES algorithm on Intel Core
i7-980X Extreme Edition CPU using AES-NI. This CPU has 6 cores and 12 threads.
They achieved approximately 0.24 cycles per byte on 6 cores for AES-128 on parallel
modes. This CPU has max turbo frequency of 3.60 GHz. If we take this into account
as 3.60 x 10” cycles per second, according to equation (used for every cycle per byte

calculation in this research):

cycles per second
cycles per byte = P T

bytes per second

0.24 cycles per byte is equivalent to 13.96 GB/sec throughput on this CPU. This is
an extreme edition CPU with a very high price tag and our best CUDA
implementation on AES-128 CTR mode is better than their result by a big margin
with using almost 5 times cheaper GPU. When our GPU clock frequency is considered
as 1.4 GHz, the same equations shows 0.03 for our cycle per byte result which is
equivalent to 37.52 GB/sec. It must be noted that our CUDA implementation is run
on 1664 CUDA cores. This basically shows that each CUDA core has approximately
57.83 cycle per byte value while each CPU cores of Intel White Paper has around 1.44
cycle per byte. This also proves that CPU cores are much more advanced and efficient
than CUDA cores. However, when large amounts of CUDA cores are gathered together

to work, they can outperform CPU cores like the case of this research.

1.9. Our Contribution

In this research, we present AES implementation techniques for CUDA on exhaustive
search, on the fly CTR encryption and file encryption using CTR mode. Several
different techniques for AES implementation on are described and they are compared
with each other using Nsight results of AES-128 exhaustive search. The best kernel
among them is selected and compared with CPU implementations, which consist of
AES-NI and C++4. Other AES key lengths are also implemented in this research.
According to our results, CUDA appears to be the superior option. It outperforms
even AES-NI which is the hardware implementation. CUDA shows it superior power
difference on exhaustive search and file encryption in which it is faster around 20
times than the best CPU implementation. Our results show that CUDA is still the
fastest option on CTR implementation, but it is only 4 times faster than AES-NI.

AES is used all around the world. Findings of this thesis are important since using
GPU can significantly improve the performance of AES. For instance, theoretical
experiments on AES can be verified on GPU easier than CPU. Another topic that
CUDA provides performance difference is full disk encryption. By using CUDA,
applications which use full disk encryption should take lesser time. Moreover, this

research also shows that by using CUDA, AES based cryptographic algorithms like
13

SHA-3, RECTANGLE etc. can be greatly improved in performance if they are
implemented on GPU. Cryptocurrency mining is another topic in which GPUs
outperform CPUs. Moreover, algorithms used on these cryptocurrencies are being
improved each day in terms of efficiency. Optimizations done on these algorithms
increase the capability of cryptocurrency mining which in return results in greater
cryptocurrency gains. So, in this regard, keenly optimizing the code is also important

considering the efficiency of the results.

This thesis consists of several chapters. Chapter 2 explains the basic structure of AES
and its key schedule. It also provides information on how AES can be implemented as
software. Chapter 3 is about CUDA and its architecture. It is important to understand
what kind of environment that CUDA provides in order to optimize the code. For this
reason, aspects related to GPU programming like thread and memory hierarchy are
explained in a detailed manner. Chapter 4 presents the implementation results of
CUDA, AES-NI and C++. 6 different kernels are meticulously compared with each
other using Nsight results of AES-128 exhaustive search. After that, the best kernel
is selected and compared with CPU implementations of AES-NI and C++4. This
process is done for 128, 192 and 256 bits of AES keys. Moreover, the same comparison
between GPU and CPU is done for on the fly CTR and file encryption

implementations. The results are presented in Chapter 5.

14

CHAPTER 2

AES

2.1. Design Specifications

AES processes 128 bits data blocks for encryption while using cipher keys with length
of 128, 192 or 256 bits. It uses a rectangular structure to hold these bits. In this
rectangular structure, basic processing unit is a byte which consists of consecutive 8
bits. Ergo, AES has the option to work on 16, 24 and 32 bytes of keys respectively.
According to these key sizes, number of rounds is changed for each encrypted block;
10, 12 and 14 respectively (Table 2.1). Internal rectangle structure of AES can be
considered as a two-dimensional array of bytes which is called the state. Every state
consists of four rows of bytes. At the beginning of the encryption, the input block

consist of 16 bytes is distributed to this rectangle structure column-wise (Figure 2.1).

Table 2.1: AES Key-Block-Round Combinations

Figure 2.1: State and cipher key layout for block size of 128 bits and key of 192 bits

Block Size | Key Length | Number of Rounds
(byte) (byte)

AES-128 16 16 10

AES-192 16 24 12

AES-256 16 32 14
Po Da Ps | P12 l{l) k.; 1‘\ l\'gg /Cu‘_; 1(3()
P1 Ps | Po | P13 k1 ks | ko | kiz | k17 | k2a
P2 | Ps | P1o | P14 ko | ke | k1o | k1a | k1g | koo
p3 Pr | P11 | P15 A‘;; IL.T .I\‘“ I{.I;_', kw l"ggg

[9]

15

AES is implemented on four round transformations. These individual transformations;
SubBytes, ShiftRows, MixColumns and AddRoundKey, are responsible for changing
the state with respect to their purposes. These four transformations compose the round

transformation which can be explained in the pseudo code below:

Round (State, RoundKey) {
SubBytes (State)
ShiftRows (State)
MixColumns (State)
AddRound (State, RoundKey)

}

However, the final round of the cipher is slightly different as MixColumns

transformation is removed.

FinalRound (State, RoundKey) {
SubBytes (State)
ShiftRows (State)
AddRound (State, RoundKey)

}

Before the round transformations, initial cipher key is used in AddRound
transformation. After that, for n-1 rounds (Table 2.1), Round function is processed.
In the last round, FinalRound function is used. Overall AES encryption structure can

be demonstrated as:

AddRound (State, RoundKey)

// For n-1 rounds

Round (State, RoundKey) {
SubBytes (State)
ShiftRows (State)
MixColumns (State)
AddRound (State, RoundKey)

}

// For final round

FinalRound (State, RoundKey) {
SubBytes (State)
ShiftRows (State)
AddRound (State, RoundKey)

2.1.1. SubBytes Transformation

SubBytes transformation is responsible for non-linear byte substitution that operates
independently on each byte of the state using a predetermined substitution table called

the S-box (Figure 2.2). So, in this stage of the encryption, every individual byte of the

16

state is changed according to the S-box and the new value is overwritten onto the
current one. S-box operates on 4 bits of two index structure of a byte. For instance,
if the byte representation of statei, is {47}, then the substitution value can be found
by the intersection of the row with index 4 and the column with index 7. This would
result in {47} having the value of {a0} (

Table 2.2).
Sool Sni |54 |8 S-Box 5 s s s
0.0 | fo1 | So.2 | So.34— 00 | Soa | So2 | Sos
__,--"/-L —
510 s 3253) © fz | Sis
r.c Sf (i
Syol %21 S22 %23 S0 | S21 | F22| 523
S30| S31 [F32 553 S50 | S31 | Fa2 | T3

Figure 2.2: SubBytes applies the S-box to each byte of the state.

Table 2.2: AES S-Box: Substitution values for bytes (in hexadecimal format)

0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
63 | 7c | 77 | 7Tb | 2 | 6b | 6f | ¢ | 30 | 01 | 67 | 2b | fe | A7 | ab | 76
ca | 82 | 9 | 7d| fa | 59 | 47 | {0 | ad | d4 | a2 | af | 9c | ad | 72 | <O
b7 | fd | 93 | 26 | 36 | 3f | f7 | cc | 34 | a5 | e5 | f1 | 71 | d8 | 31 | 15
04 | c7 | 23| c3 |18 |96 | 05| 9a |07 | 12| 80 | e2 | eb | 27 | b2 | 75
09 | 83 | 2c | la|1b | 6Ge | ba | a0 | 52 | 3b | d6 | b3 | 29 | e3 | 2f | 84
53 | dl1 | 00 | ed | 20 | fc | b1 | 5b | 6a | cb | be | 39 | 4a | 4¢c | 58 | cf
dO | ef | aa | fb | 43 | 4d | 33 | 85 | 45 | f9 | 02 | 7f | 50 | 3¢ | 9f | a8
51 | a3 | 40 | 8f | 92 | 9d | 38 | f5 | bc | b6 | da | 21 | 10 | ff | f3 | d2
cd | Oc | 13 | ec | 5f | 97 | 44 | 17 | ¢4 | a7 | 7Te | 3d | 64 | 5d | 19 | 73
60 | 81 | 4f | dc | 22 | 2a | 90 | 83 | 46 | ee | b8 | 14 | de | 5e | Ob | db
e0 [32 | 3a | 0a |49 | 06 | 24 | 5¢ | c2 |d3 | ac |62] 91 |95 | ed | 79
e7 | 8 | 37 | 6d | 8d | d5 | 4e | a9 | 6¢c | 56 | f4 | ea | 65 | 7Ta | ae | 08
ba | 78 | 25 | 2¢ | 1c | a6 | b4 | ¢c6 | e8 | dd | 74 | 1f | 4b | bd | 8b | 8a
70 | 3e | b5 | 66 | 48 | 03 | 6 | Oe | 61 | 35 | 57 | b9 | 86 | c1 | 1d | 9e
el | 8 | 98 | 11 [69 | d9 | 8¢ | 94 | 9b | 1le | 87 | €9 | ce | 55 | 28 | df
8¢ | al | 89 | 0d | bf | e6 | 42 | 68 | 41 | 99 | 2d | Of | bO | 54 | bb | 16

(o [a]o |T(e ol |(h|w| N |(~|o

17

2.1.2. ShiftRows Transformation

ShiftRows transformation is all about shifting the bytes of the last three rows of the
state. The first row is left unchanged. Each byte of the second row is shifted one to
the left. Similarly, the third and fourth rows are shifted two and three times to the
left respectively (Figure 2.3).

So.0| Soa1 | S0 | Sos Soo | So1 | Soa | Sos

Spo | S| Sz |13 IE@] S| S | Sz | Swo
S30| S21 S22 | $23 @1 $32 | 23 | S20 | S22

S30| 531 [F22 |53 [D:D:""" S33 | Sa0 | F31 | a2

Figure 2.3: ShiftRows cyclically shifts the last three rows of the state

2.1.3. MixColumns Transformation

MixColumns transformation operates on the state column by column (Figure 2.4).
This operation is all about matrix multiplication of the related columns. Inside
MixColumns function, the resulting column is obtained by a matrix multiplication

which can be considered as multiplication in Galois Field, GF(2%) [9].

MixColumns ()

50 ,f‘f R‘H‘*.-... .sgf
S0 So.2 | So3 5.0 50,2 | So.3
_ :
S1.0 “1e S12 | S13 S0 “Le S12 | S13
§3.0 %2 532 | 523 53,0 jll‘-“ 522 | Sa23
S30| S3c 532|531 530 'S'I:'-f 532 | 533

Figure 2.4: MixColumns operates on the state column by column

18

se. | [02 03 01 01]]sg.
5, 01 02 03 01(|sg
55 01 01 02 03||s,.
(03 01 01 02]|s,

Figure 2.5: Matrix for multiplication in MixColumns transformation

2.1.4. AddRoundKey Transformation

In this transformation, each byte of the round key which is generated in key expansion

section of the cipher is added to the state by simple bitwise XOR operation.

-S":'.lf' - -S":l.lf'
So.0 2| So3 | L Soofl + p2|Sos
. Wis .
-Sl.l'." Ffd-..-‘ i—c ---"-n-___-- - -51.1‘." I §
510 173 E j i) ST 12 | 513
W, o | Wiss .
|S- - ! IS- |
829 le 2823 33_:] le D 2 '53.1
T 1 .
S50 || S5, |2 523 S50 || $3.c pa|Sas

Figure 2.6: AddRoundKey XORs each column of the state with a word from the key
schedule

2.2. Key Schedule

Each round key is derived from the cipher key by means of the key schedule algorithm.
This process consists of two components: Key expansion and key selection. For every
round of AES, a new round key is needed for AddRoundKey transformation. However,
since there is different size of key lengths but one block size; each key schedule

algorithm for individual key length is slightly different.

For every key scheduling algorithm, cipher key should be considered as sections of 32
bits (4 bytes). Moreover, there exists a round constant value named as r; which can
be found in a predetermined look up table (Table 2.3) with respect to round counter
i. Other than that, there is just XOR operations and basic S-box substitutions for
every key schedule algorithm. S-box operations are usually applied to each byte of the

19

last 4-byte section of the input cipher key. The output cipher key of the current round

is sent to the next key scheduling round as an input cipher key.

Table 2.3: Round constants for key scheduling (in hexadecimal format)

i (round O 1234|5678 91011|12]13]|14
number)
r; (constant |00 |01 |02|04|08|10|20|40|80|1b |36 |6c |d8 |ab|4d

value)

2.2.1. AES-128 Key Schedule

For AES-128, there is nothing special for key scheduling algorithm other than shifting
the last 4 bytes to left and taking their S-box substitution which is the same procedure
for all key lengths. After that, the individual 4-byte sections are XORed according to
the proposed key schedule (Figure 2.7). Key selection part is also trivial since the
block size and cipher key length is the same. The result of every round of key schedule
is a round key waiting to be used in AddRoundKey transformation with respect to
round numbers. To illustrate, each round key is given in Table 2.4 for zero valued

initial key.

| o | Ko | Ko | Ko

%

0000

%%

r!
da—
e i
A

I Kiin I ji:fl.'.Jj- I Jil'jr'._‘-'l I L(i,3)

Figure 2.7: AES-128 key schedule algorithm [28]

20

Table 2.4: AES-128 key schedule test vector for zero valued key

Round Number Round Key
00000000000000000000000000000000

62636363626363636263636362636363
9b9898c9f9fbfbaad9b9898c9f9fbfbaa
90973450696ccffaf2£457330b0£fac99
ee06da7b876al158175%e42b27e91lee2b
7£2e2b88£8443e098dda7cbbif34b9290
ec614b851425758c99££09376ab49%ba’
217517873550620bacaf6b3cc6lbf09%b
0ef903333ba%9613897060a04511dfa9f
bl1d4d8e28a7db9dald7bb3dedc664941
bdef5bcb3e92e21123e951cf6£8f188e

O |0 | [T | [W (N |~ O

—_
)

2.2.2. AES-192 Key Schedule

For AES-192, key expansion is generally the same with AES-128. The difference lies
in the key length. For every round of key expansion, 24 bytes of round key is produced.
However, cipher only works on 16 bytes of block size. Ergo, the last two 4-byte sections
are passed to the next round. In other words, for each two successive rounds of key
expansion, three round keys are produced. To illustrate, each round key is given in

Table 2.5 for zero valued initial key.

[Koy | Koo | Kz | Kia) | Koy | K

A
WL ;r’:“\ —
b Wi
w1 :.f'“\
G

b i

w1/
I k:gﬁ | hLM I hiruk I kuth I RJTLE I kHILN |

Figure 2.8: AES-192 key schedule algorithm [28]

21

Table 2.5: AES-192 key schedule test vector for zero valued key

Round Number Round Key
00000000000000000000000000000000

00000000000000006263636362636363
62636363626363636263636362636363
9b9898c9f9fbfbaad9b9898c9f9fbfbaa
9b9898c9£9fbfbaad90973450696ccffa
£2£457330b0£fac9990973450696¢ccffa
c81d19a%al171d65353858160588a2d£f9
c81d19a%al71d6537bebf49bda%a22c8
891fa3a8d1958e51198897£8b8f9%41ab
c26896£f718f2b43£91ed1797407899c6
59f00e3eel094£9583ecbc0£901e0830
0af31fa74a8b8661137b885ff272c7ca
432ac886d834c0b6d2c7df11984c5970

O |0 | [[T | [W (N |~ O

—_
)

—
—_

—_
(\]

2.2.3. AES-256 Key Schedule

For AES-256, key expansion is a little bit different than the other key lengths. It has
an additional set of operation like the last 4-byte without using round constant. For
every round of key expansion, two successive round keys are produced. To illustrate,

each round key is given in Table 2.6 for zero valued initial key.

Table 2.6: AES-256 key schedule test vector for zero valued key

Round Number Round Key
00000000000000000000000000000000

00000000000000000000000000000000
62636363626363636263636362636363
aafbfbfbaafbfbfbaafbfbfbaafbfbfb
6f6c6ccf0d0f0facefececcf0d0f0fac
7d8d8d6ad77676917d8d8d6ad 7767691
5354edcl5e5be26d31378ea23c38810e
968a81cl41fcf7503c717a3aeb070cab
9€aa8f28c0f16d45flcbe3e7cdfeb2e9
2b312bdfeacddc8f56bcabbS5bdbbaale
6406£d52a4£79017553173£098cf1119
6dbba90b0776758451cad331lec71792f
e7b0e89c4347788b16760b7b8eb91ab?2
74ed0bal739p7e252251adl4ce20d43b
10£80al1753b£f729¢c45¢c979e7¢cb706385

© [0 || [T | [W (N (|~ |O

—
(en)

—_
—_

—
[\)

—
w

—
S

22

| Mo | %o [%o | Micrs | Keo 1 %un 1 Rz | %as |

fan
E

Fd Y

T

fd)
L7

LDy
7

il Y
W

d i)
w1/

L Moo | %o | %oy | Ko | Kz | Saon | Ky | Ko

Figure 2.9: AES-256 key schedule algorithm [28]

2.3. Implementation Aspects

There are several ways that AES can be implemented inside a software. These are:

No look-up tables: All transformations of an AES round are calculated in
normal way and only SubBytes transformation uses look up tables for S-box
calculation. This is the basic AES implementation anyone can think of.

Four look-up tables: The entire round (SubBytes, ShiftRows, MixColumns)
of AES is replaced by four look-up tables [29]. Only operation left is adding
the round key, addRoundKey. For every round, each byte of state is
transformed by using one of the four look-up tables based on the row number
where that byte is in the AES state. To illustrate, first row of AES state uses
first look-up table, second row uses seconds look-up table and so on. For each
resulting AES column, table input bytes are shifted by one byte to the right
just like ShiftRows operation only this time every row is shifted. Every result
of table look-up is XORed with each other and then XORed with round key.
At the end of this process, four columns, each consists of four bytes, are

calculated. These columns state the result of round transformations. In Figure

23

2.10, the first column of an AES state is illustrated. For this column, which is

four bytes, four different one-byte table look-ups are used from different parts

of the state. Result of each one, which is four bytes as well, is XORed with

each other. Table annotations are stated as different colours. The rest of the

columns are illustrated as well in Figure 2.11, Figure 2.12 and Figure 2.13.

po fpa | pe | piz PE! piz
P1 fps | Pa | P13 P1 | ps §Po | Piz
P2 §Ps | P10 | P14 . P2
pa e | P11 | pis pa

[]

T2

T3

Figure 2.10: Four look-up table implementation for the first column of the state with

table annotations

ol pa § PR | P12
PiL g pPs § Po|Pis
P2 § P& g P10 | P14
px | pr fpit | pis

Tz

L] (B L]

Figure 2.11: Four look-up table implementation for the second column of the state

| e |
I|'.P|I j.'l. ;I'JH j.’l'_'_
P Ps] Pa s
pe | Pe § P1of Pud
pa | pr QP ps
—

with table annotations

Figure 2.12: Four look-up table implementation for the third column of the state

24

with table annotations

po | pa | pe T3
P ps | po
P2 | Ps | F10 T2
ra rr Pi1 T3

Figure 2.13: Four look-up table implementation for the fourth column of the state
with table annotations

e One look-up table: This implementation has the same concept of four look-
up tables, but it has only one table instead of four [29]. For each round, each
byte of state is transformed by using the only look-up table. However, for
every row, the output of look-up table is shifted to right by one byte with
respect to row number. To illustrate, first row uses the base look-up table
while the second row uses one byte right shifted result of look-up table. Third
row uses two byte right shifted result and so on. Every result of table look-up
is XORed with each other and then XORed with round key just like the four
tables look-up implementation. At the end of this process, four columns, each
consists of four bytes, are calculated. In Figure 2.14, the first column of an
AES state is illustrated. Table annotations are stated with different colours
based on bitwise shifting. They are the shifted versions of the initial table.
The rest of the columns are illustrated in Figure 2.15, Figure 2.16 and Figure

2.17 respectively.

o P4 PR P12

PL g Ps | Po | P13

P2 § Pe | P10 | P14

3 pro| Pl pis

Figure 2.14: One look-up table implementation for the first column of the state with
table annotations as bitwise shifting

25

po fl pa § pe | pi2

(=]
[

FiL §Ps § P9 | P13 TO»>E
72 Pe § P10 | P14 To»>16
P g Pr QP | pis TO>>24

Figure 2.15: One look-up table implementation for the second column of the state
with table annotations as bitwise shifting

po | pa § pe l pi2

1| Ps § Fo gP1s

r: | pr g P11 g pis

Figure 2.16: One look-up table implementation for the third column of the state
with table annotations as bitwise shifting

| e |
po | pa | ps § P12 10
1| Ps | P9 §P1a TO>>8
Pz | Ps | 10§ P14 TO>>16
P2 | pr | P11 | pis

Figure 2.17: One look-up table implementation for the fourth column of the state
with table annotations as bitwise shifting

e AES-NI: AES-NI architecture consists of instructions for one round
encryption and key schedule with full hardware support. Implementation is
easy since it can be achieved just by calling instruction functions published
by CPU manufacturer. This implementation should be extremely fast
concerning the other options since it fully utilizes the hardware. It does not
rely on additional look-up tables, working just like the first option. According
to CPU manufacturer, published instruction documents must be inspected in

order to implement AES-NI version of Intel. In this research, Intel CPU is

26

used. Implementation is developed through the published paper of Intel AES
New Instructions Set [10].

2.3.1. Creating Look-up Tables

There are 4 different look-up tables, each one takes one-byte sized input and gives
four-byte sized output. So, they take up for 4 Kbyte of total space. 1 Kbyte space is
needed for one table look-up solution since it only relies on one table. In Figure 2.18,
table definitions are given. Stated multiplication operator is Galois Multiplication in
Galois Field, GF(2%), explained by the authors of the cipher [9]. S[a] indicates S-box
transformation where a is between 0 and 255, which is the available decimal numbers
for a byte in computer representation. A shifting pattern can be seen among the tables,
in which every table is shifted one byte to the right considering its predecessor. This
is the basic concept in the implementation of one look-up table; every table is created
from table numbered zero and shifted one, two or three bytes to right according to
their number. For instance, table numbered three is generated from table numbered

zero by shifting three bytes to right.

[s[a]e02] [S[a]e03] [Sla]] [Sla]]

Slal Sla]e02 Sla|e03 Slal
Tolal= S[al Tilal= Slal Llal= S[ale02 Tlal= slale03 |
| Sla]e03] | sla] | Sla] | | S[a]e02 |

Figure 2.18: Look-up table definitions [29]

27

CHAPTER 3

CUDA

3.1. Thread Hierarchy

CUDA allows using thousands of parallel threads with high performance algorithms
running on GPUs but in order to understand the efficiency beneath the CUDA, its
architecture on GPUs, which is what CUDA is built upon, must be studied. From this
point, host keyword will be used for CPU side while device will be used for GPU
applications. In CUDA, a function that is called from host and executed N times in
parallel by N different CUDA threads on device is called a kernel. Kernels must be
defined using global declaration since the initial code will be started from host anyway
(Table 3.1). Since C++ version of CUDA is used in this research, every declaration
related to CUDA will be C++ version. In C++, kernels launches are specified by
using triple angle bracket syntax <<< >>>.

Table 3.1: Kernel Qualifiers for CUDA

Kernel Qualifier Description

_global Exposes the kernel to be called from host
(runs on GPU, called from CPU)

_device These kernels can only be called from device
(runs on GPU, called from GPU)

__host___ These kernels cannot be executed on device
(runs on CPU, called from CPU)

A GPU consist of many CUDA threads which are single execution units that run
kernels. They can be considered as extremely lightweight CPUs. Each thread is given
a unique id by CUDA and has its own registers and private memory. Threads use this
unique id to access related memory addresses and make control decisions. Several
threads are grouped together, and they form thread blocks which are controlled by
SMs. Each SM has memory pool divided between all running threads inside the block.
The number of CUDA cores in a SM depends on the GPU. For instance, GTX 970
has 13 SMs with 128 CUDA cores each. CUDA cores can also be called as SP. CUDA

needs at least one block for a kernel to be launched. The main advantage of blocks is

29

that by collecting threads together, they can share memory and perform related tasks
together. Each block has a unique identifier given by CUDA as well. There are also
grids which are the topmost containers and hold the blocks in an organized way. This
thread hierarchy which allows programs to transparently scale to different GPUs is

illustrated by Figure 3.1.

In CUDA, the basic execution unit is called the warp. A warp is a collection of 32
threads that are woven together and executed concurrently by an SM. Thus, multiple
warps can be executed at once. Each thread in a warp executes the same instruction
on different data. Since GTX 970 has 128 CUDA core for each SM, only 4 warps can

be executed at a time for a single SM.

Block (@ 0) | Block (1, 0) | Block (2, 0)

Block (0 1} Blodk (1, 1) %kﬂhl}

Figure 3.1: Grid of Thread Blocks [30]

In CUDA, kernels are specified with two execution configurations. These are given to
kernels with triple angle bracket syntax. The first configuration is the number of
blocks that the kernel will be running on and the second one is the number of threads
in a thread block. Second parameter which states how many parallel threads will be
running for each block should be given as a multiple of 32 in size since threads are
executed as warps and it is best to allocate the whole warp rather than wasting some
of threads inside a warp. Thus, kernels are initiated with <<<BLOCK_NUMBER,
THREAD NUMBER>>> representation. Considering this, there will be total of
BLOCK NUMBER * THREAD NUMBER threads across the lifetime of a kernel.

30

However, not all of them are active at any moment of the kernel. In fact, CUDA

manages which blocks and which threads are active.

Sometimes, there would be problems in which every thread needs to access some
unique memory space. For these problems, CUDA offers unique thread ids for every
running thread on CUDA cores. It is achieved through mapping local thread id to
global id by using built-in variables. These variables are started from zero index and

can be stated as:

e threadldx: Thread index within a block

e Dblockldx: Block index within a grid

e blockDim: Number of threads inside a block
e gridDim: Number of blocks inside a grid

gridDim.x = 4096
A

threadIdx.x threadIdx.x

blockIdx.x 1 blockIdx.x = 2

index = blockIdx.x * blockDim.x + threadIdx.x

]
~

N
S

index * (256) + (3) = 515

Figure 3.2: CUDA parallel thread indexing pattern example [31]

When a kernel is started, blockDim and gridDim values are determined by execution
configurations. Values of blockldx and threadldx for a running thread indicate where
it is located among the grid. There is a convention for calculating the unique global
index for each thread among total threads initiated by kernel. The idea of calculating
this unique id resides on each thread getting its index by computing the offset to the
beginning of its block. This offset value can be calculated by the block index times
the blocks size value, blockIdx * blockDim. After that, the index of the thread within
the block, which the current thread belongs to, is added to that value, threadldx.
Ergo, the unique thread index id can be calculated by this idiomatic CUDA phrase:

blockIdx * blockDim + threadIdx

This calculation is illustrated in Figure 3.2. In this illustration, execution parameters
are given to kernel as; number of blocks, gridDim, 4096 and number of threads inside
a block, blockDim, 256. Considering the fourth thread inside the third block, unique

31

global thread id can be calculated as 515, meaning that this is the 515" thread among
the total thread space of 1,048,576 which is calculated by gridDim * blockDim.

3.2. Compute Capability

There are several GPUs on the market, and each one has different hardware
capabilities. NVIDIA releases GPUs with a specification called compute capability. It
is represented by a version number, also called as SM version. This specification
determines the general available features supported by the GPU hardware. Some of
these features can be listed as thread counts, block counts and memory size. More
detailed information such as supported instructions and other related concepts can be
found in CUDA Toolkit Documentation [30].

Compute capability and GPU data specifications can be seen in Table 3.2 published
by NVIDIA. According to compute capability, SM wversion also changes. CUDA
compiles C++4 code with respect to this SM version parameter. Since the value of SM
version that GPU can work on is embedded inside the card, changing SM version
other than the version of the card is ill advised. For instance, GTX 970 has the
compute capability of 5.2 and the code used for this research is compiled with sm_ 52
parameter. However, sometimes, compiling the kernel code with smaller compute
capability versions may reduce register count of kernels or even increase their

performance. The same applies for CUDA version as well.

CUDA and compute capability versions should not be correlated with each other.
CUDA version is the version of CUDA software platform used by developers to create
applications that can be run on many GPU architectures. According to the needs of
the developer different versions can be selected for just one card like CUDA 8 or
CUDA 9. However, a GPU has only one compute capability version which is the

indication of its hardware architecture.

Table 3.2: CUDA compute capabilities [32]

Compute Capability 5.0 5.2 5.3 6.0 6.1 6.2

SM Version sm_ 50 sm 52 |sm 53 |sm 60| sm 61|sm 62
Threads / Warp 32 32 32 32 32 32
Warps / Multiprocessor 64 64 64 64 64 128

Threads / Multiprocessor 2,048 2,048 2,048 | 2,048 2,048 | 4,096

Thread Blocks /
Multiprocessor 32 32 32 32 32 32

32

Shared Memory /
Multiprocessor (bytes) 65,536 98,304 | 65,536 | 65,536 | 98,304 | 65,536

Max Shared Memory /
Block (bytes) 49,152 | 49,152 | 49,152 | 49,152 | 49,152 | 49,152

Register File Size /
Multiprocessor (32-bit
registers) 65,536 | 65,536 | 65,536 | 65,536 | 65,536 | 65,536

Max Registers / Block 65,536 | 65,536 | 32,768 | 65,536 | 65,536 | 65,536

Register Allocation Unit

Size 256 256 256 256 256 256
Register Allocation

Granularity warp warp | warp | warp| warp| warp
Max Registers / Thread 255 255 255 255 255 255

Shared Memory
Allocation Unit Size 256 256 256 256 256 256

Warp Allocation
Granularity 4 4 4 2 4 4

Max Thread Block Size 1,024 1,024 | 1,024 | 1,024 | 1,024| 1,024

Shared Memory Size
Configurations (bytes) 65,536 98,304 | 65,536 | 65,536 | 98,304 | 65,536

3.3. Memory Hierarchy

CUDA threads may access data from different memory spaces during their runtime.
There are various memory concepts inside GPU which allows diverged
implementations for kernel needs. These are called: Registers, local memory, shared
memory and global memory. Variable memory space specifiers denote the memory

location of a variable inside the kernel. They are listed in Table 3.3.

Registers are the basic data holding structures that are part of CUDA cores. They are
extremely fast and resides on top of memory hierarchy. Each thread has a dedicated
number of registers allocated while kernel is running. It is important to optimise
register numbers for kernels since it is scarce per thread. Maximum number of
registers per thread is determined according to compute capability. For instance, for
compute capability of 5.2, each thread has 255 32-bit registers [33].

The next memory space available to threads after registers is the local memory of
CUDA cores. Local memory space resides in device memory and not on the chip of

CUDA cores so accesses to local memory have high latency and low bandwidth.

33

However, local memory is organized such that consecutive threads can access it in a
coalesced way. This make it advantageous as long as all threads in a warp access the
same relative address, like the same index in an array variable. Each thread has 512KB

of local memory [33]. There are different caching mechanisms for various compute

capabilities.
Table 3.3: CUDA memory space specifiers for variables
Memory Space Description
Specifier

_device Resides in global memory space (VRAM) and is accessible
from all threads within the grid

_constant Resides in constant memory space and is accessible from
all threads within the grid

~ shared Resides in shared memory space of a thread block and is
accessible only from the threads within the block

Shared memory is allocated on the chip, so it has much lower latency and much higher
bandwidth considering local or global memory. It is accessible only by threads within
the block and exists just for the lifetime of it. So, shared memory is specifically
designed for the jointly usage of threads inside a block. In order to achieve this high
bandwidth, shared memory is divided into identical memory modules which are called
banks.

Banks can be accessed simultaneously according to implementation. Any shared
memory read or write accesses can be made in a simultaneous way if each of these
accesses is requested to the different memory bank sections of the shared memory. To
illustrate, considering making n address requests to shared memory, every request can
be serviced simultaneously in an instant if they fall in n distinct memory banks,
demonstrated in Figure 3.3. However, if two addresses fall into the same memory
bank, there happens a conflict and accesses must be serialized which is illustrated in
Figure 3.4. There is another case in which all threads request from the same bank.
This is considered as broadcasting and causes no additional bank conflicts since result
of the request is broadcasted and shared with each thread. GPU hardware splits the
memory requests with bank conflicts into many separate conflict-free requests. This
decreases the overall throughput of the application since serialized memory accesses
causing other threads to be idle. Therefore, to get maximum performance from a kernel
while using shared memory, memory addresses must be mapped to different memory

banks in order to minimize bank conflicts.

34

Figure 3.3: Memory access pattern without bank conflicts [34]

Bank 15

Figure 3.4: Memory access pattern creating bank conflicts [34]

Global memory resides at the bottom of the memory hierarchy. It is accessible by
every thread on the grid as well as by the host. It is mostly used to share data between
host and device. It is large and resides off-chip, so it is slow considering shared
memory. Global memory is persistent across kernel launches so it is not reset after the

kernel is finished. This allows data sharing between kernels.

Another concept regarding memory allocation is caching. Understanding cache
structure is important in terms of achieving high performance. All modern CUDA
capable cards have these two hardware managed caching systems: L1 and L2. L1 cache
is bound to each SM individually. To illustrate, there are 13 L1 cache onboard a GTX
970 GPU since there are 13 SMs. Each SM in GTX 970 has 4 warps, 128 CUDA cores,
and every warp inside a SM has access to the same L1 cache. 1.2 cache, on the other

hand, stands in front of global memory of GPU. Every access to global memory can

35

be cached through L2 cache to be used by any SM. So, an access made by an SM can
trigger the caching mechanism of L2 to be used by different SMs.

Grid |
Block (0, 0) Block (1, 0) |

o | o

‘M(0,0) Thread (1, 0) Thread (0, 0) \W(LO)

=

Figure 3.5: CUDA memory hierarchy [35]

If any data is received to a CUDA core through L1 or L2 cache, it is called a cache
hit. CUDA holds a percentage statistic, cache hit rate, regarding whether each
memory access hits the cache or not. Basically, it is the number of cache hits divided
by total number of memory requests. It is crucial to keep this percentage high in terms
of performance since every access request through caching is faster than actually

retrieving the data from memory.

CUDA offers a special memory model called unified memory which is introduced in
CUDA version 6. It can be defined as a shared managed memory space between RAM
and VRAM, illustrated in Figure 3.6. Basically, it is a single memory address space
accessible from any processor inside the system. Unified memory offers a single pointer
to data that can be read or written from code running on either CPUs or GPUs. It
eliminates the unnecessary data movement routines between RAM and VRAM. The
underlying system inside the card manages data access within a CUDA program
without the explicit copy calls. This is beneficial in terms of simplifying development
by providing more straightforward integration between CPU and GPU. In order to

use unified memory, a GPU with SM architecture 3.0 or higher must be used.

36

-

System
Memory GPU Memory

Unified Memory

Figure 3.6: Traditional and unified memory access models [36]

3.4. Occupancy

Occupancy is a measure of thread parallelism in CUDA programming. It can be
defined as the ratio of active warps to the maximum number of warps supported on
SM. Higher occupancy values brings about more computational power for SM.
Occupancy is negatively affected by several aspects, which disrupts the efficiency of
the kernel. Sometimes, CUDA threads can experience latency issues. This brings
about some threads waiting on other threads to finish their jobs since they are all
connected to each other as a warp. As a result, kernels can experience under-occupancy
states in which there happens to be an insufficient parallelism inside the code. In this
case, the performance of the overall kernel can be improved by redesigning the code
to use less of the limited resources. Afterall, the resources allocated to each CUDA

thread are precious and must be handled with care.

There are several resource limits that cap occupancy of a kernel. Threads per block
and registers per thread values can be given as examples to these limitations. Each
multiprocessor on GPU has a set of available registers available to be used by CUDA
threads. These registers are shared between different thread blocks executing on SM.
CUDA compiler aims to minimize the register usage of warps to maximize the number
of thread blocks that can be active on GPU. However, it is unwise to entirely rely on
CUDA compiler. Developers must optimize kernels to maximize occupancy to some
extent. NVIDIA publishes a document called CUDA occupancy calculator [32] in order
to assist developers on maxing out occupancy values. Threads per block and registers
per thread values are given along with compute capability of the card to this
document. According to SM version, document tells you the basic occupancy
calculation of the kernel. An illustration for GTX 970 is given in Figure 3.7 and Figure
3.8. In this context, kernel is started with parameters: 1024 threads per block and 64
registers per thread. Since GTX 970 has 64 warps, given parameters most likely result
in half of the occupancy on warps. Decreasing registers per thread value vastly

increases the resulting occupancy of the kernel as can be seen in Figure 3.8. However,

37

it is not easy to just decrease registers allocated per CUDA thread since it mostly

requires a drastic design change inside the code.

Impact of Varying Block Size

64
56
48
40

= N W
o o A~ N

o

Multiprocessor Warp Occupancy
(# warps)

0 64 128192256 320384 448512 576 640 704 768 832 896 9601024
Threads Per Block

Figure 3.7: CUDA occupancy calculator for block size [32]

Impact of Varying Register Count Per Thread
64

56

48

N
N

Multiprocessor Warp Occupancy
(# warps)
= w
» N

Figure 3.8: CUDA occupancy calculator for registers per thread [32]

38

CHAPTER 4

CUDA IMPLEMENTATION OF AES

4.1. Exhaustive Search

For comparison between CUDA, AES-NI and C++4; we developed different software
implementations for each of them. AES-NI one uses new instruction set of Intel while
C—++ is developed on table look-up implementation of AES. In order to fairly compare
CPU and GPU codes, CPU implementations (AES-NI and C++) are designed with
multithreading paradigm, which means that several threads can be started for the
exhaustive search task at the same time. However, started thread number is inbound
by the threading capacity of CPU. Since there are 4 cores inside i7 4470k, CPU
implementations will be started with 1, 2, 4 and 8 threads in order to fully extract the
CPU power of the system. This brings about CPU utilization issues in which 8 threads

version cannot perform in the same efficiency as 4 threads.

Each GPU and CPU implementation have 128 bits, 192 bits and 256 bits versions of
AES and each of them is run for 25 times with 10 seconds of intervals to calculate
how many seconds it takes to find the correct key. If a key is found; it is written to
standard output in each implementation. 6 CUDA kernels with different specifications
are created for AES-128 exhaustive search. Each of them is tested for 2*? keys and the
best among them is selected to be compared with CPU implementations. This GPU
and CPU comparison is tested for 2* keys and according to the results, CUDA is by

far the fastest implementation on the case of exhaustive search.

4.1.1. AES-128 Implementations for CUDA

In order to optimize the overall output of CUDA implementation, six different kernels
on exhaustive search for AES-128 are prepared and compared with each other. Each
of these implementations have a special attribute, which differentiates them from
others, related to software implementations like using four tables or just one. Ergo,
they are only separated with respect to design specifications. AES implementation
parts of each of them are identical. According to the produced output from these

implementations, the fastest one of them is selected and implemented for AES-192

39

and AES-256. So, not every one of AES-128 kernels are implemented for 192 bits and
256 bits structures.

Table 4.1: AES-128 kernel function properties

AES-128 Registers Shared Memory Constant Memory
Kernel (bytes) (bytes)
Kernel #1 32 5,176 400
Kernel #2 32 2,104 376
Kernel #3 32 33,848 376
Kernel #4 32 33,848 376
Kernel #5 32 41,016 376
Kernel #6 32 36,920 400

Threads of each kernel first populates the allocated shared memory of warps from
given inputs like tables and S-box for AES implementations. In this part; syncthreads
function for CUDA is used for joining each thread inside a warp in order not to start
execution before the population of shared memory is finished. After that, since this is
an exhaustive search implementation, different keys must be tried in order to check
whether the given ciphertext can be produced by encrypting the given plaintext with
the current key. Each thread receives an integer value called thread range which is
calculated before the kernels are started. This value states how many encryptions each
thread must do in order to fulfil the overall intended range of current iteration. For
instance, if 2'° keys are wanted to be tried for exhaustive search for 2° threads, each
thread must do exactly 2° encryptions. So, according to this thread range number,
calculating the initial key value is done. As explained in CUDA section, each thread
has a unique thread index value for identification. According to this identification
number and thread range, every thread knows which portion of keys to try among the
overall intended key count, no more and no less. Thus, initial key for each thread is
calculated and the encryption process is started. At the end of encryption, given
ciphertext, residing in shared memory, is compared with the produced ciphertext. If
the comparison is a success, tried key is printed out as key is found for exhaustive
search. After this encryption cycle is finished, each thread increments its own key by
one in order to try new keys to find the real one until the thread range is reached.

This whole process is the same for all kernels.

Each of these kernels have 32 registers to be operated on by CUDA. As stated in
Figure 3.7, 32 is a special number for GTX 970 card. It allows kernel to use every
warp available in an extremely effective way while achieving %100 occupancy rate.

So, every kernel reaches its full potential in terms of computational power. Moreover,

40

shared memory is changed according to design principals of the related kernel. On the
other hand, constant memory mostly stays the same for each of them. To elaborate

more on the kernels and their different design principals:

e Kernel #1: Basic implementation with 4 tables and usual S-box
> 4 tables in shared memory (4 x 256 integers)
» S-box in shared memory (1 x 256 integers)
» No additional shifting is needed for tables
o Kernel #2: Implementation with 1 table and usual S-box
» 1 table in shared memory (1 x 256 integers)
» S-box in shared memory (1 x 256 integers)
» Arithmetic shifting for tables is done with usual instructions
o Kernel #3: Implementation with 1 extended table and usual S-box
> 1 extended table in shared memory (1 x 256 x 32 integers)
» S-box in shared memory (1 x 256 integers)
» Arithmetic shifting for tables is done with usual instructions
o Kernel #4: Implementation with 1 extended table and usual S-box
» 1 extended table in shared memory (1 x 256 x 32 integers)
» S-box in shared memory (1 x 256 integers)
» Arithmetic shifting for tables is done with byte perm CUDA function
e Kernel #5: Implementation with 1 extended table and partly extended S-
box
» 1 extended table in shared memory (1 x 256 x 32 integers)
» S-box is partly extended in shared memory (1 x 256 x 8 integers)
» Arithmetic shifting for tables is done with byte perm CUDA function
e Kernel #6: Implementation with 1 extended table and 4 shifted S-box tables
> 1 table in shared memory (1 x 256 x 32 integers)
» 4 S-box tables in shared memory (4 x 256 integers)
» Arithmetic shifting for tables is done with byte perm CUDA function

For every kernel, 128 bits of plaintext or ciphertext is represented as 4 integers of 32
bits. So, every kernel receives 4 integers of plaintext, ciphertext and encryption key
for each of them. This initial approach is selected because of efficiency. Should the
representation be selected as character array of 16 bytes, each consists of 8 bits;
operations like shifting or XOR would take a lot of time due to traversing the array
every time. However, in this way, with 4 integers design; it is easier and highly efficient
to make basic operations like XOR since these operations work faster on integers than

a stream of character array.

Each kernel has 10 integers as round constants and ciphertext of 4 integers stored in

shared memory. This design is the same for every one of them. They do not cause any

41

bank conflicts since each thread uses the same constants while requesting from the
same bank location in shared memory, so data is broadcasted to each thread. Round
constants are used for key scheduling while different keys are tried and ciphertext is
used for comparing whether the tried key is the right one or not. Round constants are
needed for every iteration of different keys while at the end of each iteration, produced
ciphertext needs to be compared to the initial given one. Accessing to them needs to
be faster in order not to compromise the overall efficiency. This is the reason that
they are stored in shared memory rather than global memory. There was a faster
option in which they are stored in registers but storing them in thread registers
disrupts register count of kernels since registers are scarce and more used registers

means lower occupancy rates which is explained in occupancy section of CUDA.

Kernel #1 is just the basic AES-128 implementation with 4 tables on CUDA. These
tables are allocated in shared memory which makes read and write operations
extremely efficient for warps. S-box is stored in shared memory as well. Other than
that, there is nothing special about this kernel. Kernel #2 is the improved version of
the first one in which #2 is implemented as having 1 table for AES operations rather
than 4. One table implementation, explained in implementation section of AES as
one-lookup table, must use arithmetic shifting in order to compensate the loss of other
3 tables. In this way, kernel #2 only has 1 table and S-box stored in shared memory.
So, it uses fewer shared memory than kernel #1. However, each look-up operation
must use arithmetic shifting for one byte, 8 bits, shift to right with respect to the
location of byte. The first row does not need any more shifting, but the second row
must be shifted by 1 byte. The third one needs to be shifted by 2 byte and the fourth
one must be shifted 3 bytes. This shifting operation consists of 2 shifts and 1 AND in

terms of integer instructions so total of 3 operations are performed for per shifting.

Kernel #3 has the same design, one table implementation and S-box, as does kernel
#2. However, it has a special configuration for one look-up table as it is expanded in
order to be less effected by bank conflicts. This expansion consists of duplicating every
row element of look-up table 32 times which can be considered as creating a 2D array
instead of the original 1D version. In this way, every element of 2D look-up table is
the same one. This approach is taken in order to decrease the encountered bank
conflict counts which delays threads from accessing the shared memory. Kernel #4 is
basically the same one as kernel #3 with the only difference being the shifting
operation of table look-ups is done by byte perm CUDA function instead of usual
instructions which consist of two bitwise shifting and one bitwise and. This CUDA
function, byte_perm, decreases the overall shifting counts achieved by the kernel

which makes it more optimized than arithmetic shifting with usual instructions.

42

Kernel #5 is a variation of kernel #4 with S-box being partly expanded as 8 times.
The original expansion of kernel #3 is done as 32 times. However, there is a limit to
how much shared memory can be used and expanding S-box along with one look-up
table does not fit into the shared memory of GTX 970. Due to this reason, S-box is
partly expanded in order to further decrease bank conflict count. Expanding 8 times

does not bode as well as 32 times but it does help on the bank conflict problem.

Kernel #6 is also a variation of kernel #5, but it has 4 different S-box tables residing
in shared memory. Each one of them only allocates a certain byte of 4-byte S-box
element. The other bytes are allocated as zero bytes. To elaborate further, S-boxes in
other kernels have the same byte for 4-byte table elements while this kernel has
indexed S-boxes. For instance, the first element of one S-box implementation is
0x63636363 just like the cases in other kernels. However, this kernel has 4 different S-
boxes with each allocating just one byte like 0x00000063, 0x00006300, 0x00630000 and
0x63000000. The reason behind this lies in the unnecessary AND operation while using
S-boxes. Considering the implementation aspects of AES, each byte of the state is
calculated independently. Since every row is stored as a 4-byte integer, any operation
done on any of the bytes is directly affecting other bytes unless the other byte values
of that particular row are zero due to the fact that zero value is considered ineffective

element of XOR. operation.

In order to investigate which of the kernels is the fastest one, implementations are run
for exhaustive search of 2% keys. Every CUDA implementation in this research is run
with 1024 blocks and each block contains 1024 threads. The reason behind this
decision lies in Figure 3.7 in which the best number of threads per block is stated as
1024. Each iteration is run 25 times with 10 seconds of intervals between them. The
results are obtained as how many seconds for exhaustive search to be finished (Figure
4.1) and averaged in order not to be affected by one bad iteration or a very good one.
According to them, kernel #5 appears to be the fastest one among others. Some of
the kernels are similar in terms of duration because they share similar designs like #1
and #2 or #3 and #4. Some of these architectural changes affect the duration in a
drastic way like extending the table for kernels #2 and #3 while other ones affect

only a little like adding byte perm function for shifting for kernels #3 and #4.

43

AES-128 232 EXHAUSTIVE SEARCH (SECONDS)
GPU: GTX 970

4.472 4.462

. 2.499
2.520 2.505 9.320

KERNEL #1 KERNEL #2 KERNEL #3 KERNEL #4 KERNEL #5 KERNEL #6

Figure 4.1: AES-128 CUDA 2% exhaustive search results in terms of seconds

In order to test performance differences between the kernels, NVIDIA Nsight software
is used. Nsight is a system wide performance tool designed to visualize optimization
opportunities and help tuning the code efficiency for GPUs [37]. It basically provides
insight to developers for further optimizing their software. For this research, Nsight
with version of 5.6.0.18099 is used. Nsight can give occupancy rates, instruction
statistics, issue efficiency, achieved IOPS values and memory statistics as well as other
important information related to kernels. For this purpose, every CUDA kernel is
consecutively run for exhaustive search of 2?7 keys in Nsight software. The obtained
results are inspected to extract information on the efficiency of kernels and compared

with each other.

4.1.1.1. Occupancy

Occupancy is basically the ratio of active warps on an SM to the maximum number
of warps supported by the SM [38]. In other words, it is the indicator for specifying
how much performance extracted from the GPU. Low occupancy results generally
indicate poor instruction efficiency because there are not enough eligible warps to hide
the latency between instructions. However, increasing occupancy further does not

always lead to increased performance due to the reduction in resources per thread.

During the Nsight performance test, total duration times of kernels are recorded which
can be found in Table 4.2. In terms of how many seconds passed for each kernel,
duration values fairly resemble the results obtained in Figure 4.1. Every kernel has

the register count of 32 (Table 4.1) which makes every kernel stays inside register

44

limit stated in Figure 3.8. For this reason, every kernel has occupancy values higher
than 90% (Table 4.2). Register block limit values also states that every kernel has
little blocking factors in terms of registers. This proves that kernels are thoroughly
optimized for performance. However, since register block limit is not 0, kernels still

have potential to be improved.

Shared memory block limit basically states how much SMs are blocked with respect
to shared memory usage. If this factor is high, shared memory of the kernels can be
reduced in order to increase occupancy. For the case of kernels #1 and #2, block
limits are quite high meaning the performance of these kernels are hindered by their
shared memory usage. In order to overcome this situation, kernels #3, #4, #5 and
#6 have extended tables residing in shared memory. This extension process drastically
increases their shared memory usage but allows the kernels to decrease their bank
conflict values. In this way, kernels are improved almost two times in terms of

duration.

Kernel #1 and #2 have the best occupancy rates but this does not mean that they
are the fastest among others. As a matter of fact, they are the slowest two of the six
tested kernels. The reason behind this lies in the different structures of the kernels
which allows using resources more efficiently with lower occupancy rates just like the
table extension case of shared memory. Active warps values are similar to occupancy
ratios in which occupancy is calculated by the ratio of active warps to maximum
supported warps which is 64 for GTX 970.

Table 4.2: CUDA Nsight occupancy results for 27 AES-128 keys

AES-128 | Duration | Occupancy Active Register Shared

Kernel (seconds) Warps Block Memory
Limit Block Limit
Kernel #1 0.1298 92.71% | 59.33 / 64 2 /32 18 / 32
Kernel #2 0.1313 92.72% | 59.34 / 64 2/ 32 42 / 32
Kernel #3 0.0698 92.27% | 57.77 / 64 2 /32 2 /32
Kernel #4 0.0703 91.3% | 58.43 / 64 2 /32 2 /32
Kernel #5 0.0696 91.51% | 58.56 / 64 2/ 32 2 /32
Kernel #6 0.0698 91.18% | 58.35 / 64 2 /32 2 /32

4.1.1.2. Instruction Statistics

This section provides assessment of overall utilization of the GPU while executing the

kernels. It provides answers to questions like how efficient kernels are and how close

45

their instruction throughput is to the peak performance of the GPU [39]. GPU works
in 32 threads of warps. GTX 970 has 4 warp schedulers stated as warp allocation
granularity in Table 3.2 and at every instruction, warp schedulers select one warp
which has 32 threads that can make forward process. However, a warp scheduler might
need to issue an instruction multiple times to complete the execution for all 32 threads
of a warp. This can happen for two primary reasons: First, address divergence and
bank conflicts on memory operations and secondly, special instructions that can only
be issued for half-warp per cycle and thus need to be issued twice. This brings about
two additional definitions to instruction statistics which are called as instructions
issued and instructions executed. Instructions issued is the total number of times warp
schedulers issue a single instruction while instructions executed is the value of how
many instructions are successfully executed for every 32 threads inside a warp. Issuing
an instruction multiple times is referred as instruction replay which impacts the
performance of kernel execution. Each replay takes away the ability to make forward
progress by issuing new instructions on warp scheduler. Ergo, it is important to have
the same values for issued and executed instructions making every issued instruction

is successfully executed with no waste.

IPC is the average number of instructions per cycle. Issued and executed IPC values
for every kernel is given in Table 4.3. Every kernel has equal issued and executed IPC
value which is the ideal case in which no warp scheduler wastes any instruction. Kernel
#1 and #2 have lower IPC values considering other ones. The gap between #2 and
#3 is solely based on extending the table in order to decrease bank conflicts. This is
the reason that kernels #3, #4, #5 and #6 have that boost over #1 and #2. It
allowed warp scheduler to issue more instructions per cycle. Partly extending S-box,
for the kernel #5 case, increases IPC value as well. So, fully expanding S-box most
probably would bring bigger IPC values than the current one of kernel #5. However,
shared memory of GTX 970 is not enough to make such optimization, so; S-box is
only partly extended. To the best of our knowledge, currently there are no NVIDIA
GPUs that come with more than 64 KB shared memory. Some GPUs have more than
64 KB shared memory which can be seen in Table 3.2 as compute capability 5.2 has
98,304 bytes. However, these GPUs do not allow developers to use the those extra 32
KB space since it is reversed for GPU usage for caching. Furthermore, IPC values of
kernel #3 and #4 are the same which means byte perm function of CUDA does not
change the total instruction count. However, there is a slight performance gain which
can be observed in Figure 4.1. Ergo, it can be said that using byte perm function for
shifting purposes helps increasing the overall performance. Having 4 different S-boxes
also increases performance like in the cases of kernel #3 and #6. By having extra S-
boxes, kernel #6 eliminated unnecessary AND instructions which can be seen in Table

4.3 as having lower IPC value with respect to kernel #3. This improved the overall

46

performance of kernel #6 which can be seen in Figure 4.1 as well. However, the

performance gain is not big considering the result of kernel #3.

SM activity is the indication for active percentage of multiprocessors. A multiprocessor
is considered as active if at least one warp is executing. SMs can be inactive if there
exist high workload imbalances between blocks. Some SMs can go idle while the kernel
is waiting to be finished. This is not the ideal case in which the performance is hindered
by idle SMs. Every kernel has high SM activity ratio since they all have high
occupancy values. This means that SMs are hardly idle in terms of execution. Kernel
#5 is the most active one according to the results, which corresponds to it being the

fastest kernel among them (Figure 4.1).

IPW value in Table 4.3 shows the value of average instruction per warp for SMs.
Higher amounts indicate executing more instructions per warp. IPW is very useful to
understand the SM activity. To illustrate, kernel #5 has the highest SM activity just
as the case of IPW. Nsight offers IPW value of each SM as well as the average of
them. High variations in the IPW metric across the SMs indicate non-uniform
workloads for the blocks of the kernel. Such imbalances most of the time result in low
performance values. However, in every kernel tested, every SM shows very similar
IPW values regarding other SMs. This indicates that every SM is actively executing
its instructions while not hindering the overall execution, which will not create any

imbalanced situations.

Table 4.3: CUDA Nsight instruction statistics for 27 AES-128 keys

AES-128 Instructions SM Instructions Warps
Kernel Per Clock Activity Per Warp Launched
(IPC) (IPW)
(Issued /
Executed)
Kernel #1 1.57 / 1.57 99.07% 1,06,077.71 2,520.62
Kernel #2 1.78 / 1.78 99.38% 1,198,98.22 2,520.62
Kernel #3 3.90 / 3.90 98.82% 1,383,36.97 2,520.62
Kernel #4 3.90 / 3.90 99.46% 1,383,36.97 2,520.62
Kernel #5 4.11 / 4.11 99.49% 1,452,52.22 2,520.62
Kernel #6 3.86 / 3.86 98.82% 1,366,76.47 2,520.62

Warps launched values shows the average number of warps launched by SMs. Just
like IPW case, Nsight offers the number of warps launched per SM. Large differences
in this number mostly results in insufficient amount of parallelism within the grid.

However, every kernel has the same number of average warps launched (Table 4.3).

47

This is because the kernels are perfectly capable of performing in efficiently
parallelized ways. So, there is no need to launch additional warps since every warp is

successfully completed.

4.1.1.3. Branch Statistics

Branch efficiency is the ratio of executed uniform flow control decisions over all
executed conditionals. It can have serious impact on the efficiency of executing a
kernel [40]. For instance, the result of some control decisions can diverge into complex
executions while others can lead to simple ones. This negatively affects the execution
flow since some threads inside the warps are finished while others continue to execute,
which decreases IPC and IPW values. However, since AES execution flow is a solid
one, meaning there is no diverged flows in terms of computation, Nsight gives %100
branch efficiency on all control flows. This greatly helps in the overall warp efficiency

without any additional optimization is done on the code in terms of diverged flows.

4.1.1.4. Issue Efficiency

Issue efficiency section of Nsight provides information concerning the ability of device
to issue instructions. If device is not able to issue instructions at every cycle, potential
performance of the kernel is hindered. Nsight also provides some issue stall reasons
which can be used to optimize the code [41]. These issue stall reasons bring about

stalled warps which cannot make forward the progress.

GTX 970 has the theoretical warps per SM value of 64 which cats as the upper limit
to active warps. A warp is considered as active if it is scheduled on SM to complete
its instructions. In other ways, if the warp is doing something, it is active. Active
warps per SM value in Table 4.4 can be explained as the average number of active
warps allocated to SMs across the kernel execution. Higher values might allow hiding
warp latencies more efficiently which will increase the performance. Eligible warps per
SM value, on the other hand, indicates the number of average warps which can
forward progress into the next instruction. In other words, eligible warps are the ones
which are waiting to be executed in the next cycle. Warps that are not eligible will
report an issue stall reason which blocks the execution of that warp in the next
instruction cycle. The optimum target for eligible warps is to have at least one eligible
warp per scheduler per cycle. However, higher values indicate that warps are quickly
finishing their instructions and waiting to be instructed again. Extending the table in
kernel #3 with respect to #2 results in increased eligible SM ratios. This means that
kernel #3 was able to outperform #2. The same case also holds for kernel #4 and #5

in which partly extending S-box increases eligible warp value.

48

On every clock cycle, a warp scheduler tries to issue an instruction from one of its
warps. When a warp issues an instruction, it takes at least a few cycles before it
becomes eligible to issue again. This is also proportional to occupancy of kernel. Warps
issue efficiency column of Table 4.4 shows the average values across all warp schedulers
for all kernels. No eligible value indicates the number of cycles that warps scheduler
could not find warps to select from. This is not the intended case since warp scheduler
could not issue an instruction which slows down the kernel. The lower percentage of
cycles with no eligible warp value indicates that the code runs more efficiently on the
target device. In order to decrease no eligible ratio, issue stall reasons which keeps
warps from becoming eligible must be investigated. Moreover, one or more eligible
values show the ratio of a warp scheduler that had at least one eligible warp to select.
Nsight documents reveal that values with a target of getting close to 100% are better
in terms of performance. Just like the rise in warps per SM value between kernels #2
and #3; no eligible percentage of kernel #3 is much lower than #2 due to extended
table, which makes kernel #3 a lot faster than #2. This also holds for #4 and #5.
Warp issue cycle values, indicating the total warp cycles issued from warps in order
to finish execution, also prove this assumption. There is a huge decrease between
kernel #2 and #3, also a slight one between #4 and #b5.

Table 4.4: CUDA Nsight issue efficiency stat statistics for 2> AES-128 keys

AES-128 Warps Per SM Warp Issue Efficiency Warp Issue
Kernel (Active/Eligible) | (No Eligible/One or More Cycles
Eligible)

Kernel #1 59.37 / 1.53 69.25% / 30.75% | 8,847,069,145
Kernel #2 59.33 / 2.00 64.56% / 35.44% | 8,847,251,157
Kernel #3 57.69 / 7.69 16.87% / 83.13% | 4,645,012,486
Kernel #4 58.45 / 6.34 20.09% / 79.91% | 4,643,595,118
Kernel #5 58.60 / 8.54 10.88% / 89.12% | 4,643,260,922
Kernel #6 58.34 / 5.93 22.44% [77.56% | 4,643,948,051

Main issue stall reasons which are provided by Nsight in issue efficiency section are
listed in Table 4.5. Table also has warp cycle column which indicates how many warp
cycles are required to complete the kernels. According to it, execution dependency is
the one stalling the warps the most. It is basically caused by warps waiting for an
input required by the instruction. Extending the table also greatly decreases execution
dependency values which in return speeds up the kernel. Additional extending S-box
in kernel #5 also decreases execution dependency stall reason considering the change
between #4 and #5. However, doing so create additional stall reasons like pipe busy,

resource required by instruction not yet available, and instruction fetch which is

49

caused by the next assembly instruction is not yet fetched. Still, the performance
difference between #2 and #3 is so great that creating additional stall reasons are
neglected. Pipe busy stall reason can be considered as it increases when memory
operations are accumulated. For instance, 4 table structure in kernel #1 is changed
to 1 table structure in kernel #2 which increases pipe busy stall reasons. However,
this also increases performance slightly since kernel #2 can be completed in smaller

warp cycles. Ergo, increasing some stall reason might result in greater performance.

Table 4.5: CUDA Nsight issue stall reasons for 227 AES-128 keys

AES-128 | Warp Cycles | Instruction Pipe Busy Execution
Kernel Fetch Dependency
Kernel #1 | 127,945,964,330 1,266,962,428 | 948,297,786 61,956,466,874
Kernel #2 | 126,750,484,614 1,282,631,087 | 3,647,055,003 63,623,757,543
Kernel #3 57,933,760,551 1,907,006,530 | 3,145,526,887 17,327,349,043
Kernel #4 | 60,526,582,607 1,830,931,062 | 1,900,798,955 23,521,122,301
Kernel #5 57,923,638,478 3,457,882,740 | 2,415,918,323 20,863,964,657
Kernel #6 | 60,787,971,042 1,673,265,824 | 1,809,299,404 20,728,639,606

4.1.1.5. Achieved IOPS

IOPS stands for integer operations per second which is a metric used for investigating
integer operations and their instructions. Its primary benefit is tracking and evaluating
differences in performance of the code changes [42]. Since one round of AES encryption
mostly revolves around XOR and shifting operations, they are the most important
aspect in terms of understanding IOPS performance of kernels. According to the
arithmetic instructions table [33] provided by NVIDIA for different compute
capabilities, 32 bits integer add operation gives throughput of 128 while 32 bits integer
shift produces 64 in terms of per clock cycle for compute capability of 5.2. Ergo, add
operation is two times faster than shift operation. So, using add operation instead of

shift increases the performance.

Kernel #2 uses 1 table while kernel #1 is using 4. This increases shift operations as 1
table needs to be shifted in order to be operated on. This gives a slight performance
gain (Figure 4.1) but no so much to make a difference since shifting operation is
expensive and adding almost 55% more shifting operation cancels out the performance
gain. Moreover, adding extended table for the case of kernel #3 greatly increases add
operation number considering kernel #2 but it also vastly improves performance of
the kernel as #3 is 1.77 times faster than #2. So, increasing add operation count does

not always result in performance hindrance. Another important factor concerning shift

50

operations exists between kernel #3 and #4. Kernel #4 uses byte perm CUDA
function for arithmetic shifting while kernel #3 uses traditional 2 shifts 1 AND
method. As can be seen in Table 4.6, using byte perm reduces shifting operation
count by 35%. However, performance gain from it is not very noticeable as it only
offers roughly 1% decrease in duration (Figure 4.1). Furthermore, it decreases
occupancy but increases active warps (Table 4.2) and SM activity (Table 4.3). Just
like the case of kernel #2 and #3, additional extension of S-box increases add

operation count by 28% while decreasing the duration by 8%.

Table 4.6: CUDA Nsight achieved IOPS statistics for 2" AES-128 keys

AES-128 ADD Shifts ADD per Shifts per
Kernel Operations Operations Second Second
Kernel #1 1,630,011,392 26,445,873,164 12.56 203.71
Kernel #2 1,628,438,528 40,941,387,788 12.40 311.78
Kernel #3 20,955,791,360 40,941,649,932 300.15 586.41
Kernel #4 20,955,791,360 26,446,135,308 298.20 376.33
Kernel #5 26,861,371,404 26,580,090,892 385.87 381.82
Kernel #6 20,957,364,224 26,446,135,308 300.37 379.04

4.1.1.6. Pipe Utilization

Each SM of a CUDA device features several hardware units which are specialized in
performing specific tasks. At the hardware level, these units are maintained by
execution pipelines to which warp schedulers dispatch instructions to. For instance,
load/store units save data or fetch from memory. Understanding the utilization of
these pipelines help in reaching to peak performance of the device [43]. It also allows

bottlenecks caused by overusing a certain type of pipeline.

Nsight offers shared memory, texture and arithmetic utilization ratios. Since no
kernels use any texture, it is shown as 0%. Shared memory pipe utilization covers all
issued instructions that trigger a request to the memory system of the device. It
consists of load/store operations on global, local and shared memory. Since AES-128
kernels only use shared memory, only utilization of shared memory is recorded by
Nsight and shown in Table 4.7. According to the obtained results, extending table
mechanism in kernel #2 increases shared memory utilization almost two times
considering kernel #3. However, additional extension on S-box does not greatly
increments utilization ratio in the case of kernel #4 and kernel #5 but it helps in

terms of performance, nonetheless. Since there is not any distinctive architectural

51

change between other kernels, their shared memory pipe utilization values stay the

salne.

Arithmetic pipe utilization ratio covers floating point and integer instructions. Since
AES code base of kernels does not use any floating points, Table 4.7 only shows
utilization of integer operations. Just like the shared memory case, extending table
also increases arithmetic pipe utilization by 49% in the cases between #2 and #3, 4%
for kernel #4 and #5. Considering kernel #3 and #4, adding byte perm CUDA
function for shifting tables decreases arithmetic pipe utilization by 6% but it also
decreases shifting operation count by 35% which can be observed in Table 4.6. While
arithmetic utilization ratio is dropped, performance is slightly increased considering
Figure 4.1. Moreover, adding 4 different S-box tables also causes arithmetic pipe
utilization to decrease by 1.5% while offering very little performance gain in kernel
#4 and #6 cases.

Table 4.7: CUDA Nsight achieved IOPS statistics for 27 AES-128 keys

AES-128 | Shared Memory Arithmetic
Kernel | Pipe Utilization | Pipe Utilization
Kernel #1 37.55% 29.76%
Kernel #2 37.55% 37.31%
Kernel #3 71.52% 86.56%
Kernel #4 71.55% 80.53%
Kernel #5 71.70% 84.28%
Kernel #6 71.55% 78.99%

4.1.1.7. Memory Statistics

Nsight performs several experiments concerning the usage of memory systems during
kernel execution. These consist of global, local, shared, caches and buffers statistics.
It is important to locate which type of memory is bottlenecking the kernel in order to
create more efficient code [43]. Since every kernel uses only shared memory type for
look-up tables, it is the main reason for performance stalling and the area for kernels
to be improved on. Global memory is only used for transferring data from host to
device. For exhaustive search, data transferred from host to device consists of look-up
tables, S-box, initial plaintext and ciphertext, round constant array for key scheduling
and key range for each thread. They are allocated in both RAM and VRAM at the
same time by using cudaMallocManaged function which uses unified memory concept

of CUDA. After the data is received by threads, they are immediately stored in shared

52

memory. Thus, there is not any store operation issued on global memory during the

execution, only read operations at the start for each thread.

Global memory statistics are shown in Table 4.8. Since the size of data fetched from
global memory is so small considering VRAM of the device, it almost every time hits
L2 cache. L2 cache stands before the global memory while there is an L1 cache for
each SM. So, the architecture of device works like; for a request sent to L1 cache, if it
is a hit, the required data is returned immediately. However, if it is a miss, it is
forwarded to the L2 cache which is the main cache point of global memory for all
SMs. However, 1.1 cache is more important in terms of memory hierarchy so increasing

L1 cache hit rate is far more crucial for performance.

Load requests are directly proportional to design used in kernels. For instance, kernel
#1 uses 4 tables and 1 S-box. Fetching them to shared memory requires 352,256
requests. On the other hand, kernel #2 uses just 1 table and 1 S-box. This decreases
load requests to global memory. Moreover, changing 4 table structure into 1 increases
L1 cache hit rate by almost 3% since threads will request less different data from
global memory. These two improvements increase performance a little bit in the favour
of kernel #2 which can be seen in Figure 4.1. The same type of decrease can be seen
between kernel #4 and #6. Just like kernel #1, #6 uses 4 different S-box along with
1 table which increases global memory load requests and decreases L1 cache hit rate.
However, #6 seems a little bit faster than #4 because it eliminates the need of
performing extra operations to the result of S-box. This can be seen in Table 4.5 that
execution dependency stall reason of kernel #6 is almost 12% lower than of #4.
Nonetheless, the performance difference is not so much to make a difference in the
end. Therefore, using architectural designs like 1 table instead of 4 and 4 S-box instead

of 1 contributes to increasing overall performance a little bit.

Table 4.8: CUDA Nsight global memory statistics for 27 AES-128 keys

AES-128 | Global Memory | Global Memory | L1 Cache | L2 Cache

Kernel Load Requests Size Hit Rate | Hit Rate
Kernel #1 352,256 14.11 MB 69.42% 99.99%
Kernel #2 327,680 11.11 MB 72.32% 99.97%
Kernel #3 327,680 11.11 MB 72.32% 99.99%
Kernel #4 327,680 11.11 MB 72.32% 99.99%
Kernel #5 327,680 11.11 MB 72.32% 99.99%
Kernel #6 352,256 14.11 MB 69.42% 99.99%

CUDA offers a concept called shared memory which can be considered as the same

structure as L1 cache. However, the contents of shared memory are managed explicitly

53

by the code while L1 cache is automatically managed by the device. This is equivalent
to a user managed cache. Shared memory has much smaller space considering global
memory, but it is immensely fast since it is much closer to threads in terms of memory
hierarchy. After receiving global memory data, each thread stores tables, round
constants and ciphertext into the shared memory. Since every table has at most 256
elements, this allocation is done by the first 256 threads inside the block. Each thread
in a block that has index value bigger than 256 just waits the first 256 to finish
allocation process and each of those first 256 threads performs just one allocation for
tables and S-boxes with respect to index number obtained by threadldx. To illustrate,
a thread with index number 5 allocates only 5" positions of the tables and S-boxes.

In this way, even allocation is done in a paralleled way.

To achieve high bandwidth, shared memory space is divided into equally sized memory
modules called banks. Banks inside shared memory can be accessed simultaneously if
every request fall to distinct banks. This creates higher bandwidth than a single
module, almost as many times as the concurrent request number. However, if any two
of the requests fall into the same bank, shared memory cannot serve that bank
simultaneously so the transaction of data must be serialized. This slows down the
performance of shared memory, so it is important to understand how memory
addresses map to banks in order to schedule memory requests to minimize bank
conflicts and get maximum performance. Shared memory has 32 banks and each bank
consists of 32 bits. So, if a warp of 32 threads requests something from different banks,
all their transactions are done simultaneously without any unnecessary waiting for
each thread.

In order to reduce bank conflicts, a special array storing technique is used for shared
memory transactions. Each table and S-box array inside the kernels consist of 256
elements. Traditional allocation of such tables which is used in kernel #1 and #?2 is
illustrated in Figure 4.2. According to it, array elements are stored as a 2D array with
exactly 32 columns. So, when an array that consists of 256 elements is stored in shared
memory, it exists as a 2D array with dimensions of 8x32. In this representation, each
column can be considered as a bank. When two threads access 1** and 2" elements of
the array, there is no bank conflict. In this way, access transactions are broadcasted
to these threads simultaneously. However, when two threads access 1* and 33"
elements of the array, these two access requests fall onto the same bank. This creates

conflict and access transactions will be serialized.

54

o 1) |

|D|1}“313233 D L;l; g 7 1 H
L300

Figure 4.2: Array allocation visualization on shared memory without extension

=

In order to escape the serialization of banks for shared memory, extension technique
is used. This method consists of extending the array to 32 times so that each bank of
the shared memory has at least one value of each element of the initial array. The
main reason behind this decision lies in the idea of assigning different banks for each
thread of a warp. In other words, threads inside a warp are blocked from accessing
the banks of other threads. Figure 4.3 show the illustration of this extension method.
1% element of the array is extended 32 times which covers the 1*' line of the shared
memory. 2" element covers the 2"! line and so on. As a result, an array with 256

elements are stored in shared memory as a 2D array with dimensions of 256x32.

0 1 31
[T LT H{] — o |
0 1 3132 255 1 "
31 []
32

T3]

Figure 4.3: Array allocation visualization on shared memory with extension

After extending the table, when a thread requests access to shared memory, it accesses
through its thread index inside a warp. Since a warp consists of 32 threads, it makes
certain that accesses coming through a warp do not resolve in bank conflicts. To
illustrate, TO thread inside a warp always accesses the shared memory from the 1*
column. T1 thread always accesses from 2" column and so on. For instance, if TO and
T1 threads inside a warp want to access 2" element of the array, it should access
through 1** and 2" columns of the 2™ row with respect to their thread indexes. The
access map difference on shared memory is visualized in Figure 4.4 for every thread
accessing 2" element of the array. In the first illustration, resulting bank conflicts can
clearly be seen since every thread in a warp maps to the same element of the shared
memory and its bank, which is the case for non-extended tables. However, the second
illustration shows that each thread accesses the 2" element of the array through

different banks with the help of extending the array.

55

T0 0 T0

T1 1] 1 T1

T34 31 T31
32

L1

Figure 4.4: Shared memory access map of warp threads for non-extended and
extended arrays.

Extending table technique is first introduced in kernel #3 and used in #4, #5 and
#6 as well. They all have one table implementation with extension. Extension of one
table with 256 elements as integers requires additional 31,774 bytes of allocation (256
* 4 * 31) on shared memory which is the difference between kernels of #2 and #3
(Table 4.1). However, considering kernel #3, S-box is still not expanded so while using
it, kernel would still experience bank conflicts. In order to overcome this problem,
kernel #5 uses extended S-box. However, this extension is only partly implemented
since the shared memory of GTX 970 card does not allow allocating two tables to be
extended at the same time. It has capped 49,152 bytes of shared memory per SM
(Table 3.2) and kernel #4 uses 33,848 bytes of it (Table 4.1). GTX 970 does not have
enough hardware to support a second extension. So, S-box is partly extended in &
banks instead of 32. By extending S-box 8 times, additional 7,168 (256 * 4 * 7) bytes
are allocated for kernel #5 which can be seen in Table 4.1. The visualization of

extending S-box 8 times in shared memory is shown in Figure 4.5.

01 2 3 4 255 0 1 7 8 15 16 23 24 kN
[TTTTH] — o B
1 - L __1 |1 | __

Figure 4.5: Array allocation visualization on shared memory with partly extension

In this partly expanded S-box implementation, just like full table extension of 32
times, threads inside the warps access banks of extended array with respect to their
thread index. However, access is done in modularity of 8 since it is extended 8 times.
To illustrate, Figure 4.6 shows the access map of threads inside a warp requesting
transaction from the 4™ element of the array shown in Figure 4.5. The TO thread
accesses through 1* column and T1 thread through 2" column and so on. However,
T8 (thread number 9) accesses 4™ element of the array through the 1% bank since the

initial array is extended only 8 times and it coincides with the TO thread. Ergo, in

56

this approach, each thread shares its banks with 4 other threads. This helps in

decreasing bank conflict number but not as many as extending 32 times.

0o 1 78 15 16 23 24 K] |

T0 T

TFT 78T T165 T3

Figure 4.6: Shared memory access map of warp threads for partly extended arrays.

Table 4.9 holds the shared memory statistics for storing operations. The number of
store requests equals the amount of shared memory instructions executed. When a
warp executes an instruction that accesses shared memory, bank conflicts might block
the transaction of that request. In this way, each bank conflict forces a new memory
transaction which reduces the instruction throughput accordingly. Moreover,
transaction per request ratio shows the average number of shared memory transactions
required per executed shared memory instruction. Lower numbers are preferred as
each request can be executed in smaller number of transactions. For the case of kernels
#1 and #2, transaction per request ratios seem a lot smaller than other kernels. This
is the result of extending the table in order to reduce bank conflicts. Extension process
greatly increases store transaction values in return transaction per request value also
rises. Considering kernel #2, kernel #3 stores almost 115 times more data and
produces 216 times faster bandwidth. Ergo, bigger transaction per request values do
not always lead to reduced performance. Kernel #5 has partly extended S-box
considering #4 which increases store transactions size by 15 MB and store transactions
by 6%. However, store transaction per request ratio seems to get lower by 1 point
which makes kernel #5 more efficient in storing data to shared memory than #4. It

also has the biggest store transaction bandwidth value.

Table 4.9: CUDA Nsight shared memory store statistics for 2 AES-128 keys

AES-128 Store Store Store Store Store
Kernel Requests | Transactions Transaction | Transactions | Transactions
5 Size Bandwidth
Request
Kernel #1 57,344 43,008 0.75 5.25 MB 40.44 MB/s
Kernel #2 32,768 18,432 0.56 2.25 MB 17.13 MB/s
Kernel #3 90,112 2,107,392 23.39 257.25 MB 3.60 GB/s
Kernel #4 90,112 2,107,392 23.39 257.25 MB 3.57 GB/s

57

22.69 272.25 MB

260.25 MB

98,304
114,688

2,230,272
2,131,968

3.82 OB/s
3.64 GB/s

Kernel #5
Kernel #6

18.59

Nsight also provides load statistics of shared memory for each kernel, which can be
found in Table 4.10. Load statistics are far more important than store since the
execution depends on the efficiency of load operations while storing data to shared
memory only takes place at the beginning of the kernel. Kernel #2 is the one table
version of kernel #1 which uses 4 table. This improvement decreases load requests
issued from kernel by 1% since there is less data to be looked upon. However, it does
not lower load transaction per request ratio since kernel #2 also experiences bank
conflicts just like kernel #1. They both fetch almost 260 GB of data during the
execution of kernels. Extension mechanism of the look-up table which is introduced in
kernel #3 increases load requests by 88% while load transactions value almost stays
the same with respect to kernel #2. This also decreases load transaction per request
value by 48% which proves that the efficiency of load transactions is increased almost
two times while bandwidth stays the same. Figure 4.1 show that kernel #3 is 1.77
times faster than kernel #2, almost proportional to load transaction per request ratio.
The same type of improvement can be seen between kernel #4 and #b5. Partly
extending S-box introduced in kernel #5 increases load request count by 1% while
load transaction per request value stays the same. With this improvement, kernel #5
works 7% faster than kernel #4 which can be seen in Figure 4.1. This is a small
improvement considering the extension used in kernel #3 because S-box is only partly
extended due to shared memory size. However, it still improves the overall efficiency
of kernel #5. Load transaction bandwidth of each kernel is closing in to 2 TB data
per seconds. This means that almost 2 TB of data stored in shared memory flows to
kernels each second, which is a huge number and proves how fast shared memory is.
The reason behind every kernel sharing almost identical bandwidth values lies in the
speed differences. Kernel #1 and #2 are much slower and each loads total of 263 GBs
of data while others are considerably faster (Figure 4.1) but they also have lower load
transaction sizes. So, they load smaller data in faster times which does not change the

produced load transaction bandwidth.

Table 4.10: CUDA Nsight shared memory load statistics for 2" AES-128 keys

AES-128 Load Load Load Load Load
Kernel Requests Transactions Transaction | Transactions | Transactions
Per Size Bandwidth
Request
Kernel #1 6,397,109,000 17,034,820,000 2.66 263.63 GB 1.98 TB/s
Kernel #2 6,324,290,000 16,840,910,000 2.66 263.63 GB 1.96 TB/s
Kernel #3 | 11,894,940,000 16,579,440,000 1.39 137.99 GB 1.93 TB/s

58

Kernel #4 | 11,817,770,000 | 16,471,880,000 1.30 | 137.99 GB 1.92 TB/s
Kernel #5 | 11,929,770,000 | 16,556,780,000 1.30 | 137.40 GB 1.93 TB/s
Kernel #6 | 11,902,850,000 | 16,590,460,000 1.30 | 137.99 GB 1.93 TB/s

Table 4.11 indicates how many bank conflicts each kernel experienced throughout
their execution. Kernel #1 and #2 do not have any extended tables so they have the
highest bank conflict values among other kernels, which means they suffer the most
from lack of efficiency on shared memory. Kernel #3, which is the first kernel to have
extended look-up table, has 76% fewer bank conflicts considering kernel #2. This
improvement also decreases bank conflict per request ratio almost 4 times. In other
words, kernel #3 is 4 times less likely to hit bank conflicts than kernel #2 which is
its equivalent without look-up table extension. This is a huge improvement which
increases the overall performance of kernel #3 by 44% (Figure 4.1). Likewise, kernel
#5 experiences a 15% drop in bank conflict count by having additional partly
extension on S-box considering kernel #4. This also help increasing the efficiency of
the performance of kernel #5 by %7 (Figure 4.1). However, bank conflicts per request

ratio stays the same since the reduction in bank conflict value is considerably small.

Table 4.11: CUDA Nsight shared memory bank conflicts statistics for 227 AES-128

keys
AES-128 Kernel | Bank Conflicts | Bank Conflicts Per Request
Kernel #1 1,376,793,000 1.66
Kernel #2 1,376,793,000 1.66
Kernel #3 324,699,300 0.39
Kernel #4 324,699,300 0.39
Kernel #5 319,808,800 0.39
Kernel #6 324,699,300 0.39

4.1.1.8. Overview

According to the results of Nsight experiment, bank conflict problem seems to be the
main decisive factor of performance difference between kernels. Extending the look-up
table 32 times in shared memory gives 44% more performance which is observed
between kernel #2 and #3 in Figure 4.1. Moreover, extending the S-box 8 times,
which cannot be done 32 times due to shared memory shortage, advances the
performance of kernel #5 by almost 7% considering kernel #4. Other problem-solving
techniques contribute very little on the efficiency of the kernels like using byte perm
CUDA function or 4 shifted S-box tables. CUDA byte perm function decreases

59

shifting count while increasing a little efficiency. So, using byte perm function for
shifting purposes seems to increase the overall performance of the kernel but not so
much to make a big difference. Likewise, using 4 shifted S-box instead of just 1
decreases execution dependency stall reason which increases the overall performance
of the kernel #6 considering #4 but not so much to make a real difference in the end.
Thus, it is concluded that extended look-up table along with partly extended S-box
implementation, which is kernel #5, is the fastest and the most efficient one among
others. So, from this part of the research, only kernel #5 is selected and will be used
for experiments of AES-128, AES-192 and AES-256.

4.1.2. AES-128 Comparison

For comparing GPU efficiency with CPU, an exhaustive search with 2% keys is started
for all kernels and the results are recorded. Each kernel is run for 25 iterations in order
to take the average duration. Kernel #5, which is the fastest CUDA kernel, is used
for GPU calculations. CPU implementations are designed in a way suitable for
working with threads. Figure 4.7 shows the overall duration of exhaustive search
iterations. 1T stands for thread numbers, NI stands for new instructions and CPP is
for C++ implementation. According to the obtained results, kernel #5 is almost 21
times faster than the best CPU implementation which is 8 threads version of AES-NI
and 36 times faster than the same C++ version. This is a huge performance difference
which proves how fast GPU is. On the other hand, kernel #5 is almost 73 times faster
than AES-NT with 1 thread and 138 times faster than C++ implementation with 1

thread. This demonstrates that using threads for CPU implementations is essential.
AES-128 230 EXHAUSTIVE SEARCH (SECONDS)

GPU: GTX 970
CPU: I7 4770K

83.813

44.257 42.309

23.727 23.526 21.686
14.366 13.034
0 05 H = L]

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

Figure 4.7: CUDA, AES-NI and C++ exhaustive search durations for 2* AES-128
keys

60

AFES-NI efficiency with respect to thread counts considering C++ implementations
are as follows: 47%, 44%, 39% and 40%. There is a stable gap between them, and this
shows that exhaustive search C++ version does not stay behind for all thread version
cases. However, AES-NI version is still far superior than C+4 considering it is
implemented on hardware level, which indicates the speed difference between
hardware implementation and the software. NI version is faster, but it still is not good

enough to compete with GPU power even though it is implemented on hardware level.

Performance difference between 1, 2 and 4 threads are almost proportional but 8
threaded versions experience a capped utilization threshold in which the performance
is hindered. Since CPU used in this experiment has 4 physical cores, utilization
percentage of it goes to %100 during the execution of 8 threaded versions. So, after a
certain point, they cannot produce the same performance efficiency and are slowed
down. To illustrate this, the efficiency of CPU implementations with each increase in
thread counts are: 47%, 39%, 9% for AES-NI and 50%, 44% and 8% for C++. 8
threads versions can only improve the overall efficiency by 9% and 8% in terms of
duration. This proves that 8 thread implementations are severely affected by CPU

utilization cap.

4.1.3. AES-192 Comparison

Just like AES-128, versions of AES-192 exhaustive search for 2* keys are implemented.
The results are recorded and can be seen in Figure 4.8. Kernel #5 version of AES-192
uses the same shared memory but it has 40 registers. So, occupancy value is not the
same as AES-128 version which can be seen in Figure 3.8 that 40 registers per thread
values produces reduced occupancy. However, CUDA version is still the fastest among
other implementations as can be seen in Figure 4.8. CUDA is almost 19 times faster
than AES-NI 8 threads implementation, which is the fastest AES-192 CPU
implementation and 41 times faster than C++. C+4 implementation is still behind
AES-NI implementation on the case of AES-192 as NI is more than 2 times faster
than C++.

NI implementations show efficiency percentages of 61%, 58%, 55% and 54%
considering C++ with respect to thread counts. Like AES-128 case, one efficiency
ratio is not peaked for a particular thread count. This is an indication that, C++
versions are able to keep up with AES-NT ones for all cases. However, C++ versions
are a little bit behind of AES-NI for AES-192 performance considering the ratio
difference of AES-128. Efficiency ratios between thread counts are 46%, 39% and 9%
for AES-NT and 50%, 43% and 10% for C++ respectively to increased thread iteration.

61

According to them, both CPU implementations are affected from CPU utilization cap

as 8 threads version only improved their duration by 9% and 10% respectively.

AES-192 23 EXHAUSTIVE SEARCH (SECONDS)
GPU: GTX 970
CPU: I7 4770K

116.260

58.307
45.420
24.449 33.301 29.828

14.946 13.652
0729 H = =

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

Figure 4.8: CUDA, AES-NI and C++ exhaustive search durations for 2% AES-192
keys

4.1.4. AES-256 Comparison

AFES-256 version of kernel #5 uses 40 registers just like the AES-192 version. It also
uses the same shared memory configuration and size. Exhaustive search
implementations for 2* keys are run for 30 times and the results are averaged.
According to them, shown in Figure 4.9, GPU is the fastest execution among others.
Kernel #5 is almost 18 times faster than 8 threads AES-NI implementation which is
the fastest one implemented on CPU. Moreover, it is also 38 times faster than the
best C+4 implementation. AES-NI is still the superior case among CPU

implementations as it is more than 2 times faster than C4++ implementation.

AES-NI shows efficiency values of 58%, 56%, 55% and 53% to the same threaded
versions of C++. Just like other exhaustive search cases, 8 threaded versions are
affected from CPU cap as efficiency ratio of increased threads are 47%, 42% and 7%
for AES-NI and 49%, 43% and 12% for C++.

62

AES-256 230 EXHAUSTIVE SEARCH (SECONDS)
GPU: GTX 970
CPU: 17 4770K

131.459

66.809
55.183

99.226 37.922 33387

16.972 15.807
o H m =

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

Figure 4.9: CUDA, AES-NI and C++ exhaustive search durations for 2% AES-256
keys

4.1.5. Overview

In this research, 6 different AES-128 kernels are implemented for CUDA in order to
compare speed and efficiency differences between them. According to Nsight results,
kernel #5 was selected to be the most efficient kernel in terms of performance. After
that, it is compared with AES-NI and C++ implementations in order to decide which
one is better for exhaustive search. According to results which are shown in Figure
4.7, CUDA implementation is by far superior among others as it is 21 times faster.
Thus, if any need arises for problems similar to exhaustive search, CUDA is the best
possible conclusion. The same outcome can be observed for AES-192 and AES-256
cases in which CUDA also outperforms every CPU implementation by 19 and 18 times

respectively.

CPU implementations suffer from utilization cap such that after 4 threads, increasing
thread number does not result in the same efficiency increase as versions before it.
Average numbers for efficiency between implementations of increased threads are 46%,
40% and 8% for AES-NI and 50%, 44% and 10%. 8 threads versions indicate that they
are slowed down by CPU utilization cap as CPU is always at 100% utilization and

working with its full resources while executing 8 threads versions.

Figure 4.10 shows the efficiency difference between each implementation in how many
millions of keys can be tried per second. Values are calculated from 2* exhaustive
search implementations shown in Figure 4.7, Figure 4.8 and Figure 4.9 respectively.

CPU implementation numbers are taken from the most efficient ones which are the 8

63

threads versions while CUDA metrics are taken from kernel #5. According to Figure
4.10, CUDA can try 1.7 billion of AES-128 keys per second while AES-NI can only
process 82 million. In this regard, only by having 22 concurrently workings CPUs can
CUDA efficiency be outperformed. The same type of efficiency difference can be seen
for AES-192 and AES-256 cases as well.

AES EXHAUSTIVE SEARCH MILLIONS OF KEYS
PER SECOND
GPU: GTX 970
CPU: 17 4770K

1,765.56
1,472.74
1,235.04
82.38 49.51 78.65 36.0 67.93 32.16
| — I — — —
CUDA- NI-128 CPP-128 CUDA- NI-192 CPP-192 CUDA- NI-256 CPP-256
128 192 256

Figure 4.10: CUDA, AES-NI and C++ exhaustive search performance difference

Table 4.12 shows additional information regarding cycles per byte and throughput
values. Throughput is shared in terms of GBs per second. Since 8 threads versions are

the fastest among CPU implementations, their values are shown along with 1 thread.

Table 4.12: CUDA, AES-NI and C++ exhaustive search results

Architecture AES | Cycles/byte | GB/sec
128 0.05 26.31
NVIDIA GTX 970, 1.4 GHz 192 0.06 21.95
256 0.07 18.40
8T 2.96 1.23

128
1T 10.05 0.36
Intel i7 4770K, 3.9 GHz 199 8T 3.10 1.17
AES-NI 1T 10.31 0.35
8T 3.59 1.01

256
1T 12.53 0.29
8T 4.92 0.74

Intel i7 4770K, 3.9 GHz 128
1T 19.03 0.19

CpP

192 | 8T 6.77 0.54

64

1T 26.39 0.14
8T 7.58 0.48
1T 29.84 0.12

256

Another point on CPU implementations is that while CPU is directly connected to
operating system, GPU is free to execute its kernels. This brings about some
performance issues such that when CPU is overloaded with instructions, the
performance of exhaustive search is affected. In this research, CPU durations are
recorded in idle state where only the exhaustive search command line application is
running. However, when the computer is not idle, operating system will allocate some
CPU resources to the tasks that are issued by the user. In this way, CPU
implementations are slowed down and will not give the same output performance.
However, this is not the case for GPU as it can exist inside the system as a coprocessor.
So, CPU and operating system are not affected by the highly utilized exhaustive search
program. This is mostly the case for 8 threads version since utilization of CPU is so
high on these implementations, operating system can be stalled while they are
working. This is another advantage of CUDA as the user experience on operating
system will not be affected while an exhaustive search is being executed on GPU. As
a result, users can continue to use the computer while they must wait for exhaustive
search to be finished on CPU.

4.2. CTR Implementation

CTR is a mode of operation which allows AES to be implemented in multithreading
way. It Is important since file encryption section uses CTR mode of operation. In this
research, it is used for this section and file encryption. This section investigates on the
fly CTR encryption which is basically exhaustive search without key scheduling part.
Before the beginning of execution, a key is selected, and each round of the key is
calculated. Then, they are used as precalculated keys for AES rounds while execution
is ongoing. In other words, in CTR implementation, each thread increments plaintext
instead of key, which eliminates the need of key scheduling each iteration. So,
encryption takes less time than exhaustive search. Each CTR implementation is run
for 25 times with the aim of doing 2* encryptions and their results are averaged for
AES-128, AES-192 and AES-256 which can be found in Figure 4.11, Figure 4.12 and
Figure 4.13. respectively. After each iteration, 10 seconds of intervals are put between

executions just like exhaustive search case.

CUDA version of CTR is derived from kernel #b5, fastest kernel of AES-128 exhaustive
search experiment. In this version, keys are sent to kernel via global memory with

cudaMallocManaged function and fetched into shared memory at the beginning of

65

execution just like exhaustive search implementations. However, instead of just 128
bits, total of 11 128 bits of keys are stored for AES-128, 13 128 bits for AES-192 and
15 128 bits for AES-256. Other than using these keys for each round, there is not any
difference between CTR and exhaustive search versions of kernel #5 in terms of
design. Each CUDA kernel has 32 registers so occupancy ratio will be about maximum

efficiency according to Figure 3.8.

4.2.1. AES-128 Comparison

Experiment results of AES-128 for all implementations can be found in Figure 4.11.
Kernel #5 used in exhaustive search is modified for using precalculated keys instead
of calculating different keys for each iteration. AES-NI and C++ implementations are
also altered in the same manner. Results are calculated and according to them, kernel
#5 is more than 4 times faster than the fastest CPU implementation which is 8
threaded version of AES-NI. It is also faster than 8 threads C++ implementation by
39 times. 4 and 8 threads versions of AES-NI are almost identical in terms of

performance.

AES-NI version seems to be the efficient one of CPU implementations just like it is
in exhaustive search since it is 9 times faster than C+4 implementation. AES-NI
implementations increase efficiency by 93%, 92%, 90% and 89% with respect to thread
numbers considering C++ implementations. The efficiency differences between
threads for AES-NT are 39%, 30% and 0% while C++ have 49%, 43% and 12%. 8
threads version of AES-NI takes almost the same time as 4 threads version so
increasing thread number after 4 does not make any difference for the case of AES-
NI. However, 8 threads C++ implementation improves its duration by 12%. This
shows that, increasing thread count to 8 from 4 can further improve the efficiency of
C++ implementation while AES-NI is not affected.

66

AES-128 23 CTR MODE (SECONDS)
GPU: GTX 970
CPU: I7 4770K

65.104

33.132

18.986 16.794
[

1.851 1.853 . .
I — —

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

0.426

Figure 4.11: CUDA, AES-NI and C++ AES-128 CTR durations for 2% encryptions

4.2.2. AES-192 Comparison

Just like AES-128 CTR implementation, AES-192 versions are also implemented, and
the results are recorded in Figure 4.12. According to them, CUDA is the superior
implementation by far with it being 4 times faster than the most efficient CPU
implementation, 8 threaded AES-NI. It is also 39 times faster than C++
implementation. This shows that CUDA is working 75% more efficiently than the best
AES-NI implementation and 97% than C++ one. 4 and 8 threads versions of AES-NI

produce identical performance in terms of duration.

The efficiency differences between AES-NI and C++ with respect to thread count are:
93%, 92%, 90% and 90%. 8 threads version of AES-192 NI even performs more
efficiently than AKES-128 version considering C+4 implementation. Performance
improvements between threads for AES-NI are 41%, 33%, 0% while they are %50,
%45 and %7 for C++. Like AES-128 case, increasing thread count of AES-NI
implementation for CTR mode does not affect the performance output after 4 threads.
While C++ implementation shows the potential of 7% improvement in terms of

duration, AES-NI is not able to increase its efficiency after 4 threads.

67

AES-192 239 CTR MODE (SECONDS)
GPU: GTX 970
CPU: I7 4770K

77.500

39.210

21.512 19.985

o HE
0.517 - 2.066 2.075

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

Figure 4.12: CUDA, AES-NI and C++ AES-192 CTR durations for 2% encryptions

4.2.3. AES-256 Comparison

CTR versions of AES-256 are also implemented and they are run for 25 times just like
every other implementation. The results are averaged and recorded in Figure 4.13.
CUDA implementation is still the fastest among other ones with it being almost 4
times faster than the fastest CPU implementation. Moreover, CUDA is faster than
the best C++ implementation by 38 times. This shows that CUDA is still the most
efficient implementation among others. 4 and 8 threads versions of AES-NI are almost

identical in terms of performance just like every other CTR implementation.

AES-NT is still the better one considering C++ version of AES-256. Its efficiency
ratios against CH++ versions are: 93%, 92%, 91% and 90% with respect to thread
counts. AES-NT shows efficiency ratios between different thread counts like 42%, 34%
and 0% while for C++ these values are 49%, 45% and 7%. Like other CTR
implementations, 8 threads AES-NI could not improve its performance in terms of
duration while C++ boosts its efficiency by 7%. This shows that C++ implementation
has the potential for self-improvement for 8 threads while AES-NI produces the same

result as 4 threads version.

68

AES-256 23 CTR MODE (SECONDS)
GPU: GTX 970
CPU: I7 4770K

89.626

45.284

24.983 923.296

5.867 3418 2.288 . .
0.609 oo 2.247 .

KERNEL 1T NI 2T NI 4T NI 8T NI 1T CPP 2T CPP 4T CPP 8T CPP
#5

Figure 4.13: CUDA, AES-NI and C++ AES-256 CTR durations for 2% encryptions

4.2.4. Overview

On the fly CTR implementations proved that they are faster than exhaustive search
versions by 7 to 10 times. This was the expected case since CTR versions do not
execute key scheduling for different keys like exhaustive search. Round keys are
precalculated and sent to execution beforehand so there is no need to calculate them
in each iteration. This is the basic speed difference between exhaustive search and

CTR implementations.

CUDA is by far the best choice for on the fly CTR implementation as well. It produces
4 times faster performance than CPU implementations. This performance difference
was 21, 19 and 18 times for exhaustive search cases. So, in this regard, it can be said
that CPU implementations are faster for the case of CTR. than exhaustive search. In
other words, exhaustive search is where CUDA extracts the most power from GPU
and makes a difference. CUDA is also advantageous in CTR implementation as well
since while execution is ongoing, CPU should not be used in order to extract the full
power from CPU, especially for 8 threads versions in which CPU utilization is capped
on 100% and no resource is allocated to other CPU tasks. This is not the case for
CUDA since GPU can coexist with CPU without affecting its utilization and in return;

using CUDA version does not affect user experience while computer is being used.

Just like the exhaustive search case, CPU implementations of 8 threads experience a
little hindrance on performance due to utilization cap. This cap is very visible in AES-
NI implementations because NI versions are heavily optimized in terms of hardware

and use all CPU resources while working. Average performance difference between

69

AES-NI implementations are 40%, 33% and 0% with respect to thread numbers. These
values are 49%, 44% and 9% for C++ implementations. The hindrance can be seen
clearly for 8 threads version of AES-NI and C++. AES-NI version also experiences
another reduction of performance in which the performance does not increase after 4
threads. This was not the case for exhaustive search in which 8 threads AES-NI
implementation performs 8% better than 4 threads while this ratio is 0% for CTR.
This indicates that 8 threads CTR AES-NI could not produce more performance

output than 4 threads version while exhaustive search one does.

Figure 4.14 shows the performance difference of implementations with different key
lengths in terms of how many GBs of data each implementation can encrypt per
seconds. CUDA outperforms other implementations by a big margin. If 128 bits of key
is used, kernel #5 can encrypt 37.52 GBs of data per second without considering I/0
operations using CTR mode of operation. This rate falls to 8.64 GBs per second for
AFES-NT case. On the other hand, C++ implementation can encrypt 1 GB of data per
second. Results of other key lengths show similar outcomes in favour of CUDA. So,

using CUDA for CTR encryptions is vastly advantageous considering CPU

implementations.
AES CTR MODE GB PER SECOND
GPU: GTX 970
CPU: 17 4770K
37.52

30.92
96.25
8.64 771 6.99
- 0.95 - 0.80 - 0.69

CUDA- NI-128 CPP-128 CUDA- NI-192 CPP-192 CUDA- NI-256 CPP-256
128 192 256

Figure 4.14: CUDA, AES-NI and C+4 CTR performance difference

There is a Windows program that benchmarks various components of machines while
they are running. It is called WinSAT which is short for Windows System Assessment
Tool. The executable file can be found in the system32 folder of the Windows
installation. This program can assess AES-256 performance using CPU. According to
the tests done on the same machine with i7 4770K CPU, AES-256 encryption speed
is found as 4,112 MB/s which is around 4 GBs per second. There is no detailed
documentation on this tool, so it is unknown what mode of operation is used. However,

while CPU assessment is ongoing, WinSAT uses all available CPU cores which can be

70

seen in task manager of Windows. According to this finding, it can be assumed that
WinSAT uses 8 threads while calculating this AES-256 speed. Our findings show that
our 8 threads AES-NI implementation can encrypt 6.99 GBs per second using CTR
mode while the implementation of Microsoft can only encrypt 4 GBs per second. This
indicates that our AES-NT implementation is faster than the CPU assessment tool of

Microsoft.

Table 4.13 shows the overall results for CTR experiments. Cycles per byte and
throughput as GB/sec values are shared for every CTR implementation. The table

has both 1 and 8 threads versions of CPU implementations indicated as 1T and 8T.

Table 4.13: CUDA, AES-NI and C++ CTR results

Architecture AES | Cycles/byte | GB/sec
128 0.03 37.52
NVIDIA GTX 970, 1.4 GHz 192 0.04 30.92
256 0.05 26.25
8T 0.42 8.64
128
1T 0.99 3.66
Intel i7 4770K, 3.9 GHz P 8T 0.47 7.71
AES-NI 1T 1.18 3.08
8T 0.52 6.99
256
1T 1.33 2.73
8T 3.81 0.95
128
1T 14.78 0.25
Intel i7 4770K, 3.9 GHz 192 8T 4.54 0.80
CPP 1T 17.59 0.21
8T 5.27 0.69
256
1T 20.35 0.18

4.3. File Encryption

File encryption is important since it is one of the most basic usages of AES. In this
research, CTR mode of operation is used for encrypting files. It is one of the officially
published mode of operations by NIST. Its main advantage is that it is parallelizable
which makes it perfect for multithreaded situations. CTR section of this research
forms the basis for file encryption implementations. The difference between them is

that in CTR implementations; resulting ciphertext is not stored anywhere while for

71

file encryption implementations; ciphertexts must be stored in RAM in order to be
written as files to disks. For the case of GPU, data is stored in VRAM. This situation
favours the CPU implementations since in order to write some data as a file, it must
exist in RAM. However, since GPU uses VRAM, which is different than RAM,
encrypted data is stored there and must be moved to RAM. This causes a lot of time
considering how fast CUDA encrypts, which kind of blocks the overall performance
output of GPU. Duration of this movement is totally bound by I/O operations and
affected by motherboard, CPU and even the speed of GPU socket connected to
motherboard. The data writing speed, which is the speed for fetching data from RAM
and sending it to disk system, is also bound by I/O speeds of the system and
availability to write. Ergo, these duration values do not specify whether CUDA or
CPU is faster.

The basic difference between CTR, and file encryption implementations is how each
threads process data. In CTR implementations, each thread knows which interval of
total data will be processed. In other words, total encrypted data is equally separated
to each thread. This is also for the case of exhaustive search. Since their data is
artificially created, it is done in such a way that every thread gets equal shared. For
instance, if there are 2048 keys to be tried for exhaustive search and 1024 threads,
each thread process 2 different keys. This is illustrated in Figure 4.15 on the left. On
the other hand, for file encryption; a different data sharing mechanism is implemented,
which is shown on the right. The fundamental idea behind this design lies in sharing
the data equally between the threads in the case of whole data cannot be divided in
equal portions. Considering there are n threads, each thread gets its next task by
adding n to its data process index. If there is no data after this adding process, this
means that thread is reached its end of life cycle and stopped. After every thread is
stopped, overall process is finished. In this way, every thread equally takes a task from
whole data. This approach is so much easier to be implemented than sharing

irregularly varied data to equal chunks according to dynamic thread count.

- — - L]

| I | I [y I Y U N N By B
TO iR Tn T0O ™1 Tn TO T1 Tn T0 T Tm

L 1) 1

Figure 4.15: Thread allocation difference between exhaustive search, CTR and file
encryption

For this part of the research, a file is selected with the size of 2.27 GB (2,447,461,582
bytes) and encryption iterations are carried out by CUDA, AES-NT and C++ versions.
Each encryption is run for 25 times with 10 seconds of intervals, which is the same
case as exhaustive search and CTR implementations. Obtained results are recorded.

72

In each implementation, only counter values are sent to execution according to file
size. So, when the file size is read as 2.27 GB, counter values with respect to that size
will be encrypted. After encryption, resulting ciphertexts are XORed with the data
stream of file. For CUDA case, counter values are encrypted and stored in global
memory. After that, data is fetched to RAM. For CPU case, since data is already in
RAM, there is no need for additional operations like CUDA.

GTX 970 is connected to Z&87 motherboard via PCle v3.0 x16 slot. It has 4 GB GDDRS5
VRAM. RAM used in the system is 8x2 DDR3 SDRAM with 1600 MHz bus speed,
Kingston ASU16D3LUIKBG/8G. For read/write operations, RBU-SC400S371128GB
SSD of Kingston is used. This SSD is fairly an average one considering the performance
and according to userbenchmark.com; it has 427 MB/s reading and 148 MB/s writing
sequential speeds for operating on big files [44]. These measurements are taken from
579 benchmark results done by real people across the world. So, system is bound by
these values, meaning that no matter which speed the encryption can be done, it
cannot cross the 150MB/s threshold while writing data to a file. When data is in
RAM, file is read with 1024 bytes of chunks and each chunk is XORed with the
relevant encrypted counter section. The result is written to disk with 1024 bytes of
chunks as well. For each implementation, code used for file read and write sections
are the same in order not to create any inequity between them.

4.3.1. AES-128 Comparison

According to the results of file encryption experiment for AES-128, which can be found
in Figure 4.16, CUDA is still the fastest option. It is 22 times faster than 6 threads
AES-NI implementation and 40 times than 6 threads C+4 without considering file
write operation. In other words, using CUDA for file encryption gives 95% more
efficiency in terms of duration. After the data is fetched to RAM, file is written to
disk around 20 seconds. This duration is not relevant for the scope of this research as
only file encryption speeds are important. Nevertheless, they are shown in Figure 4.16
for each implementation. It must also be noted that file writing speeds are erratic and
subjected to the state of the system in which the writing operation is being carried

out.

CUDA version of AES-128 uses 39 registers, which slows down the kernels according
to Figure 3.8, and 41,136 bytes of shared memory. It is basically the same
implementation of kernel #5 but only data sharing mechanism is changed according
to Figure 4.15. Before the kernel is started, void data is allocated in global memory
with respect to file size for encrypting counter values. This allocation is done by
cudaMalloc command. So, unified memory is not used for encrypted file data since it
is slower. Each thread populates its own encrypted values in global memory and when

the overall data population is finished, data is fetched to RAM by cudaMemcpy

73

function which transfers block of data from global memory to RAM. After that, only
writing the encrypted data as a file operation remains. So, actual file encryption
process is stopped when the full encrypted data is reached to RAM. According to this
approach, CUDA shows the most promising speed in terms of CTR encryption as it
can produce 22 times more encrypted data as throughput. However, this produced
data sits on global memory and needs to be transferred to RAM in order to be written
as a file. Traversing of this data greatly hinders the performance of CUDA as 95% of
the file encryption process is spent on moving the data. This is what bottlenecking

CUDA performance for file encryption considering CPU implementations.

AES-NI outperforms C++ just like exhaustive search and CTR implementations. It
shows 70%, 63%, 52%, 45% and 47% more efficiency with respect to thread counts.
AFES-128 file encryption also has 6 threaded versions of CPU implementations. The
reason behind this is that 8 threads C+4 implementation performs worse than 4
threads. This means that increasing threads no longer results in more performance as
more threads stall the overall performance while storing data to RAM. So, the
performance of 6 threads is also included for AES-128 in order to check whether there
is a point between 4 and 8 threads that increases performance. According to Figure
4.16, 6 threads implementation performs better than both 4 threads and 8 threads by
3% and 16% respectively for AES-NI. For C+4 implementation, performance
difference of 6 threads with respect to 4 and 8 threads are 14% and 18%. 6 threads.

AES-128 2.27 GB FILE ENCRYPTION (SECONDS)
GPU: GTX 970
CPU: I7 4770K

35.00
30.00
25.00
20.00
15.00
10.00

o I]
0.00 || || || || || || - || -

Ke;;el ITNI 2TNI 4T NI | 6T NI | 8T NI 1T CPP 2T CPP 4T CPP 6T CPP 8T CPP

FILE WRT 20.420 21.257 21.210 21.517 19.817 21.170 20.12219.441 19.708 19.827 19.833
s MEMCPY | 1.343
mmm CTR 0.073 3.051 2.084 1.665 1.613 1.922 10.221 5.602 3.462 2.956 3.595
TOTAL 21.836 24.308 23.294 23.183 21.429 23.092 30.343/25.043 23.171 22.783 23.429

Figure 4.16: CUDA, AES-NI and C++ AES-128 file encryption durations

CUDA version of AES-128 is experimented with two different data copying techniques
which are called unified memory and memory copy. The obtained results are shared

74

in Figure 4.17. According to it, cudaMemcpy approach is by far the superior among
two. In both attempts, encrypting data in CTR mode of operation takes the same
time but the real difference is shown in file write operation. Unified memory example,
in which CUDA handles the transfer of data from global memory to RAM, spends
almost 60% more time to write the file to disk. However, memory copy example, which
uses cudaMemcpy CUDA function to transfer data, takes so much less time than
unified memory case. It can be said that memory copy case is 33% efficient than
unified memory approach in terms of overall duration. Ergo, if performance is
important, data must be carried with memory copy approach, not with unified
memory. This is the reason that kernel #5 of this experiment uses cudaMemcpy
approach for every file encryption implementation.

AES-128 2.27 GB CUDA FILE
ENCRYPTION (SECONDS)
GPU: GTX 970

MEMCPY UNIFMEM
mCTR 0.073 0.073
MEMCPY 1.343
FILE WRT 20.420 32.716
TOTAL 21.836 32.789

Figure 4.17: CUDA memcpy and unified memory difference on AES-128 file
encryption

4.3.2. AES-192 Comparison

CUDA version of AES-192 file encryption uses 41,168 bytes of shared memory and 39
registers like AES-128. This is not the ideal case for CUDA since any value more than
32 registers results in badly affected occupancy ratios, as can be seen in Figure 3.8.
However, CUDA still offers the best possible solution when it comes to file encryption
with AES-192. GPU is 19 times faster than the fastest AES-NI implementation and
40 times faster than C++. CUDA memory copy duration matches the one for AES-

75

128 since the data transferred is of the same size. Only the complexity of CTR

operation is changed.

AES-NI is still better than C4++ implementation with efficiency ratios of 72%, 66%,
55%, 52% and 51% with respect to increasing thread counts. Just like AES-128 case,
6 threads versions of AES-192 are calculated and the results show that they produce
the best performance. 6 threads version of AES performs 5% and 17% better than 4
and 8 threads versions while for C++, these ratios are 12% and 16%. Efficiency ratios
of increasing threads to 6 are 34%, 22% and 5% for AES-NI and 46%, 41% and 12%
for C++. This shows that while AES-NI is faster, C+4 implementations gain more

efficiency from increased thread counts considering AES-NIL.

AES-192 2.27 GB FILE ENCRYPTION (SECONDS)

GPU: GTX 970
CPU: I7 4770K

35.00

30.00

25.00

20.00

15.00

10.00

5.00

Ke;;e' ITNI 2TNI 4TNI 6TNI 8TNI 1T CPP 2T CPP 4T CPP 6T CPP 8T CPP

FILE WRT 20.256 20.185 20.220 20.232 21.001 20.439 20.093 19.728 21.221 20.772 19.688
s MEMCPY | 1.338
mmm CTR 0.086 3.378 2.222 1.723 1.637 1974 12.110 6.528 3.857 | 3.399 4.025
TOTAL 21.679 23.564 22.442 21.955/22.639 22.414 32.202 26.257 25.078 24.170 23.714

Figure 4.18: CUDA, AES-NI and C++ AES-192 file encryption durations

4.3.3. AES-256 Comparison

File encryption version of kernel #5 uses 39 registers per thread as well. It also uses
41,200 bytes of shared memory. Each implementation is run for 25 times with 10
seconds of intervals and results are recorded to Figure 4.19. According to it, CUDA
is 17 times faster than 6 threads AES-NI implementation, which makes it 94% more
efficient in terms of duration. It is also 38 times faster than C+4 implementation. 6
threads versions, which produce the best CPU performance, are implemented like
AFES-128 and AES-192 cases since both 8 threads versions perform worse than their 4
threads equal.

76

AFES-NI is the efficient one among CPU implementations. With respect to thread
counts, NI has 74%, 68%, 59%, 56% and 55% more efficiency than C+-+ in terms of
duration. 6 threads version of AES-NI performs 6% and 16% more efficient than 4
and 8 threads in terms of duration. These ratios are 11% and 14% for 6 threads C++
implementation. With each increased thread count, AES-NI produces 35%, 24% and
6% better results in terms of duration while these ratios are 46%, 42% and 11% for
C++.

AES-256 2.27 GB FILE ENCRYPTION (SECONDS)
GPU: GTX 970
CPU: I7 4770K

40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

Ke;;el ITNI | 2T NI 4TNI 6T NI 8T NI 1T CPP 2T CPP 4T CPP 6T CPP 8T CPP

FILE WRT 20.691/20.378 20.680 20.844 20.620 20.029 20.533 21.068 20.956 20.873 20.831
s MEMCPY | 1.333
. CTR 0.100 3.651 2.378 1.796 1.681 2.010 13.771 7.457 4.327 3.847 4.486
TOTAL 22.124 1 24.029 23.058 22.640 22.301 22.039 34.304 28.525 25.284 24.721 25.317

Figure 4.19: CUDA, AES-NI and C++ AES-192 file encryption durations

4.3.4. Overview

File encryption experiments are conducted for 128, 192 and 256 bits of AES keys. A
file with the size of 2.27GB is selected and it is encrypted for 25 times with 10 seconds
of intervals between them. Results of CUDA, AES-NI and C++ versions are recorded.
According to them, CUDA is by far the superior implementation for file encryption.
It can encrypt the selected file 22, 19 and 17 times faster than the best CPU
implementation with respect to AES key length. These ratios are around 4 times for
CTR implementation. So, it can be said that CUDA is more efficient than CPU

implementations when it comes to file encryption.

There is another advantage of CUDA on CPU implementations that almost all
versions after 4 threads have %100 CPU utilization values. Reaching %100 utilization
means that every available CPU resource is being used at that moment. After reaching

this cap, increasing thread counts does not affect the performance of executions since

7

there is not any available resource. This creates a disadvantage in which users cannot
be able to work on computers while a file is being encrypted. However, since GPUs
exist inside the systems as a coprocessor, any kind of process working on them does
not fully affect the users. For instance, this example can be applied to servers with
GPUs in which every encryption process goes through CUDA greatly reduces the

workload of CPUs on the server.

For this part of research, CUDA is tried with unified memory for file encryption.
Unified memory concept is easy to use but creates a lot of workload to both RAM
and global memory. Therefore, it slows down the encryption process. For this reason,
another data transfer technique, which is direct copy from global memory, is used.
Obtained results are compared and they show that kernel with direct memory copy
operation is able to increase its efficiency by 33%. This comparison is done only for
AFES-128 and after finding out that it is faster, all CUDA experiments are run with

this approach for file encryption. It is currently the best implemented choice.

AFES-NI is still the superior CPU implementation as for it increases average efficiency
of file encryption by 72%, 66%, 55%, 51% and 51% with respect to thread counts.
However, CPU utilization cap creates an odd situation for file encryption experiment.
After 4 threads, there exists a point in which increasing thread count does not reflect
on increased performance. In fact, 8 threads versions experience a dropdown in
performance. This was not the case for CTR and exhaustive search implementations.
They also share the same type of suffering from CPU utilization gap, but they are
able to increase their performance. This situation can be explained with the fact that
basic difference of writing encrypted data to memory causes implementations with
higher threads to slow down. In order to show this, 6 threads versions are also
implemented for both AES-NI and C++. 6 threads versions are less affected than &8
threads as they are able to increase overall performance while 8 threads
implementations fail to do so. In order to justify this as it only happens to file
encryption implementations and not exhaustive search or CTR, additional
experiments are carried out for them with 6 threads. Results indicate that 6 threads
increase efficiency of exhaustive search and CTR both for AES-NI and C++
implementations considering 4 threads but not so much as 8 threads. In other words,
they stand between 4 and 8 threads in terms of performance. This proved that this

case only happens for file encryption due to memory allocations.

Figure 4.20 shows the performance difference of implementations with different key
lengths in terms of how many GBs of data each implementation can encrypt per
second. CUDA outperforms other implementations by a big margin like CTR case.
However, the advantage of CPU for CTR case seems to decrease considering how

efficient CUDA is for file encryption. For instance, when 128 bits of key is selected,

78

kernel #5 can encrypt 31.24 GBs of data per second without considering 1/0
operations and 6 thread AES-NI can only encrypt 1.41 GB. These values are 37.52
and 8.64 GBs for CTR. Therefore, CPU implementations are affected more severely
than CUDA for file encryption. Results of other key lengths show similar outcomes in
favour of CUDA. The reason behind CTR implementations showing higher
throughput lies in the fact that every ciphertext is recorded to VRAM or RAM in the
case of file encryption implementations. On the other hand, CTR versions only
produces ciphertext without any record operation. That is why there is approximately
6 GBs of speed difference per second between CUDA versions of CTR and file
encryption. This difference can be minimized with memory optimizations and better

hardware equipment. Similar cases can be observed in other key lengths as well.

Table 4.14: CUDA, AES-NT and C++ file encryption results

Architecture AES | Cycles/byte | GB/sec
128 0.04 31.24
NVIDIA GTX 970, 1.4 GHz 192 0.05 26.59
256 0.06 22.90
6T 2.57 1.41
128
1T 4.86 0.75
Intel i7 4770K, 3.9 GHz 192 6T 2.61 1.39
AES-NI 1T 5.38 0.67
6T 2.68 1.36
256
1T 5.82 0.62
6T 4.71 0.77
128
1T 16.29 0.22
Intel i7 4770K, 3.9 GHz 199 6T 5.42 0.67
CPP 1T 19.30 0.19
6T 6.13 0.59
256
1T 21.94 0.17

79

AES FILE ENCRYPTION GB PER SECOND
GPU: GTX 970
CPU: I7 4770K

31.24
26.59
22.90
1.41 0.77 1.39 0.67 1.36 0.59
| — I — I —
CUDA- NI-128 CPP-128 CUDA- NI-192 CPP-192 CUDA- NI-256 CPP-256
128 192 256

Figure 4.20: CUDA, AES-NI and C++ file encryption performance difference

80

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

In summary, GPU usage has been increasing in the past years with the advancements
in computer graphics and machine learning. They are widely used in embedded
systems, mobile phones, personal computers and workstations. Its capability to
harness power with parallel processing approach is very promising and it is used for
gaming, image processing, deep learning training etc. Using GPUs for cryptographic
purposes brings about a lot of performance throughput since these cards are basically
designed to do simultaneous processing. Block ciphers are quintessential in terms of
extracting power from parallel processing as they are easily adapted to be run in
parallel. For this reason, AES is selected to be implemented in CUDA for
experimenting how much performance gain can be achieved considering CPU

implementations.

One of the fields that GPUs are used is full disk encryption. By using GPU, file
encryption is greatly accelerated which shortens the time spent on full disk encryption.
This is crucial for systems that constantly uses fully encrypted disks like militaristic
organizations. Another advantage of using GPUs for file encryption is that it eases
the workload of CPU. Since GPU exists in the system as coprocessor and does all the
encryption work, CPU is free to be used by operation system. In this way, user
experience is not affected by ongoing full disk encryption at all. Another advantage of
GPU usage in cryptography can be considered as the same case in SSL servers. If all
encryption is done on GPU for a busy SSL server, then the workload of that server

can be spared to do something else in the meantime.

GPUs can also be used in implementations of AES based cryptographic algorithms
like small-AES [45] and RECTANGLE. SHA-3 competition winner, Keccak, is also an
AES based hashing algorithm. CAESAR competition winners are mostly AES based
designs as well. Moreover, an alternative cryptocurrency which is named as X11 uses
multiple rounds of 11 different hashes and some of them are AES based hashing
algorithms like Keccak. All of these AES based cryptographic algorithms can be
implemented for GPUs in order to increase the efficiency of output according to the

results of this research.

81

Table 5.1: AES experiment results

Architecture AES Cycles/byte | GB/sec
128 0.05 26.31
NVIDIA GTX 970, 1.4 GHz 192 0.06 21.95
256 0.07 18.40
128 2.96 1.23
Exhaustive Intel i7 4770K, 3.9 GHz
192 3.10 1.17
Search AES-NI
256 3.59 1.01
128 4.92 0.74
Intel i7 4770K, 3.9 GHz
192 6.77 0.54
CPP
256 7.58 0.48
128 0.03 37.52
NVIDIA GTX 970, 1.4 GHz 192 0.04 30.92
256 0.05 26.25
128 0.42 8.64
Intel i7 4770K, 3.9 GHz
CTR 192 0.47 7.71
AES-NI
256 0.52 6.99
128 3.81 0.95
Intel i7 4770K, 3.9 GHz
192 4.54 0.80
CPP
256 5.27 0.69
128 0.04 31.24
NVIDIA GTX 970, 1.4 GHz 192 0.05 26.59
256 0.06 22.90
File ' 128 2.57 1.41
Intel i7 4770K, 3.9 GHz
Encryption 192 2.61 1.39
CT AES-NI
(CTR) 256 2.68 1.36
128 4.71 0.77
Intel i7 4770K, 3.9 GHz
192 5.42 0.67
CPP
256 6.13 0.59

GPUs can also be used in experiments like exhaustive search in this research. Since
GPU offers a lot of power considering CPU, results of these experiments can be verified
in practice. Distinguishers used in cryptanalysis are found in theoretical ways. In order

to check whether the assumptions on these distinguishers are true or not, practical

82

experiments must be done. Therefore, GPUs can be used in these practical
experiments since they have got higher computing capabilities. For instance, the first
collision for SHA-1 is found with the help of GPUs [14]. In that research, GPU
provided 65 times more performance than CPU which enabled this attack to be carried

out in practice. Therefore, it is important to use GPU for cryptographic purposes.

Exhaustive search, CTR and file encryption experiments were carried out for 128, 192
and 256 bits of AES. For exhaustive search, 6 different CUDA kernels are implemented
with different structures and they are compared with each other. According to Nsight
results, kernel #5 is the fastest CUDA implementation. So, it is selected as the primal
CUDA kernel for comparison with CPU implementations for every other case. CUDA
is 21, 19 and 18 times faster than the best CPU implementation which is 8 threads
version of AES-NI on exhaustive search case with respect to AES key length. This
basically means that only 21 concurrently working CPUs can outmatch the power
GPU has for AES-128 exhaustive search. Secondly, CTR experiment is done for both
GPU and CPU implementations and according to the results, CUDA is 4 times faster
than the best CPU implementation. This shows that CUDA lost most of its
performance difference considering exhaustive search. However, it is still the best
possible choice for CTR by a big margin. Final experiment is done on file encryption
in which CUDA kernels perform just like exhaustive search. They are 22, 19 and 17
times faster than the best CPU implementations with respect to AES key length.
While calculating file encryption durations, 1/O operations, e.g. copying data from
global memory of GPU to RAM, are not considered as only storing encrypted data to
RAM for CPU and VRAM for GPU is important for indicating the performance
difference between CPU and GPU. As a result of these experiments, it can be said
that exhaustive search and file encryption is where CUDA outshines CPU by a big

margin. Ergo, it is better to use CUDA for those kinds of situations.

The best results of cycles per byte and throughput (GB/sec) values for each
implementation are shared in Table 5.1. According to it, CUDA implementations have
fewer cycle per byte values with respect to CPU implementations. CUDA
implementations are run on 1664 cores while CPU has only 4 cores. Considering the
core number difference between implementations, CPU cores are much advanced and
efficient than CUDA ones. However, when a lot of CUDA cores come together to work
as a whole, they are more efficient in terms of overall cycle per byte values. Hardware
implementation of AES-NT also shows fewer cycle per byte values with respect to C++
versions. This indicates the efficiency of AES-NI in which every round of AES is

computed in hardware as special instructions.

Another advantage of CUDA is that GPUs can be installed on systems as a
coprocessor next to CPU. So, when any operation is being processed by CPU, GPU

83

can do exhaustive search or file encryption on the background without affecting CPU
workload. This is very advantageous as when 4 or more threads of CPU
implementations are working, utilization becomes so high that the system could not
be used since there is not resource available to user activities. This is not the case for
CUDA. As a result of these findings, using CUDA for AES encryptions is advised

since it greatly increases performance output especially on exhaustive search case.

5.2. Future Work

Both CUDA and GPU implementations can be improved further to increase their
performance. The main problem for CUDA implementations is bank conflict issue on
shared memory. This problem is partly resolved with extending the table, but S-box
could not be fully extended, which is the case for kernel #5, due to the shortage on
shared memory. This can be improved by trying a different GPU that has enough
shared memory to extend every look-up table. This improvement will most probably
increase efficiency as extending look-up tables shows that it decreases bank conflict
values. Furthermore, exhaustive search versions of AES-192 and AES-256 along with
every CUDA implementation of file encryption use more than 32 registers per thread.
This case creates a disadvantage since occupancy ratio lowers when registers per
thread value goes more than 32. So, there is a potential of occupancy increase in these

kernels when they are optimized in terms of performance.

CPU implementations also can be improved in terms of performance, especially C++
ones. Results show that C++ implementations suffer more than AES-NI versions with
thread counts bigger than 4 since Intel heavily optimized hardware implementations.
In order to fairly compare C++ software and AES-NI hardware implementations,
C++ versions need more optimization for better CPU execution. Furthermore, CPU
used in this research only has 4 physical cores, thus, CPU implementations with more
than 4 threads suffers from utilization cap. This cap can also be removed by using a
better CPU with more cores. Furthermore, current file encryption implementation
only allows files up to a certain size like 3 GB to be encrypted. This is because global
ram of GTX 970 only has 4 GB of VRAM. Additional improvements can be done here
so that bigger files can be encrypted by using 1 GBs of chunks. Moreover, file write
speeds can be improved as well by using a better SSD with NVM express since SSD
used in this experiment is fairly an old one. Moreover, the main bottleneck of CUDA
file encryption comes from transferring data from global memory to RAM. Improving

this transfer speed will greatly increase the performance of CUDA.

84

[10]

[11]

REFERENCES

A. J. Menezes, P. C. van Oorschot, and S. a Vanstone, “Chapter 01:
Overview of Cryptography,” Handb. Appl. Cryptogr., pp. 1-48, 1996.

NIST., “FIPS 46-3: Data Encryption Standard (DES),” Natl. Inst. Stand.
Technol. NIST, vol. 3, 2009.

J. Katz and Y. Lindell, “Introduction to Modern Cryptography,” 2007.

E. Barker, W. Barker, and W. Burr, “Recommendation for Key
Management,” NIST Spec. Publ. 800-57, pp. 1-142, 2007.

R. Salz, “The SWEET32 Issue, CVE-2016-2183 - OpenSSL Blog,” OpenSSL
Blog, 2016. [Online]. Available:
https://www.openssl.org/blog/blog/2016/08/24 /sweet32/. [Accessed: 11-Mar-
2019).

M. J. Dworkin, “Recommendation for block cipher modes of operation :
National Inst of Standards and Technology Gaithersburg Md Computer
Security Div,” 2007.

“Federal Information Processing Standards (FIPS) Publication 197
Announcing the ADVANCED ENCRYPTION STANDARD (AES),” US
Dep. Commer. Natl. Inst. Stand. Technol., 2001.

National Institute of Standards and Technology, “Special Publication (NIST
SP) - 800-21 2nd ed: Guideline for Implementing Cryptography in the Federal
Government [Second Edition],” no. December, p. 97, 2005.

J. Daemen and V. Rijmen, “The Design of Rijndael,” Springer, New York, p.
255, 2002.

S. Gueron, Intel Advanced Encryption Standard (AES) New Instructions Set:
White Paper, no. May. 2006.

K. Krewell, “What’s the Difference Between a CPU and a GPU? | The
Official NVIDIA Blog.” [Online]. Available:
https://blogs.nvidia.com/blog/2009/12/16 /whats-the-difference-between-a-
cpu-and-a-gpu/. [Accessed: 13-Mar-2019].

85

[12]

[13]

[17]

[24]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” 2012.

K. Powell, “Deep Learning and NVIDIA TITAN X, DIGITS DevBox |
NVIDIA Blog.” [Ounline]. Available:
https://blogs.nvidia.com/blog/2015/03/17/digits-devbox/. [Accessed: 13-Mar-
2019).

M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full SHA-1,” 2017.

C. Tezcan, “Brute Force Cryptanalysis of MIFARE Classic Cards on GPU,”
no. Icissp, pp. 524-528, 2017.

G. Leurent and T. Peyrin, “From collisions to chosen-prefix collisions
application to full SHA-1,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11478 LNCS, pp. 527—
555, 2019.

R. Peddie, Jon; Dow, “Due to the collapse of Crypto-mining Q4 2018 goes
down as worst fourth quarter for add-in boards in over 10 years.” [Online].
Available: https://www.jonpeddie.com/store/add-in-board-report. [Accessed:
13-Mar-2019)].

“Steam Hardware & Software Survey: February 2019.” [Online]. Available:

https://store.steampowered.com/hwsurvey.

“GeForce GTX 970 | Specifications.” [Online]. Available:
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
970/specifications. [Accessed: 18-Mar-2019].

A. Biryukov and J. Grofischédl, “Cryptanalysis of the full AES using GPU-
like special-purpose hardware,” Fundam. Informaticae, vol. 114, no. 3—4, pp.
221-237.

D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright, “Fast software AES
encryption,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 6147 LNCS, pp. 75-93, 2010.

K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration of AES encryption on
CUDA GPU,” Int. J. Netw. Comput., vol. 2, no. 1, pp. 131-145.

N. Nishikawa, K. Iwai, H. Tanaka, and T. Kurokawa, “Throughput and
power efficiency evaluations of block ciphers on Kepler and GCN GPUs,”
Proc. - 2018 1st Int. Symp. Comput. Networking, CANDAR 2013, pp. 366—
372, 2013.

J. Yang and J. Goodman, “Symmetric Key Cryptography on Modern

86

33]

[34]

[36]

[37]

Graphics Hardware,” Adv. Cryptol. — ASIACRYPT 2007, pp. 249-264, 2007.

J. Gilger, J. Barnickel, and U. Meyer, “GPU-acceleration of block ciphers in
the OpenSSL cryptographic library,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7483
LNCS, pp. 338-353, 2012.

G. Agosta, A. Barenghi, F. De Santis, A. Di Biagio, and G. Pelosi, “Fast disk
encryption through GPGPU acceleration,” Parallel Distrib. Comput. Appl.
Technol. PDCAT Proc., pp. 102-109, 2009.

K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturk,
G. Wolrich, and R. Zohar, “Breakthrough AES Performance with Intel® AES
New Instructions (White Paper). Intel Corp.”

L. Knudsen and M. Robshaw, “The Block Cipher Companion,” 2011.
J. Daemen and V. Rijmen, “AES Proposal : Rijndael,” no. December, 2012.

C. Nvidia, “Cuda ¢ programming guide,” Changes, 2012. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide /index.html.
[Accessed: 18-Mar-2019].

“An Even Easier Introduction to CUDA | NVIDIA Developer Blog.” [Online].
Available: https://devblogs.nvidia.com/even-easier-introduction-cuda/.
[Accessed: 19-Mar-2019).

“CUDA Occupancy Calculator - Nvidia.” [Online]. Available:
https://developer.download.nvidia.com/compute/cuda/CUDA__Occupancy_ ¢
alculator.xls. [Accessed: 20-Mar-2019].

NVIDIA, “CUDA C Programming Guide
(https://docs.nvidia.com/cuda/cuda-c-programming-guide/),” no. February,
2015.

“CUDA Programming: BANK CONFLICTS IN SHARED MEMORY IN
CUDA.” [Online]. Available: http://cuda-

programming.blogspot.com /2013 /02 /bank-conflicts-in-shared-memory-in-
cuda.html. [Accessed: 25-Mar-2019].

M. S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini, and G. Mauri,
“cuTauLeaping: A GPU-powered tau-leaping stochastic simulator for massive
parallel analyses of biological systems,” PLoS One, vol. 9, no. 3, 2014.

R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An investigation
of Unified Memory Access performance in CUDA,” 2014 IEEE High Perform.
Extrem. Comput. Conf. HPEC 2014, 2014.

“NVIDIA Nsight Systems | NVIDIA Developer.” [Online]. Available:

87

https://developer.nvidia.com/nsight-systems. [Accessed: 14-May-2019].

“Achieved Occupancy | NVIDIA Nsight Systems.” [Online]. Available:
https://docs.nvidia.com/nsight-visual-studio-

edition/5.6/Nsight Visual Studio Edition User Guide.htm#Analysis/Rep
ort/CudaExperiments/KernelLevel / AchievedOccupancy.htm. [Accessed: 14-
May-2019].

“NVIDIA Nsight Visual Studio Edition User Guide - Instruction Statistics.”
[Online]. Available: https://docs.nvidia.com/nsight-visual-studio-

edition/5.6/Nsight Visual Studio Edition User Guide.htm#Analysis/Rep
ort /CudaExperiments/KernelLevel /InstructionStatistics.htm. [Accessed: 15-
May-2019].

“NVIDIA Nsight Visual Studio Edition User Guide - Branch Statistics.”
[Online]. Available: https://docs.nvidia.com/nsight-visual-studio-

edition/5.6/Nsight_ Visual Studio_ Edition_User_Guide.htm#Analysis/Rep
ort/CudaExperiments/KernelLevel /BranchStatistics.htm. [Accessed: 15-May-
2019).

“NVIDIA Nsight Visual Studio Edition User Guide - Issue Efficiency.”
[Online]. Available: https://docs.nvidia.com /nsight-visual-studio-

edition/5.6/Nsight_ Visual Studio_ Edition User_Guide.htm#Analysis/Rep
ort/CudaExperiments/KernelLevel /IssueEfficiency.htm. [Accessed: 16-May-
2019].

“NVIDIA Nsight Visual Studio Edition User Guide - Achieved IOPs.”
[Online]. Available: https://docs.nvidia.com/nsight-visual-studio-

edition/5.6/Nsight_ Visual _Studio_ Edition_User_ Guide.htm#Analysis/Rep
ort/CudaExperiments/KernelLevel / AchievedIops.htm. [Accessed: 16-May-
2019].

“NVIDIA Nsight Visual Studio Edition User Guide - Pipe Utilization.”
[Online]. Available: https://docs.nvidia.com/nsight-visual-studio-

edition/5.6/Nsight_ Visual _Studio_ Edition_ User_ Guide.htm#Analysis/Rep
ort/CudaExperiments/KernelLevel /PipeUtilization.htm. [Accessed: 16-May-
2019].

“UserBenchmark: Kingston RBU-SC400S37128G 128GB.” [Online]. Available:
https://ssd.userbenchmark.com/SpeedTest /15616 / KINGSTON-RBU-
SC400S37128G. [Accessed: 24-May-2019)].

C. Cid, S. Murphy, and M. J. B. Robshaw, “Small Scale Variants of the
AES,” pp. 145-162, 2010.

88

TEZ iZiN FORMU / THESIS PERMISSION FORM

ENSTITU / INSTITUTE

Fen Bilimleri Enstitiisii / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitiisii / Graduate School of Social Sciences

Uygulamali Matematik Enstitiisii / Graduate School of Applied Mathematics

Enformatik Enstitlisii / Graduate School of Informatics

Deniz Bilimleri Enstitlisti / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadi / Surname N AN S AN
Adi / Name o T . A
BOIUMU / DEPAITMENT & ..eiiiieieciiecie ettt e st erte e et e e e teesteeebeesbaeebeesbbeeabeesabesaseesseesbeeseenns

TEZIN ADI / TITLE OF THE THESIS (ingilizce / ENgIish) © c..vovevivieeieceiieeeceieeeeieeeee e

TEZIN TURU / DEGREE: Yiiksek Lisans / Master Doktora / PhD

Tezin tamami diinya ¢apinda erigsime agilacaktir. / Release the entire work immediately for
access worldwide.

Tez iki yil siireyle erisime kapah olacaktir. / Secure the entire work for patent and/or
proprietary purposes for a period of two year. *

Tez alt1 ay siireyle erisime kapal olacaktir. / Secure the entire work for period of six
months. *

* Enstitii Yonetim Kurulu Kararinin basili kopyasi tezle birlikte kiitiiphaneye teslim edilecektir.
A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarin imzasi / Signature —ccoeeeeveeneennen. Tarih / Dateccovevuneee.

89

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTERS
	1. INTRODUCTION
	1.1. Cryptography
	1.2. Block Ciphers
	1.2.1. Mode of Operations

	1.3. AES
	1.4. AES-NI
	1.5. GPU
	1.6. CUDA
	1.7. Overview
	1.8. Related Work
	1.9. Our Contribution

	2. AES
	2.1. Design Specifications
	2.1.1. SubBytes Transformation
	2.1.2. ShiftRows Transformation
	2.1.3. MixColumns Transformation
	2.1.4. AddRoundKey Transformation

	2.2. Key Schedule
	2.2.1. AES-128 Key Schedule
	2.2.2. AES-192 Key Schedule
	2.2.3. AES-256 Key Schedule

	2.3. Implementation Aspects
	2.3.1. Creating Look-up Tables

	3. CUDA
	3.1. Thread Hierarchy
	3.2. Compute Capability
	3.3. Memory Hierarchy
	3.4. Occupancy

	4. CUDA IMPLEMENTATION OF AES
	4.1. Exhaustive Search
	4.1.1. AES-128 Implementations for CUDA
	4.1.1.1. Occupancy
	4.1.1.2. Instruction Statistics
	4.1.1.3. Branch Statistics
	4.1.1.4. Issue Efficiency
	4.1.1.5. Achieved IOPS
	4.1.1.6. Pipe Utilization
	4.1.1.7. Memory Statistics
	4.1.1.8. Overview

	4.1.2. AES-128 Comparison
	4.1.3. AES-192 Comparison
	4.1.4. AES-256 Comparison
	4.1.5. Overview

	4.2. CTR Implementation
	4.2.1. AES-128 Comparison
	4.2.2. AES-192 Comparison
	4.2.3. AES-256 Comparison
	4.2.4. Overview

	4.3. File Encryption
	4.3.1. AES-128 Comparison
	4.3.2. AES-192 Comparison
	4.3.3. AES-256 Comparison
	4.3.4. Overview

	5. CONCLUSIONS AND FUTURE WORK
	5.1. Conclusions
	5.2. Future Work

	REFERENCES

