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ABSTRACT

A COMPUTATIONAL MODEL OF THE BRAIN FOR DECODING
MENTAL STATES FROM FMRI IMAGES

Alkan, Sarper

Ph.D., Department of Cognitive Sciences

Supervisor : Prof. Dr. Fatoş Tünay Yarman-Vural

October 2019, 128 pages

Brain decoding from brain images obtained using functional magnetic resonance
imaging (fMRI) techniques is an important task for the identification of mental
states and illnesses as well as for the development of brain machine interfaces.
The brain decoding methods that use multi-voxel pattern analysis that rely
on the selection of voxels (volumetric pixels) that have relevant activity with
respect to the experimental tasks or stimuli of the fMRI experiments are the
most commonly used methods. While MVPA based on voxel selection is proven
to be an effective approach, we argue that an alternative approach exists, which
resembles the processing hieararchy of the human brain for the processing and
the representation of the mental states.

In this study, we propose a hierarchical brain model for brain decoding. The
hierarchical model we propose first clusters a brain image into sets of voxels
where the voxels that have a highly correlated activity with each other fall into
the same set, which we call supervoxels. Using the supervoxels, we aim to
capture the nervous activity from specialized brain regions, which are assumed
to process a distinct aspect of a given stimulus or mental task such as processing
color, texture, or shape of a given visual object. Then, we combine the brain
activity represented by each supervoxel using a method that we call Brain Region
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Ensembles (BRE) in order to decode mental states from fMRI images. Our
analyses on multiple fMRI datasets show that the BRE is much better suited to
the classification of mental states from fMRI images than classical voxel selection
methodology. Additionally, we show that BRE can be used for the specification
of brain regions that are relevant to the experimental tasks or stimuli when the
aim is to identify the regions that have discriminative activity with respect to
two different mental states.

Keywords: MVPA, fMRI, Brain Decoding, Clustering, Classifier Ensembles
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ÖZ

FMRI GÖRÜNTÜLERİNDEN ZİHİNSEL DURUMLARIN
ÇÖZÜMLENMESİ İÇİN HESAPLAMALI BİR BEYİN MODELİ

Alkan, Sarper

Doktora, Bilişsel Bilimler Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tünay Yarman-Vural

Ekim 2019 , 128 sayfa

İşlevsel manyetik rezonans görüntüleme (iMRG) yöntemi kullanılarak elde edilen
beyin görüntülerinden beyin çözümlemesi, zihinsel hastalıkların teşhisi, zihinsel
durumların belirlenmesi ve beyin makine arayüzlerinin geliştirilmesi için önem
arzetmektedir. İMRG görüntüleme deneylerindeki deneysel görev ya da uya-
ranlarla ilişkili aktivite gösteren voksellerin (hacimli piksel) seçimine dayanan
çoklu-voksel örüntü çözümlemesi (ÇÖVÇ) yöntemleri bu iş için en çok kullanı-
lan yöntemlerdir. Her ne kadar, voksel seçimine dayanan ÇÖVÇ, etkinliği gös-
terilmiş bir yaklaşım olsa da, buna beynin işlem aşamalarına ve gösterimlerine
benzer yapıda çalışan bir alternatif bir yaklaşımın olduğunu savunuyoruz.

Bu çalışmada, zihinsel durumların çözümlenmesi için aşamalı bir beyin modeli
önderiyoruz. Bu önderiğimiz aşamalı model, ilk olarak beyin görüntüsünü, bir-
birine işlevsel olarak yüksek benzerlik gösteren voksellerden oluşan, süpervoksel
olarak adlandırdığımız voksel gruplarına bölütlüyor. Bu süpervokselleri kullana-
rak, verilen uyaranlar ya da zihinsel görevlerin işlenmesinde görev alan özelleşmiş
beyin bölgelerindeki (görsel bir nesne için renk, doku veya şekli işleyen bölge-
ler gibi) sinirsel aktivitelerinin elde edilmesini amaçlıyoruz. Sonrasında her bir
süpervoksel ile elde edilen beyin aktivitelerini, zihinsel durumun çözümlenmesi
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için, Beyin Bölgesi Toplulukları (BBT) adını verdiğimiz yöntemle birleştiriyo-
ruz. Birden fazla iMRG veri kümesindeki analizlerimiz gösteriyor ki, BBT, zi-
hinsel durumların sınıflandırılması işlevine klasik voksel seçimi yöntemlerinden
daha uyumludur. Ayrıca, BBT’nin iki farklı zihinsel durumun için farklı akti-
vite gösteren ve deneysel uyaranlar ya da görevlerlerle ilişkili beyin bölgelerinin
belirlenmesinde kullanılabileceğini gösteriyoruz.

Anahtar Kelimeler: ÇVÖÇ, iMRG, Beyin Çözümleme, Kümeleme, Sınıflandırıcı

Toplulukları
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Ŷ
Ψ

te An set of predicted class labels for the superset Ψ of
supervoxels

xxxi



Zc A binominal random variable that correspond to the prob-
ability of having the number of successful guesses more
than or equal to a certain threshold for the base layer
classifier trained using supervoxel c as the input

{itemparameter} A set of items each of which are specified by a parameter

xxxii



CHAPTER 1

INTRODUCTION

Human brain has been a source of inspiration and a subject of curiosity for the
researchers over the centuries. We seek to understand how brain takes control
of the body, process the sensory input and comes up with meaning from the
experiences. Also we try to simulate it, the way it processes information at the
neural level, and within its deep and intricate networks. Lately, we started to
scratch beneath the surface of the mystery of the brain. On one side, with the
technological advances, we started to be able to build deep neural networks which
display the slivers of power of this magnificent processor. On the other side,
advances in brain scanning techniques helped us to decipher the functionalities
of the brain by looking at the measured activities. In this thesis we deal with
the latter issue. We seek to understand how human brain works when a person
is engaged with a particular task or presented with a specific stimulus.

In order to decipher the information encoded within the brain, the related ac-
tivities need to be measured in some way. Also, to be able to make sense of the
measured brain activity, the activity itself needs to be about some specific brain
states. The process of capturing brain activity that is about specific stimuli or
specific mental tasks is called functional brain imaging, where the function is
specified by the stimuli or the mental tasks.

Functional brain imaging techniques consists of a variety of approaches depend-
ing on the way that they capture the brain activity. Brain imaging techniques
like electroencenography (EEG), which records electrical signals through elec-
trodes placed on scalp, can be time locked to measure brain activity during
the presentation of a specific stimulus. Event related potentials (ERP), which
are the EEG signals recorded within a time-frame after the onset of a stimulus
presentation, are used for that purpose. Brain images can also be captured by
measuring the differences in blood oxygenation levels within the brain through
magnetic resonance imaging (MRI). This procedure allows us to capture the
three dimensional images of human brain that are composed of volumetric pix-
els (voxels) of several millimeter cubes. Such images can be captured at every
1-3 seconds depending on the properties of the image capturing equipment and
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image resolution. Similar to ERP, this procedure can be time locked with the
presentation of a specific stimulus, or they can be captured while the patricipant
is performing a mental task (such as, multiplication of two numbers, playing a
game, or recalling an item from a list of objects which are viewed beforehand),
which results in a series of images that are associated with a function, which
is called functional MRI, or fMRI. This study is focused on the analysis and
modeling of fMRI images. In the rest of the thesis, the term brain image refers
to an image captured by an fMRI acquisition device under a pre-defined set of
stimuli.

The aforementioned functional aspects of the image capturing processes (pre-
sentation of a specific set of stimuli or assignment of a mental task) are specified
by an experimental procedure. The primary aim of such experiments is to bring
the brain state of the participants of the experiment about a mental state which
is then captured by the brain imaging apparatus. Depending on the context, the
phrase, mental state can have a variety of ontological references. The specifica-
tion of a mental state can be as broad as being awake or asleep. Alternatively,
mental state can refer to a state that is vaguely defined such as distracted, cu-
rious, or doubtful. Also, it can refer to an emotional state such as fearful, or
angry. Finally, it can refer to the occurrence of a distinct, well-defined process
such as viewing a pattern of oriented lines [50], a particular object [66], reading
a particular word [66], recalling an item from a memorized list [67], engaged
with gambling [24], playing a game [71]. In the context of this dissertation, in
conjunction with literature on the computational analysis of brain patterns, we
will use the term mental state in the last two of the aforementioned senses of the
phrase, where a mental state can be an emotional state, or a well defined mental
process (such as the examples given above) that is specified by the conditions
of the fMRI experiments.

The aim of this thesis is to analyze the patterns of brain activity which are cap-
tured by fMRI methods that are correlated with distinct mental states, caused
by the experimental tasks or stimuli. Our analysis involves the classification of
fMRI images according to the mental states and the specification of the regions
of brain volumes that significantly contribute to the classification task. In other
words, we seek to decode brain activity from the functional brain images. In
this study, brain decoding is done by using a novel framework that involves ac-
tivity dependent segmentation of brain images captured by fMRI and building
classifier ensembles that are based on the segmented regions.

The distinguishing aspect of this study is that, we present a computational
model of the human brain, which we use to decode the mental states from fMRI
images. The computational model that we present is Brain Region Ensembles
(BRE). In this computational model, we use two observations regarding the
mental representations in the human brain. First, the human brain processes
information coming from the senses using specialized brain regions (such as color,
texture, or shape processing within the visual cortex) that is distributed across
the brain. Second, the brain combines the activity of the specialized regions to
come up with a coherent mental state regarding the stimuli (such as a visual
object category) or the mental task that is currently presented. With BRE,
we try to model this computational pattern. In BRE, we try to capture the

2



activity of specialized regions in the brain by functionally homogenous voxel
groups which we call supervoxels. Then, we combine activity of the supervoxels
using classifier ensembles in order to decode the overall mental state. While
we do not claim that BRE is exactly how the brain processes a given stimuli
or a mental task, we claim that BRE captures two essential components of the
brain processes that are: distributed mental representations in specialized brain
regions, and a way to combine these distributed mental representations.

In this chapter, we provide an introduction to the problem of brain decoding
based on fMRI data, and methodological issues associated with it. Then, that
we describe our contribution to the field of brain decoding using fMRI data.
Lastly, we present the organization of the thesis.

1.1 What is Brain Decoding?

Brain decoding is the process of analyzing patterns of brain activity in brain
images in order to gain insights on the workings of the brain [72]. The early
methodologies of brain decoding were limited to identification of the voxels,
therefore brain regions, that are relatively active compared to other regions
during the presentation of a stimulus. These active brain regions were assumed
to be contribute to underlying cognitive process makes an implicit representation
of the process. Nowadays, this simple approach is mostly discarded. Most of
the current approaches now utilize pattern classifiers and other computational
methods that use groups of voxels and utilize the intricate relations between
them in order to decode brain patterns [72, 19, 60]. These type of analyses are
called multi-voxel pattern analysis (MVPA), which we discuss in detail in the
next chapter.

1.2 Why Brain Decoding?

Brain decoding, in its extreme forms, has been the focus of science fiction litera-
ture, movies, and TV-shows. For that reason alone, the topic can be compelling
to researchers. While somewhat less amazing when compared to science fiction,
the real applications of brain decoding are still impressive. In this section, we
briefly discuss the importance of brain decoding.

Perhaps the most obvious and most important use of brain decoding is the ability
to gain insights about a living and functioning human brain in a systematic
manner. With brain decoding, brain regions that take part in processing of the
experimental tasks or stimuli can be identified [50, 90]. Also, the correlations
between individual brain regions while processing the stimuli can be decoded
[101, 80]. Brain decoding, can, also be used to deduce thoughts and experiences
from the brain images [87]. Moreover the nature of the processing (such as
distributed or localized) in the brain for a given set of stimuli can be identified
[66, 4]. Even the effects of the cognitive mechanisms, such as visual attention
on the cortical representations, can be decoded from brain images [22]. There
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has been ongoing research about the brain machine interfaces to control of the
machinery with brain signals including prosthetic arms [85], or the machines
that turn brain signals to voice commands for people who are under complete
paralysis [46]. Examples can be added to these, where in the Chapter 2, we
present a detailed background on the applications of brain decoding to various
application areas.

In addition to the insights gained about the nature of the brain processes, ill-
nesses such as Alzheimer’s disease, and mild cognitive impairment can be diag-
nosed with less than 1% error rate [14]. Also, the differantial diagnosis mental
illnesses that show similar symptoms, such as schizophrenia, bipolar disorder,
and schizoaffective disorder were made possible by using brain decoding methods
[26].

Since the seminal article by Haxby et al. [43], when we look at the progress in
the last 20 years, we expect brain decoding to find more application areas as
well as providing valuable information on the working processes and conditions
of the brain.

1.3 Conceptual and Methodological Problems with Brain Decoding

Despite the advances in neuroscience and cognitive sciences, brain decoding
applications have some conceptual and methodological problems. One of the
main problems with brain decoding is about the use of pattern classifiers, where
the size of the dataset obtained from fMRI experiments are not statistically
sufficient for the application of modern deep learning methods.

Another problem regarding brain decoding methodologies is the difficulty of
interpretation of the results, obtained as the output of the brain decoding algo-
rithm. With brain decoding, brain regions that are relevant to the experimental
tasks can be identified. However, the regions that are found to be non-relevant,
might have some relevant activity that can only be observed a sub-voxel reso-
lution. Moreover, when using pattern classifiers to identify a region to be rele-
vant for the processing regarding an experimental task, it is not always evident
whether the particular region is only concerned with the representation of the
task stimulus, or the region is directly involved with the functional processing of
the task. For instance, visual objects can be decoded from the early visual areas
(or even from retina) if a brain imaging system with high enough resolution
can capture the images from them. However, that does not mean visual object
recognition is performed at retina, or at early visual areas.

The third problem is the compexity of the neural representation of a cognitive
process in the brain. It can be appealing for various reasons to exclusively mark a
single brain region for the performance of a certain mental task or for processing
a certain type of stimuli. For instance, searchlight analysis only considers voxel
groups that contain voxels which are spatially close to each other [32]. However,
we argue that, neural representations that are distributed across voxels, and even
across multiple brain regions are much more likely than the representations that

4



are contained in a single brain region for the mental tasks or stimuli used in
the fMRI experiments. For instance in the fMRI experiments that are used
in this study, presentation of visual objects [66], participants playing games
[71], or participants viewing emotionally stimulating images all create neural
representations that are distributed across neural regions. Thus, while the above
argument holds, brain decoding algorithms that can make use of the information
distributed across brain regions offer a better representation to discover the
patterns in the voxel activity.

One last problem with the brain decoding methodologies is about their relations
with the parameters and the methods of the fMRI experiments. A brain decod-
ing methodology that is fit for one type of fMRI experiment can be unsuitable
for another. Choosing the right methodology for the data at hand is important.
In the following subsections, we take a detailed look at the above mentioned
issues with brain decoding.

1.3.1 Problem of Overfitting the Classifiers

The primary challenge for any brain decoding system that uses pattern classifiers
is posed by the nature of the brain imaging process. Due to the experimental
constraints, only a limited number of samples can be obtained from each partic-
ipant within the time frame that is safe for them. Furthermore, the resolution
of the brain images are in the order of 20 to 200 thousand voxels (volumetric
pixels) for each brain volume. The high number of voxels is both a blessing
and a curse. While a high spatial resolution creates opportunities for a detailed
investigation of anatomical regions corresponding to a brain state, it creates a
high dimensional feature space of voxels for a pattern classifier. Considering the
fact that the number of samples are relatively low compared to the dimensional-
ity of the feature space, designing a classifier becomes a very difficult problem.
Moreover, fMRI images are contaminated by the noise that is caused by the un-
certainties regarding the image acquisition process and the cognitive disposition
of the subject during the experimental process. High number of voxels, coupled
with the low number of samples cause the data represented in the voxel feature
space to be sparse. Both the noise and the sparsity of the feature space must
be handled to improve test performance of classifiers and validity of the classi-
fication. For the nearest neighbor classifiers such as k-nearest neighbor (kNN),
a high dimensional feature space makes all data points almost equidistant to
a query sample, which makes the decision unreliable. For the linear classifiers,
the high dimensionality of the feature space reduces the generalization perfor-
mance through the dependency of the decision hyperplane to the training set of
a small sample size. The classifiers, due to their opportunistic nature, are prone
to memorize spurious patterns within high dimensional voxel spaces given a low
number of training samples. As a result, the classifier overfits to the accidental
patterns in the training data.

The problem of overfitting is more prominent for the complex, non-linear clas-
sifiers that require a high number of parameters to be trained. As the number
of training parameters increase, the decision boundary within the feature space
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becomes convoluted. Moreover, when the number of training samples are lim-
ited, the classifier can easily be biased by the noise or by the outlier samples.
In particular, this problem prevents the application of the modern classification
methodologies such as deep learning to fMRI analysis, which thrives on high
number of training samples in order to train complex networks. In addition
to that, network architectures that are useful for the analysis of regular (2D)
images, such as convolutional neural networks, are not as effective for fMRI
analysis: The use of convolutional layers in a deep neural network reduces the
number of total parameters in the network by using the assumption that a set
of basic patterns (such as oriented edges) are repeated across the whole image.
For the regular images, this assumption holds because an object can appear
anywhere in the image. Also, the basic patterns can occur for a wide array of
objects and shapes in a regular image. However, none of these are valid assump-
tions for fMRI images. Even for the primary visual cortex, the resolution of
fMRI images are not high enough for the voxels to form repeated basic patterns,
where Kamitani and Tong [50] can barely detect the sub-voxel activity that cor-
respond to the oriented gratings that are shown to the participants. In the rest
of the brain, we can not think of any reason to expect such repeated patterns of
voxel activity to occur.

While there are more than one way to deal with this problem, the problem of
overfitting is still a major obstacle for fMRI analysis [60]. In the brain decoding
literature, the solution to this problem is found through the elimination of the
voxels that are not relevant to the experimental tasks. The most commonly used
approaches to decode mental states from fMRI images use voxel selection [19, 18,
56, 34, 2], region of interest (ROI) selection [36], dimensionality reduction [59],
or searchlight analysis [50, 32] as ways to overcome the problem of overfitting for
pattern classification. In the following chapter, we present the available solutions
to this problem in the MVPA literature.

1.3.2 Interpretation of Classification Results for Brain Decoding

The use of pattern classifiers for brain decoding has become an established prac-
tice in the literature. For brain decoding, however, the results should be inter-
preted with caution in order to prevent the misjudgements regarding the atti-
bution of cognitive functions to brain regions. In this section, we discuss the
various pitfalls concerning the interpretation of the mental state classification
results.

1.3.2.1 Statistical Significance of Classification Results for Brain De-
coding

Brain decoding methods that rely on pattern classifiers use the classification
accuracy, which is higher than chance level, as an indication for the involve-
ment of a brain region with an experimental task [42, 60]. Alternatively, pattern
classifiers can be used to identify brain regions that are selectively active for
two distinct classes of experimental tasks or stimuli [4]. However, due to the
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low number of experimental samples (20-100 samples per class) in fMRI ex-
periments, the statistical significance of the classifier accuracies is questionable.
For instance, just higher than 50% accuracy obtained from a two class classifier
might not be considered significant without sufficient number of test samples.
In order to remedy this problem, statistical significance of the results should be
carefully investigated.

1.3.2.2 Non-existance of Significant Brain Patterns

In brain decoding, a common problem is to explore the brain regions that are
relevant and/or irrelevant to a particular experimental task. Especially after
testing for statistical significance, the result of mental state classification might
deem many brain regions to be irrelevant with respect to the experimental tasks
or stimuli. However, non-existance of significant brain patterns does not entitle
the brain regions to be irrelevant with respect to the given experimental tasks
[50]. The reason for that is the coarseness of the voxel representation. Each
voxel within a brain image represents the collective activity of thousands of
neurons within a time frame of 2-3 seconds. From this perspective, some neural
activities can be hidden by relatively more dominant neural activities within the
same voxel.

1.3.2.3 Identification of Cognitive Function vs. Representation in
the Brain

It is a common knowledge that human brain processes information in a hierar-
chical manner. When we look at the base of processing hierarchy, we observe the
sensory neurons transducing the inputs from the outside world into neural rep-
resentations at the first level. Then, the inputs received by the sensory neurons
processed gradually in the neural hierarchy. From this perspective, we can see
that the group of neurons that take inputs from the sensors in the retina have all
the information necessary for representing a perceived visual object. However,
we cannot attribute the function of object recognition to these neurons alone.
This leads us to one of the overlooked pitfalls of brain decoding, which is retina
decoding [49, 19]. The pitfall can be understood by imagining a brain decoding
system that has the access to the retinal image of a perceived object as an input,
through an advanced brain imaging procedure. Then, the contents of the image
can be decoded by a sufficiently complex non-linear classifier (for instance, a
deep neural network). However, that does not entitle the retina for performing
a complex computation to decode the object. In other words, presence of com-
plex representations within brain regions does not ensure presence of equally
complex computations within the same regions. Thus, the brain decoding ap-
plications should avoid complex calculations to attribute functional properties
to brain regions.
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1.3.3 Distributed Representations in the Brain

When we consider the neural representations of cognitive functions in the brain,
we observe that even very specific and simple stimulus; such as, specifically ori-
ented lines elicit neural activity that are distributed across groups of neurons
[48]. While one specific neuron might give the highest response to a stimu-
lus, we cannot exclude the activities, (or inactivities) of other neurons from the
total representation. Following this line of thought with voxels might sound
problematic at first, since each voxel aggregates the activity of thousands of
neurons. However, the mental states to be analyzed by using fMRI experiments
are usually more complex than the participants observing oriented lines. More-
over, even a simple stimulus, such as, oriented line gratings can be detected by
classification of activations of voxel groups [50]. Thus, an activity pattern that
is distributed across multiple brain regions can be expected from fMRI experi-
ments that present some higher order mental tasks to the participants such as
processing semantic object categories [66], memory retrieval [67, 8], emotional
processing [40], gambling [24], or playing a game [71]. For instance, seman-
tic representation of objects is known to be distributed across multiple brain
regions including sensory and motor cortices [63, 91, 52]. Furthermore, visual
object representation is, also, distributed across occipital and inferior temporal
cortices [25]. Also, emotional processing of fear and disgust inducing stimuli is
known to be implicated with middle frontal gyrus, fusiform gyrus and insula,
and amygdala [88].

When the nature of distributed representations in the brain is considered, it
can be hypothesized that different aspects of a given mental task or stimulus
would be processed in different brain regions. For instance, semantic categories
of concrete objects are represented in both sensory and motor cortices as well
as cerebellum and primary visual cortex [66, 91], probably because we recognize
them through our interactions with them. We could be combining the sound
of a bouncing ball with its visual shape and motor cortex representation of the
way we handle the ball in order to form the semantic representation of a ball. In
other words, it is likely to be the case that diverse aspects of the same semantic
category are represented at different regions in the brain. If this is the case,
then an ensemble of pattern classifiers, each of which are dedicated to model
voxel groups of a different brain region can be successful in decoding the mental
states, where it is known that a diverse set of pattern classifiers combined in
a classifier ensemble can perform better than any single classifier [57]. While
there are methods that use classifier ensembles for brain decoding, they do not
utilize diverse representations that are distributed across brain regions. Instead
of that, they use classifier ensembles on a set of voxels which are selected by
means of common voxel selection strategies [56, 55].

1.3.4 Experimental Design

In a successful fMRI experiment, which is expected to measure activities of a
set of mental states, brain images captured during the experimental procedure
must be matched exclusively to specific mental processes under investigation. In
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order to conform with this criterion, two basic strategies for experimental design
is utilized: Block design and event-related design [6].

In an experiment with block design, various types of stimuli, or types of cognitive
tasks are presented sequentially to a participant during fMRI recordings. This
strategy does not involve a resting state period and proceeds with switching
between the types of different stimuli, or tasks. The aim of such experiments is
to capture the brain state during each stimulus block for a relatively long time
period (up to several minutes). Experiments with event-related design on the
other hand, involves brief presentation of the task stimulus followed by a resting
period which allows the investigation of the transient stimulus onset and offset
periods in the analysis [94].

The type of experimental design can promote or discourage the use of a particular
classification strategy. In this thesis, we construct a brain decoding methodology
that suits both of the above experimental design procedures.

1.4 Our Contribution

The contribution of this thesis can be listed as follows:

1. We propose a new computational model of the human brain that we use
for brain decoding, which is consistent with the state-of-the-art neuroscientific
findings. For this model, our primary goal is to capture distributed representa-
tions of the mental states in the brain in terms of functionally homogenous voxel
groups that we call supervoxels, and then combine those representations with
classifier ensembles in order to decode mental states from fMRI images. Based
on this goal, we hypothesise that, a computational model that can capture these
distributed representations and utilize them, would achieve a better performance
for decoding the mental states than available computational models that rely
on selecting the relevant voxels or anatomical regions. Thus, just like the brain
that processes incoming information in specialized brain regions and combine
their activity to achieve a coherent mental state, our model combines the voxel
activity from the functionally homogenous voxel groups in order to decode the
present mental state.

2. In order to capture the distributed representations of mental states in brain,
we use brain parcellation. For brain parcellation, we utilize unsupervised clus-
tering techniques on series of fMRI images to find groups of voxels that are
functionally correlated. These homogeneous groups of voxels that we call su-
pervoxels constitute the basis for brain decoding, and they also contribute to
the identification of the brain regions that are relevant in the processing of the
experimental tasks. The supervoxels offer a solution to problem of overfitting,
where the voxel space within each individual supervoxel is much smaller when
compared to voxels from the whole brain for the classification purposes. Fur-
thermore, we propose that the supervoxels can create a diverse basis of features
that is desirable for ensemble learning.

3. We propose a new ensemble learning method named Brain Region Ensembles
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(BRE) for brain decoding. This method uses supervoxels to encode distinct
aspects of the mental processes within the brain in terms of the activity of
functionally homogenous groups of voxels (supervoxels). The encodings are then
fused within multiple random subsets of voxel clusters by using meta classifiers
of fuzzy-stacked generalization algorithm. The classification results from each
random subset are then combined by majority voting. We show that BRE
achieves higher performance on mental state classification than the state of the
art methodologies that use voxel selection.

4. We compare the effectiveness of supervoxels that are formed by different
methodologies for the classification of mental states. The voxels are clustered
by the methods that either use the voxels functional relationships (using K-
means clustering), or their functional relationships while constrained by their
spatial proximity (using spatially constrained normalized cuts clustering). Also,
we analyze the supervoxels that are formed by the collection of voxels in anatom-
ically labeled brain regions (AAL regions). We show that supervoxels formed by
the clustering methods yield better classification results than the ones formed
with AAL regions.

5. We propose a method to identify the voxel clusters that are effective in
the classification of the mental states. For that purpose, we use a statistical
significance measure that selects the discriminative supervoxels. We show that
the distribution of the voxels that belong to those discriminative supervoxels
within anatomical brain regions are consistent with their functional properties
specified in the cognitive neuroscience literature. Furthermore, with our analysis
we were able to discover variations for the representation of visual objects in
the brain of an individual subject that challenge our understanding of visual
pathways.

1.5 Organization of the Thesis

The thesis is organized in the following chapters:

In Chapter 2, we first discuss the nature fMRI experiments and the data collec-
tion procedures for the datasets that we use in the thesis. Then, we present an
overview of brain decoding methods in the literature in order to better place this
thesis in the domain of Cognitive Sciences. A brief introduction to the progress
of fMRI analysis methods is followed by the presentation of current state of the
art in the context of the question: How can we make an effective use of the data
provided by fMRI experiments?

In Chapter 3, we first present the fMRI datasets that we use in the thesis.
Then, we provide our method BRE which makes use of the information en-
coded in clusters of functionally correlated voxels (supervoxels) for cognitive
state classification. Additionally, we show how supervoxels can be used to effec-
tively identify brain regions that encode differential information across cognitive
tasks. Furthermore we present methods to analyze the working principles of
BRE. For this purpose, we use classifier diversity analysis.
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In Chapter 4, we present results of our brain decoding methodology on datasets
we introduce in the Chapter 3. We start with the analysis of BRE with re-
spect to cluster diversity measures. After that we provide the results of the
mental state classification experiments that uses BRE in comparison with state
of the art methods of brain decoding. Lastly, we present the results of our re-
gion identification procedure by using supervoxels in relation with the cognitive
neuroscience literature.

In Chapter 5, we present our concluding remarks and future directions for the
research.
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CHAPTER 2

LITERATURE SURVEY FOR THE BRAIN DECODING
TECHNIQUES BASED ON FMRI

In this chapter, we present the nature of fMRI data, the datasets that we use in
this study, and also the brain decoding approaches available in the literature.

The chapter is divided in two parts. In the first part, we describe the techniques
for the acquisition of fMRI data, the data samples, and their relations with the
subjects. Also, we present the formal representations for the fMRI data that
we use throught this thesis. In the second part, we discuss the brain decoding
methods in the literature with a focus on classifier based methods. In that part
we also present a basic classification process in order to set up the notations
which we follow afterwards.

2.1 Part 1: Functional Magnetic Resonance Imaging Techniques

The fMRI data is a collection of brain images that are captured by using an
MRI device while the experimental participant performs mental tasks which
are specified by an experimental procedure designed for the analysis of the pre-
defined stimuli or mental tasks. The characteristics of fMRI data are specified
by the nature of the experimental tasks, and the technical specifications of the
MRI device as well as the settings of the MRI device during the experimental
procedure.

In this section, we first present the basics of fMRI data acquisition process.
Then we describe the formal notations of fMRI data samples, which we use in
this thesis. Following that, we present the datasets that are used in this study.
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Figure 2.1: Slice orientations and basic positional terminology for fMRI images,
adopted from [97].

2.1.1 Parameters of fMRI Data Acquisistion

For functional MRI scans, an MRI device measures the blood oxygenation level
dependent (BOLD) contrast, which is a result of the increased blood flow within
the active regions of the brain. The process itself is quite complicated and is out
of the scope of this study.

While the acquisition of the fMRI images is a fairly complicated process, the
basic temporal parameters that we are interested in are as follows: The repetition
time in milliseconds (TR) specifies the time between the consecutive pulses of
the MRI device, and echo time in milliseconds (TE) which specifies the time
between the pulse and the echo of the pulse from the tissue, which is then
recorded as an MRI slice.

The basic spatial parameters are the slice orientation (axial, saggital, or coronal)
with respect to the head orientation (Figure 2.1), inter-slice gap in millimeters,
and slice thickness in millimeters. The slice orientation determines the orienta-
tion in which the slices are recorded in MRI. The spatial parameters specify the
volume of the resultant voxels, while the temporal parameters specify the time
frame of a single fMRI image.
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Figure 2.2: BOLD signals and data sampling from fMRI experiments of block
design and event-related design are depicted. The horizontal lines represent the
time. The samples marked with a box are used in the construction of the design
matrices for the respective types of experiments. The color of the stimulus boxes
signify stimuli from a specific class where the samples are associated with. The
figure is adopted from [64].

2.1.2 Representation of fMRI data

The fMRI data, depending on the type of the experimental design (event-related
or block design) comes in consecutive brain volumes, where each volume is a three
dimensional collection of voxels that capture one time-frame of brain activity. In
this thesis, we test our brain decoding methodology on each single subject. Thus,
the data representation methods that are presented in the following sub-sections
refer to the collection and use of the data from a single subject.

In experiments that we used in this study, the data samples are collected at con-
secutive and seperate stimulus presentations for each participant. A collection
of these stimulus presentations are called epochs where specific sets of stimuli
are presented to the participant. Individual experimental epochs might be per-
formed at different experimental sessions or at different days. Thus, in order to
take the changes across sessions (alignment of the head, the attentiveness of the
participant) into account while testing the brain decoding algorithms, it is rec-
ommended to not mix the samples recorded from distinct epochs when forming
train, validation and test sets. At the end of this section we present how we
formed these sets according to the individual properties of the fMRI datasets we
use.
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2.1.2.1 Data Representation for Event Related Experiments

In the fMRI experiments with event related design, each stimulus onset is cap-
tured by a series of brain volumes with gradually changing voxel intensities from
the rest level just after the stimulus onset, and then returning to the rest level
after a short period of time (10-12 seconds). The stimulus is usually presented
for a short period of time to allow the brain to return to the resting state. As
a result, a total of 5-6 brain volumes per presented stimulus is recorded. At
this point, the use of the volumes obtained by the experiments can differ de-
pending on the brain decoding applications. Some brain decoding applications
well-utilize all of the brain volumes through the onset and offset of a stimulus
[29, 73], while other applications prefer to use only the peak voxel intensities for
each stimulus presentation [5, 66].

In our preliminary testing steps of our model we did not observe any particular
benefit of using all of the voxel volumes, or average of the volumes for a stimulus
presentation. Thus, we use peak intensities for the data from the event-related
experiments. As a result, a data sample, the peak voxel intensitiy values that
are obtained from a particular stimulus presentation during an event related
experiment can be represented as a single brain volume of voxel intensity values
(Figure 2.2), which can be flattened into a row vector of x = {x1, x2, ..., xNυ},
whereNυ denotes the number of voxels in the brain volume. Conversely, the peak
voxel intensity values for a single voxel for the whole experiment is represented by
υ = {υ1, υ2, ..., υNs}, where Ns represents the number of stimulus presentations
(or data samples). Then, the data samples that are obtained from the whole
experiment is denoted by a design matrix X ∈ RNυ×Ns , where each row (x)
is a vector containing all voxel intensity values from a data sample while each
column (υ) is a vector containing the voxel intensity values of a single voxel
across all data samples. For classification purposes, each data sample x can
then be associated with the class of stimulus y ∈ L that the sample belongs to.
Here, L = {0, 1, ..., Nl−1} is the set of all class labels each of which are signified
by a different integer, and Nl is the number of all class labels. In order to show
the correspondence with the set of all samples X, class labels of all samples are
denoted by Y ∈ LNs .

2.1.2.2 Data Representation for Experiments with Block Design

In the experiments with block design, the stimuli, or the mental tasks are pre-
sented in long time frames where MRI device captures a large number of voxel
volumes during each time frame. In each time frame a single mental task, or
multiple stimuli of the same class is presented to the participants, thus, forming
the volumes that belong to a single class.

For this type of fMRI experiments, such as the Tower of London (TOL) experi-
ments which we present in the following sections, the design matrix X ∈ RNυ×Ns

consists of all the brain volumes captured by the imaging device during the fMRI
experiment. Here, Nυ is the number of voxels in a single brain volume, and Ns

is the number of brain volumes captured during the presentation of mental tasks
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or stimuli that are specified with any class label y ∈ Y. In this case a single
sample x = {x1, x2, ..., xNυ} is the vectorized form of any brain volume captured
during the presentation of a mental task or stimulus that has a label (Figure
2.2). Class labels of all samples Y ∈ LNs is then formed by the assigning all the
samples within the same block with the a particular class label y ∈ Y. Here,
L = {0, 1, ..., Nl − 1} is the set of all class labels each of which are signified by
a different integer, and Nl is the number of all class labels.

2.2 Experimental Setup and the Data collection

In this study, we use three fMRI datasets in order to validate the suggested com-
putational model. The first one is a two class dataset where the subjects were
presented two categories of visual objects which we call the Objects Dataset. The
second dataset is a four class dataset where the subjects were presented with
emotion arousing images (fear, disgust) and emotionally neutral images (furni-
ture, kitchen appliances) which we call the Emotion Dataset. The data in this
dataset can be treated as having two classes as well (emotional, non-emotonal).
These two datasets are available in the website: http://neuro.ceng.metu.edu.tr.
The last dataset we use is the Tower of London (TOL) dataset where partic-
ipants were presented with Tower of London puzzles and were asked to solve
them.

2.2.1 Objects Dataset

This dataset was collected by the members of METU Imagelab at Bilkent Uni-
versity UMRAM (Ulusal Manyetik Rezonans Araştırma Merkezi). The goal of
the experiment is to create a benchmark fMRI dataset for brain decoding with
two visual categories. This dataset consist of fMRI images of subjects perform-
ing a one-back repetition task with two visual objects. In this task, the subjects
indicated whether or not the currently displayed image matches the category
(bird, flower) of the previously displayed image. Each trial was 12, 14 or 16 sec-
onds long where the image was presented for 4 seconds, followed by 8, 10 or 12
seconds of rest period. The images were captured with a Siemens 3T Magnetom
TRIO MRI system, and using an EPI sequence, where TR = 2000 msec, TE =
30 msec, flip angle = 90o, 34 interleaved axial slices with inter-slice gap = 0.2
mm, and 3x3x3 mms of voxel volumes. In each trial 6 scans were obtained.

The experiment consists of 6 epochs in total. In each epoch 36 images were
displayed to the patients, 18 from each object category. The data was collected
from 5 subjects. However, the data of one epoch from the 3rd subject were
corrupted. Thus, we omitted the subject altogether in order to have comparable
results across the subjects.
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Figure 2.3: Schematic representation of the experimental process for the Objects
dataset. Images that belong to each object category were presented in a random
sequential order. After each image presentation the participants’ task were to
indicate if the image belonged to the category of the previously presented image.
In this example, the images that are indicated with red arrows belong to the
category of the images that precede them. Image from Onal-Ertuğrul [101]

.

2.2.2 Emotion Dataset

This dataset was collected by the members of METU Imagelab and members
of Koç University Department of Psychology at Bilkent University UMRAM
(Ulusal Manyetik Rezonans Araştırma Merkezi). For this dataset, the subjects
were asked to decide if a query image was in the set of 5 images that were shown
previously. Depending on the category (fear inducing, disgust inducing, kitchen
appliances, furniture) of the presented images the experiment aims to find if
there is a difference in the participants’ recall rates between emotion inducing,
and emotionally neutral images under the hypothesis that emotion inducing
images are more likely to be recalled successfully.

Each trial started with a 12 seconds fixation period. Then the subjects were
shown 5 consecutive cue images from the same category where each image was
displayed for 1200 msecs. After the last image, there was a 12 secs period where
the subjects were asked to solve mathematical problem that involved addition or
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Figure 2.4: The aim of a TOL puzzle is to reach the goal state by poping one
ball at a time from the top of any one rack and placing it on any of the other
racks that has an empty space. Images are from [71].

subtraction of two digit integers. Following that, a query image was presented to
the subjects for 2 seconds, which was in the same category with the cue images.
The subjects’ task were to decide if the query image was the member of the last
set of cue images.

For each subject there are 6 epochs of experiments, each of which contains 70
trials, details of which are specified above. The images were captured with a
Siemens 3T Magnetom TRIO MRI system, and using a gradient EPI sequence,
where TR = 2000 msec, TE = 30 msec, flip angle = 90o, 34 interleaved axial
slices with inter-slice gap = 0.3 mm, and 3x3x3 mms of voxel volumes. In each
trial 6 scans were obtained during the display of cue images.

2.2.3 Pre-processing of the Emotion and Objects Datasets

The images captured in the Objects and the Emotion datasets are pre-processed
using the SPM8 toolbox [76] as follows: Firstly, slice acquisition timing was
corrected across slices. Secondly, the images were re-aligned to the first slice
to correct head movements. Thirdly, all images were normalized to a standard
template given in SPM2. Then, the images were smoothed by using a 6 mm
full-width half maximum isotropic Gaussian kernel. Lastly, for each voxel, the
average of three highest values of 6 images which were captured at each trial
were averaged and assigned as the voxel intensity value for that trial. Also, AAL
regions [92] were segmented by registering the voxels to MNI space [89] by using
MARSBAR toolbox [10].

2.2.4 Tower of London (TOL) Dataset

The last dataset that we utilize is the Tower of London (TOL) dataset [71].
This dataset is collected at the Indiana University. The aim of their study
was to investigate the complex problem solving task of humans to the cortical
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structures that are related to problem solving. In particular, they seek to observe
the neural responses with respect to the goal hierarchy and the number of moves
to achieve the goal. In order to achieve that, the brain regions participants that
are differentially active during either the planning or the execution stages while
solving a series of Tower of London puzzles (see Figure 2.4) were identified.
In order to solve the puzzle, the participants were expected to move the top
ball from any of the three racks and put on the top of any other rack. By
performing that process iteratively, the participants were expected to reach a
goal state (Figure 2.4). The participants of the experiments were 22 graduate
students with ages between 19 and 38. We had the access to the data of 18 of
the participants in our studies which we present here.

The experimental procedure is as follows: At first, the participants were sub-
jected to a training period where the only participants that can solve the prob-
lems within seven moves during the training period were admitted to the fMRI
scans. In the scanning procedure the participants were presented with the prob-
lem for 5 seconds while the word "plan" was shown in the screen, during which
the participants were instructed not to execute the problem solving. After that
period, the patricipants could continue planning or begun execution of the solu-
tion where the word "execute" is presented on the screen. The execution period
took 12 seconds. Then, a rest period followed where the participants were fix-
ated on a cross on the screen. Each 590 second run contained 6 5-move problems
and 12 6-move problems, where only the 6-move problems were analyzed.

The images were gathered in 2× 2× 2 millimeters spatial resolution per voxel,
and smoothed with 8 mm wide Gaussian filter at half-maximum. Then, a high-
pass filter at 1/128 Hz cut-off frequency was applied to eliminate linear drifts.
The images were, then, registered to MNI space [71].

2.2.5 Train, Validation, and Test Sets

In this study, for all purposes of parameter tuning, the experimental data is
partitioned into three sets: Training, validation, and test. Since we are per-
forming single subject analysis for the Objects, Emotion, and TOL datasets, we
divide the dataset of each subject into three parts. For the Objects and Emotion
datasets, 4 experimental epochs form the training set, one epoch is for validation
and one for testing. For the TOL dataset, since there are only 4 epochs, we use 2
epochs for training and one each for validation and test. For all datasets, except
TOL, the experimental epochs (Objects, and Emotion) are permuted randomly
10 times to form individual cross validation runs. Since there are only 4 epochs
for each subject in the TOL dataset, 10 fold cross-validation meant re-use of the
same training data multiple times while only switching the test data with vali-
dation data. Thus, we run 6 fold cross-validation in order to ensure a different
training set for each fold. For all classification algorithms, parameter tuning is
performed for validation set. The test set results for the chosen parameters are
then reported as the end results.

20



2.3 Part 2: Multi Voxel Pattern Analysis (MVPA)

Currently, mainstream brain decoding applications use multi-voxel pattern anal-
ysis (MVPA) as opposed to univariate analysis of voxel intensity values. MVPA
employs methods from computer science and machine learning on groups of vox-
els in order to gain insight on the functional properties of their respective brain
regions, or to classify mental states of the participants that are induced by the
experimental tasks.

In the early years of the 21st century, fMRI images were mainly analyzed by
using univariate voxel analysis where the activity of each individual voxel is
contrasted across the cases when the subject is engaged with an experimental
task and when the subject is at resting state. The voxels whose activity are
significantly different than their resting state activity (measured via a t-test),
were considered to be correlated with the cognitive task. However, these univari-
ate methods are now obsolete, replaced by methods called multi voxel pattern
analysis (MVPA), which makes use of the activity of groups of voxels by using
modern computational tools such as pattern classifiers.

The main strength of MVPA methods lies in the observation that, each voxel is
representing a collection of neurons, for which, the activity of a single neuron is
uninformative if the whole collection of neurons is not considered. In a similar
vein, groups of voxels are deemed to be more informative than a single voxel
when they are used to understand the content and characteristics of the brain
networks that they represent. Moreover, using groups of voxels can allow us to
decode some sub-voxel level information from the images [50]. However, there is
a serious drawback of MVPA methods. As more and more voxels are included in
a pattern analysis scheme, the activity and the information content of individual
voxels can become less and less significant. As a result, informative voxels can be
overwhelmed by the noise of non-informative ones. For instance, in the extreme,
using voxels from the whole brain for cognitive state classification fails due to
the problem of overfitting as mentioned in Chapter 1.3.1.

Depending on the research questions of the fMRI experiments, the way to process
the data varies across brain decoding applications. Still, one of the most widely
used tools in brain decoding is the pattern classifiers. These tools are quite
successful for the identification of the cognitive tasks and the active brain regions
that are responsible for processing the underlying tasks [4]. They are also used
to study and diagnose neural diseases [26], and even thoughts and experiences of
the participants of the participants can be guessed [87]. In the next sub-section,
we present a detailed background on the brain decoding applications that use
pattern classifiers.

2.4 Pattern Classifiers for MVPA

Pattern classification is one of the primary methods of MVPA. For this strategy,
activities of voxels, (or some features derived from voxel activities) are repre-
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sented in a feature space. Then, a classifier that is trained on these features
are used to discern different cognitive states. The general procedure for training
classifiers and the basic notation for inputs and outputs are presented as follows:

Let x ∈ RNf be an Nf dimensional feature vector that represents a brain vol-
ume (or an aggregation of multiple brain volumes) with a label y ∈ L, where a
brain volume is the set of voxels captured at each scan of the MRI device. The
features can be the voxel activity values for each brain volume, or a transfor-
mation of them such as peak, or mean value of individual voxels across multiple
volumes. Also, in almost all MVPA applications the features are a subset, or a
transformation of the voxel activity values recorded at each brain volume which
we discuss in the following sub-sections. Here, L is the set of all labels each of
which corresponds to a mental state specified by the fMRI experiment.

A classifier, then, learns a mapping from a set of training samples (xtr) that
are represented by a matrix Xtr ∈ RNtr×Nf to a set of training class labels
Ytr ∈ LNtr . The training set of feature vectors is in matrix form where rows
correspond to experimental trials (samples), and each column correspond to a
different feature dimension, or the activity of a single voxel. The set of class
labels are represented in vector form, and Ntr being the number of training
samples. The way to form training data matrix can differ between datasets. In
the previous section, we have described how to select training datasets. Using
the training dataset, a classifier model can then be formed by using the training
features and class labels:

model = train(Xtr,Ytr), (2.1)

where train is a procedure for training a pattern classifier. The training proce-
dure usually involves using a separate set of validation samples Xval ∈ RNval×Nf

and class labels Yval in order to optimize classification parameters during the
training procedure.

Given the trained classifier, for a test sample which is an fMRI image that
correspond to an unknown mental state, the feature vector xte for that sample
can be formed by using the procedure that is applied to the training samples.
Using the trained model, the class label for the test sample, ŷte can then be
predicted by

ŷte = predict(model,xte). (2.2)

The predict procedure applies the mapping from the feature vectors to class
labels that correspond to mental states that is learned by the model to the test
samples. Here, the predicted class label ŷte may or may not be equal to the
actual class label yte for that sample. The details of the methodologies that
we use in this thesis regarding train and predict procedures are explained in
Chapter 3.

In the next subsection, we present the factors that affect the success of pattern
classification strategies for brain decoding.
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2.4.1 The Factors that Affect Brain Decoding Using Pattern Classi-
fiers

The success of the pattern classifiers in brain decoding depends on many factors:
(1) the similarity in the voxel representations with mental states with the same
label (i.e. within-class variance); (2) the difference of the voxel representations
of mental states with different labels (i.e. between-class variance); (3) whether
or not the training, validation, and the test samples come from the same distri-
bution; (4) the total number of training, and validation samples (i.e. the size
of the dataset for sufficient statistics); (5) the type of the pattern classifier; (6);
and lastly, the nature of the procedure that is used to form the feature vectors.
Let us examine how these problems are handled in the current brain decoding
literature in the following subsections.

2.4.1.1 Within-Class Variance in fMRI Data

One of the prominent factors which determines the classifier performance for
brain decoding is the variance of the fMRI data that represent the mental states
with the same label for the same subject. Within-class variance can be caused
by many factors including design of the experiment, the uncertainties introduced
by the image acquisition process and participant’s focus during the experiments.
The factors can cause systematic deviations or random noise.

As an exapmle for the systematic deviations, the tiredness of the participant can
cause loss of attention, thus results in the later sections of an experimental trial
to be less relevant to the presented experimental tasks or stimuli resulting in a
large within-class variance. We have observed such a case, when we examined
the results of a two class dataset (Objects dataset), where the accuracy of our
classifiers decayed as we analyzed the later part of each subject’s experimental
session. In order to account for such an effect, we use random sampling among
experimental trials for the formation of training, validation and test sets.

Random factors, on the other hand, are more problematic. The issue with the
training data with random noise is that the dataset can have outlier samples.
An outlying sample in the training set can then cause the classifier to be biased,
which is the result of overfitting during the training procedure. A biased classifier
has propensity to fail, when finding the correct decision boundary that separates
the examples from different categories. This issue can be partly remedied by
the application of regularization during the training session. Regularization
reduces the convolutions in the decision boundary of the classifier, and helps the
classifier to be less prone to the outlier examples. Regularization is widely used
in MVPA applications especially useful when the dimensionality of the feature
space is high. One way to apply regularization is to reduce the number of model
parameters of the classifier (see Chapter 3 for an example). Another way is
to regularize the feature space, where total number of significant features are
reduced by sparsification of the feature space [65, 20].
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2.4.1.2 Between-Class Variance in the fMRI Data

Another factor that determines the success of pattern classifiers is how distinct
the samples from different classes. For an fMRI experiment, the distincness of
the samples are determined by the distinctness of the mental states under con-
sideration and the specific stimuli to elicit those mental states. In addition to
that, an fMRI sample is a brain volume, a volume of voxels that correspond to
a mental state specified by the fMRI experiment. Given any degree of special-
ization within brain regions with respect to the mental tasks, some (if not the
most) of the voxels activities would not be relevant to the mental state specified
by the fMRI experimental setup. In a feature space composed of the voxel activ-
ity values, activities of the voxels which are irrelevant to the mental states can
overwhelm the activities of the relevant voxels thus reducing the between-class
variance. Limiting the voxels to be used for brain decoding to the voxels that
are highly correlated to the experimental tasks is a way to keep between-class
variance high [56, 18].

2.4.1.3 Distributions of Training, Validation, and Test Sets

For a certain pattern classifier to have comparable performance in training, val-
idation, and test sets, it is required to have the samples from all sets to come
from the same distribution. When this fact is kept in mind, it seems to be
reasonable to mix the samples from all epochs from an fMRI experiment when
forming training, validation and test sets. The reason for that is an experiment
can be performed by the same participant in multiple sessions sometimes span-
ning across days. However, such an approach would undermine the performance
of the classifier when the novel test samples are gathered much later than the
training of the classifier in a real scenario. Thus, it is suggested to not shuffle
the samples across experimental epochs [95].

2.4.1.4 Size of the Dataset for Sufficient Statistics

As the number of training samples increases for a classification problem, more
and more complex classifiers can be utilized to solve the problem, where exper-
imental noise becomes less of an issue. For instance, deep neural networks are
able to learn highly complex functional relationships if the necessary amount of
training data is available. The required number of data samples can be in the
order of tens of thousands, depending on the complexity of the problem, and
more is always the better [39]. However, in this age of big datasets and deep
neural networks, the study of MVPA is limited by the number of fMRI sessions
a participant can take. Standard fMRI experiments are run with 300-400 trials
per subject, which is hardly enough for justifying any complex (deep) classifiers
[71, 67].

In order to address the above problem, an approach that aggregates and registers
data from multiple subjects have been utilized, which is called shared response

24



modeling (SRM). Using this model, the responses from individual voxels are
aggregated in time domain to register data from across subjects [17, 44]. As a
result, the data can be gathered from multiple subjects with application of the
same experimental procedure. The drawback of this method is the data being
coarsely represented in the time domain, which might not be suitable for some
temporally sensitive experimental stimuli [19].

The Human Connectome Project (HCP) dataset is formed for such purposes,
where each voxel is precisely aligned to allow across-subject studies [8]. Such
large datasets can be analyzed by using data intensive deep learning methodolo-
gies such as convolutional autoencoders [16]. Also, while not necessarily named
as SRM’s, wavelet transform in the time domain is frequently perfomed to ag-
gregate the temporal aspect of data in the across-subject datasets[80, 29]. These
methods however, are not suited for event-related experiments were each stim-
ulus presented in very small time-frames.

2.4.1.5 Type of the Pattern Classifiers Frequently used in Brain De-
coding

There is a wide array of possible classifiers used in MVPA applications including
decision trees, linear classifiers, and classifier ensembles. Let us go over the ones
that are most commonly used in MVPA applications while we discuss their pros
and cons.

Decision tree classifiers form a tree where at each branching, the training data
is split in two which optimize a cost function. The cost function can be an
information theoretic measure such as minimization of class-entropy, or it can
be as simple as selecting a feature and setting a value that splits the samples
best where each of the following branches contains more samples from a specific
category than the other. The tree grows until at each final node there are
samples from only one category, or a limit for tree depth is reached [83].

One problem with decision tree classifiers is that they can create overly complex
trees which are prone to overfitting. In order to deal with this problem, tree
depths can be limited, or decison tree ensembles can be used [82]. Such ensembles
(decision forests) are much more robust to overfitting, especially for the small
datasets. Thus they are widely used in MVPA applications such as classifiying
alcohol dependendence in patients using their brain images [100], classifying
resting state MRI images in order to detect Alzheimer disease [84], or subtyping
cognitive profiles for autism spectrum disorders [35].

Linear classifiers such as logistic regression and support vector machines (SVM)
are the type of classifers that partition the feature space and separate the classes
by using a decision hyperplane. Due to their simplicity, this type of classifiers
are more robust to overfitting than decision trees. A linear classifier only learns
as many parameters as the size of the feature vectors, and the parameters can
be subjected to regularization in order to make the classifier more robust to
overfitting. These properties make them one of the best classifiers to be used
in MVPA applications where training samples are limited in number while the
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data is noisy and feature dimensionality is high. Kuncheva et al. have shown
that support vector machines are one of the best standalone classifiers for brain
decoding [55].

While the linear classifiers are robust to overfitting, their simplicity might pre-
vent them from learning intricate relationships between the features and the
data labels. This problem can be addressed by using an ensemble of classifiers
each of which operates on a part of the dataset (bagging) [34], or a part of the
feature space such as stacked generalization, boosting, and random sub-spaces
[69, 5, 68, 55, 53]. The final decision using the classifier ensemble is then made
by using a voting procedure, or training an additional classifier by using the
outputs of the classifier ensemble.

2.4.1.6 Construction of Feature Vectors

The feature vectors are the final representations of the data to be fed to the
pattern classifiers, which are transformed from the voxel intensity values across
the experimental samples. In order to form the feature vectors, some irrelevant
voxels can be discarded while some other voxel activities can be combined within
a low dimensional space by using proper transformations. In these final repre-
sentations, the source of the problem of overfitting (like noise and high feature
dimensionality) can be eliminated to a certain extent, while making the sam-
ples that belong to different categories seperable for the classifiers using voxel
transformation or elimination strategies. In the following subsections we discuss
these strategies.

2.4.2 Voxel Selection Strategies for MVPA

As we have mentioned in the previous sections, fMRI data are problematic for
decoding mental states because of four major factors. The first one is the high
feature dimensinality of the raw voxel space (20 to 180 thousand voxels per
image), and the second one is the limited number of samples for each cognitive
state. Due to these factors, end-to-end methods (the methods that take the
raw, or slightly pre-processed data to achieve the final classification) such as
convolutional deep learning models are not easily applicable to brain decoding
applications, except for learning feature representations when they are applied
to a voxel space with already reduced dimensionality [37].

Thirdly, overfitting is a major problem for brain decoding. Reducing the dimen-
sionality of the feature space, while preserving the relevant features is a direct
solution to that problem. Thus, some form of feature transformation/selection
is required for a successful brain decoding strategy.

Finally, one of the major drawback of voxel selection strategies is the lack of a
robust measure which eliminates redundant and irrelevant voxels with respect
to the underlying mental process. Whether the selected set of voxels is formed
by using a ROI or a voxel selection algorithm, there is always a possibility to

26



leave out the voxels that are relevant to the mental tasks in fMRI experiments.
In some cases, their activity range might be so small, that would make them
irrelevant with respect to the voxel selection criteria (for instance ANOVA),
while they might become relevant if they are combined with a complementing
set of voxels. For instance, a set of voxels that encode color can be combined
with a set of voxels that encode texture in order to make a decision on the
category of an observed object.

2.4.2.1 ROI Selection

Region of interest (ROI) selection is a method to isolate the regions that are
effective for the underlying mental task to measure a predefined set of mental
processes. ROI selection strategy can be powerful when the experimental tasks
are correlated with easily localized brain regions. From our preliminary experi-
ments we have concluded that classifiers that are use feature vectors which are
the raw voxel intensity values from relevant regions (such as occipital cortex
for Objects dataset) can outperform that use the voxel intensity values from the
whole brain, in which case the classification accuracy is equal to the chance level
for selecting the class labels randomly. Further improvements to this approach
are made by using the information regarding the time-course relations among
the voxels that are in a spatial [74, 28] or functional [36] (calculated using the
correlation of voxel time-courses over the experimental epochs) neighborhood.
A further improvement for this approach is brought by including the full time-
course of voxel intensity values instead of the peak values at each epoch of an
fMRI experiment [73].

A problem with the ROI selection is that even the simplest tasks can create
widely distributed brain patterns due to the nature of information processing in
the brain. In turn, it can lead to inferior classification performance due to the
omitted information. For example, cognitive processing of semantic categories,
which is a main research topic, is known to be distributed across various sen-
sory and motor cortical areas as well as medial temporal lobe and occipital and
parietal cortices [43, 66]. Also, emotional processing was known to be focused
in amygdala [1] and prefrontal cortex [58]. However, more recent fMRI studies
suggest emotional processing is also spread through the limbic system [51], me-
dial prefrontal, and anterior cingulate cortices [31]. Another problem is that the
prior knowledge regarding the brain regions that contribute to the processing of
the experimental task might not be available at all.

The most widely used strategy for MVPA is to reduce the dimensionality of
the feature space by using voxel selection/elimination. Feature regularization
methods that we mentioned in the previous subsection is a similar approach
where the voxels not necessarily selected, but their activity values are set low
that they unable to affect the classifier outcome [65, 20]. However, the most
common methods for voxel selection are: analysis of variance (ANOVA), mutual
information (MI) and the method that use SVM weights [56].
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2.4.2.2 Voxel Selection with ANOVA

ANOVA is a methodology to determine the likelihood of two sets of data to
be generated by the same stochastic processes. This method is applied to each
individual voxel in order to determine if the voxel responds significantly different
with respect to one experimental condition when compared to another. Usually
this method is used for univariate analysis of voxels (without MVPA) in order
to determine the voxels that are more active, when the experimental condition
is presented when compared to the resting state. For MVPA, the voxels that
are more active with respect to their resting state activity, and a number of
most active voxels can be selected. Then, the voxels can be used for pattern
classification [2, 62, 55].

2.4.2.3 Voxel Selection with Mutual Information (MI)

Chou et al. [18] introduces a method for voxel selection by using mutual in-
formation (MI). In the original article Chou et al. [18] used beta-map values
instead of the voxel intensities for their analysis.

For the feature selection, suppose that we have the training data matrix Xtr

of size Ntr × Nυ, and class labels Ytr of size Ntr, where Ntr is the number of
training data samples, and Nυ is the initial number of voxels. The feature matrix
is formed by normalization of the input features by calculating the z-scores for
each column of the original input. The elements of Xtr is denoted by xij and
the elements of Ytr is denoted by yi, where yi ∈ L = {0, 1, ..., Nl− 1}, and Nl is
the number of class labels.

Mutual informationMI(Y,υj) across all class labels each of wich corresponding
to mental states, and the voxel υj, which denotes jth column ofXtr, is calculated
by using the formulation proposed by [18]

MI(Y,υj) =

Nl−1∑
y=0

∫
υj

p(y, xj)

(
p(y, xj)

p(y)p(xj)

)
dxj, (2.3)

where p(y, xj) denotes p(Ytr = y,υj = xj). The distribution p(y, xj) is esti-
mated by using the chain rule p(y, xj) = p(y)p(xj|y), and the Parzen-Rosenblatt
window approximation p̂(xj|y) of p(xj|y):

p̂(xj|y) =
Ntr∑
i=1

δy,yiΓ

(
xj − xij

σ

)
/

(
σ

Ntr∑
i′=1

δy,yi

)
, (2.4)

where δy,yi = 1 if y = yi, 0 otherwise. The kernel function Γ(·) is Gaussian with
σ as the standard deviation. The distribution p(xj) is calculated by marginal-
ization: p(xj) =

∑Nl−1
y=0 p(y)p(xj|y), and we assure p(y) is a uniform distribution

with 1/Nl.
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After computing the mutual information values for each voxel, they are sorted
and a pre-specified number voxel indexes with the highest corresponding mutual
information values are selected.

2.4.2.4 Voxel Selection with Support Vector Machine (SVM)Weights

The voxel selection algorithm with SVM weights is presented in [55]. The pro-
cedure is as follows: First, two class SVM classifiers are trained by using the
training data for each of Nl classes. In this setup, for each classifier, the remain-
ing Nl − 1 classes are all labeled as the second class, where L being the set of
all class labels and Nl is the number of class labels. Then, for each classifier,
the SVM weights are calculated and their absolute values are sorted into sep-
arate lists. Lastly, each list is visited one by one. With each visit, the voxel
index that is not selected previously, and associated to the top weight in the list
is collected. This procedure is continued until a pre-specified number of voxel
indexes are selected.

2.4.3 Dimensionality Reduction Techniques for MVPA by Feature
Transformations

While the voxel selection methods are used for simplifying the feature space,
feature transformations are used in conjunction with these methods to better
represent the data in the feature space. In this section we will discuss the feature
transformation methods that are used for MVPA.

Principal component analysis (PCA) and independent component analysis (ICA)
are widely used feature transformations for MVPA. By the use of such linear
transformations, the initial voxel space can be mapped to a lower dimensional
feature space, which alleviates the problem of overfitting for the pattern classi-
fiers.

Principal component analysis use singular value decomposition to find the eigen-
values and the eigenvectors of the training matrix Xtr ∈ RNtr×Nυ . Then, the
eigenvalues are sorted. A number of eigenvalues that correspond to the largest
eigenvalues are then used to construct a linear mapping from the training matrix
to a lower dimensional matrix X ′tr ∈ RNtr×Ne , whose feature dimensionality is
equal to the number of eigenvectors that are used in the transformation (Ne).
Since it is a linear transformation, PCA can be considered as another way of
voxel elimination, where this time, linear compositions of voxels are selected.
This method is usually combined with ICA in order to pinpoint the voxels that
are involved with the fMRI tasks.

On the other hand, independent component analysis models the signal (the voxel
intensity values) as a composition of the signals coming from a number of (Ne)
sources. The sources then can be separated as long as they have non-Gaussian
signals, and if they are statistically independent. ICA has been used to further
refine the set of voxels that are already been selected by using a ROI or another
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voxel selection algorithm such as PCA [11]. These methods are especially useful
for combining multiple fMRI datasets (i.e. forming SRMs [19]) on the same
functional task and extract useful information from the combined sets [59].

2.4.4 Mesh Network Representation

While the use of voxel intensity values as features for pattern classifiers has
provided promising results for brain decoding, methods that use mesh network
representation has shown that information encoded by a network of voxels can
be extracted and utilized for brain decoding [74].

Meshes within the local networks of voxels have been proposed to capture the
information latent in the brain networks [74]. A mesh around a single voxel is
formed by a number voxels that are in proximity with that central voxel either
spatially [74], or functionally [36]. In this model, the value (or the time-course
[73]) of each central voxel is represented by using a weighted linear superposi-
tion of the surrounding voxels. The connection weights are estimated by using
Levinson-Durbin Recursion [93]. The estimated connection weights are then
used as a representation of the central voxel. When this procedure is performed
on all voxels of interest, an alternative representation of voxels that are composed
of connection (mesh) weights are obtained.

It has been shown that using mesh weights can yield more accurate results for
pattern classification than the values of the voxel intensities [74, 36, 73]. Also, the
mesh weights themselves can be used to analyze the task dependent connectivity
patterns in the brain networks [29]. Furthermore, mesh network representations
can be encoded by Fisher-vectors, or bag of visual words for decoding mental
tasks and mental states from fMRI images [30]. One drawback of this method
is the high feature dimensionality in the final representation, which limits the
number of voxels that can be used with this method.

2.4.5 Time-series analysis

The datasets like Human Connectome Project (HCP) provides voxel intensity
values of task related voxel activity over a period of time. Therefore, the se-
quences of images that are gathered during an experimental task can be pro-
cessed by methods that use time-series analysis such as wavelets or short-time
Fourier transforms. Such methods are especially useful for brain connectivity
analysis. For instance, Richiardi et al. use discrete wavelet transform to repre-
sent averaged voxel activity in AAL regions in different time-scales [80]. Then
they form connectivity graphs by using the correlations between each region at
each time-scale. The connectivity graphs can then be used to form feature vec-
tors for classification purposes [80]. Ertuğrul and Yarman-Vural on the other
hand, formed mesh networks by using the wavelet transformed AAL region av-
erages on HCP dataset [29].

While these methods are useful to analyze and decode mental states across
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the subjects, they are not applicable to event-related experiments, where each
stimulus is presented in very short time durations. In such cases time series of
a trial is limited to few samples and there is not much to be gained in a time-
series analysis, except for the use of their direct correlation for determination of
functional proximity of individual voxels [73].

2.4.6 Methods that use Limited Voxel Spaces for Brain Decoding

Voxel selection is not the only way to define a feature space to the input of a
classifier that is robust to overfitting. Training multiple classifiers on sub-sets of
voxels is an alternative way to reduce the dimensionality. Searchlight and voxel
clustering methods are two popular approaches to reduce feature dimensionality,
as we discuss in the following subsections.

2.4.6.1 Searchlight Methods

Searchlight methods move a searchlight window that over all voxels. At each
voxel, a number of voxels in the spatial proximity of the center voxel, including
itself are used to train a classifier [32, 45]. This way, the feature dimensionality
is reduced and the classifier becomes less prone to overfitting. Also, the regions
that is sensitive to the experimental tasks can be determined by selecting the
voxels where the searchlight classifier performs better than the chance level.

Searchlight methods offer a way to select out groups of voxels that are significant
for the experimental task. For instance, Kamitani and Tong used a 3 × 3 × 3
searchlight (1 voxel in each spatial direction around the central voxel includ-
ing the diagonals) in order to detect voxels that are effective in distinguishing
oriented line gratings in the visual cortex [50]. However, the exact voxels that
are effective in a particular cognitive task not certain with this methodology.
Any voxel that is significant for the task in the 3 × 3 × 3 window can make
the window sensitive for a classifier, while the others might not be significant
at all. Furthermore, this method only considers spatial neighborhoods while a
group of voxels can be significant together if are used for classification while
they are seperated [32]. Also, the size of the searchlight window determines the
effectiveness of the method, while there is not any apriori way to know which
size should be used.

2.4.6.2 Clustering Methods for Brain Parcellation

Clustering is a technique that is used to determine "similar" sub-groups of data-
points within a dataset. Clustering methods are defined with respect to a simi-
larity metric, which define the relationship between individual data points, and
a grouping algorithm that puts the similar data points in the same group. Typ-
ically, clustering methods employ a parameter to determine the size, or the
number of data clusters. In order to determine correct clustering parameter
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that forms the ideal set of clusters, it is necessary to experiment with different
clustering parameters and use a validation measure to test the results.

In the literature of fMRI analysis, clustering is mostly used on resting state
fMRI data for functional and automated brain parcellation. For those studies,
validation is done by comparing the clustering results to the functional brain
atlases such as AAL [9, 21]. Clustering is also used for grouping the region
responses after a time series analysis in order to find out similarly responding
brain regions.[80].

Aksan et al. [3] suggested functional Markov Random Fields model to cluster
voxel intensity values to find representative sub-regions in the brain that can
be used for classification purposes. Their study provides a better representation
with respect to the classification accuracy of the classifiers that use the voxel
intensity values of the voxels within individual clusters as feature vectors than
state-of-the-art clustering methods, such as K-Means, however their method
is computationally more expensive than them. On the other hand, Moğultay
formed a two layered cognitive architecture in order to represent fMRI data. The
first layer contains mesh representation between individual voxels while second
layer has mesh representations between supervoxels which are formed by N-Cuts
clustering [70]. The resultant representations were then used as the inputs for a
classifier ensemble. Other than the studies that are the precursors of this thesis
[5, 68] where we have employed a primitive form of BRE, the usage of voxel
clusters for the classification of fMRI images is limited to the above mentioned
studies, to the best of our knowledge.

2.5 Chapter Summary

In this chapter, we presented the state of the art of brain decoding methods.
We, first, introduced multi-voxel pattern analysis (MVPA) for brain decoding.
Then we described various methods of MVPA that are based on the pattern
classifiers.

We explained pattern classification strategies for MVPA. We, first, introduced
the pattern classification paradigm in general. Then, we presented the factors
that affect the success of pattern classification for MVPA. We pointed out the
difficulties that stem from the nature of the fMRI data for classification strate-
gies, where the most prominent of them was the problem of overfitting.

We presented the way that the problem of overfitting is handled in the current
state-of-the-art brain decoding literature by using voxel selection, feature trans-
formation, and by limiting voxel spaces (by using searchlight, or clustering). We
observed that voxel selection or transformation strategies can leave out voxels
relevant to the experimental cognitive tasks while searchlight methods may not
be very accurate with the region predictions. Following these observations, we
propose a clustering based brain parcellation model for brain decoding:

In this study, we use clustering for the non-resting state fMRI data in order to
come up with a functional segmentation that is correlated with the tasks in the
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experiments. The clustering approach allows us to run classifiers on small sub-
sets of voxels that are also functionally correlated, which helps us to deal with
the problem of overfitting. Also, training a classifier per voxel cluster provides
an effective basis for a classifier ensemble as shown in our preliminary study [5],
which improves our chances to come up with a better classifier model in the end.
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CHAPTER 3

A NEW BRAIN DECODING TECHNIQUE: BRAIN
REGION ENSEMBLES (BRE)

In this chapter, we present a new computational model for brain decoding called
Brain Region Ensembles (BRE). The primary purpose of BRE is to model the
distributed representations of mental states within the brain for brain decoding.

Functionally homogenous regions of brain has been identified by dedicated ex-
periments and cellular studies, which are then mapped onto brain atlases [92].
However, the contribution of each region for the mental representations varies for
different mental states. Also, mental representations of stimuli or tasks that are
presented in fMRI experiments are known to be distributed across multiple brain
regions. For instance, mental representation of a concrete object is distributed
across occipital, temporal, parietal, sensory, and motor cortices [66, 4], while
an emotional state such as fear is represented at middle frontal gyrus, fusiform
gyrus, insula, and amygdala [88]. Even within the same brain region (such as
occipital cortex) sub-regions can encode different aspects of the given stimulus
such as color, shape, and texture [54, 13]. We suggest that, as long as the men-
tal representations are spread across multiple voxels, activity patterns from an
fMRI experiment can be used to identify functionally homogenous voxel groups
that capture distinct aspects of distributed mental representations. These ho-
mogenous voxel groups, which we call supervoxels, serve as the basic building
blocks of BRE.

In BRE, supervoxels are not just functionally homogenous voxel groups. We
assume that each supervoxel represents a distinct aspect of the mental state
that is under consideration. For instance, when we consider the semantic repre-
sentation of a concrete object such as a ball, we propose that each brain region
encodes a specific aspect of the semantic representation. The visual cortex may
encode the visual shape of a ball while the motor cortex encodes the articulation
of the hands when grabbing a ball. Similarly, auditory cortex could encode the
sound of a ball jumping and the sensory cortex might be encoding the feel of a
ball when held. We propose that a combination of these distinct representations
constitute the overall representation of a mental state. Consequently, if these

35



distinct representations can be identified in an fMRI image, as supervoxels, their
combined activity can be used for the recognition of the underlying mental state.
That is the reason for the use of supervoxels for the recognition of mental states
in BRE. We propose that, due to their diversity, these homogenous voxel groups
can form the basis of an ensemble classification strategy that is more effective
than the usual voxel selection methodologies. For the classifier ensembles, BRE
makes use of fuzzy stacked generalization (FSG) and random subspace (RS)
ensembles which we explain in this chapter. In our methodology, on one hand,
FSG enables fusion of the information contained in the supervoxels that are
distributed across the brain. On the other hand, RS provides a robust way to
combine a multitude of FSG ensembles, each of which is based on a different set
of supervoxels.

Supervoxels are not only useful as the basic building blocks for ensemble learning
in BRE, but also, they provide a way to determine brain regions that are effective
in the processing and the representation of the stimuli/tasks provided in fMRI
experiments. Unlike voxel selection methods such as ANOVA, supervoxels pro-
vides access to multi-voxel activity for brain region specification. Furthermore,
in contrast to searchlight methods, homogenous voxel groups are less likely to
include irrelevant voxels when compared to the voxels included in a searchlight
for brain region specification.

An additional strength of BRE with respect to voxel selection is that BRE makes
use of the voxel activity from the whole brain instead of a selected set of voxels.
This aspect of BRE is more likely to capture the latent information within the
voxel groups which would be eliminated by the voxel selection processes.

In the first four sections of this chapter, we explain the stages that we presented
in the Figure 3.1. In Stage 1, we describe how to form supervoxels using the brain
parcellation methods, including K-Means clustering, spectral N-Cuts clustering
and AAL brain atlas. In Stage 2, we present FSG algorithm and its application
to supervoxels, thus forming the set of base layer classifiers. Following that, in
Stage 3, we explain how we combine supervoxels in order to form subspaces of
supervoxels, where each subspace is used to train a meta classifier for FSG. In
Section 4, we describe how to form Brain Region Ensembles by the utilization
of meta classifiers on subspaces of supervoxels.

After going over our methodology, we present the tools that measure classifier
diversity that we use to compare BRE with the state-of-the-art MVPA methods
that use random subspace ensembles with voxel selection. Lastly, we describe a
method to identify discriminative supervoxels.

3.1 Stage 1: Supervoxels and Brain Parcellation

We begin this section with the steps we take for data preparation. Following
that, we provide the definition of supervoxels. Then, we follow with the descrip-
tion of the homogenity metric we use, and we explain the logic behind the choice
of the similarity metric. Lastly, we present the methods that we use to form
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Figure 3.1: Schematic layout of the suggested Brain Region Ensembles. In Stage
1, highly correlated voxels are grouped into clusters by using either a clustering
algorithm (K-means or N-cuts), or a functional brain atlas (AAL). In the second
stage, for each supervoxel, a base layer classifier is trained by using one-leave-
out cross validation in the training set. Using these classifiers, class posterior
probabilities are acquired for training, validation and test samples. In the third
stage, subsets of supervoxels are formed. In the fourth stage, meta classifiers
that are based on subsets of supervoxels are formed and then used for brain
decoding. In this diagram, Nc stands for number of supervoxels, and Nψ stands
for number of supervoxel subsets.

voxel clusters.

3.1.1 Data preparation

In BRE, we aim to capture the activity of the brain regions that are specialized
for encoding/processing different aspects of a given stimulus, or a mental state
(such as color, texture, or shape of a visual object). In order to achieve this goal
we partition the brain volume of an fMRI image in functionally homogenous
regions that we call supervoxels, where each supervoxel c is a set of voxel indices.
In order to enforce functional similarity, we require the voxels in the supervoxel
satisfy a homogenity predicate. The formal definition of a set of supervoxels is
given below.

Let the ith sample xi = [xi,1 xi,2 ... xi,Nυ ] be a row vector of voxel intensity
values measured from all voxels during a single cognitive task for a single subject,
where Nυ is the number of voxels in an fMRI image for a particular subject.
Each sample is the vectorized form of a brain volume that is captured at a time
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instance that correspond to a peak value after a stimulus presentation from an
event related experiment (Objects, or Emotion datasets), or at any time instance
that is in either "plan", or "execute" phases for the images in TOL dataset. Each
sample x is then labeled with a class label y ∈ L where L = {0, 1, . . . , Nl − 1},
Nl being the number of class labels. The vector of class labels from all samples
is denoted by Y ∈ LNs

The design matrix X ∈ RNs×Nυ is formed by using all samples {xi}Nsi=1 for a
particular subject, where Ns is the number of all samples, and Nυ is the num-
ber of voxels. Here, each sample x corresponds to a row of the design matrix
X. Conversely, each column of the design matrix, which is a vector of voxel
intensity values υj ∈ RNs for all samples, where the jth voxel is denoted by
υj = [x1,j x2,j ... xNs,j]

T . Here, T is the transpose operator. We use the
convention where x specify the samples (which is a row of the design matrix)
and υ specify the voxels (which are columns of the design matrix) for the sake
of clarity in the notation that we use in the following sections.

Given a design matrix X, we form training (Xtr ∈ RNtr×Nυ), validation (Xval ∈
RNval×Nυ), and test (Xte ∈ RNte×Nυ) matrices for the suggested brain decoding
methododology, where Xtr ∪Xval ∪Xte = X, and Ntr +Nval +Nte = Ns. Here,
Ntr, Nval, and Nte correspond to number of training, validation, and test samples
while Nυ correspond to the number of voxels. The set of labels correspond to
these data matrices are denoted as Ytr ∈ LNtr , Yval ∈ LNval , and Yte ∈ LNte .
Train, validation, and test sets are split within subjects for Objects, Emotion,
and TOL datasets as specified in Chapter 2.

3.1.2 Supervoxels

Let υj ∈ RNs be a vector of voxel intensity values of jth voxel across all samples
from an fMRI experiment for a subject, where each υj correspond to the jth
column of the design matrix X, and Ns is the number of samples. Furthermore
let c be a supervoxel which is a set of voxel indices. Given a similarity predicate
P , voxels indexed by j and j′, where j, j′ ∈ J = {1, 2, ..., Nυ}, belong to the
same supervoxel c such that j ∈ c ∧ j′ ∈ c if and only if:

P (υj,υj′) = TRUE (3.1)

The similarity predicate for the supervoxels that are formed using AAL regions is
that voxels indexed by j and j′ being in the same brain region that is marked by
AAL. Similarity predicates for supervoxels formed by the clustering algorithms
use homogenity metrics and the algorithms themselves which are described in
the following subsections.

For the set of all voxel indices J = {j}Nυj=1, a clustering algorithm forms a set of
supervoxels Cθ using the clustering parameter θ ∈ Θ = {θ1, θ2, ..., θNθ}, where
θ is a pre-set number of clusters for K-Means and N-Cut clustering and Θ is a
set of clustering parmeters θ. since we do not know which clustering parameter
θ provide the most suitable brain parcellation for our purposes, we analyze the
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set of supervoxels generated by each parameter Cθ individually, as well as we
analyze the set of all supervoxels with all clustering parameters C =

⋃
θ C

θ

Thus, a set of supervoxels Cθ = {cθ1, cθ2, ..., cθNθ
c
} is formed for each clustering

parameter θ, where cθ ⊂ J , and for each cθ ∈ Cθ. Here, N θ
c is the number of

supervoxels in the set of supervoxels Cθ.

For a clustering parameter θ, each supervoxel cθ ∈ Cθ is disjoint:

cθ,cθ ′∈Cθ⋃
cθ 6=cθ ′

(cθ ∩ cθ ′) = ∅. (3.2)

For each supervoxel c, training (Xc
tr ∈ RNtr×Nc

υ), validation (Xc
val ∈ RNval×Nc

υ),
and test (Xc

te ∈ RNte×Nc
υ) matrices are formed using the voxel intensity values for

the voxels indices j ∈ c by horizontal concatenation of corresponding columns
{υtr,j}j∈c from training (Xtr), {υval,j}j∈c from validation (Xval), and {υte,j}j∈c
from test (Xte) matrices. Here, N c

υ signifies the number of voxels in the super-
voxel c while Ntr, Nval, Nte are the the number of samples in training, validation
and test sets respectively.

In this study, various clustering techniques as well as AAL regions are used to
form supervoxels. Since there are no a priori ways to know which clustering algo-
rithm works best for our brain decoding methodology, we explored two different
algorithms that have some essential differences in their approaches: Spatially
constrained normalized cuts clustering (N-Cuts) [21], and K-Means clustering.
Also, we use brain regions specified by AAL (Automated Anatomical Labelling)
as supervoxels.

The essential difference between N-Cuts and K-Means algorithms is that K-
Means algorithm only uses functional correlation between the voxels to form
supervoxels, while N-Cuts algorithm proposed by Craddock et al. has a spatial
constraint. The constraint is satisfied when every voxel within a particular
supervoxel is in spatial proximity with at least one other voxel of the supervoxel.
On the other hand, supervoxels specified by AAL serve as a baseline to compare
the effectiveness of the other clustering algorithms.

3.1.3 Homogenity Metric

The critical design issue of all clustering algorithms is the selection of a simi-
larity metric. For this purpose, we use Pearson correlation coefficient. Pearson
correlation coefficient is a commonly used metric for fMRI image analysis [21].
The reason for heavy use of this metric for fMRI image analysis lies in the work-
ing principles of the human brain. Given a stimulus, or an experimental task,
various regions of the human brain register the stimulus or engages in the pro-
cessing of the task at different rates. For example, a visual stimulus progresses
within the brain from Thalamus to early visual areas to Temporal and Parietal
lobes in a sequential manner, and using multiple pathways in parallel. There-
fore, regardless of the signal intensity, as long as the shape of the waveform of
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the activation of voxels are similar, the similarity conveys crucial information
about both the topology of the voxel network and the function of the voxels.
Since Pearson correlation measures linear correlation between two variables, the
correlation coefficient between the voxel intensity values of two voxels for a se-
ries of scans can convey the information regarding how similar these two voxels
behave with regards to experimental conditions.

For the purpose of clustering, we first obtain voxel intensity values υtr,j across
all the training samples for each voxel index j ∈ J = {1, 2, ..., Nυ}, where Nυ

is the number of voxels in a brain volume. If we consider two voxel indices j
and j′, such that υtr,j and υtr,j′ ∈ RNtr are the jth and j′th columns of Xtr,
where they are the voxel intensity values of all samples for jth and j′th voxels
in vector form, while Ntr being the number of training samples. The exact
correspondents of training samples are explained in the previous subsection.
Then, Pearson correlation ρj,j′ between these voxels activations is defined as:

ρj,j′ =
cov(υtr,j,υtr,j′)√

var(υtr,j) · var(υtr,j′)
, (3.3)

where cov stands for covariance and var stands for variance between the random
variables υtr,j, and υtr,j′ .

3.1.4 Spatially Constrained Normalized Cuts Clustering (N-Cuts)
for Brain Parcellation

The first clustering algorithm that we employ for brain parcellation is the spec-
tral N-Cuts clustering algorithm suggested by [21]. This algorithm employs
spatially constrained normalized cuts for clustering. In order to perform the
clustering, first, a connectivity graph G is formed by using the voxel to voxel
similarity matrix of all voxels S = {ρj,j′} ∈ RNv×Nv by using (Equation 3.3) as
the similarity metric. Then, the graph is further constrained by limiting the con-
nectivity of each voxel to its 26 direct neighbors in the 3D voxel grid. That is to
make sure make sure the voxels in a parcel are always spatially enclosed within
a single region. Lastly, graph-cut is performed by using N-Cuts algorithm to
obtain correlated and spatially connected voxel groups (sub-graphs of G). The
clustering parameter for this algorithm specifies the number of sub-graphs. The
N-Cuts algorithm stops when the specified number of seperate sub-graphs is
reached.

Due to the spatial proximity constraint enforced above, any voxel in a cluster
must be spatially connected to at least one other voxel in the cluster. This is
the primary difference of this algorithm compared to K-Means clustering.

N-Cuts algorithm can be summarised as follows. Given a graph G, a graph cut
algorithm that cuts the graph in two regions A and B can be formalized by the
minimization of the sum of connection weights (ρj,j′) of the voxels (j, and j′)
that connects these two regions:

40



Cut(A,B) =
∑

υj∈A,υj′∈B

ρj,j′ . (3.4)

However, a procedure that is applied repetitively to the graph that uses the above
cost function ends up with isolated voxels in the end [21]. N-Cuts algorithm
avoids this problem. Using this algorithm, for every cut region, the cut cost is
normalized by using the sum of the connection weights of the voxels belong to
that region between all other voxels in the graph. So the N-Cuts cost function
is as follows:

JCut(A,B) =
Cut(A,B)∑
υj∈A,υk∈G ρj,k

+
Cut(A,B)∑
υj′∈B,υk∈G

ρj′,k
. (3.5)

By minimizing the cost function (Equation 3.5), the graph G is cut so that a
number of regions specified by the clustering parameter remains.

3.1.5 K-Means Clustering for Brain Parcellation

K-Means is a clustering algorithm that is used to iteratively determine the lo-
cations of a pre-specified number (where K comes from) of cluster means [61].

The algorithm starts with the initialization of θ = {1, 2, ..., K} cluster means
{ῡk}k∈θ in random locations in the voxel space. The voxel space is formed by
the vectors {υj,tr}j∈J , of voxel intensity values from the samples that are in the
training set, where , where υj,tr ∈ RNtr and ῡk ∈ RNtr . Here, J = {1, 2, ..., Nυ}
is the set of all voxel indices, Nυ is the number of voxels in a brain volume,
Ntr is the number of training samples, while K is the number of clusters. One
minus Pearson correlation (1−ρj,k) (Equation 3.3) is used as the distance metric
between the cluster means ῡk and the vectors of voxel intensity values υj,tr
that correspond to each voxel index j . The algorithm works in two phases.
In the first phase, every voxel is assigned to the nearest cluster mean (thus
forming supervoxels ck ⊂ J), followed by the recalculation of the cluster means.
After sufficient iterations, the second phase starts where each individual voxel
is re-assigned, if doing so reduces the total distance of the voxels to the cluster
means, and all the means are re-calculated for each re-assignment. This phase
is repeated until the change in the sum of the distances (DTotal) of voxels to the
nearest cluster means that they are assigned to are small enough, where:

DTotal =
∑
k∈K

∑
j∈ck

(1− ρj,k) (3.6)

In this study, the whole algorithm is run 500 times for different initializations
of the means and the best result with minimum total distances are used in the
further stages of BRE. We used the MATLAB implementation of this algorithm.
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3.2 Stage 2: Fuzzy Stacked Generalization for Supervoxels

Once we partition the human brain into supervoxels, each of which consists of
highly correlated voxels, the nexst step is to train a seperate classifier using the
voxel activities within each supervoxel. This step enables us to investigate the
role of each supervoxel which contribute to a pre-defined mental task or stimulus.
While some voxels can be obselete, others may be crucial for the underlying
mental task or stimulus. The suggested BRE technique use ensembles of the
classifiers each of which are trained using a specific supervoxel. As mentioned
previously, the aim here is to model the activity of specialized brain regions that
represent or process a specific aspect of a given stimulus or mental task. We
propose to capture the activity of specialized brain regions in terms of voxel
activity in supervoxels. In order to capture the voxel activity and later on
combine them in order to decode the mental state elicited by the mental task
or stimulus, we use Fuzzy Stacked Generalization (FSG) algorithm.

Fuzzy Stacked Generalization (FSG) is an ensemble learning algorithm by Özay
and Yarman-Vural [75]. In the original implementation, the algorithm is used
to fuse the features spaces, each of which represents a specific attribute of the
dataset where classification is performed. For instance, for an image dataset,
visual attributes that are provided by MPEG-7 feature set are used such as,
Color Structure, Color Layout, Edge Histogram, Region-Based Shape, Haar
Filtering, Dominant Color etc. [27], where the aim is to map distinct aspects of
a given image into different feature spaces. The main premise of FSG algorithm
is to fuse those distinct attributes in a decision space where categories are easily
seperated. When considering the human brain, we make the observation that
the brain itself does such a mapping already by itself. Given a visual image,
the spatial location of an object in the image is mapped at the parietal cortex
[25], while shape change in an arbitrarily shaped object can be distinguished by
the activities in lateral occipital cortex, and posterior intraparietal sulcus [12].
Likewise, texture change can be distinguished by posterior collateral sulcus, and
color change can be distinguished by regions including lingual gyrus, fusiform
gyrus, dorsolateral prefrontal cortex, and medial intraparietal sulcus [13, 12].
Thus, we suggest that, FSG can make use of the distinct representations in
the brain that are mapped into different supervoxels, where each supervoxel is
considered to form a distinct feature space in terms of the activities of the voxels
contained within the supervoxel.

The algorithm uses a two layered architecture. In the base layer (first layer),
there are multiple classifiers, each of which receive input from a single supervoxel
in terms of activities of the voxels contained within. For this purpose, the
activities of each voxel within the supervoxel is concatenated in vector form
and fed to a base layer classifier. The output of a base layer classifier is the
class posteriori probabilities of a given sample for each class label. Here, a class
posteriori probability for a base layer classifier is defined to be the likelihood of
a stimulus category given the activity values of the voxel within the supervoxel.
In the meta layer, (second layer) all of the outputs of the base layer classifiers
in terms of class posteriori probabilities are concatenated and fed to a meta
classifier.
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From the neuroscientific perspective, output of a base layer classifier in terms
of class posteriori probabilities is a model for the activity of a brain region that
contributes to a mental state. Depending on the specific stimulus or the mental
task, activity of some of the brain regions can be decisive for the recognition of
the stimulus or the processing of the mental task. For instance, when viewing a
field of grass, the texture and the color of the field is critical for the recognition
of the viewed stimulus as a field of grass. Likewise, for the example of the
field of grass, representation of a definite shape is lacking. When we consider
the brain regions specialized for color, texture, and shape processing, we claim
that brain regions that process color and texture can highly contribute to the
decision that the viewed stimulus is a field of grass, while the lack of activity in
the brain regions that process shape also contributes to the final decision. From
this perspective, the class posteriori probabilities of base layer classifiers model
the activity of specialized brain regions with regards to their activity given a set
of stimulus or mental tasks that are present in an fMRI experiment.

In the original implementation of FSG, a base layer classifier is trained for each
feature type and a single meta layer classifier is trained for the final classification.
In BRE however, we use the outputs of the base layer classifiers that are trained
for a subset of supervoxels (of the set of all supervoxels) and a meta classfier is
trained for that subset. Then, we combine the outputs of the meta classifiers for
all such subsets of supervoxels in order to decide the class label of a given input.
The details of the inputs and outputs as well as the operational characteristics
layer classifiers are explained in the next couple of subsections (Subsections 3.2.1
and 3.2.2). The details of meta classifiers are explained in Subsection 3.2.3, after
we define the notion of subsets of supervoxels.

3.2.1 Logistic Regression

In the original study of Özay and Yarman-Vural [75], FSG algorithm used k-
nearest neighbor (KNN) classifiers for base layer classifiers in order to obtain
class posteriori probabilities for each sample. However, we observed that a
linear classifier is much better suited for the classification of fMRI images due
to the sparsity of the feature spaces where KNN’s performance is significantly
inferior with respect to a linear classifier. Similar results have been obtained
in other comparative studies [55]. Hence, we use logistic regression classifier
(presented in the next subsection) for the purposes of base layer classification
task. Logistic regression is particularly suitable for our purposes since, while
being a linear classifier, it naturally outputs class posteriori probabilities for each
class, and with softmax activation function, it can easily be adapted to multi-
class classification. While a case can be made for SVM classifier, its performance
is not significantly better than the logistic regression classifier [55, 18], and
obtaining class posteriori probabilities is takes an additional step of processing
[77] which we prefer to avoid due to its computational cost.In this subsection
we describe how a logistic regression classifier works, and how it provides class
posteriori probabilities.

Logistic regression is a linear classifier that can be visualized as a two-layer neu-
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ral network. In the input layer, there are as many units as the input feature
dimension. In the output layer there is a single output unit for binary classi-
fication, and a number of output units that is equal to number of classes for
multi-class classification. All input units are connected to all output units.

Since a base layer classifier is trained for each supervoxel c, the input to the
logistic regression classifer is the voxel intensity values from the set of voxel
indices that belong to the supervoxel c. Thus, a training input to the algorithm
is denoted as xctr ∈ RNc

υ , where N c
υ is the number of voxels in the supervoxel.

Each training sample xctr corresponds to a row of the training matrixXc
tr, while a

test sample xcte correspond to a row of the test matrix Xc
te which are constructed

for the supervoxel c (see Section 3.1.2). Here, N c
υ is the number of voxels within

the supervoxel c.

3.2.1.1 Binary classification

For binary classification, let us denote a sample as xc ∈ RNc
υ , which is a row

vector of activity values of voxels that are in the supervoxel c. A sample xc
can either be a training sample xc = xctr that is a row of training matrix Xc

tr,
a validation sample xc = xcval that is a row of validation matrix Xc

val, or a test
sample xc = xcte that is a row of the test matrix Xc

te. The activation of the
output unit ỹ is calculated by using sigmoid (sgn) function as follows:

ỹ = sgn(xcwc + bc) =
1

1 + e−(xcwc+bc)
, (3.7)

where ỹ ∈ (0 ≤ R ≤ 1) is an estimate of the posterior probability p(y = 1|xc),
for the true class label y ∈ L = {0, 1}. Here, wc ∈ RNc

υ is weight vector and bc is
the bias parameter that allows decision boundaries that do not pass the origin
of the feature space. Using ỹ, the estimated class label ŷ ∈ L = {0, 1} is:

ŷ =

{
1 if ỹ ≥ 0.5

0 if ỹ < 0.5
. (3.8)

Given training samples xctr that are rows of Xc
tr, and their respective labels

ytr ∈ Ytr, the connection weights and the bias term are trained by minimization
of the following cost function:

Jbinary = φ
1

2
(wcTwc)− 1

Ntr

Ntr∑
ytr∈Ytr

(ytrlog(ỹtr) + (1− ytr)log(1− ỹtr)), (3.9)

where T is the transpose operator.

The first part of the cost function (Equation 3.9) is for the regularization of
the connection weights, where φ is the regularization parameter that becomes
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important if the classifier over-fits the training data, where increasing it increases
the weight of the first term that effectively reduces the dimensionality of the
feature space by making w sparse. The second part of the cost function is the
cross-entropy cost [23]. The cost function has many desirable properties of a
quadratic cost function such that it is non-negative, and the cost approaches to
zero when ỹ approaches to y. Additionally, it prevents the slow-down in learning
while using sigmoid activation when |xcwc+b| becomes large. The cost function
can be minimized by using gradient descent over the parameters w and b. Other
optimization techniques for a logistic regression classifier can be found in [33].

3.2.1.2 Multi-class Classification

For multi-class classification, let us denote a sample as xc ∈ RNc
υ , which is a

row vector of activity values of voxels that are in the supervoxel c. A sample xc
can either be a training sample xc = xctr that is a row of training matrix Xc

tr,
a validation sample xc = xcval that is a row of validation matrix Xc

val, or a test
sample xc = xcte that is a row of the test matrix Xc

te. For the classification of
multiple classes, we use softmax at the output layer instead of sigmoid activation.
In this case, there are a multitude of outputs where the number of them is equal
to the number of classes (Nl). Given a sample xc ∈ RNc

υ , the activation of the
outputs ỹl ∈ (0 ≤ R ≤ 1), l ∈ {0, 1, ..., Nl − 1}, are calculated by using their
respective weights wc

l ∈ RNc and biases bcl ∈ R. Here, Nl denotes the number of
class labels. If we define zl = xcwc

l + bcl , then the softmax activation for each ỹl
becomes:

ỹl =
ezl∑Nl−1
i=0 ezi

, (3.10)

where each ỹl is an estimate of the posteriori probability p(y = l|xc), and y ∈
L = {1, 2, ..., Nl−1} is the true class label for the given sample xc. The predicted
class label ŷ ∈ {0, 1, ..., Nl − 1} then becomes:

ŷ = argmax
l
{ỹl}Nl−1

l=0 . (3.11)

Also, the output, that is the class posteriori probabilities ỹ = {ỹl}Nl−1
l=0 is an Nl

dimensional vector.

Given the training features xctr and their respective true class labels ytr ∈
{0, 1, ..., Nl − 1}, the expected output ytr,l of the output unit l is defined as
follows:

ytr,l =

{
1 if ytr = l

0 else
. (3.12)

Cost function with cross-entropy is defined as follows:
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Jmulti = φ
1

2Nl

Nl−1∑
l=0

(wc
l
Twc

l )−
1

NlNtr

Ntr∑
m=1

Nl−1∑
l=0

ytr,llog(ỹtr,l), (3.13)

where ỹtr,l is the posteriori probability p(ytr = l|xctr).

3.2.1.3 Classifier outputs

Given a matrix of voxel activity values Xc
te ∈ RNte×Nc

υ of the test set for the
supervoel c, the primary output of a logistic regression classifier is a matrix
of class probability estimations Ỹ

c

te ∈ RNte×Nl , and a vector of predicted class
labels Ŷ

c

te ∈ LNte . For the binary classification, a row of Ỹ
c

te consists of two
values ỹte and 1 − ỹte that correspond to the input sample xcte that is a row of
Xc
te. For the multi-class classification, a row of Ỹ

c

te consists of Nl values each of
which correspond to the class posteriori probability ỹte,l for the class l given the
sample xcte, where Nl is the number of classes.

Another output of the logistic regression classifiers is their percentile accu-
racy (Acc). Specifically, for the test samples xcte that are rows of Xc

te, where,
using the predicted class labels ŷte ∈ {0, 1, ..., Nl − 1}, and the true labels
yte ∈ {0, 1, ..., Nl − 1}, the percentile accuracy (Acccte) of the classifier for Nte

test samples is calculated as follows:

Accte = 100
Nte∑
i=1

δ(yte,i, ŷte,i)

Nte

, (3.14)

where δ(·) is the Kronecker delta function which is defined as follows:

δ(yte, ŷte) =

{
1 if yte = ŷte
0 if yte 6= ŷte

. (3.15)

In a similar fashion, the percentile accuracy for the validation samples (Acccval)
can be calculated by using validation samples xcval which are the rows of the
validation matrix Xc

val ∈ RNval×Nc
υ , using the above methodology.

To sum up, a logistic regression classifier is trained by using a training set of
samples Xc

tr, their class labels Y
c
tr and a regularization parameter φ and forms

a classifier modelc = (wc, bc, φ) for the supervoxel c. After the training, for the
given set of samples (Xc

tr, X
c
val, or Xc

te) the classifier modelc can be used to
predict the class labels (Ŷ

c

tr, Ŷ
c

val, and Ŷ
c

te), class posteriori probabilities (Ỹ
c

tr,
Ỹ
c

val, and Ỹ
c

te), and percentile accuracies if class labels are also provided for the
validation and test sets.
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3.2.2 Base layer classifiers

In order to train a logistic regression model for a supervoxel c, sets of feature
matrices for training (Xc

tr), and validation (Xc
val), vectors of their respective

class labels (Ytr, and Yval), and a set of regularization parameters φ ∈ Θ are
used. The best regularization parameter φbest is selected by using the validation
set. Using the model, the classifier then returns class posteriori probabilities
(Ỹ

c

val, and Ỹ
c

te), estimated class labels (Ŷ
c

val, and Ŷ
c

te), and accuracies (Acccval,
Acccte) for the training and test sets (Algorithm 3.1, lines 2-9).

The class posteriori probabilities (Ỹ
c

tr), for the training set is then obtained
by using the FSG algorithm (3.1, lines 10-16) where for each sample xm that
is a row of the training matrix Xc

tr, a new classifier is trained. In this part
of the algorithm, first, a sample of the training set xi is set aside. Second, a
logistic regression classifier is trained for the rest of the training samples and
a classifier model modeli is obtained. Third, for the sample that is set aside,
class posteriori probabilities (ỹi) for that sample is estimated using the model
(modeli). Lastly, a matrix of class posteriori probabilities (Ỹ

c

tr) for the training
samples are formed by assigning the class posteriori probabilities of each sample
to the rows.

Algorithm 3.1 Base layer classification
1: procedure Base(Xc

tr,X
c
val,X

c
te,Ytr,Yval,Yte)

2: for all φ ∈ Φ do . φ is a regularization parameter
3: model← LRtrain(Xc

tr,Ytr, φ)
4: Accφ ← LRpredict(model,Xc

val,Yval)
5: end for
6: φbest ← argmax

φ
({Accφ})

7: model = LRtrain(Xc
tr,Ytr, φbest)

8: (Ŷ
c

val, Ỹ
c

val, Acc
c
val)← LRpredict(model,Xc

val,Yval)

9: (Ŷ
c

te, Ỹ
c

te, Acc
c
te)← LRpredict(model,Xc

te,Yte)
10: for all xi ∈ Xc

tr do . i indexes a training sample
11: Xc

tr,i ← Xc
tr[i] = [] . delete i’th row from Xc

tr

12: Ytr,i ← Ytr[i] = [] . delete i’th row from Ytr

13: modeli ← LRtrain(Xc
tr,i,Ytr,i, φbest)

14: ỹi ← LRpredict(modeli,xi)
15: Ỹ

c

tr[i]← ỹi . assign i’th row of Ỹ
c

tr

16: end for
17: return Ỹ

c

tr, Ỹ
c

val, Ỹ
c

te, Ŷ
c

val, Ŷ
c

te, Acc
c
val, Acc

c
te

18: end procedure

In the following section we describe a meta classifier, which is the component for
BRE to fuse distinct representations of brain activity from supervoxels. Each
meta classifier operates on a subspace of supervoxels and fuses the outputs of
the base layer classifiers from each supervoxel.
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3.2.3 Meta classifier

In the FSG architecture, the meta classifier is the one that is responsible for the
fusion of contribution of each supervoxel. In the original article, there is a single
meta classifier that fuses the posterior probabilities from all feature spaces [75].
However, in our framework we extend the idea of fusion. We utilize a multitude
of meta classifiers each of which operates on a subset Cψ of all possible super-
voxels C =

⋃
θ∈ΘC

θ for a given partitioning of a clustering algorithm. Here, θ
denotes a clustering parameter in the set of all clustering parameters Θ, and Cθ

denotes a set of supervoxels that are generated by the clustering parameter θ.
The subset of supervoxels Cψ can be a random subset of supervoxels (a number
of supervoxels that are selected randomly within C), or it can be the set of all
supervoxels that are formed by a specific clustering parameter θ, which makes
Cψ = Cθ. We explain how and why we form these subsets of supervoxels in the
following subsections.

Given a subset of supervoxels Cψ = {c1, c2, ..., cNψ
υ
}, and the base layer clas-

sifier outputs Ỹ
c

tr, Ỹ
c

val, Ỹ
c

te of each supervoxel c ∈ Cψ, the training matrix
Xψ
tr ∈ RNtr×NlNψ

υ is formed by column-wise concatenation of the class posteriori
probabilities Ỹ

c

tr:

Xψ
tr =

[
Ỹ
c1

tr Ỹ
c2

tr . . . Ỹ
c
N
ψ
υ

tr

]
(3.16)

Here, Nψ
υ denotes the number of supervoxels in Cψ, Ntr is the number of training

samples, and Nl is the number of classes. Similarly, validation Xψ
val, and testing

Xψ
te feature matrices are formed using their respective set of class posteriori

probability outputs:

Xψ
val =

[
Ỹ
c1

val Ỹ
c2

val . . . Ỹ
c
N
ψ
υ

val

]
(3.17)

Xψ
te =

[
Ỹ
c1

te Ỹ
c2

te . . . Ỹ
c
N
ψ
υ

te

]
(3.18)

At this stage, a support-vector machine (SVM) with second order regularization
(please refer to Section 3.2.1.1 for an example of this regularization technique)
is used as the classifier in order to comply with voxel selection based MVPA
algorithms. Since it is a commonly used algorithm, the implementation details
of SVM is not given here. We used LIBSVM implementation of this algorithm
[15].

The classifier outputs the predictions for validation Ŷ
ψ

val, and Ŷ
ψ

te test sets as
well as their respective percent accuracies Accψval, Acc

ψ
te (Algorithm 3.2).
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Algorithm 3.2 Meta classification

1: procedure Meta(Xψ
tr,X

ψ
val,X

ψ
te,Ytr,Yval,Yte)

2: for all φ ∈ Φ do . φ is a regularization parameter
3: model = SVMtrain(Xψ

tr,Ytr, φ)

4: Accφ ← SVMpredict(model,Xψ
val,Yval)

5: end for
6: φbest ← argmax

φ
({Accφ})

7: model = train(Xψ
tr,Ytr, φbest)

8: (Ŷ
ψ

val, Acc
ψ
val)← SVMpredict(model,Xψ

val,Yval)

9: (Ŷ
ψ

te, Acc
ψ
te)← SVMpredict(model,Xψ

te,Yte)

10: return Ŷ
ψ

val, Ŷ
ψ

te, Acc
ψ
val, Acc

ψ
te

11: end procedure

3.3 Stage 3: Subsets of Supervoxels for Meta Classifiers

Mental representations in the brain have multiple aspects. For example, color,
shape, or texture in the visual stimuli for the representation of a visual object,
or the auditory and visual stimuli and the recollection of specific memories that
act together to induce fear. In order to capture and model these aspects, as the
first step of BRE, we partitioned the 3-dimensional brain volume into "homoge-
nous" voxel groups with respect to a similarity predicate. Each homogenous
region, called supervoxel, is assumed to participate a specific aspect of a mental
representation. Therefore, it is assumed that each mental state is represented
by an ensemble of supervoxels.

Based on the above assumption, we train a base layer classifier for each super-
voxel to capture the degree of participation of that particular supervoxel to the
set of mental states that are specified by the fMRI experiment. At this point,
what matters is to find a way to find the supervoxels that contribute to the
processing or representation of the mental states that are induced by the fMRI
experiments. If we define the set of all supervoxels that are generated by every
clustering parameter C =

⋃
θ∈ΘC

θ as the result of the brain parcellation proce-
dures, where Cθ is the set of supervoxels that are generated using the clustering
parameter θ, the problem reduces to finding a specific subset of supervoxels
Cψ ⊆ C that contribute to the processing or representation of the given mental
tasks or stimuli. Given such a subset of supervoxels, a meta classifier can be
trained using FSG in order to combine the mental representations encoded in
terms of voxel activity within the supervoxels.

When confronted with the problem of finding the right composition of supervox-
els, the first solution that comes to mind is to find the supervoxels, which are
expected to contribute to underlying mental processes, through a measure for
selecting supervoxels. For this purpose, we have used the classification accuracy
results of the base layer classifiers for each supervoxel. However, when we form
a subset of supervoxels by eliminating the supervoxels for which the base layer
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classifier accuracy is below a certain threshold, where we experimented with an
array of such thresholds, did not yield to higher classification accuracies for the
meta classifiers that are trained with them than the meta layer classifier that
used all supervoxels.

In order to deal with the above stated problem, we first present a naiive method,
where we use a subset of supervoxels that are generated with a brain partition
specified by a clustering parameter for training a meta classifier. Second, we
present the primary method that we use to build BRE, where we select random
subsets of supervoxels from the set of all supervoxels to train meta classifiers.

3.3.1 Subsets Generated with Specific Parameters

The first approach we use to select a subset of supervoxels is similar to the
original version of FSG, where they used the outputs of the base layer classifiers
that cover all available features to train a single meta classifer. For that purpose,
we combine the supervoxels that is the result of a brain partitioning process,
through the use of a single θ parameter to train a meta classifier. In which
case, we have Cψ = Cθ, and we train a single meta classifier that uses the base
layer classifier outputs from every supervoxel that are generated with a specific
clustering parameter. With this approach, we leave problem of finding the right
combination of supervoxels to the meta classifier, while we have control over
the number of partitions by selecting the clustering parameter θ. We can, then,
find the right number of partitions by trying out a set of clustering parameters
Θ and selecting the parameter θbest ∈ Θ that result in a meta classifier that
have the highest accuracy in the validation set. Similarly, brain partitioning of
AAL can be used for this purpose, where a meta classifier can be trained for the
combination of supervoxels that are specified by anatomical regions specified by
AAL labeling, which makes Cψ = CAAL, where CAAL is the set of supervoxels
formed by AAL.

One problem with this approach is about the dimensionality of the inputs with
which the meta classifier is trained. As we mentioned in the previous section,
we use the matrix of class posteriori probabilities Xψ

tr for the training of a meta
classifier. The dimensionality of the matrix is Ntr × NlNψ, where Nl is the
number of class labels and Nψ is the number of supervoxels in the subset Cψ.
When we select the subset of supervoxels to be the one generated from the whole
brain with a clustering parameter θ, Cψ becomes equal to Cθ and Nψ = Nθ.
With that in mind, as the number of supervoxels that is tied to the θ parameter
increases, the dimensionality of the input space (NlNψ) increases, where problem
of overfitting would become prominent. In order to deal with this problem, in
our preliminary studies, we applied a stage of feature selection to the inputs of
the meta classifiers. Note that, this approach is different than the supervoxel
elimination procedure in the sense that, with this approach, output of a base
layer classifier not necessarily eliminated totally, no matter what the accuracy
rating of that classifier is. While the results of this approach were promising [5],
we later abandoned it due to the computational complexity introduced by the
feature selection stage.
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In this study, we present the classification results using this approach, without
the feature elimination stage, in order to investigate the effect of the clustering
parameters and methods (thus, the size and the composition of the supervoxels)
to the classification accuracy of a meta classifier.

3.3.2 Random Subsets of Supervoxels

As we have mentioned previously, composition of the subset of supervoxels
Cψ ⊆ C, where C =

⋃
θ∈ΘC

θ being the set of all supervoxels formed by the
partitioning processes that use every clustering parameter θ, is critical for de-
coding mental states using the mental representations captured by the base layer
classifiers that act on the supervoxels. However, finding the right combination
of supervoxels to form a subset for meta classification is not an easy task. Fur-
thermore, depending on the mental states under consideration for each fMRI
experiment, the composition of such subsets are expected to change. Hence, in-
stead of trying to find such a subset, we propose a method that relies on random
sampling of such subsets, where a meta classifier is trained for each subset and
their results are aggregated. This method, which we use to build brain region
ensembles is called random subsets of supervoxels (RSS).

The methodology for forming RSS is as follows. Given a set of supervoxels CΨ,
Nψ supervoxels are randomly selected within CΨ without replacement, where
Nψ is proportional to the cardinality of CΨ. This process is performed Nt times,
each time forming a subset Cψ ∈ CΨ.

The method that we propose here, is based on the random subspace ensembles
[7] of pattern classifiers, which provides promising results with respect to classi-
fication accuracy on the datasets where number of sampes is low and to feature
dimensionality is high [38, 86, 98]. Given those properties, the application of
random subspace ensembles to the field of brain decoding is not new. Kuncheva
et. al have shown that ensembles of SVM classifiers each of which use a ran-
dom subspace of voxels achieve higher classification accuracies when compared
to other ensemble learning methods [55] and single classifiers [56]. Also, ran-
dom subspace ensembles are used in real time classification of fMRI data [78].
In these studies the authors form the random subspaces within a set of voxels
that are selected using voxel selection algorithms such as voxel selection with
ANOVA, or voxel selection with SVM (see Section 2.4.2).

In their study regarding the parameter selection of random subspaces for fMRI
analysis, Kuncheva et. al postulates that accurate and diverse set of classifiers
would make a good classifier ensemble [56]. Therefore, when we think in terms
of supervoxels sampled by RSS, it is preferrable to each subset contain at least
one important feature which is the output of a base layer classifier that uses
a supervoxel that is critical in the processing of the set of stimuli introduced
by the fMRI experiment. Furthermore, we would not want every one of such
critical supervoxels to be in more than one particular subset, where they would
result in redundant classifiers.

In order to come up with the ideal parameters for the number of subspaces and
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the number of voxels in each subspace with respect to the number of critical
voxels, Kuncheva et. al [56] has run a simulation studies that reflect the prop-
erties of an actual fMRI dataset. While they did not come up with an ideal set
of parameters, their results shown that the number of voxels in each subspace
should be high, about to be the half of the number of voxels in the original voxel
space. Also, they suggested a low number of subspaces to be generated, which is
around 100 of such subspaces. In this study we follow these guidelines in the way
we form RSS, where to form each subset of supervoxels Cψ, half the number of
supervoxels in the superset CΨ is selected, where the number of random subsets
Nt = 100.

Please note that for each one of the subsets, a meta classifier of FSG is trained.
In the next section, we describe how we use RSS for building various forms of
Brain Region Ensembles.

3.4 Stage 4: Brain Region Ensembles for Brain Decoding

The primary goal of the suggested BRE model is to capture the information dis-
tributed across the brain to decode cognitive states from fMRI images. We claim
to achieve this goal through the use of supervoxels, in other words, functionally
homogenous voxel groups. With FSG algorithm, we build a base layer classifier
for each supervoxel, which receives input in the form of the voxel activity val-
ues that belong to the supervoxel, and outputs the class posteriori probabilities
for each input sample with respect to the stimulus categories that are present
in the fMRI experiment. We claim that the class posteriori probabilities that
are output from each base layer classifier captures a distinct aspect of a given
stimulus or mental task such as color, shape, texture for a visual stimulus or the
recollection of a specific memory for stimulus that is expected to elicit emotional
responses. However, in this study, we do not try to determine the exact nature
of the supervoxels themselves in terms of which aspect of the given stimulus
that they represent. Rather than that, we fuse the representations generated by
them in order to decode the underlying mental state.

The main strength of our model is that it fuses the information encoded in the
supervoxels using meta classifiers. The resulting model do not operate under any
assumptions regarding the location, size or the composition of the contributing
supervoxels. Still, our model can decode the contributions of individual super-
voxels, relative to the rest of the brain volume, to the classification tasks.

The formal definition of a brain region ensemble is given in the following sub-
section.

3.4.1 Formal definiton of a Brain Region Ensemble

Brain region ensembles (BRE) is a model for brain decoding that utilizes the
information captured by a set of supervoxels. A BRE is the building block
for such ensembles that operates on a specific subset of supervoxels. A set
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of supervoxels C can be formed by either through the partitioning of the brain
volume that is composed of voxels, or through the use of a functional brain atlas,
such as AAL, where each supervoxel is a collection of voxels. The methods that
we use for the brain partitioning process is given in Section 3.1.

A brain region ensemble is formed for a given subset of supervoxels Cψ ⊆ C. A
BRE receives inputs in the form of the voxel activity values from each supervoxel
c ∈ Cψ within the subset of supervoxels Cψ it operates on. Using those voxel
activity falues, first, a base layer FSG classifier is trained for each supervoxel
c ∈ Cψ using Algorithm (3.1) described in Section 3.2.2. Then, a meta classifier
is trained using the class posteriori probabilities that are output from the base
layer classifiers using Algorithm 3.2 that is described in Section 3.2.3. As the
output, a BRE provides estimated class labels for a set of test samples, using
the trained meta classifier.

Formally speaking, the inputs to the base layer classifier for the supervoxel c are
the feature matrices Xc

tr, X
c
val, X

c
te, and the class labels for the training samples

Ytr. The class labels of the validation samples Yval are used for the parameter
optimization for the base layer classifiers. The class labels of the test set Yte are
only used to obtain an accuracy value from the base layer classifier for the test
samples. At the outputs of the base layer classifier, class posteriori probabilities
Ỹ
c

tr, Ỹ
c

val, and Ỹ
c

te are obtained, where each of which stands for the respective
posteriori probability outputs for the training, validation, and test samples using
the supervoxel c ∈ Cψ. This procedure is applied to all such supervoxels c.

After the class posteriori probabilities are collected for every supervoxel c ∈ Cψ,
they are concatenated across the supervoxels using the Equations 3.16, 3.17, and
3.18 , thus, forming the inputs to the meta classifier (Xψ

tr, X
ψ
val, and Xψ

te) that is
specifically trained for the subset of supervoxels Cψ. The meta classfier outputs
the predictions for the validation and test sets Ŷ

ψ

val, Ŷ
ψ

te, as well as the accuracy
values for them Accψval, Acc

ψ
te.

Algorithm 3.3 A Brain Region Ensemble
1: procedure BRE({Xc

tr}c∈Cψ , {Xc
val}c∈Cψ , {Xc

te}c∈Cψ ,Ytr,Yval,Yte)
2: for all c ∈ Cψ do
3: Ỹ

c

tr, Ỹ
c

val, Ỹ
c

te ← BASE(Xc
tr,X

c
val,X

c
te,Ytr,Yval)

4: end for
5: Xψ

tr ← concatenate({Ỹ
c

tr}c∈Cψ)

6: Xψ
val ← concatenate({Ỹ

c

val}c∈Cψ)

7: Xψ
te ← concatenate({Ỹ

c

te}c∈Cψ)

8: Ŷ
ψ

val, Ŷ
ψ

te, Acc
ψ
val, Acc

ψ
te ←META(Xψ

tr,X
ψ
val,X

ψ
te,Ytr,Yval,Yte)

9: return Ŷ
ψ

val, Ŷ
ψ

te, Acc
ψ
val, Acc

ψ
te

10: end procedure

In the following sections we will progressively explore the possible classification
strategies that can be used with a BRE. For each method, we describe how do
we obtain accuracy ratings and the predictions for the test data. We present the
accuracy ratings of each method in the Experiments section by using the labels
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provided here.

All of the following methods are compatible to the supervoxels formed by a
single clustering algorithm (N-Cuts, or K-Means), while the ones that do not
require multiple clustering levels also are also compatible to the brain regions
specified by AAL.

3.4.2 Random Subsets of Supervoxels for Brain Region Ensembles
(RSS-BRE)

Algorithm 3.4 Random Subsets of Supervoxels for Brain Region Ensembles
1: procedure RSS-BRE({Xc

tr}c⊆CΨ , {Xc
val}c⊆CΨ , {Xc

te}c⊆CΨ ,Ytr,Yval,Yte)
2: given c ∈

⋃Nψ
ψ=1(Cψ) ⊆ CΨ

3: for ψ = 1 to Nψ do
4: Ŷ

ψ

te ← BRE({Xc
tr}c∈Cψ , {Xc

val}c∈Cψ , {Xc
te}c∈Cψ ,Ytr,Yval,Yte)

5: end for
6: for i = 1 to Nte do . Loop over all test samples
7: for l = 0 to Nl − 1 do . Initialize counters for each class label l
8: count[l]← 0
9: end for

10: for ψ = 1 to Nψ do
11: for l = 0 doNl − 1

12: count[l]← count[l] + δ(l, Ŷ
ψ

te[i]) . Use Kronecker delta
13: end for
14: end for
15: Ŷ

Ψ

te[i]← argmax
l

(count)

16: end for
17: RSS −BRE ← CalculateAccuracy(Ŷ

Ψ

te,Yte) . See Section 3.2.1.3
18: return RSS −BRE
19: end procedure

In the original article of Ozay and Yarman-Vural [75] on FSG, a single meta
classifier was built in order to fuse the posteriori probabilities of each sample
for all feature spaces, each of which represents a specific attribute of the given
dataset. The premise for that approach is that all feature spaces contribute
to the final classification task. However, in our problem, it is more likely to
find a subset of supervoxels that is more effective in classification of a set of
mental states that are elicited by the stimuli in the fMRI experiments, rather
than all availalbe supervoxels. As we mentioned in the earlier sections, the main
problem is to find the set of supervoxels is effective in the classification of the
particular mental states that are under consideration for the fMRI experiments.
To address this problem, we propose to use random subsets of supervoxels (RSS)
to be used with BRE, where a BRE is formed for each random subset, and the
the predictions are aggregated with majority voting.

The primary premise of RSS-BRE is that the combined outputs of the meta
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classifiers that are based on random subspaces of supervoxels can improve upon
training a single meta classifier on specifically selected set of supervoxels such
as using AAL regions, or using a particular clustering parameter. Also, random
subspaces method has been tried and tested for fMRI data, albeit the subspaces
formed by the earlier implementations used the voxel space of selected voxels
[56, 55].

The secondary premise of RSS-BRE is that, using random subsets of supervoxels
instead of using random subspaces of selected voxels expected to provide a better
classifier ensemble. This premise is based on the hypothesis that the diversity
of the classifier ensemble RSS-BRE should be higher than the random subspace
ensembles (RSE) that uses the voxel space of selected voxels. The reason for
this hypothesis is the fact that RSS-BRE does not only include voxels which
would be eliminated by a voxel selection process, but also aims to capture the
distinct aspects of the mental representations in the supervoxels.

RSS-BRE is formed by using a set of random subsets of supervoxels {Cψ}Nψψ=1.
Each subset Cψ is sampled randomly from within a superset of supervoxels CΨ,
specification of which is provided in the next couple of subsections. For each
random subset Cψ, a brain region ensemble is built. Then, the predictions Ŷ

ψ

te

are obtained for each BRE. Lastly, a voting scheme is performed by using the
set of predictions, {Ŷ

ψ

te}
Nψ
ψ=1 from all BRE’s in order to get the final prediction

(Algorithm 3.4). The algorithm works as follows: First, a BRE is built for
each random subspace Cψ (Algorithm 3.4, line 3). Then, a majority voting is
performed over the class labels Ŷ

ψ

te, which are estimated for the test set as the
outputs of every BRE (Algorithm 3.4, lines 7-16). The class label with the most
votes is then reported as the final estimate for each test sample i ∈ {1, 2, ..., Nte},
where Nte is the number of test samples.

3.4.2.1 RSS-BRE with all Supervoxels

The most general form of RSS-BRE works with the set of supervoxels CΨ =
C =

⋃
θ∈Θ(Cθ). This method does not have any specific assumptions about

the composition and the size of the contributing supervoxels given the set of
clustering parameters θ ∈ Θ.

Within the set of supervoxels CΨ = C, random subsets of supervoxels Cψ ⊆ CΨ

are sampled, where for each random subset Cψ, a BRE is built. The classification
accuracy of the output predictions Ŷ

ψ

te of each BRE are then combined with the
majority voting scheme of RSS-BRE (Algorithm 3.4) in order to get the final
prediction of RSS-BRE (Ŷ

Ψ

te).
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3.4.2.2 RSS-BRE within Brain Partitions that are Tied to Specific
Clustering Parameters

RSS-BRE can also be built for the brain partitions that are tied to specific
clustering parameters, which would allow us to determine the optimal number
of the supervoxels for the analysis of given set of fMRI data. This approach
uses a set of the supervoxels generated by a clustering method using a specific
clustering parameter as the superset for RSS-BRE, where there is a superset
CΨi = Cθi for each θi ∈ Θ = {θ1, θ2, ..., θNθ}, where Θ is the set of all clustering
parameters θi, and Nθ is the number of clustering parameters.

RSS-BRE for each brain partitioning (specified by a clustering parameter θi),
samples the random subsets of supervoxels within using its corresponding su-
perset CΨi , as specified by Algorithm 3.4, producing test set predictions Ŷ

Ψi

te

and accuracy AccΨi
te . RSE algorithm is also run for the validation set and accu-

racy results AccΨi
val are obtained. Using the results from the supersets RSS-BRE

built for the brain partitions that correspond to each clustering parameter θ,
({Ŷ Ψi

te }
Nθ
i=1, {Acc

Ψi
te }

Nθ
i=1, and {Acc

Ψi
val}

Nθ
i=1) the best clustering parameter for RSS-

BRE is determined by using the validation accuracies. The test accuracy for the
brain partitions that are generated by the best superset of supervoxels, which
in turn correspond to clustering parameter that is optimal for RSS-BRE (θbest),
is then reported (Algorithm 3.5).

Algorithm 3.5 Selection of Optimal Clustering Parameter by RSS-BRE

1: procedure RSS-BRE Param({AccΨi
val}

Nθ
i=1, {Acc

Ψi
te }

Nθ
i=1, {Ŷ

Ψi
te }

Nθ
i=1)

2: Ψbest ← argmax
Ψi

({AccΨi
val}

Nθ
i=1)

3: BestParamRSS −BRE ← AccΨbest
te

4: return BestParamRSS −BRE
5: end procedure

3.4.3 BRE within Brain Partitions that are Tied to Specific Cluster-
ing Parameters

In this study, in addition to methods that are based on RSS, we have investigated
the effectiveness of the supervoxels that are produced by a brain partitioning
that is tied to a specific clustering parameter for building a single BRE. Using
this method allows us to judge the effectiveness of RSS in terms of classifica-
tion accuracy over an array of superset (CΨ) sizes each of which are tied to a
clustering parameter. In order to find that optimal clustering parameter, and
to compare the classification accuracy of the BRE that uses the corresponding
subset of supervoxels, we propose the Algorithm 3.6. In the Algorithm 3.6, first,
a BRE is built for each subset Cθ (lines 3-7). Then, BRE, which uses the subset
of supervoxels and corresponding clustering parameter (θbest), with the greatest
validation accuracy is selected. Finally, test accuracy is reported for the best
performing BRE.

56



Algorithm 3.6 Selection of Optimal Clustering Parameter by BRE
1: procedure BRE Param(Xc

tr}c∈C , {Xc
val}c∈C , {Xc

te}c∈C ,Ytr,Yval,Yte,Θ)
2: given θ ∈ Θ and c ∈ C =

⋃
θ∈Θ(Cθ)

3: for all θ ∈ Θ do
4: Accθval, Acc

θ
te, Ŷ

θ

te ← BRE(
5: {Xc

tr}c∈Cθ , {Xc
val}c∈Cθ , {Xc

te}c∈Cθ ,Ytr,Yval,Yte

6: )
7: end for
8: θbest ← argmax

θ
({Accθval}θ∈Θ)

9: BestParamBRE ← Accθbestte

10: return BestParamBRE
11: end procedure

3.4.4 Selection of the Best Performing Supervoxel with respect to
Classification Accuracy

Algorithm 3.7 Best Performing Supervoxel

1: procedure BestSupervoxel({Acccval}c∈C , {Acccte}c∈C , {Ŷ c
te}c∈C)

2: cbest ← argmax
c

({Acccval}c∈C)

3: MaxSV Acc← Acccbestte

4: return MaxSV Acc, Ŷ cbest
te

5: end procedure

In order to test the validity of the ensemble classification methods that we pro-
pose, we need to compare the classification accuracy of the best performing base
classifier with the ensemble classification methods. If the best performing base
classifier provides better overall accuracy than an ensemble that combines mul-
tiple supervoxels, such as BREParam method that is described in this section,
it means we fail to fuse the mental representations captured by the base layer
classifiers at the supervoxels. In order to perform that comparison, we find the
best performing base classifier and the corresponding supervoxel in the set of
all supervoxels C =

⋃
θ∈Θ(Cθ), where θ ∈ Θ = {θ1, θ2, ..., θNθ}. The selection

algorithm is as follows.

Given the set of supervoxels C, the best performing supervoxel is selected by
using the accuracy ratings of the base layer classifiers for the validation set.
Then the accuracy (BestSV ) for the best performing supervoxel is reported for
the test set (Algorithm 3.7).

3.5 Diversity Measures for Classifier Ensembles

One of the premises of BRE method is that supervoxels can capture the mental
representations that are distributed across specialized brain regions. In order
to test this premise, we propose to use the diversity of the base layer classifiers
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as a measure, where each base layer classifier receives input from a specific
supervoxel. If the classifiers are diverse, it would mean that the supervoxels
can provide diverse representations of the underlying mental states. In order
to set a baseline for the classifier diversity of the base layer classifiers, we use
the diversity of the base layer classifiers that use regions specified by AAL as
supervoxels. The reason for that is, we already know the regions specified by
AAL have distinct functional and representational properties.

One other promise of BRE is to increase the diversity of the classifier ensemble
with respect to the ensemles that are based on the selected voxels. The compar-
ison is based on the classifier diversity of random subspace ensembles created by
selected voxels and RSS-BRE of supervoxels.

In order to test these two premises we use two different diversity measures for
classifier pairs: Q statistic [99] and the disagreement measure [47]. In order to
find the diversity of a set of classifiers, the measures are averaged over all pairs
in the set.

Q statistic is a symmetric measure of diversity between a pair of classifiers CFi
and CFj (each of which is based on a random subspace of voxels, or random
subset of supervoxels) which is defined as:

Qi,j =
ad− be
ad+ be

(3.19)

where, a is the probability that both classifiers make the correct classification,
b is the probability that CFi is correct and CFj is wrong, e is the probability
that CFj is correct and CFi is wrong, and lastly d is the probability that both
classifiers are wrong. Q statistic is calculated as an average for all classifier pairs
over all samples at a classifier ensemble. The absolute values of Q statistics are
used in this calculation.

The disagreement measure is defined as Di,j = b+ e for a pair of classifiers.

3.6 Region Specification with BRE

One of our aims is to validate our approach by locating the brain areas that have
functional properties that are important for the underlying stimului or mental
tasks using supervoxels. We propose to locate such regions by finding the dis-
criminative supervoxels which are specified in this section. In order to compare
them with the existing neuroscientific literature, we use the labels generated by
AAL [92] as discussed below.

In this section, we provide a method to select the supervoxels that contain
discriminative information regarding the binary classification of two distinct
mental states. Similar to BRE, this is also a generic approach that is applicable
to a wide range of brain decoding applications.

In order to find the supervoxels that are discriminative for a pair of distinc mental
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states as specified by an fMRI experiment, we use the chance level accuracy
of the base layer classifier that receives input from a specific supervoxel as a
measure. We calculate a discriminative stability threshold, where the base layer
classifier should correctly classify the test samples Ncorrect times over all of the
runs in order to be discriminative. The discriminative stability threshold for a
base layer classifier is calculated as follows: For each supervoxel c, Nm samples
are classified by using the base layer classifier trained using that supervoxel.
Suppose that,the class assignment is performed by the random variable Bm,c at
the cluster c for each sample s. Then, the Bernoulli random variable Bm,c ∼
Bernoulli(p = 1/Nl) (where Nl is the total number of class labels) is:

Bm,c =

{
1, class assignment is correct,
0, otherwise.

(3.20)

The probability of having the number of successful guesses more than or equal
to Ncorrect at cluster c, over Nm samples , is given by the probability density
function of the of Binomial random variable Zc =

∑Nm
r=1Bm,c(Nm, p = 1/Nl).

which is :

P (Zc ≥ Ncorrect) =
Nm∑

r=Ncorrect

(
Nm

r

)
pr (1− p)(Nm−1) . (3.21)

under the assumption that Zc are independent and identically distributed (IID).
Using Equation 3.21, stable supervoxels for each class, across the validation runs
can be selected by setting a threshold (Ncorrect) on the number of successful
classifications. Note that, the IID assumption makes the probability given by
(Equation 3.21) to be an upper bound over the cases where the independence
assumption does not hold. Thus, the threshold Ncorrect is a conservative one
when rejecting the null-hypothesis.

We use the overlaps of the discriminativle supervoxels with the regions spec-
ified by AAL in order to compare our results with the existing neuroscience
literature. For that purpose, we first select the supervoxels for which the base
layer classifier performs better than chance level by using Equation 3.21, where
(Zc ≥ Ncorrect) ≥ 0.01. Then, for each discriminative supervoxel cdisc ∈ Cθ for
the clustering parameter θ and within each AAL region ω, the number of voxels
that belong to the discriminative supervoxels N (ω,disc)

υ =
∑

cdisc |cdisc ∩ cω| are
determined. Here, | · | signifies cardinality, cω signifies the supervoxel that be-
longs to a specific AAL region. Lastly, for each AAL region ω we calculate the
ratio:

h(θ, ω) =
N

(ω,disc)
υ∑

ωN
(ω,disc)
υ

, (3.22)

where we determine the distribution of the voxels that belong to the discrimi-
native supervoxels (i.e. discriminative voxels) across AAL regions for the clus-
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tering parameter θ. We perform this operation for the brain partitions that
are obtained using every clustering parameter in order to observe the effect of
clustering parameter over the distribution of discriminative voxels.

3.7 Chapter Summary

In this chapter we have presented our method called Brain Region Ensembles
(BRE) for decoding mental states from the fMRI data. The suggested method
consists of several steps. First, the brain volumes are partitioned into homoge-
nous regions, called supervoxels. The supervoxels can be considered as an alter-
native to brain partitions formed by functional brain atlases such as AAL. At
the second step, the voxel intensity values at each supervoxel is fed to a logistic
regression classifier, which we call a base layer classifier. The output of each
classifier represents the posteriori probabilities of mental states under consider-
ation. The posteriori probabilities are then concatenated for a set of base layer
classifiers, which correspond to a set of supervoxels, and fed to a meta classifier
in order to form a brain region ensemble.

The composition of the set of supervoxels is deemed to be critical for the success
of a BRE. However, selecting the supervoxels with respect to the accuracy of
the base layer classifiers that are tied to them have proven ineffective for finding
the right composition of supervoxels, where simply using all supervoxels for
construction of a BRE yielded to higher classification accuracies than using a
selected set of supervoxels. In order to bypass the need of finding the right
composition of supervoxels, we have suggested a method that randomly samples
subsets of supervoxels for each which, a BRE is constructed. We call this method
RSS-BRE. With RSS-BRE, the outputs of multiple BRE are combined in a
majority voting scheme in order to obtain the final predictions for the class
labels of the mental states under consideration.

The method for forming random subsets of supervoxels for brain region ensem-
bles (RSS-BRE) is based on the random subspaces method for classifier ensem-
bles (RSE), with which, random subspaces of selected voxels are constructed in
order to form a classifier ensemble [56]. We compare our RSS-BRE method with
the RSE that uses voxels selected by voxel selection algorithms presented in the
previous chapter. The comparison is done not only in terms of classification
accuracy that each of these methos provide. But also, we analyze the diversity
of the ensemble of classifiers for these two methods in order to justify our claims
regarding the ability of the supervoxels to capture the diverse representations of
the mental states in the brain. In this chapter, we have provided two diversity
measures to compare the diversity of RSS-BRE that is based on supervoxels
with respect to RSE that is based on selected voxels.

In addition to the diversity comparison of the classifier ensembles RSS-BRE and
RSE, we suggested to perform a comparison of the diversity of the base layer
classifiers that are tied to the supervoxels formed by the clustering algorithms,
and the base layer classifiers that are tied to the supervoxels formed using AAL.
With this comparison, our aim is to compare the brain partitions formed by
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the clustering algorithms with brain regions that are already considered diverse,
which are AAL regions, in terms of their functional properties.

Lastly, we have proposed a method for the specification of the discriminative
supervoxels that relies on the accuracy ratings of the base layer classifiers for
classification of a given set of mental states. With this method, suppervox-
els for which the base layer classifier accuracy is higher than the threshold for
chance level accuracy are marked as discriminative supervoxels. The discrima-
tive supervoxels are then used for the specification of the brain regions that are
differentially active for the given categories of mental states.
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CHAPTER 4

VALIDATION, VERIFICATION AND EMPIRICAL
ANALYSIS OF BRAIN REGION ENSEMBLES (BRE)

METHOD

In this chapter we present the applications of our methods on three datasets
namely Objects, Emotion, and TOL datasets. We begin our analysis with the
comparison of BRE and random subspace ensembles applied to the selected
voxels with respect to the diversity measures that are described in the previous
section. Then, we proceed to the classification experiments and comparative re-
sults of the experiments in all datasets. Lastly we present the voxel distributions
of the selected regions for Objects and Emotion, and TOL datasets.

4.1 Classifier Diversity Analysis

It is well-known that the measure of diversity among the classifiers within a
classifier ensemble is an indicator to the success of the ensemble learning meth-
ods. Therefore, in this first group of computational experiments, we analyze
the difersity of classifiers in the ensembles. In this section, two different sets
of experiments are performed to test the diversity. First, we compare the di-
versity of the base layer classifiers with two different types of inputs. The first
type of inputs are the supervoxels formed by clustering algorithms, where the
second type are the supervoxels formed by AAL. Here, we expect diversity of
the classifiers that uses the supervoxels generated by the clustering algorithms
to be similar to those that are specified by AAL regions.

Second, we compare the diversity of the classifiers formed by RSS-BRE (random
subsets of supervoxels for brain region ensembles) method to the classsifiers
that are formed by RSE which uses random subspaces of selected voxels. The
comparison is based on the random subsets of supervoxels, where, for each one, a
BRE is formed, and the random subspaces of voxels, where, for each one, an SVM
classifier is trained. Since the outputs of the diversity calculations can be affected
by the number of classifiers, we have an equal number of subsets of supervoxels
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for RSS-BRE, and subspaces of voxels for RSE for this comparison. With this
comparison, we expect classifiers of RSS-BRE method to have higher diversity
with respect to RSE of voxel subspaces as the number of subsets/subspaces
increase. That is due to the fact of the number of subsets being proportional
to the number of brain partitions (i.e. supervoxels). In other words, as the
number of brain partitions increase, each supervoxel represents a smaller region
of the brain, which would increase the likelihood of a more diverse composition
of supervoxels within a subset of supervoxels.

4.1.1 Diversity of Base Layer Classifiers that Use Supervoxels

As we have mentioned in the previous sections, FSG is an ensemble learning
algorithm that is well suited to fuse the information embedded in different feature
spaces by first estimating and then concatenating the posteriori probabilities
for each mental task or stimulus. The feature vector, which consist of all the
posteriori probabilities obtained from each mental task or stimulus for each
region is then fed to a meta classifier to estimated the final prediction. The
classifier diversity heavily depends on the input feature space of the base layer
classifiers and it is an important measure for the success of the meta classifier.
For AAL regions, it is shown that each region processes a different aspect of the
task or stimulus provided by a mental task or stimulus of an fMRI experiment.
Thus, AAL regions can be considered a natural alternative to the set supervoxels,
which are generated by a brain partitioning process such as clustering, for the
base layer classifiers as inputs. Yet, the diversity of the base layer classifiers that
uses the supervoxels obtained as the outputs clustering algorithms (K-Means and
constrained N-Cuts) as their inputs is not studied until now. In this section, we
provide a comparative analysis of classifier diversity for the base layer classifiers
using supervoxels that are specified by AAL and those generated by clustering
algorithms.

Given a set of supervoxels Cθ generated by the clustering parameter θ ∈ {100,
150, 250, 400, 650, 1050, 1700}, or supervoxels specified by AAL, classifier diver-
sity measures Q-Statistic, and Disagreement measure are calculated for the set
of base layer classifiers that are formed using the set of supervoxels Cθ, or for
the AAL regions, CAAL. Here, each clustering parameter is equal to the number
of generated supervoxels by clustering the whole brain volume. For each base
classifier, regularization parameters of the classifiers φ ∈ {0.1, 1, 10} are opti-
mized by using training and validation sets. The diversity values of supervoxels
specified by AAL regions ( 100 regions in total, depending on the fMRI dataset)
are compared with the supervoxels that are generated when θ = 100.

The diversity measures for all datasets (Q-Statistic and Disagreement measure,
see Section 3.5) are shown in Figure 4.1. Q-Statistic is displayed on the left col-
umn (lower is better), while Disagreement Measure (higher is better) is displayed
on the left one.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Q-Statistic (column on the left, lower is better) and Disagreement
Measure (column on the right, higher is better) for subspaces specified with N-
Cuts, K-Means and AAL. The first row (a,b) shows the diversity values for the
Objects dataset while the second row (c,d) is for the Emotion 2-Class experiment
(e,f), the third one is for the Emotion 4-Class experiment, and the last one is for
the TOL dataset (g,h). The number of supervoxels in the brain partitions that
are generated by clustering algorithms are given at the bottom of every graph
(100 to 1700).
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4.1.1.1 Base Layer Diversity for Objects Dataset

For the Objects dataset (Figure 4.1.a,b), the diversity of the base layer classifiers
that uses AAL regions are higher than those uses supervoxels generated by the
two clustering algorithms for the both diversity measures by small margins.
When the supervoxels formed by the clustering algorithms are considered; as
the number of supervoxels increases, the diversity of the classifiers increases.
This result can be explained with the nature of the dataset, where both of the
stimulus classes used in this fMRI experiment were visual stimuli, for which the
diversity in the visual representations can be captured better by the smaller
supervoxels.

4.1.1.2 Base Layer Diversity for Emotion Dataset with 2 Classes

For the Emotion dataset with 2 classes (Figure 4.1.c,d), similar to the Ob-
jects dataset, base layer classifiers that use supervoxels formed by the cluster-
ing algorithms have lower classifier diversity than those use AAL regions. For
this dataset, classifier diversity, as measured by the Q statistic (Figure 4.1.c)
increases as the number of supervoxels increase up to 400 voxels, where the
diversity starts to decrease as the number of supervoxels is increased further.
Whereas, classfier diversity measured by the Disagreement measure increases
monotonically as the number of supervoxels increase. Since the Disagreement
measure steadily increases, the decrease in the diversity as measured by the Q-
statistic is either caused by the increase in the probability of the classifier pairs
both being wrong, or classifier pairs both being correct, or both (see 3.5 for the
definition of the two measures). When we consider the fact that, as the number
of supervoxels increase, they get smaller and they would less likely to include
a voxel that is critical for the classification task, we can conclude that the de-
crease of the diversity as measured by Q-Statistic is due to appearence of smaller
supervoxels which does not correctly classify some of the samples. In conrtast
to the Objects dataset, where the task was to recognize visual objects (bird or
flower), Emotion 2 class dataset require the classification of mental states (fear
or disgust) that have emotional content versus the visual and semantic repre-
sentations of furniture and kitchen appliances. Given this fact, the increase in
the diversity measured by the Q-statistic can be explained by the observation
that as the supervoxels get smaller, the details of visual representations can be
more likely to be captured by individual supervoxels within the areas that are
dedicated to visual processing such as visual blobs, textures, hence the diversity
increase for the Objects dataset.

The decrease in the diversity as measured by the Q-Statistic can stem from the
decrease in the likelihood of smaller supervoxels to capture the emotional states,
where smaller supervoxels would not capture any specialized activity regarding
emotions, except for the regions that directly responsible for the processing of
the emotions. In other words, smaller supervoxels does not necessarily capture
smaller components of emotional representations in contrast to the visual object
representations where smaller components such as color, texture, visual blobs,
are known to exist in the brain. Thus, as the supervoxels get smaller, the
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voxels that are critical in processing emotional stimuli would be excluded from
some of the supervoxels, while the emotional representations captured by the
supervoxels that retain a critical voxel would not be entirely different thant
a larger supervoxel that contain a multitude of such critical voxels, causing
the decrease in the diversity as measured by the Q-statistic by increasing the
likelihood of incorrect classifications.

4.1.1.3 Base Layer Diversity for Emotion Dataset with 4 Classes

For the Emotion dataset with 4 classes, where the mental states to be classified
are fear, disgust, kitchen appliances, and furniture, the effect of emotional brain
activity versus the activity of processing visual stimuli is more prominent. In
this case, as the supervoxels get smaller, classifier diversity measured by the
both Q-statistic and Disagreement measure decrease (Figure 4.1.e,f). We ex-
plain this effect by the observation that while emotional activity affect a larger
portion of the brain volume than the visual representations of the visual ob-
jects, smaller supervoxels does not necessarily capture different aspects of the
emotional representations in contrast to visual representations where small su-
pervoxels can capture sub-components of a visual object representation within
the brain volume.

4.1.1.4 Base Layer Diversity for TOL Dataset

The TOL dataset is essentially different from the other datasets that we analyze
in this study, where the visual stimuli does not change completely across the
mental states under consideration. For this dataset, our task is to determine
the state of the puzzle solving process of the participants whether they are in
the planning stage, or in the execution stage. For us, it is unclear whether the
supervoxels should have more diverse representations or not, as the size of the
supervoxels get smaller. However, our results suggest that diversity of the base
layer classifiers increase as the supervoxels get smaller (Figure 4.1.g,h) for the
both of the diversity measures that we consider in this study. With that in
mind, we can suggest that planning and execution states for problem soving
can be represented by the diverse activity in relatively smaller, specialized brain
regions.

To sum up, we can conclude that, for all datasets, constrained N-Cuts and K-
Means clustering provide sets of supervoxels that are comparable to the AAL
regions in terms of diversity diversity of the base layer classifiers that they are
tied to. For the three experiments (Objects, Emotion 2-Classes, and TOL)
the diversity within the set of base layer classifiers increases as the number
of supervoxels (thus, the number of base layer classifiers) increases. For the
Emotion 4-Classes experiment, the diversity within the subsets of supervoxels
decrease while the number of supervoxels in the subsets increases. This result is
reflected in the classification experiments (Section 4.2), where the classification
accuracy of BRE with optimal clustering parameter is lower than the one provied
by the BRE that receives input from the AAL regions for Emotion 4-Classes
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experiment. For the other experiments, performance of the BRE that receives
inputs from the set of supervoxels that are generated by the optimal clustering
parameter outperforms the performance of the BRE that receives input from
AAL regions.

4.1.2 Diversity comparison of Brain Region Ensembles that use Ran-
dom Subsets of Supervoxels (RSS-BRE) with respect to Ran-
dom Subspace Ensembles of Voxels (RSE)

In order to determine the classifier diversity of brain region ensembles based
on random subsets of supervoxels (RSS-BRE) and random subspace ensembles
of voxels selected by the voxel selection methods (Section 2.4.2), we used two
different statistics that are explained in Section 3.5. The classifier pairs we use
for the calculation of the diversity measures are the BREs that use different sub-
sets of supervoxels as their inputs and the SVMs that use different subspaces of
voxels as their inputs. The calculated diversity measures are averaged for the all
BRE pairs within a RSS-BRE, and all SVM pairs within a RSE. For comparison,
we use the same set of numbers for the number of generated supervoxels and
selected voxels {100, 150, 250, 400, 650, 1050, 1700} to form the supersets of vox-
els, and supervoxels within which the random sampling procedure is performed.
The supervoxels are formed by partitioning the brain volume of all voxels into
homogenous regions (supervoxels), and the number of supervoxels is determined
by the clustering parameter of a clustering algorithm.

The voxel selection methods select voxels from the brain volumes that contain
all voxels. For that purpose, we use three different voxel selection methods that
are prominent in the brain decoding literature: Voxel selection by using SVM,
MI and ANOVA (Section 2.4.2).

Recall that, in order to form a BRE, we need to select a set of supervoxels for
which we collect the posteriori probabilities from the base layer classifiers that
are tied to each of such supervoxels and then train a meta classifier using the
posteriori probability outputs. This task is achieved by concatenating the es-
timated posteriori probabilities of mental tasks generated by the selected base
layer classifiers and feeding these posteriors to the input of a meta classifier. In
the previous chapter (3.4.2), we suggest to randomly select subsets of supervox-
els from within the set of supervoxels formed by the brain partitions as the result
of a clustering procedure that uses a particular clustering parameter θ. That
procedure forms subsets of supervoxels that are selected from within a number of
supervoxels that is determined by the θ parameter, where for each subset of su-
pervoxels a BRE is built. Similarly, in order to form random subspace ensembles
of voxels, we randomly sample subspaces of voxels from within a set of voxels
that is originally formed by a voxel selection procedure, where for each subspace
of voxels, an SVM classfier is trained. Thus, we form a set of supervoxel sets each
of which are generated by a clustering process that is tied to a specific θ parame-
ter and we form a set of voxel sets each of which results from selecting a number
of voxels using a particular voxel selection algorithm. As a result, we have voxel
spaces, and supervoxel sets that have equal number of voxels/supervoxels in
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them, depending on the number of selected voxels and the θ parameter, where
we form supervoxel sets with cardinalities: {100, 150, 250, 400, 650, 1050, 1700},
and voxel spaces with voxel counts: {100, 150, 250, 400, 650, 1050, 1700}. We
form a RSS-BRE for each one of the said supervoxel sets and form a RSE for
each of the voxel spaces. The number of voxels/supervoxels in the sets start
from 100, which is roughly equal the number of brain regions specified by AAL,
and increased in the multiples of the Fibonnacci sequence in order to obtain sets
with meaningfully different number of elements in order to observe the trends
in the change of classifier diversities.

Classification for supervoxel sets is done by the RSS-BRE that is built for that
supervoxel set. Likewise, an SVM classifier is trained for each subspace of se-
lected voxels by the above stated algorithms. For each method, regularization
parameters of the classifiers φ ∈ {0.1, 1, 10} are optimized by using training and
validation sets. The reported test set results are used for calculating Q-statistics
[99] and the disagreement measures [47] which are presented in Section 3.5.

In order to form a random subset of supervoxels, we randomly sample half
of the supervoxels whithout replacement whose are generated by a clustering
algorithm with a specific parameter, where we perform this operation 100 times
as suggested in [56]. Similarly in order to form a random subspace of voxels,
we sample half of the voxels at random without replacement within a voxel
space, where we repeat this procedure 100 times to form 100 different random
subspaces of voxels.

To sum up, we calculate the classifier diversity within the RSS-BRE built using
the set of supervoxels generated by the clustering process that uses a specific
clustering algorithm. This process is repeated for all clustering algorithms and
all clustering parameters, where for each of them we build a seperate RSS-BRE
and calculate classfier diversity for them. Also, we build a RSS-BRE using the
brain regions specified by AAL, and calculate the diversity within RSS-BRE.
Also, we build a RSE for a voxel space generated by a set number of voxels
selected by a specific voxel selection algorithm and calculate diversity within
that ensemble. We repeat this process for all voxel selection algorithms and the
voxel numbers that we mentioned above.

When we compare the voxel spaces formed by the selected voxels, and the super-
voxel sets formed by brain partitioning, we can make the following observations.

First, voxel spaces for RSE contain much less voxels than the sets of supervoxels
for RSS-BRE, which contain the voxels from the whole brain volume partitioned
into a number of supervoxels. In other words, a voxel space that contains 100
voxels only include the voxels that are most relevant to mental tasks or stimuli
specified by the fMRI experiment with respect to the voxel selection measure,
whereas a supervoxel set containing 100 supervoxels is formed by partitioning the
whole brain volume into 100 seperate regions. Consequently, it is not possible
to form random subsets of supervoxels and random subspaces of voxels that are
based on an equal number of voxels let alone an equal set of voxels unless we
select the set of all voxels to form the voxel space, which makes voxel selection
irrelevant.
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Second, as the number of selected voxels as well as the number of partitions
through clustering are both increased, for instance, when we use 200 voxels
and 200 supervoxels instead of 100 to form the voxel space, and the set of
supervoxels, the diversity of classifiers, which are brain region ensembles each of
which uses a random subset of supervoxels, and SVM classifiers each of which
uses a random subspace of voxels, expected to decrease. That is because the
inclusion or exclusion of a specific voxel/supervoxel to a subspace/subset would
have a lesser effect to the performance of the classifiers when the number of
subspaces/subsets are increased in the original voxel/supervoxel sets.

Third, as the number of voxels selected by the voxel selection algorithm increases,
the diversity of the classifiers based on random subspaces would get lower. That
is because, as the set of selected voxels gets larger, the voxels with activity
patterns that are less discriminative with respect to the mental states will get
likely to be included in the set. Since the number of voxels that are included in
all of the supervoxels stays the same (the whole brain volume), such an effect
would not be observed for random subspaces of supervoxels.

Fourth, as we have presented in the Section 4.1.1, the diversity of the base layer
classifiers increase as the supervoxels, which are generated by partitioning the
whole brain, get smaller.

When we consider the second and the third observations stated above, we expect
a decrease in classifier diversity for classifiers based on random subspaces as the
number of voxels/supervoxels increase. However, when we consider the third,
and fourth observations, we expect classifiers based on random subspaces of
voxels to get much less diverse as the number of selected voxels increases when
compared to RSS-BRE. Depending on how these factors interact, we would even
observe an increase in the diversity for RSS-BRE as the number of supervoxels
that partition the brain is increased.

In the following sections we present the calculated classifier diversity measures
for Objects and Emotion (for 2 and 4 classes) datasets for all subjects.

4.1.2.1 Diversity Comparison of RSS-BRE vs. RSE for the Objects
Dataset

The classifier diversities of RSS-BRE and RSE which are measured by Q-Statistic
and the Disagreement Measure for each subject of the Objects dataset are given
in Figures 4.2 and 4.3. Here, the lower the Q-statistic and the higher the dis-
agreement measure, the diverse the ensemble of classifiers. The classifier ensem-
bles are formed using sets of supervoxels (RSS-BRE) and voxes (RSE) where
number of voxels/supervoxels are specified at the bottom of every graph.

When compared to RSE, RSS-BRE generally yield higher classifier diversities
(Figure 4.2 and 4.3). Here, K-Means, N-Cuts, and AAL specify the methods by
which the supervoxels are formed while SVM, and MI, and ANOVA specify the
methods by which the voxels are selected (Section 2.4.2). RSE that uses voxels
selected by using ANOVA for subjects 2 and 4, and using SVM for subject 3
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yields to more diverse ensembles than the RSS-BRE formed using the sets of
supervoxels generated using K-Means and N-Cuts clustering for some clustering
parameters. However, in general, RSS-BRE that are built using supervoxels
generated by the clustering methods K-Means and N-Cuts have higher classifier
diversitiy (Figure 4.2 and 4.3) when compared to RSE that uses voxels selected
by the voxel selection algorithms. The RSS-BRE built using AAL regions pro-
vided diversity values similar to the RSS-BRE built using supervoxels generated
by clustering for all Subjects (Figure 4.2 and 4.3).

The diversity of the classifiers in both RSS and RSE decreases as the supervoxel
sets and voxel spaces get larger. However, diversity among the classifiers of
RSE declines faster when compared to RSS-BRE as the voxel space or set of
supervoxels get larger, as we have predicted in the beginning of this section.

4.1.2.2 Diversity Comparison of RSS-BRE vs. RSE for the Emotion
Dataset: 2 Classes

The classifier diversities of RSS-BRE and RSE which are measured by Q-Statistic
and the Disagreement Measure for each subject of the Emotion dataset with 2
classes are given in Figures 4.4, 4.5, and 4.6. Here, the lower the Q-statistic
and the higher the disagreement measure, the diverse the ensemble of classifiers.
The classifier ensembles are formed using sets of supervoxels (RSS-BRE) and
voxes (RSE) where number of voxels/supervoxels are specified at the bottom of
every graph.

The two class version of the Emotion dataset has emotional (fear, disgust) and
non-emotional (furniture, kitchen appliances) categories. For this dataset, the
voxel selection methods provide a more diverse set of classifiers for RSE for
up to 650 voxels when compared to the RSS-BRE built with same number
of supervoxels. Beyond that point, RSS-BRE start to generate more diverse
classifiers than BRE (Figures 4.4, 4.5, and 4.6).

For this dataset, the diversity of RSS-BRE classifiers increase as the number of
supervoxels are increased up until 400 supervoxels. The increase in the diversity
of RSS-BRE classifiers would be the result of the increase in the diversity of the
base layer classifiers as the supervoxels get smaller (the fourth observation in
Section 4.1.1).

4.1.2.3 Emotion Dataset: 4 Classes

The classifier diversities of RSS-BRE and RSE which are measured by Q-Statistic
and the Disagreement Measure for each subject of the Emotion dataset with 4
classes are given in Figures 4.7, 4.8, and 4.9. Here, the lower the Q-statistic
and the higher the disagreement measure, the diverse the ensemble of classifiers.
The classifier ensembles are formed using sets of supervoxels (RSS-BRE) and
voxes (RSE) where number of voxels/supervoxels are specified at the bottom of
every graph.
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Similar to Emotion dataset with 2 classes, the diversity of RSS-BRE classifiers
get higher relative to the diversity of the random subspace ensembles that are
based on selected voxels as the number of clusters/voxels increase. The inflection
point is between 1050 to 1700 voxels/clusters (Figures 4.7, 4.8, and 4.9).

4.1.2.4 TOL Dataset

The classifier diversities of RSS-BRE and RSE, which are measured by Q-
Statistic and the Disagreement Measure, averaged for all Subjects of the TOL
dataset given in Figure 4.10. Here, the lower the Q-Statistic and the higher
the disagreement measure, the diverse the ensemble of classifiers. The classifier
ensembles are formed using sets of supervoxels (RSS-BRE) and voxes (RSE)
where number of voxels/supervoxels are specified at the bottom of every graph.

For this dataset when the disagreement measure is considered, the diversity of
RSS-BRE get higher relative to the diversity of the random subspaces that are
based on voxels selected by SVM. The inflection point is 100 voxels/supervoxels.
For the other voxel selection methods, diversity measured by disagreement mea-
sure is higher than RSS-BRE. However, that result is due to the nature of
disagreement measure, which does not take misclassified samples into consid-
eration, where the increase in the diversity is the result of inaccuracy of the
classifiers in RSE when MI or ANOVA is used for voxel selection (see the next
section for the classification results). When the Q-Statistic is considered, where
the effect of misclassified samples are taken into consideration, RSE based on
voxels selected by MI and ANOVA have a less diverse set of classifiers compared
to RSS-BRE (Figure 4.10).

4.2 Decoding Mental States by BRE

In this section we present the implementation details and the performance of
BRE on the aforementioned datasets. First of all, we briefly mention the data
preparation for clustering and classification. Second, we specify the parameters
for clustering algorithms, which are common for Objects, Emotion, and TOL
datasets. Third, we briefly mention the classification methods we described in
the previous chapter. Lastly, we present the classification results for individual
datasets.

4.2.1 Data Preparation for Clustering and Classification

During the classification experiments, we use a cross-validation scheme where we
separate the data in train, validation and test epochs. For each cross-validation,
four out of the six experimental epochs are reserved randomly for training while
one is set aside for validation and one is set aside for testing for Emotion and
Objects datasets. TOL dataset only has four epochs per subject. Thus, for that
dataset, two epochs are used for training and one each for validation and testing.
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Using training, validation and test epochs, the data matrices Xtr, Xval, Xte, as
well as their respective label vectors Ytr, Yval, and Yte are formed.

Clustering for the specification of the supervoxels is performed only using the
samples in the training set of voxel intensity values Xtr, and their respective
class labels Ytr.

4.2.2 Clustering Parameters and Methods for Generating Supervox-
els

Recall that the preliminary step of BRE is to partition the brain volume into a set
of regions called supervoxels. This task is achieved by using several clustering
algorithms, namely K-Means and N-Cuts. In order to investigate the effect
of the number of supervoxels on BRE, we experimented with each clustering
algorithm with an array of clustering parameters θ. The baseline for the number
of supervoxels we choose is in the order of the number distinct brain regions
specified by AAL (∼100). Using that baseline we then proceeded to increase
the number of supervoxels at each clustering level by using a Fibonacci sequence
in order to have distinct supervoxels at each level, while searching the space of
different clustering parameters.

K-Means clustering is done by using one minus Pearson correlation 1−ρij, as the
distance metric between the voxel pairs i and j. The clustering was performed
for target number of final clusters equals to θ ∈ {100, 150, 250, 400, 650, 1050,
1700}.

Similarly, spatially constrained N-Cuts clustering was applied to the distance
graph that is formed by the similarity metric ρij − 1. This time however, the
similarities of non-adjacent voxels (in three dimensions) were set to 0 [21], in
order to test the effect of enforcing spatial proximity while forming the voxel
clusters. The clustering was performed for target number of final clusters θ ∈
{100, 150, 250, 400, 650, 1050, 1700}.

The primary difference between K-Means and N-Cuts clustering algorithms that
we use in this study is their approach to the spatial connectivity of the individual
voxels. N-Cuts clustering requires the voxels in a cluster to be a sub-graph of
the voxel graph where each voxel is connected to its spatial neighbors in the 3D
voxel space. K-Means clustering does not take spatial proximity into account.
Therefore, the supervoxels generated by K-Means are more likeliy to be equal
in size and have ellipsoidal shapes in the domain specified by the pairwise voxel
similarities, due to the Gaussian misture assumption of the algorithm [41].

In addition to the tests with the clustering algorithms, we employed automated
anatomical labeling (AAL) to the fMRI data and used the generated regions to
set a baseline for our cluster analysis.
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4.2.3 Classification Parameters and Methods for the Validation of
BRE

In the classification experiments, our primary aim is to validate the classification
performances of BRE based classification strategies with respect to the methods
that are based on voxel, and ROI selection.

In this section, we present a brief reminder for the classification strategies that
are based on BRE and the methods that use voxel selection.

4.2.3.1 Classification Strategies Based on BRE

In order to test the validity of the proposed computational model BRE, we use
three different approaches. In the first approach, we apply BRE to the sets
of supervoxels Cθ each of which are generated by a specific clustering method
that uses a particular clustering parameter θ. Given an array of such clustering
parameters θ ∈ Θ, a BRE for each clustering parameter is built. The classifi-
cation performance of the best performing BRE is then reported as the BRE
that uses the set of supervoxels generated with the optimal clustering parame-
ter (BestParamBRE), using the Algorithm 3.5. This approach sets a baseline
for the performance of BRE, where all of the supervoxels generated by a brain
partitionining process is used for the construction of a BRE.

Similarly, a BRE is built for the brain regions specified by AAL (CAAL) in order
to observe the performance of a BRE that uses AAL regions, and compare it to
the performance of BREs that use supervoxels. The classification accuracy for
this method is then reported (BRE − AAL) for the test set samples.

The second approach that we use is to form random subsets of supervoxels (RSS)
within the set of supervoxels that are specified by a clustering parameter θ, and
use RSS for building one RSS-BRE for each clustering parameter (see Section
3.4.2.2). The classification accuracy of the RSS-BRE for the optimal clustering
parameter is then reported (BestParamRSS −BRE) for the test set.

For the brain regions specified by AAL, one RSS-BRE is built and the classifi-
cation accuracy is reported for the test set samples (RSS −BRE − AAL)

The third approach is to use the set of all supervoxels C =
⋃
θ∈Θ(Cθ), which are

generated by a clustering algorithm that uses the set of available clustering pa-
rameters Θ = {θ1, θ2, ....θNθ}, where Nθ is the number of clustering parameters.
With this approach, random subsets of supervoxels are selected from within C,
and RSS-BRE is built (see Section 3.4.2.1). The classification accuracy of the
predictions obtained by RSS-BRE for the test set is then reported (RSS−BRE).

In addition to the methods that use BRE, we have selected the base layer clas-
sifier that performs best, where each of them receives input from a specific su-
pervoxel, or AAL region. We report the classification accuracy of the best base
layer classifier for supervoxels generated by each clustering method (BestSV ),
as well as AAL regions (BestAAL). We use these results in order to compare the
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performance of our methods with respect to the most relevant region of interest
that can either be formed by clustering, or by using AAL.

4.2.3.2 Classification Strategies Based on Voxel Selection

The voxel selection based MVPA algorithms are implemented with Ns ∈ {100,
200, 300, 500, 800, 1300, 2100, 3400, 5100} whereNs is the number of selected vox-
els. After the feature selection phase, random subspaces of voxels are formed
from the set of selected voxels. Recall that each random subspace of voxels is
formed by randomly sampling voxels without replacement, where using each ran-
dom subspace, an SVM classifier is trained. Majority voting is then performed
for the outputs of the SVMs for each set of selected voxels and classification
accuracy for the RSE for the given set of voxels are acquired. The best set of
selected voxels is determined using the classification performance of RSE on the
validation set. For all classifiers, the regularization parameter φ ∈ {0.1, 1, 10}
for the SVM classifiers is determined by using train and validation sets which
are then applied to the test set. The accuracy results for test set (BestSet)
are reported for the number of selected features Ns that achieves the highest
accuracy in the validation set. For each voxel selection algorithm (SVM,MI,
and ANOV A), this process is repeated.

4.2.4 A Comparative Analysis of BRE and Baseline Methods on Ob-
jects Dataset

Objects dataset is a two class dataset as explained in the Section 2.2.1. For this
dataset, the average classification accuracies of the test samples are presented
in Table 4.1. In the following subsections we provide our analysis of individual
methods using this dataset.

4.2.4.1 BRE Performances Obtained by Different Sets of Supervoxels

For this dataset, the overall performance of the BRE that receives inputs from
the supervoxels formed by K-Means clustering in terms of accuracy is slightly
superior to those formed by N-Cuts clustering. For both of those methods, the
performance of BRE for the set of supervoxels that are generated by the best
clustering parameter is (BestParamBRE) significantly better than the regions
specified by AAL (BRE−AAL) (90.69%, 90.35% vs. 87.02% overall accuracies
respectively). These results suggest that the AAL parcellation do not necessarily
provide the best set of supervoxels for BRE for this dataset. A similar result can
be observed with BestParamRSS −BRE formed using the optimal clustering
parameter for clustering methods, and with RSS-BRE formed using AAL regions
(RSS −BRE − AAL).

In general, the clustering algorithm that does not take voxel locations into ac-
count (K-Means) provides slightly better sets of supervoxels for classification
purposes than the algorithm that ensure spatial connectivity vithin the voxel
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(a) N-Cuts (b) K-Means

Figure 4.11: The relative frequencies for clustering parameters to be selected as
the optimal clustering parameter over all cross-validation runs and all 4 subjects
are presented for (a) N-Cuts and (b) K-Means clustering methods for Objects
dataset. The optimal clustering parameters are selected with respect to the
classification performance of BRE, and RSS−BRE methods using a set of su-
pervoxels specified by that particular clustering parameter. The numbers below
each column denote the number of supervoxels generated using that clustering
parameter.

clusters (N-Cuts). In other words, there are supervoxels composed of fuction-
ally correlated voxels that are spatially separated, which make up a more suit-
able basis for classification than supervoxels for which the spatial connectivity
is enforced for the voxels make up them.

In the next group of experiments, we examine the optimal number of super-
voxels which yielded the best decoding performance in BestParamRSS−BRE
method and BestParamBRE method. Figure 4.11 shows the distribution of the
optimal clustering parameters over all classification experiments for two differ-
ent clustering algorithms (N-Cuts and K-Means) and two different classification
methods (BestParamBRE, and BestParamRSS − BRE) is given. For the
both clustering methods (N-Cuts and K-Means), we see a dominance of lower
number of supervoxels, which indicates that setting the number of supervox-
els at around the number of AAL parcels is effective. Still, we cannot ignore
the distribution of the optimal clustering parameter over all parameter choices
for different cross validation runs and different subjects meaning that clustering
with multiple parameters is a correct approach.

When we consider the BestParamBRE accuracies for N-Cuts, K-Means, and
meta classifier accuracy (BRE−AAL) for AAL regions we can see that unsuper-
vised clustering is much more effective for generating supervoxels that are useful
for BRE than only using AAL regions. Furthermore, the classification perfor-
mance of the supervoxel with the optimal performance (BestSV ) is higher for
the supervoxels that are generated by the clustering algorithms when compared
to supervoxels specified by AAL BestAAL. This finding suggest that cluster-
ing can be used to specify some supervoxels that are highly correlated with the
specific mental states in the fMRI experiment.
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4.2.4.2 BRE Performances Obtained by Random Subsets of Super-
voxels

For the Objects dataset, RSS-BRE formed with the set of supervoxels that are
generated by the optimal clustering parameter (BestParamRSS − BRE) per-
formed on par with the BRE formed using the set of supervoxels generated by
the optimal clustering parameter (BestParamBRE) for both N-Cuts and K-
Means clustering. However, random subsets of supervoxels that are generated
from all supervoxels (RSS − BRE) slightly outperforms the methods that de-
pend on clustering parameters (BestParamRSS − BRE, BestParamBRE).
That result suggests that a combination of supervoxels, which are generated by
different clustering paramenters, can be better for building classifier ensembles
than a selected set of voxels.

4.2.4.3 Comparison of BRE with Voxel Selection

In Objects dataset, RSS−BRE based on K-Means clustering outperform all of
the voxel-selection strategies 4.1 with a significant margin. Also all BRE based
methdos that use supervoxels generated by clustering significantly outperforms
voxel selection methods that use MI or SVM. Even a single meta classifier trained
using the supervoxels formed by AAL regions performed better than voxel selec-
tion with SVM and MI. Thus, for this dataset we can conclude that supervoxel
based BRE is effective for classification of mental states, which can be further
improved by using supervoxels generated by clustering instead of using AAL
regions.

4.2.5 A Comparative Performance Analysis of BRE and Baseline
Methods using Emotion 2 Classes Dataset

Emotion dataset can be used either as a 2-class, or a 4-class brain decoding
problem that contains scans regarding participants viewing either emotionally
stimulating images (fear, or disgust inducing) or non stimulating ones (furniture
and kitchen appliances). In this section we present the classification results for
the 2-class case for emotionally stimulating, or non stimulating images. In the
following subsections we provide our analysis regarding the effects of individual
methods on the brain decoding performance for this dataset.

4.2.5.1 BRE Performances Obtained by Different Sets of Supervoxels

For this dataset, RSS − BRE formed using the supervoxels generated by the
K-Means clustering has relatively better performance, compared to N-Cuts clus-
tering by a small margin. This result supports the case that clustering with
functional correlation similarity metric alone can provide better classification
results than clustering that also takes spatial proximity into account [21].
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(a) N-Cuts (b) K-Means

Figure 4.12: The relative frequencies for clustering parameters to be selected as
the optimal clustering parameter over all cross-validation runs and all 5 subjects
are presented for (a) N-Cuts and (b) K-Means clustering methods for Emotion
2 Class dataset. The optimal clustering parameters are selected with respect
to the classification performance of BRE, and RSS − BRE methods using a
set of supervoxels specified by that particular clustering parameter. The num-
bers below each column denote the number of supervoxels generated using that
clustering parameter.

Figure 4.12 shows the relative frequency of clustering parameters to be selected
optimal with respect to the classification performances of BRE and RSS−BRE
that use the set of supervoxels generated by the clustering parameters. In the
figures, we can see that the optimal clustering parameters are more uniformly
distributed across all clustering parameters for K-Means clustering when com-
pared to the N-Cuts clustering. As the number of supervoxels gets closer to
number of AAL regions the parameters has a higher frequency to be selected
as optimal. When compared to subspaces generated using AAL regions, op-
timal clustering levels for the two suggested methods BestParamBRE, and
BestParamRSS − BRE had higher performance when K-Means clustering is
considered. For the spatially constrained N-Cuts clustering, BestParamBRE
performance is similar with BRE − AAL performance of AAL regions, while
BestParamRSS − BRE performance is significantly higher than RSS − AAL
performance of AAL regions. We suggest that these results are correlted with
the increased diversity between base layer classifiers when the number of super-
voxels generated by clustering increases (Figure 4.1).

4.2.5.2 BRE Performances Obtained by Random Subsets of Super-
voxels

For the this dataset, RSS-BRE using the set of supervoxels generated by the
optimal clustering parameter BestParamRSS − BRE yielded the best over-
all performance. Also, random subsets of supervoxels that are sampled from
within the set of all supervoxels (RSS−BRE) performed similarly for K-Means
clustering. For N-Cuts clustering the best result is achieved by RSS − BRE
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method. These results show the effectiveness random subsets of supervoxels for
building brain region ensembles using the supervoxels generated by clustering
algorithms. For the supervoxels specified by AAL regions, this effect cannot be
observed.

4.2.5.3 Comparison of BRE with Voxel Selection

For this dataset, BestParamRSS − BRE based on K-Means clustering out-
perform all of the voxel-selection strategies (Table 4.2). Also, brain region en-
sembles that are trained using supervoxels generated by the optimal clustering
parameters BestParamBRE and BRE that use AAL regions BRE−AAL, and
RSS − BRE with K-Means and N-Cuts clustering are able outperform two of
the voxel selection strategies (ANOVA and MI) by significant margins. Only,
voxel selection with SVM provided accuracy results comparable to our suggested
methods.

4.2.6 A Comparative Performance Analysis of BRE and Baseline
Methods using Emotion 4 Classes Dataset

In this subsection we present the classification results for the 4-class case where
we decode fear, or disgust inducing images, or images containing kitchen appli-
ances, or furniture. In Table 4.3, classification results for all 5 participants are
presented. In the following subsections we provide our analysis regarding the
effects of individual methods.

4.2.6.1 BRE Performances Obtained by Different Sets of Supervoxels

For this dataset, similar to the 2 class case, RSS−BRE formed using supervoxels
generated by K-Means clustering provides the best performance, followed by N-
Cuts clustering, providing further support for the use of functional relations
between the voxels when forming supervoxels.

Figure 4.13 shows the distribution of the optimal clustering parameters for K-
Means and N-Cuts clustering algorithms with two different (BestParamBRE,
and BestParamRSS − BRE) classification methods. In the figures, we can
see that the most effective clustering parameters are almost uniformly dis-
tributed across all clustering parameters for K-Means clustering, where super-
voxels formed by N-Cuts clustering yielded better results when they are larger,
which would explain better performance of RSS − BRE using the supervoxels
generated by all clustering parameters for K-Means clustering. Also, when com-
pared to N-Cuts clustering, supervoxels formed by K-Means clustering are more
effective for forming BestParamBRE and BestParamRSS −BRE.

When the AAL regions are considered, it can be seen that BRE formed us-
ing AAL regions (BRE − AAL) perform better than BestParamBRE, and
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(a) N-Cuts (b) K-Means

Figure 4.13: The relative frequencies for clustering parameters to be selected as
the optimal clustering parameter over all cross-validation runs and all 4 subjects
are presented for (a) N-Cuts and (b) K-Means clustering methods for Emotion
4 Class dataset. The optimal clustering parameters are selected with respect
to the classification performance of BRE, and RSS − BRE methods using a
set of supervoxels specified by that particular clustering parameter. The num-
bers below each column denote the number of supervoxels generated using that
clustering parameter.

BestParamRSS − BRE formed by the sets of supervoxels generated by opti-
mal clustering parameters of both N-Cuts, and K-Means clustering. This result
is in parallel with the diversity analysis made for this dataset. For this dataset,
none of the clustering methods could generate a set of supervoxels using a clus-
tering parameter for which the diversity of the base layer classifiers is higher
than that of AAL regions (Figures 4.7, 4.8, and 4.9).

When the nature of the dataset is considered, the results can be better inter-
preted. The brain decoding task for this dataset is to classify the brain patterns
formed due to two visual object classes (furniture, and kitchen appliences), and
two types of emotion inducing visual stimuli (fear, and disgust). It is known
that emotional responses within the brain are widespread across multiple brain
regions (amygdala, insula, preforontal cortex, parietal cortex) [88], while repre-
sentations of visual object classes are expected to confined within primary visual
areas and temporal cortex [25]. While emotions having large scale representa-
tions, visual object representations would be localized within small areas of the
brain. That discrepancy would create a problem of scale when a decision for
clustering parameter is to be made. On one hand, if the brain volume is divided
into supervoxels that are too fine in scale, brain regions with representations for
emotional processing would be oversegmented. On the other hand, if the size
of the supervoxels is kept large, the representations concerning different visual
aspects of the visual object classes (color, texture, shape, etc.) could be lost
within a supervoxel. Thus, for this dataset it is only natural for RSS − BRE
method, which forms random subspaces of supervoxels from all clustering levels,
to be the most accurate.
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4.2.6.2 BRE Performances Obtained by Random Subsets of Super-
voxels

For this dataset, random subsets of supervoxels that are sampled from the set
of all supervoxels (RSS−BRE) performed better than all other methodologies.
Moreover, the performance of RSS-BRE using the set of supervoxels generated
by an optimal clustering parameter (BestParamRSS − BRE) yielded better
overall accuracies than BestParamBRE (which do not utilize random subsets).
In this dataset, with four classes, using random subsets of supervoxels provide
a significant improvement in classification performance for all cases, except for
the supervoxels formed by AAL regions.

4.2.6.3 Comparison of BRE with Voxel Selection

In this dataset, RSS −BRE that uses supervoxels generated by K-Means, and
N-Cuts clustering algorithms outperform all of the voxel-selection strategies by
significant margins (Table 4.3), and has the best overall performance. This
result indicate the success of our methodology, where fusion of the distributed
mental representations being more effective in brain decoding than a selected
set of voxels.

4.2.7 A Comparative Performance Analysis of BRE and Baseline
Methods using Tower of London (TOL) Dataset

In this subsection we present the brain decoding results for the TOL dataset.
The dataset is generated using block design where planning and action phases
for the solution of a Tower of London puzzle were recorded. In the following
experiments the two phases are considered to be seperate classes. Every brain
volume captured during a phase is used as a sample, and labelled with the
corresponding class label. The data from 18 subjects are used in the following
experiments.

4.2.7.1 BRE Performances Obtained by Different Sets of Supervoxels

Figure 4.12 shows the distribution of the optimal clustering parameters for
BRE that uses sets of supervoxels specified by K-Means and N-Cuts cluster-
ing algorithms with two different classification methods (BestParamBRE, and
BestParamRSS−BRE). In the figures, we can see that the optimal clustering
parameters are uniformly distributed across all clustering parameters for the
both clustering methods. As for the classification performances, BRE methods
based on the supervoxels formed by clustering methods do not provide signifi-
cantly better results than those specified by AAL regions (Table 4.7). Similar
accuracies for the methods that use BRE regardless of the procedure that is
used to specify the supervoxels suggest that individual AAL regions can already
capture the essential components of the mental tasks.
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Table
4.4:

Average
accuracy

results
over

6
cross-validation

runs
are

presented
individually

for
subjects

1-6
in

the
T
O
L
dataset.

Subject1
Subject2

Subject3
Subject4

Subject5
Subject6

A
cc

Ste
A
cc

Ste
A
cc

Ste
A
cc

Ste
A
cc

Ste
A
cc

Ste

N
-C

uts
B
estP

aram
B
R
E

93.27%
0.84%

93.57%
0.94%

90.06%
1.73%

80.41%
2.75%

85.00%
2.17%

78.13%
5.61%

R
SS-B

R
E

94.05%
0.71%

94.54%
0.85%

88.30%
2.80%

82.26%
3.77%

82.81%
4.59%

78.44%
6.82%

B
estP

aram
R
SS-B

R
E

93.47%
0.83%

93.66%
0.67%

89.86%
1.45%

82.46%
3.11%

86.04%
2.32%

78.65%
5.32%

B
estSV

88.21%
2.58%

87.43%
1.11%

85.38%
1.14%

74.46%
7.45%

84.79%
2.06%

79.17%
4.18%

K
-M

eans
B
estP

aram
B
R
E

92.69%
0.54%

93.66%
1.41%

88.11%
2.74%

83.82%
2.62%

84.90%
3.38%

74.48%
5.25%

R
SS-B

R
E

93.66%
0.63%

93.96%
1.45%

88.30%
3.65%

83.43%
3.46%

80.42%
5.46%

78.13%
5.60%

B
estP

aram
R
SS-B

R
E

92.69%
0.52%

93.86%
1.18%

89.67%
2.10%

83.24%
3.07%

85.73%
2.55%

78.13%
5.14%

B
estSV

86.26%
2.79%

88.89%
1.28%

82.85%
2.81%

79.04%
1.64%

84.79%
1.43%

77.19%
4.85%

A
A
L

B
R
E
-A

A
L

89.96%
1.02%

94.54%
0.82%

88.40%
1.72%

78.27%
2.48%

78.65%
5.62%

78.75%
6.93%

R
SS-B

R
E
-A

A
L

90.84%
0.88%

94.93%
0.90%

90.16%
1.20%

81.19%
2.83%

83.85%
3.76%

78.54%
6.83%

B
estA

A
L

85.87%
2.96%

84.31%
4.84%

87.04%
1.28%

71.25%
3.09%

81.67%
3.87%

80.63%
1.78%

SV
M

+
R
SE

B
estSet

87.43%
1.72%

78.27%
6.63%

84.70%
1.92%

77.78%
5.61%

86.56%
2.01%

82.60%
2.44%

M
I
+

R
SE

B
estSet

89.18%
0.75%

83.43%
5.93%

80.70%
5.31%

77.68%
3.55%

85.31%
2.25%

78.44%
4.47%

A
N
O
VA

+
R
SE

B
estSet

87.23%
1.20%

81.97%
6.34%

80.51%
5.22%

68.42%
6.63%

81.46%
3.73%

51.35%
8.24%
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Table
4.6:

Average
accuracy

results
over

6
cross-validation

runs
are

presented
individually

for
subjects

13-18
in

the
T
O
L
dataset.

Subject13
Subject14

Subject15
Subject16

Subject17
Subject18

A
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A
cc

Ste
A
cc
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A
cc
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A
cc
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A
cc
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N
-C
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B
estP
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B
R
E
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1.71%
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0.74%

78.44%
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R
SS-B

R
E
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B
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R
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R
E
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B
estSV
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84.21%
1.88%
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R
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R
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1.09%

80.31%
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Table 4.7: Accuracy results averaged over all subjects and 6 cross-validation
runs are presented for TOL dataset

Overall
Accuracy Rank

N-Cuts BestParamBRE 85.38% 5.61
RSS-BRE 84.86% 6.11

BestParamRSS-BRE 86.25% 3.83
BestSV 82.28% 8.89

K-Means BestParamBRE 85.11% 5.56
RSS-BRE 84.56% 7.22

BestParamRSS-BRE 85.54% 4.78
BestSV 81.12% 9.67

AAL BRE-AAL 84.78% 6.83
RSS-BRE-AAL 85.96% 4.44

BestAAL 80.61% 9.94

SVM + RSE BestSet 82.95% 7.89
MI + RSE BestSet 78.07% 10.06

ANOVA + RSE BestSet 72.19% 13.11

(a) N-Cuts (b) K-Means

Figure 4.14: The relative frequencies for clustering parameters to be selected
as the optimal clustering parameter over all cross-validation runs and 18 sub-
jects are presented for (a) N-Cuts and (b) K-Means clustering methods for TOL
dataset. The optimal clustering parameters are selected with respect to the
classification performance of BRE, and RSS−BRE methods using a set of su-
pervoxels specified by that particular clustering parameter. The numbers below
each column denote the number of supervoxels generated using that clustering
parameter.
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4.2.7.2 BRE Performances Obtained by Random Subsets of Super-
voxels

For this dataset, random subspace ensembles within the optimal clustering level
(RSELevel) yielded the best overall performance for all clustering methods.
For this dataset, using supervoxels that are formed using different clustering
parameters was ineffective in terms of accuracy results. The performance of
RSE method is worse than both BestParamBRE, and RSELevel methods.

4.2.7.3 Comparison of BRE with Voxel Selection

In this dataset, regardless of the particular method for the specification of su-
pervoxels (via clustering, or based on AAL regions), suggested BRE methods
perform significantly better than the voxel selection based methods.

For this dataset, inter subject difference in the accuracy ratings for the clas-
sification methods considered in this study is higher than the other datasets.
Especially, random subspace ensembles based on voxels selected by ANOVA
and MI algorithms have a high variance in their classification performace across
subjects. For some of the subjects, they perform at the chance level classifica-
tion accuracy (Figures 4.4, 4.5, 4.6). For this dataset, accuracy ratings below
58% were considered to be no different than chance level accuracy using the
procedure explained in 3.6). Given that, RSE based on voxels selected with
ANOVA fails to pass chance level for Subjects 6, 9, 13, and 18 and RSE based
on voxels selected with MI fails to pass the chance level for the Subjects 9 and
18. Since RSE based on voxels selected by SVM does not have such an issue,
we can suggest that the univariate nature of voxel selection processes employed
by MI and ANOVA to be the cause of them being failed.

The low performance of RSE based on voxels selected by ANOVA and MI is
also hinted at the section where we compare the classifier diversities. In Figure
4.10 it can be seen that the diversity of RSE based on ANOVA and MI is high
when the disagreement measure is considered. Whereas, when Q-Statistic is
used, their diversity is measured below the other methods. That discrepancy
is caused by the high number of samples misclassified by RSE based on voxels
selected by these two methods, where Q-statistic is a diversity measure that is
normalized by the frequency of the misclassified samples, while disagreement
measure is not.

4.3 Selection of Brain Regions that Contribute to the Task of Clas-
sification of Mental States

Recall that, some of the brain regions may not participate to the processing or
representation of the mental task or stimulus under consideration, but rather
engaged by the other neural activities. One of the aims of this study is to select
out the regions that are relevant to the tasks or stimuli specified by the fMRI
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experiments.

In order to select the brain regions that contribute to the classification of the
mental states specified by the fMRI experiments, we eliminated the supervoxels
for which, the corresponding base layer classifiers perform below the chance level
classifier accuracy given the number of test samples (see Section 3.6). We call
the remaining supervoxels to be effective in the classification task. The voxels in
the remaining supervoxels are then grouped within AAL regions and the ratio
of the effective voxels within each AAL region to number of effective voxels
obtained from the whole brain are then calculated for the brain partitioning
performed using a clustering parameter. The relative frequency of the number
of effective voxels within a specific AAL region with respect to the number
of all effective voxels from the whole brain is then plotted, where the relative
frequencies obtained for each AAL region using different clustering parameters
are stacked and plotted in the Figures (4.15, 4.16, 4.17, 4.18, and 4.19) of this
section.

4.3.1 Comparison of the Regions Specified using Base Layer Classi-
fiers with the Existing Neuroscience Literature with respect to
the FMRI Datasets used in this Study

For the experiments with the objects dataset, we can observe that the regions
that contribute to the classification task are the occipital lobe and surrounding
areas including cuneus, calcerine cortex, and inferior and medial temporal lobes
(Figures 4.15 and 4.16). These findings comply with the existing knowledge
about the processing of visual stimuli where the visual information is processed
through the occipital lobe and visual object classification is done at the temporal
lobe [25]. Furthermore, our findings suggest that it is possible to decipher object
specific information from the voxels that correspond to the early visual areas
such as primary visual cortex. Also, we can observe that the visual areas that
correspond to the where pathway (a pathway that is known to be involved with
the processing of the spatial aspects of visual information) such as calcerine
cortex also contains object specific information.

For the Emotion dataset, we observe that, there is a wide distribution of brain
regions that are affected by the emotional stimuli in such a way that they respond
differentially to emontion arousing stimuli (Figures 4.17 and 4.18). In contrast
to Objects dataset, the most prominent regions for this classification task are the
middle frontal gyri (Frontal_Mid_L, and Frontal_Mid_R in Figure ??), where
voxels in these regions lacked any discriminative information (Figures 4.15 and
4.16) for visual object classification task. On the other hand, the regions that are
most effective in discriminating fear and disgust emotions (middle frontal gyrus
- Frontal_Mid -, fusiform gyrus - Fusiform -, insula - Insula -, middle occipital
gyrus - Occipital_Mid -, middle temporal gyrus - Temporal_Mid, middle occip-
ital gyrus - Occipital_Mid, prenucleus - Prenucleus -) comply with the previous
study on this very subject [88].

The relative voxel frequencies for TOL dataset indicate highly selective activity
in sensory-motor areas (Precentral and Postcentral sulci), as well as supple-
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mentary motor areas, and some specific areas of cerebelum (Cerebelum 6, and
Cerebelum Crus 1). Also, visual areas such as calcerine cortex, occipital cor-
tex and cuneus are selective in discriminating planning and action phases of
the experiment. Moreover, the cortical structures that are implicated in spatial
processing are also involved (Parietal Cortex, Angular Gyrus). Furthermore,
Middle Frontal Gyrus, Lingual Gyrus, Parietal Inferior Lobule, Medial Superior
Frontal Gyrus, which are related to logical processing [79] is also found to be
highly selective for this experiment. When compared to the original article [71],
our algorithm seems to be more sensitive in the specification of regions with
selective activity.

4.3.2 Comparison of the Regions Specified using Base Layer Classi-
fiers with the Regions Specified with ANOVA with respect to
the FMRI Datasets used in this Study

In order to compare our region specification procedure, we have used analysis of
variance (ANOVA) to calculate p-values for each voxel. Then, we selected the
voxels with p ≤ 0.01 and plotted the relative frequencies of the selected voxels
to be in an AAL region (Figures 4.20 to 4.24).

When we compare the regions selected by p-values with the regions selected by
the base layer classifiers, for the Objects dataset we can observe that the most
critical brain regions for the task are the same for the both methods. For the
Objects dataset, there are some differences can be observed regarding the less
critical (less frequently seleced) regions when the two methods are compared.
The accuracy ratings of the base layer classifiers are more selective than ANOVA
when this dataset is considered since the critical voxels are more spread out
among the brain regions when ANOVA is used. This difference can be explained
using the fact that the both of the stimulus classes are visual objects (bird-
flower), where ANOVA selects the voxels that show significantly different activity
than the baseline activity of the all voxels, whereas our method only selects the
supervoxels that can discriminate the given classes. As long as the voxels are
involved in processing the visual stimuli, ANOVA can specify the voxels to be
effective, however, our method adds another constraint for a supervoxel to be
effective, which is, to be able to discriminate the two visual stimuli that belong
to different classes (Figures 4.15, 4.16, 4.20, and 4.21).

When the Emotion 2 Class dataset is considered, the relative voxel frequencies
for the regions specified by the base layer classifiers that use supervoxels as their
inputs correlate well with the relative voxel frequencies for the regions specified
by ANOVA (Figures 4.17, 4.18, 4.22, and 4.23). One small difference of our
suggested method with ANOVA is that, our method can show small differences
across Subjects with respect to the relative voxel frequencies for the specified
brain regions, while with ANOVA, the relative voxel frequencies for the brain
regions stay almost the same across Subjects. In contrast to the Objects dataset,
since the stimuli for the different classes (visual objects vs. emotional stimuli)
used in this dataset are not expected to be processed/represented by the same
regions of the brain, except for the visual cortex, thus, the correlation between
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our method and ANOVA is higher for this dataset.

For the TOL dataset, we calculated relative voxel frequencies for brain regions
averaged across all 18 Subjects. When we compare the relative voxel frequencies
of the effective voxels per region specified by the base layer classifiers with the
relative voxel frequencies specified by ANOVA, we can observe highly correlated
patterns (Figures 4.19 and 4.24).

When all datasets are considered, we can see that base layer classifiers that
receive inputs from supervoxels can be used to identify the relative contributions
of the brain regions to the classification task. The relative contributions of the
individual brain regions as determined by base layer classifiers are similar to
the ones determined using ANOVA, which is the current standard. Also, our
method can be used to specifiy brain regions that contribute to the classification
of the mental states while with ANOVA, all the regions that are involved in the
processing or representation of the experimental stimuli are specified.

4.4 Chapter Summary

In this chapter, we have first analyzed the classifier diversity of BRE and R. The
method we presented resulted in highly diverse sets of classifiers as the number
of supervoxels increased, when compared to state of the art voxel selection meth-
ods. Also, we have shown that BRE is more effective for decoding mental states
from brain images where the classification accuracy is higher than the state of
the art methods. Finally, we compared the brain regions that are found to be
selective across the tasks presented in the fMRI experiments. The supervoxels
formed by functional clustering of the voxels were found to be a viable alter-
native to the methods that are used in the specification of the regions that are
correlated with the experimental tasks.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In this study, we have presented a computational model (BRE) of human brain
to decode mental states from fMRI images. With BRE, it is our aim to capture
distributed representations of mental states such as their visual (shapes, tex-
tures, colors) and emotional components within voxel groups using supervoxels
and combine them using classifier ensembles for brain decoding.

Motivated by the distributed representations of mental states in the human
brain [66, 81, 43], we suggested clustering methods to isolate the distinct aspects
of mental representations, which are obtained using fMRI, within homogenous
voxel groups that we call supervoxels. We define supervoxels to be groups of
voxels that are specified using either a clustering algorithm that uses functional
correlation between the voxels, or specified using a functional brain atlas (AAL).
We use clustering to specify supervoxels which include groups of voxels which
respond similarly to the stimuli or the mental tasks that are used during an fMRI
experiment. With clustering, our aim is to specify supervoxels that are relevant
to the tasks or stimuli used in a particular fMRI experiment. AAL regions on
the other hand, are not specific to the tasks or stimuli of a particular fMRI
experiment, but using AAL regions as supervoxels offer a baseline to compare
them with the supervoxels obtained with clustering algorithms.

We suggested to combine the mental representations captured within the super-
voxels using a classifier ensemble that we call a Brain Region Ensemble (BRE).
We consider the activity of voxels within each supervoxel as a distinct feature
that corresponds to a specific aspect of a mental state recorded during an fMRI
experiment. For BRE, a base layer classifier that outputs class posteriori prob-
abilities is trained, usin the inputs from a specific supervoxel in terms of voxel
activity values correspond to that supervoxel. Then, for a set of such supervox-
els, the outputs of base layer classifiers in the form of class posteriori probabilities
are concatenated and fed to a meta classifier that correspond to the BRE. We
proposed a classifier ensemble (RSS-BRE) that is composed of a set of BREs,
each of which uses a set of randomly sampled supervoxels, or random subsets of
supervoxels (RSS), which uses a voting strategy for final classification. We also
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explored possible methods for forming random subsets of supervoxels for RSS-
BRE, where we formed RSS-BRE for all supervoxels, and we formed a RSS-BRE
for each set of supervoxels generated using a specific clustering parameter.

When the classification accuracy results are compared, we show that RSS-BRE
performs significantly better than the widely used brain decoding algorithms
that use voxel selection and random subspace ensembles. In all datasets that we
used, we could directly observe this result.

We introduced diversity as the indicator for the success of an ensemble learn-
ing algorithm. We used Q-Statistic and disagreement measure to compute the
diversity among the base layer classifiers. Diversity among base layer classifiers
is used to compare the diversity of the classifiers that are based on supervoxels
generated by clustering algorithms, and supervoxels specified by AAL regions.
Also, we compared the diversity of brain region ensembles in a RSS-BRE with
random subspace ensembles of support vector machines that use voxels selected
by a voxel selection algorithm.

We postulated that partitioning the brain volume into smaller regions that we
call supervoxels would allow us to capture distinct aspects of mental states within
the supervoxels. We argued that ensembles of classifiers each of which receive
input from such supervoxels would provide us with an ensemble with a diverse set
of classifiers when compared to the ensembles formed by classifiers that receive
inputs from AAL regions. Also, we argued that RSS-BRE formed using smaller
supervoxels would have more diverse set of classifiers than random subspace
ensembles of selected voxels. In the experiments regarding classifier diversity, we
observed supervoxels generated by clustering methods provide sets of supervoxels
with corresponding sets of base layer classifiers for which the diversity among the
classifiers increases as the number of supervoxels generated during the clustering
phase increases. When compared to BREs that are formed using AAL regions
as supervoxels, BREs formed by supervoxels that are generated by clustering
have a higher diversity among the base layer classifiers when the number of
supervoxels are increased. Also, when we used random subsets of supervoxels
in order to form a RSS-BRE, we have shown that the diversity of the classifiers
within the RSS-BRE becomes higher than the classifier ensembles of support
vector machines that use random subspaces of selected voxels, as the number of
supervoxels and voxels are both increased, thus, confirming our postulate.

For the specification of the brain regions that are relevant to the classification
of the mental states that are under consideration for the fMRI experiment, we
proposed to use the classification accuracies of the base layer classifiers that re-
ceive input from each supervoxel. We eliminated the supervoxels for which the
base layer classifiers that receive input from them do not have a higher accu-
racy than the chance level. We obtained the relative contribution of each brain
region specified by AAL to the classification task that is under consideration by
eliminating the irrelevant supervoxels. We also obtained relative contribution of
AAL regions to the experimental tasks or stimuli of fMRI using ANOVA. We ob-
served that our method could provide us with the relative contribution of brain
regions with respect to the classification task, whereas ANOVA would provide
us with the relative contribution of the brain regions when considering all of
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the stimuli or mental tasks presented during the experiment. In that sense, our
method is more specific with respect to the classification task when the relative
contribution of the brain regions are considered.

When compared to voxel selection based methods, BRE, especially RSS-BRE
provide a better classification accuracy for the classification of mental states un-
der consideration by an fMRI experiment. However, when compared to methods
that use voxel selection, BRE is computationally expensive due to the coss-
validation phase of the base layer classifiers, where in order to obtain the class
posteriori probabilities of the training samples, a classifier is trained for each of
the training samples. In order to deal with this problem, a parallel computation
scheme can be used, where the classifiers can be trained and the class posteriori
probability of each training sample are obtained in parallel.

In contrast to searchlight methods, our method does not assume spatial proxim-
ity for voxel groups that are used in the classification tasks. Also, our method
is less susceptible for inclusion of irrelevant voxels than searchlight methods
since the voxel groups are determined by their activity patterns using clustering.
Moreover, our methodology uses multi-voxel analysis for the region specification
which makes our method more sensitive for detecting relevant voxel groups when
compared to univariate analysis such as ANOVA. These effects can be observed
in the region specification results of TOL dataset when compared to the original
article.

5.1 Future Directions

In a future study, a dedicated method for selecting the best subset of supervox-
els, among all supervoxels that are generated using every clustering parameter,
can be developed. Such a set of supervoxels could provide not only a better
classification accuracy for decoding mental states, but also it could also be used
to provide a complete map of brain regions that is concerned with the represen-
tation of the mental states that are discrimative across the experimental tasks.

The performance of BRE for the classification of mental states is higher than the
widely used methods of voxel selection. However, BRE is much slower than these
methods due to the high number of cross-validations required when forming the
base layer fuzzy stacked generalization classifiers. In order for BRE to work in
large datasets, a parallel implementation is necessary.

A brain decoding strategy that is similar to BRE can be developed, which uses
features generated by an autoencoder [96] that is developed for processing brain
images, instead of supervoxels formed by clustering. Features generated by
autoencoders could capture the distinct aspects of mental states better than a
clustering algorithm that relies only on the similarities between the voxels in
terms the correlation of their activities.
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