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Computer Engineering Dept., METU

Assist. Prof. Dr. Hamdi Dibeklioğlu
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ABSTRACT

INTERPRETABLE SPATIO-TEMPORAL NETWORKS FOR MODELING AND
FORECASTING SOCIETAL EVENTS

ERTUĞRUL, ALİ MERT

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Tuğba Taşkaya Temizel

Co-Supervisor: Assoc. Prof. Dr. Yu-Ru Lin

November 2019, 105 pages

The relationships between individual activities and societal events (e.g. migrations, social
movements) are complex due to the various social, temporal and spatial factors. Understand-
ing such relationships in the context of various societal events such as street protests and
opioid crisis, and forecasting these events are important as they have great impacts on public
policies and supporting decision making of authorities. In this thesis, novel, spatio-temporal,
deep neural networks are proposed (i) to forecast societal events and (ii) to help examine
the relationships between societal events and their social and geographical contexts. The
proposed models are designed to model the complex interactions between local (observed
from within a location) and global (observed from all locations) activities by incorporating
a new design of attentional networks. They are capable of forecasting the occurrence of fu-
ture societal events and allow for interpreting what features, from which places, and how they
contribute to event forecasting. Within the scope of this thesis, extensive experiments are con-
ducted to evaluate the proposed networks on two different types of population-level societal
events, namely social movements and opioid overdoses, with multiple datasets. The results in-
dicate that the proposed models achieve superior forecasting performance than the compared
methods. Also, they provide meaningful interpretations in terms of (i) what local and global
activity features are more predictive, (ii) what locations have more salient contributions, and
(iii) how these locations contribute to forecasting the subsequent events.

Keywords: Spatio-Temporal Learning, Deep Learning, Interpretable Learning, Societal Event
Forecasting, Attentional Networks
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ÖZ

TOPLUMSAL OLAYLARIN MODELLENMESİ VE TAHMİNİ İÇİN
YORUMLANABİLİR UZAY-ZAMANSAL AĞLAR

ERTUĞRUL, ALİ MERT

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Tuğba Taşkaya Temizel

Ortak Tez Yöneticisi: Doç. Dr. Yu-Ru Lin

Kasım 2019 , 105 sayfa

Bireysel etkinlikler ve toplumsal olaylar (örneğin göçler, sosyal hareketler gibi) arasındaki
ilişkiler, çeşitli sosyal, zamansal ve mekansal faktörler nedeniyle karmaşıktır. Bu tür ilişkileri,
sokak protestoları ve opioid krizleri gibi çeşitli toplumsal olaylar bağlamında anlamak ve bu
olayları tahmin etmek, kamu politikaları ve yetkililerin karar vermelerini desteklemede önem-
lidir. Bu tezde, (i) toplumsal olayları öngörmek ve (ii) toplumsal olaylar ile onların sosyal ve
coğrafi bağlamları arasındaki ilişkileri incelemeye yardımcı olmak için yeni, uzay-zamansal,
derin öğrenme ağları önerilmektedir. Önerilen modeller, yeni bir dikkat çeken ağ tasarımı ile
yerel (bir konumdan gözlenen) ve küresel (tüm konumlardan gözlenen) faaliyetler arasındaki
karmaşık etkileşimleri modellemektedir. Bu modeller, gelecekteki toplumsal olayların olu-
şumunu öngörebilir ve hangi özniteliklerin, hangi yerlerden ve olay tahminine nasıl katkıda
bulunduklarını yorumlamaya izin verirler. Bu tez kapsamında, önerilen ağları değerlendirmek
için, toplumsal hareketler ve opioid doz aşımı olmak üzere iki farklı popülasyon düzeyinde
toplumsal olayda, çoklu veri setleri üzerinde kapsamlı deneyler yapılmıştır. Sonuçlar, öne-
rilen modellerin karşılaştırılan yöntemlerden daha iyi tahmin performansı sağladığını gös-
termektedir. Ayrıca, önerilen modeller (i) hangi yerel ve küresel faaliyet özniteliklerin daha
öngörücü olduğu, (ii) hangi konumların daha belirgin katkıları olduğu ve (iii) bu konumla-
rın daha sonraki olayları tahmin etmeye nasıl katkıda bulunduğu hakkında anlamlı yorumlar
sağlamaktadır.

Anahtar Kelimeler: Mekansal-Zamansal Öğrenme, Derin Öğrenme, Yorumlanabilir Öğrenme,
Toplumsal Olay Tahmini, Dikkat Ağları
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A societal event can be described as an event, which is of high importance to the society such
as migration, social movement, and experience of a specific health-related event. Societal
events are associated with the temporal and spatial sequences of individual actions, which
follow patterns in particular types of environments. Depending on various social, temporal
and spatial factors, the relationships between such individual activities and societal events
might be complex. Understanding these relationships in the context of various societal events
such as street protests and opioid crisis, and predicting future events are important as they
have great impacts on public policies and supporting decision making of authorities [1, 2].

Figure 1.1 indicates an example of online activities of the individuals on social media, in
particular Twitter, where they talk about after shooting of unarmed Michael Brown by a po-
lice officer in Ferguson, Missouri. Following the shooting event, Ferguson unrests occurred,
which are the symbolic protests against systemic racism to Black people in the U.S. Later on,
the Black Lives Matter (BLM) movement was nationally recognized [3]. As shown in the
example, people give voice to their grievances and concerns about happenings, call for join
to future protests, express their support to the protesters through social media. In this case,
online activities of the individuals are connected and interrelated to the offline protests. Fur-
thermore, Figure 1.2a reveals a tweet posted by a police and crime commissioner in the U.K.
stating the connection between criminal activities, particularly theft, burglary and robbery,
and opioid use such as heroin and cocaine. Similarly, Figure 1.2b indicates the relationship
between involvement in criminal justice system and intensity of opioid use based on a re-
cent published study [4]. It is stated that involvement in the criminal justice system increases
with intensity of opioid use, and opioid use is significantly associated with involvement in the
criminal justice system. These examples highlight the potential links between the individual
criminal activities and the opioid crisis. Given the potential links and the interrelations be-
tween individual activities and societal events, how to uncover these relationships and predict
their future behaviors have drawn significant research attention across multiple disciplines
such as information science [1], public health [5] and political science [6]. However, this task
is challenging due to complex nature of these relationships.

The drastic increase in availability of digital traces of activities from various data sources (e.g.
social media, city sensors, computer-aided dispatch databases), and recent improvements in
predictive analytics offer a powerful way to learn the relationships between activities and
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Figure 1.1: Sample tweets posted after shooting of Michael Brown in Ferguson, Missouri
(left) in 2014 and a photo from a protest following the shooting event (right).

societal events. However, they often provide “black box” solutions and give no or little insight
into interpreting learned relationships [7, 8, 9, 10]. A predictive model with interpretation
capability in terms of these relationships can give insights and enable related stakeholders to
forecast future events and be prepared for them. For instance, stakeholders such as police
departments or event planners can plan and allocate resources to encourage peaceful and
orderly crowd gatherings, marches or demonstrations. Similarly, forecasting opioid overdoses
and uncovering the underlying reasons of opioid use enable governments (e.g. public health)
to improve the overdose surveillance and to identify the areas in need of prevention effort
considering the spatial differences.

Spatio-temporal modeling and forecasting of societal events from digital traces of the activi-
ties are important problems but encounters critical challenges. (1) The massive amount of dig-

(a) (b)

Figure 1.2: Examples showing the connection between criminal activities and opioid use. (a)
Tweet stating the relationship between specific types of criminal activities and dependents of
opioid use by a police and crime commissioner in the U.K. (b) Relationship between involve-
ment in criminal activities and opioid use, published by [4].
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ital activity traces surrounding various activities calls for the need of an automatic approach
to learn patterns that reflect differences in their social, spatial and temporal contexts. How to
automatically learn the heterogeneous contexts in a unified framework is an open question.
(2) Such automatic approach needs to enable an interpretation about how events unfold over
time and across space which shows the learned relationships between activities and the events.
In this context, the main focus of this thesis is to seek to address the aforementioned prob-
lems by proposing novel, interpretable predictive deep networks to model and forecast the
societal events. To evaluate the proposed networks, extensive experiments are conducted on
two different types of population-level societal events, namely social movements and opioid
overdoses, with multiple datasets.

1.2 Research Questions

This thesis aims to answer two main research questions as follows:

• RQ 1) How can a method be developed that learns the relationships between the activ-
ities and societal events, and forecasts the future events from the learned patterns that
reflect differences in social, spatial and temporal contexts?

• RQ 2) To what extent does the automatic method allow for interpretation about how
events unfold over time and across space?

– RQ 2.1) What social and activity features are associated with the subsequent
events?

– RQ 2.2) To what extent are the local activities (observed from within a region) and
the global activities (observed outside of a region) predictive to the subsequent
events?

– RQ 2.3) What locations’ activities would have a more far-reaching predictive
power, in terms of signaling subsequent events in other locations?

Within the scope of this thesis, two main studies are conducted to answer the research ques-
tions above. Each study seeks to answer all research questions. Each study follows a similar
pipeline which includes a novel interpretable predictive model that tackles the drawbacks of
existing predictive models, data collection, feature extraction and evaluation of the proposed
model on a specific societal event domain.

First, the existing spatio-temporal predictive models are reviewed and their shortcomings are
identified. Accordingly, a novel interpretable spatio-temporal predictive model is proposed
that learns the relationships between individual activities and societal events, and forecasts
the future events. The proposed model is evaluated on the domain of social movements with
three different cases, where the purpose is to forecast future offline protests from spatio-
temporal online activities. The informative local and global activity features, contributions of
local and activity features as well as the most contributing locations (hubs) to forecasting are
interpreted as a result of the structure of the proposed model.

Second, a novel, community-attentive, spatio-temporal and interpretable predictive model
is proposed to model the relationships between activities and societal events, and forecast
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the future societal events in an interpretable way. The proposed model is evaluated on the
domain of opioid crisis, where the purpose is to forecast future opioid overdoses from spatio-
temporal crime activities. The important local-level and global-level activity features, learned
communities, community memberships and community contributions to forecasting future
local events are analyzed and interpreted.

1.3 Main Contributions

The contributions of this thesis are summarized as follows:

• A unified, spatio-temporal predictive network: A novel spatio-temporal predictive
deep learning model, called ActAttn, is proposed, which (i) automatically learns the
relationships between the spatio-temporal activity traces and societal events, and (ii)
forecasts the future events. To the best of our knowledge, this is the first model that
differentiates the local and global contributions in the spatio-temporal societal event
forecasting domain.

• A community-attentive spatio-temporal predictive network: A novel multi-head at-
tention based deep predictive model, called CASTNet, is proposed, which learns differ-
ent representation subspaces of global dynamics (i.e. communities). CASTNet allows
the prediction for a given location to be individually optimized by the features con-
tributed by a mixture of communities to effectively forecast the societal events.

• Interpretability in hierarchical attention: Hierarchical attentional networks are in-
corporated into the proposed models. Through attentional networks, ActAttn (i) differ-
entiates the local and global feature contributions and (ii) identifies the hub regions that
have a more salient contribution in predicting future societal events. Therefore, it allows
for interpreting the importance of activities in different regions (intra- vs. inter-region
contribution, and hubs) in forecasting future events. CASTNet allows for interpret-
ing (i) learned communities, (ii) community memberships (which locations form the
communities), (iii) community contributions for forecasting local incidents, and (iv)
informative time steps in both local-level and global-level.

• Interpretability in activity features: The proposed models incorporate Group Lasso
(GL) regularization to select informative set of features which succinctly capture what
activity types at both local- and global-level are more associated with the future societal
events.

• Investigation of opioid overdose forecasting capability from crime dynamics: To
the best of our knowledge, for the first time, this thesis proposes to forecast future opioid
overdoses from the spatio-temporal crime dynamics and location-specific features.

• Extensive experiments: Extensive experiments and in-depth analyses are conducted
to evaluate each proposed model. ActAttn is evaluated on three real-world social move-
ment datasets. Moreover, the applicability of CASTNet is investigated by conducting
experiments on two real-world opioid overdose datasets.
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1.4 Organization of the Thesis

The outline of this thesis is as follows:

Chapter 2 provides background information about societal events with a specific focus on
social movements and opioid overdose. It continues with comprehensive literature review
and state-of-the-art knowledge about the temporal/spatio-temporal prediction/forecasting ap-
proaches. Finally, it ends with presenting basic machine learning concepts used in this thesis.

Chapter 3 proposes a novel interpretable spatio-temporal predictive model, called ActAttn,
for modeling and forecasting future societal events. It also presents evaluation and in-depth
analysis of the proposed model on the domain of social movements.

Chapter 4 proposes a novel community-attentive spatio-temporal predictive model, called
CASTNet, for modeling and forecasting future societal events. This chapter also provides
evaluation and in-depth analysis of the proposed model on the domain of opioid overdoses.

Chapter 5 summarizes the proposed models and findings, and concludes the thesis with the
limitations of these models as well as the possible future directions.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

This chapter begins with providing background information about societal events and possi-
ble links between them and human activities based on social theories. Then, it continues with
a survey of the relevant and state-of-the-art studies for temporal/spatio-temporal prediction/-
forecasting by categorizing them into two main groups, deep neural network (DNN) based
approaches and other approaches. Finally, this chapter ends with presenting basic machine
learning concepts that are used in the proposed methods through this thesis.

2.1 Societal Events

This section provides background information about societal events, in particular two main
significant population-level societal events, namely social movements and opioid overdoses.
It also presents possible links between the human activities and the corresponding societal
events based on relevant social theories. Particularly, it first discourses the relationships be-
tween online human-activities and offline social movements. Then, it unveils the relationships
between a social phenomena “crime” and drug use.

2.1.1 Social Movements

Social movements are one of the most complex societal events. They reflect how collectivi-
ties articulate and press a collectivity’s interests to make significant changes in public policies
and political decisions. Every day, news about social movement activity relevant to a variety
of contested issues is being updated, on topics ranging from civil rights, to human rights, to
gender equality, to gun control and others. Throughout human history, protests have been
primary means of engaging in social movements, in which collectivities usually give voice to
their grievances and concerns about the rights and well-being of themselves and others [11].
In recent decades, the diffusion of new information and communication technologies—social
media in particular—has reshaped the political activism of our time. From the Arab Spring,
to the Occupy Wall Street movement, to the recent March for Our Lives gun violence protests,
social media has been central in providing mobilizing information, coordinating demonstra-
tions, and creating opportunities for people to exchange opinions [12, 13].

Literature in social movements and social psychology has proposed theories and offered in-
sights into why people protest [14, 15, 16]. For instance, one fundamental factor of a given
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movement is its “connectedness”, both in terms of how events temporally and spatially con-
nect with other events of a similar kind, and in terms of how they are embedded in an en-
vironment where people share similar sociocultural context. In other words, social move-
ments are not merely instances of independent collective actions or protest events, but need
to be investigated within their social, temporal and geographical contexts [11]. Furthermore,
Van Stekelenburgh and Klandermants [14, 15] proposed a motivational framework that in-
corporates several sociopsychological factors that have been theorized and studied as critical
to protests: (1) Identity: individuals’ identification with certain groups/communities brings
about a shared sense of future destiny and social responsibility; (2) grievance: a felt sense of
illegitimate inequality; (3) emotion: emotions such as anger, guilt, fear, shame, and despair
that amplify the felt grievance to be stronger and accelerate people to act more promptly; (4)
social embeddedness: the social contexts one is exposed to and social networks one is embed-
ded in, and (5) efficacy: how one perceives that protests could make a difference. Such social
embeddedness transforms individual grievance and emotion into their collective forms and
may further facilitate the social actions of protests. Therefore, based on the aforementioned
social theories, spatio-temporal evolution of social media users’ individual posting behaviors
in terms of the given sociopsychological factors can be utilized for the prediction of possible
future offline social movements.

Studying social movements through digital platforms has drawn a significant research interest.
Among them, Conover et al. [17] examined the temporal evolution of digital communication
activity related to the Occupy Wall Street movement using Twitter-centric features. Chung
et al. [18] studied online social media discussions during the 2014 Ferguson protests, and
employed a thematic analysis to differentiate tweets that engaged critical sense making from
those solely focused on the event itself. De Choudhury et al. [19] studied the temporal char-
acteristic of social media participation and its relationships to offline protests related to Black
Lives Matter (BLM) movement. However, studies often analyze single events or movements
via a case-study approach [17, 20, 21, 22, 18], or consider a large number of movement-related
events independently of their relationships in time and space [19, 23].

2.1.2 Opioid Overdose

Opioid use disorders (OUD) and overdose rates in the United States have increased at an
alarming rate since the past decade [24]. Overdose deaths involving prescription opioids
have been continuously rising since the 1990s; heroin overdose deaths have sharply increased
since 2010 [25, 26]. The age-adjusted rate for drug poisoning deaths involving heroin nearly
quadrupled between 2000 and 2013 [27], and deaths from drug overdose are now the top cause
of injury-related death in the United States [28]. The rate of growth of OUD and overdose,
combined with the number of impacted individuals in the United States, has led many to
classify this as an “opioid epidemic” [29]. Enhanced understanding of the dynamics of the
overdose epidemic may help policy-makers to develop more effective epidemic prevention
mechanisms and control strategies [30].

The opioid epidemic is a complex social phenomenon involving and interacting with vari-
ous social, spatial and temporal factors [5]. Highlighting the links between opioid use and
various phenomena and contextual factors has drawn significant research attention includ-
ing crime and economic stressors. Hammersley et al. [31] stated that opportunities for drug
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use increase with involvement in criminal behavior. The people dependent on opiates are
disproportionately involved in criminal activities [32] especially for the crimes committed
for financial gain [33]. Seddon et al. [34] revealed that crime and drug use share common
set of causes and they co-occur together. Beside, crime occurrences also have non-trivial
spatio-temporal characteristics –for instance, routine activity theory suggested that crimes
may exhibit spatio-temporal lags as the likely offenders of one place may reach suitable tar-
gets in other places. Therefore, how to unveil the complicated relationship between opioid
use and crime incidents is challenging. Most of the existing works studying the relationship
between opioid use and social phenomena have employed basic statistical analysis, and fo-
cused on current situation and trends rather than predicting/forecasting overdose. Moreover,
these studies overlooked the interactions among spatio-temporal dynamics of the locations.
Among the studies predicting/forecasting opioid overdose, regression-based approaches have
been applied in individual-level [35] and state-level [31].

Detailed assessments of opioid use disorders and overdose growth require systematically col-
lected well-resolved spatio-temporal data [36, 37]. However, the amount of systematically
monitored data either at a regional or local level in the U.S. is very limited. Therefore, col-
lecting spatio-temporal well-resolved data is crucial for the assessment of opioid overdose.
In addition, there is no common reporting mechanism for incidents. For instance, the inci-
dent categories and the organization of categories vary significantly across the databases. On
the other hand, crime data is meticulously collected, organized and stored, at a finer-grained
level. Given the plausible relationship between the crime dynamics and opioid use as well as
the availability of real-time crime data for various locations, modeling spatio-temporal crime
dynamics can be a good approach to forecast future opioid overdose.

2.2 Temporal/Spatio-Temporal Prediction/Forecasting Approaches

In the literature, there have been a number of methods/studies that utilize the temporal or
spatio-temporal dependencies in modeling and prediction/forecasting. This chapter reviews
the relevant works, which are applied or proposed not only in societal event domain, but also
in the other domains including time series, meteorology, traffic, etc. Within the scope of this
thesis, these studies are divided into two main categories, which are DNN-based approaches
and the other approaches. The DNN-based approaches include the studies incorporating neu-
ral network-based architectures such as Multilayer Perceptrons (MLP), Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). On the other hand, the other
approaches correspond to point processes, Markov-based methods, traditional statistical clas-
sification and regression-based models and more advanced methods other than deep learning
methods.

2.2.1 DNN-based Approaches for Temporal/Spatio-Temporal Prediction/Forecasting

DNNs have become increasingly popular for temporal and spatio-temporal prediction/fore-
casting with their state-of-the-art performances on various real-world problems such as neu-
ral machine translation (NMT) [38], emotion detection [39] in natural language processing
(NLP); and facial action unit detection [40], video classification [41] in computer vision do-
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mains. For spatio-temporal modeling and prediction/forecasting problems, CNNs are gener-
ally used for modeling temporal (convolution through time) and/or spatial (for grid-like data)
relationships while RNNs are employed as the main building blocks for modeling temporal
dependencies. The studies reviewed in this section are classified under two categories namely
event prediction/forecasting and time-series prediction/forecasting studies.

2.2.1.1 Event Prediction/Forecasting

Among the studies that learn temporal/spatio-temporal dynamics for predicting/forecasting,
Hu et al. [42] proposed an hierarchical LSTM (Long Short-Term Memory) encoder-decoder
architecture to predict the next sub-event in an event based on the assumption that each event
composes sub-events. Given the textual descriptions of previous sub-events, the model pre-
dicts and generates the next sub-event description. The first level of the encoder is responsible
for sub-event level encoding and the second level encodes the temporal dependency between
the sub-events. The decoder part, predicts the next sub-event and generates its description
using the encoding of sub-events. Similarly, Granroth-Wilding et al. [43] suggested a compo-
sitional neural network model for predicting whether two events are expected to appear in the
same chain. The model first embeds the event descriptions in the word-level. Then, it suggests
a function that composes the word embeddings into an event representation. In the final step,
the model predicts whether given two events are expected to appear in the same chain. Du et
al. [44] proposed Recurrent Marked Temporal Point Process (RMTPP) that jointly models the
event timings and the event types to forecast the next event type and event timestamp. They
use RNN as the building block, and the event marker and its occurrence time are the input for
each time step. The idea is to consider the intensity function of a temporal point process as
a nonlinear function of the history, and use an RNN to summarize a representation from the
event history. Based on this representation, the model predicts the next event type, and event
time with an intensity function. Similarly, Xiao et al. [45] presented a model namely recurrent
point process networks to predict next event type and its occurrence time. The architecture
includes two RNNs; one RNN learns the temporal dependencies among the events (event se-
quence RNN), and the other RNN models the temporal dependency among the time series
(time series RNN). The latent information from both RNNs are fused in the synergic layer
by concatenation. Also, an attention mechanism is incorporated into the framework which
allows to interpret the strength of previous events on predicting the next event.

Furthermore, Gao et al. [46] proposed a deep learning method for forecasting event subtype.
The model considers event subtype forecasting for different locations as a multi-task learning
problem. It learns a event subtype representations across tasks through neural networks. The
model is based on the assumption that spatially closed locations exhibit similar event subtype
patterns. This works also suggests an algorithm based on alternating direction method by
multipliers (ADMM) for the optimization of the complex model to solve it more efficiently.
Wang et al. [47] forecasted future crime occurrences from past crime data and external data
including weather and holiday information. They represented past data through three resolu-
tion namely trend, period and nearby. For each of these, the latent representation is obtained
through a hierarchical network including convolutional and residual layers. Finally, latent
representations are fused together with the external features, and future crime occurrences
are predicted. In this study, the input data represented as grid data and spatio-temporal char-
acteristics are learned through convolutional layers. Moreover, Huang et al. [48] proposed
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a multi-view, multi-modal spatio-temporal learning framework for city-wide abnormal event
forecasting. For each of views (event categories, spatial views and semantic views), the model
includes an RNN which models the temporal dynamics of corresponding view. Then, an at-
tention layer is applied on top of the latent representations of different views at the same time
instant, to automatically learn the importance of view-specific representations. Finally, a con-
clusive RNN is applied to forecast the abnormal events at the target region. The proposed
framework was evaluated on forecasting urban crime and urban anomaly events. Similarly,
Huang et al. [49] proposed an attentive hierarchical recurrent network for crime prediction,
called DeepCrime. This proposed method considers POIs and other anomalies in the regions
to predict crime occurrences for a given region. It uses region embeddings and crime em-
beddings for each time unit in the past and finds temporal inter-relations with anomalies in
the regions using Gated Recurrent Units (GRUs). It also incorporates a temporal attention
mechanism to interpret the important time units which are predictive for the occurrences of
future crimes. In an another study for crime occurrence prediction, Kang et al. [50] proposed
a framework which utilizes DNNs to predict crime occurrences in the city of Chicago. They
used multi-modal data obtained from various data sources including image, demographics,
education and weather. The proposed model groups spatial, temporal and environmental fea-
tures, then learns their latent representations through DNNs. Finally, all representations are
fused in a joint layer in the deep architecture in order to predict the crime occurrence. Lastly,
Jain et al. [51] combine high-level spatio-temporal graphs and RNNs for spatio-temporal
modeling for generic tasks including human motion modeling and forecasting. The nodes
of the graph typically represent the problem components, and the edges capture their spatio-
temporal interactions. Although this method improves the lack of high-level and intuitive
spatio-temporal structure of RNNs, it requires an expert knowledge about the domain of the
application to identify the problem structure and its decomposition.

2.2.1.2 Time-series Prediction/Forecasting

In addition to event prediction/forecasting studies, there have been a number of temporal/spatio-
temporal time series prediction/forecasting works, which have been applied in different do-
mains including air quality prediction [52], wind speed prediction [53], traffic flow prediction
[54], vegetation index prediction [55]. Although the purpose of these studies is different from
the event prediction task, they treat the modeling/predicting spatial and temporal dependen-
cies problem in a similar manner. Among them, Li et al. [52] proposed a model for predict air
quality. They employed stacked auto encoders (SAEs) to extract inherent air quality features
and a logistic regression layer on top of it for the prediction. The model was trained in a
greedy layer-wise manner. Although it predicts the air quality of all stations simultaneously,
it lacks of modeling temporal history of the stations. Fan et al. [56] also introduced a frame-
work based on deep RNN for spatio-temporal air pollution prediction. This framework first
fixes missing values by various algorithms. Then, fixed time series are given as input to the
deep RNN architecture. To predict the air pollution in the target region, its features and the
features from its spatial neighbors are concatenated, and they are fed to the LSTM RNNs.
This method ignores the effect of other regions, which are not immediate spatial neighbors of
the target region, during prediction and only takes several features of neighbor regions into
consideration. In an another study, Bui et al. [57] utilized an LSTM encoder-decoder archi-
tecture to forecast air pollution in South Korea. This study showed that using multiple RNN
layers in the architecture results in an important increase in the forecasting performance. Fur-
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thermore, Ghaderi et al. [53] proposed spatio-temporal forecasting method, which is applied
on wind speed forecasting. The proposed method offers separate LSTM models for each time
unit in the time window. In other words, each LSTM block is responsible for predicting the
wind speed for all stations at the same time for the corresponding time step. The input for the
LSTM is the wind speed measurement of all stations for the current time step. In an another
study, Das et al. [55] proposed a spatio-temporal deep architecture for vegetation index pre-
diction from remote sensing data, called Deep-STEP. For a given time instance, each pixel is
represented by the combination of its vegetation value and that of its neighbors. The archi-
tecture consists of stacked MLP layers where each of these is responsible for modeling the
previous specific time instance. The output of each layer is concatenated with the input of
the next layer. In other words, the temporal evolution is modeled by DNNs irrespective of the
spatial dimension.

Moreover, traffic-related prediction problems (e.g., cellular network load prediction, traffic
flow prediction, crowd-flow prediction, passenger demand prediction) have been also consid-
ered as spatio-temporal modeling/forecasting problem in the literature. Among these studies,
Wang et al. [58] proposed a spatio-temporal deep cellular network prediction architecture
by combining SAE and LSTM networks. The spatial dimension is represented as grid data.
The model employs two types of SAEs, namely local SAEs and a global SAE. For spatial
modeling, the architecture uses a separate SAE for each location-of-interest to model local
spatial information, and a global SAE to model global spatial information. Then, the learned
representations are concatenated and fed to the LSTM. The purpose of the LSTM is to learn
the temporal dependencies between different time steps. Lv et al. [59] offered a SAEs based
method to predict traffic flows based on the data collected from the detectors. The purpose of
SAEs is to extract latent traffic flow features. Each layer of encoder is trained in a sequence
so that the output of the previous hidden layer is used as the input of the next hidden layer. On
top of SAEs architecture, a logistic regression layer takes places in order to predict the traffic
flow. Yu et al. [54] proposed spatio-temporal recurrent convolutional networks for network-
wide traffic state forecasting. The network traffic speeds are first converted to the a series of
static images. Then, they are given as inputs to the CNN-LSTM architecture. Here CNNs
are used to model the spatial dependencies whereas LSTM is used to model the temporal
dependencies.

Furthermore, Zhang et al. [9] proposed a deep learning based crowd flow prediction model
for spatio-temporal data, called DeepST. The input is grid data (like image) where each cell
(region) represents the crowd flow in that cell at a specific time instant. This work describes
three different properties (seasonal trend, temporal closeness and period) for the input image.
For each property, a separate convolution operation is applied on the temporal dimension,
then the outputs are fused. After a number of successive convolutional layers, the future
crowd flow (grid or image) is predicted. In an another work, Zhang et al. [60] introduced
a spatio-temporal crowd inflow/outflow prediction method, called ST-ResNet. Similar to the
prior work, they represent the data as grid data and they have a different component for dif-
ferent temporal influences (closeness, period and trend). Each component includes a CNN
and a residual unit. The purpose of these components is to capture the spatial dependencies
for different temporal influences. The architecture also consists of an another component to
model external features such as day of the week, weather information, etc. The architecture
finally fuses outputs of all components and forecasts the future crowd inflow/outflow in each
region.
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Moreover, Zhou et al. [61] proposed an attention-based encoder-decoder architecture for
multi-step city-wide passenger demand. The input for the model is in the shape of grid map.
The encoder part consists of convolutional units and ConvLSTM units [62] to capture the
spatial and temporal dependencies. The decoder part is the symmetric of the encoder part
which consists of ConvLSTMs (copies of the encoder) and deconvolutional layers. The ar-
chitecture has also an attention component which focuses on the salient parts (annotations)
and provides context representation to decoder. The decoder part utilizes the context repre-
sentation from the attention component and forecasts future passenger demands. Laptev et
al. [63] introduced a time-series event forecasting method and applied this method on fore-
casting the number of completed trips at Uber. Basically, the proposed model consists of two
components, namely LSTM autoencoder and LSTM forecaster. The first component consists
of stacked LSTM layers in both encoder and decoder parts. The second component contains
stacked LSTM layers and a fully connected layer for the prediction. For the prediction, the av-
erage of intermediate representations in the LSTM autoencoder is concatenated with the new
input, and it is fed to the forecaster component. In addition to aforementioned studies, sev-
eral studies proposed general purpose time-series forecasting frameworks and applied them
in various prediction tasks. Among them, Qin et al. [64] presented a dual-stage attention-
based RNN model to make time series prediction, called DA-RNN. It applies input attention
to raw data for each time step in order to select most informative series by referring to the
previous hidden state. The context information obtained by input attention is fed to LSTM
network. Finally, the temporal attention is applied on top of the LSTM network to identify
the important time steps which provide more salient contribution to prediction. The proposed
model is applied successfully on two different domains (sensory and economics), which are
temperature forecasting and index value forecasting of NASDAQ-100. Moreover, Liang et
al. [65] introduced an multi-level attentional encoder-decoder architecture for geo-sensory
time-series prediction. In the encoder part, it contains two types of spatial attention (as input
attentions), namely local spatial attention and global spatial attention. While the former is
responsible for identifying important series of target sensor, the latter focuses on the sensors
that have more salient contribution on on the prediction. The context information obtained
by these two attention is fused and fed to LSTM network. In the decoder part, an another
LSTM network with temporal attention take place. The purpose of temporal attention is to
select the most informative time steps in the encoder. Note that, the proposed method also
incorporates the external features including weather information, sensor ID and time features
for the prediction.

Aforementioned DNN-based event and time-series prediction/forecasting studies suffer from
two main concerns. First, most of them overlook the complex interactions between local (ob-
served from within a region) and global (observed from all regions) activities across time and
space. Only a few have paid attention to this problem, none of the existing works learns to
differentiate the pairwise activity relationships between the target location and the other lo-
cations. Second, most of the spatio-temporal forecasting studies mainly focus on prediction
performance and lack interpretability to uncover the underlying spatio-temporal characteris-
tics of the activities, such as (1) what local and global activity features are more predictive
for the subsequent events? (2) what are the locations that have more salient contribution to
predicting/forecasting with respect to the target location?
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2.2.2 Other Approaches for Temporal/Spatio-Temporal Prediction/Forecasting

2.2.2.1 Point Process-based Methods

One of the mostly used methods for temporal and spatio-temporal modeling is point process.
A point process is basically a model of indistinguishable points distributed randomly in some
space. Temporal and spatio-temporal point processes [66] have been used across a wide range
of domains. Among them, marked temporal point processes have been used in seismology
in particularly modeling earthquakes and aftershocks [67, 68]. Short et al. [69] introduced a
spatio-temporal point process model for inter-gang violence driven by retaliation in sociology
domain (e.g. modeling networks of criminals). Bacry et al. [70] presented a modified version
of the non parametric Hawkes kernel estimation procedure in computational finance domain.
A Hawkes point process defines random events which are either an immigrant or a descen-
dant. Hawkes process have been also used for various temporal/spatio-temporal domains in
univariate or multivariate setting including earthquake analysis [71], violent deaths analysis
[72], triggering pattern discovery of spatio-temporal event types [73]. Furthermore, Poisson
process [74] and its variants have been employed for human activity modeling [75]. However,
typical point process models, including the Hawkes processes [67] and the autoregressive con-
ditional duration processes [76], make specific assumptions about the functional forms of the
generative processes, which may or may not reflect the reality, therefore the respective fixed
simple parametric representations may restrict the expressive power of these models [44].
Accordingly, for the real applications, the data may be oversimplified or the complexity of
the problem may not be captured [77]. In addition to this, the model may underfit due to the
misjudgement on model choice.

2.2.3 Markov-based Methods

Markov-based models including Hidden Markov Model (HMM) and Markov Chain models
have also been applied in temporal and spatio-temporal modeling and predicting/forecasting
domain. Among them, Zhao et al. [7] proposed an enhanced HMM-based model for spatio-
temporal event forecasting in Twitter by considering time-evolving context and space-time
burstiness. Similarly, Qiao et al. [78] introduced an HMM-based framework that employs
temporal burst patterns in an auto-coded event dataset (i.e., Global Data on Events, Location,
and Tone (GDELT)) to unveil the underlying event mechanics and predicts the social unrest
events by treating it as a sequence classification problem. Alevizos et al. [79] proposed an
online system for probabilistic event forecasting based on pattern matching. Given a stream
of events, the system forecasts the events using Pattern Markov Chains based on the regular
expressions of interested events described by the users. Markov models have also widely
been applied for various prediction tasks in the area of energy (e.g., forecasting photovoltaic
power generation [80]) and meteorology (e.g., wind power forecasting [81]). Also, Factor-
izing Personalized Markov Chain (FPMC) has been used for a temporal prediction problem,
in particular next basket recommendation [82]. It is a personalized extension of common
Markov Chain models, and has become one of the most popular methods for sequential pre-
diction. The main problem of Markov-based models is either that they are based on a strong
independence assumption among different factors, or they operate using discrete states and
they only take the last known state into consideration.
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2.2.4 Tensor Factorization-based Methods

Tensor Factorization (TF) has also been successfully utilized on temporal and spatio-temporal
modeling and prediction tasks. For instance, Sehebi et al. [83] offered a TF approach to model
learning process of students and predict student performance. It decomposes a tensor, which
is created based on the attempt sequences of the students. Bahadori et al. [84] introduced
a general TF-based framework for multivariate spatio-temporal analysis. It can incorporate
various properties in spatio-temporal data and it can be easily adapted to spatio-temporal
forecasting tasks. [85]. Furthermore, Xu et al. [86] presented a spatio-temporal multi-task
learning approach, called WISDOM, based on supervised tensor decomposition. It makes
predictions based on the aggregation of latent factors obtained by both spatial and temporal
prediction models. Similarly, Xu et al. [87] proposed a framework for predictive modeling
of multi-scale, spatio-temporal data. It decomposes multiple tensors from different spatial
scales so that the latent factors are utilized to train temporal and spatial models. For the
prediction, the temporal and spatial outputs of the models are aggregated. For TF-based
predictive models, however, it may be hard to predict future behaviors with since it is hard for
them to generate latent representations of time bins that have never or seldom appeared in the
training data [88].

2.2.4.1 Traditional Statistical Methods

There have been studies on temporal and spatio-temporal event prediction/forecasting which
employ traditional statistical methods. Among them, Arias et al. [89] and Bollen et al. [90]
used linear regression models with simple features extracted from Twitter to predict the occur-
rence time of future events. Aghababaei et al. [91] predicted crime rate at a specific city based
on the features extracted from Twitter posts. They represented each day as a document-term
matrix and predicted the crime rate using past data utilizing linear SVM classifier. Wang et
al. [92] applied semantic role labeling (SRL) to Twitter posts and then extracted latent topics
using Latent Dirichlet Allocation (LDA) from them for each day. They used latent topics as
inputs to forecast the crime ratio via logistic regression. Gerber [93] also employed logistic
regression for crime prediction using topics (identified by statistical topic modeling) in social
media, particularly Twitter. Korkmaz et al. [94] forcasted civil unrest events using logistic re-
gression with Lasso from online activity data including Twitter and blogs. Similarly, Korolov
et al. [95] studied how to predict offline protests from social media. They identified mobi-
lization in social media communication and used this information to predict offline protests
via logistic regression. Ramakrishnan et al. [96] proposed an automated system to forecast
civil unrests from multiple data sources including Twitter and news outlets. They built sev-
eral Lasso models for different locations utilizing different types of features (keyword-based,
features obtained from follower, retweet-mention graphs) based on the data source. However,
aforementioned shallow methods may underfit to model complex interactions among spatial
and temporal dimensions to make successful predictions.

2.2.4.2 Advanced Techniques for Prediction/Forecasting

Beside traditional statistical classification and regression models, there have been a number
of studies for event prediction/forecasting that employ a variety of advanced techniques in-
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cluding, influence cascade modeling [97], anomaly detection [98], multiple instance learning
[2], multi-resolution learning [10, 99], multi-source learning [100], and multi-task learning
[101]. Cadena et al. [97] assumed an activity cascade in social media is a precursor for a
future offline protest, and they proposed an event forecasting model that uses notion of ac-
tivity cascades in Twitter based on follower and retweet-mention graph. Rekatsinas et al.
[98] proposed a framework, called SourceSeer, which combines spatio-temporal topic mod-
els with source-based anomaly detection methods to forecast emergence and progress of rare
outbreaks using news sources. The framework basically analyzes the past data in order to
detect spatio-temporal patterns of disease. Then, it makes predictions with the second com-
ponent for possible future outbreaks. Moreover, Ning et al. [2] suggested a nested framework
of multiple instance learning to forecast future events as well as jointly identifying the event
precursors from news articles. They used text embeddings to represent the articles. Further-
more, Zhao et al. [8] presented a multi-task learning framework that models forecasting tasks
in the related geo-locations concurrently using the social media data. This study aims to em-
ploy shared information among the locations to improve the forecasting performance. Zhao et
al. [99] proposed a multi-task learning framework for multi-resolution spatial event forecast-
ing considering geographical hierarchies between locations. These studies used keywords-
based features (e.g. keywords in the message content) for forecasting tasks. Zhao et al.
[100] also suggested a model for hierarchical multi-source feature learning to forecast future
events. It incorporates multiple data sources with different geographic levels such as social
media and currency exchange for civil unrest forecasting; social media and illness surveil-
lance network for influenza outbreak forecasting. Zhang et al. [102] introduced a model
for spatio-temporal forecasting of influenza outbreaks based on a domain-specific mechanis-
tic model and demographic information with the enhancement of information from Twitter.
Mechanistic model was initialized with information from Twitter (from geo-tagged and topi-
cal tweets) and surveillance data was used (from authorized institutions) for the ground-truth.
Furthermore, Zhange et al. [103] proposed a spatio-temporal event forecasting framework
using hyper-local pricing data, which assumes that variations in pricing data can be precur-
sors for the future events. The proposed framework adopts a tensor completion technique to
learn missing values based on spatial and temporal coherence. It also suggests an algorithm to
optimize the proposed method based on ADMM. Lastly, Zhao et al. [104] presented a distant
supervision of heterogeneous multi-task learning method for societal event forecasting from
social media data which considers multiple language setting. The motivation is that events
can be followed by social indicators generated by the users who speak different languages.
The proposed model first aims to map multi-lingual heterogeneous features to various latent
spaces, then using distant supervision it enforces a similar sparsity pattern across them all.
However, most of these existing techniques primarily focus on prediction/forecasting perfor-
mance rather than interpreting spatio-temporal characteristics of the events. In addition, the
potential interactions between temporal and spatial dimensions are often overlooked.

2.3 ML Basics for Temporal/Spatio-Temporal Modeling

In this section, the fundamental building blocks for NN-based temporal/spatio-temporal mod-
eling, which are utilized in the proposed approaches, are overviewed. First the RNN structure
for sequence/temporal modeling is reviewed. Then, the basics of LSTM which mitigates the
drawbacks of traditional RNNs is introduced. After that, attention mechanism which focuses
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Figure 2.1: Abstract RNN (left) and RNN unfolded over time (right).

on the inputs having more salient contribution for the prediction task is presented. Finally, the
information about Group Lasso for neural networks for the selection of important features are
provided.

2.3.1 Recurrent Neural Networks (RNNs)

An RNN is basically a densely connected neural network which introduces “time” or “se-
quence” concept to the traditional neural networks. RNN resolves two main problems of con-
ventional sequence modeling methods, which are modeling arbitrary length sequences and
modeling sequences without making any assumptions about the data. RNNs allow for mod-
eling sequences with arbitrary length without making any assumptions about the structure of
the data and without considering Markov property [105].

Let x be the sequence of observations (e.g. time series, sentence) where x = (x1, x2, . . . , xT ),
T is the sequence length, and xi is the ith vector representation of input with a dimension of
d (xi ∈ Rd) for the given sequence x. Figure 2.1 shows the views of a simple RNN which
models sequence x. While the left part of the figure indicates the unfolded version of RNN,
the right part shows the RNN unfolded over time.

An RNN basically contains an internal memory (i.e. hidden representation, hidden state) ht,
a recursive function f that operates on the input and the internal memory ht (which is usually
a non-linear function), and usually an output function g to produce output (e.g. conditional
probabilities) based on the internal memory at time t. The purpose of the internal memory at
time t is to summarize the history from x1 up to xt. Note that the initial memory h0 is usually
set to zero. The hidden representation at time t is calculated based on the historic summary
ht−1, current input xt and parametric recursive faction f as follows:

ht = f(xt, ht−1; θ), (2.1)

where θ = {U,W} is the parameter set to be learned in the network. Following the equa-
tion above, one of the basic transformation of input and historic summary to current internal
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memory through recursive function f can be defined as follows:

ht = σ(Uxt +Wht−1), (2.2)

where U ∈ Rdh×d, W ∈ Rdh×dh , and dh is the dimension of the internal memory. The given
parameterization is known as Elman Network [106], also called vanilla-RNN in the literature.
Once having the internal memory ht and defining recursive function f , an RNN can also
produce an output for each time step through the function g as follows:

ot = g(ht;V ), (2.3)

where V ∈ Rdh×do to be learned, do is the dimensionality of the output ot. Depending
on the task, after the transformation of hidden state ht by V through the output function g,
any function can be applied such as Softmax activation function [107] to output conditional
probabilities for the classification task. To sum up, according to Figure 2.1, the input sequence
is fed to the RNN network (one observation per time) with transformation matrix U in the
input layer; the recursive function f computes the hidden state at the current time step based
on the transformed input and previous state in the hidden layer; finally, the output is produced
with the output function g by transformation of current hidden state by the V matrix.

Back Propagation Through Time (BPTT) To train an RNN, the gradients of the loss func-
tion with respect to the model parameters {U,W, V } are needed to be estimated using BPTT
algorithm [108, 109]. More specifically, given a loss function L(o, y), the gradients with

respect to the model parameters as { ∂L
∂U

,
∂L
∂W

,
∂L
∂V
} are first calculated. Note that the calcu-

lation of corresponding gradients at only a specific time t is shown here so that all gradients
obtained for each time step should be aggregated at the end. Therefore, the loss for the only
time t as Lt(o, y) is represented. Similar to the typical backpropagation algorithm, BPTT is
applied based on the chain rule as well. Accordingly, the gradient of loss function with re-
spect to the parameter matrix V is calculated at time t assuming that no further transformation
function applied after the output function g, as follows:

∂Lt
∂V

=
∂Lt
∂ot

∂ot
∂V

. (2.4)

Furthermore, calculation of the gradients with respect to
∂L
∂U

and
∂L
∂W

depends on also the

previous time steps (due to the recurrence) in addition to current time step unlike the
∂L
∂V

.
The gradient calculation of loss function with respect W at time t is presented as follows:

∂Lt
∂W

=
∂Lt
∂ot

∂ot
∂ht

∂ht
∂W

. (2.5)

Since the calculation of hidden representation ht depends on the previous hidden representa-
tion ht−1 and the corresponding matrix W is employed for the calculation at all time steps,
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Figure 2.2: Sequential processing in LSTM. In a cell, the pink circles represent the point-wise
operations (i.e. addition by ⊕, multiplication by ⊗) whereas yellow boxes indicate the neural
network layers.

the gradients starting from time t to t = 0 are needed to be backpropagated, as follows:

∂Lt
∂W

=
∂Lt
∂ot

∂ot
∂ht

(
t−1∏
i=0

∂hi+1

∂hi

)
∂h0
∂W

. (2.6)

The gradient of the loss function with respect to the matrix U at time t can be also calculated

in a similar way. Therefore, only the calculation of
∂Lt
∂W

is provided to be succinct. The
total gradients with respect to a specific parameter is calculated by summing the gradients

at each time step. For instance, it can be calculated for the matrix W as
∂L
∂W

=
∑

t

∂Lt
∂W

.
Finally, once the total gradients are calculated with respect to a parameter, the corresponding
parameter is updated. The whole process can be done following a training algorithm such as
stochastic gradient descent (SGD) [110].

Long Short-Term Memory (LSTM) networks are special type of RNNs, which are able to
model long-term temporal dependencies. LSTM was proposed by Hochreiter et al. [111],
and it addresses the main problem of basic RNNs, which is exploding and vanishing gradi-
ents [112] by using explicit gating mechanisms (input, output and forget gates) to regulate
the memory updates. LSTM has been shown to be effective in capturing potential temporal
dependencies for different tasks and for a variety of application domains such as text mining
[113], diffusion path prediction in social networks [114], video captioning [115].

LSTM cells are capable of storing, writing and reading information through the gates in-
side the cell. Figure 2.2 indicates the internal representation (gating mechanism) of a simple
LSTM cell and unfolded LSTM network. The equations below calculate the information flow
within an LSTM cell.

ft = σ(Wf [ht−1, xt] + bf ) (2.7)

it = σ(Wi[ht−1, xt] + bi) (2.8)

C̃t = tanh(WC [ht−1, xt] + bC) (2.9)
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Attention

Figure 2.3: An overview of the attention mechanism.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.10)

ot = σ(Wo[ht−1, xt] + bo) (2.11)

ht = ot ∗ tanh(Ct) (2.12)

whereCt is the cell state at time t,Wf ,Wi,WC ,Wo, bf , bi, bC and bo are the parameters to be
learned. The decision of how much information is kept or forgot from the previous cell state
Ct−1, is performed by forget gate layer (ft). On the other hand, which values are updated in
the current cell is decided by the input gate layer (it) meanwhile the new values are computed
as C̃t. By combining new values and information from the previous cell state, the current cell
state Ct is calculated. Finally, what part of the cell state will be output (hidden representation)
is calculated based on the current cell state Ct and output gate layer (ot).

2.3.2 Attention Mechanism

In sequential/temporal modeling, traditional RNNs including LSTM networks summarize the
data into a single and fixed-length context vector. However, it can be difficult to cope with
the longer sequences for the neural networks. In other words, the earlier parts of the sequence
may be forgotten once the entire sequence is processed. Instead of compressing the input
into a single, fixed-length context vector, attention mechanism was proposed [116] to take all
input representations into consideration and let the network pay more or less attention to each
individual input representation while computing the context vector. Attention mechanism has
been successfully applied in various tasks including NMT [117], text classification [118],
object detection [119].

One possible use of the attention mechanism is to summarize the information from inputs by
focusing on the ones that have more salient contribution for the task. For instance; Yang et al.
[118] employed such a mechanism for the document classification task where the important
words and sentences for the classification task contribute more to the context vector through
the attention mechanism. A typical attention mechanism consists of a score function that
produces a score for the representation of each input in the sequence. Each input representa-
tion contributes to the context vector with respect to its score. The higher score for an input
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means its more contribution in the context vector. Figure 2.3 simply gives an overview of the
attention mechanism. The context vector c is calculated as follows:

ei = vᵀtanh(Wxi + b) (2.13)

αi =
exp(ei)∑
t∈T exp(et)

(2.14)

c =
∑
t∈T

αtxt (2.15)

where W ∈ Rd×d, v ∈ Rd, b ∈ Rd are the parameters to be learned, ei is the score for the
input xi, which is calculated by learning another neural network. αi is the attention weight for
the input xi, In the Eq. (2.14) the attention weights are calculated by soft attention approach
using Softmax activation function (to normalize all scores). Finally, the context vector c is
computed by taking weighted sum of the inputs with respect to the corresponding attention
weights.

Furthermore, attention mechanism has been also incorporated into encoder-decoder architec-
tures and applied for various tasks such as NMT [120], multi-step prediction/forecasting [65],
etc. In such architectures, to predict the next output of the decoder, the current state of the
decoder is utilized to calculate the contributions of inputs in the encoder. In other words,
the current state of the decoder is employed as a query and the encoder states are the keys.
The score function takes the query (q) and the key (k) as the input. In the literature, several
score functions has been proposed. Among them, Bahdanu et al. [116] proposed a multi-layer
perceptron approach to calculate the score as score(q, k) = vᵀtanh(W [q; k]). Luong et al.
[117] proposed a bilinear function to calculate score as score(q, k) = qᵀWk. They also sug-
gested another score function (called dot product), which does not need any parameters to be
learned but requires that the query and the key should be the same size: score(q, k) = qᵀk.
However, the problem of this approach is that the scale of dot product increases as dimen-
sions of the vectors get larger. To solve this problem, Vaswani et al. [121] introduced scaled
dot product score function which scales the score by the size of the key vector as follows:

score(q, k) =
qᵀk√
k

. For this kind of attention mechanism, the Eq. (2.13) is replaced with one

of the aforementioned score functions.

2.3.3 Group Lasso for Neural Networks

Feature selection is an important step for most of the machine learning tasks dealing with
high-dimensional data. To reduce the input dimension, a small subset of input features are
searched that brings large amount of discriminative information [122]. From the neural net-
work perspective, the feature selection can be achieved through conventional `1 regularization
in a principled indirect way while optimizing the network parameters at the same time. Basi-
cally, `1 penalizes the sum of absolute values of the weights during training.The `1 norm acts
as a convex proxy of the non-convex, non-differentiable `0 norm [123]. This penalization can

21



(a) Lasso (b) Group Lasso

O
ut

go
in

g

Incoming Incoming

O
ut

go
in

g

Figure 2.4: (a) Lasso and (b) Group Lasso applied to a single weight matrix. The dark rect-
angles represent the weights that are set to 0 by the corresponding regularizations (borrowed
from [124]).

be defined as follows:

R`1(w) ,
Q∑
i=1

|wi|. (2.16)

where Q is the total number of weights in the input-level and wi is the ith input weight.
Although `1 penalization is a principled way to perform sparsity in weight-level, it does not
guarantee a structured neural network. In other words, since an input neuron has multiple out-
going weights to the hidden layer, traditional `1 penalization does not ensure that all the out-
going weights from that input neuron will be 0. To achieve group-level sparsity (neuron-level)
as well as optimization of the network at the same time, Scardapane et al. [124] proposed a
group sparse regularization method for deep neural networks. This regularization imposes
sparsity on a group level, such that all the weights in a group are either simultaneously set
to 0, or none of them are. The Figure 2.4 shows an example comparison between plain `1
regularization and group lasso regularization on the input-level of a simple neural network.
There are two input neurons, and there exist five neurons in the hidden layer. While Lasso
sets some of the input weights to 0 of both input neurons, Group Lasso provides sparsity in
the group level. According to the figure at the right, the first input can be removed from the
network since its all outgoing weights are set to 0 by Group Lasso.

Group Lasso has been shown to be effective in several domains, such as robotic control [125]
and multi-modal context [126] to select informative features. It can be used to interpret the
neural network model in such a way that redundant information from features are minimized,
which allows for differentiating which features are important for a prediction task. For feature
selection in a neural model, Group Lasso regularization can be formulated as follows [127]:

R`2,1(w) ,
∑
g∈G

√
|g|‖g‖2 (2.17)

where g is the vector of outgoing connections (weights) of an input neuron, G denotes a set of
vectors of the input neurons, and |g| indicates the dimension of vector g. ‖.‖ is the Frobenius
norm.
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2.4 Chapter Summary

In this chapter, a background information about several population-level societal events in-
cluding social movements and opioid overdoses was given. The possible links between hu-
man behavior and these societal events based on the relevant social theories were presented.
It was shown that given human behaviors can be employed for predicting the future societal
events. Next, the recent approaches for temporal/spatio-temporal predicting/forecasting were
reviewed. These approaches were divided into two main categories, namely DNN-based ap-
proaches and other approaches. Based on the findings from the literature, these approaches
suffer from two main drawbacks. First, most of these studies overlook the complex inter-
actions between temporal and spatial dimensions while modeling. Also, the relationships
between local (observed from within a region) and global (observed from all regions) ac-
tivities across time and space are mostly disregarded. Second, most of the spatio-temporal
predicting/forecasting studies primarily concentrate on prediction performance and provide
none or limited interpretability to unveil the underlying spatio-temporal characteristics of the
activities. Accordingly, it is important to consider and seek to find solutions to these prob-
lems in the proposed methods. Finally, in the last part, a background information about basic
machine learning concepts that are employed in the proposed methods were provided within
the scope of this thesis.
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CHAPTER 3

ACTATTN: A NOVEL DEEP SPATIO-TEMPORAL METHOD
FOR MODELING AND FORECASTING SOCIETAL EVENTS

This chapter proposes a novel deep spatio-temporal predictive model to forecast societal
events, called ActAttn. Using spatio-temporal data, it seeks to characterize the social, spatial,
and temporal features in relation to the subsequent societal events in a unified and automatic
manner. For this purpose, a deep learning architecture is developed, which is not only capable
of forecasting the occurrence of future protests, but also allows for interpreting what features,
from which places, have significant contributions on the protest forecasting model, as well
as how they make those contributions. To accomplish this, a two-level attentional network
architecture is introduced, which (a) differentiates the feature contribution from local (intra-
region) and global (inter-region), and (b) identifies the regions, referred as the “hubs”, that
have a more salient contribution in predicting protest events globally.

The proposed model is evaluated on the domain of social movements, where the purpose is to
forecast future offline protests from spatio-temporal social media data. The diffusion of new
information and communication technologies, social media (e.g. Twitter) has been central
in providing mobilizing information, coordinating demonstrations, and creating opportunities
for people to exchange opinions [12, 13]. The lexicon approach is utilized to extract a range
of theory-driven linguistic features that allows for making sense of the association between
the types of activity traces in social media and future offline protests. The proposed model
ActAttn is validated on three social movements datasets through extensive experiments. Also,
in-depth analysis and comparison across several baselines and state-of-the-art methods are
performed.

This chapter first defines the forecasting problem on a specific societal event domain (i.e.
forecasting offline protests), where the proposed method is applied and evaluated. Next, the
architecture of the proposed model is presented in detail. Then, the experiment details are
given including datasets, extracted features, comparison methods and experimental settings.
After that, the experiment results are provided including in-depth analysis and comparison
across several baseline and state-of-the-art methods. Finally, the discussion and conclusion
about the proposed method are presented including the limitations of the current work.
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3.1 Problem Definition

Suppose there are L locations (e.g., cities, states) of interest, and each location l can be rep-
resented by a collection of static and dynamic features. The static features (e.g. population,
political leaning) are features that remain the same or change slowly over a longer period of
time, and the dynamic features (e.g., percentage of tweets that express the “anger” emotion)
are updated for each time interval t (e.g., hour, day). Let Sl be the set of static features of
location l, and Xt,l the set of dynamic features for location l at time t. There is also given a
binary variable Yt∗,l ∈ {0, 1} that indicates the occurrence of a future protest event for each
location l at time t∗. The collection of dynamic features from all locations within an observ-
ing time window with size k up to time t can be represented as Xt−k+1:t = {Xt−k+1, . . . ,Xt},
where Xt′ = {Xt′,1, . . . , Xt′,L}.

The purpose is to predict the future event occurrence Yt∗,l at specific location l at a future
time t∗ = t + τ , where τ is called the lead time for forecasting. The forecasting is based on
the static and dynamic features of the location itself, as well as the dynamic features in the
environment (from all other locations). Therefore, the forecasting problem can be formulated
as learning a function f(Sd,Xt−k+1:t) → Yt∗,d that maps the input, the static and dynamic
features, to a protest indicator at the future time t∗ for a target location d.

In order to facilitate interpretation of the protest forecasting, it is sought to develop a model
that can differentiate the contribution of the features, the locality (local/intra-region fea-
tures vs. global/inter-region features), and the overall importance of each location when
contributing to the prediction of other locations. Therefore, the dynamic features Xt−k+1:t

are further organized into two sets: the intra-region features, {Xt−k+1,d . . . , Xt,d} rep-
resent the sequence of dynamic features for the location d, and the inter-region features,
{Xt−k+1,l . . . , Xt,l} for l ∈ {1, 2, . . . , L}, contain the sequences of dynamic features for
all locations of interest.

3.2 Proposed Architecture

As shown in Figure 3.1, the proposed architecture involves three primary components, the
local componentMloc, the global componentMglob, and the static features Sd. Sd provides
location-specific information about the target location d. The (intra-) local componentMloc

is designed to model the contribution of the local dynamic features (intra-region features) for
the target location. The global componentMglob is to model the spatio-temporal contribution
of dynamic features for all locations of interest (inter-region features). The input for the
(intra-) local component is {Xt−k+1,d . . . , Xt,d} while the input for the global component is
{Xt−k+1,l . . . , Xt,l} for l ∈ {1, 2, . . . , L}.

The Recurrent Unit. In bothMloc andMglob, LSTM is used as a building block in the pro-
posed model to capture the temporal relationships among the dynamic features. LSTM has
been shown effective in capturing potential temporal dependencies, and it addresses the van-
ishing and exploding gradient problems of basic RNNs by using explicit gating mechanisms
(input, output and forget gates) to regulate the memory updates. A single LSTM network is in-
cluded to model intra-region dynamics inMloc (Figure 3.1-c). To capture the spatio-temporal
relationships among all locations inMglob (Figure 3.1-b), separate local components are in-
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Figure 3.1: Overview of our proposed ActAttn architecture [128]. It incorporates hierarchical
attentional networks where the top level (a) differentiates the intra-region and inter-region
importance, the second level (b) identifies the hub regions. The temporal dependency of time-
varying features in both intra- and inter-regions are modeled using LSTM (c), with sparse
feature learning using Group Lasso regularization (d).

cluded, called (inter-) local components, where each of them has the same structure asMloc.
Each (inter-) local component is then responsible for modeling the temporal dynamics of
a single location. The LSTM outputs (hidden states) inside Mloc and Mglob are hlocd and
{hglob1 , hglob2 , . . . , hglobL }, respectively. Note that hlocd and any hglobl (where l ∈ {1, . . . , L})
are used for the last hidden state of the corresponding LSTMs (at time t) shortly. They are
calculated as follows:

hlocd = f(hlocd,t−1, Xt,d) (3.1)

hglobl = sl(h
glob
l,t−1, Xt,l) (3.2)

where f(.) and sl(.) are the LSTMs in the (intra-) local component and the (inter-) local
component for the location l.

Hierarchical Attention Mechanism. Attention mechanism has been found powerful in
reweighting the internal components in a neural architecture [116, 129]. A hierarchical atten-
tion mechanism is designed to differentiate the importance of spatial and temporal informa-
tion. First, inMglob, a spatial attention layer is incorporated on top of {hglob1 , hglob2 , . . . , hglobL }
to learn the spatial importance among all locations (Figure 3.1-b). The idea is that not all the
locations contribute equally to the prediction of event occurrence at a target location, and
this attention layer is to reward the locations which contribute the most to forecast the event
occurrence in the target locations. The context vector νsp, which is the output of the global
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component, is computed as follows:

ei = (vsp)ᵀtanh(W sphglobi + bsp), (3.3)

αi =
exp(ei)∑L
l=1 exp(el)

, (3.4)

νsp =
L∑
l=1

αlh
glob
l , (3.5)

where W sp ∈ Rm×m, bsp ∈ Rm and vsp ∈ Rm are the parameters to be learned, m is
the number of hidden units in LSTMs in each (inter-) local component. νsp is the spatial
attention layer output (the context vector) that summarizes the aggregate contribution of all
locations, αi is the attention weight for the location i. Second, a spatiotemporal attention
layer is introduced to differentiate the local (intra-region) and the global (inter-region) feature
contributions (Figure 3.1-a). The idea behind this layer is that, in some cases, the occurrence
of societal events may largely depend on the temporal information within the locations them-
selves, while in other cases, the occurrence may depend more on the happenings of other
locations or the global dynamics. The spatiotemporal attention layer is given by:

uloc = (vst)ᵀtanh(W sthlocd + bst), uglob = (vst)ᵀtanh(W stνsp + bst), (3.6)

βloc =
exp(uloc)

exp(uloc) + exp(uglob)
, βglob =

exp(uglob)

exp(uloc) + exp(uglob)
, (3.7)

νst = βloch
loc
d + βglobν

sp, (3.8)

where W st ∈ Rm×m, bst ∈ Rm and vst ∈ Rm are the parameters to be learned, m is the
number of hidden units in LSTMs (inter-) and (intra-) local components. βloc and βglob are
the attention weights corresponding to the outputs of (intra-) local and global components,
respectively. νst is the spatio-temporal context vector that aggregates the information learned
from temporal and spatial dimensions from both local and global components. Finally, the
forecasting of the occurrence of an event at future time t∗ and at the target location d is
computed using spatio-temporal context vector and static features of the target location as
follows:

Ŷt∗,d = φ(Wf [Sd, ν
st] + bf ), (3.9)

where Sd is the static feature of the target location d, Wf ∈ R(m+o)×(m+o) and bf ∈ R(m+o)

are the weight matrix and bias vector to be learned in the final concatenation layer, respec-
tively. m is the number of hidden units in LSTMs (inter-) and (intra-) local components
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whereas o is the static feature size. φ is the activation function where we apply Softmax acti-
vation function in order to obtain posterior probabilities of occurrence and non-occurrence of
the event.

Objective Function. The objective function is composed of two loss terms, which are pre-
diction loss and Group Lasso regularization. It is formulated as follows:

Loverall = Lpredict + λLGL, (3.10)

where λ is the regularization coefficient for Group Lasso regularization. Lpredict is the cross-
entropy loss which penalizes the prediction of the network for the possible future events as
follows:

Lpredict = − 1

n

n∑
i=1

c∑
j=1

Yij log(pij), (3.11)

n is the number of samples, c is the number of class labels (occurrence of an event and non-
occurrence of an event in our case), and pij is the probability of the sample i assigned to class
j by the model. Furthermore, the Group Lasso regularization is incorporated into the loss
function. Group Lasso has been shown effective in several domains such as robotic control
[125] and multi-modal context [126] to select informative features. The main motivation of
employing this regularization is to select informative features in (intra-) local and (inter-)
local components (Figure 3.1-d) while assigning the optimal weights of the network at the
same time. Therefore, it also enables us to interpret the model in such a way that redundant
information from features are minimized, which allows for differentiating which features are
important for the occurrence of future events. The loss term for Group Lasso is defined as
follows:

LGL = λ1

∥∥∥W loc
∥∥∥
2,1

+ λ2

L∑
l=1

∥∥∥W glob
l

∥∥∥
2,1
, (3.12)

W loc is the input weight matrix in Mloc, W glob
l is the input weight matrix of (inter-) local

component of lth location inMglob. Note that the input weight matrix contains all weights
of LSTM except for recurrent and bias weights. Moreover, λ1 and λ2 are the regularization
factors forMloc andMglob, respectively. Therefore, each component can be regularized by
different regularization factors. The Group Lasso regularization for a given weight matrix W
can be written as follows:

‖W‖2,1 =
∑
g∈G

√
|g| ‖g‖2 , (3.13)

where g is vector of outgoing connections (weights) from an input neuron, G denotes a set
of input neurons, and |g| indicates the dimension of g. Each input neuron in Mloc and in
each (inter-) local component ofMglob is represented as a separate group so that G contains
vectors of these groups.
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3.3 Experiments

This section provides information about the datasets (including data collection process) that
are used in the experiments to evaluate our method, the feature sets (including feature ex-
traction) that are employed in our model, the comparison methods for the evaluation, and the
experimental settings.

3.3.1 Datasets

The experiments were performed on three different social movements. For each of them, the
same type of datasets were collected. The social movements were chosen with respect to their
social significance and meanwhile in a way that they would allow to test the design of the
proposed model that could take care of the distinct social, temporal, and spatial dimensions
of the nature of protests. Moreover, the nature of issues in the chosen movements should not
be too different in order to compare and contrast the performance of the social theory-driven
features. Eventually, two social movements were considered, which are Black Lives Matter
(BLM) and counter-protests to Charlottesville’s white supremacist rally [130]. For BLM, two
separate waves of protests (Ferguson I and Ferguson II) were selected regarding the police’s
killing of Michael Brown in Ferguson, Missouri [3]. The first wave just started after the
police’s killing of Micheal Brown whereas the second wave started just after the grand jury
decision not to indict Darren Wilson (the police that shot Michael Brown) and then spread
across the U.S. Ferguson unrests are symbolic protests in BLM against systemic racism to
Black people in the U.S. Charlottesville counter-protests are the largest recent nationwide
protest activities against white supremacism in the U.S. As shown in Figure 3.2, these dif-
ferent social movements left heterogeneous activity traces, both online and offline, over time
and across locations, creating significant challenges in analyzing their spatial and temporal
patterns. For each of the social movements (Charlottesville, Ferguson I and Ferguson II), the
related datasets were collected as follows:

3.3.1.1 Twitter Data

Tweets were collected based on specific keywords or hashtags relevant to the counter-protests
to Charlottesville rally, and the first and the second waves of Ferguson protests. The size and
statistics of each dataset are provided in Table 3.1. Charlottesville Dataset was collected

Table 3.1: Basic statistics of the Twitter and protest datasets.

Dataset Duration #Tweets #Users
#Protest

Occurrences

Charlottesville Aug 11 - Aug 31 (2017) 11.36M 5.93M 136
Ferguson I Aug 9 - Aug 27 (2014) 8.02M 2.76M 90
Ferguson II Nov 21 - Dec 10 (2014) 9.86M 3.80M 104
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through the Twitter Streaming API1 by 17 keywords and/or hashtags of interest2. Retweets
were not included. These keywords were emerging during the event happenings and were
then widely used on Twitter to refer to the relevant issues and happenings. The Ferguson I
Dataset and Ferguson II Dataset were collected based on the published work [131], using
45 keywords including #ferguson, #blacklivesmatter, “black lives matter” and the names of
Black people killed by police during 2014 and 2015. Based on the tweet IDs provided in
the aforementioned published dataset, the tweets were recollected within the two periods via
Twitter REST API3 and the retweets were excluded.

3.3.1.2 Protest Data

The ground-truth data was collected from the website of Elephrame4 on the occurrence of
offline protest events during the periods of Charlottesville counter-protests, and the two waves
of the Ferguson protests. Elephrame provides information about civil unrest events occurred
in the US. This information is kept in a structured way and includes protest occurrence time
(start date and end date), protest location (in state-level and city-level), protest subjects (sub-
type of the protest event), description, number of participants, and at least one source link.
The Elephrame website was crawled and the protest information was collected through python
libraries Scrapy5 and Selenium6 in December 2017. News reports about BLM protests were
also incorporated that were collected by the authors of [19]. Each protest event information
is based on the given source link(s). Note that there can be more than one event in the same
location at the same time interval. In this work, it was only considered whether a protest
event occurred in a given location at that time interval. The occurrence of a protest event was
represented using binary variable. As a result, 136, 90 and 104 offline protest events have
been observed across the country during the three movements Charlottesville, Ferguson I and
Ferguson II, respectively. While the tweets for Charlottesville and two waves of Ferguson
were collected separately using different collection methods (Streaming API vs. REST API),
the information about protest events was collected from the same data source – the Elephrame
website. Since the main focus of this work is the spatio-temporal patterns of the offline protest
events, the difference in terms of the methods used for collecting tweets does not significantly
impact the results and the interpretation.

3.3.1.3 Census Data

The 2010 United States Census data was used, which is provided by the U.S. Census Bu-
reau, to extract the static features related to demographics (population, population density
and diversity). The Census data contains varying types of information from demographics to
economical indicators for different spatial resolutions.

1 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html
2 Keywords include: Charlottesville, KKK, Ku Klux Klan, Klansman, Klansmen, Nazi, Nazism, racism,

racist, supremacy, supremacist, supremacists, #Charlottesville, #domesticterrorism, #FireBannon, #White-
Supremacist, #WhiteSupremacists

3 https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id.html
4 https://elephrame.com/
5 https://scrapy.org/
6 https://selenium-python.readthedocs.io/
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3.3.1.4 Location Extraction

In this work, the purpose is to forecast the occurrence of offline protest events at the state
level, using Twitter users’ activities. The locations of tweets were either extracted from their
geocodes (if available) or inferred from the users’ profiles. First, the geo-tagged tweets posted
from the United States included state information in their ‘place’ field. These kinds of posts
include either a state name or state code (2 letter-code). This kind of information was directly
used as the location indicator. Second, the location information of the tweets are extracted
from the user profiles. This approach was followed for the tweets whose locations cannot be
identified using the first approach. Similar to the first approach, the locations (state name or
state code) were identified if they were explicitly written in the user profiles. If they were
not, the names of the cities located in the United States were also checked. If a city name
could be identified in the profile, it was mapped to its corresponding state. For this purpose,
a dictionary was used from Encyclopedia Britannica7 which includes city-state pairs in the
United States. Note that there can be more than one city with the same name in different
states. Therefore, such cities were discarded in this study. In total, the tweet locations at the
state-level for 29.9%, 41.5% and 43.3% of all tweets in the Charlottesville, Ferguson I, and
Ferguson II datasets were able to be extracted, respectively.

3.3.2 Features

As mentioned earlier, two types of features are incorporated into the proposed model, which
are the static features and the dynamic features.

Static features reflect political and demographic backgrounds of a location that a protest
event may take place, including the location’s belonged state’s population, population den-
sity, voting behavior (we used vote ratio for Trump in the 2016 presidential elections of United
States as an indicator of the degree of conservative of the location), and coarser grained re-
gion information that the location belongs to (i.e. North-east, Mid-west, South and West).
These static features either remain unchanged or change slowly over time. For the feature
population, the log transformation was applied for the normalization purpose.

Dynamic features are to capture social media user’s online activities that may be predictive
of offline protests. These features change for each time interval for a given location. Drawn
upon social movement literature [14] (discussed in Section 2.1), four factors were considered
to extract dynamic features, namely emotion, identity, grievance, and social embeddedness.

A lexicon-based approach was followed to extract the dynamic features. Three dictionaries
(LIWC [132], SentiSense [133], and Moral-Laden [134]) were employed to capture these
features indicating emotions, grievance, and identity. These dictionaries consist of categories
(e.g. anger from LIWC, disgust from SentiSense, Ingroup Virtue from Moral-Laden), and
each category contains words and/or word stems. The categories which indicate emotion,
identity, grievance will correspond to features in the feature set. Several additional relevant
features beyond these key factors were also included to test their usability. To extract the
dynamic features for emotions, grievance, and identity, the tweet contents were first parsed
and lemmaization was applied. Then, the words that match with dictionary words or derived

7 https://www.britannica.com/topic/list-of-cities-and-towns-in-the-United-States-2023068
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Table 3.2: Mapping of features to corresponding key factors.

Emotion Grievance Identity
Social

Embeddedness
Other

LIWC
posemo, negemo,
anx, anger, sad.

negate, verbs.

p1, p2, p3,
social,
friend,
family.

-

discrep, hear,
feel, death,
swear, past,

present, future,
article.

SentiSense All - - - -
Moral-Laden - All - - -
Twitter
Engagement

- - - All -

from dictionary word stems were identified. To do so, for each tweet, it was decided whether
it contains any keyword related to each of the given categories. LIWC and SentiSense include
a range of emotions, either positive or negative; LIWC offers the categories of social and
personal pronouns that may serve as indicator of identity. On the other hand, Moral-Laden
dictionary was used to capture grievance. This dictionary is derived from moral foundation
theory that consider humans engage in moral judgments along at least five dimensions: Har-
m/Care, Cheating/Fairness, Betrayal/Loyalty, Subversion/Authority, and Degradation/Purity.
While grievance results from the appraisal of relative deprivation based on moral rules, the
Moral-Laden is used with an attempt to capture the grievance. In this work, the categories
(features) from LIWC contain positive emotion (posemo), negative emotion (negemo), anxiety
(anx), anger, sadness (sad), social process (social), family, friends (friend), discrepancy (dis-
crep), hear, feel, death, swear words (swear), past focus (past), present focus (present), future
focus (future), common verbs (verbs), articles (article), negations (negate), 1st person plural
(p1), 2nd person (p2) and 3rd person plural (p3). The categories (features) from SentiSense
include love, joy, fear, hate, ambiguous, anticipation, like, sadness, despair, calmness, dis-
gust, surprise and hope. The categories (features) from Moral-Laden consist of ingroup vice,
ingroup virtue, harm vice, harm virtue, fairness vice, fairness virtue, authority vice, authority
virtue, purity vice, purity virtue and morality general.

Furthermore, to identify the type and level of social embeddedness, social media users’ en-
gagement in online discussion was captured as features, including number of tweets (num_tweet),
number of reply tweets (num_reply), and number of tweets with URL links (num_urlTweet).
Greater volumes of either type of tweeting behaviors (tweets, replies, and URLs) may reflect
that the public could be more aware of focal issues and events. Therefore, they turn to be
more motivated in seeking, spreading, and exchanging information, ideas and emotions in so-
cial media. Such social contexts may raise individual’s perception of the efficacy of protests
that could lead to actual protest actions. More replies and URL links suggest being more em-
bedded in relevant social networks. Replies suggest direct interactions with other embedded
users. On the other hand, URL links indicate the information networks built based on relevant
information/content created by others.

The mapping of the features to the corresponding key factors (emotion, grievance, identity,
social embeddedness and other) are provided in Table 3.2. Note that for each time unit (i.e.
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time interval) and for each location, the features were aggregated to create the feature vectors.
Each feature based on LIWC, SentiSense and Moral-Laden dictionaries were normalized by
the number of tweets. For instance, for the feature anger from LIWC, the number of tweets
that include information related to that feature for a specific time interval and a specific lo-
cation was normalized by the number of all topic-related tweets. This score was assigned to
anger feature for the given time interval and the location as the feature value. Finally, the
feature num_tweet was applied zero-mean and unit variance normalization.

3.3.3 Comparison Methods

The proposed method ActAttn was compared with several baselines and state-of-the-art ap-
proaches. In order to evaluate the forecasting effectiveness of the proposed model, three sets
were selected as the comparison methods.

The first set includes Logistic Regression (LR) and Support Vector Machine (SVM) classi-
fiers since they are widely-used machine learning methods in the event detection/forecasting
literature. In these methods, the effect of static, intra-region and inter-region features by
combining all features together are examined. The second set of methods includes recently
developed neural-network based models, such as RNNs and LSTMs in particular, as they have
been shown to be a superior performance in event forecasting problems due to the capabil-
ity of modeling the temporal dependencies. The third set of methods are the state-of-the-art
spatio-temporal event forecasting approaches recently proposed by [8], including regularized
multi-task feature learning (RMTFL), constrained multi-task feature learning I (CMTFL-1)
and constrained multi-task feature learning II (CMTFL-2). These methods formulate event
forecasting for multiple locations as a multi-task learning problem. They build event fore-
casting models for different locations simultaneously by restricting all locations to select a
common set of features. Note that none of the existing approaches support the hierarchical
structure of features coming from intra- and inter-regions, and we will discuss the importance
of such differentiation more in the Section 3.4. The baseline methods are summarized as
follows:

The first set:

• Logistic Regression (LR) is simple LR model. Three baselines were included for this
model. LR[tem] uses only intra-region features, LR[s, tem] concatenates static and
intra-region features, and LR[s, tem, st] merges all types of features as the input.

• Support Vector Machine (SVM) is simple SVM model. SVM [tem] employs only intra-
region features while SVM [s, tem] combines static features with intra-region features.
Also, all features are employed as the input in SVM [s, tem, st].

The second set:

• LSTM is a basic LSTM network that employs only intra-region features. Although
it models the temporal dependencies, it does not consider static features and spatial
relationships among regions.

• S + LSTM is an LSTM-based model where intra-region features are given as inputs to
LSTM network. Then, the embeddings of dynamic features (hidden representations) are

35



concatenated with the static features. Although this model takes the social properties
of the locations into consideration, it does not consider the spatial relationships among
regions.

• S + LSTM (GL) has the same structure as S + LSTM , yet it was trained incorporat-
ing Group Lasso regularization into loss function. With this model, the purpose is to
monitor the effect of Group Lasso regularization on the performance of S + LSTM
model.

The third set:

• RMTFL employs a regularization parameter to control the model sparsity.

• CMTFL-1 introduces a constraint to control the number of features in the model for
sparsity.

• CMTFL-2 restricts the number of features selected from static and dynamic groups
separately.

Furthermore, to evaluate the effectiveness of individual components of ActAttn, including the
Group Lasso regularization and hierarchical attention mechanism (spatial and spatiotemporal
attentions), several variants of ActAttn were included for comparison as follows:

• ActAttn (w/o GL) has the same structure of our proposed method, yet Group Lasso
regularization is not incorporated into the loss function.

• ActAttn (w/o stAttn) does not include the spatiotemporal attention layer instead htemd and
vsp are concatenated. To do so, the aim is to evaluate the importance of reweighting the
contributions from (intra-) local and global components on the forecasting performance.

• ActAttn (w/o spAttn) does not include the spatial attention layer, instead a linear projec-
tion layer is used. With this variant, the purpose is to observe the effect of reweighting
the contributions of all locations in the global component on forecasting.

3.3.4 Experimental Settings

In the experiments, ‘day’ was used as the time unit and ‘state’ was used as the location unit.
These units were chosen based on availability of the data and short-term nature of protest
occurrences. The last 5 days from each dataset were used as the test sets and rest of them
as the training sets. The training set of Charlottesville dataset contains 127 protest events
(15.6% of all samples in the training set) and test set contains 9 events. The training set
of Ferguson I dataset contains 63 protest events (9% of all samples in the training set) and
test set contains 27 events. The training set of Ferguson II dataset contains 82 protest events
(10.7% of all samples in the training set) and test set contains 22 events. Different settings of
window size and lead time were applied. The window size k was set to be {1, 2, 3} and the
lead time τ was set to be {1, 2, 3}. The hidden unit size for LSTM is 16. The architecture
was trained using the Adam optimizer [135] with a learning rate of 0.001. For the models
incorporating Group Lasso regularization, regularization factors λ1 and λ2 were selected from
the set {10−5, 10−4} using grid search. During the test, the input weights with absolute
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values smaller than 10−3 were set to 0 as suggested in [124]. Moreover, for the state-of-the-
art MTFL-based models, regularization parameter was set to be {10−4, 10−3, . . . , 103, 104}.
The number of features to be selected in CMTFL-1 model was set to be {5, 10, . . . , 55}.
The number of static and dynamic features to be selected in CMTFL-2 model were set to be
{4, 5, 6, 7, 8} and {5, 10, . . . , 50}, respectively. Finally, the code for proposed method and
the data are available at https://github.com/picsolab/actattn.

3.4 Results

In this section, a comprehensive set of results is presented. First, in Section 3.4.1, the forecast-
ing effectiveness of the proposed model in comparison with the baseline and state-of-the-art
forecasting approaches, and based on the aforementioned experiment settings is shown. In
Section 3.4.2, different kinds of predictive features identified by the proposed model are an-
alyzed, and their effects in relation to the theoretical factors are interpreted. In Section 3.4.3,
different kinds of spatio-temporal contributions (local vs. global contributions, (inter-) local
contributions) are analyzed and interpreted. Finally, in Section 3.4.4, the potential of using
additional content features in the current forecasting framework is explored.

3.4.1 Performance Comparison

The forecasting performance of ActAttn was compared with the comparison methods. The
results are organized to answer the following three questions:

1. Overall, how well could ActAttn forecast future protest event occurrences, compared
with the baseline methods? (Section 3.4.1.1)

2. As missing information is common in social event predicting problems, how robust
could ActAttn deal with missing information, compared with the baseline methods?
Does ActAttn’s spatio-temporal architecture help deal with the missing or noisy infor-
mation? (Section 3.4.1.2)

3. How early in time can ActAttn effectively predict future protest event occurrences?
(Section 3.4.1.3)

3.4.1.1 Overall Performance

As shown in Table 3.3, the results indicate that ActAttn achieves the highest F-score and
Area Under Curve (AUC) values on Charlottesville (0.400 and 0.843), Ferguson I (0.462 and
0.822) and Ferguson II (0.471 and 0.853) datasets. The F-scores for all methods are low
due to the imbalanced class distribution (9%–15% protest events). For instance, all SVM
variants yielded 0% F-score for Ferguson I, and SVM [s, tem, st] performed 0% F-score for
Charlottesville. In addition to the imbalanced class distribution, different behaviors of the
protest occurrences in the training and the test sets for Charlottesville and Ferguson I might
be another reason for the corresponding results of the SVM variants. As a result, while
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Table 3.3: Forecasting performance results.

Charlottesville Ferguson I Ferguson II

F-score AUC F-score AUC F-score AUC
LR [tem] 0.200 0.696 0.103 0.733 0.343 0.752
LR [s, tem] 0.182 0.789 0.259 0.766 0.327 0.789
LR [s, tem, st] 0.200 0.734 0.230 0.722 0.314 0.773

SVM [tem] 0.200 0.818 0.000 0.791 0.400 0.816
SVM [s, tem] 0.186 0.809 0.000 0.796 0.408 0.837
SVM [s, tem, st] 0.000 0.782 0.000 0.754 0.313 0.780

LSTM 0.240 0.752 0.415 0.801 0.417 0.819
S + LSTM 0.267 0.778 0.423 0.804 0.439 0.838
S + LSTM (GL) 0.308 0.793 0.423 0.805 0.440 0.839

RMTFL 0.182 0.663 0.250 0.703 0.250 0.829
CMTFL−1 0.182 0.664 0.350 0.711 0.316 0.805
CMTFL−2 0.200 0.661 0.333 0.711 0.324 0.815

ActAttn (w/o GL) 0.308 0.830 0.459 0.820 0.464 0.849
ActAttn (w/o stAttn) 0.324 0.797 0.406 0.783 0.409 0.842
ActAttn (w/o spAttn) 0.333 0.836 0.448 0.812 0.448 0.846
ActAttn 0.400 0.843 0.462 0.822 0.471 0.853

the protest occurrence pattern is different for each dataset (Figure 3.2), ActAttn is robust to
distribution of the data and models temporal and spatial dimensions successfully.

The significance of the static features is indicated by comparing the results of LR[tem] with
LR[s, tem], SVM [tem] with SVM [s, tem], and LSTM with S + LSTM . It can be seen
that, nearly in all cases, combining static features with intra-region features yields better F-
score and AUC values. When the inter-region features are further combined, it is observed
that LR[s, tem, st] and SVM [s, tem, st] give worse results compared to LR[s, tem] and
SVM [s, tem], respectively. Thus, these models fail to capture the spatio-temporal infor-
mation from the concatenated inter-region features. In our approach, combining the inter-
region features with the static features and the intra-region features (i.e. combining local and
global contributions) increases the performance in ActAttn based methods except ActAttn (w/o
stAttn). Moreover, S+LSTM (GL) performs slightly better than S+LSTM and eliminates
some of the redundant inputs in all of the three models.

To compare the performance of ActAttn with the state-of-the-art spatio-temporal event fore-
casting approaches, additional experiments were performed on all the datasets with RMTFL,
CMTFL-1 and CMTFL-2 proposed by [8] by employing various parameter combinations. The
best test performances of these approaches on each dataset are reported. The results indicate
that ActAttn significantly outperforms all three approaches on all datasets in terms of both
F-score and AUC values8.

8 The AUC of the best model (> 0.82) suggests it is possible to rank-order or filter the states where protest
events are likely to happen with reasonable accuracy.
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To examine the effect of Group Lasso regularization and hierarchical attention mechanism,
the performance of ActAttn were compared with its three variants. Although ActAttn slightly
outperforms ActAttn (w/o GL), Group Lasso regularization provides sparsity and selection
of compact set of features. ActAttn model provides 95.0%, 76.6% and 96.8% sparsity for
Charlottesville, Ferguson I and Ferguson II, respectively. It is computed as the ratio of zero
input weights over total number of input connections. Furthermore, ActAttn was compared
with ActAttn (w/o stAttn) and ActAttn (w/o spAttn) to examine the effect of hierarchical atten-
tion mechanism. It is observed that ActAttn significantly performs better than ActAttn (w/o
stAttn). This shows the importance of spatiotemporal attention layer which adjusts the lo-
cal and global feature contributions. Similarly, ActAttn performs superior than ActAttn (w/o
spAttn). Removal of the spatial attention layer from the proposed architecture also results in

Figure 3.3: Forecasting results against varying levels of missingness (in time and space) from
the test sets. The x-axes indicate the levels of missingness, and the y-axes indicate the perfor-
mance in terms of (a) AUC and (b) F-Score results.
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loss of interpretation capability about the most contributing locations.

3.4.1.2 Robustness to Missing Information

A common challenge in predicting/forecasting societal events is that data (including but not
limited to social media data) often involve missing information or are only partially com-
plete. For example, social media user activity may be sparse in a certain region or a particular
time. As ActAttn is designed to capture the spatio-temporal characteristics and features, it
is expected that ActAttn would be more robust to missing data if the model effectively cap-
tures the spatio-temporal structure from the training data. To test this, two kinds of missing
information scenarios are simulated as follows:

(1) Missingness in time and space: A missing value could occur in any feature of any region
at any time. To simulate this, different levels of input data (20%, 40%, 60% and 80%) are
randomly removed from the test sets. An incremental approach is followed for the removal
of the input data. While the level of missingness increases, the missing input data from the
previous level is kept the same and additional random removal is performed for the current
level. Then, the missing values are filled by randomly assigning values taking from the range
of non-missing values of the corresponding features. In this setting, the comparison methods
include those methods that take all features (static, temporal and spatial features) as input
and have the best overall performance within each of the method variants. Figure 3.3 shows
the forecasting performances of the methods for each dataset over different levels of missing
data. The results indicate that ActAttn performs significantly better (in terms of both AUC
and F-Score) than all the other methods on all datasets and for almost all levels of missing
data.

(2) Missingness in certain regions: The missing values could occur in a particular region for
an entire (short- or long-term) period of time. To simulate this, different proportions of regions
(states) (ranging from 20% to 80%) are randomly selected and their input is entirely removed
from the test sets. An incremental approach is followed for the removal of the regions. While
the level of missingness increases, the missing regions from the previous level are kept the
same and additional random removal is performed for the current level. The removed regions
thus do not have any contribution to forecasting events in any of the target regions. In this
setting, the methods taking features from the other locations are included for the comparison.
Note that, although these methods include features from the other states, they do not differen-
tiate intra- and inter-region (i.e. local vs. global) contributions. Therefore, it is expected that
these comparison methods may suffer from missing some regional input. Figure 3.4 shows
the forecasting performances of the methods for each dataset over different levels of missing
region information. The results show that ActAttn outperforms the other methods in terms of
both AUC and F-Score on all three datasets and for all levels of missing region information.
Also, we observed that ActAttn performs more stable in nearly all conditions.

In both scenarios, it is observed that ActAttn is more robust compared to other methods.
This suggests that the design of ActAttn is particularly useful in dealing with missing infor-
mation – the hierarchical attention mechanism learns important regions and summarizes the
spatio-temporal information from intra-region and inter-region features (local vs. global con-
tributions), and the Group Lasso regularization imposes sparsity and selects an informative
set of features. Note that the experiments for each scenario are performed for a single random
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Figure 3.4: Forecasting results against varying levels of missingness for regions (states) from
the test sets. The x-axes indicate the levels of missingness, and the y-axes indicate the perfor-
mance in terms of (a) AUC and (b) F-Score results.

configuration. Multiple repetitions of the same experiments for both scenarios would yield
more reliable results.

3.4.1.3 Performance Analysis with Varying Lead Time

To examine how early in time ActAttn effectively forecasts future protest event occurrences,
the forecasting performance under different lead time conditions is tested. Recall that the
lead time τ is the length of time (number of days in the experiments) from which the data is
available for forecasting events occurring at t + τ (as defined in Section 3.1). The proposed
method is evaluated with different lead time settings, where τ ∈ {1, 2, 3}. Figure 3.5 shows
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Figure 3.5: Forecasting results against different lead times. The x-axes indicate the lead time
τ , and the y-axes indicate the performance in terms of (a) AUC and (b) F-Score results.

the forecasting performances of ActAttn and comparison methods over different lead time
settings. The results indicate that ActAttn has significantly better performance compared to
other methods in terms of AUC and F-Score on three datasets across almost all lead time
settings. This suggests that ActAttn is able to achieve better and more stable performance for
short-term event forecasting up to τ = 3. Due to the limitation of the data, longer-term event
forecasting performance is not examined in this work.

The forecasting performance of ActAttn is further examined with different window size k and
lead time τ . As defined in Section 3.1, the window size represents the amount of information
needed for forecasting in terms of the number of consecutive days as input. The AUC values
for corresponding results are given in Table 3.4. Accordingly, the best performances are
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Table 3.4: AUC results of ActAttn with respect to different window size k and lead time τ .

Charlottesville Ferguson I Ferguson II

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

τ = 1 0.842 0.843 0.823 0.807 0.815 0.822 0.853 0.832 0.800
τ = 2 0.839 0.836 0.823 0.807 0.820 0.820 0.831 0.836 0.832
τ = 3 0.830 0.830 0.819 0.791 0.808 0.821 0.818 0.820 0.811

achieved when (k = 2, τ = 1), (k = 3, τ = 1) and (k = 1, τ = 1) for Charlottesville,
Ferguson I and Ferguson II models, respectively. In general, the performance either remains
stable or slightly decreases with an increase in the lead time τ regardless of window size k.
It is also observed that social movements with different characteristics may require different
window size length to obtain the best forecasting performance.

3.4.2 Interpreting the Impact of Features

The significance of the features are interpreted by analyzing intra-region, inter-region, and
static features. Group Lasso regularization has selected a subset of features with the most
discriminative power in the models.

3.4.2.1 Intra-region dynamic features

This section analysis the importance of the intra-region dynamic features on forecasting the
local future protests. In other words, the information about the input weights of (intra-) local
component are provided Mloc for all three models in Figure 3.6-a. In general, most of the
eliminated features in all models belong to the categories of Moral-laden and SentiSense, yet
the remaining features in these categories are still important for the prediction. The detailed
interpretation with respect to relationship between the key factors and the features is presented
below. Also, to better understand the significance of those features in each protest contexts, a
manual inspection of the tweet content was conducted.

1. Emotion. Both positive emotion and negative emotion (posemo and negemo from LIWC),
are important in all models. Particularly, anger (from LIWC) is predictive for all, which
suggests that anger is a good indicator in predicting protest for all cases. Moreover, certain
particular emotions stand out for each protest scenario. For example, disgust (from Sen-
tiSense) is predictive in Charllottesville; hate (from SentiSense) in Ferguson I; and fear (from
SentiSense) in Ferguson II.

In addition, a Moral-Laden feature, PurityVice (in terms of the extent of impurity and corrup-
tion) unexpectedly captures an intensely annoying emotion in predicting Ferguson I protests.
This was uncovered when analyzing the relevant tweets in which the online community ex-
tensively express their being “sick of ” or feeling “disgust” for the fact that another Black life
was killed by the police.
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Figure 3.6: Mean absolute values of intra-region and inter-region input (gate) weights. These
are the input weights learned from the neural network model (the LSTM networks in the
(intra-) local component and (inter-) local components), and the magnitude of weights (can
take any values) allows for a comparison for the relative importance of different features. (a)
intra-region input weights ((intra-) local component). (b) inter-region input weights (inter-)
local components for the most contributing states.

2. Grievance. The results indicate that Moral-Laden features are not able to capture grievance.
However, through further analysis of the feature negation (from LIWC) (the use of words such
as no, not, never) suggests that it may serve as the indicator of grievance. This feature is im-
portant for all models, especially in Ferguson I and II. Negation is used in online community
to emphasize their appraisals of how unbelievable and unrealistic when they learn about the
happenings (e.g. shooting of unarmed Michael Brown, grand jury’s decision on not indicting
Officer Wilson, and a public rally against racism) that strongly conflict with their normal sense
of moral principles. It indicates grievance referring to the feeling of illegitimate injustice.

3. Identity. Social (from LIWC) refers to the use of personal pronouns especially plural ones
such as we, you, they, people. It is predictive for all models. These terms are extensively used
to call attention on in-group members (we) to recognize the grievance and express protesting
voices to out-group members (they; e.g., the police, a group considered by a majority of
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the online community as an embodiment of racism). It is reasonable for this feature to be
significant in predicting protests and rallies, since people naturally form groups, and use those
words to call for identity in such circumstances.

4. Social Embeddedness. Among the three relevant features (number of tweets, number
of replies, and number of tweets with URLs), num_tweets is the most powerful for all of the
three protest events. Online activism within a state is predictive of future offline protests in the
same given state. Num_urlTweet, which indicates the amount of Twitter posts that contains an
external link to other sources, is found to be a useful predictor too except for Ferguson I. This
may be caused by the fact that Michael Brown’s death was at first not paid much attention to
among news outlets, so the external news or relevant URLs may be less indicative of online
activist engagement.

5. Others. The impact of other additional features are also analyzed. The features of both
verb (from LIWC) and present (from LIWC) are important in all cases. It indicates the use of
verbs especially present tense of both auxiliary verbs such as is, are, have, can to emphasize
the happenings and perceived grievance as a serious matter of fact, as well as the use of action
verbs such as go, take, make, need, think that call for necessary actions.

The features of personal pronouns (from LIWC) are significant predictors as well. They in-
volve the reference of and the discussion on certain person/people at the center of why people
protest for or against. For example, you is important for Charlottesville; the second-person
pronoun extensively refers to President Trump as online activists questioned him earnestly
about his position in racism. he is important in predicting Ferguson I protests, which is used
to refer mostly either Michael Brown or Eric Garner, both of whom were killed by the police.
they mostly refers to the police. In Ferguson II, online activists focused more on the judicial
system who had been believed unsuccessful in bringing about justice, thus personal pronouns
are less predictive.

3.4.2.2 Inter-region dynamic features

The effectiveness of the inter-region dynamic features is explored by analyzing the input
weights (only the portions which connect inputs to input gates) of each (inter-) local com-
ponent in the global component, Mglob. Figure 3.6-b summarizes the importance of the
inter-region dynamic features in predicting protest within given states. Large percentages
(96.5%, 77.6%, and 97.9% in cases of Charlottesville, Ferguson I and Ferguson II, respec-
tively) of the input weights are discarded as a result of Group Lasso regularization. Virginia
(VA) from Charlottesville model, California (CA) from Ferguson I model and CA from Fer-
guson II model are selected models to analyze the inter-region input weights because these
states are all ‘hub’ states (with the largest contribution to prediction than the others’) for
the corresponding models (explained in Section 3.4.3). In general, the result suggests that
Group Lasso selects a set of features which are similar to the ones of intra-region features
for all models although the number of selected inter-region features are less than intra-region
features. This indicates that the feature contributions from the local and the global exhibit
similar patterns. num_tweet, past, anger, negemo, verb, article and social from LIWC are the
common important inter-region features for all models. Also, for all models, num_tweet is
the most important inter-region feature, which indicates online community activities in other
states could be also significant across all other states.
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Figure 3.7: The values of the static feature weights. These are the static feature weights
learned from the neural network model. The weights (can take any values) allows for a
comparison for the relative importance of different features. (a) Charlottesville model. (b)
Ferguson I model. (c) Ferguson II model.

3.4.2.3 Static features

Figure 3.7 shows the importance of static feature weights in the three models. These feature
weights contribute to prediction in the final layer of the neural network. The static features
representing the U.S. regions indicate how predictive the coarser grained region class for a
given state is (e.g., is a state in the South more likely or less likely to have future protests?).
The results of Charlottesville and Ferguson II models exhibit similar patterns, which suggests
that protest events in both social movements took place more all over the U.S., while Ferguson
I started locally with a majority of Black communities, and its model shows that being a
Southern state itself is predictive for possible future protests. For the Charlottesville and the
Ferguson II models, being in the regions mid-west and north-east of the U.S., population
density and vote behavior are important indicators for a state to forecast future local protests.

3.4.3 Interpreting the Local and Global Contributions and Hubs

ActAttn enables us to explore the proportion of the local (intra-region) and the global (inter-
region) contributions in forecasting protest events, and allows for discovering the “hubs” that
have a more salient contribution in predicting protest events globally. The intra-region and
the inter-region contributions can be identified based on the spatiotemporal attention weights
in the model, and the hubs can be identified as the regions (states) whose inter-region contri-
butions to others are significant. In this study, it is observed that the spatial attention weights
do not differ significantly across the different samples since the spatial attention layer learns
the locations with higher contributions to forecasting regardless of the target location. These
weights represent an overall, consistent spatial relationship among the regions and across the
days. Therefore, in the following analyses, the results aggregated from both all the test sam-
ples and the representative test samples are presented.

3.4.3.1 Local vs. global contributions

To examine the differences between the local (intra-region) and the global (inter-region) con-
tributions for forecasting events, a contribution graph for each model is created. As shown in
Figure 3.8, the orange nodes represent states where the offline events are correctly predicted
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by the model, the gray nodes represent the states where either the events are not correctly pre-
dicted or no event occurred, yet still contribute to forecasting events in other states. For visual
clarity, only gray nodes having an inter-region contribution greater than a certain threshold
(0.01, 0.05 and 0.01 for Charlottesville, Ferguson I and Ferguson II, respectively) to any of
the orange nodes are indicated. An edge indicates the contribution of forecasting for a target
state from a source state and the edge weight (thickness) reflects the contribution magnitude.
Also for visual clarity, only edges whose weights are more than a certain threshold, which is
0.05, 0.1 and 0.05 for Charlottesville, Ferguson I and Ferguson II, respectively, are shown.
For a target state, the self-loop represents the intra-region contribution where the other in-
coming edges represent the inter-region contributions to that state. Note that there might be
states where the protest events occurred on multiple test days. For such states, the average
contributions of all these days are taken for summarization, and they are shown in the graph.

The hierarchical attention mechanism in the proposed ActAttn model enables a systematic
way to interpret the intra-region (local) and inter-region (global) contributions. The contribu-
tion from a source state to a target state (inter-region) at a specific event day is calculated by
(βglob ∗ αsource) where βglob is the attention weight corresponding to the global component
Mglob, and αsource is the spatial attention weight for the source state in the global component,
Mglob. Similarly, the intra-region contribution can be estimated by (βloc + βglob ∗ αtarget)
where βloc is the attention weight corresponding to the (Intra-) local component and αtarget

is the spatial attention weight for the target state in the global component. As shown in Fig-
ure 3.8-(1), VA has a salient contribution (as a part of the global contribution) to forecast the
states where the events are correctly predicted for Charlottesville case. In other words, social
media activity in VA, would be a powerful signal for forecasting the offline events in the other
states. Moreover, CA (mostly), IL and MO can be regarded as hubs as they contribute more
than others to the target states for forecasting events in Ferguson I (Figure 3.8-(2)). On the
other hand, the inter-region contributions from CA and NY to target states are much more than
the other states in Ferguson II (Figure 3.8-(3)). Note that the local (intra-region) contributions
(reflected by the self-loop weights) for any target state are higher than the contributions from
any other state in all three models. This suggests that local activity still plays a more impor-
tant role than the activity of any other states. Interestingly, in the case of Charlottesville, the
global contribution (the total inter-region contributions of all other states) for a target state
is more than the local one, suggesting that the Charlottesville protests have a very distinct
spatio-temporal process compared with the other two cases.

3.4.3.2 The effect of hubs

To further illustrate the hub effect, the representative test samples are selected for Texas (TX),
Washington (WA) and Illinois (IL), which are correctly predicted events by Charlottesville,
Ferguson I and Ferguson II models, respectively.

In the Charlottesville model, the spatiotemporal attention weights for the local and the global
contributions are 0.458 and 0.542, respectively. It means that the global component Mglob

contributes more to forecasting the protest in TX for the given sample. To further analyze
the global contribution and the hub effect, the inter-region input (gate) weights (input weights
in (inter-) local components) and the spatial attention weights are visualized as given in Fig-
ure 3.9. It is observed that Group Lasso regularization selects the informative features from
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only a few states, namely VA, New York (NY), CA and TX (Figure 3.9-1a), and the spatial
attention layer further selects VA, CA and NY as “hubs” (Figure 3.9-1b). VA is the most
contributing ‘hub’ in predicting protest event for the given test sample from TX. Since the
trigger event of Charlottesville Rally occurred in VA, higher attention weight for VA is the
potential indicator that the proposed model is able to model spatio-temporal relationships
among the regions successfully for the Charlottesville dataset.

In the Ferguson I model, the spatiotemporal attention weights for the local and the global
contributions are 0.591 and 0.409, respectively. This indicates that locality is more predictive
for the given test sample of WA. Moreover, the spatial attention attends the states CA, IL,
Missouri (MO) and TX (Figure 3.9-2b), suggesting the high impact of these states. Ferguson
is located in St. Louis, MO where the shooting of Michael Brown happened, which is the
starting point of the protests. It is also very close to IL border. The reactions to Ferguson
shooting in the social media is most likely started to spread from these states. CA is an active
state where both online (tweet volume) and offline activities (protests) occurred much more
frequently than the other places. Therefore, these could be the explanations why these states
are hubs in this model.

In the Ferguson II model, in predicting the protests in IL, the spatiotemporal attention weights
for the local and the global contributions are 0.576 and 0.424, respectively for the correctly
predicted test sample from IL. As shown in Figure 3.9-3a and Figure 3.9-3b, CA and NY
are selected more by the spatial attention as the most attended regions (among those initially
given by the Group Lasso). This suggests that the protest forecasting may be impacted by the
heightened social media discussion in these hub states, in relation to, e.g., the NYPD shooting
of Akai Gurley, and the arrest of BLM activists in the Bay Area during the study period.

3.4.4 Testing Predictive Power with Additional Features

While the selection of features is theory-driven, the possibility of incorporating additional
features (which are emerging from the events unfolding) should also be considered since they
could help increase the predictive power of the proposed model in a meaningful way. For
example, specifically, it is considered whether there are keywords used by the Twitter users
to plan, organize, or mobilize protests that may also serve as effective features. Since in
most cases mobilization activities and activism on Twitter are organized and advocated by the
Twitter users through hashtags, the mostly used hashtags are taken into consideration. For
this purpose the top-k (k = 100) hashtags based on TF-IDF values are analyzed. Each day
is treated as a separate document. Then, these top-100 keywords are included as additional
features to see if they affect on forecasting, and analyzed if there are predictive ones.

The ratio of number of tweets that include the hashtag to the total number of tweets at the
specific time (day) is assigned as the feature value for the corresponding hashtag. According
to the results given in Table 3.5, employing the additional features decreases the performances
in terms of both F-score and AUC for all three datasets. Furthermore, the importance of these
hashtag features are explored by analyzing the input weights. In all of the three cases, less than
10% of the features have non-zero weights after Group Lasso regularization, which means that
most of the features do not have any contribution to forecast events as both intra-region and
inter-region features. The informative hashtags include “#theresistance" for Charlottesville,
“#ferguson", “#mikebrown" and “#justuceformikebrown" for Ferguson I, and “#ferguson",
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Table 3.5: Forecasting performance results without and with hashtag features. C.F. stands for
content features.

Charlottesville Ferguson I Ferguson II

F-Score AUC F-Score AUC F-Score AUC
Without C.F. 0.400 0.843 0.462 0.822 0.471 0.853
With C.F. 0.308 0.814 0.453 0.815 0.435 0.825

“#ericgarner", “#tamirrice" and “#fergusondecision" for Ferguson II. However, the weights
of these features are much less than the weights of those theory-driven features that are first
employed in the original model.

3.5 Discussion and Conclusion

In this chapter, an interpretable, spatio-temporal predictive model, called ActAttn, was pre-
sented to forecast future societal events. The proposed model was applied to forecast offline
protest events from online activities as one of the application domains for societal events.
A novel deep learning architecture was developed, which models the local and the global
dynamic information concurrently as well as the location-specific static information through
a hierarchical attention mechanism. ActAttn also enables interpretation in both local and
global dimensions, and theory-relevant activity features. Through extensive experiments, the
strength of the proposed model was demonstrated. The proposed model was compared with
the baseline and state-of-the-art methods, and it achieved a superior forecasting performance
for all three movement datasets. It has also been more robust to missing data and consistently
outperformed other methods in various early forecasting settings.

In the proposed architecture, Group Lasso regularization and hierarchical attention mecha-
nism were employed to perform theory-driven feature selection, and explore and identify the
most contributing locations to forecast the protest events. ActAttn both allows us to examine
the important intra-region and inter-region features (which are predictive for future protest
events), and is capable of differentiating the intra-region (local) and inter-region (global) con-
tributions. In general, for all social movement datasets it was observed that, LIWC-related
features and Twitter engagement features are the most informative feature groups in common.
Moreover, a few of the locations (states) had more salient contribution to forecasting local
events, and these locations differ in each model.

In relation to theory-driven features, it was observed that the greater volumes of tweeting and
networking behaviors for social embeddedness (including original tweets, replies, and associ-
ating content with hyperlinks) had high predictive power. This result is consistent with prior
empirical studies (e.g., [19]). The negative emotions have been studied and theorized to be
associated with protests [16, 14], and the experiment results are consistent with the litera-
ture, particularly for anger. However, other specific negative emotions, such as disgust, hate,
and fear also stood out, and showed distinct predictive power for the Charlottesville counter-
protests, Ferguson I and Ferguson II, respectively. Moreover, grievance was not captured
through the Moral-Laden based features. However, it was discovered that negation (from the
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LIWC dictionary) could be a good predictor feature for all protest cases. By manual inspec-
tion of sampled tweets, it was revealed that its semantic meaning could serve as an indicator
of grievance. This could be a potential to identify information of grievance in future relevant
studies. Finally, for the key factor identity, social category from the LIWC dictionary was
able to capture the group identities, such that it is predictive for Charlottesville and Ferguson
I, but not Ferguson II. In brief, the proposed model goes beyond indicating that online dis-
cussion, including emotional tweets, may help predict offline protests. That point has been
studied and widely recognized. Rather, this study offers insights as to where (intra-region
or inter-region) and how (the features were not selected randomly or through unsupervised
learning, but theory-driven) the features may offer explanatory power.

In relation to hub locations (states), it was observed that only a few locations had more salient
contribution to forecasting future protest events in the target locations, and they were different
for each model. For Charlottesville model, VA has more contribution to prediction which can
be explained by that the trigger event for of Charlottesville rally occurred in VA. Note that its
contribution to forecasting future protests is more than the contribution of local dynamics in
every target location. Moreover, CA, MO, IL and TX are the most contributing set of states
for the prediction of future protests in Ferguson I model. The shooting of Micheal Brown
happened in Ferguson (in the border of MO-IL) and the reactions have been spread across the
country in terms of both online and offline activities. This explains why the proposed model
selects these states as the hubs. Lastly, CA, NY and TX are the detected hubs for Ferguson II
model, which can be explained by high attention in social media related to the police shooting
of Akai Gurley in NY, and the arrest of BLM activists in CA during the study period.

3.5.1 Limitations

There are several limitations in the proposed work. (1) The results indicated that consider-
ing spatial relationships among the locations increases the performance of forecasting protest
events. However, the proposed architecture models the spatial structure irrespective of the
locations of events. In other words, it does not differentiate the pairwise relationship between
a particular event location and other locations. Future research might consider modeling the
relationships between pairs of locations. (2) In the context of forecasting protest or other civil
unrest events, data is generally sparse in terms of event occurrences. Events either increas-
ingly happen within a short period after a trigger event, or only occur in particular locations.
The data sparsity makes it difficult to learn complex spatio-temporal relationships. The cur-
rent proposed model was not specifically designed to tackle this data sparsity issue. (3) In
the current architecture, the global componentMglob, which models the spatio-temporal re-
lationships over locations, is a complex component. It consists of a (inter-) local component
for each location where each component has its own LSTM component. As the number of lo-
cations increases, the number of parameters to be learned increases linearly. Although Group
Lasso regularization has significantly reduced the complexity of this component, to further
reduce the complexity of the model would be more desirable.
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CHAPTER 4

CASTNET: COMMUNITY-ATTENTIVE SPATIO-TEMPORAL
NETWORKS FOR FORECASTING SOCIETAL EVENTS

In this chapter, an interpretable, community-attentive, spatio-temporal forecasting model,
named CASTNet, is proposed. Assuming that different locations could share similar dynam-
ics and inspired by the idea of multi-head attentional networks [121], the proposed method
aims to learn different representation subspaces of cross-regional dynamics, where each sub-
space involves a set of locations called “community” that share similar behaviors. The pro-
posed architecture is called “community-attentive" since it allows the prediction for a given
location to be individually optimized by the features contributed by a mixture of communities.
Specifically, combining the features of the given target location and features from the com-
munities (referred to as local and global dynamics), the model learns to forecast the number
of societal events in the target location. The proposed method differentiates the global contri-
butions from the communities with respect to the target location. Meanwhile, by leveraging
Group Lasso regularization [124] and hierarchical attention mechanism, the proposed method
allows for interpreting what local and global features are more predictive, what communities
contribute more to forecasting incidences at a location, and what locations contribute more to
each community.

The proposed model is evaluated on the domain of opioid overdose events, where the purpose
is to forecast future opioid overdoses from spatio-temporal crime dynamics. The literature has
highlighted the relationships between the opioid use and crime incidents with different aspects
including cause (that opioid use leads to criminal activities [32]), effect (that involvement in
criminal behavior leads to drug use [31]), and common causes (that crime and drug use tend
to co-occur [34]). Crime occurrences also have non-trivial spatio-temporal characteristics –
for example, routine activity theory suggests that crimes may exhibit spatio-temporal lags
as the likely offenders of one place may reach suitable targets in other places. Given the
plausible relationship between the crime dynamics and opioid use as well as the availability
of real-time crime data for various locations, the proposed model is validated on two real-
world opioid overdose datasets through extensive experiments. Also, in-depth analysis and
comparison across several baselines and state-of-the-art methods are performed.

This chapter first defines the forecasting problem on a specific societal event domain (i.e.
opioid overdose forecasting), where the proposed method is applied and evaluated. Next, the
architecture of the proposed model is presented in detail. Then, the experiment details are
given including datasets, extracted features, comparison methods and experimental settings.
After that, the experiment results are provided including in-depth analysis and comparison
across several baseline and state-of-the-art methods. Finally, the discussion and conclusion
about the proposed methods are presented including the limitations of the current work.
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4.1 Problem Definition

Suppose there are L number of locations-of-interest (e.g. neighborhoods, districts) and each
location l can be represented as a collection of its static and dynamic features. While the static
features (e.g. demographics, economical indicators) remain same or change slowly over a
longer period of time, the dynamic features are the updates for each time interval t (e.g. day,
week). Let Xstat

l be the static features of location l, and Xdyn
t,l the set of dynamic features

for location l at time t. We are also given a continuous variable yt∗,l ∈ N that indicates the
number of opioid overdose incidents (e.g. emergency medical services (EMS) calls, deaths)
at location l at future time t∗. The collection of dynamic features from all locations-of-
interest within an observing time window with size w up to time t can be represented as
X dyn
t−w+1:t = {X dyn

t−w+1, . . . ,X
dyn
t }, where X dyn

t′ = {Xdyn
t′,1 , . . . , X

dyn
t′,L}.

The purpose is to predict the number of future opioid overdose incidents yt∗,l at specific
location l at a future time t∗ = t + τ , where τ is called the lead time for forecasting. The
forecasting is based on the static and dynamic features of the target location itself, as well
as the dynamic features in the environment (from all locations-of-interest). Therefore, the
forecasting problem can be formulated as learning a function f(Xstat

d ,X dyn
t−w+1:t) → yt∗,d

that maps the static and dynamic features to the number of opioid overdose incidents at the
future time t∗ at a target location d.

To facilitate spatio-temporal interpretation of the forecasting, it is sought to develop a model
that can differentiate contribution of the features, the locality (local features vs. global fea-
tures) and the importance of latent communities when contributing to the prediction of other
locations. Therefore, the dynamic features X dyn

t−w+1:t are further organized into two sets: the
local features, {Xdyn

t−w+1,d . . . , Xdyn
t,d } represent dynamic features for the target location d,

and the global features, {Xdyn
t−w+1,l . . . , X

dyn
t,l } for l ∈ {1, 2, . . . , L}, contain the sequences

of dynamic features for all locations of interest.

4.2 Proposed Architecture

As shown in Figure 4.1, the proposed architecture consists of three primary components, the
local component (Figure 4.1-a), the static component (Figure 4.1-b) and the global component
(Figure 4.1-c). The global component is designed to model the global contribution of dynamic
features for all-locations-of-interest by learning different representation subspaces of global
dynamics, and to output target location-specific global contribution. On the other hand, the
local component is designed to model the contribution of local dynamic features for the target
location. Finally, the static component models location-specific static information about the
target location.

4.2.1 Global Component

This component produces the target location-specific global contribution (from all locations)
to forecast the number of incidents at the target location d at future time t∗. It consists of K
number of community blocks, where each community block learns a different representation
subspace of global dynamic features, which is inspired by idea of multi-head attention [121].
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A community block (Figure 4.1-d) models the global dynamic features through a hierarchical
attention network which consists of a spatial attention block (Figure 4.1-e), a recurrent unit
and a temporal attention. For the sake of clarity, the internal mechanism of global component
is explained in a bottom-up manner by following the order (Figure 4.1-e→ 4.1-d→ 4.1-c):

Spatial Attention Block is used to reweight the contribution of dynamic features of each
location i at time t. More specifically, the attention weight, α(i)

k,t, represents the feature con-
tribution of the location i at time t to the community k. With this attention block, the pro-
posed architecture allows for forming communities, and reweighting feature contributions of
the members to the corresponding communities. Since higher spatial attention weight for a
location indicates the involvement of its dynamic features in this community, it is called com-
munity memberships. ck,t is the context vector, which summarizes the aggregated contribution
of all locations as follows:

ek,t = (vglobk )ᵀtanh(W glob
k X dyn

t + bglobk ), (4.1)

α
(i)
k,t =

exp(e
(i)
k,t)∑L

l=1 exp(e
(l)
k,t)

, (4.2)

ck,t =
L∑
l=1

α
(l)
k,tX

dyn
t,l , (4.3)

where W glob
k ∈ Rn×n, bglobk ∈ Rn and vglobk ∈ Rn are the parameters to be learned, and n is

the dynamic feature size of any location. ek,t keeps the scores for the contribution of dynamic
features of the locations in the community k at time t. After the context vector ck,t, which
is the aggregated contribution of dynamics of all locations for the community k at time t, is
computed, it is fed to the recurrent unit.

Recurrent unit is used to capture the temporal relationships among the reweighted global
dynamic features for the community k as follows:

hk,t = fk(hk,t−1, ck,t), (4.4)

where fk(.) is the non-linear activation function for community k, and hk,t is the t-th hidden
state of k-th community. LSTM [111] is used in the proposed model (in each community
block) to capture the temporal relationships among the dynamic features. It has been shown
effective in capturing potential temporal dependency [137, 114], and it addresses the van-
ishing and exploding gradient problems of basic RNNs by using explicit gating mechanisms
(input, output and forget gates) to regulate the memory updates.

Temporal Attention is applied on top of the LSTMs to differentiate the contribution of latent
representations of global dynamic features at each time point and for each community. To
make the output specific to target location, a query scheme is incorporated based on a time-
dependent community memberships (i.e., contribution of each location to the community)
where the membership is further reweighted based on the location’s spatial proximity to target
location (with nearby locations getting larger weights than further ones). Specifically, let β(i)k
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denotes the attention weight over the hidden state hk,i of community k at time i. The context
vector νk, which is the aggregated contribution from community k, can be learned through
the proximity-based weighting scheme as follows:

q
(i)
k = xproxd

• αk,i, (4.5)

β
(i)
k =

exp(q
(i)
k )∑w

t=1 exp(q
(t)
k )

, (4.6)

νk =

w∑
t=1

β
(t)
k hk,t, (4.7)

where xproxd ∈ RL is a vector encoding the proximity of the target location d to all locations.
(•) is the dot product operation. qik is the score for the contribution at time i. Here, the prox-
imity of two locations is calculated based on the inverse of geographic distance, particularly
haversine (hvrsn) distance:

prox(l1, l2) =
1√

1 + hvrsn(l1, l2)
, (4.8)

hvrsn(l1, l2) = 2R× arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1)cos(ϕ2)sin2

(
%2 − %1

2

))
, (4.9)

where R is the radius of the Earth, (ϕ1, %1) and (ϕ2, %2) are the latitude and the longitude
pairs for the locations l1 and l2, respectively. Note that the inverse of the haversine distance
is used for the proximity definition between two locations in this work. However, any kind
of proximity depending on the application domain can be defined and integrated into the
proposed method easily.

Community Attention generates the output of the global component. It aims to produce a
global contribution with respect to the target location d by combining different representation
subspaces for each of the communities {ν1, ν2, . . . , νK}. In other words, the contributions
from the different subspace representations of the global dynamic features are reweighted
based on the target location d. A soft-attention approach is then employed to combine the
contributions from all K communities. Here, to make the prediction specific to the target
location, we incorporate a query scheme, which takes each community vector νk as a key and
the embedding of the target location embd as a query, as follows:

uk = rᵀtanh(V νk + embd), (4.10)

γ(i) =
exp(ui)∑K

k=1 exp(uk)
, (4.11)
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ν =

K∑
k=1

γ(k)νk, (4.12)

where uk is the score for the output of the community k, V ∈ Rm×m, and r ∈ Rm are the
parameters to be learned,m is the number of hidden units in LSTMs in the community blocks,
and ν is the final output of the global component with respect to the target location d.

4.2.2 Local Component

This component is designed to model the contribution of the local dynamic features for any
target location d (Figure 4.1-a). It basically includes a recurrent unit and a temporal attention
that focuses on the most informative time instants. The dynamic features of the target location
are fed to the recurrent unit to model the local dynamics, the hidden representation (state) at
time t is calculated as follows:

st = g(st−1, X
dyn
t,d ), (4.13)

where g(.) is also LSTM, as in the global component, and st is the t-th hidden state of LSTM.
Then, a temporal attention on top of the LSTM is also employed in this component, which
can select the most informative hidden states with respect to the dynamic features of the
target location d. The output of the local component ξd for the target location d is calculated
as follows:

z(i) = (vloc)ᵀtanh(W locsi + bloc), (4.14)

δ(i) =
exp(z(i))∑w
t=1 exp(z

(t))
, (4.15)

ξd =

w∑
t=1

δ(t)st, (4.16)

where W loc ∈ Rm×m, bloc ∈ Rm and vloc ∈ Rm are the parameters to be learned, and m
is the number of the hidden units in LSTM in the local component. z(i) is the score for the
contribution of the hidden state si. Accordingly, δ(i) denotes the attention weight over the
hidden state si.

4.2.3 Static Component

This component models the static information specific to the target location (Figure 4.1-b).
The input incorporates the static features, Xstat

d , and a one-hot encoding vector xidd ∈ RL

that represents the target location. A fully connected layer (FC) is applied to separately learn
a latent representation for each of the two types of information. In particular, the one-hot
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location vector will be converted into a location embedding embd and will be utilized in the
aforementioned query component (see Eq. (4.10)). Ψd is the output of this component, which
is concatenation of the learned location embeddings and the latent representation of the static
features as follows:

Ψd = [embd;σ(W statXstat
d + bstat)], (4.17)

where W stat ∈ R(o+p)×(o+p) and bstat ∈ Ro+p are the network parameters to be learned
in the static component. o is the number of hidden units in the FC layer for encoding the
static features whereas p is the embedding dimension of the location identifier. [; ] is the
concatenation operation. σ is the sigmoid function for the non-linear activation.

4.2.4 Objective Function

Before describing the objective function, the prediction of the number of events at the target
location d at a future time t∗ is computed using a linear combination of the outputs of all
components as follows:

ŷt∗,d = (Wf [Ψd; ξd; ν] + bf ), (4.18)

where Wf ∈ R(2m+o+p)×(2m+o+p) and bf ∈ R2m+o+p are the parameters to be learned at the
final fully connected layer. m is the number of hidden units in an LSTM in the local and the
global components, o + p is the dimension of the output of the static component. [; ] is the
concatenation operation.

The objective function consists of three terms: the prediction loss, the orthogonality loss
(constraint) and the Group Lasso regularization as follows:

Loverall = Lpredict + λLortho + ηLGL, (4.19)

where λ and η are the hyper-parameters to be tuned for the orthogonality loss (Lortho) and
the Group Lasso regularization (LGL), respectively. Moreover, Lpredict, which is the mean
squared error (MSE), is defined as follows:

Lpredict =
1

N

N∑
i=1

(ŷi − yi)2, (4.20)

where ŷi and yi are the predicted and the actual number of the incidents (events) for the sam-
ple i, respectively. A penalty term, Lortho is added to avoid learning redundant memberships
across communities, i.e., multiple communities may consist of a similar group of locations.
To encourage community memberships to be distinguishable as much as possible, this or-
thogonality loss term is incorporated into the objective function. Let ᾱk be the community
membership vector denoting how each location contributes to the community k, averaging
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over time, and ∆ =
[
ᾱ1, ᾱ2, . . . , ᾱK

]
∈ RK×L is a matrix consisting of such membership

vectors for all communities, the orthogonality loss is given by:

Lortho = ‖∆ ·∆ᵀ − I‖2F , (4.21)

where I ∈ RK×K is the identity matrix and ‖.‖2F denotes the squared Frobenius norm. This
loss term encourages different communities to have non-identical locations as members as
much as possible, which helps reduce the redundancy across communities. Lastly, the Group
Lasso regularization is incorporated into the objective function, which imposes sparsity on a
group level [124], and which has been found effective in several domains ([126, 138]) to select
informative features. The main motivation to employ Group Lasso in the proposed method is
to select community-level and local-level informative features. It enables us to interpret and
differentiate which features are important for future incidents (events). It is defined as:

LGL =

K∑
k=1

∥∥∥Zglob
k

∥∥∥
2,1

+
∥∥∥Z local

∥∥∥
2,1

+
∥∥Zstat

∥∥
2,1
, (4.22)

‖Z‖2,1 =
∑
g∈G

√
|g| ‖g‖2 , (4.23)

where Zglob
k denotes the input weight matrix in the kth community block in the global com-

ponent. Z local and Zstat represent the input weight matrices in the local and the static com-
ponents, respectively. g is vector of outgoing connections (weights) from an input neuron, G
denotes a set of input neurons, and |g| indicates the dimension of g.

4.3 Experiments

This section provides information about the datasets (including data collection process) that
are used in the experiments to evaluate the proposed method, the feature sets (including fea-
ture extraction) that are employed in the model, the comparison methods for the evaluation,
and the experimental settings.

4.3.1 Datasets

The proposed method CASTNet was applied to forecast opioid overdoses on two cities,
namely City of Chicago and City of Cincinnati. The neighborhood boundaries officially rec-
ognized by the City of Cincinnati and the City of Chicago are called “Statistical Neighborhood
Approximations (SNAs)” and “community areas”, respectively. Hereafter, the term “neigh-
borhoods" is used to refer to both. There are 77 neighborhoods in Chicago whereas Cincinnati
consists of 50 neighborhoods. While 47 neighborhoods from Chicago were selected (where
∼ 80% of opioid overdose deaths occurred), all neighborhoods of Cincinnati were used in
the experiments. Table 4.1 shows descriptive information about both datasets. For each city,
three types of data were collected related to crime, opioid overdose and the census as follows:
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Table 4.1: Descriptive information about crime and opioid overdose datasets.

#NBHDs #Dynamic
Features

#Static
Features #Crimes #Opioid ODs Incident

Type
Time

Interval
Time
Span

Chicago 47 15 9 573207 1468 deaths 1 week 08/03/15
08/26/18

Cincinnati 50 10 9 75779 5401 EMS calls 1 week 08/01/15
06/01/18

4.3.1.1 Crime Data

Crime incident information including geo-location, time and primary type of the crimes was
collected from the open data portals of the cities. Public Safety Crime dataset1 and Police
Data Initiative (PDI) Crime Incidents dataset2 were used to extract such information for City
of Chicago and City of Cincinnati, respectively. The crime data was collected in September
2018 and July 2018 for City of Chicago and City of Cincinnati, respectively. For the crime
type, each crime incident has a hierarchical structure. Note that this hierarchical structure
may exhibit different structures for the police departments of the different cities. The highest-
level crime type for a crime incident was employed in the experiments. Although there exist
common crime types for both cities in our datasets, there also exist different crime types.
Also, note that the crime incidents whose highest-level crime type occurrences are rare during
the given time period were eliminated. Besides, the dataset was cleaned in a way that the
crime incidents were removed from the datasets, which are duplicates or do not have any geo-
location information or time information. Finally, all the crime incidents were mapped to the
corresponding neighborhoods using their geo-location information. The distributions of the
total crime incidents across the neighborhoods for City of Chicago and City of Cincinnati are
given in Figure A.1b and Figure A.2b, respectively. As shown in the corresponding figures,
the crime incidents are not equally distributed among the neighborhoods, instead particular
neighborhoods are subject to more crime occurrences.

4.3.1.2 Opioid Overdose Data

Different types of opioid overdose data were collected for each city since there is no sys-
tematic monitoring of drug abuse at either a regional-level or state-level in the United States.
For City of Chicago, opioid overdose death records were collected including the geo-location
and time information from Opioid Mapping Initiative Open Datasets3. On the other hand,
the Emergency Medical Service (EMS) responses data4 for heroin overdoses were utilized
in City of Cincinnati. The opioid overdose data was collected in September 2018 and July
2018 for City of Chicago and City of Cincinnati, respectively. The overdose occurrences,
which are duplicates, or which have no geo-location or time information, were removed from
the datasets. In the Cith of Chicago data, the street address for each of the incidents is also
provided. For the entries that have missing geo-location information, their geo-location in-

1 https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
2 https://data.cincinnati-oh.gov/Safer-Streets/PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf
3 https://opioidmappinginitiative-opioidepidemic.opendata.arcgis.com/
4 https://insights.cincinnati-oh.gov/stories/s/Heroin/dm3s-ep3u/
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formation was identified from the street addresses using Geocoding API5 of Google Maps.
The instances that are false alarms were also removed from the datasets. Finally, the opioid
overdose occurrences were mapped to the corresponding neighborhoods for both cities using
their geo-location information. The distributions of the opioid overdose incidents across the
neighborhoods for City of Chicago and City of Cincinnati are given in Figure A.1a and Fig-
ure A.2a, respectively. As shown in the corresponding figures, the opioid overdoses are not
equally distributed among the neighborhoods, instead particular neighborhoods suffer from
more opioid overdose incidents.

4.3.1.3 Census Data

The 2010 United States Census data, which is provided by the U.S. Census Bureau, was em-
ployed to extract the features related to demographics (population, gender distribution, race
distribution), economical status, housing status and educational status. The Census data con-
tains varying types of information from demographics to economical indicators for different
spatial resolutions.

4.3.2 Features

As mentioned earlier, two types of features are incorporated into the proposed model, which
are the static features and the dynamic features.

Static features include the economical status, housing status, educational level of the neigh-
borhoods and the demographics such as population, gender diversity index and race diversity
index, which were extracted from the census data. The diversity index was calculated using
the normalized entropy. Since these variables (i.e. gender and race) are the sensitive vari-
ables, such an approach was followed in order to avoid making a direct conclusions on gender
or race labels. Furthermore, median household income, per capita income and percentage
of the poverty in a neighborhood were employed as the economical indicators. The percent-
age of the vacant houses (housing occupancy) and the percentage of owner occupied houses
(housing tenure) were utilized as the housing-related static features. Also, the percentage of
high school graduation and below was considered as the educational attainment indicator as
an another static feature. As a result, a total of nine static features was obtained. Note that
z-score normalization for the median household income and per capita income, and the log-
transformation for population was applied while preparing the static feature vectors. As a
result, nine static features were obtained for a location.

Dynamic features are to capture the crime dynamics of the locations that may be predictive
for opioid overdose. the dynamic features were extracted from the public safety data por-
tals of the cities. Each crime incident is identified by a unique crime incident number and
has a certain type which shows a hierarchical structure. The crime data gathered from dif-
ferent cities may have very different categories. For example, the dataset from the City of
Chicago includes much more categories than that from the City of Cincinnati. Here, only
the highest-level, “primary crime types” were considered and the rare categories were elimi-
nated. The full list of the crime categories used in our experiments as follows: Part 2 Minor,

5 https://developers.google.com/maps/documentation/geocoding/start
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Theft, Burglary/Breaking Entering, Robbery, Aggravated Assaults, Rape, Unauthorized Use
and Homicide are the primary crime types for City of Cincinnati. On the other hand, Theft,
Battery, Criminal Damaging, Assault, Deceptive Practice, Other Offenses, Narcotics, Bur-
glary, Robbery, Motor Vehicle Theft, Criminal Trespass, Weapons Violation and Homicide
are the primary crime types for City of Chicago. In addition to these features, the number
of total crimes and the number of the total opioid overdose incidents were also utilized as
additional dynamic features. For each neighborhood and each time unit, the feature vector
contains the total number of crimes, the total number of incidents for each primary crime
type and the number of opioid overdose. Zero-mean and unit variance normalization was
applied to all dynamic features while preparing the feature vectors. As a result, 15 (14 crime-
related, 1 opioid-related) dynamic features for City of Chicago, and 10 (9 crime-related, 1
opioid-related) dynamic features for City of Cincinnati were extracted.

4.3.3 Comparison Methods

The proposed method CASTNet was compared with several baselines and state-of-the-art
approaches. In order to evaluate the forecasting effectiveness of the proposed model, two sets
were selected as the comparison methods.

The first set includes Autoregressive Integrated Moving Average (ARIMA) [139], Vector
Autoregerssion (VAR) [140], Support Vector Regression (SVR) since they are widely-used
methods as baselines in the forecasting literature. In addition to those methods, the historical
average (HA) was also included as a very basic baseline into this set. The second set of meth-
ods are the recently proposed neural network-based spatio-temporal forecasting approaches
which have shown state-of-the-art performances in forecasting domain, which are DA-RNN
[64], GeoMAN [65] and ActAttn [128]. In addition to these state-of-the-art methods, a ba-
sic LSTM network was also included as another neural network-based baseline method into
this set. Note that none of the existing approaches either support the hierarchical structure of
features obtained from intra- and inter-regions, or differentiate the inter-region contributions
with respect to the target location. The comparison methods are summarized as follows:

The first set:

• HA is basic historical average of opioid overdose occurrences.

• ARIMA [139] is a well-known method for predicting future values for time series.

• VAR [140] captures the linear inter-dependencies among multiple time series and fore-
casts future values.

• SVR is simple Support Vector Regression. Its two variants were used, where separate
models for each location were trained in SVRind On the other hand, a single model for
all locations was trained in SVRall.

The second set:

• LSTM is a basic LSTM network. An LSTM network was trained in which the dynamic
features are fed to the LSTM, then the latent representations are concatenated with the
static features for the prediction.
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• DA-RNN [64] is a dual-staged attention-based RNN model for spatio-temporal time
series prediction.

• GeoMAN [65] is a multi-level attention-based RNN model for spatio-temporal predic-
tion. It has shown the state-of-the-art performance in the air quality prediction task.

• ActAttn [128] is a hierarchical spatio-temporal predictive framework, which is proposed
in the previous chapter. The final classification layer was replaced with the regression
layer to configure it to the regression task and it was used as another baseline.

Furthermore, to evaluate the effectiveness of individual components of our proposed model
CASTNet, its several variants were also included for the comparison as follows:

• CASTNet-noGL: Group Lasso regularization is not incorporated into the loss function.

• CASTNet-noOrtho: The orthogonality penalty is not applied so that differentiation of
the communities is not encouraged.

• CASTNet-noSA: The spatial attentions are removed from the community blocks. In-
stead, the feature vectors of all locations are concatenated.

• CASTNet-noTA: The temporal attentions in both local and global components are re-
moved from the architecture.

• CASTNet-noCA: The community attention is removed from the architecture. Instead,
the context vectors of the communities are concatenated.

• CASTNet-noSC: The static features are excluded from the architecture, yet the location
identification is still embedded to differentiate the global contributions with respect to
the target location.

4.3.4 Experimental Settings

In the experiments, ‘week’ was used as the time unit and ‘neighborhood’ was used as the loca-
tion unit. These units were chosen based on domain expert knowledge and availability of the
data. Datasets were divided into training, validation and test sets with ratio of 75%, 10% and
15%, respectively. τ was set to 1 to make short-term predictions. For RNN-based methods,
the hidden unit size of LSTMs was selected from {8, 16, 32, 64}. Also, for RNN-based meth-
ods, the experiments were performed with different window sizes w ∈ {5, 10, 15, 20}. The
networks were trained using Adam optimizer [135] with a learning rate of 0.001. For each
LSTM layer, dropout of 0.1 was applied to prevent overfitting. In the proposed models, the
regularization factors λ and η were optimized from the small sets {0.001, 0.005, . . . , 0.05}
and {0.001, 0.0015, . . . , 0.01}, respectively using grid search. For ARIMA and VAR, the or-
ders of the autoregressive and the moving average components were optimized for the time
lags between 1 and 11. Finally, the code for proposed method and the data are available at
https://github.com/picsolab/castnet.
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4.4 Results

In this section, a comprehensive set of results is presented. First, in Section 4.4.1, the fore-
casting effectiveness of the proposed model in comparison with the baseline and state-of-the-
art forecasting approaches, and based on the aforementioned experiment settings is shown.
In Section 4.4.2, different kinds of spatio-temporal contributions (community memberships,
community contributions and temporal attentions) of the proposed model are analyzed and
interpreted. In Section 4.4.3, we analyze different kinds of predictive features identified by
the proposed model are analyzed and their effect on the prediction is interpreted.

4.4.1 Performance Comparison

The forecasting performance of CASTNet was compared with the comparison methods. The
results are organized to answer the following three questions:

1. Overall, how well could CASTNet forecast future opioid overdoses, compared with the
baseline methods? (Section 4.4.1.1)

2. How well could CASTNet forecast future opioid overdoses in individual-level (for each
location), compared with the baseline methods? (Section 4.4.1.2)

3. How forecasting performance of CASTNet does change with respect to the length of
the window size, compared with the baseline methods? (Section 4.4.1.3)

4.4.1.1 Overall Performance

Table 4.2 shows that CASTNet achieves the best performance in terms of both mean absolute
error (MAE) and root mean squared error (RMSE) on both datasets. The model shows 17.2%
and 5.3% improvement in terms of MAE and RMSE, respectively, on Chicago dataset com-
pared to state-of-the-art approach GeoMAN. Similarly, CASTNet enhances the performance
6.3% and 2.4% on Cincinnati dataset in terms of MAE and RMSE, respectively, compared
to DA-RNN which shows best performance among the other baselines. Furthermore, it is
observed that mostly spatio-temporal RNN-based models outperform other baselines, which
indicates they better learn the complex spatio-temporal relationships between crime and opi-
oid overdose dynamics.

The effectiveness of each individual component of CASTNet is further evaluated with an ab-
lation study. As described in Section 4.3.3, each variant is different from the proposed CAST-
Net by removing one tested component (with others kept identical as much as possible). Table
4.2 shows that the removal of Group Lasso regularization from the loss function results in a
significantly lower performance compared to the others. In addition, CASTNet-noGL can no
longer be able to select informative features loses its capability of interpretability for impor-
tant features. Similarly, excluding the orthogonality loss term (CASTNet-noOrtho) results in
losing the ability to learn distinguishable communities or representation subspaces, and re-
duces the forecasting performances as well. Moreover, comparing CASTNet with CASTNet-
noCA indicates that employing community attention has a great impact on the forecasting
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Table 4.2: Forecasting performance results.

Chicago Cincinnati

MAE RMSE MAE RMSE

HA 0.2329 0.3385 0.5728 0.8727
ARIMA [139] 0.2272 0.3396 0.5717 0.8952
VAR [140] 0.2242 0.3386 0.5606 0.8712
SVRind 0.2112 0.3321 0.5153 0.8609
SVRall 0.1984 0.3063 0.4886 0.8602
LSTM 0.2024 0.3134 0.5235 0.8267
DA-RNN [64] 0.1726 0.3051 0.4817 0.8225
GeoMAN [65] 0.1679 0.2829 0.5034 0.8453
ActAttn [128] 0.1693 0.2937 0.4827 0.8326

CASTNet-noGL 0.1662 0.3129 0.4703 0.8311
CASTNet-noOrtho 0.1649 0.2948 0.4716 0.8109
CASTNet-noSA 0.1608 0.2893 0.4579 0.8152
CASTNet-noTA 0.1641 0.2876 0.4700 0.8141
CASTNet-noCA 0.1631 0.3069 0.4730 0.8225
CASTNet-noSC 0.1693 0.2980 0.4692 0.8291

CASTNet 0.1391 0.2679 0.4516 0.8032

performance, which indicates that learning pairwise activity relationships between a partic-
ular event location and the communities is crucial. Location-specific static features are also
informative since their exclusion (CASTNet-noSC) degrades the performance in both cases.
Furthermore, removal of temporal attentions in both local and global components (CASTNet-
noTA) results in a decrease in the forecasting performance as well as loss of interpretibility in
important previous time steps for forecasting future opioid overdoses. Last but not the least,
the individual component that provides the least performance gain is spatial attention for both
cases. However, its removal (CASTNet-noSA) results in loss of interpretability capability of
community memberships. These results reflect that each individual component has important
contribution to forecasting performance.

Moreover, the forecasting performance of the CASTNet is evaluated with respect to the
change in the number of communities K. Experiments with different values of K selected
from {0, 1, . . . , 6} are conducted, and the results are given in Figure 4.2. Note that the model
does not consider global contribution when K = 0. Also, when K = 1, the model yields a
single universal representation of global activities which is irrespective of the event locations.
The best performances are obtained when K = 4 for Chicago and K = 3 for Cincinnati
datasets. It is observed that while K increases until the optimum value, the performance in-
creases, and some communities are decomposed to form new communities. However, as long
asK continues to increase after its optimum value, the performance starts to decrease slightly
or remains stable, and the semantic subspaces of some communities become similar. With
this experiment, it is indicated that instead of learning a fixed and single universal representa-
tion of global activities, learning different representations subspaces for the global activities
significantly improves the forecasting performance.
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Figure 4.2: MAE and RMSE results w.r.t change in the number of communities.

4.4.1.2 Individual-level Performance Analysis

In addition to evaluating the overall forecasting performance of CASTNet, in-depth perfor-
mance analysis is also performed by investigating individual-level performances. In other
words, the performance of CASTNet is compared with the baselines for each of the neighbor-
hoods. Figure 4.3 and Figure 4.4 indicate the individual-level forecasting performances of all
methods via heatmaps for City of Chicago and City of Cincinnati, respectively. Each row in
the figures reveals the errors of the methods for the associated neighborhood through a color
scale from red to green. The closer the color to red, the less the error. On the other hand,
the closer the color to green, the more the error. While “∗” in a cell indicates the method
with the lowest error (the best performing method) for the given neighborhood, “·” in the cell
denotes the runner up for the same neighborhood. Note that the neighborhoods in both figures
are ordered by the number of total opioid overdoses occurred in ascending order from top to
down.
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Figure 4.3: Error heatmaps for (a) MAE and (b) RMSE in individual-level (neighborhood-
level) for City of Chicago. While y axis represents the neighborhoods, x axis indicates the
methods. The closer the color to the red, the less the corresponding error. On the other hand,
the closer the color to the green, the more the corresponding error. While “∗” in a cell indicates
the method with the lowest error (the best performing method) for the given neighborhood,
“·” in the cell denotes the runner up for the same neighborhood.
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(b) RMSE in individual-level.

Figure 4.4: Error heatmaps for (a) MAE and (b) RMSE in individual-level (neighborhood-
level) for City of Cincinnati. While y axis represents the neighborhoods, x axis indicates
the methods. The closer the color to the red, the less the corresponding error. On the other
hand, the closer the color to the green, the more the corresponding error. While “∗” in a
cell indicates the method with the lowest error (the best performing method) for the given
neighborhood, “·” in the cell denotes the runner up for the same neighborhood.
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Table 4.3: Significance test for the evaluation by Wilcoxon test. ∗ is p < 0.05, and ∗∗ is p <
0.0056 (which is p after Bonferroni correction due to multiple comparisons.).

HA ARIMA VAR SVRind SVRall LSTM DA-RNN GeoMAN ActAttn

Chicago
MAE 3.6e-09** 1.4e-14** 3.9e-09** 1.6e-12** 5.4e-08** 4.8e-07** 0.0003** 0.0004** 0.0015**

RMSE 1.3e-08** 3.6e-13** 2.7e-08** 1.2e-10** 4.4e-06** 2.8e-06** 0.0117* 0.0010** 0.0008**

Cincinnati
MAE 3.2e-08** 8.7e-09** 3.7e-09** 6.8e-06** 0.0005** 8.8e-07** 0.0004** 8.9e-05** 0.0034**

RMSE 0.0011** 3.2e-05** 0.0001** 0.0002** 8.9e-05** 3.5e-05** 0.0111* 2.8e-06** 9.4e-07**

For City of Chicago (Figure 4.3a), the proposed method CASTNet performs the best among
the others in 21 neighborhoods, and the second among the others in 12 neighborhoods out of
47 neighborhoods with respect to MAE. The runner-up is GeoMAN (according to the overall
performance), and it performs the best in 4 neighborhoods and the second in 7 neighborhoods.
It can also be considered that ActAttn is the runner-up based on the performance in individual-
level, which achieves the best performance in 7 neighborhoods and the second performance
in 8 neighborhoods. Also, as given in Figure 4.3b CASTNet performs the best among the
others in 19 neighborhoods, and the second among the others in 5 neighborhoods out of 47
neighborhoods with respect to RMSE. GeoMAN performs the best in 3 neighborhoods and
the second in 8 neighborhoods with respect to RMSE. ActAttn achieves the best performance
in 6 neighborhoods and the second performance in 8 neighborhoods with respect to RMSE.
It is also observed that CASTNet performs well in the most of the neighborhoods of City of
Chicago regardless of the number of opioid overdoses occurred in these neighborhoods.

Furthermore, for City of Cincinnati (Figure 4.4a), the proposed method CASTNet performs
the best among the others in 24 neighborhoods, and the second among the others in 7 neigh-
borhoods out of 50 neighborhoods with respect to MAE. The runner-up method DA-RNN
(according to the overall performance) yields the best performance among the other methods
only in 1 neighborhood and performed the second in 6 neighborhoods. ActAttn can also be
considered as the runner-up based on the performance in individual-level, which achieves the
best performance in 6 neighborhoods and the second performance in 7 neighborhoods. Also,
as given in Figure 4.4b CASTNet performs the best among the others in 18 neighborhoods,
and the second among the others in 7 neighborhoods out of 50 neighborhoods with respect
to RMSE. Da-RNN performs the best in 2 neighborhoods and the second in 10 neighbor-
hoods with respect to RMSE. ActAttn achieves the best performance in 4 neighborhoods and
the second performance in 3 neighborhoods with respect to RMSE. It is also observed that
CASTNet performs well in the most of the neighborhoods of City of Cincinnati regardless of
the number of opioid overdoses occurred in these neighborhoods.

A significance test is further performed to evaluate the success of the proposed method. Since
there are nine baselines, nine hypotheses should be tested (CASTNet vs. nine other baselines).
Table 4.3 presents the corresponding significance test results performed by Wilcoxon test with
respect to the significance levels (p-value < 0.05) and (p-value < 0.0056) after Bonferroni
correction due to multiple comparisons. For each error type (MAE and RMSE) and for each
dataset, two distributions of individual-level errors (CASTNet vs. the baseline) are compared.
As given in Table 4.3, the proposed method significantly outperforms almost all other base-
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Figure 4.5: MAE and RMSE results with respect to different length of window size w. While
x axis represents the length of the window size w, y axis indicates the corresponding error.

line methods in terms of both MAE and RMSE even after Bonferroni correction. The only
comparisons (CASTNet vs. DA-RNN) for RMSE and for both datasets are not significant
after Bonferroni correction, yet they are still significant before Bonferroni correction. The
reason behind this situation may be the fact that both models are affected by the outliers in the
datasets similarly at some degree since RMSE is more sensitive metric to outliers compared
to MAE.

4.4.1.3 Performance Analysis with Varying Length of Window Size

The results shared for the forecasting performance in the previous sections are based on the
best window size setting for all methods, which is w = 10. Additional experiments are also
conducted to analyze the forecasting performance of the RNN-based state-of-the-art methods
with respect to the different length of the window size where w ∈ {5, 10, 15, 20}. The perfor-
mance results of those methods are provided for ActAttn [128], GeoMAN [65] and DA-RNN
[64]) as well as the proposed method CASTNet, with different length of window size w set-
tings in Figure 4.5. Based on these results, the proposed method CASTNet achieves superior
forecasting performance in terms of MAE for all window size settings on both datasets. Also,
it significantly performs better than the other baseline methods in terms of RMSE at almost
all cases for both datasets. It is also observed that the performances of the methods increase
until the optimum length of window size (w = 10), then they start decreasing as the length of
the window size increases.
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4.4.2 Analysis of Community Memberships and Community Contributions

In this section, the learned communities, community memberships of the neighborhoods and
community contributions on forecasting future opioid overdoses are analyzed. In other words,
interpretations about future opioid overdoses through the hierarchical attention mechanism
of the proposed model (see Figure 4.1-c and Figure 4.1-d) are provided by answering the
following questions:

4.4.2.1 How do locations contribute to communities?

CASTNet learns different representation subspaces (communities) of global dynamic features
unlike the previous work [65, 128], and each community is encouraged to consist of a group
of different members due to the orthogonality penalty. In the following analyses, the results
are presented in two ways; (i) by aggregating from all test samples for ease of interpretation
(ii) by selecting the representative test samples.

First, the learned communities and their memberships (i.e. the spatial attention weights α
in Eq. (4.2)), averaged over time through the test samples, are depicted on the left sides of
Figure 4.6a and Figure 4.6b for City of Chicago and City of Cincinnati, respectively. The
purpose is to observe the general behaviors of the neighborhoods as the members. The line
thickness at the left sides of the figures represents the degree at which a location contributes to
the corresponding communities. Note that the neighborhoods at the left sides of Figure 4.6a
and Figure 4.6b are ordered by the number of crimes incidents committed in those neighbor-
hoods. As shown in Figure 4.6, most of the neighborhoods have dedicated to only a single
community, which indicates the effect of orthogonality penalty in the loss function.

For Chicago model (Figure 4.6a), Austin (N-25), which has the highest number of crime
incidents and opioid overdose deaths, formed a separate community C4 by itself. While
North Lawndale (N-29) and Humboldt Park (N-23) together formed the community C1, West
Garfield Park (N-26), East Garfield Park (N-27) and North Lawndale (N-29) formed an an-
other community C3. Note that the neighborhoods of C1 and C3 have the highest opioid
overdose death rate after Austin (N-25). On the other hand, the community C2 was formed by
the neighborhoods having low crime incident and overdose death rates including Fuller Park
(N-37), McKinley Park (N-59) and West Elsdon (N-62). Furthermore, for Cincinnati model
(Figure 4.6b), Westwood (N-49), where the highest number of crimes were committed, formed
a separate communityC3 by itself. It shows a similar behavior to the Chicago case. East Price
Hill (N-13), West Price Hill (N-48), Avondale (N-1) and Over-The-Rhine (N-34) formed the
community C2 where these neighborhoods have the highest crime rate after Westwood (N-49)
and the highest opioid overdose rate. On the other hand, the community C1 was formed by
rest of the neighborhoods (with low and moderate crime rates) and their memberships to that
community are almost equal.

Furthermore, the community memberships are investigated while forecasting the number of
opioid overdoses for a specific time step. More specifically, the spatial attention weights (i.e.
α in Eq. (4.2)) are demonstrated in Figure 4.7 and Figure 4.8 for City of Chicago and City
of Cincinnati, respectively, while forecasting the number of opioid overdoses at the 6th test
week as a representative time step. Note that the spatial attention weights do not change
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(a) Chicago (b) Cincinnati

Figure 4.6: Community memberships and community contributions on forecasting future opi-
oid overdoses. For each community, the left side represents community memberships (how
each location contributes to the community), and the right side represents the average commu-
nity contribution (how the community contribute to predicting a target location). The thick-
ness of the edges at indicates the weight of community membership at the left sides of the
figures while it corresponds to community contribution at the right sides of the figures. Node
size denotes the overall community membership of a location (left side) and overall commu-
nity contribution to forecasting overdose (right side) in the target neighborhood. Edge color
shows the input and output of a specific community. Node color of a neighborhood indicates
the community for which the corresponding neighborhood has the highest membership (left
side). Node color of a neighborhood denotes the community from which the neighborhood
takes the largest contribution (right side). Edges whose weights are above a certain threshold
are shown for the sake of clarity.

from neighborhood to neighborhood since the proposed model starts differentiating target lo-
cation specific global contribution at the temporal attention in the global component. In the
figures, while the x axis shows the neighborhoods, the y axis indicates the time units. A
green cell represents the contribution of dynamic features of the corresponding neighborhood
at a specific time in the corresponding community. The darker green color denotes more
contribution by the neighborhood to the corresponding community. For Chicago case (see
Figure 4.7), it is observed that the most contributing neighborhoods in C1, C2 and C3 change
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from time to time. For instance, North Lawndale (N-29) is the most contributing neighbor-
hood at time t ∈ {1, 2, 3, 6, 8, 9} whereas Humboldt Park (N-23) is the most dominant one at
time t ∈ {4, 5, 7, 10}. Austin (N-25) is the only neighborhood contributing to C4. Similarly,
for Cincinnati case, the most contributing neighborhoods to forecasting in C1 and C2 change
from time to time. For instance, East Price Hill (N-13) is the most contributing neighborhood
at time t ∈ {1, 3, 5, 8, 9, 10} for the C2. West Price Hill (N-48) is the most dominant one at
time t = 7, Avondale (N-1) is the most contributing neighborhood at time t ∈ {2, 6}. West-
wood (N-49) is almost the only neighborhood contributing to C3 and it always contributes
the most to C3 than any other neighborhoods. Finally, the geomaps showing the commu-
nity memberships of the neighborhoods are also shown in Figure B.1a and Figure B.1b for
Chicago model and Cincinnati model, respectively, in Appendix B.

4.4.2.2 How do the communities contribute to forecasting?

CASTNet is capable of modeling the pairwise activity relationships between a particular event
location and the communities. It allows the target location to attend the communities to se-
lect location-specific global contributions to forecast local incidents. How these communities
contribute to forecasting is analyzed (i) by visualizing the community attention weights (i.e.
γ in Eq. (4.11)) averaged over test samples for each neighborhood for ease of interpreta-
tion (to summarize the community contributions for each neighborhood) in Figure 4.6a and
Figure 4.6b for Chicago and Cincinnati, respectively, (ii) by inspecting representative test
samples from each model.

First, the community contributions, averaged over time through the test samples, are repre-
sented on the right sides of Figure 4.6a and Figure 4.6b for City of Chicago and City of
Cincinnati, respectively. It provides information about the summarized community contribu-
tions to each neighborhood. Note that the neighborhoods on the right side of Figure 4.6a and
Figure 4.6b are ordered by the number of opioid overdose incidents. For Chicago case, C1

and C2 have more contributions than the other communities on forecasting overdose. While
C2 contributes more to neighborhoods with low or moderate opioid overdose death rate, C1

contributes more to the neighborhoods where the death rate is higher. C3 also contributes
more to the neighborhoods with the highest death rate (e.g. Austin (N-25), Humboldt Park (N-
23)). This means that any particular neighborhood attends more to the community, which is
formed by the similar neighborhoods. On the other hand, C4 does not significantly contribute
to any neighborhood although it is formed by a crime hot-spot (Austin (N-25)). Moreover, for
Cincinnati case, C2 is a very dominant community, which makes the largest global contribu-
tion to most of the neighborhoods. The neighborhoods that formedC2 andC3 (e.g. East Price
Hill (N-13), West Price Hill (N-48), Westwood (N-49)) are very predictive, and the change in
their dynamics have greater impact on forecasting future overdoses in the target neighbor-
hoods. On the other hand, C1 has larger contribution to neighborhoods where the overdose
rate is the highest. This indicates that the crimes committed in the members of C1 are also
informative for forecasting future overdoses in opioid hot-spots.

Second, the community contributions are investigated while forecasting the number of over-
doses for a specific neighborhood at a specific time. The community attention weights (γ in
Eq. (4.11)) are demonstrated during opioid overdose prediction for North Lawndale (N-29)
from City of Chicago and for Avondale (N-1) from City of Cincinnati at the 6th test week.
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For the sample from Chicago, the community attention weights are 0.245 for C1, 0.299 for
C2, 0.312 for C3, and 0.144 for C4. On the contrary to summary for this neighborhood
(i.e. C1 contributes most to North Lawndale (N-29) overall, see Figure 4.6a), C3 is the most
contributing community to forecast the number of local overdose incidents in North Lawndale
(N-29) at the 6th test week. Moreover, for Cincinnati case, the community attention weights
are 0.31 for C1, 0.383 for C2 and 0.307 for C3. C2 is the most contributing community during
the prediction for Avondale (N-1) at the 6th week, which is also consistent with the overall
contribution to this neighborhood (see Figure 4.6b).

4.4.2.3 How do the community contributions change over time?

CASTNet enables us to analyze the individual community contributions across time during
the prediction. Recall that the final contribution of a community for the prediction of a lo-
cation at a future time is the weighted sum of its contributions over time. The time steps
in which nearby locations are more active get larger weights than the others (see Eq. (4.5)).
To analyze the contributions of each individual communities over time, he temporal attention
weights (i.e. β in Eq. (4.6)) are analyzed for the representative test samples. More specifically,
the temporal attention weights are demonstrated during the prediction of opioid overdoses for
North Lawndale (N-29) from City of Chicago and for Avondale (N-1) from City of Cincin-
nati at the 6th test week in Figure 4.7 and Figure 4.8, respectively. The right sides of the
corresponding figures (red bars) indicate the temporal attention weights in each time step.

For Chicago model, it is observed that there is no a significant change in contributions over
time forC4 since this community is strongly dominated by only a single neighborhood, Austin
(N-25). C2 and C3 are the most contributing communities to forecasting local overdoses for
this test sample. t ∈ {5, 7} contributes slightly more than other time steps in C2 since the
most dominant membership at these time steps is by Archer Heights (N-57) and McKinley
Park (N-59), respectively, since they are spatially closer neighborhoods to the target neigh-
borhoods than the other members of this community. Similarly, t ∈ {3, 7, 10} have more
contribution than other time steps for C3 as the most contributing member at these time steps
is the target location itself (North Lawndale (N-29)). The same behavior is observed for C1 as
well. Furthermore, for Cincinnati case, the contributions do not exhibit a different behavior
over time for C3 since it is already formed by a single neighborhood Westwood (N-49). The
time steps t ∈ {2, 6} contribute more to the final community contribution as the most con-
tributing member of C3 at these time steps is the target location itself (Avondale (N-1)). On
the other hand, any significant change is not observed in the contributions of C1. Most of the
neighborhoods are the members of C1 with nearly equal membership at all time steps, and
this may be the reason why the community contribution is almost the same for all time steps.

4.4.3 Feature Analysis

The importance of dynamic features is investigated by analyzing the mean absolute input
weights of local and global components as shown in Fig. 4.9. For Chicago case, Group Lasso
selects Narcotics and Assault as the most important features for future opioid overdose deaths
in the same location. Moreover, Theft, Deceptive Practice, Narcotics, Burglary and Motor V.
Theft are the predictive features from C1 while Weapons Violation, Deceptive Practice (e.g.
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Figure 4.9: Importance of the dynamic features. Mean absolute values of input weights of the
local and the global components.

Fraud) and Criminal Trespass are significant from C2. Recall that, C1 and C2 are the most
contributing communities to forecasting future overdoses (see Figure 4.6a). This shows that
property crimes (e.g. Theft, Burglary, Deceptive Practice) are more significant predictors
than the violent crimes for Chicago. Such crimes previously committed in the members of
C1 and C2 (North Lawndale (N-29), Humboldt Park (N-23), Fuller Park (N-37), etc.) may
be a significant indicator of future opioid overdose deaths in City of Chicago. On the other
hand, Battery, Narcotics, Burglary, and Motor V. Theft are predictive features from C3 while
Battery, Total Crimes and Other Offenses (e.g. offenses against family) are significant from
C4. However,C3 has larger contribution than other communities for only Austin (25). C4 does
not provide a significant contribution to any neighborhood as much as the other communities.
For Cincinnati case, Opioid Overdose Occ. is the most predictive feature for forecasting
future opioid overdose in the same location, which means the local component behaves as an
autoregressive module unlike the Chicago case. Furthermore, both violent crimes including
Agg. Assaults, Rape, Homicide, Part 2 Minor (e.g. Menacing) and property crimes including
Burglary/Breaking Ent., Theft, Part 2 Minor (e.g. Fraud) are significant features from C1.
On the other hand, Theft and Part 2 Minor from C2, and Theft and Burglary from C3 are
predictive features for future opioid overdose in the target locations. Recall that C2 and C3

have more salient contribution on most of the neighborhoods, which implies that commitment
of previous property crimes (especially Theft) in the members of those communities (East
Price Hill (13), West Price Hill (48), Over-The-Rhine (34), Westwood (49) and Avondale (1))
may be one of the potential indicators of future opioid overdoses in the other neighborhoods.
Note that these findings are also consistent with the literature that highlighted the connection
between crime and drug use, and suggested the property crimes such as theft, burglary might
be committed to raise funds to purchase drugs [32].
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Figure 4.10: Importance of the static features. Mean absolute values of input weights of FC
layer in the static component.

The importance of the static features is explored by analyzing mean absolute input weights
of fully connected layer (FC) in the static component (see Figure 4.10). For Chicago case, the
demographic features (Population, Gender Diversity and Race Diversity) are significant. It is
observe that Owner Occupied H. units, Poverty and Educational Attainment are also informa-
tive. For Cincinnati case, Gender Div. and Population are important features for forecasting as
well as the Educational Attainment and Per Capita Income. Furthermore, additional analysis
is performed for each individual static feature to see the relationship between the predictions
made by the models and the static feature values. In order to do that, the neighborhoods are
divided into five quantiles based on their static feature values, and the box-plots are provided
in terms of overdose predictions for each quantile (see Figure C.1 and Figure C.2 in the Ap-
pendix). For Chicago case, the only feature showing a linear correlation with the predicted
overdoses is population. As the population increases among the neighborhoods, the predicted
number of overdose incidents increases. On the other hand, for Cincinnati case, population
and owner occupied housing unites reveal a linear relationship with predicted number of over-
doses. As the population increases or owner occupied housing units decreases, the predicted
number of overdoses increases. Therefore, the neighborhoods with higher population, and
lower owner occupied housing units may require additional resources to prevent opioid over-
dose. The relationship between rest of the static features and the predicted number of over-
doses is non-linear. Moreover, the results shows that economic status is an important feature
for neighborhoods of both cities, which is consistent with the previous work that suggested
communities with a higher concentration of economic stressors (e.g. low income, poverty)
may be vulnerable to abuse of opioids as a way to manage chronic stress and mood disorders
[141]. Although there exist three economic status indicators, Group Lasso selects only one of
them, Poverty for Chicago and Per Capita Income for Cincinnati.

4.5 Discussion and Conclusion

In this chapter, a community-attentive spatio-temporal predictive model, called CASTNet,
was presented to forecast future societal events. The proposed model was applied to forecast
opioid overdose events from crime dynamics as one of the application domains for societal
events. The proposed model is a novel deep learning architecture based on multi-head atten-
tional networks that learns different representation subspaces of features (communities) and
allows the target locations to select location-specific community contributions for forecasting
local incidents. At the same time, CASTNet allows for interpreting predictive features in both
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local-level and community-level, as well as the community memberships and the community
contributions to forecasting local incidents. The extensive experiment results demonstrated
the strength of CASTNet. It achieved superior forecasting performance on two real-world
opioid overdose datasets compared to the several baseline and stat-of-the-art methods.

The experiment results suggested different spatio-temporal crime-overdose potential links.
The overdose deaths at a target neighborhood in Chicago appeared to be better predicted by
crime incidents at neighborhoods that share the same community with the target neighbor-
hood. Also, change in crime incidents in those neighborhoods with low crime rates was an
important indicator of future overdose deaths in most of the other neighborhoods. On the other
hand, in Cincinnati, the crime incidents occurred in communities comprising those crime hot-
spots seemed to well predict the overdose events in most of the neighborhoods. Furthermore,
the predictive local activities were different in two cases. While the local crime incidents, in
particularly Narcotics and Assault, were predictive for local overdose deaths in Chicago, pre-
vious overdose occurrences were informative for future overdose incidents in Cincinnati. On
the other hand, the global contributions to forecasting local overdose incidents showed simi-
lar patterns in both cities. Change in property crimes, in particular Theft, Deceptive Practice,
Burglary and Weapons Violation (crime against to society) in Chicago, Theft and Burglary
in Cincinnati, can be significant indicators for future local overdose incidents as well as cer-
tain type of violent crimes (Battery for Chicago and Agg. Assault for Cincinnati). Last but
not the least, demographic characteristics, economic status and educational attainment of the
neighborhoods in both cities may help forecasting the future local incidents. Findings from
the experiments support the hypothesis that criminal activities and opioid overdose incidents
may reveal spatio-temporal lags, and they are consistent with the literature.

4.5.1 Limitations

There are several limitations in the current work. (1) Although this work makes an in-depth
comparison between two cases (Chicago vs. Cincinnati) in terms of potential spatio-temporal
crime vs. opioid overdose links, there are differences in the data utilized for the different
cases. There is no a systematic monitoring of drug abuse either in regional-level or local-level
in the U.S. Also, there is no common reporting mechanism for incidents for different cities.
Therefore, this study forecasts opioid overdose deaths for Chicago and heroin (a special type
of opioids) overdoses for Cincinnati. In addition, although crime data is meticulously col-
lected, organized and stored, there still exist different crime types for different city police
departments. Therefore, in order to obtain more concrete insights and comparisons, there is
a need for more systematic and compatible data collection mechanism across different loca-
tions. (2) The current proposed model does not consider the multi-resolution spatio-temporal
dynamics for the prediction. Utilizing information from different granularity of time (e.g.
day, week, year) and space (e.g neighborhood, city) may result in capturing and modeling
better spatio-temporal dynamics. Although CASTNet can work with any type of spatial or
temporal units (depending on the application domain), extending the current proposed archi-
tecture with multi-resolution setting may help to capture better spatio-temporal characteristics
and increase the forecasting performance.
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CHAPTER 5

CONCLUSION

In this thesis, novel interpretable spatio-temporal predictive deep learning models were pro-
posed for learning the relationships between individual activities and societal events as well
as forecasting the future societal events from these activities. The proposed models differenti-
ated the local and the global feature contributions in spatio-temporal societal event forecasting
domain for the first time. The proposed models were evaluated on the specific societal event
domains (i.e. social movements and opioid overdoses) with multiple cases. In-depth analyses
and comparisons were presented across the real-world cases.

First, ActAttn was proposed which (i) differentiates the local and the global feature contribu-
tions and (ii) identifies the hub locations through hierarchical attention mechanism. ActAttn
could identify the contribution of each location to forecasting future events in other locations.
ActAttn also incorporated Group Lasso regularization to select most informative intra-region
and inter-region activity features as well as the location-specific static features. The proposed
model was evaluated on the social movements domain with three real-world cases, where
the future offline protests were predicted from the spatio-temporal social media activities and
location-specific static information. Theory-driven feature extraction was employed to make
sense of the association between the types of activity traces in social media and future offline
protests. ActAttn yielded a boost in forecasting performance compared to the baseline meth-
ods. In terms of the activity features, LIWC-related features (e.g. anger, negative emotion,
social) and Twitter engagement features (e.g. number of tweets) were the most informative
feature groups in common across the different social movements, which is also consistent
with the prior empirical studies [19]. Moreover, a few of the locations (states) were identified
as the hubs that have more salient global contribution to forecasting future protests, and these
locations differed in each case.

Second, CASTNet was proposed, inspired by the idea of multi-head attentional networks
[121]. It aims to learn different representation subspaces of global dynamic features, where
each subspace involves a set of locations called “community” that share similar behaviors.
CASTNet allows the prediction for a given location to be individually optimized by the fea-
tures contributed by a mixture of communities. To do so, it automatically differentiates the
pairwise relationship between a particular event location and the other locations unlike the
previous work [142, 64, 65]. Moreover, CASTNet allows for exploring community mem-
berships, and community contributions as the global contributions to forecasting future lo-
cal events. It also focuses on the most informative time steps when the local-level and the
community-level activities are more predictive for the future opioid overdoses in the target lo-
cations. By leveraging Group Lasso regularization, the proposed model allows for interpreting
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predictive features in both local-level and community-level. The proposed model was evalu-
ated on the opioid crisis domain with three real-world cases, where the future opioid overdose
events were predicted from the spatio-temporal crime activities. CASTNet outperformed sev-
eral baseline and stat-of-the-art methods on two real-world cases. Different spatio-temporal
crime-overdose potential links were explored based on the experiment results. While local
narcotics and assault crimes are very predictive for forecasting future overdoses in the same
neighborhoods in Chicago, previous local overdose events are predictive in Cincinnati. Fur-
thermore, overdose-related deaths at a target neighborhoods in Chicago could be be better
predicted by crime incidents at neighborhoods that share the same community with the target
neighborhood. In Cincinnati, the crimes committed in the crime hot-spots predicted the future
opioid overdose events well in most of the target neighborhoods. Change in property crimes
in other locations are important indicators for future local overdose events for both cities. In
relation to static features, demographic characteristics, economic status and educational at-
tainment seemed informative for forecasting the future local events in both cities. Also, the
experiment results are consistent with the literature.

5.1 Limitations and Future Work

Despite the notable contributions of the proposed models in this thesis, there exist several lim-
itations of them. These limitations and the possible relevant future directions can be described
as follows:

Each proposed model achieved significant performance increase, and provided meaningful
insights about how events unfolded over time and across space on a specific societal event
domain with multiple cases. Although the proposed models can be applied on any type of
societal event domain, a further evaluation is needed on various societal event domains in
order to validate their efficiency and generalizability. A possible future direction of this study
can be application and evaluation of the suggested methods on the different societal event
domains, and even other types of event domains which have the spatio-temporal structure by
considering the potential links between the activities and the relevant events.

Another limitation is that the proposed models performed short-term event forecasting tasks
within the scope this thesis. Longer-term event forecasting performances of the proposed
models are not examined in this work due to the limitation in data, in particularly social
movement data. However, to make more efficient predictions, longer-term forecasting may
be required depending on the application domain. A potential future work would be the eval-
uation of the suggested models on the longer-term prediction tasks, and enhancing the current
architectures of the models with the components or the mechanisms (e.g. incorporating de-
coder networks into the final layers) for this task in order to achieve accurate and efficient
longer-term predictions.

Another limitation of the suggested models is using single-resolution spatio-temporal data for
modeling and forecasting. The proposed models can work with any types of temporal and
spatial units depending on the application domain. However, the current proposed models
do not consider the multi-resolution spatio-temporal dynamics for the prediction. Utilizing
information from different granularity of time (e.g. day, week, year) and space (e.g neighbor-
hood, city) may result in capturing and modeling better spatio-temporal dynamics. Therefore,
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it may increase the forecasting performance of the suggested models. In this manner, an-
other future research direction would be enhancing the current proposed architectures with
the multi-resolution setting so that they may help to capture better spatio-temporal character-
istics and increase the forecasting performance.

Furthermore, selection of the hyper-parameters and resolutions in the experiments is lim-
ited. First, the suggested models used fixed hyper-parameters, which were tuned based on the
development sets. However, hyper-parameters could be adaptively updated with respect to
more recent data points, which may lead to an increase in the forecasting performance due to
temporally evolving nature of the data. Therefore, a possible future work would be the investi-
gation of the effect of adaptive selection of hyper-parameters on the forecasting performance.
Second, the proposed models were evaluated utilizing specific resolutions in time (e.g. day,
week) and space (e.g. neighborhood, state) with a small set of values of the hyper-parameters
including lead time and window size. These models outperformed the other methods in the
literature with the corresponding settings. However, as a future work, further evaluations
and analyses are needed in order to observe how the proposed models would perform with
different resolution settings from a more comprehensive set of hyper-parameter values.

Missing information is a common challenge in predicting/forecasting societal events. The
suggested models were not developed explicitly considering the information missingness such
as missing at random and missing not at random. However, the proposed architectures model
the complex interactions between temporal and spatial dimensions as well as the relationships
between local and global activities over time and across space. Therefore, these models are
expected to be robust to the missing information. It is also shown that ActAttn is useful in
dealing with the missing information, and is more robust compared to the other methods. A
further research would be the improvement of the suggested models with components specif-
ically targeting the missingness problems. Lastly, the suggested models were not evaluated
with regard to cold start problem. In other words, all predictions were performed for the lo-
cations which have samples in the training sets. In the experiments, it is observed that global
(inter-region) contributions play a significant role on forecasting events in the target locations.
Therefore, the proposed models would result in successful predictions at some degree through
the global components for the novel locations, which are not seen in the training sets. Yet,
a possible future work would be evaluation and analysis of the suggested models in terms of
cold start problem.
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Appendix A

OPIOID OVERDOSE AND CRIME DISTRIBUTIONS
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(a) The distribution of opioid overdose deaths.
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(b) The distribution of crime incidents.

Figure A.1: The distribution of total number of (a) overdose deaths and (b) crime incidents in
City of Chicago by neighborhoods. Rectangles in legends represent the amount of incidents.
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(a) The distribution of heroin overdoses.
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(b) The distribution of crime incidents.

Figure A.2: The distribution of total number of (a) heroin overdoses and (b) crime incidents
in City of Cincinnati by neighborhoods. Rectangles in the legends represent the amount of
incidents.
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Appendix B

GEOMAPS SHOWING COMMUNITY MEMBERSHIPS
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(a) Geomap for Chicago model.
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(b) Geomap for Cincinnati model.

Figure B.1: Geomaps showing the community memberships of the neighborhoods. Each
neighborhood is colored by the community for which it has the highest membership among
the other communities.
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Appendix C

STATIC FEATURE ANALYSIS

(a) Population (b) Gender Diversity (c) Race Diversity

(d) Poverty (e) Owner Occ. Housing Units (f) Educational Attainment

Figure C.1: Static feature analysis for the Chicago model. While x axis represents the quan-
tiles for neighborhoods based on their static feature values, y axis indicates the number of
opioid overdoses predicted by the model.
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(a) Population (b) Gender Diversity (c) Race Diversity

(d) Per Capita Income (e) Owner Occ. Housing Units (f) Educational Attainment

Figure C.2: Static feature analysis for the Cincinnati model. While x axis represents the
quantiles for neighborhoods based on their static feature values, y axis indicates the number
of opioid overdoses predicted by the model.
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Sempozyumu (UYMS), 2014.

105


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Research Questions
	Main Contributions
	Organization of the Thesis

	Literature Review and Background
	Societal Events
	Social Movements
	Opioid Overdose

	Temporal/Spatio-Temporal Prediction/Forecasting Approaches
	DNN-based Approaches for Temporal/Spatio-Temporal Prediction/Forecasting
	Event Prediction/Forecasting
	Time-series Prediction/Forecasting

	Other Approaches for Temporal/Spatio-Temporal Prediction/Forecasting
	Point Process-based Methods

	Markov-based Methods
	Tensor Factorization-based Methods
	Traditional Statistical Methods
	Advanced Techniques for Prediction/Forecasting


	ML Basics for Temporal/Spatio-Temporal Modeling
	Recurrent Neural Networks (RNNs)
	Attention Mechanism
	Group Lasso for Neural Networks

	Chapter Summary

	ActAttn: A Novel Deep Spatio-Temporal Method for Modeling and Forecasting Societal Events
	Problem Definition
	Proposed Architecture
	Experiments
	Datasets
	Twitter Data
	Protest Data
	Census Data
	Location Extraction

	Features
	Comparison Methods
	Experimental Settings

	Results
	Performance Comparison
	Overall Performance
	Robustness to Missing Information
	Performance Analysis with Varying Lead Time

	Interpreting the Impact of Features
	Intra-region dynamic features
	Inter-region dynamic features
	Static features

	Interpreting the Local and Global Contributions and Hubs
	Local vs. global contributions
	The effect of hubs

	Testing Predictive Power with Additional Features

	Discussion and Conclusion
	Limitations


	CASTNet: Community-attentive Spatio-Temporal Networks for Forecasting Societal Events
	Problem Definition
	Proposed Architecture
	Global Component
	Local Component
	Static Component
	Objective Function

	Experiments
	Datasets
	Crime Data
	Opioid Overdose Data
	Census Data

	Features
	Comparison Methods
	Experimental Settings

	Results
	Performance Comparison
	Overall Performance
	Individual-level Performance Analysis
	Performance Analysis with Varying Length of Window Size

	Analysis of Community Memberships and Community Contributions
	How do locations contribute to communities?
	How do the communities contribute to forecasting?
	How do the community contributions change over time?

	Feature Analysis

	Discussion and Conclusion
	Limitations


	Conclusion
	Limitations and Future Work

	REFERENCES
	Appendix Opioid Overdose and Crime Distributions
	Appendix Geomaps showing Community Memberships
	Appendix Static Feature Analysis
	CURRICULUM VITAE

