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ABSTRACT 

A NOVEL ONLINE APPROACH TO DETECT DDOS ATTACKS USING 
MAHALANOBIS DISTANCE AND KERNEL-BASED LEARNING 

 

Daneshgadeh Çakmakçı, Salva 

Ph.D., Department of Information Systems 

Supervisor: Prof. Dr. Nazife Baykal  

Co-Supervisor: Assoc. Prof. Thomas Kemmerich   
 

November 2019, 90 pages 
 
Distributed denial-of-service (DDoS) attacks are continually evolving as the computer and 
networking technologies and attackers’ motivations are changing. In recent years, several 
supervised DDoS detection algorithms have been proposed. However, these algorithms 
require a priori knowledge of the classes and cannot automatically adapt to the frequently 
changing network traffic trends. This emphasizes the need for the development of new 
DDoS detection mechanisms that target zero-day and sophisticated DDoS attacks. To 
fulfill this need, an online sequential DDoS detection scheme that is suitable for use with 
multivariate data was proposed. The proposed algorithm utilizes a kernel-based learning 
algorithm, the Mahalanobis distance, and a Chi-square test. The algorithm is fully 
automated and does not require a pre-defined setting of any thresholds or baseline normal 
network traffic for training. Initially, four entropy-based and four statistical-based features 
were extracted from network flows as detection metrics per minute. Then, the Enhanced 
Kernel based Online Anomaly Detection Algorithm (E-KOAD) was employed to detect 
entropy-based input feature vectors that were suspected to be DDoS. This algorithm 
assumes no model for network traffic or DDoS in advance; then, it constructs and adapts 
a Dictionary of features that approximately span the subspace of normal behavior. Every 
T minutes, the Mahalanobis distance between suspicious vectors and the distribution of 
Dictionary members is measured. Subsequently, the Chi-square test is used to evaluate 
the Mahalanobis distance. The proposed DDoS detection scheme was applied to the 
CICIDS2017 dataset and the performance of the algorithm was measured using different 
performance metrics including accuracy, recall, precision and ROC-Curve. Finally, the 
results were compared with those by existing algorithms.  

Keywords: DDoS, Machine algorithm, KOAD, Mahalanobis distance, Chi-square test 
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ÖZ 

MAHALANOBIS UZAKLIĞI VE KERNEL TABANLI ÖĞRENME 
KULLANILARAK DDOS SALDIRILARINI TESPİT ETMEK İÇİN ÖZGÜN VE 

ÇEVRİMİÇİ BİR YAKLAŞIM 

Daneshgadeh Çakmakçı, Salva 

Ph.D., Bilişim Sistemleri Bölümü 

Danışman: Prof. Dr. Nazife Baykal  

Eş Danışman: Doç. Prof. Thomas Kemmerich   
 

Kasım 2019, 90 sayfa 
 

Bilgisayar, ağ teknolojileri ve saldırganların motivasyonları değiştikçe DDoS saldırıları 
sürekli olarak dönüşüm geçirmektedir.DDoS saldırılarını tespit etmek için geçtiğimiz 
yıllarda, birçok denetimli makine öğrenmesi algoritması önerilmiştir. Fakat bu 
algoritmalar sınıflarla ilgili ön bilgiye ihtiyaç duymakta ve sürekli değişen ağ trafiği 
trendlerine otomatik olarak uyum sağlayamamaktadırlar.Bu durum, sıfır günlük ve 
gelişmiş DDoS saldırılarını hedef alan yeni DDoS tespit etme mekanizmalarının 
geliştirilmesine olan ihtiyacı öne çıkmaktadır.Bu ihtiyacı karşılamak için bu çalışmada, 
çok değişkenli verilerle çalışmaya uygun olan çevrimiçi ve sıralı bir DDoS tespit etme 
şeması önerilmiştir.Önerdiğimiz algoritma; kernel tabanlı bir öğrenme algoritması, 
Mahalanobis uzaklığı ve Chi-square testinden yararlanmaktadır.Algoritma tamamen 
otomatiktir ve önceden tanımlanmış herhangi bir eşik değere veya normal ağ trafiğine 
ihtiyacı yoktur.Yapılan çalışmada öncelikle, ağ akışlarından, dakika başına dört adet 
entropi tabanlı ve dört adet de istatistiksel tabanlı özellik elde edilmiştir. Sonrasında, 
DDoS saldırısı olarak şüphelenilen, entropi tabanlı girdi özellik vektörlerini tespit etmek 
için kernel tabanlı öğrenme algoritması çalıştırılmıştır.Bu algoritma, ağ trafiği veya DDoS 
için herhangi bir modeli temel olarak varsaymamaktadır. Bunun yerine, normal davranışın 
çerçevesini yaklaşık olarak tanımlayan bir özellik kütüphanesi oluşturmakta ve bu 
kütüphaneyi kullanmaktadır. Şüpheli vektörler ve kütüphane üyelerinin dağılımı 
arasındaki Mahalanobis uzaklığı belirli bir periyotta ölçülmektedir. Sonrasında, bu 
mesafenin değerlendirilmesi için Chi-square testi kullanılmaktadır. Önerilen DDoS 
algılama yapısı CICIDS2017 veri setine uygulanmış ve doğruluk, anımsama, duyarlılık 
ve ROC eğrisini de içeren birçok parametre kullanılarak algoritmanın performansı 
ölçülmüştür. Son olarak, elde edilen sonuçlar mevcut algoritmaların performanslarıyla 
karşılaştırılmıştır.  

Anahtar kelimeler: DDoS, Makine algoritması, KOAD, Mahalanobis uzaklığı, Chi-square 
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CHAPTER 1 

 

1. INTRODUCTION 

The evolution of intelligent computer networks, distributed processing facilities, range 
of communication protocols, and arrays of smart devices has significantly 
revolutionized all modern critical infrastructures and business models. Today’s 
technologies are firmly relying on network and communication facilities, which in turn 
makes them dependent on network security. The growing number of internet-based 
services and applications along with increasing adoption rate of connected wired and 
wireless devices present opportunities as well as technical challenges and threads. 
Therefore, security concerns increase exponentially for both individuals and service 
providers.  

A cyber-attack is a malicious and deliberate activity by an individual or organization 
toward the computer and network system of another induvial or organization to 
compromise the secure operation of their information systems. Attackers peruse some 
gains by devastating the victim’s network. Therefore, cybersecurity has become one 
of the primary concerns of the organizations to prevent or reduce the potentially severe 
consequences of the cyber-attacks. The terms cybersecurity and information security 
are often used interchangeably in the literature.  In general, information security 
concentrates on protecting information assets, while cybersecurity encompasses more 
dimensions, including human resources and ethics (Reid and Van Niekerk, 2014). 
Information security aims to protect the triad of confidentiality, integrity, and 
availability (CIA) of data (ISO/IEC 27002:2013, 2013). Availability means that 
information should be available whenever authorized people need it.  Integrity means 
that only authorized people can alter information or otherwise, would be the same as 
was produced or sent by a sender.  Confidentiality means that information should only 
be accessible by authorized people. Cybersecurity also supports the authenticity and 
non-repudiation of data. Authenticity ensures the identity of the source.  Non-
repudiation means that the party of the communication cannot deny the authenticity of 
her/his signature.  Moreover, cybersecurity can protect the privacy of the users.  

Ahmed et al. (2016) defined network security as a subset of cybersecurity which deals 
with planning and implementing network security mechanisms. It protects the 
confidentiality and integrity of data while also ensure the availability of the resources. 
They categorized network attack types in four groups, including DoS/DDoS, probe, 
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User to Root (U2R), and Remote to User (R2U).  Many organizations today implement 
a variety of intrusion detection and prevention systems and employ cybersecurity 
experts to protect their network against different types of mentioned attacks.  Not 
surprisingly, as the complexities and sophistication of attack vectors increase, the need 
for more robust and sophisticated detection methods also increase simultaneously.  

This chapter begins with elaborating the problem and the importance of the subject 
within the global research community. The problem statement is defined, the gaps in 
the existing literature are presented, and the original contributions of this dissertation 
are highlighted. 

1.1. Motivation  

Many organizations today implement a variety of intrusion detection and prevention 
systems and employ cybersecurity experts to protect their Internet-enabled interests. 
Preventing revenue loss and data breach are the dominant motivations of the 
organizations to employ security solutions.  

Gartner reported the approximate amount of $114 billion for the worldwide 
expenditure on information security in 2018. Gartner also predicted the 8.7 percent of 
growth to $124 billion for the market in 2019.  

According to the recent report by Akamai [aka, 2019] money is the main concentration 
of all cyber-attacks. Subsequently, the financial services industry is fascinating for 
attackers. Distributed Denial of Service (DDoS) attack can cause millions of dollars 
lost for each minute of downtime for commercial organizations. Nevertheless, the 
financial services industry was the target for 40% of all the unique DDoS attacks. The 
report mentions to TCP SYN-ACK as the most common DDoS attack type against 
financial organizations in 2019.  

The report by Verizon (2019) demonstrates the volume of DDoS attacks in different 
industries and indicates that the median of DDoS attack bandwidth does not change 
dramatically among various sectors. The report discusses DDoS protection as an 
essential control for information entities by considering the massive number of DDoS 
attacks in different industries.  

According to the Arbor report (2016) The DDoS attack was the second most 
commonly experienced attacks in 2016 after Ransomware. The DDoS attack was 
reported as the top observed threat by service providers in 2017. Additionally, over 
two-thirds of the respondents cited the DDoS attack as a high threat to IPv6 networks. 
The vast majority of service providers who participated in the Arbor’s survey 
represented the DDoS attack as the dominant threat. Firewall logs, Intrusion Detection 
System (IDS) and Security Information and Event Management (SIEM) were 
addressed as the top three most utilized tools to detect threats. However, half of the 
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enterprise, government, and education respondents stated that their firewalls and IDS 
failed to detect DDoS attacks, or the event contributed to an outage during DDoS 
attack. Respondents also see online DDoS detection/mitigation systems as the most 
effective ways to detect threats. Additionally, there is an increasing demand toward 
best-practice hybrid and online automatic DDoS detection/mitigation systems in the 
market.  

1.2. Problem Statement  

There are hundreds of studies regarding DDoS detection in the literature. Many 
frameworks have been presented in academia and industry to predict, detect, and 
defend against DDoS attacks. Machine learning, knowledge-based, soft computing 
and statistical methods are examples of techniques which have been adopted to detect 
DDoS attacks. However, the nature of DDoS attack makes it very difficult to propose 
a method to cover the detection of all different types of DDoS attack. Modern firewalls 
and IDSs have some examples of flooding protection that enable them to mitigate some 
DoS/DDoS attacks such as volumetric DDoS. On the other hand, today’s high-speed 
networks not only empower attackers to bombard their victims with high rate and 
volume of packets but also to configure themselves in a manner which can escape 
traditional firewall and IDS.  

It is thus essential to develop a new DDoS detection mechanism which incorporates 
the best feature of existing practices while automating the detection process the most. 
This is the objective of this dissertation. 

1.3. Gaps in the Existing Literature and Original Contributions 

Despite the abundance of DDoS attack detection approaches available in the literature, 
the following significant gaps have revealed in existing knowledge. Based on the 
literature survey, several critical issues remain unresolved.  

• The lack of new benchmark datasets for the validation of detection schemes, 
which leaded almost all authors used either old datasets or simulation data in 
a strictly controlled environment (Behal and Kumar, 2017). 

• The lack of real-time DDoS attack detection systems (Behal and Kumar, 
2017). 

• The fixed threshold setting for statistical and entropy-based DDoS detection 
approaches.  

• The limited number of unsupervised DDoS attack detection schemes that 
satisfy all the requirements of a real-world online DDoS detection algorithm 
(Ahmed et al., 2016). 
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This thesis makes the following original contributions: 

• A novel algorithm is proposed for performing automated detection of DDoS 
attacks in the network of the organizations. The time complexity and memory 
requirements of the proposed algorithm is independent of time, which makes 
it naturally suitable for real-time use. 

• Validation of the proposed algorithm with the recent benchmark dataset from 
the Canadian Institute for Cybersecurity (CICID2017) (Sharafaldin et al., 
2018). 

• Improving the well-known kernel online anomaly detection algorithm (Ahmed 
et al., 2007a, Ahmed et al., 2007b, Ahmed, 2009), which is cited in more than 
150 studies, by automating threshold selection. 

• Construction of the original feature vector by combining a small subset of 
traffic features based on the recommendations for both statistical and entropy-
based features in the DDoS detection literature. 

 

1.4. Scope and Limitations 

The primary concentration of this dissertation is to propose an online and fully 
automated DDoS detection algorithm. The proposed algorithm can detect protocol-
based (TCP, UDP, DNS, ICMP) flooding attacks at the victim’s network. The network 
administrator can determine the time required to alarm a DDoS attack after suspicious 
traffic enters the network of the organization. The time can be defined based on the 
severity level of the system and the network bandwidth to tolerate large traffic 
volumes.  
It is hypothesized that this algorithm can detect flooding DDoS attacks in any 
environment where the victim is located, such as LAN, WAN, ISP, cloud, and SDN 
networks. However, it requires future investigation, which is preserved for future 
work. 
The algorithm is not able to differentiate different types of DDoS attacks, including 
High Rate-DDoS (HR-DDoS) and Low Rate-DDoS (LR-DDoS) from Flash Event 
(FE) traffic. The algorithm cannot be employed to detect reflection DDoS attacks. 
However, it is expected that the update of second feature vector (Please refer to section 
4.2 for more details) will be enough to make algorithm applicable for detection of 
different reflection DDoS attacks such as DNS-based reflection DDoS.  
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1.5. Outline of  Dissertation  

The remainder of this dissertation is organized as follows.  Chapter 2 describes the 
recent related work and surveys the literature on the topic.  Chapter 3 presents the 
mathematical background of the proposed DDoS detection system.  Chapter 4 presents 
the research design and presents the experimental setup.  Chapter 5 presents the 
experimental results and empirical comparisons of the proposed scheme with existing 
methods.  Chapter 6 concludes with directions for future work. 
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CHAPTER 2 

 

2. LITERATURE REVIEW  

This chapter begins with presenting an overview of the DDoS attack, taxonomy of 
DDoS attacks, and DDoS protection mechanisms.  Subsequently, this chapter 
discusses the methods that have been recently proposed by various researchers to 
detect DDoS attacks. These works are organized based on different behavioral 
approaches to detect DDoS attacks, including statistical methods, information theory, 
supervised machine learning, unsupervised machine learning, and hybrid methods.  

2.1. DDoS attack Overview  

Denial-of-service (DoS) attack is a classic method of bringing down a victim network 
by preventing legitimate users (clients) of a service from accessing that service. 
Distributed DoS (DDoS) attacks are sophisticated, many-to-one version of DoS 
attacks, where the attacker overwhelms victim’s resources by sending streams of 
packets to the victim. DDoS attackers not only aim to render a service inaccessible but 
also may pursue to gain unlimited access to the victim machine and thus cause more 
damage. According to Shameli-Sendi et al. (2015), the taxonomy of DDoS attacks 
involves six categories: the degree of automation (manual, semi-automatic, and 
automatic); the degree of attack rate (continuous, fluctuating, and increasing); the 
network scanning strategy (random, hit-list, topological, permutation, and local 
subset); the adopted strategy (protocol and brute-force attacks); the propagation 
mechanism (central, back-chaining, and autonomous); and finally the degree of impact 
(disruptive and degrading).  
Currently, bot networks are usually utilized to increase the impact of the attacks. These 
bot networks consist of handler (master) and agent (bot/slave/zombie) machines. The 
attackers scan the network and compromise vulnerable machines by using them as 
bots. These bots are then commanded to bombard the victims with packets by 
specifying the attack type and the victim’s address (Mirkovic and Reiher, 2004). 
Akamai Technologies (2019) recorded 7,822 DDoS attacks between November 1, 
2017 and April 30, 2018, indicating the prevalence of such attacks despite the presence 
of multilevel Internet security measures. During the last six months of this period, 
companies confronted with DDoS attacks 41 times on average. The United States was 
identified as the source of 30% of the recorded DDoS attacks, that is, 46,137 source IP 
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addresses (Akamai Technologies, 2019). Table I displays the summary of DDoS 
attacks statistics in 2016 based on the ATLAS data and the Arbor report (2016). 
 
Table I Summary of DDoS attacks Statistics in 2016 

DDoS attack 
2016  

First-Place Second-Place 
Peak Attack Size 500 Gbps 400 Gbps 
DDoS Attack Types Volumetric State-Exhaustion 
Attack duration 1% of attacks took more than 1 

day 
86% less than 30 
minutes 

DDoS Attack Motivations Criminals demonstrating DDoS 
attack capabilities 

Online gaming-
related 

Ports Targeted by DDoS 
Attacks 

80 53 

Protocols Used for 
Reflection/Amplification 

DNS NTP 

 
Flash Event (FE) is another type of network traffic which deliberately causes a denial 
of service problem for legitimate users of an internet-based service or an application. 
FE resembles High-Rate DDoS (HR-DDoS) attacks, and it is difficult for network 
administrators to distinguish DDoS attack from FE traffic. This increase in the volume 
of legitimate traffic might be unpredicted, like spreading a piece of breaking news 
around the world. It also could be predicted like a pre-scheduled introducing of a new 
product by Apple company (Behal and Kumar, 2017). 

2.2. Taxonomy of DDoS attack 

DDoS attack vectors can be categorized in three groups:  

• Volumetric Attacks: The fundamental goal of these types of attacks is to 
consume bandwidth of the network and causing congestion in the network. 
Bhuyan et al. (2015a) classified volumetric DDoS attacks into HR-DDoS 
which are similar to FE and Low Rate DDoS (LR-DDoS) which are similar to 
legitimate network traffic. According to Moor et al. (2006) if the rate of DDoS 
attack is more than 1000 packets per second, it will be considered as High Rate 
DDoS (HR-DDoS) attack.  

• TCP State-Exhaustion Attacks: The ultimate aim of these attacks is to consume 
the whole connection state tables of network infrastructure components such 
as load balancers, firewalls, IDS, IPS, and the application. 
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• Application-Layer Attacks: In these types of attacks target the critical aspect 
of an application or service. They are a relatively effective attack because it 
consumes not only server resources but also network resources. In general, it 
is difficult to detect them with traditional flow-based monitoring methods. 

DDoS attacks based on exploited vulnerability: 

• SYN Flood: An attacker sends a massive number of spoofed SYN packets to a 
victim to establish a connection. The attacker never completes the three-way 
TCP communication process. The victim waits for the packet, but it never 
receives the SYN-ACK packet until the connection request becomes timeout. 
It results in an increasingly large number of half-open connections in the 
network. SYN packets are often used aa a powerful attack means because they 
are least likely to be rejected by a simple firewall rule. 

• UDP Flood: An attacker floods the massive number of spoofed UDP packets 
to random servers or a specific server (with a particular IP address and port 
number). Finally, the attacker consumes all available bandwidth in a victim’s 
network.  

• UDP Fragment Attack: It encompasses fragmentation of different UDP packets 
in protocols like DNS and NTP. 

• DNS Amplification Attack: It is a type of reflection attack which an attacker 
sends many DNS requests to several DNS servers with a spoofed IP address 
(IP address of victim). As a result, DNS servers simultaneously send DNS 
response packets to the victim. Finally, the victim’s network is exhausted by 
the sheer number of DNS responses. 

• Connection-less Lightweight Directory Access Protocol (CLDAP) Attack: 
CLDAP is an attack on port 389 which is used to retrieve server information 
by clients. In CLDAP attack, a malicious party sends LDAP/CLDAP requests 
to several servers with a spoofed sender IP address (victim’s IP). Servers 
respond with their data inside a large response packet. As a result, the victim’s 
network is overwhelmed with a significant number of LDAP response packets. 

• NTP Attack: NTP is a simple UDP protocol which is used by connected 
machines to set their clocks automatically. It can be misused to start a reflected 
DDoS attack against a computer because the small request can result in a 
tremendous response.  

• Character Generator (CharGEN) Flood: It is an old-fashioned protocol either 
TCP or UDP on port 19. When a TCP connection is started, the server initiates 
sending arbitrary characters to the connecting host until the connection is 
closed. In UDP based communication, when a host sends a datagram to the 



10 
 

server, the server sends back a UDP datagram containing a random number of 
characters (0-512). This protocol can be misused to perform a CharGEN 
amplification DDoS attack. The attack is started by sending small packets 
carrying a spoofed sender IP address (victim’s IP) to the connected devices 
running CharGEN. Then the connected devices which receives the packets start 
to send large UDP packets to the victim on port 19. Therefore, the victim is 
overwhelmed with a massive amount of response packets (between 0- 512 
bytes depending on request).  

• SSDP Attack:  The Simple Service Discovery Protocol (SSDP) which is a part 
of the Universal Plug and Play (UPnP) Protocol has started to be miss-used as 
a new reflection DDoS attack. SSDP is enabled by default on most of 
home/office devices such as PCs, wireless access points, modems, routers, web 
cameras, smart TVs, scanners, and printers. The protocol is used to enable 
machines to seamlessly discover each other for communication and data 
transferring on the network.  

• DNS Attack: It is an application layer attack towards DNS server using UDP 
floods. An attacker sends a large amount of spoofed DNS request packets from 
a massive set of source IP addresses. It is difficult for DNS server to 
differentiate a fake DNS request from the real one, so fraudulent requests 
drown the DNS server and make it out of service.  

2.3. DDoS Attack Defence Mechanisms  

A DDoS attack can adversely influence an organization at various levels, ranging from 
financial, prestige, and customer loss to data exfiltration. Therefore, an effective DDoS 
protection system is critical for preserving revenue, productivity, reputation, and user 
loyalty. Shameli-Sendi et al. (2015) defined four DDoS defense phases: prevention, 
monitoring, detection, and mitigation. Prevention includes the ideal protection 
mechanisms against all security concerns including DDoS attacks. However, DDoS 
prevention has become even more challenging as DDoS attacks are becoming 
increasingly scaled and sophisticated. They are designed so that they can bypass 
traditional prevention tools such as anti-viruses, firewalls, and intrusion prevention 
systems. Consequently, it is impossible to prevent every potential DDoS attack. DDoS 
detection is another protection mechanism for distinguishing attack traffic from 
normal network traffic. Shameli-Sendi et al. (2015) categorized DDoS attack detection 
algorithms into two main groups:  

• Signature-based: where the characteristics of the captured traffic are compared 
with well-defined characteristics of previous and precisely modeled DDoS 
attacks. Signature-based attack detection systems are perfect in detecting 
known-attacks while they cannot prevent the novel attacks. 
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• Anomaly-based (Behavioral-based): Anomaly is defined as any deviation from 
the known or expected behavior of the systems. Anomaly-based attack 
detection systems require the usual profile of the undertaken system to compare 
with observed events in order to recognize significant attacks. This profile is 
developed based on many attributes such as network connections, hosts, users 
and so on.  This profile should be updated whenever there is a change in any 
of the mentioned attributes. Anomaly-based detections systems are effective to 
detect unforeseen and nocel DDoS attacks. On the other hand, these systems 
are usually difficult to operate in a real-time manner (Liao et al., 2013). 
Jyothsna et al. (2011) summarized different anomaly detection algorithms 
including: “Statistical based, Operational or threshold metric model, Markov 
Process or Marker Model, Statistical Moments or Mean and Standard 
Deviation Model, Univariate Model, Multivariate Model, Time Series Model, 
Cognition based, Finite State Machine Model, Description Script Model, 
Adept System Model, Machine Learning based, Baysian Model, Genetic 
Algorithm Model, Neural Network Model, Fuzzy Logic Model, Outlier 
Detection Model, Computer Immunology based, User Intention based “ 

2.4. Review of DDoS Detection Studies 

This section provides a brief review of DDoS detection studies based on behavioral 
approaches. These studies use either statistical methods, information theory, 
supervised machine learning, unsupervised machine learning, or hybrid methods, and 
they may be classified accordingly. 

2.4.1 Works based on Statistical Algorithms 

Bhuyan et al. (2015b) proposed the partial rank correlation scheme to detect both 
low-rate and high-rate DDoS attacks. The detection was based on two 
heuristically estimated thresholds for partial rank correlation (r). The detection 
accuracy of their algorithm is highly dependent on threshold selection. Normal 
and DDoS-attack traffic was selected from the DARPA-2000 (MIT Lincoln 
Laboratory, 2000) and CAIDA-2007 datasets (CAIDA, 2007) respectively. 
However, the integration of network traffic samples with different underlying 
network characteristics and typologies can influence the results.    

Hoque et al. (2016) developed a Feature Feature Source (FFSc) to measure the 
degree of similarity in terms of standard deviation and mean value between input 
feature vectors. Each vector was composed of three network features. They 
computed a similarity value using FFSc for each vector of network traffic, and 
when the score passed a threshold, the attack alarm was generated. They 
evaluated their method using CAIDA DDoS 2007 and MIT DARPA datasets. 
Their proposed algorithm was able to classify normal, LR-DDoS, and HR-DDoS 
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attacks. The empirical threshold setting and requiring normal background 
network traffic are shortcomings of their algorithm.  

Nezhad et al. (2016) extracted two features, namely, the number of packets and 
the number of source IP addresses, from network traffic per minute to construct 
the detection feature vector.  Subsequently, the Box-Cox transformation 
(Montgomery et al, 2015) was used to fix the variance of the time series 
representing the number of packets and thereby increase the prediction power of 
the Auto-Regressive Integrated Moving Average (ARIMA) model.  In the next 
step, the local Lyapunov exponent was used to classify chaotic and non-chaotic 
errors. A detection rate of 99.5% was reported for their algorithm. This approach 
investigates only two well-known traffic features to detect DDoS attacks. 
Sophisticated attackers can mimic legitimate traffic and evade the detection tools 
by reducing the number of bots or the number of the sent packets per each bot. 
Additionally, time-series forecasting models such as ARIMA are supervised 
learning algorithms and are not suitable for online attack detection.   

Behal et al. (2017) classified the different characteristics of FE and DDoS attacks 
based on the distribution of requests among source IPs, change in the rate of new 
IPs, change in the rate of traffic, number of different source IPs, number of 
different geographical distribution of source, duration and so. They utilized 
arithmetic mean, geometric mean and standard deviation to model the average 
decrease in growth pattern of new IPs for FE and DDoS traffic. They also 
measured different statistics for the average request per source IP. They validated 
their model using simulated data, FIFA’98, ACM SIGCOMM, DARPA and 
CAIDA datasets.  

Zhou et al. (2017) used the expectation of packet size (EPS) to distinguish LR-
DDoS-attack traffic from legitimate traffic. Their mechanism was based on the 
assumption that the volume of the sent/received bytes in LR-DDoS traffic is 
considerably lower than that in normal traffic. Considering the size of 
sent/received packets as the only detection feature is the limitation of this method, 
which also requires obtaining and storing the normal EPS in advance using a 
normal background traffic without any attack data. 

David and Thomas (2019) used the number of packets, unique source IP 
addresses, unique destination IP addresses, and unique protocols (which were 
aggregated every T seconds) to construct the feature vector. Moreover, a slicing 
time window was used to calculate the mean and variance of these attributes. 
Subsequently, the threshold values were adaptively filtered for each feature based 
on its mean and variance. Their algorithm issues a DDoS attack alarm if and only 
if all four attributes exceed their thresholds. The limitation of this algorithm is 
that an attacker can slightly increase the traffic in the victim's network so that the 
threshold means, and variance may be smoothly increased over time, thus 
deceiving the detection scheme. 
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2.4.2 Works based on Unsupervised Machine Learning algorithms 

Lee et al. (2008) constructed a feature vector of 9 traffic characteristics including 
entropy of source IP address and port number, entropy of destination IP address 
and port number, entropy of packet type, occurrence rate of packet type (ICMP, 
UDP, TCP SYN) and number of packets. Then they applied a clustering analysis 
based on Euclidean distance. Their algorithm aimed to group network traffic into 
normal, phase 1, phase 2, attack and post-attack classes. They used DARPA-2000 
dataset to validate their algorithm. This algorithm is not suitable for online 
detection as the construction of the clusters is incremental, so any change in the 
trend of network traffic requires re-clustering of data from the beginning. 

Casas et al. (2012a, 2012b) proposed an unsupervised network intrusion detection 
system that can detect different network attacks without requiring any type of 
signature, labeled traffic, normal traffic profile, or training to construct the normal 
profile of the network traffic. Initially, captured packets in consecutive time slots 
of fixed length T were aggregated in IP flows. Flow aggregation was performed 
at nine different resolution levels using different aggregation keys based on the 
network prefix in either the source or destination IP addresses of the flows. An 
algorithm running in three consecutive steps was developed. In the first step, 
anomalous time slots were detected using three simple and traditional volume 
metrics and the corresponding dynamic threshold values. In the second step, 
subspace clustering, density clustering, and evidence accumulation clustering 
were used to construct an outlier ranking mechanism. Finally, in the third step, a 
simple threshold detection approach was used to select anomalies among top-
ranked outlying flows. It appears that this algorithm is not suitable for real-time 
detection because clustering algorithms must re-partition the entire space when 
points were added to or deleted from the system. Thus, it is difficult to satisfy 
real-time detection requirements. This method is not a dedicated DDoS-attack 
detecting algorithm.  

Papalexakis et al. (2014) applied a co-clustering algorithm to isolate specific 
parameters which are indicators of abnormal connections. They validated their 
algorithm using KDD CUP’99.  They mentioned that their algorithm was too slow 
to run over the full dataset.  

Ahmed and Mahmood (2014) proposed a variation of the k-means algorithm, 
which was called x-mean algorithm. The algorithm did not require to set the 
number of the clusters (k) in advance.  They used DoS data from DARBA dataset 
to train and test their algorithm. Their algorithm is not suitable for online 
detection as the construction of the clusters is sequential.   

Ahmed and Mahmood (2015) proposed a collective anomaly detection method 
using a partitioned clustering technique. Initially, they used x-means algorithm to 
cluster the dataset and sort the clusters based on their size. Then, they summed 
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the traffic features of the clusters to make a single new traffic feature and re-
cluster the newly constructed feature vectors. They considered the cluster with 
the minimum variance as a collective anomaly. They used the KDD CUP’99, 
DARPA, and Kyoto datasets to train and test their method. 

Dromard et al. (2016) proposed an Online and Real-time Unsupervised Network 
Anomaly Detection Algorithm (ORUNADA) based on the incremental grid 
clustering algorithm and a discrete time sliding window. The application of 
incremental grid clustering is the novel part of their approach, as incremental 
clustering algorithms require updating only the previous feature space partition 
instead of re-clustering the entire space whenever a point is added or removed. 
Subsequently, these updated partitions are merged to recognize the most 
dissimilar outliers. Incremental grid clustering makes the proposed algorithm 
more suitable for real-time detection. ORUNADA is not designed to detect only 
DDoS-attack traffic. However, its high computational power requirements limit 
its applicability (Roudiere and Owezarski, 2017). 

Roudiere and Owezarski (2017) proposed an unsupervised DDoS detector called 
autonomous algorithm for traffic anomaly detection. This approach aimed at 
reducing the use of computational resources required to process the traffic. The 
algorithm has two steps: online and offline processing. In online processing, the 
continuous part quickly handles flow-based feature extraction and uses 
histograms to model the flow feature distribution for source/destination IP/port. 
Additionally, traffic-wide densities are calculated for the number of SYN, UDP, 
and ICMP packets. In offline processing, snapshots of the traffic are taken every 
T seconds, and the traffic is modeled accordingly. Finally, the k-NN algorithm is 
used to compare a snapshot with the last N snapshots to detect significant 
deviations from the usual traffic profile. The algorithm exhibited promising 
performance on a simulated dataset, but the approach was not validated using a 
benchmark dataset. Additionally, the algorithm requires the experimental setting 
of certain parameters, that is, the number of nearest neighbors (k), the total 
number of snapshots (N) for the k-NN analysis, and the density factor (λ). 
Moreover, network traffic sampling (snapshots) may affect the detection 
accuracy. 

 

2.4.3 Works based on Supervised Machine Learning  Algorithms 

Seo et al. (2005) computed the TRA (Traffic Rate Analysis) to analyze the 
characteristics of network traffic for DDoS attacks and then they employed 
a multi-class SVM classification to detect different types of DDoS attacks. 
TRA examines the occurrence rate of a specific kind of packet within the 
stream network traffic based on a TCP flag rate and a protocol rate. This 
approach is not applicable as online learning detection as it requires prior 
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knowledge of the normal network traffic and labeled data to train SVM 
classifier in offline mode.  

Xu et al. (2007) proposed a group of relative values features (RLT features) 
based on characteristics of DDoS attack to increase the precision of 
distinguishing normal streams from DDoS attack streams. RLT feature 
vector was composed of six features including one-way connection density, 
average length of IP flow, incoming and outgoing ratio of IP packets, 
entropy of length in IP flow, entropy of protocols, and ratio of protocols. 
They used multi-class SVM to detect various DDoS attacks. Their work 
suffers two limitations. First, they only used emulated network traffic data 
to validate their method. Second, SVM is an offline learning algorithm, so 
it is not suitable for online DDoS detection.  

Yu et al. (2008) proposed a lightweight and fast attack detection 
mechanism using the SVM-based hierarchical structure. The proposed 
method had two-levels: A one-class SVM was used at first level to detect 
attack traffic from normal traffic. Then at the second level, the attack traffic 
was classified into several attack types. They validated their method using 
simulated attack data. They utilized the features of Simple Network 
Management Protocol- Management Information Base (SNMP-MIB) data 
instead of raw data to detect DDoS traffic.  

Yang et al. (2008) developed a support vector machine using a wavelet 
kernel (WSVM). They demonstrated that WSVM outperformed original 
SVM by about 4% less false positive rate while increasing the detection 
accuracy. It seems that the time complexity of WSVM is higher than SVM 
because WSWM tries different wavelet kernel functions and then compare 
and select the best kernel function. WSVM also suffers the similar 
shortcomings of the original SVM algorithm. 

Cheng et al. (2009) proposed the concept of IAFV (IP Address Feature 
Value) to reflect the four features of DDoS attack flows including the 
abrupt traffic change, flow dis-symmetry, distributed source IP addresses, 
and concentrated target IP addresses. They used IAFV time series to 
describe the state change features of network flow. Finally, they employed 
the SVM classifier to detect DDoS attacks. Both time-series algorithm and 
SVM are not suitable for online detection.  

Wagner et al. (2011) developed a new kernel function for calculating the 
similarities between NetFlow windows. The kernel function calculates the 
similarity between two windows (W1, W2) by summing up the similarity 
values between five features in two windows including (prefix, suffix-
length of source/destination IP addresses and volume of the traffic. Then 
they used one-Class SVM with this new kernel function to detect different 
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attacks in the real ISP traffic data. The one-class SVM classifier also has 
to be retrained when the network environment changes however its 
computation time is less than original SVM as it has a smaller number of 
support vectors. 

Chitrakar and Huang (2014) proposed a DDoS detection algorithm named 
the candidate support vector-based incremental SVM. The incremental 
SVM is cost and time effective than original SVM because only support 
vectors are transferred to the next re-training process of SVM classifier 
while all other data samples are removed. They used Kyoto 2006+ dataset 
to validate their algorithm. Incremental SVM still have some shortcomings 
of original SVM such as requiring labeled data. Therefore, it is not entirely 
meet the requirements of online learning algorithm by Ahmed et al. (2016). 

Sahi et al. (2017) proposed a classification mechanism for the prevention 
of TCP ping flood attacks in a cloud environment by detecting DDoS-
attack traffic before sending incoming packets to the cloud service 
provider. Ostensibly, this is unrelated to the present research. However, if 
we consider only the detection of DDoS traffic in the internal network 
before the traffic is sent to the cloud, the aim of that study will be similar 
to our research question. Their feature vectors were the number of total 
transmitted packets and the number of packets from the same source to the 
same destination every 60 seconds. Four classification algorithms were 
employed, namely, Least Square-SVM (LS-SVM), k-nearest 
neighborhood, Naive-Bayes (NB), and multilayer perception, to 
distinguish DDoS and normal traffic. This system achieved the highest 
detection rate when LS-SVM was adopted. The proposed mechanism is an 
example of an old-fashioned offline attack detection scheme in a cloud 
environment.  

Daneshgadeh et al. (2017) proposed a DDoS detection approach using the 
sequential minimal optimization (SMO) algorithm with the polynomial 
kernel function. Real network traffic and simulated DDoS traffic were used 
for validation. The synthetic minority over-sampling technique was 
employed for synthetically increasing the number of DDoS attacks in their 
dataset. Therefore, the perfect accuracy rate of 100% may have been 
achieved owing to over-fitting or a bias in the training and validation 
datasets.   

Chen et al. (2018) developed a model based on the Random Forest (RF) 
algorithm to classify the traffic on top-level domain servers. The aim was 
to detect DDoS attacks on major recursive DNS servers. The authors 
applied a simple supervised learning algorithm that is not suitable for 
online attack detection. 
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2.4.4   Works based on Information Theory Metrics  

Nychis et al. (2008) investigated the detection power of entropy-based 
analysis using flow-header features (IP addresses, ports, and flow-sizes) 
and behavioral features (e.g; the number of distinct destination/source IPs 
that each host communicates with). They demonstrated that precise 
detection of DDoS attacks needs more further investigation in addition to 
analyzing port and IP address distributions. Additionally, they suggested 
bi-directional analyses of the flows when it comes for computing traffic 
distribution in order to prevent bias.  

Li et al. (2009) They used probability metrics such as source IP distribution 
to characterize DDoS and FE traffic. They mentioned that DDoS attacks 
are originated from a limited geographical area where bots are located, so 
the geographic diversity of source IPs follow Gaussian distribution. They 
also added that the source IP distribution of FEs is more disperse that 
follows a Poisson distribution. They also discussed the different trend of 
increase and decrease in the number of requests per second for DDoS and 
FE. During a DDoS attack a server encounters sudden increase/ decrease 
in the number of requests. Whereas, this change is smoother in FE. They 
used some information distance such as Jeffrey, Sibson, and Helinger 
distances to calculate the level of similarity among various DDoS and FE 
flows. They showed that Sibson distance is the best metric to separate 
DDoS from FE flows. Their experiment was performed on simulated data 
for both FE and DDoS traffic. The empirical threshold setting and requiring 
normal background network traffic are shortcomings of their algorithm. 

Jun et al. (2014) proposed a detection mechanism using packet sampling 
and flow features. Two entropy-based and two statistical features were 
extracted, along with the corresponding thresholds. The algorithm initially 
compares the volume of the sample packet with a predefined threshold 
value and marks the traffic as suspicious if and only if the volume exceeds 
the threshold value. Then, other features are checked against their 
corresponding thresholds. If all features exceed the threshold values, a 
DDoS attack is detected. The reliance on a constant threshold is a drawback 
of this algorithm. 

David and Thomas (2015) utilized fast entropy to detect DDoS-attack 
traffic. The authors claimed that the flow count entropy severely decreases 
in the case of attack flows, and it is stable otherwise. To detect DDoS 
attacks, a pre-defined threshold was compared with the difference between 
the flow count entropy and the mean entropy at each instant in the same 
time interval. The threshold was updated according to the packet traffic 
condition. If the fast entropy was 1.5 times as high as the mean flow count, 
then the threshold was increased by one. If the fast entropy was one half of 
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the mean flow count, then the threshold was decreased by one. However, 
this detection method can be bypassed if the attacker knows the fixed 
update rule for the threshold value.  

Bhuyan et al. (2015a) used several Generalized Entropy (GE) and 
Generalized Information Distance (GID) metrics with different α-order to 
distinguish DDoS attacks with different rates, where α refers to the value 
of α in Renyi's α-entropy (Rényi, 1965). Experiments demonstrated that 
using GID and GE with higher α values increases the dissimilarity between 
normal and both LR-DDoS and HR-DDoS traffic. The low computing 
overhead of these metrics facilitates real-time application. However, 
threshold setting is empirical and could be biased.  

Behal and Kumar (2017) reported the significant increase in the entropy 
values of source IP addresses and source ports during a DDoS attack. They 
also reported a substantial decrease in the entropy values of destination IP 
addresses and destination ports for a DDoS attack. Generalized information 
distance metrics such as Reny, Sibson, Jeffery, Kullaback-leibler, 
Bhattacharyya Hellinger have been used to discriminate DDoS attacks 
from FE traffic. They also demonstrated that the Generalized Entropy (GE) 
and Generalized Information Distance (GID) metrics with higher order of 
alpha could discriminate legitimate, DDoS and FE traffic in significant 
manner than Shannon entropy and KullbackLeibler distance.  

Behal et al. (2018) proposed a detection method called D-FACE to 
differentiate legitimate, LR-DDoS, HR-DDoS, and FE traffic. This 
algorithm compares the source IP entropy of normal traffic flow and 
current incoming traffic in each time window. The entropy difference is 
called Information Distance (ID) and is used as the detection metric. Two 
thresholds were defined according to the baseline behavior of a network 
without attacks. The major issue with this algorithm is defining normal 
network traffic in a continually changing environment. 

2.4.5   Works based on hyprid approches   

SVM is one of the powerful and well-known non-linear (using kernel 
function), non-parametric classification technique, which already showed 
good results in the cyber-attack detection. SVM were employed in 
combination with other methods by many researchers to detect anomalies 
and DDoS attacks in the network traffic data. All studies reported 
promising results to detect DDoS attacks. However, none of these hybrid 
algorithms are suitable for online DDoS detection because the original 
SVM classifier need to be re-trained sequentially and from scratch using 
labeled data when the network traffic changes.  
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Gan et al. (2013), Chen et al. (2009), Horng et al. (2011),  Kuang et al. 
(2014) investigated the effect of SVM with Partial Least Square (PLS), 
Extended Learning Machine (ELM), Rough Set Theory (RST), Balanced 
Iterative Reducing and Clustering Hierarchies (BIRCH), Kernel Principal 
Component Analysis (KPCA) to classify DoS attacks in the KDD CUP’99 
dataset.  Agarwal and Mittal (2012) and Khan et al. (2007) have utilized 
SVM with Dynamically Growing Self-Organizing Tree (DGSOT) 
clustering algorithm and Shannon entropy respectively to detect DoS 
attacks in the DARPA dataset.  

Gogoi et al. (2013) proposed a multi-level hybrid intrusion detection 
method based on supervised, unsupervised and outlier-detection algorithms 
to classify different types of attacks such as DoS/DDoS, Probe, R2L, U2R, 
and normal traffic. The classifier in the first level of this algorithm is 
responsible for detecting DDoS attacks. The classifier builds a set of 
representative clusters (DoS/DDoS, Probe, and rest) from the available 
labeled training data. Subsequently, the algorithm measures the similarity 
between each unlabeled test data and the predefined clusters and insert 
unlabeled data in the corresponding cluster. Finally, unlabeled data get the 
label of the clusters in which they are added. The performance of the 
algorithm is highly dependent on the availability and significant of initially 
labeled clusters. 

Qin et al. (2015) defined a feature vector based on entropies of five 
different features of traffic flows and one TCP flag feature. Then they used 
the common k-means clustering algorithm to model normal patterns of the 
network and determine the detection threshold. The cluster number setting, 
and construction of the normal flow profile are challenging aspects of their 
approach. 

Fernandes Jr et al. (2016) proposed a network anomaly detection algorithm 
based on Principal Component Analysis (PCA), ant colony optimization, 
and Dynamic Time Warping (DTW) to detect DoS, DDoS, port scan, and 
FE attacks. Three quantitative and four qualitative IP flow attributes were 
analyzed. The results demonstrated that the algorithm is successful in 
detecting different types of anomalies in the network traffic without attack 
type classification. However, the algorithm requires prior knowledge of the 
normal network traffic behavior for at least one day. 

Hoque et al. (2017) defined a new correlation measure referred to as NaHiD 
for the distance between two feature vectors. These vectors were defined 
using three features: the entropy of source IP addresses, variation index of 
source IP addresses, and packet rate per second. The network monitor 
initially calculates the normal profile and threshold value for the detection 
algorithm. An attack is detected when the computed correlation value is 
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smaller than a user-defined threshold. The NaHiD metric can be 
implemented in software as well as in hardware using field programmable 
gate arrays. Initially, a network monitor calculates the normal profile of the 
training dataset and determines the optimal threshold value that provides 
the highest classification accuracy for the attack and the normal instances 
in the training set. These values are stored in the profile log dataset. The 
normal profile and threshold value are updated incrementally and 
dynamically based on the previously stored values. The algorithm can 
operate in online mode and adapt to a changing traffic pattern; however, it 
requires the normal traffic profile in advance. 

Idhammad et al. (2018) proposed a semi-supervised DDoS detection 
approach based on entropy estimation, co-clustering, information gain 
ratio, and extra-trees. The entropy of the header features was measured and 
analyzed using different time-based sliding windows. Then, a co-clustering 
algorithm was used to split network traffic into three clusters (normal 
traffic, DDoS traffic, and normal as well as DDoS traffic) based on the 
entropy features. Subsequently, the information gain ratio was measured 
for each cluster and computed with the average entropy of the network 
header features in the current time window. Finally, clusters with high 
information gain ratio were considered suspicious and the extra-trees 
algorithm was used to separate DDoS attack traffic from other abnormal or 
normal traffic. This algorithm is not suitable for online detection, as it 
requires labeled data and handling several thresholds and parameters for 
extra-trees. Moreover, it relies on a supervised classification tree, which is 
not suitable for online learning. 

Daneshgadeh et al. (2018) proposed a hybrid method using the Kernel 
based Online Anomaly Detection (KOAD) algorithm with pre-defined 
threshold settings and the Mahalanobis distance metric to detect DDoS 
attacks. Normal and abnormal datasets were generated based on the KOAD 
algorithm. Subsequently, the Mahalanobis distance between abnormal data 
points and the normal traffic distribution was measured. This distance was 
statistically evaluated by means of the Chi-square test. Simulated data were 
used for validation. 

Gu et al. (2019) proposed a semi-supervised k-means algorithm using 
hybrid feature selection to detect DDoS attacks. Initially, a set of nine 
candidate features was defined, where eight of them were entropy-based. 
Then, a hybrid feature selection method was applied to rank the candidate 
features and select the most effective one. A semi-supervised k-means 
algorithm was employed for model training and testing, and a small subset 
of labeled data was used to facilitate the selection of the initial center points 
for the k-means algorithm and resolve the outlier and local optimum issues.  
Subsequently, the classical k-means algorithm was applied to determine 
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the similarity between unlabeled data and initial clusters. This algorithm 
requires labeled data for initialization, which limits the applicability of the 
algorithm in an unknown real-time environment. Additionally, a set of best 
features was selected for each dataset separately based on performance 
analysis (recall and false positive rate). However, calculating these 
performance metrics is not practical if there are no labeled data for 
unknown network traffic.   

Daneshgadeh et al. (2019a) used Shannon entropy with the KOAD 
algorithm for online detection of DDoS and FE traffic. Subsequently, the 
Mahalanobis distance was used to differentiate between various types of 
DDoS attacks from FE traffic. This study did not use a benchmark 
validation dataset and provided neither a systematic method for obtaining 
the Mahalanobis distance nor a guideline for selecting thresholds for the 
KOAD algorithm.   

Daneshgadeh et al. (2019b) proposed a hybrid algorithm to distinguish 
DDoS attacks from FE traffic. The algorithm detected abnormal network 
data points using the KOAD algorithm (Ahmed et al., 2007a, Ahmed et al., 
2007b), and then used an SVM classifier to separate DDoS attacks from 
FE traffic. Simulated DDoS attack, real FE, and normal data were used to 
evaluate the accuracy of the algorithm.  The predefined threshold setting of 
the KOAD algorithm, offline training of the SVM classifier, and 
application of simulated validation instrument are the drawbacks of this 
framework. 
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CHAPTER 3 

 

3. RESEARCH METHODOLOGY  

This chapter presents descriptions of the data used in this thesis. Subsequently, the 
research design and proposed scheme are given.   

3.1. Dataset 

In the experiments, the publicly available CICIDS2017 dataset, which contains normal 
and the most up-to-date common attacks was used. CICIDS2017 is a realistic IDS 
dataset because it is based on B-Profile and M-Profile components. The B-Profile is 
responsible for profiling the abstract behavior of human interactions and generating 
realistic benign background traffic (Sharafaldin et al., 2018a). The M-Profile is used 
to describe the details of attack scenarios. The dataset includes the abstract behavior 
of 25 users based on the HTTP, HTTPS, FTP, SSH, and e-mail protocols. 

Sharafaldin et al. (2018a) created a comprehensive testbed which included two 
separated networks: Attack-Network and Victim-Network.  

Figure 1 demonstrates the underlying network infrastructure of the CICIDS2017 
dataset. 

 

Figure 1 Testbed architecture of CICIDS2017 dataset (Sharafaldin et al. (2018b)) 
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Sharafaldin et al. (2018a) defined 11 criteria for building a reliable benchmark dataset 
as following: 

• Complete Network Configuration: The Victim-Network is a highly secure 
infrastructure and includes different networking tools such as firewalls, 
switches, and routers. Victim-Network composites of various operating 
systems such as Windows, Ubuntu and Mac OS X. The Attack-Network is 
wholly separated from the Victim-Network and consists of one router, one 
switch and four PCs with public IP addresses. The Kali and Windows 8.1 are 
available operating systems on mentioned four PCs. 

• Complete Traffic: The testbed includes one user profiling agent,12 different 
machines in Victim-Network and all attacks are real. 

• Labelled Dataset: All flows in the dataset are labeled as benign or the name 
of the attack. 

• Complete Interaction: The dataset includes all communication between 
Victim-Network and Attack-Network as well as Internet communications. 

• Complete Capture: The dataset covers all traffic in the testbed using a mirror 
port such as a tapping system. 

• Available Protocols: The dataset has all standard protocols such as HTTP, 
HTTPS, FTP, SSH and email protocols. 

• Attack Diversity: The dataset includes the most common attacks, including 
brute force, DoS, DDoS, data infiltration, Heart-bleed, Bot, port scan and web-
based attacks. 

• Anonymity: The payloads of the packets were removed because of privacy 
concerns. 

•  Heterogeneity: The dataset is heterogeneous because, all the network traffic 
is captured from the main switch, memory dump and system alarms of all 
victim machines during the attacks. 

• Feature Set: The dataset includes 83 network traffic features, which were 
extracted using the CICFlowMeter software package (CICFLOWMETER) 

• Meta-Data: Information related to time, attacks, flows and labels are entirely 
explained.  

Sharafaldin et al. (2018a) defined the equation (3.1) to measure the reliability of their 
CICIDS2017 dataset.   
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  ∑wi (∑vj

m

j=1

× Fj)

n

i=1

 (3.1) 

Where W is a weight of each feature (11 criteria), V is the coefficient of each sub-
factor, F is a binary value which demonstrates the appearance/absence of a specific 
factor and sub-factor in the dataset, n is the number of features and m is the number of 
coefficients for each factor. The CICIDS2017 dataset achieved a score of 1, whereas 
KDD CUP’99 (KDD, 1999) achieved only 0.56. Therefore, using this dataset in the 
present is justifiable. 

3.2. Feature Extraction 

The entire CICIDS2017 dataset was divided into eight .csv files. For the experiments 
in this thesis, files that included DDoS and normal traffic flows (July 03 and 07, 2017) 
were used. Subsequently, the feature vectors were generated by aggregating network 
flows per minute.  

Yu et al. (2012) analyzed DDoS attack network traffic and revealed that DDoS flows 
are more similar than normal flows. Attackers usually prefer to send general 
commands to bots instead of sending a specialized command to each bot. Therefore, 
the randomness degree of the attributes (such as number of source IPs, number of 
sent/received bytes, duration, etc.) in DDoS flows is less than FE flows. Therefore, the 
information theory-based detection metrics have gained popularity in the DDoS attack 
detection literature. This research incorporates the advantages of using entropy to the 
proposed framework by measuring the randomness degree of flows using Shannon 
entropy. A feature vector was constructed based on the Shannon entropy of 
Source/Destination IP addresses/Ports.  

The Shannon entropy of a discrete distribution is a measure of uncertainty or 
randomness of a single random sample in a separate distribution based on the 
Boltzmann entropy of classical statistical mechanics (Rao et al., 2004). The entropy of 
random sample x is defined as: 

𝐻(𝑋) = −∑𝑝(𝑥𝑡)

𝑁

𝑡=1

⋅ 𝑙𝑜𝑔2 𝑝(𝑥𝑡)   (3.2)  

 

Where 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑁}  and the probability distribution 𝑃 =
{𝑝1, 𝑝2, 𝑝3, ⋯ , 𝑝𝑁}. 
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The value of Shannon entropy is always positive and equal to zero if and only if it is 
an individual event. Additionally, an increase in the number of independent 
components results in increasing the value of entropy and vice versa. As a result, the 
entropy values of Source IP addresses/Ports increase dramatically during DDoS 
attacks as the number of independent source IP addresses increases and the entropy 
values of Source IP addresses/Ports increase sharply. The entropy-based feature vector 
was constructed as the following:  

F1
⃗⃗⃗⃗ = (

 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑆𝑜𝑢𝑟𝑐𝑒_𝐼𝑃_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐼𝑃_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,
𝑆𝑜𝑢𝑟𝑐𝑒_𝑃𝑜𝑟𝑡_𝐸𝑛𝑡𝑟𝑜𝑝𝑦,𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑃𝑜𝑟𝑡_𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

) 

Time_Interval represents the time stamp of the flow in minutes of the day. For 
example, Time_Interval=400 implies that the flow is related to the time 6:4 AM. 
Finally, 448 input vectors were obtained from 480,745 flows, where 21 of those 
vectors were related to DDoS attacks. Additionally, another feature vector was 
constructed and named statistical-based feature vector. It utilized the best candidate 
features to detect DDoS attacks by Sharafaldin et al. (2018b). 

F2
⃗⃗⃗⃗ = (

 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝐹𝑙𝑜𝑤𝑠_𝐼𝐴𝑇_𝑆𝑡𝑑, 𝑇𝑜𝑡𝑎𝑙_𝐵𝑃𝑎𝑐𝑘𝑒𝑡_𝐿𝑒𝑛_𝑆𝑡𝑑,
𝐹𝑙𝑜𝑤𝑠_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑇𝑜𝑡𝑎𝑙_𝐴𝑣𝑔_𝑃𝑎𝑐𝑘𝑒𝑡_𝑆𝑖𝑧𝑒  

) 

Table II  shows the list of abbreviations for the features.  

Table II List of abbreviations for features. 

Feature Names Feature Abbreviations 

Flows_IAT_Std FsIAT_Std 
Total_BPacket_Len_Std TBP_Len_Std 
Flows_Duration FsD 
Flow_Duration FD 
Total_Avg_Packet_Size TAvg_PS 
Avg_Packet_Size Avg_PS 
Flow_IAT_Std FIAT_Std 
Flow_IAT_Mean FIAT_Mean 
BPacket_Len_Std BP_Len_Std 
BPacket_Len_Mean BP_Len_Mean 

 

The feature vector (F2
⃗⃗⃗⃗  ) has four attributes as follows:   

• Flows_IAT_Std denotes the standard deviation of the time between packets 
that are sent in either direction in 1 minute. 
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• Total_BPacket_Len_Std denotes the standard deviation of packet length in the 
backward direction in 1 minute. 

• Flows_Duration denotes the flow duration. 

• Total_Avg_Packet_Size denotes the average packet size in 1 minutes. 

The CICID2017 dataset provides the statistical attributes of traffic per flow. The flow-
based features were converted into time-based feature as shown in equations (3.3) to 
(3.6). 

𝐹𝑠𝐷 =  ∑𝐹𝐷𝑖

𝑁

𝑖=1

,    (3.3)  

where N is the number of flows in the corresponding 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙.  

𝑇𝐴𝑣𝑔_𝑃𝑆 =
∑ (𝑛𝑖 × 𝐴𝑣𝑔_𝑃𝑆𝑖)

𝑛
𝑖=1

 ∑ 𝑛𝑖
𝑛
𝑖=1

,   (3.4)  

where n is the total number of packets in the corresponding 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 𝑛𝑖 is 
the number of packets in each flow. 

𝐹𝑠𝐼𝐴𝑇_𝑆𝑡𝑑  

=
∑ (𝑛𝑖 × 𝐹𝐼𝐴𝑇_𝑆𝑡𝑑𝑖

2)𝑛
𝑖=1 + ∑ 𝑛𝑖

𝑛
𝑖=1 × (𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝑖 −  𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛)2

 ∑ 𝑛𝑖
𝑛
𝑖=1

,  (3.5)  

where 𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝐼  is the mean of the inter-arrival time for each flow and 
𝐹𝐼𝐴𝑇_𝑀𝑒𝑎𝑛  is the grand mean of all inter-arrival times for the corresponding 
𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. 

𝑇𝐵𝑃_𝐿𝑒𝑛𝑆𝑡𝑑

=
∑ (𝑛𝑖 × 𝐵𝑃_𝐿𝑒𝑛_𝑆𝑡𝑑𝑖

2)𝑛
𝑖=1 + ∑ 𝑛𝑖

𝑛
𝑖=1 × (𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛𝑖 −  𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛)2

 ∑ 𝑛𝑖
𝑛
𝑖=1

, (3.6)  

where 𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛𝑖 is the mean of the backward packet length and 𝐵𝑃_𝐿𝑒𝑛_𝑀𝑒𝑎𝑛 
is the grand mean of all backward packet lengths for the corresponding 
𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. 

3.3. Reseach Design 

Nesselroade and Cattell (2013) defined experimental research design as “a recording 
of observations, quantitative or qualitative, made by defined and recorded operations 
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and in defined conditions, followed by examination of the data, by appropriate 
statistical and mathematical rules, for the existence of significant relations.”  

This research completely follows the definition by Nesselroade and Cattell (2013). 
Therefore, it can be seen as entirely experimental research. According to Asadullah 
(2011), empirical research is commonly accepted research design in different areas of 
knowledge. 

3.4. Proposed   Architecture  

The proposed framework combines the capabilities of Shannon entropy, k-means, 
KOAD, the Mahalanobis distance, and the Chi-square test for the online detection of 
DDoS attacks. According to Xiang et al. (2011), the entropy values are relatively 
uniform when the network traffic is normal, but the entropy values of one or more 
features would increase/drop significantly during the DDoS attacks. Therefore, 
Shannon entropy is utilized for feature construction. DDoS attack is regarded as a 
collective anomaly in the literature.  Consequently, the online anomaly detection 
algorithm is suitable for spotting cumulative anomalies. The KOAD algorithm is 
selected because, in addition to network anomaly detection, it has already exhibited 
promising performance in diverse anomaly detection areas, such as medical 
monitoring (Ahmed et al., 2016b), surveillance systems (Anika et al., 2017, Ahmed et 
al., 2010) and image processing (Ahmed et al., 2013, Ahmed et al., 2017, Ahmed et 
al., 2014). Moreover, the KOAD algorithm is useful for modeling of normal network 
traffic behavior. However, the updated version of the original KOAD algorithm named 
E-KOAD is employed in this thesis in order to overcome some shortcomings of the 
original KOAD. The E-KOAD depreciate from KOAD in three aspects, including 
automated threshold settings, automated standard deviation setting for RBF kernel, 
and replacement of the “Usefulness Test” with “Utility Test”. 

The number of fully online anomaly detection algorithms are limited in the literature. 
Some researchers have used the terms “online” and “real-time” interchangeably in the 
literature, but there is a significant difference between them. An ideal online machine 
learning algorithm should be able to update itself and adapt to a frequently changing 
environment, in addition to operating immediately while ingesting one observation at 
a time. 

Online algorithms have the ability to learn from a newly arriving data instance, without 
re-training the whole data obtained to-date from initiation. As online algorithms 
involve real-time operations, the computational and storage complexities of the 
algorithms (both in terms of time and memory) is required to not grow with time as 
the size of the whole (to-date) dataset grows, and preferably be small. 

The KOAD algorithm meets all the requirements of real-world anomaly detection set 
forth by Ahmed et al. (2016a) as following:  
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• The KOAD algorithm instantly decides about an incoming datapoint by issuing 
an “Orange”/”Red” alarm. Moreover, it saves “Orange” alarms for further 
investigation to ensure that they correspond to anomalies and not to alterations 
in the trend of the traffic.  

• The algorithm learns continuously and does not require storing the entire 
stream of data. All updates are performed recursively when a data point is 
added to or deleted from the Dictionary. Therefore, there is no need to store 
the entire stream. 

• The algorithm runs in a completely unsupervised manner without requiring 
labeled data. The original KOAD algorithm requires the experimental setting 
of thresholds. However, the proposed algorithm overcomes this limitation.  

• The algorithm can adapt to dynamic environments by using a Dictionary and 
a “Usefulness Test”.   

• The algorithm has a "Red2" alarm to detect anomalies as early as possible. 
When the deviation from the normal traffic of the network is not significant to 
ensure that the incoming point is abnormal, the algorithm provides a calculated 
prediction by considering subsequent data. Nevertheless, the algorithm can be 
forced to make decisions as soon as it receives the traffic flow by setting the 
lag-time (l) to zero.   

• The algorithm attempts to minimize false positives and false negatives by 
postponing the decision on less suspicious traffic flows.  

The Mahalanobis distance is utilized for separating DDoS attacks from other abnormal 
traffic data points, which were initially detected by E-KOAD. Mahalanobis distance 
is used for different purposes in the literature, including similarity measurement, 
outlier detection, calibration samples selection and examination of representativity 
between two data sets (De Maesschalck et al., 2000). It is also used for detecting 
anomalies in network traffic (Santiago-Paz et al., 2012; Bayarjargal and Cho, 2014). 

 Semerci et al. (2018) obtained promising DDoS detection results in SIP networks by 
using a novel adaptive real-time change-point model that tracks the changes in the 
Mahalanobis distance. It was assumed that employing the Mahalanobis distance metric 
is most likely to be useful in detecting DDoS attacks in data networks as well.  

Mahalanobis distance fits the data into uncorrelated and unit-variance Gaussian 
variables. If it is assumed that Mahalanobis distance measures the difference between 
each incoming feature vector and the mean vector of normal feature vectors, then the 
Mahalanobis distance values follow the Chi-squared distribution with d-degrees of 
freedom (Semerci et al., 2018). Therefore, the Chi-square test can be employed for 
evaluating the Mahalanobis distance values. 
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The proposed algorithm initially uses the entropy-based feature vectors to calculate 
the δ values of the KOAD for one hour. After one hour, the k-means algorithm is 
utilized to find the optimal threshold values for the kernel-based anomaly detection 
algorithm. Then the system continues its operation using new thresholds. Whenever 
the E-KOAD issues a “Red” or “Red2” alarm, the corresponding input data will be 
added to the suspicious dataset. Similarly, the input data related to Dictionary. 

 

 

Figure 2 Initialization of proposed algorithm   
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Figure 3 Proposed architecture of E-KOAD 
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CHAPTER 4 

 

4. ALGORITHMIC FONDATION 

This chapter presents the detailed mathematical background of the proposed scheme 
including KOAD, k-means, Mahalanobis distance and Chi-square test.  

4.1. Kernal Function 

Algorithms based on the so-called “kernel trick” involve using a kernel function that maps 
the input data onto a feature space of a much higher dimension (Scholkopf and Smola, 
2001). This counterintuitive operation is performed owing to the expectation that points 
depicting similar behavior should form more pronounced clusters in the richer feature 
space. A suitable kernel function, when applied to a pair of input vectors, may be 
interpreted as an inner product in the feature space (Scholkopf and Smola, 2001). This 
subsequently allows inner products in the feature space (inner products of the feature 
vectors) to be computed without explicit knowledge of the feature vectors themselves, by 
only evaluating the kernel function:  

𝑘(𝑥𝑖 , 𝑥𝑗) = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑗) >, (4.1) 

Where 𝑥𝑖 , 𝑥𝑗  denote the input vectors and Ф represents the mapping onto the feature 

space. Using kernel functions thus allows a simple comparison of higher-order statistics 

between the input vectors. 

Subsequently, a kernel matrix is defined as K := (k(xi ,xj))i=j=1
n , where 𝑥𝑖 is a set of 

observation 𝑥𝑖 ∈ 𝑋 𝑎𝑛𝑑 𝑖 = {1,2,⋯ , 𝑛} . The following are some popular kernels 

(Haasdonk and Burkhardt, 2007): 
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• Linear Kernel:  𝑘(𝑥, 𝑦)𝐿𝑖𝑛𝑒𝑎𝑟 = 𝑥𝑇𝑦 +  𝑐     (4.2) 

• Polynomial Kernel of degree p: 𝑘(𝑥, 𝑦)𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = (𝑎𝑥𝑇𝑦 +  𝑐)𝑑 (4.3) 

• Gaussian/Radial Kernel:  𝑘(𝑥, 𝑦)𝑅𝐵𝐹 = 𝑒𝑥𝑝 (
− ‖𝑥−𝑦‖2

2 𝜎2 )   (4.4) 

• Negative Kernel: 𝑘(𝑥, 𝑦)𝑛𝑒 = − ‖𝑥 − 𝑦‖𝛽 , β ∈ [0, 2]   (4.5) 

Figure 4 demonstrate the classification of circular-separable data based on different kernel 
functions. 

(a) (b) 

(c) (d) 

Figure 4 Decision boundries of SVM classification on 2-dimensional data using (a) linear 
kernel, (b) 2-polynomial kernel, (c) sigmioid kernel and (d) RBF kernel. 
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SVM, Kernel Principal Component Analysis (KPCA) and kernel regression are examples 
of offline algorithms that use kernel functions. Linear and non-linear classifiers employ 
different kernel methods. The Radial Basis Function (RBF) kernel method is suitable for 
data samples which are dependent non-linearly because it maps samples onto higher-
dimensional space (d > 2) in a non-linear fashion. 

RBF is the most widely used type of kernel function because it has a localized and finite 
response along the entire x-axis. Therefore, it is a general-purpose kernel and can be used 
when there is no prior knowledge about the relationships among data points (DataFlair 
Team, 2018). 

A non-linear, kernel-based least squares algorithm was initially introduced in 2004 by 
Engel et al., (2004).  Their algorithm took advantage of the kernel trick to perform linear 
regression in high dimensional feature space to recursively calculate minimum mean-
squared- error solution to non-linear least-squares problems. 

The Kernel Recursive Least Square (KRLS) algorithm tries to solve the problem of 
regularization and computational cost using online constructive sparsification. This 
sparsification method only selects data samples that cannot be represented as an 
appropriate linear combination of selected samples. The KRLS algorithm incrementally 
builds a Dictionary (basis) of approximate linearly independent samples. 

Ahmed et al., (2007a), proposed a prolonged variant of the kernel-based least square 
algorithm, which they named the Kernel-based Online Anomaly Detection (KOAD) 
algorithm. The KOAD algorithm incorporates two thresholds of approximate linear 
independence, includes exponential forgetting to reduce the importance of past 
observations gradually, and allows the deletion of previous Dictionary members to enable 
the basis set to remain current dynamically. These features were absent in the foundation 
KRLS algorithm of Engel et al. (2004). 

The postulate of Ahmed et al. is that if the multivariate data points {𝑥𝑡}𝑡=1
𝑇 show normal 

behavior in the input space, then it is expected that the corresponding feature vectors 
{Ф(𝑥𝑡)}𝑡=1

𝑇 will construct a cluster.  Consequently, the explanation of normality region 
should be possible using an almost small Dictionary of approximately linearly 
independent elements ( {Ф(�̃�𝑗)}𝑗=1

𝑚
 ) in the feature space.  If the projection error 

𝛿𝑡 conciliates the equation (4.6), feature vector 𝜑(𝑥𝑡) is issued to be linearly dependent 
on {Ф(�̃�𝑗)}𝑗=1

𝑚
, with approximation threshold ν.  
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𝛿𝑡  = 𝑚𝑖𝑛
𝑎

‖∑𝑎𝑗

𝑚

𝑗=1

×  Ф(�̃�𝑗)–  Ф(𝑥𝑡)‖

2

 <   𝜈, (4.6) 

where 𝑎 = {𝑎𝑗}𝑗=1

𝑚
is the optimal coefficient vector. Here {Ф(�̃�𝑗)}𝑗=1

𝑚
 represents those 

{𝑥𝑡}𝑡=1
𝑇  that are entered the Dictionary.  It is expected that the size of the Dictionary (m) 

will be considerably less than total time steps (T), which results in CPU usage and memory 
savings. 
The equation (4.7) involves an L2 norm (the distance of the vector from the origin of the 
hyper-space vector), which could be demonstrated exclusively in the form of the inner 
products of Ф(�̃�𝑗) and Ф(𝑥𝑡). As a result, the kernel function could be used to evaluate it 
without requiring an exact knowledge of the feature vectors. Therefore, equation can be 
presented as: 

δ𝑡   = 𝑚𝑖𝑛
𝑎

‖𝑎𝑡
𝑇�̃�𝑡−1𝑎𝑡 − 2�̃�𝑡�̃�𝑡−1 (𝑥𝑡) + 𝑘(𝑥𝑡, 𝑥𝑡)‖

2
< 𝜈, (4.7) 

where [�̃�𝑡−1]𝑖,𝑗 = 𝑘(�̃�𝑖 , �̃�𝑗) and [�̃�𝑡−1(𝑥𝑡)]𝑗 = 𝑘(�̃�𝑡, 𝑥𝑡) for 𝑖, 𝑗 = 1,2,⋅⋅⋅, 𝑚𝑡−1.  
 
The 𝑎𝑡 in equation (4.8) is said to be the optimum sparsification coefficient vector and is 
used to minimize 𝛿𝑡.  

𝑎𝑡 = �̃�𝑡−1
−1 �̃�𝑡−1(𝑥𝑡) (4.8) 

Therefore, the error (𝛿𝑡) is simplified into:  
𝛿𝑡 = 𝑘𝑡𝑡 − �̃�𝑡−1(𝑥𝑡)

𝑇 �̃�𝑡 (4.9) 

 
The KOAD algorithm operates at each time step t on a measurement vector 𝑥𝑡.  It begins 
by evaluating the error 𝛿𝑡  in projecting the arriving observation 𝑥𝑡  onto the current 
Dictionary (in the feature domain).  This error measure 𝛿𝑡  is then compared with two 
thresholds 𝜈1 and 𝜈2, where 𝜈1 < 𝜈2 .   
If 𝛿𝑡 < 𝜈1  , KOAD speculates that 𝑥𝑡  is significantly dependent on the Dictionary 

members in linearly manner, and thus represents normal behavior.   
If 𝛿𝑡 > 𝜈2, KOAD speculates that 𝑥𝑡 is far away from the normal behavior of the system 
and immediately raises a “Red1” alarm to flag an anomaly. 
If  𝜈1 < 𝛿𝑡 < 𝜈2, KOAD speculates that 𝑥𝑡 is not sufficiently linearly dependent on the 
Dictionary to be considered as a normal event.  It might be caused by an anomaly, or it 
might be resulted because of a change in the normal behavior of the system (expansion or 
migration of the space of normality).  In this situation, KOAD immediately signals the 
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existence of the abnormal input vector by raising an “Orange” alarm, then it keeps track 
of subsequent arrival inputs for the next l time steps and it investigates the contribution of 
the abnormal input vector 𝑥𝑡 in explaining of the mentioned subsequent arrival inputs.  
If the Dictionary element 

t lx −
 is able to explain a noticeable number of input vectors 

between time steps t − l to t, it should be kept in the Dictionary.   
KOAD algorithm uses “Usefulness Test” to resolve the orange alarm. The usefulness of 
𝑥𝑡−𝑙 is measured by equation (4.10). 

[ ∑ 𝕀(𝑘(𝑥𝑡, 𝑥𝑖)) > 𝑑

𝑡+𝑙

𝑖=𝑡+1

] > 𝜖𝐿 (4.10) 

Particularly, at timestep t+ l, the KOAD performs a “Usefulness Test” and checks if a 
noticeable number of kernel values between 𝑥𝑡−𝑙 and l subsequent input vectors are more 
than threshold d. Finally, at time t+l, KOAD lowers “Orange” alarm into “Green” if the 
“Usefulness Test” is passed meaning normal behavior of 𝑥𝑡−𝑙 otherwise it elevates the 
“Orange” alarm to “Red2” alarm indicating anomalous observation and it removes the 
from the Dictionary.𝑥𝑡−𝑙  otherwise it elevates the “Orange” alarm to “Red2” alarm 
indicating anomalous observation and it removes the 𝑥𝑡−𝑙 from the Dictionary.  

Finally, at time t- l, KOAD lowers “Orange” alarm into “Green” meaning normal behavior 
of 𝑥𝑡  or elevates the “Orange” alarm to “Red2” alarm indicating anomalous observation. 
Figure 5 presents the pseudocode for the KOAD algorithm. 
Following sub-sections presents the parameters and attributes of the algorithm and the 
ways that they are set.  Some numeric examples also are provided to visualize the 
formation of the various attributes in the algorithm. 

4.2.1. Threshold Setting  

The original KOAD algorithm does not provide automatic setting of the thresholds 
(𝜈1, 𝜈2).  Ahmed et al. (2007a) investigated different pairs of 𝜈1and 𝜈2, and they 
demonstrated that the optimal setting varies for different metrics. They 
recommend that researchers can run the algorithm over a training dataset in a 
supervised fashion with pre-known anomalies and then, set the threshold values 
that result in a tolerable trade-off between True Positive Rate (TPR) and False 
Positive Rate (FPR). However, the original KOAD algorithm was improved by 
proposing a systematic and automated way to select optimal threshold values 
(Please refer to chapter 5, section 5.1 for detailed information).  
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Figure 5 Outline of KOAD algorithm (Ahmed et al., 2007a) 

4.2.2. Parameter Setting ( l, ε, L, d, γ) 

• l is a lag-time parameter for resolving the “Orange” alarm. When 
𝜈1 < 𝛿𝑡 < 𝜈2 the algorithm waits for l time steps and then decides whether 
to elevate the existing “Orange” alarm to “Red”, or to add the 
corresponding input vector to the Dictionary. Adding the vector to the 
Dictionary indicates a change in the basis for the sphere of normality. l 
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should be selected in a manner that balances the waiting time for detecting 
the anomaly and the false positive rate.  If it is too large, it will violate the 
principle of online detection. If it is too small, there will not be enough 
time to make an intelligent decision for suspicious cases.  

• ε is also a parameter for resolving the “Orange” alarm.  𝜀 is a real number 
between zero and one (𝜀 ∈ (0,1)). It determines what fraction of input 
vectors should lie within the region of usefulness. The effect of epsilon on 
algorithm should be run with different values of ε, and the impact of ε on 
performance should be investigated. It should be selected based on the 
user’s sensitivity tolerance. 

• L is a parameter for dropping obsolete elements.  It determines the time 
when obsolete (useless) elements should be removed from the Dictionary. 
L should be set based on the long-term stationarity of the application data 
sphere. 

• d is also a parameter for dropping obsolete elements.  It determines the 
amount of closeness between a Dictionary element and an input vector to 
consider a Dictionary element as useful.  In other words, it defines the 
region of usefulness.  The value of d should be selected based on the kernel 
type and value because the kernel implicitly defines a distance measure.  

• γ is the forgetting factor. The algorithm gradually and exponentially 
disregards past data. Parameter γ is a time-based weight which is 
systematically applied to past observations. A value of γ = 1 means that the 
most recent and previous input vectors have equal importance. The 
forgetting factor is set (0 < γ < n , n = 1, 2, 3,⋅⋅⋅) for the nth most-recent 
observation, meaning that recent events are gradually more important than 
past events. 

4.2.3. Initialization Phase   

• D = {x1} : the first input vector is added to the Dictionary at t = 1 . 
•  m1 = 1: the number of elements in Dictionary (in correspondence with 

preceding step) is one. 
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• K̃1 = [k11] : the kernel matrix is set to the kernel value of the (as of now) 
sole element of the Dictionary with itself.  In general, �̃�𝑡 keeps track of 
kernel values among the members of the Dictionary at time t. 

✓ Example: assume that t = 5 and 𝐷 = {𝑥1, 𝑥3, 𝑥5}, 𝑥1 = 𝑑𝑖𝑐1, 𝑥3 =

𝑑𝑖𝑐2 𝑎𝑛𝑑 𝑥5 = 𝑑𝑖𝑐3 .  That is, the 1st, 3rd and 5th arriving samples 
have been entered into the Dictionary, with a total of five time steps 
having elapsed since the algorithm began running, and thereby 
constitute the Dictionary composition at time t = 5. Then K̃5  = 

















=

=

=

1),(),(),(
),(1),(),(
),(),(1),(

332313

322212

312111

dicdickdicdickdicdick

dicdickdicdickdicdick

dicdickdicdickdicdick

 
• K̃1

-1 = [
1

k11
]: the inverse of kernel matrix. 

• �̃�1 = 
𝑦1

𝑘11
: the coefficient least square vector α at t = 1. 

• 𝑃1 = [1]: P is the covariance matrix and equal to [ATA]-1.  

• 𝐴𝑡 = []t×m : is a matrix of least square coefficients 𝑎 = (𝑎1, 𝑎2,…, 𝑎𝑚). 

✓ Example 1: assume that t = 7 and D = {x1,x3,x5}.  Then 𝐴 = 





























=

=

=

757371

656361

555351

454341

353331

252321

151311

1

1

1

aaa

aaa

aaa

aaa

aaa

aaa

aaa

 

 
✓ Example 2:  x4 and x7 can be shown as below: 

𝑥4 = 𝑎41𝑥1 + 𝑎43𝑥3 
𝑥7 = 𝑎71𝑥1 + 𝑎73𝑥3 + 𝑎75𝑥5 
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In order to obtain a recursive formula for Pt , the Matrix Inversion Lemma is 

used. Matrix inversion lemma assumes that [A B
𝑪 D]  is an investable matrix 

and made of invertible blocks such as A, B, C, D. Subsequently, prove that  

[
A B
𝑪 D]

−1

= (𝐴 − 𝐵 . 𝐷−1. 𝐶)−1

= 𝐴−1 + 𝐴−1. 𝐵. (𝐷 − 𝐶 . 𝐴−1. 𝐵)−1. 𝐶 . 𝐴−1 

A and BCD have the same dimensions. It is linear algebra trick which is 
applicable in kernel theory (Strang et al., 1993). For finding the inverse of non-
square matrix, the pseudo-inverse matrix is used. If the columns of a matrix A 
are linearly independent, so we should calculate the pseudo inverse with 𝐴+ =
(𝐴𝑇 . 𝐴)−1. 𝐴𝑇. However, if the rows of the matrix are linearly independent, the 
pseudo inverse should be calculated with 𝐴+ = 𝐴𝑇 . (𝐴. 𝐴𝑇)−1. 

• Λ: it is a binary matrix.  It concatenates two sub-matrices of sizes 𝐿 × 𝑚𝑡−1 
(# columns is equal to the number of Dictionary members in time t - 1) and 
𝐿 × 𝐺 (#columns is equal to the number of unsolved orange alarms).  It 
keeps track of whether kernel values of 𝑥𝑡 with each Dictionary member 
and kernel values of 𝑥𝑡 with each of unsolved orange alarm, exceed the 
value of d for the previous L time steps or not. 

4.2.4. Projection Error   

For each arriving input vector (x) at time (t), the projection error 𝛿𝑡  should be 

evaluated like 𝛿𝑡 = 𝑘𝑡𝑡 − �̃�𝑡−1(𝑥𝑡)
𝑇�̃�𝑡, where 𝑘𝑡𝑡 = 𝑘(𝑥𝑡, 𝑥𝑡). 

4.2.5. Kernel Matrix Calculation  

The first step to evaluating 𝛿𝑡 is the computation of the kernel matrix. 
The vector k̃t-1(𝑥𝑡) includes the kernel value of the current input vector with each 
Dictionary element. 

✓ Example: assume that t = 5 and 𝐷 = {𝑥1, 𝑥3, 𝑥5}  then k̃4(𝑥5) = 

















),3(
),(
),(

5

52

51

xdick

xdick

xdick

.  
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4.2.6. Compute Sparsification Vector at 

𝑎𝑡 = �̃�𝑡−1
−1 �̃�𝑡−1(𝑥𝑡) 

 

4.2.7. Update Λ Matrix  

• If 𝑡 > 𝐿 : Remove first row of matrix Λ and append Λ with 1 or 0  
• If 𝑡 < 𝐿: Append Λ with one or zero. 

✓ 1: when kernel values of xt with each of Dictionary members exceed 
value of d. 

✓  0: when kernel values of xt with each of Dictionary members does not 
exceed value of d. 

 
 

4.2.8. Raise “Red1” Alarm 

• When  ẟt > 𝜈2  
• Only matrix Λ changes between time steps and K̃t remains unchanged (K̃t =

K̃t-1).  
• Update  qt =

Pt-1αt

γ+ 𝑎𝑡
𝑇Pt-1αt

 

• Update Pt =
1

γ
(Pt-1-qt𝑎𝑡

𝑇Pt-1) 

• Update �̃�𝑡 = α̃t-1 + �̃�𝑡−1
−1 𝑞𝑡 + (𝑦𝑡 − �̃�𝑡−1(𝑥𝑡)

𝑇 �̃�𝑡−1) 

 

4.2.9. Raise “Orange” Alarm 

• When 𝜈1 < 𝛿𝑡 < 𝜈2   
• Set Θ = [Θ ∪ 𝑥𝑡], 𝐷 = [𝐷 ∪ 𝑥𝑡] , where Θ  is the set of unsolved Orange 

alarms.                                    
•  Ãt = 𝑎𝑡  
• Compute K̃1

-1and K̃t  

• Compute �̃�𝑡
−1 = [

ẟtK̃t-1
-1 +ãtãt

𝑇 -ãt

-ãt
𝑇 1

] 

• Compute  �̃�𝑡 =  [
K̃t-1 k̃t-1(xt)

k̃t-1(xt)
T ktt

] 

• Updated  𝑎𝑡 = (0,⋅⋅⋅ ,1)𝑇 
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✓ Example: assume that 𝑡 = 5 , 𝐷 = {𝑥1, 𝑥3} , x1=dic1, x3=dic2 , and 
ẟ5 < 𝜈2 . Then x5  causes the Orange alarm.  x5  is not linearly 
dependent on the Dictionary elements.  Therefore, x5  cannot be 
expressed in the form of: a1×dic1 + a2×dic2. Observation x5 can then 
be stated as: 0×dic1 + 0×dic2 + 1×x5. The corresponding coefficient 
vector a5 when x5 is added to the Dictionary is thus:  

a5= 
















1
0
0

.  

• Compute   Pt =
1

γ
(
Pt-1 0

0T γ
) 

✓ Example: assume 𝑡 = 5, 𝑚 = 2, 𝐷 = {𝑥1, 𝑥3}, and ẟ5 < 𝜈2. Then P5 

will be equal to [
𝑷𝑡−1 0

0
0 0 1

] ⋅  

• Append Λ with (0, ⋅⋅⋅, 1)T. 

✓ Example 1: assume 𝑡 = 5, 𝐷 = {𝑥1, 𝑥5} and Θ = {𝑥5} Then Λ =























10
01
01
01
01

. 

The second column is the result of (0 1)T at time 𝑡 = 5, when the “Orange” 
alarm is raised.  

✓ Example 2: assume 𝑡 = 10, 𝐷 = {𝑥1, 𝑥5, 𝑥10}, 𝑡 = 20 and Θ = {x5,x10}.   
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Then Λ =







































100
001
001
001
001
010
001
001
001
001

.  Both x5, x10 are unsolved orange alarms. 

• Update αt =



















−

−−

−−

−−−
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11
2
1-

11
2
-1

1
2
-1

t

T

ttt

t

t

T

ttt

t

t
t

xky

xky










. 

✓ Example: assume 𝑡 = 4 , 𝑚 = 1 , 𝐷 = {𝑥1} , ẟ4 < 𝜈2 , 𝑎4 = 1 , 𝑎3 =

[1.0199], and x4  causes orange alarm.  Then 𝑃4 = [
0.333 0

0 1
] which 

results in 𝑎4 = [
−1.149
2.48

]. 

 
As the current input vector is added to the Dictionary, the size of 
Dictionary is increased by 1. 
 

4.2.10. Lower Orange Alarm to Green  
 

• If there is an unsolved “Orange” alarm at time step 𝑡 − 𝑙, the secondary 
usefulness test should be applied to resolve the “Orange” alarm.  A 
Dictionary element 𝑥𝑡−1 is regarded as useful if it was used to explain a 
significant number of input vectors between time steps 𝑡 − 𝑙 to t.  In other 
words, if a noticeable amount of kernel values between xt-l  and 
(𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅⋅, 𝑥𝑡) is high, then 𝑥𝑡−1 should be added to the Dictionary, 
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and subsequently xt-l should not be considered as anomaly. It demonstrates 
the migration or expansion of normal traffic in the feature space.  

• Λ matrix also should be updated. The (𝑚𝑡−1)
𝑡ℎ column of matrix Λ keeps 

track of kernel values of the 𝑥𝑡−1 (“Orange” alarm) with (𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅

⋅, 𝑥𝑡).  
• KOAD evaluates the sum of the all kernel values between 𝑥𝑡−1  and 

(𝑥𝑡−𝑙+1, 𝑥𝑡−𝑙+2,⋅⋅⋅, 𝑥𝑡) and compares whether it is less than a specific value 
or not.  If it is less than (𝜀 × 𝑙) it will be considered anomalous and the 
“Orange” alarm will be elevated to a “Red2” alarm. 

✓ Example 1: assume t = 11, 𝐷 = {𝑥1, 𝑥4, 𝑥10} ,  l = 7 and Θ =
{𝑥4, 𝑥7 }, ε = 0.2 and  
 

Λ =









































100
101
101
001
101
001
001
010
001
001
001

.   

For resolving “Orange” alarm, S= SUM (Λ (5:11,2)) is calculated.  
S is equal to zero (0 < 0.2 × 7).  Therefore, the “Orange” alarm should be 
elevated to “Red2” alarm. 

4.2.11. Remove Absolute Elements   

When the kernel value of 𝑥𝑡−𝐿 and all incoming input vectors up to 𝑥𝑡 become 
zero, it causes the relevant column of Λ to contain all zeros.  As a result, the 
(𝑥𝑡−𝐿)

𝑡ℎ member of the Dictionary will be marked obsolete and should be 
removed. 
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4.2.12. Drop Element (pth) from Dictionary   
 

• This needs to be done either when a previous “Orange” alarm is upgraded 

to “Red2” alarm, or when a Dictionary element becomes obsolete. 

• Initially, the pth row and columns of K̃t and K̃t
-1 are moved to the end of the 

matrix. As a result, the kernel values of every other element with pth 

element will be transferred to the last row and column of K̃t and K̃t
-1. 

• Update  ẟ𝑝  =
1

[K̃t
-1]mt,mt

 . 

• Update  �̃�𝑝 = − ẟ𝑝  ×  [K̃t
-1]1:mt-1,mt

. 

• Update K̃t
-1 = [K̃t

-1]1:mt-1, 1:mt-1 − 
 �̃�𝑝�̃�𝑝

𝑇

ẟ𝑝
 . 

• Update α̃t = α̃t −
1

ẟ𝑝
 (

�̃�𝑝�̃�𝑝
𝑇 -�̃�𝑝

-�̃�𝑝
𝑇 1

) K̃tα̃t. 

• Update 𝑎𝑡 = 𝑎𝑡(1:𝑚 − 1). 

• Update K̃t = [𝐾𝑡]1:𝑚𝑡−1,1:𝑚𝑡−1. 

• Remove pth element from D. 

• Remove pth column from Λ, 

• Update  𝑚𝑡 = 𝑚𝑡−1 − 1. 

• Update 𝑃 = 𝐶 × 𝐼𝑚𝑡.  

✓ The recalculation of the covariance matrix P requires full access to 
historical data. In order to simplify the calculation, the matrix P is 
reset to a large constant (C) times the identity matrix with size equal 
to 𝑚𝑡 (Dictionary size at time t). 

✓ Example, if C = 10000 and mt = 3 , then 𝑝 =

















100
010
001

.  
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• Update K̃t-1. 

✓ This matrix contains the kernel values of all xt-1  Dictionary 

members between themselves. 

✓ Example: Assume m = 6 and 𝐷 = {𝑑𝑖𝑐1, 𝑑𝑖𝑐2,⋅⋅⋅, 𝑑𝑖𝑐6} , then 

K̃t-1 = 

[
 
 
 
 
 
𝑘(dic1 and xt-1)
𝑘(dic2 and xt-1)
𝑘(dic3 and xt-1)
𝑘(dic4 and xt-1)
𝑘(dic5 and xt-1)

𝑘(dic6 and xt-1)]
 
 
 
 
 

. 

4.2. K-means Algorithm 

k-means clustering is one of the iterative benchmark unsupervised algorithms that has 
been used in many clustering applications. Assume that the X is the dataset of N samples 
with d-dimension, where 𝐷 = {𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑁}, 𝑥𝑁 ∈ 𝑅𝑑 . The k-means algorithm tries to 
divide the dataset into k disjoint clusters 𝐶𝑖 , where 𝐶𝑖 ∈ {𝑐1, 𝑐2,⋅⋅⋅, 𝐶𝑘}. Each cluster is 
represented with its centroid 𝑚𝑖 , where 𝑖 = {1,2, ,⋅⋅⋅, 𝑘} . Euclidean, Mahalanobis, 
Manhattan and Chebyshev are examples of distance metrics which can be used by k-means 
algorithm to measure the similarity between each datapoints 𝑥𝑁  and cluster centroids.  
Figure 6 presents a separation of 2-dimentional data using k-means algorithm with cluster 
number equal to two.  

 

Figure 6 example of k-means clustering (k=2) 
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4.3.1 How K-means Algorithm Works 

• Initially, the algorithm selects k points randomly as the centroids of clusters.  

• The algorithm measures the distance between every 𝑥𝑁  data point and the 
centroids 𝑚𝑖. 

• The algorithm assigns each point to the nearest cluster.  

• The algorithm calculates the mean of the points in each cluster and the centroid 
is replaced by the mean value.  

• The algorithm repeats from step 2 until the centroid locations remain 
unchanged. 

The k-means algorithm aims to minimize the squared error objective function in the 
equation (4.11) to find the local minimum. 

𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =  𝑒𝑟𝑟𝑜𝑟(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠) = ∑ ∑(‖𝑥𝑖 − 𝑚𝑘‖)2

𝐶

𝑘=1

𝑁

𝑖=1

 (4.11) 

K-means algorithm performs ideally when datapoints are distinct and linearly- separated 
from each other.  

K-means algorithm suffers 2 major problems: 

• It finds local minimum. 

• It requires to define the number of clusters in advance.  

4.3.1 How Elbow Method Works 

• The number of clusters K can be selected based on the elbow visual-method. 

• It starts with K=2 and increases by 1 in each step (Kodinariya and Makwana, 
2013) 

• It calculates the distortion value in each step and plots the distortion value 
against the number of clusters (K).  
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• The location of the knee in the plot (as seen in Figure 7Figure 7) is considered 
as the most appropriate number of clusters (K), where the distortion value stops 
decreasing dramatically.  

 

Figure 7 Elbow curve 

4.3. Mahalanobis Distance 

The Mahalanobis distance is a metric for measuring the distance between a 
multidimensional point P and a distribution D. It is computed by equation (4.12) 

 DM = √(xi − μ)TS−1(xi − μ), (4.12) 

where xi is a row vector representing the multivariate measurement for an observation, S 
is the covariance matrix of the sample, μ is the mean of the sample and T is the transpose 
of matrix. The mean is calculated by equation(4.13).  

𝜇 =
∑ 𝑥𝑖

𝑁
𝑖=0

𝑁
, (4.13) 

where N is the number of samples.  

The covariance matrix of 2-dimentional point P is calculated by equation (4.14). 

𝑆 =   [
𝛿1

2 𝛿2𝛿1

𝛿1𝛿2 𝛿2
2 ], (4.14) 
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where 𝛿1
2, 𝛿2

2 are the variance of first and second variables respectively and 𝛿2𝛿1 is the 
variance between first and second variables (De Maesschalck et al., 2000).  

According to Prykhodko et al. (2018), the squared Mahalanobis distance of the samples 
from multivariate normal distribution flows a Chi-square distribution 𝑋𝑑,𝛼

2  , where d is the 
degree of freedom and α is significance level. Additionally, empirical results reveal that 
the squared Mahalanobis distance is Chi-square distributed (Thill, 2017). The 
Mahalanobis larger than the critical Chi-square value is related to 
abnormal/suspicious/outlier datapoints.  

Outlier detection is the most common use of the Mahalanobis distance. Additionally, it is 
used to evaluate the similarity of a set of conditions to a known (predefined) set. For 
example, in anonymous network traffic detection, the Mahalanobis distance can be used 
to measure the similarity between unknown traffic and normal behavior (Bayarjargal and 
Cho, 2014, Santiago-Paz et al., 2012).  

4.4. Chi-square Test 

The Chi-square test is a non-parametric (distribution-free) statistic test and assumes that 
data is derived from the random samples. The Chi-square test is used to determine whether 
a sample data matches a population or not. The Chi-square statistic is used to measure the 
difference between observed and expected values of the distribution. It also demonstrates 
the goodness-of-fit between observed and expected values. The Chi-square value is 
calculated using equation (4.15). To investigate the similarity of the observed and 
expected values, the value of the Chi-square should be compared against the critical value 
from a Chi-square table. A Chi-square value higher than the critical value indicates that 
there is a significant difference between expected/calculated (E) and observed/actual (O) 
values [Norušis, 2006]. 

     𝑋𝑐
2 =

∑(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖
 (4.15) 

Figure 8 shows the Chi-square distribution with the degree of freedom equal to 3 at 
significance level 0.05. 
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Figure 8 Chi-square distribution with critical and non-critical areas (d=3, α=0.05). 

4.5. Chi-square Test 

The updated KOAD algorithm is called Enhanced KOAD (E-KOAD), which runs based 
on the automatic setting of threshold values and the sigma parameter. Additionally, it 
performs the “Utility Test” before the final decision about inclusion and exclusion of the 
suspicious input vector in the Dictionary. 

The "Utility Test" is the combination of "Usefulness Test" of KOAD algorithm, 
Mahalanobis distance metric and Chi-square test. Therefore, if the significant amount of 
the subsequent input vectors is dependent on a suspicious data point in the Dictionary 

(“Orange” alarm at 𝑥𝑡−𝑙  ), but the Chi-square test for the corresponding Mahalanobis 
distance value of that point is true, it should be removed from the Dictionary as well. In 
other words, if the Mahalanobis distance value of a suspicious input vector passed the 
Chi-square test, it signals the existence of a DDoS attack. As a result, the E-KOAD 

increases the “Orange” Alarm to the “Red2” alarm and removes the corresponding input 
vector (𝑥𝑡−1) from the Dictionary. Algorithm 1 provides a high-level overview of the E-
KOAD algorithm. 

 

 

 



52 
 
 

 

 

Algorithm 1: Pseudocode of the E-KOAD algorithm. 

1. Run the initialization phase 

2. Compute the ν1, nu2 and σ 
3. Run the E-KOAD  
4. For t = 1, 2, . . . do 

a. Compute projection error 𝛿𝑡for 𝑥𝑡using 𝐷𝑡  

b. if 𝛿𝑡 > 𝜈2then 

i. Raise Red1 Alarm  
c. Endif 

d.  if 𝛿𝑡 > 𝜈1  then 

i.  Raise Orange Alarm  
ii.  Store 𝑥𝑡  in Θ 

e. Endif 

/* Process previous orange alarm */ 
f. if Orange Alarm (𝑥𝑡−𝑙) then 

i.  Re-evaluate projection error δ for 𝑥𝑡−𝑙  using Dt 

ii. if δ > ν1 then 

1. Perform the Utility Test for 𝑥𝑡−𝑙 

2. if NOT relevant then 

Raise Red2 Alarm (𝑥𝑡−𝑙)  
3. Else 

Add 𝑥𝑡−𝑙 dictionary D  

 Lower Orange Alarm (𝑥𝑡−𝑙)  
4. Endif 

iii. Else 

1. Lower Orange Alarm (𝑥𝑡−𝑙)  
iv. Endif 

1. Remove Θ{1}  
g. Endif 

/* Remove obsolete elements */ 
5.  Evaluate usefulness of each dictionary element over previous L 

measurements 

6. Remove any useless element from dictionary D 

7. EndFor 
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CHAPTER 5 

 

5. EXPERIMENTAL ANALYSES AND RESULTS 

Features were extracted from the CICIDS2017 dataset in the manner described in Chapter 
3. Then, the dataset was represented by a row feature vector, with respect to each timestep. 
The detection algorithm, which was presented in Chapter 4, was then utilized to analyze 
the constructed row vectors using MATLABTM. 

This chapter presents the main findings of this research. It proceeds as follows. The 
detection algorithm parameters were set. The algorithm sensitivity is also analyzed 
regarding different parameter settings. This pursues two fundamental purposes: first, to 
demonstrate that the results are not immensely sensitive to precise parameter settings by 
means of Receiver Operating Characteristics (ROC) curves; second, to provide a 
systematic way to set the parameters to achieve high detection accuracy while reducing 
false alarms. The performance of the algorithm is then measured using different 
performance metrics. Subsequently, the performances of the proposed algorithms are 
quantitatively compared with the performances of other works that utilized the 
CICIDS2017 dataset to validate their algorithms. Finally, the computational complexity 
of the proposed algorithm was calculated to verify the claim that the proposed algorithm 
is suitable for online DDoS detection with complexity values that are independent of time. 

5.1. Threshold setting  

The original KOAD algorithm incorporates two thresholds. These thresholds were set by 
trial and error in all previous systems (Ahmed et al., 2007a, Ahmed, 2009, Ahmed et al., 
2010, Ahmed et al., 2016b, Ahmed et al., 2017, Sahi et al., 2017, Anika et al., 2017, Islam 
an Ahmed, 2018). 

When the KOAD algorithm commences, there is no definition of normality because the 
Dictionary is empty. Accordingly, 𝜈2 should be set to the maximum possible value to 
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prevent a “Red1” alarm and the inclusion of all input vectors in the Dictionary. During 
this initial calibration period (60 samples in the experiments), 𝜈2 is set to 1 (Ahmed et al., 
2017). Additionally, 𝜈1  was set to 0.1 (it could be any value less than 1). The algorithm 
measures and records δ for 1 hour.  

Subsequently, the k-means algorithm is used to cluster the δ values. The number of 
clusters (K) is selected based on the elbow method using the distortion metric, which 
computes the sum of squared distances from each point to its assigned center. As can be 
seen in Figure 9, the distortion score reduces slightly when the number of clusters is higher 
than five. Consequently, five can be considered as the number of clusters. 

 

 

Figure 9 k-elbow visualizer for selecting the optimal number of clusters for k-means algorithm. 

Table III shows the number of δ values that belong to each cluster. Cluster3 has the largest 
size; this demonstrates that the δ values are more likely to belong to Cluster3. Finally, the 
algorithm updates the threshold values as follows: 𝜈1 is the minimum value of δ in cluster3 
(0.027), and  𝜈2  is the maximum value of δ in Cluster3 (0.059) at the end of the calibration 
period (1 hour). 
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5.2. Sigma (𝝈) setting  

The proposed algorithm can use various types of kernels, such as linear, polynomial, and 
radial basis function (RBF). As there was not any prior knowledge about the relationships 
among data points, the general-purpose RBF kernel was employed.  

Standard deviation (𝜎) plays a substantial role in the performance of the RBF kernel. An 
overly large δ results in losing the discrimination power of the kernel function, as a nearly 
flat hypersurface is obtained. Accordingly, two points may be considered similar even if  

Table III Cluster assumption of δ values for 
calibration. 
Cluster Size of cluster Size 

percentage 
Clster1 12 20% 
Clster2 13 22% 
Clster3 20 33% 
Clster4 7 11.66% 
Clster5 8 13.33% 

 

they are far from each other, whereas an overly small 𝜎  may cause overfitting. 
Unfortunately, there is no standard method for defining 𝜎 for the RBF kernel. In this work, 
the algorithm by Liu et al. (2015) was used to detect the optimum 𝜎 for the RBF kernel of 
the E-KOAD algorithm. The algorithm is based on the principle of maximizing between-
class separability and minimizing within-class separability. Their algorithm does not 
require any optimization search process. Therefore, the sigma selection algorithm by Liu 
et al. (2015) is computationally effective and is less complicated.  

The built-in MATLAB sigma selection function for RBF kernel (MATLAB, 2018) was 
used to select optimal sigma and it resulted in  𝜎 = 2.63 

Figure 10 demonstrates the effect of different sigma values on decision boundaries of the 
SVM algorithm with RBF kernel for the 2-dimensional dataset.   
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5.3. Tracing of the proposed algorithm  

The proposed algorithm is an online algorithm, as was described in Chapter 4. It takes the 
normalized input feature vector of corresponding network traffic at time step t and 
investigates the presence of any DDoS attack. The algorithm automatically finds the 
optimal standard deviation of RBF kernel as 𝜎 = 2.63 and the optimal thresholds as ν1  =
 0.027  and  ν2  =  0.059. The other parameters of the algorithm were derived from the 
recommended default settings for KOAD (Ahmed et al., 2007a): d = 0.9 and l=20 for 
resolving orange alarm, ε=0.2 and L = 100 for usefulness testing, and no-forgetting 
parameter. The algorithm was calibrated in 1 hour using 60 input vectors. This time period 
is important for the construction of the Dictionary. Therefore, all abnormal input data 
should be treated as “Orange” alarm. Accordingly, the  𝜈2 threshold was set to 1 for an 
hour and then declined to 0.059.  

(a) (b) 
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(c) (d) 

Figure 10 Decision boundries of the SVM classifier on 2-dimensional data when gamma (1
𝛿
) is 

equal to (a) one, (b) ten, (c) fifty and (d) hundred.  

 

Figure 11 shows the number of current Dictionary members every 20 time steps. It can be 
seen that the algorithm monitored normal system behavior for approximately 7.5 hours by 
using a maximum number of 18 Dictionary members. The size of the Dictionary (m) will 
be significantly smaller than that of the input vectors (T), thus reducing computational and 
storage costs. The algorithm was required to store only these Dictionary members to 
measure the Mahalanobis distance of each abnormal data point from normal system 
activity and detect a DDoS attack. 

Figure 12 shows a plot of the detection statistic 𝛿  between 8:55 and 17:02 ( 535 ≤
Time_Interval ≤ 1022). As 𝛿 is small for normal network traffic, green stems are so 
small that they cannot be discerned in the figure 11. 
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Figure 11 Dictionary size (m) corresponding to time intervals in which abnormal data points were evaluated. 

n the next step, the algorithm measures the distance between suspicious and normal feature 
vectors (𝐹2

⃗⃗  ⃗) using the Mahalanobis distance. Figure 13 shows the Mahalanobis distance 
for each abnormal data point. the Mahalanobis distance was measured from the 
distribution of the current Dictionary every 20 minutes. The proposed algorithm can detect 
the DDoS attack traffic from other abnormal data points with a maximum delay of 20 
minutes. This delay can be adjusted based on the severity level of the system so that DDoS 
attacks may be detected as soon as possible. The algorithm can be forced to decide about 
all incoming input vectors instantly by setting (l=0). Of course, this may result in 
increasing the false positive alarms (Please refer to Table VI for more information).   

In the final step, a Chi-square test with 3 degrees of freedom at different significance level 
of 𝛼  (0.05, 0.01 and 0.001) was performed using equation (4.15) to evaluate the 
Mahalanobis distance against the critical value, where 𝑂𝑖 was the calculated Mahalanobis 
distance and 𝐸𝑖 was the estimated Mahalanobis distance from the Chi-square table. If the 
traffic is normal, then with probability less than (α), the score of the moving average of 
the distance exceeds the corresponding critical value in the Chi-square table. Thus, the 
score of the moving average of the distance the exceeds that critical value can be regarded 
as DDoS with  probability (1-α).  
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The algorithm failed to detect only one DDoS attack at Time_Interval=976. As seen in  
Figure 13, the DDoS attack started to diminish at Time_Interval = 974 and stopped at 976. 
It is suspected that this vector was labeled as DDoS in the CICIDS2017 dataset because 
the DDoS attack simulation tool was actually active at the corresponding time. However, 
the severity of the simulated DDoS attack was reduced to approximately that of normal 
network traffic level. 

5.4. Complexity  analysis 

Memory and complexity issues are prominent factors in online detection algorithms. The 
algorithm's memory requirements are as follows: 

• (𝑚 × 𝑚) matrix for storing the kernel matrix of Dictionary elements (Ahmed 
et al., 2007a). 

• (𝑙 × 𝑑1) matrix for storing input vectors that result in orange alarm, where 𝑑1 is 
the dimension of the feature vector (𝐹1

⃗⃗  ⃗) (Ahmed et al., 2007a). 

• Binary (𝐿 × 𝑚) matrix for performing usefulness test (Ahmed et al., 2007a). 

• (𝑆𝑠  × 𝑑2) matrix for storing the suspicious dataset, where 𝑆𝑠  is the size of the 
suspicious dataset at time t, and 𝑑2 is the dimension of the feature vector (𝐹2

⃗⃗  ⃗).  

• (𝑚 × 𝑑2) matrix for storing the Dictionary dataset, where  𝑑2  is the dimension of 
the feature vector (𝐹2

⃗⃗  ⃗).  

Table IV  shows the maximum memory requirements for the proposed algorithm.  

The time complexity of the KOAD algorithm is O(m2) for every usual time interval, and 
O(m3) for time intervals when an element is removed from the dictionary. According to 
Zhang and Zhong (2009), the time complexity of the Mahalanobis metric is 
O( d2

2  +  m2  ×  d2). Additionally, the algorithm has a cost of O(Ss) for performing the 
Chi-square test. The complexity of the proposed algorithm is thus independent of time; 
accordingly, the algorithm is suitable for online use (Ahmed et al., 2007a). 
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Table IV Memory complexity of proposed algorithm 

Memory complexity Maximum memory usage 
(𝑚×𝑚) (18×18) 
(𝑒𝑙 ×𝑑1) (20×4) 
(𝐿×𝑚) (100×18) 
(𝑆𝑠 ×𝑑2) (20×4) 
(𝑚×𝑑2) (18×4) 

 

5.5. Performance evaluation  

As no label information is provided in unsupervised algorithms, there is no specific 
technique for evaluating the performance of most unsupervised learning methods. 
According to Jain and Dubes (1998), validating the cluster structure of cluster analyses is 
a very frustrating task, and it requires deep experience and knowledge in the field. There 
are internal and external measures of cluster validity as following. 

• Cluster Cohesion: Measures the closeness of the objects within a cluster based on 
the Sum of the Squared Errors (SSE) within clusters. 

• Cluster Separation: Measure how well a cluster is far from other clusters based on 
SSE between clusters. 

• Silhouette Coefficient: measures average distance of a point in a cluster from other 
points in the same cluster and points in different clusters. It combines the ideas 
behind both cluster cohesion and cluster separation. 

• Entropy: measures the amount of disorder in a point using Shannon entropy. 

• Purity: measures the cleanness of a cluster based on the definition of entropy. The 
purity of a cluster is the maximum probability that a member of a cluster belongs 
to a specific class. 

However, it is difficult to find an appropriate metric for the validity of clustering 
algorithms (Kovács et al., 2005). 



63 
 
 

 

 

On the other hand, if label information is provided the performance of the algorithm can 
be measured precisely. 

Table V depicts the confusion matrix to describe the performance of a classification 
algorithm.  

     Table V Confusion matrix in machine learning 

             Predictive 
       Positive   Negative  
     

A
ct

ua
l  

  

Positive  
  

TP FN 

      Negative   FP TN 
 

Four possible outcomes of the confusion matrix for the classification of a dataset in this 
thesis are given as:  

• True Positive (TP) is the number of DDoS attack traffic vectors that are classified 
correctly. 

• True Negative (TN) is the number of normal network traffic vectors that are 
classified correctly. 

• False Positive (FP) is the number of normal network traffic vectors that are 
incorrectly classified as DDoS attack.   

• False Negative (FN) is the number of DDoS attack traffic vectors that are 
incorrectly classified  as normal traffic. 

The class label information of the CICIDS2017 dataset were only used as a reference to 
assess the proposed unsupervised approach. To evaluate the algorithm, the following 
metrics are utilized:  

• Accuracy: is the number of all correct predictions divided by the total number of 
the dataset and is calculated using equation (5.1) : 

Accuracy =   
TN + TP

TN + TP + FN + FP 
    (5.1) 
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• Recall: also known as sensitivity or True Positive Rate (TPR), is a measure that 
tells us what proportion of network traffic that was actually DDoS attacks was 
detected by the algorithm as DDoS using equation (5.2):  

Recall =   
TP

TP + FN 
    (5.2) 

• Precision: is a measure that tells us what proportion of network traffic was detected 
as DDoS, actually was DDoS attack using the equation (5.3):  

Precision =   
TP

TP + FP 
    (5.3) 

• False Positive Rate (FPR): is a measure that tells us what proportion of network 
traffic detected as normal (non-DDoS) was detected by the algorithm as DDoS 
using equation (5.4).  

FPR =   
FP

TN + FP 
    (5.4) 

• Receiver Operating Characteristic (ROC) curve. It plots FPR against TPR for 
different threshold settings.Figure 14 shows the trade-off between FPR and TPR 
using four threshold settings.  

 

Table VI presents the performance metrics for the proposed algorithm based on various 
values of the time that is required to resolve the orange alarm (l). It can be seen that 
reducing l from 20 to 2 minutes did not affect the detection power of the algorithm, and 
the algorithm is not sensitive to this parameter. However, the number of false alarms 
issued by the algorithm increased sharply when l dropped below 5 minutes.  

 

 

 



65 
 
 

 

 

Table VI Performance metrics of the proposed algorithm for different values of l. 

Dataset size # DDoS attacks l FN FP ACC TPR FPR 
448 21 20 1 1 99.55% 95.23% 0.23% 
448 21 10 1 6 99.55% 95.23% 1.4% 
448 21 5 1 4 99.55% 95.23% 0.9% 
448 21 2 1 71 99.55% 95.23% 17% 
 

The area under the ROC curve is a more robust performance metric than accuracy. In the 
experiments, the ROC curve analysis was utilized to demonstrate the effect of selecting 
different thresholds, l (lag-time for resolving orange alarm) and alpha (significance level 
in Chi-square test) by trial and error on the performance of the proposed algorithm. The 
point closest to the upper-left corner of the ROC curve indicates better performance, as it 
has lower FPR and higher TPR.  

The red point in Figure 14 indicates the best performance for the algorithm when the 
thresholds are selected automatically. Ahmet et al. (2007a) pointed out that optimal 
threshold setting is quite challenging and depends on various traffic metrics.  The 
proposed algorithm is able to adjust both the 𝜈1 and 𝜈2 thresholds automatically using an 
unsupervised method, so that performance is optimized, as seen in Figure 14. 

 

Figure 14 ROC curve shows the trade-off between FPR and TPR with different threshold settings. 



66 
 
 

 

 

The results in Table VI shows that the algorithm requires at least 5 minutes to detect 95% 
of DDoS attacks with false positive alarm rate below 1%. The algorithm requires some 
time to establish a normal traffic baseline. Experiments were repeated when lag-time for 
"Orange" alarm was altered between 20 and 2 minutes. As can be seen in Figure 15, the 
detection rate remains identical while the FPR is increasing for the small values of l.  

 

Figure 15 ROC curve shows the trade-off between FPR and TPR with different lag-time settings. 

Experiments were also repeated at the different significance levels (α) of the Chi-square 
test. The results of the Chi-squre analyses are presented in Appendix A. As can be seen in 
figure 14, the detection rate is 100% when α=0.01 but 95% when α=0.001. On the other 
hand, the increase in the detection rate causes an increase of 2% in FPR as well. Therefore, 
there is a trade-off between detection rate and FPR regarding the selecting of the 
significance level (α). 

 

Figure 16 ROC curve shows the trade-off between FPR and TPR with the different significance level (α) 
settings. 
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5.6. Comparison with literature 

Table VII compares the proposed algorithm with those by other studies that used the 
CICIDS2017 dataset. Of course, as this is a recent dataset, the number of these studies is 
still limited. It can be seen that the proposed algorithm is comparable with the others. Its 
performance is slightly lower than that of the Autoencode algorithm (Attak et al., 2018). 
However, the proposed algorithm has several advantages: it does not require labeled data, 
it is completely unsupervised, its memory and time complexity is independent of time and 
it can operate online as well as adapt to changing network traffic. 

Table VII Comparison of the proposed hybrid algorithm with others. 
Author Algorithms Online Best Accuracy Recall Precision 
Aamir and Zaidi 
(2019) 

k-NN, RF, SVM No 96.66% (RF) 91.7% 88% 

Aksu et al. (2018) k-NN, DT, SVM No 99.8% (k-NN) 95.8% 95.6% 

Attak et al. (2018) One-calss SVM, 
Auto-encoder No 98% (Auto-

encoder) 97% 99% 

Boukhamla and 
Gaviro 

k-NN, DT (c4.5), 
Naïve-bayes No 96.65% (k-NN) 90.6% 91.27% 

Ahmim et al. (2018) JRip algorithm, 
Random Forest No NA NA NA 

Azwar et al. (2018) 
Gradient Boosted 
DT 
(XGBoost) 

No NA 81.8% 84.4% 

Proposed algorithm Hybrid Yes 99.55% 95.24% 95.24% 
 

Moreover, the performance of the proposed algorithm was compared with the work by Gu 
et al. (2019). This comparison was not placed on Table VII because Gu et al. (2019) used 
a different performance measurement metric named TOPSIS. They set TOPSIS to (1 −
 Recall + FPR) to represent the fitness function of their proposed algorithm. The TOPSIS 
metric was also computed for the proposed algorithm. The values equal to 0.05 and 0.0218 
were obtained for the best and worst performance of the proposed algorithm based on the 
different lag-times (l) required to resolve the orange alarm. However, Gu et al. (2019) 
reported the TOPSIS value of 0.298 for their semi-supervised algorithm. 
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5.7. Comparison with benchmark unsupervised algorithms  

The performance of the proposed algorithm also was compared with the performance of 
the benchmark offline unsupervised algorithms. The built-in unsupervised machine 
learning algorithms in the Sklearn library of PythonTM were utilized.  

It is clearly shown in Table VIII that TPR of the proposed algorithm exceeds the Density-
Based Clustering (DBSCAN) and Agglomerative clustering algorithms. Additionally, the 
proposed online algorithm reaches the same TPR of the offline k-means algorithm. 
However, k-means achieved a slightly lower FPR. The results confirm that the novel 
proposed algorithm has comparable performances with unsupervised benchmark 
algorithms. The advantageous of the proposed detection algorithm is its ability to operate 
in an online manner. Offline algorithms require iterative re-clustering to adapt to the 
changing trends in network traffic. Therefore, their time and memory complexity are 
dependent of time.  

Table VIII Comparison of the proposed hybrid algorithm with benchmark unsupervised algorithms. 

Algorithms Online Parameter settings  FPR TPR 
k-means No Number of clusters 0 95.23% 
Agglomerative  No Number of clusters 0 85.71% 
DBSCAN No Minimum samples in each cluster 0 90.4% 
Proposed algorithm  Yes L, l, ε 0.23% 95.23% 
 

Figure 17 demonstrates the results of the k-means clustering analysis. The 8-dimensional 
data was converted to 2-dimensional data using PCA and then multi-dimension clusters 
were depicted in 2-dimensional plot. As it is seen in the Figure 17, clusters are separated 
perfectly.   

5.8. Indirect comparison with state-of-the-art  

This section includes the indirect performance comparison of the proposed algorithm with 
6 recent unsupervised approaches for DDoS attack detection. The proper comparison of 
machine learning-based attack detection studies is possible only when they use the same 
validation dataset or the same algorithm. As replication of all detection algorithms is a 
frustrating task, here, only an indirect comparison of the algorithms was made. It can be 
inferred from Table IX that the proposed algorithm is superior to other existing methods 
except for the algorithm by Idhammad et al. (2018) from both perspectives of TPR and 
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FPR. Furthermore, the proposed algorithm is the only DDoS detection algorithm that 
meets all requirements of an online learning algorithm. 

 

Figure 17 Detection of DDoS attacks using k-means algorithm 

 

Table IX Indirect comparison of the proposed algorithm with recent unsupervised DDoS Detection 
algorithms. 

Author Algorithm  Online  TPR FPR 
Casas et al. (2012 a,b) DBSCAN, SSC, EAC  No  90% 1-3.5% 
Dromard et al. (2016) Incremental Clustering Yes 94% 0 
Roudiere and Owezarski 
(2017) 

k-NN, Histogram  Semi 83% 0.01% 

Fernandes Jr et al. (2016) PCA, Anti Colony Optimization Semi 92% 21% 
Idhammad et al. (2018) Co-clustering, Entropy, Extra 

Tree 
No 98% 0.33% 

Proposed algorithm  E-KOAD, Entropy, Mahalanobis 
Distance, Chi-square  

Yes 95% 0.23% 
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CHAPTER 6 

 

6. CONCOLUSION AND FUTURE DIRECTIONS 

 

This thesis has addressed the detection of DDoS attacks in the Local Area Network (LAN) 
with an emphasis on automating the adaption of the detection algorithm on frequently 
changing network traffic. Researchers have advocated a variety of different DDoS 
detection schemes since the 2000s. However, a literature survey reveals that the 
techniques available today leave some significant gaps. First, most existing algorithms 
require batch-processing, which causes time-delay. Second, most online-processing 
algorithms require pre-defined settings of algorithm parameters and thresholds. Third, 
most online-processing algorithms require high memory and storage resources and have 
significant time complexities. Forth, outdated DDoS datasets or limited simulation 
approaches were used to validate the proposed detection algorithms by most researchers.  

6.1. Concolusion  

In this thesis, a novel algorithm has been proposed for the detection of DDoS attacks by 
utilizing a kernel-based anomaly detection method, the Mahalanobis distance metric and 
Chi-square test where there is no need to train detection algorithm using labeled data. 
Discriminating DDoS attacks from normal traffic using an unsupervised algorithm that 
can adapt itself to a continually changing environment without requiring a predefined 
normal behavior of the network traffic and re-training the detection model is a 
considerably new attempt for DDoS detection, and the proposed algorithm has shown 
promising results. The KOAD algorithm was used as a backbone of the proposed detection 
scheme while it was improved by defining an automatic procedure for setting the 
thresholds 
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The proposed algorithm was validated on the CICIDS2017 dataset. The performance of 
the proposed algorithm was also evaluated based on different time settings for resolving 
suspicious network traffic and significant-level (α) for the Chi-square test through 
Receiver Operating Characteristics (ROC) curves. Additionally, the analysis of the 
sensitivities of the threshold settings of the proposed algorithm has shown that the 
algorithm produces the highest performances when thresholds are set automatically.  

The proposed algorithm has been compared with the three most well-known benchmark 
unsupervised algorithms which are currently being used in DDoS detection literature: k-
means, Agglomerative and DBSCAN. Moreover, the performance of the proposed 
algorithm was directly compared with the works of six researchers who utilized the 
CICIDS2017 dataset as their validation instrument. It has been shown that the proposed 
algorithm achieved a higher detection accuracy rate compared to the other six algorithms, 
in addition to meeting all constraints of an online detection algorithm. The performance 
of the proposed algorithm also was indirectly compared with five new unsupervised DDoS 
detection algorithms in the literature. The results revealed that the proposed algorithm 
outperformed the other four algorithms while only achieved 3% less TPR than offline 
unsupervised DDoS detection algorithm by Idhammad et al. (2018). 

The proposed algorithm is based on the kernel online anomaly detection algorithm and 
intrinsically suitable for an online application as its computational and memory 
complexities are independent of time. As might be expected, the proposed algorithm is 
superior to the original KOAD algorithm due to the automatic selection of thresholds. 

6.2. Future directions 

The scope of this thesis has been limited to DDoS detection in a LAN environment. The 
future researches might convey the proposed algorithm into cloud networks, ISP-level 
networks or Software Defined Networks (SDN). A weakness of the proposed algorithm 
at this point is to classify different kinds of DDoS attacks and ideally distinguish them 
from similar-looking FE traffic. The algorithm also suffers to find DDoS attacks, which 
are very similar to normal underlying network traffic from the perspective of volume, 
traffic rate, traffic duration and randomness of source/destination IP addresses/ports. It is 
hypothesized that geolocation analysis of IP addresses, historical analysis of IP addresses, 
and black-listing/white-listing techniques could be added as extra components to the 
proposed detection scheme. These analyses can be applied to all suspicious traffic vectors 
in addition to the Mahalanobis distance measurement. Besides, rule-based correlation 
algorithms could be added to the machine learning-based DDoS detection scheme to 
establish patterns to control events, which might be indicators of a DDoS attack. 
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APPENDICES  

APPENDIX A 

Mahalanobis distance values and Chi-square test results 

Mahalanobis distance  Time alpha=0.05 alpha=0.01 alpha=0.001 

3.788507 536 0 0 0 

3.144352 537 0 0 0 

2.119748 538 0 0 0 

2.573952 539 0 0 0 

2.787513 540 0 0 0 

2.770793 541 0 0 0 

1.545647 542 0 0 0 

2.582686 543 0 0 0 

3.798436 544 0 0 0 

2.006835 546 0 0 0 

2.386099 547 0 0 0 

2.40586 548 0 0 0 

2.151711 550 0 0 0 

1.545746 552 0 0 0 

2.46843 555 0 0 0 

2.797316 563 0 0 0 

1.183986 565 0 0 0 

2.584387 568 0 0 0 

6.179406 570 0 0 0 

2.521087 573 0 0 0 

1.885014 574 0 0 0 

11.80373 575 1 1 0 

2.867908 576 0 0 0 

9.920155 585 1 0 0 

10.9671 596 1 0 0 

5.688897 597 0 0 0 

1.490073 598 0 0 0 

2.994716 603 0 0 0 

5.532619 604 0 0 0 

2.599124 605 0 0 0 
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Mahalanobis distance  Time alpha=0.05 alpha=0.01 alpha=0.001 

5.287621 607 0 0 0 

11.75426 609 1 1 0 

1.09476 611 0 0 0 

1.769663 612 0 0 0 

1.675633 613 0 0 0 

1.95016 615 0 0 0 

3.559468 616 0 0 0 

2.348398 626 0 0 0 

3.600126 629 0 0 0 

12.72213 632 1 1 0 

8.478768 634 1 0 0 

9.938449 637 1 0 0 

5.568832 638 0 0 0 

5.846324 648 0 0 0 

7.182955 651 0 0 0 

5.54912 652 0 0 0 

6.534555 653 0 0 0 

21.00665 654 1 1 1 

10.37103 655 1 0 0 

13.0389 656 1 1 0 

11.74201 661 1 1 0 

3.047871 662 0 0 0 

5.481711 666 0 0 0 

3.249266 671 0 0 0 

2.096866 674 0 0 0 

3.840073 677 0 0 0 

9.794947 678 1 0 0 

2.666256 679 0 0 0 

3.296364 684 0 0 0 

11.6906 685 1 1 0 

2.754891 686 0 0 0 

2.391558 697 0 0 0 

2.665245 701 0 0 0 

2.522156 725 0 0 0 

3.631692 732 0 0 0 

1.999664 753 0 0 0 
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Mahalanobis distance  Time alpha=0.05 alpha=0.01 alpha=0.001 

1.595494 766 0 0 0 

4.176344 767 0 0 0 

12.2557 784 1 1 0 

3.325645 790 0 0 0 

7.69481 798 0 0 0 

2.860762 800 0 0 0 

1.343874 822 0 0 0 

5.045717 824 0 0 0 

1.664093 828 0 0 0 

5.447875 829 0 0 0 

11.64197 832 1 1 0 

5.001577 843 0 0 0 

3.058539 846 0 0 0 

1.259557 867 0 0 0 

2.15972 870 0 0 0 

4.324535 875 0 0 0 

3.055996 879 0 0 0 

1.789773 881 0 0 0 

5.645057 882 0 0 0 

9.119706 889 1 0 0 

4.239411 930 0 0 0 

3.515205 932 0 0 0 

3.397901 933 0 0 0 

10.28204 944 1 0 0 

4.108383 945 0 0 0 

5.470661 946 0 0 0 

8.495946 953 1 0 0 

4.140344 954 0 0 0 

7.642688 955 0 0 0 

37.39175 956 1 1 1 

42.6255 957 1 1 1 

37.33347 958 1 1 1 

37.78027 959 1 1 1 

39.82963 960 1 1 1 

39.45025 961 1 1 1 

41.7446 962 1 1 1 
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Mahalanobis distance  Time alpha=0.05 alpha=0.01 alpha=0.001 

40.32104 963 1 1 1 

41.72865 964 1 1 1 

40.75256 965 1 1 1 

43.35497 966 1 1 1 

41.47939 967 1 1 1 

43.14325 968 1 1 1 

41.9959 969 1 1 1 

45.1576 970 1 1 1 

44.44451 971 1 1 1 

45.84193 972 1 1 1 

46.76683 973 1 1 1 

34.67277 974 1 1 1 

30.04073 975 1 1 1 

16.03983 976 1 1 0 

3.300738 977 0 0 0 

4.378893 978 0 0 0 

4.847064 980 0 0 0 

2.132391 983 0 0 0 

8.171737 984 1 0 0 

1.601019 987 0 0 0 

2.588164 989 0 0 0 

0.941538 994 0 0 0 

6.029054 997 0 0 0 

4.229866 998 0 0 0 

6.402328 999 0 0 0 

5.743155 1000 0 0 0 

2.662727 1004 0 0 0 

8.836709 1021 1 0 0 

10.98077 1022 1 0 0 
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APPENDIX B 

Clustering analysis results for detection statistic δ  

Instance No. Delta Cluster No. Instance No. Delta Cluster No. 
 0 0.1 0 30 0.043222 3 
1 0.995462 2 31 0.013961 4 
2 0.473523 2 32 0.007063 3 
3 0.274606 1 33 0.090156 3 
4 0.055556 4 34 0.029335 0 
5 0.663468 2 35 0.646831 4 
6 0.214114 1 36 0.048058 2 
7 0.121457 0 37 0.016298 4 
8 0.077021 0 38 0.075897 3 
9 0.15028 1 39 0.088888 0 
10 0.01547 3 40 0.433326 0 
11 0.669492 2 41 0.120443 2 
12 0.19781 1 42 0.031193 0 
13 0.209048 1 43 0.03301 4 
14 0.0298 4 44 0.49221 4 
15 0.034377 4 45 0.064641 2 
16 0.008998 3 46 0.057751 0 
17 0.055273 4 47 0.032283 4 
18 0.02471 3 48 0.086644 4 
19 0.033168 4 49 0.145402 0 
20 0.068633 0 50 0.15085 1 
21 0.030485 4 51 0.059733 1 
22 0.008019 3 52 0.027684 4 
23 0.102214 0 53 0.039611 3 
24 0.035379 4 54 0.026134 4 
25 0.001991 3 55 0.029957 3 
26 0.020307 3 56 0.035059 4 
27 0.018169 3 57 0.065238 4 
28 0.195285 1 58 0.02384 0 
29 0.019824 0 59 0.04667 3 
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