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ABSTRACT 
 

NETWORK-BASED DISCOVERY OF MOLECULAR TARGETED AGENT 

TREATMENTS IN HEPATOCELLULAR CARCINOMA 

 

Fayetörbay, Rumeysa 

MSc, Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

 

    January 2020, 114 pages 

Hepatocellular carcinoma (HCC) is one of the most-deadly cancers and the most common 

type of primary liver cancer. Multikinase inhibitor Sorafenib is one of FDA approved 

targeted agents in HCC treatment. PI3K/AKT/mTOR pathway is altered in about 51% of 

HCC; hence, understanding how Sorafenib and PI3K/AKT/mTOR pathway inhibitors act 

at signaling level is crucial for targeted therapies and to reveal the off-target effects. In 

this work, we use gene expression profiles (GEPs) of HCC cells (Huh7 and Mahlavu) 

which were treated with seven different agents and their combination. Our aim is to reveal 

the important targets and modulators in agent treatments by inferring the dysregulation of 

Interactome. In other words, we search for the mechanism of action of the agents in a 

network context beyond the list of genes. For this purpose, we use the DeMAND 

(Detecting Mechanism of Action based on Network Dysregulation) algorithm developed 

by Califano Lab. DeMAND compares GEPs and assesses the change in the individual 

interactions from weighted interactome obtained from STRING database. As a result, we 

reconstructed 18 agent-specific networks from each GEPs. Each gene and interaction 

within these networks have a value signifies how strongly these genes are affected from 

the chemical network perturbation. Then, we found enriched pathways in each network. 

We initially compared the networks of single agents and their combination; i.e. PI3Ki-α, 

Sorafenib and their combined treatment. Then, we compared all networks simultaneously. 

The simultaneous comparison of the reconstructed networks at gene and pathway levels 

shows that several pathways and proteins are commonly affected across agent treatments 

(e.g., Wnt, HIF-1, Notch pathways and MCM proteins, mTOR). On the other hand, some 

pathways are only affected in a specific agent treatment (e.g., SNARE interactions). 

Keywords: Hepatocarcinoma Network Reconstruction, Therapeutic Agents, DeMAND 

Network Modelling Algorithm, Omics Data Integration, Targeted Cancer Therapy  
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ÖZ 

 

        HEPATOSELLÜLER KARSİNOMDA HEDEFE YÖNELİK    

     MOLEKÜLER AJAN TEDAVİLERİNİN AĞA DAYALI KEŞFİ 

 

 

Fayetörbay, Rumeysa 

Yüksek Lisans, Biyoenformatik Yüksek Lisans Programı  

Tez yöneticisi: Doç. Dr. Nurcan Tunçbağ 

 

         Ocak 2020, 114 sayfa 

Hepatosellüler karsinom en ölümcül kanserlerden biridir ve en sık görülen primer 

karaciğer kanseri türüdür. Multikinaz inhibitörü Sorafenib, hepatosellüler kanser 

tedavisindeki FDA onaylı hedeflenmiş ajanlardan biridir. PI3K/AKT/mTOR yolağı 

hepatosellüler karsinomun yaklaşık % 51'inde değiştirilir, bu yüzden Sorafenib ve 

PI3K/AKT/mTOR yolağı inhibitörlerinin sinyal verme seviyesinde nasıl etki ettiğinin 

anlaşılması, hedefe yönelik terapiler için çok önemlidir ve yan etkilerini (hedef dışı 

etkiler) ortaya çıkarır. Bu çalışmada biz yedi farklı ajan ve onların kombinasyonu ile 

tedavi edilen hepatosellüler karsinom hücrelerinin (Huh7 ve Mahlavu) gen ekspresyon 

profillerini (GEP) kullanıyoruz. Amacımız, ajan tedavilerindeki önemli hedefleri ve 

modülatörleri moleküler etkileşimlerin düzensizliğini anlayarak ortaya çıkarmaktır. Başka 

bir deyişle, biz ajanların etki mekanizmasını genler listesinin haricinde bir ağ kaynağında 

araştırıyoruz. Bu amaçla Califano Lab tarafından geliştirilen DeMAND (Ağ bozulmasına 

dayalı etki mekanizması belirleme) algoritmasını kullanıyoruz. DeMAND, GEP 

karşılaştırır ve STRING veri tabanından elde edilen ağırlıklı interaktomdaki özgün 

etkileşimlerin değişimini değerlendirir. Sonuç olarak, herbir gen ekpresyon profilinden 

ajana özel 18 ağ yeniden oluşturduk. Bu ağlar içindeki her gen ve etkileşimin değeri bu 

genlerin kimyasal ağ bozulmasından ne kadar fazla etkilendiğini gösterir. Daha sonra, biz 

her bir ağda zenginleştirilmiş yolaklar bulduk.  İlk olarak tek ajan tedavilerinin ağlarını ve 

bu ajanların kombinasyonunu karşılaştırdık; yani PI3Ki-α, Sorafenib ve bunların 

birleştirilmiş tedavi şeklini. Ardından, tüm ağları eşzamanlı olarak karşılaştırdık. Yeniden 

yapılandırılmış ağların gen düzeyinde ve yolak seviyesinde eşzamanlı karşılaştırması ajan 

tedavilerinde çeşitli yolak ve proteinlerin yaygın olarak etkilendiğini göstermektedir 

(örneğin, Wnt, HIF-1, Notch yolakları ve MCM proteinleri, mTOR). Öte yandan, bazı 

yolaklar sadece belirli bir ajan tedavisinde etkilenir (örneğin, SNARE interaksiyonları). 

Anahtar Sözcükler: Hepatosellüler Karsinom Yeniden Ağ Kurma, Tedavi Ajanları, 

DeMAND Ağ Modelleme Algoritması, Omik Veri Bütünleşmesi, Hedefe Yönelik Kanser 

Terapisi  
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CHAPTER 1 

CHAPTER 

      INTRODUCTION 

 

Cancer is a general term for diseases that are responsible for the uncontrolled division 

and proliferation in the cells. Through the invasion, nearby tissues might be adversely 

affected. Previously known carcinogenesis factors are infectious carcinogens (HIV, 

HPV, EBV, HBV, HCV, HHV, HTLV, helicobacter pylori, etc.), physical 

carcinogenic agents (radiation and UV light), and chemical carcinogenic agents 

(tobacco smoking, arsenic, benzene, asbestos, acetaldehyde, aflatoxins, etc.) 

(Blackadar, 2016; Plummer et al., 2016). Cancer is one of the top causes of death 

globally. According to the World Health Organization (WHO) reported fact sheet, 

almost 10 million deaths were occurred due to the cancer in 2018. Liver cancer has the 

fourth highest cancer-related mortality in the WHO 2018 report (with nearly 800.000 

deaths). In addition to the statistics of liver cancer, the incidence rate of the liver cancer 

alters diversely from distinct regions of the world and the highest frequency of 

prevalence is detected in Eastern Asia (L. Lin et al., 2019).  

Roughly, a cancer which originates from hepatocytes is identified as primary liver 

cancer. The most common type of primary hepatic malignancy is hepatocellular 

carcinoma (HCC). There are several factors that increase the risk of HCC including 

the infection of hepatitis B or hepatitis C virus, cirrhosis, excessive alcohol, aflatoxins, 

inherited liver diseases (Hemochromatosis, Wilson’s disease, etc.), nonalcoholic fatty 

liver disease, type II diabetes and obesity (Balogh et al., 2016). Treatments of 

hepatoma depend mainly on the stage of the disease, age of the individual, and the 

general health condition of the patient. As treatment options, there are some different 

techniques including surgery, chemotherapy, radiation, liver transplantation, 

immunotherapy, and targeted therapy. The classic chemotherapeutic agents are 

doxorubicin, cisplatin and 5-fluorouracil in liver cancer. Although a single agent or 

combination of these agents decrease the size of the tumor, tumor come back again in 

a period of time (S. Lin, Hoffmann, & Schemmer, 2012; Park et al., 2006). As Balogh 

et al. claimed that, one of the recent methods in hepatoma treatment is targeted therapy 

which is used to target specific molecules in cancerous cells. It is different from 

chemotherapy in the aspect of healthy cell damage. Chemotherapy attacks the cancer 

systemically, destroying both healthy normal cells and tumorigenic cells that divides 

quickly. Unlike chemotherapy, targeted therapy blocks the growth of cancerous cells 
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by interfering with proteins that are acting in the processes of tumor progression and 

proliferation of cancer. Hence, targeted therapy aims to have fewer off-target effects 

that decrease the given harm to the normal body cells (Balogh et al., 2016). 

Sorafenib, Nexavar as a trade name, is one of the FDA approved targeted drugs used 

in HCC treatment. It is a multikinase inhibitor drug that primarily inhibits Raf, LIMK, 

VEGFR and PDGFR kinases (Lai et al., 2018). Due to the repressing functional 

activity of Raf and other receptor tyrosine kinases by suppressing phosphorylation of 

Raf/MEK/ERK pathway, Sorafenib is an efficient alternative while targeting cell 

proliferation and angiogenesis (Adnane, Trail, Taylor, & Wilhelm, 2006). Yet, tumor 

recurrence in most of the patients is arose due to increasingly proliferative signals; 

hence, other targeted drugs in combination with Sorafenib is a necessity.  

In order to compensate for the inhibited pathway, cancerous cells may upregulate 

alternative existing pathways as in the case of PI3K/AKT/mechanistic target of 

rapamycin (mTOR) signalling pathway. This proliferative pathway is much altered in 

primary liver cancer cells (Gedaly et al., 2012). The upregulation of angiogenic signals 

have significant roles in the acquired resistance to Sorafenib; thus, understanding how 

Sorafenib and its combination with PI3K/AKT/mTOR pathway inhibitors act is vital 

for targeted drug therapies and to reveal the off-target effects of the drugs.  

From the pharmacological point of view, mechanism of action (MoA) of a compound 

describes the biochemical reactions that interactor and effector proteins interact, 

enabling to produce the pharmacological effect of the drug. To determine on-target 

and off-target effects of a drug, MoA interrogation questioning is indispensable 

(Scannell, Blanckley, Boldon, & Warrington, 2012). Whether there is a significant 

progress in characterization of MoA, drug discovery pipelines’ productions will be 

considerably arisen (Woo et al., 2015). In the aspect of drug response, MoA is critical 

to detect the interaction dysregulation of a drug in a network–based content beyond 

the list of genes.  

DeMAND (Detecting Mechanism of Action based on Network Dysregulation) is a 

network modelling algorithm to identify the targets and modulators by inferring the 

dysregulation of Interactome subsequent molecular targeted therapeutic perturbation. 

As an alternative to differential gene expression analysis, DeMAND searches for the 

MoA of the drugs, inhibitors of drugs and their combination in a network contextual 

perspective. The algorithm compares GEPs before and after the drug perturbation, and 

determines the alteration in the individual interactions from STRING Interactome 

(Woo et al., 2015).  

In this thesis study, our main purpose is to reconstruct drug specific networks from 

GEPs, and to identify significant targets in treatments of molecular targeted agents 

following the dysregulation of Interactome. Toward this aim, small molecule 

inhibitors that are targeting the cascade of PI3K/AKT/mTOR, including pan-PI3K 

inhibitors, isoform-specific PI3K inhibitor, and isoform-specific or non-specific AKT 

inhibitors, and mTOR inhibitor were analyzed. We used gene expression profiles 
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(GEPs) of Huh7 and Mahlavu cells that were treated with multiple distinct drugs, 

inhibitors and their combination. Both Huh7 and Mahlavu cells were derived from 

HCC cell lines used in this work. Huh7 is a well-differentiated liver cell. However, 

Mahlavu hepatoma cells are poorly-differentiated.  

In our study, 18 drug specific networks were reconstructed by using DeMAND 

approach. Each gene and interaction within these networks corresponds to a certain 

value that demonstrates the level of response to the compound perturbation. Addition 

to network reconstruction and analyses, enriched pathways were analyzed in each 

network. The networks obtained from both single drug and combination of the drugs 

were compared at gene and pathway levels by applying functional enrichment 

analyses. As a result, some pathways/proteins were only affected from a specific drug; 

whereas, the majority of the pathways are commonly affected from drug treatments.  

This thesis is divided into the following chapters: 

In Chapter 2, we primarily provided the literature review including the information 

about HCC, Huh7 and Mahlavu cell lines, and the survival rate of liver cancer. 

Furthermore, we gave detailed information about PI3K/AKT/mTOR pathway, drugs 

and inhibitors, protein-protein interaction databases, and DeMAND algorithm.  

In Chapter 3, we described the experimental dataset and interactome used in this study. 

In addition to the input of our network modeling algorithm, DeMAND analysis, 

functional enrichment analysis, network visualization criteria were given in detail 

throughout this chapter.  

In Chapter 4, we initially gave the statistical outcomes of our reconstructed 

hepatocarcinoma networks provided by our network modeling algorithm, DeMAND. 

Apart from the statistical results, literature targets of drug treatments/inhibitors are 

stated to identify target genes and to check the presence of these genes in the 

reconstructed networks. For determining common characteristics between Sorafenib-

related multiple networks and identifying potential similarities, overlapping genes are 

analyzed. Additionally, we demonstrated all hepatoma networks and several resulting 

functional analyses outcomes of this study that elucidate the inclusion of the 

reconstructed networks in pathways and in significant terminology insights to reveal 

fundamental biological signatures in the light of the literature support.  

Finally, we conclude our thesis study in Chapter 5 with a general overview and discuss 

several of the striking substantial results supporting with literature. These outcomes 

are based on our direct findings from our analyses (Chapter 4). Additionally, we 

suggest potential several candidate targeted agents to improve our targeted therapy 

approach as our future direction.  
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CHAPTER 2 

 

1. LITERATURE REVIEW 

2. 2.1      Comprehending the Underlying Systems Biology of Silent Killer,  

      Hepatocellular Carcinoma 

3. Cancer is a major cause of death worldwide with 9.6 million deaths reported in 

2018. Lung, colorectal, stomach, liver and breast cancer are the most observed 

types of cancer-related deaths (WHO 2018 reported facts). According to the cancer 

statistics in 2018, the incidence of liver cancer continues to increase in females; 

whereas, no substantial difference observed in males (Siegel, Miller, & Jemal, 

2018). This incidence considerably augments more than other cancer types for both 

sexes (Siegel, Miller, & Jemal, 2019).  

4. HCC is the most common type of hepatocarcinoma cells that are malignant tumors 

of the liver. Hepatocarcinoma has multiple distinct etiology. Different factors that 

increase the risk of HCC are including the viral infection (HBV and HCV), alcohol, 

nonalcoholic fatty liver disease (e.g. non-alcoholic steatohepatitis (NASH)), 

cirrhosis, autoimmune disorders, cholestatic disorders, metabolic disorders (e.g. 

Iron metabolism disorder- Hemochromatosis, Wilson’s disease), and obesity 

(Balogh et al., 2016; Pellicoro, Ramachandran, Iredale, & Fallowfield, 2014). As 

a treatment option, chemotherapy demonstrates low level of impact because of the 

heterogeneity of hepatocarcinoma (El-Serag, 2011). In order to better understand 

hepatoma, D’Alessandro et al. suggested using gene expression and proteomics 

profiling data with network models from the perspective of systems biology 

approach (D’Alessandro, Meyer, & Klingmüller, 2013). Additionally, there is a 

very recent study that identify potential hepatocarcinoma drug targets with 

network-based analysis and machine-learning based model, support vector 

machine (SVM). Concisely, Tong et al. initially map distinct genes to both human 

protein-protein interaction network and cellular signaling network. Following the 

mapping process, statistical analyses of networks were evaluated and developed a 

new methodology that predict drug target hepatoma genes. SVM-based analysis to 

build drug target hepatoma predictor is done regarding the dependency scores of 

networks (Tong, Zhou, & Wang, 2019).   
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5. There are two hepatocarcinoma cell lines used in this work. Huh7 is a well-

differentiated liver cell line. In 1982, it was initially isolated from a liver tumor in 

a Japanese man (Pridgeon et al., 2016). Huh7, epithelial-like malignant, cells are 

morphologically similar to the healthy liver cells. Their differences from the 

hepatocytes are their smaller size and structural organization. Well-differentiated 

Huh7 expression is observed in the early stage of HCC and might be rarely in the 

advanced levels (Yuzugullu et al., 2009). Mahlavu is a poorly-differentiated liver 

cell line. It was taken from a human genome. Surprisingly, it is mainly made up of 

L1 repeat elements (HHCM NCBI, 2019). On the contrary, poorly differentiated 

Mahlavu cells have low cytoplasm and variable structure. The expression of 

Mahlavu is detected in the advanced levels of HCC proliferation (Keskin et al., 

2013; Yuzugullu et al., 2009).  

6.  

7. 2.2    The Survival Rate of Primary Liver Cancer 

8. According to the American Cancer Society, the five-year survival percent ratio for 

liver cancer is approximately 18%. The percentage depends on the stage and the 

region of the liver cancer. Whether the cancerous region is limited to a certain 

location within the liver, the percentage is approximately 31% for the next 5 years. 

Surgical operations are the first options when the cancerous part is only in the liver 

and the tumor size is feasible. If the cancer is expanded to other places or organs, 

the overall rate is decreased dramatically for the following 5 years (American 

Cancer Society Facts Report in 2019).  

9. Sorafenib is the first systemic agent approved by the FDA in hepatocarcinoma 

treatment (when HCC cannot be treated with surgery) and extends the survival rate 

up to 10.7 months (in European and United States regions) and 6.5 months (in 

Pacific Asia) (Cheng, Hsu, Shen, Shao, & Hsu, 2014). Since Sorafenib has wide 

range of targets, systematic mechanism of action is poorly understood. It primarily 

inhibits Raf, LIMK, VEGFR and PDGFR kinases. Additionally, it blocks tumor 

proliferation and angiogenesis and induces apoptosis in tumorigenic cells. The 

alteration is about 40% in PI3K/AKT/mTOR pathway for primary liver cancer (L. 

Liu et al., 2006). As a result, understanding how Sorafenib and its combination 

with PI3K/AKT/mTOR pathway inhibitors act is vital for targeted drug therapies 

and to reveal the side effects of the drugs.  

 

10. 2.3     Detecting Mechanism of Action by Network Dysregulation,   

     DeMAND Algorithm 

11. In order to reveal the significant targets and modulators, the dysregulation of 

Interactome is analyzed across different drug treatments. In the aspect of drug 

response, mechanism of action (MoA) is crucial to detect the interaction of a drug 

dysregulation in a network–based content. Basically, DeMAND is an algorithm to 
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model networks of molecular interactions for specific cell lines. As required inputs 

for DeMAND, gene expression profiles obtained from drug and control samples 

and a molecular interaction network is necessary. The algorithm compares GEPs 

before and after the molecular targeted agent perturbation and tests the edge 

dysregulation in the Interactome. Similarly, the change that corresponds to all of 

the interactions from STRING database (as Interactome) is calculated. In order to 

assess the edge dysregulation, the probability density difference before and after 

drug perturbation is calculated by using Kullback-Leibler divergence (KLD). 

Statistical significance for each interaction is determined by the shuffling of gene 

pairs. The combined dysregulation of interactions for each gene is detected by the 

p-values of all of the interactions. Molecular targeted therapeutic agent specific 

networks from each GEPs are reconstructed. The output of DeMAND contains a 

gene list and their level of dysregulation with the corresponding statistical 

significances in the reconstructed network (Woo et al., 2015).   

12. There are multiple known methods to detect mechanism of action in the literature. 

Although experimental detection of MoA is labor-intensive and less informative, 

affinity purification and chromatography assay are leading of this technique 

(Aebersold & Mann, 2003; Ito et al., 2010; Woo et al., 2015). Together with the 

previously mentioned experimental techniques, various computational methods 

are presented. Virtual screening, chemical-based computational approach, seek 

promising candidates which bind to drug targets (Miller, 2002; Rollinger, 

Stuppner, & Langer, 2008). Similarity ensemble approach (SEA) is one of the 

chemoinformatics-based methods. Predicted false-positive result rates are much 

higher than the optimal for the technique (Lounkine et al., 2012). With the help of 

omics data taking into account, after the drug perturbation, gene expression 

profiles which set differentially expressed genes to the corresponding MoA are 

presented. One of the substantial disadvantages of the method might be unaltered 

level of expression of mRNA while subjected to drug despite changing activity of 

protein (subsequent to perturbation of drug) (Lamb et al., 2006; Woo et al., 2015).  

13. By performing reverse engineering techniques, network-based methods are 

developed as leading methods for MoA characterization. To summarize, there are 

2 common mechanisms of network-based methodologies, namely creating a 

reversely engineered regulatory network, and deducing evaluation of dysregulated 

edges after agent perturbations. One of the current studies of network-based 

approaches is mode-of-action by network identification, MNI algorithm. This 

algorithm build a molecular interaction network by using reverse-engineered 

network model (in particular, multiple linear regression models) to whole-genome 

expression profiles. Subsequently, gene expression array data are identified by the 

linear models to detect the targeted genes and cascade inclusion (Bernardo et al., 

2005; Woo et al., 2015).  

14. Another network-based method is the interactome dysregulation enrichment 

analysis, IDEA algorithm. Basically, regulatory interaction network is created by 

Bayesian evidence integration approach. In order to detect drug MoA, the 
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alteration of all interactions provided by microarray expression profiles in the 

molecular network is examined. The statistical significance of the alteration of 

dysregulated network perturbation is calculated by mutual information. The targets 

of the drugs are deduced from the algorithm while checking for the dysregulated 

interactions of the genes in the network. To detect the phenotype of tumor, this 

algorithm is also performed. As a limitation, the systems biology-related algorithm 

need to have sample size more than 100 which makes it unsuitable to choose for 

most of the datasets (Mani et al., 2008; Woo et al., 2015).  

15.  

16. 2.4     Targeting Raf/MEK/ERK Pathway and Parallel Alternative Signaling       

      Cascade, PI3K/AKT/mTOR Pathway 

17. Genomic analysis is occurred for examining hepatocarcinoma cells which reveal 

some of the pathways have abnormalities (D’Alessandro et al., 2013) and these 

aberrancies observed in the pathways may cause hepatocarcinogenesis (Whittaker, 

Marais, & Zhu, 2010). Hanahan and Weinderberg highlighted that the aberrancies 

which are detected in cascades (especially, kinase signaling pathways) lead to 

provoke multiple hallmarked phenotypes of cancer, namely angiogenesis, survival, 

invasion and metastasis, motility, responses due to DNA damage, and proliferation 

(Gross, Rahal, Stransky, Lengauer, & Hoeflich, 2015; Hanahan & Weinberg, 

2011). In one of the recent studies, Castelli et al. highlighted that 

PI3K/AKT/mTOR pathway is one of the most changed signaling cascades in 

hepatocarcinoma with 51% aberrancy rate. Additionally, Ras-

mediated/Raf/MEK/ERK signaling pathway is another altered cascade that has 

shown 43% aberrance ratio in HCC cases (Castelli, Pelosi, & Testa, 2017).  

18. PI3Ks (Phosphatidylinositol-4,5-bisphosphate 3-kinases) are kinases that are 

associated with cellular processes such as proliferation, cell growth, 

differentiation, cell survival, motility and so on (Zhu, Ke, Xu, & Jin, 2019). There 

are three different classes of PI-3 kinases as Class I, Class II and Class III. PI3Ks 

phosphorylate the 3’position hydroxyl group of the inositol ring of 

phosphoinositides. There are two subunits of Class I PI-3 kinases; regulatory and 

catalytic subunits as p85 and p110, respectively. The catalytic isoforms of Class I 

PI3Ks have 4 isoforms PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ. Activation of tyrosine 

kinase receptor via growth factors promotes PI3K activation. PI3K phosphorylates 

PIP2 (Phosphatidylinositol 4,5-bisphosphate) to PIP3 (Ptdlns(3,4,5)P3). PTEN 

(Phosphatase and tensin homolog) is a tumor suppressor that regulates 

dephosphorylating of PIP3 to PIP2 (Davis, Lehmann, & Li, 2015; Jean & Kiger, 

2014). 

19. AKT (also known as Protein kinase B) is a serine/threonine protein kinase that is 

included in the diverse cellular functions such as proliferation, cell growth, 

apoptosis, cell survival, etc. Following the recruitment to the plasma membrane, 

AKT is phosphorylated and gets activated. AKT is comprised of three isoforms; 
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AKT1, AKT2, and AKT3 (Abeyrathna & Su, 2015; Szymonowicz, Oeck, 

Malewicz, & Jendrossek, 2018). mTOR is the abbreviation of mechanistic target 

of rapamycin (originally mammalian target of rapamycin) that is a serine/threonine 

protein kinase regulates several processes including cell proliferation, survival, 

growth, transcription, motility, etc. mTOR is a member of PI3K-related kinases. 

mTOR has two different intracellular complexes as mTOR complex 1 (mTORC1) 

and mTOR complex 1 (mTORC2), respectively. In cancer, mTOR deregulation is 

observed (Abeyrathna & Su, 2015; Saxton & Sabatini, 2017).  

20. PI3K/AKT/mTOR signaling pathway is a crucial signal transduction cascade that 

regulates several physiological processes, namely cellular growth, proliferation, 

anabolic reactions, survival, cell cycle, motility, glucose metabolism (Gerson, 

Caimi, William, & Creger, 2018; H. Q. Liu et al., 2019). In addition to the critical 

processes, this significant pathway is activated by the following compounds such 

as insulin, SHH, IGF, CaM and EGF. On the other hand, PTEN inactivates the 

signaling pathway by dephosphorylating PIP3 into PIP2. Other inhibitors of this 

signaling cascade are Hb9 (transcription factor), GSK3ß, respectively (Xie et al., 

2019). PTEN acts as a tumor suppressor for the downstream of the PI3K/AKT 

signalling cascade. Very briefly, activation of tyrosine kinase receptor via growth 

factors promotes PI3K activation. PI3K phosphorylates PIP2 and converting it into 

PIP3. Following the translocation mechanisms to the plasma membrane, AKT is 

phosphorylated and turns into activated form. mTORC1, downstream effector 

protein of AKT, is stimulated by phosphorylation of AKT (Chamcheu et al., 2019).  

21. Raf/MEK/ERK signaling pathway is another significantly altered cascade that has 

a role in hepatocarcinogenesis. This pathway regulates several various processes, 

namely cell survival, differentiation, apoptosis, proliferation, and cellular 

senescence (Knight & Irving, 2014; Wen et al., 2019; Yang & Liu, 2017). From 

the perspective of hallmarks of cancer, Maurer et al clarify that Raf kinases 

contribution with Ras-mediations and aberrations in Raf (B-raf and C-raf 

activations) lead to the transformation of hepatotumorigenesis (Maurer, 

Tarkowski, & Baccarini, 2011). Further, Sorafenib is an essential drug which 

targets the cascade of Raf/MEK/ERK. It primarily inhibits Raf kinases, in 

particular B-Raf and C-Raf, and blocking the activity of the other cell surface 

kinase receptors PDGFR, IGFR, VEGFR. As a consequence, the physiological 

processes of angiogenesis and tumor growth is both suppressed by multikinase 

inhibitor, Sorafenib (Yang & Liu, 2017).  

22.  

23. 2.5     Molecular Targeted Therapeutic Agents and Multiple Inhibitor  

     Compounds Used in This Hepatocellular Carcinoma Study  

24. Except Sorafenib, there are novel therapeutic hepatocarcinoma drug agents (in 

particular, Regorafenib, Lenvatinib, Cabozantinib, Ramucirumab) which are 

utilized in the treatment process (Kudo, 2019). Yet, the alteration of the survival 
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rate is insubstantial. Thereby, there is an imperative necessity for newly developed 

effective drug targets during the treatment stages of hepatocarcinoma (Tong et al., 

2019).   

25. Sorafenib is a derivative of phenylurea and nicotinamide (NAM). The mechanism 

of action of Sorafenib is as a protein kinase inhibitor (Wilhelm et al., 2004). It 

basically inhibits tyrosine kinase, a phosphate group from ATP is taken to other 

amino acids (serine/threonine), through elimination of its signal transferring into 

the tumors. It is a multikinase inhibitor that is included in the physiological 

processes of tumor angiogenesis, and tumor apoptosis (Kudo et al., 2016). It 

inhibits intracellular kinases (e.g: Raf, B-Raf, C-Raf), cell surface kinases LIMK, 

VEGFR, PDGFR, KIT, FLT-3, and RET kinases. It further targets tumor cell 

proliferation and tumor growth. It is involved in the treatment of certain cancers 

including renal cell carcinoma (primary kidney cancer), radioactive iodine 

therapy-refractory differentiated thyroid carcinoma, and hepatocellular carcinoma. 

Sorafenib is an essential drug that simultaneously targets the cascade of 

Raf/MEK/ERK (Adnane et al., 2006; Iavarone et al., 2011; Lencioni et al., 2014). 

The most common off-target effects of Sorafenib is fatigue, nausea, abdominal 

pain, diarrhea, hand-foot skin reaction, and hypertension. Heart attack and liver 

failure might be arisen as severe reactions of Sorafenib (Karovic, Shiuan, Zhang, 

Cao, & Maitland, 2016).  

26. Sirolimus, Rapamune as a trade name, was firstly used as an antifungal agent. Dr. 

Surendra Sehgal has isolated it from Streptomyces hygroscopius samples in 1972. 

The active compound was known as Rapamycin due to the native name of the 

founding island as Rapa Nui (Sehgal, 2003). In addition to the founding and 

historical information, it has antiproliferative and antineoplastic properties because 

of suppression of the target of rapamycin, mTOR. It prevents renal transplant 

rejection. It is also involved in the treatment of such a rare disease, 

lymphangioleiomyomatosis. The mechanism of action of Sirolimus is an mTOR 

inhibitor immunosuppressant (Koul & Mehfooz, 2019; Zhan et al., 2018). It 

basically inhibits activation of T cells that has a role in antigenic and cytokine 

production (Sehgal, 2003). It binds to FK-binding protein 12 abbreviated as FKBP-

12, to produce a complex (Koul & Mehfooz, 2019). The immunosuppressant 

complex binds to mTOR, and decreasing the activating of mTOR. As a result, the 

proliferation of cytokine-driven T cell is blocked and cell cycle is arrested at the 

G1 phase and no transition is observed from G1 to S phase (Sehgal, 2003). Some 

of the most adverse effects of Sirolimus in lymphangioleiomyomatosis is chest 

pain, nausea, headache, myalgia, abdominal pain, acne, diarrhea, dizziness, and 

nasopharyngitis. Some of the most adverse reactions of Sirolimus in preventing of 

renal transplant rejection is urinary tract infection, thrombocytopenia, anemia, 

fever, edema, abdominal pain, hypertension, nausea, headache, and arthralgia 

(Rapamune Sirolimus FDA accessible data).  

27. Wortmannin is a fungal steroid compound that is isolated from Penicillium 

funiculosum. It has an impact upon several pathways by inhibiting PI3Ks. The 
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irreversible inhibition mechanism of PI3Ks is through a covalent bond between the 

target and the inhibitor; thus, Wortmannin is a covalent inhibitor of PI3Ks. It is a 

highly cell permeable metabolite. It is a pan-PI3K inhibitor that targets PI3K-

related proteins including PI4K, ATM, DNA-PK, and ATR. It also blocks the 

proliferation of lymphocytes (Deane & Fruman, 2004).  

28. LY294002, (2-4-morpholinyl-8-phenlchromone), is a synthetic cell permeable 

inhibitor of PI3K. It was obtained as a pan-PI3K inhibitor by Eli Lily. It acts as a 

reversible inhibitor and it is a stable compound. LY294002 is less potent than the 

previous PI3K inhibitor, Wortmannin. After the decreasing level of PI3K by 

LY294002, the arrest of the cell cycle is induced and subsequently occurring the 

apoptosis (Mcnamara & Degterev, 2011). Furthermore, it inhibits the BET 

bromodomain proteins (BET inhibitors) including BRD2, BRD3, and BRD4. It 

also blocks the proliferation of B-cells and T-cell lymphocytes (Dittmann et al., 

2014).  

29. Akti-1/2, abbreviation of AKT Inhibitor 1/2, also known as AKT Inhibitor VIII, is 

an allosteric reversible inhibitor that targets AKT1 and AKT2. AKT Inhibitor VIII 

promotes apoptosis and inhibits cell growth, and survival in human hepatoma cells. 

Additionally, Akti-1-2 is isozyme-selective and it is cell permeable (Gilot, 

Giudicelli, Lagadic-Gossmann, & Fardel, 2010; Nitulescu et al., 2016; Zhang, 

Yang, Qu, Zhou, & Jiang, 2016).  

30. Akti-2, also known as AKT Inhibitor XII, is an allosteric inhibitor that specifically 

targets AKT2. Akti-2 is isozyme-selective and it is cell permeable. The blocking 

is dependent upon the domain of pleckstrin homology, which binds 

phosphatidylinositols. These domains play significant roles in intracellular 

signaling (Gilot et al., 2010; Nitulescu et al., 2016).  

31. PI3Ki-α is an isoform specific PI3K inhibitor that targets PI3Ki-α. PIK3CA, 

PIK3CB, PIK3CD, and PIK3CG are the cell signaling genes of PI3K. These genes 

encode distinct PI3K isoforms as PI3K-α, PI3K-β, PI3K-δ, and PI3K-γ, 

respectively. Class I PI-3 kinases have two subunits regulatory and catalytic 

subunits as p85 and p110. From the point of cancer approach and its progress, 

PI3Ki-α has a high priority because of the occurring mutations in PI3KCA gene 

and raised expression level of p110α protein in cancerous cells (Yadav et al., 2016).  

 

32. 2.6     Protein-Protein Interaction Databases 

33. Proteins are essential macromolecules that are involved in several cellular 

mechanisms including replication, cell signalling, metabolic reactions, 

transcription, signal transduction, developmental control, and so on. Detecting the 

interactions of the proteins helps to identify the activity of protein, its function, and 

its role in various biological processes. The whole collection of the interactions of 

the proteins in a cell is called Interactome.  



12 

 

34. The increasing number of protein-protein interaction (PPI) data that are obtained 

from both experiments (high-throughput and low-throughput experiments) and in 

silico based predictions are stored into the databases. PPI data are analyzed through 

various methods including protein microarray, yeast two-hybrid system, X-ray 

crystallography, co-immunoprecipitation, nuclear magnetic resonance 

spectroscopy, sequence-based and structure-based techniques, and so on. The 

number of public PPI databases is more than 130 and most of the databases store 

distinct type of characteristics of PPI (Taghizadeh, Safari-Alighiarloo, & Tavirani, 

2015).  

35. Search Tool for the Retrieval of Interacting Genes/Proteins, also known as 

STRING, is a database that retrieves and integrates different kinds of information 

from several PPI resources for many organisms. A score between 0 and 1 which 

indicates confidence score of each PPI is assigned to the associations of the 

proteins. STRING database covers 24.6 M proteins from 5090 organisms; over 2.0 

M interactions in version 11.0. STRING is composed of seven evidence channels 

including the experiments, the curated databases, the text-mining, the co-

expression, the neighborhood, the fusion, and the co-occurrence (Szklarczyk et al., 

2018).  

36. The experimental data of STRING is obtained from the databases including BIND, 

BioGRID, DIP, HPRD, IntAct, MINT, and PID (Szklarczyk et al., 2018). BIND, 

known as Biomolecular Interaction Network Database, is a specialized database 

which deposits both biomolecular interactions and complexes and also the 

cascades (Bader, Betel, & Hogue, 2003). Moreover, Biological General Repository 

for Interaction Datasets, abbreviated as BioGRID, is a curated database that stores 

PPI, the interactions of genetic, and chemical for multiple organisms (Stark et al., 

2006). Additionally, DIP, Database of Interacting Proteins, is a curated biological 

database which archives PPI obtained from the experiments (Xenarios et al., 2000). 

Besides, Human Protein Reference Database, abbreviated as HPRD, is a curated 

database on human proteomic data that mainly includes PPI, post-translational 

modifications, and so on (Keshava Prasad et al., 2009). Further, IntAct, contains 

both curated and direct data, is a particular database which deposits the information 

of PPI and the analysis of these interactions (Kerrien et al., 2012). Also, Molecular 

Interaction Database, shortly MINT, is a storage of curated molecular interactions 

including PPI in distinct representations (Licata et al., 2012). In addition to these 

databases, PID, abbreviated version of Pathway Interaction Database, is a curated 

database that primarily collects the regulatory cellular mechanisms, signalling 

processes and cascades in humans (Schaefer et al., 2009).  

37. The curated data is collected from BioCyc, GO, KEGG, and Reactome (Szklarczyk 

et al., 2018). BioCyc is a curated microbial database collection that supplies the 

information of the cascades and also contributes as a reference to genome. As of 

December 2019, there are 14,735 databases within BioCyc. The database has 3 

major tiers based on the manually curation and determines variety of tools, the 

software of analysis and visualization (Karp et al., 2018). Furthermore, GO (Gene 
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Ontology) is a well-known resource which comprehensively aims to provide gene, 

the biological terms of the gene and the corresponding functional annotation of the 

gene product across all species. The obtained biological terminology is used to 

enable the data interpretation for the enrichment analysis (Carbon et al., 2019). In 

addition, KEGG (Kyoto Encyclopedia of Genes and Genomes) is a curated 

database that is used for the analysis of high-throughput data, pathways, biological 

visualization, drug, chemical compound, disease, etc. through the collection of 

databases and analysis tools. According to Kanehisa et al., the integrated database 

is categorized into four major groups including systems information, genomic 

information, chemical information, and health information, respectively 

(Kanehisa, Sato, Furumichi, Morishima, & Tanabe, 2019). Together with these 

databases, Reactome is a curated open-access database. Given that the pathways, 

visualization, and interactive analysis tools are the major elements in Reactome, 

the database supplies the information of multiple cell events including 

transcriptional regulation, replication, transportation, cell cycle, signal 

transduction, motility, metabolism, immunity, apoptosis, and many others 

(Fabregat et al., 2018).  

Table 2.1: List of protein-protein interaction databases (As of December 2019). 

PPI  

Database 

# of Total 

Proteins 

# of Total 

Interactions 

Organism 

BioGRID 72,690 693,825 70  

HPRD 30,047 41,327 1 (Human) 

GO 1,433,391 --- 4522  

IntAct 114,235 601,388 > 9  

KEGG 29,196,304 --- 6269  

MINT 26,344 131,695 647  

Reactome 94,262 --- 16 

           Some of the unidentified numbers of databases are indicated with dashes. 
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CHAPTER 3 

 

38. MATERIALS AND METHODS 

39. In this chapter, we concisely detail the methodology of our study that is comprised 

of our dataset which we used to reconstruct molecular targeted therapeutic agents 

treated hepatocarcinoma networks and explain the underlying sections of the 

integrative network modelling.  

40. 3.1     Overview of the Pipeline 

41. The parallel alternative PI3K/AKT/mTOR signaling pathway and the unchanged 

survival ratio of hepatocarcinoma leads to designing a molecular targeted therapy 

in which targeted therapeutic agents with the combination of well-known 

multikinase inhibitor Sorafenib are imperatively needed. In this study, we analyzed 

small molecule inhibitors which are targeting the cascade of PI3K/AKT/mTOR, 

namely pan-PI3K inhibitors, isoform-specific PI3K inhibitor, isoform-specific or 

non-specific AKT inhibitors, mTOR inhibitor through a network-based modelling 

approach. We developed an integrative understanding for the most effective 

PI3K/AKT/mTOR inhibitors that can reduce hepatic tumor growth alone or in 

combination with Sorafenib by using microarray and interactome data with a 

network-based perspective which is outlined in Figure 3.1. The hepatoma 

microarray dataset is generated by Cancer Systems Laboratory (CanSyL). We 

initially performed both steps of pre-processing and quality control by using 

Affymetrix related Bioconductor packages. Further, to normalize the array dataset, 

RMA algorithm is used to determine the optimal expression values. Subsequently, 

in order to reveal the significant targets in distinct molecular targeted agents by 

inferring the dysregulation of the Interactome, we reconstructed multiple 

hepatocarcinoma networks treated with the different drugs/inhibitors or the 

combination of them by DeMAND network modelling algorithm. Apart from the 

reconstruction of hepatoma networks for both HCC cell lines, we start to analyze 

the initial networks and detect significant edges by adjusting threshold to 0.05 for 

KLD.p values in the edge lists. From the perspective of nodes in the network, we 

seek to know how much of them appear as significant by assigning p-value 

threshold to 0.05. Unless these criteria are valid for nodes and edges, we eliminate 

these insignificant nodes and edges. To take a step further, we applied an additional 

filtering where the set of significantly regulated genes (p-value<0.005) were added 

to a set. Next, we searched for the direct interaction of the significant nodes in G. 

Whether both partners of the edges contain significant nodes with respect to the 
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additional filtering, thereafter, we directly added the edges to the largest connected 

component. Afterwards, if one partner of the edge is significant and the other 

partner is insignificant then the first neighbors of the insignificant node is checked 

if at least 3 neighbors are significant then that edge is also added to the filtered 

network. The last step is to find the largest connected component which is our final 

optimal network (See Figure 3.1).  

42. 3.2     Datasets  

43.  
      3.2.1     Gene Expression Profiling 

44. We utilized the gene expression profiles dataset that is designed for the treatment 

of hepatoma cell lines (specifically, Huh7 and Mahlavu) with Sorafenib, 

PI3K/AKT/mTOR signalling pathway inhibitors and the combination of Sorafenib 

with several PI3K/AKT/mTOR pathway inhibitors in this work. Cytotoxic 

activities of PI3K/AKT/mTOR signalling pathway inhibitors in hepatocellular 

carcinoma cell lines were analyzed by using RT-CES assay. Apart from that, the 

IC50 values at 72 hours of incubation of Huh7 and Mahlavu cells were determined 

by Cancer Systems Laboratory (CanSyL) (See Table 3.1). 

Table 3.1: The IC50 values at 72 hours of hepatoma cells had calculated and the 

array experiment concentrations for drugs and inhibitors were specified. 

 

.cel files were the signals obtained from the microarray Affymetrix chips. By using 

R, raw cel files were analyzed. For the purpose of the quality control, preprocessing 

and gene expression analysis processes, mostly used Bioconductor Packages such 

as Affy, Biobase, Affxparser, Affyio, Annotate, Oligo, AnnotationDbi, Limma are 

primarily chosen. In order to have the data in a normalized form, the algorithm 

Robust multi-array average (RMA) is used for determining the expression values.  

Molecular 

Targeted 

Agents  

Molecular 

Targets 

Huh7 

IC50 

Mahlavu 

IC50 

Array 

Experiment 

Concentration 

 

Sorafenib 

B-Raf 

VEGFR 

PDGFR 

10 µM 10 µM 10 µM 

LY294002 PI3K 10 µM 10 µM 10 µM 

Wortmannin PI3K 10 µM 10 µM 10 µM 

Rapamycin mTOR 0.1 µM 0.1 µM 0.1 µM 

PI3Ki-α PI3Ki-α 0.1 µM 0.1 µM 0.1 µM 

 

Akti-1-2 

Akt1 

Akt2 

 

10 µM 10 µM 10 µM 

Akti-2 Akt2 10 µM 8 µM 10 µM 
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Figure 3.1: The flowchart representation of our methodology. 

1
7
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There were two liver malignant tumorigenic hepatocytes used in this work. Deliberately, 

these two hepatocarcinoma cell lines with differential PI3K/AKT pathway activities were 

selected. Huh7 cell line has normoactive pathway. On the other hand, due to tumor 

suppressor PTEN deletion, Mahlavu cell line has a hyperactive pathway. Huh7 is a well-

differentiated hepatocarcinoma cell line (Buontempo et al., 2011). Also, Huh7 HCC cells 

have a mutation in p53 (Brito et al., 2012; Iwao & Shidoji, 2014). Huh7, epithelial-like 

malignant, cells are alike to the phenotypes of hepatocytes (Keskin et al., 2013; Yuzugullu 

et al., 2009). Their differences from the hepatocytes are that they tend to be smaller. Well-

differentiated Huh7 expression is related to the early stage of hepatocarcinoma (Yuzugullu 

et al., 2009). Contrarily, Mahlavu is a poorly-differentiated liver cell line (Buontempo et 

al., 2011). Its cells have inadequate level of cytoplasm and variable structure. Poorly-

differentiated Mahlavu is associated with the late stages of hepatocarcinoma (Yuzugullu 

et al., 2009).  

For each cell line, there were 30 samples. Human Genome (HG) U133 Plus 2.0 Array 

Affymetrix was used. There were 10 different experiments (for a single hepatoma cell 

line). 1 out of 10 experiments was DMSO as a control. Per a single experiment, 3 replicates 

were carried out. A single treatment with a drug or a single treatment with 

PI3K/AKT/mTOR signalling pathway inhibitors or combined treatment of Sorafenib and 

several PI3K/AKT/mTOR inhibitors were applied to the samples. 60 samples were used 

in total (See Tables 3.2 and 3.3). 

In the beginning of the sample, letter H represented Huh7 cell line and letter M symbolized 

Mahlavu cell line. Following the cell line indication letter, the abbreviation of the name 

of the treatment was written. Before .cel file extension, the numbers 1, 2, 3 represented 

the three replicates for each sample (See Tables 3.2 and 3.3). 

Table 3.2: Huh7 dataset which we have used in this study. The names of the samples,  

cell lines and the treatment of each sample are indicated. 

Sample File Cell Line Treatment 

H-DMSO-1,2,3.CEL Huh7 Control DMSO 

H-AKTi2-1,2,3.CEL Huh7 Akti-2 

H-PI3Ka-1,2,3.CEL Huh7 PI3Kialpha 

H-SOR-1,2,3.CEL Huh7 Sorafenib 

H-SOR-AKTi2-1,2,3.CEL Huh7 Sorafenib and Akti-2 

H-SOR-PI3Ka-1,2,3.CEL Huh7 Sorafenib and PI3Kialpha 

H-A12-1,2,3.CEL Huh7 Akti-1-2 

H-LY-1,2,3.CEL Huh7 LY294002 

H-Rapa-1,2,3.CEL Huh7 Rapamycin 

H-Wort-1,2,3.CEL Huh7 Wortmannin 
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Table 3.3: Mahlavu dataset that we have used in this study. The names of the samples, 

cell lines and the treatment of each sample are demonstrated. 

Sample file Cell Line Treatment 

M-DMSO-1,2,3.CEL Mahlavu Control DMSO 

M-AKTi2-1,2,3.CEL Mahlavu Akti-2 

M-PI3Ka-1,2,3.CEL Mahlavu PI3Kialpha 

M-SOR-1,2,3.CEL Mahlavu Sorafenib 

M-SOR-AKTi2-1,2,3.CEL Mahlavu Sorafenib and Akti-2 

M-SOR-PI3Ka-1,2,3.CEL Mahlavu Sorafenib and PI3Kialpha 

M-A12-1,2,3.CEL Mahlavu Akti-1-2 

M-LY-1,2,3.CEL Mahlavu LY294002 

M-Rapa-1,2,3.CEL Mahlavu Rapamycin 

M-Wort-1,2,3.CEL Mahlavu Wortmannin 

 

Collectively, we used gene expression profiles (GEPs) of Huh7 and Mahlavu 

hepatocarcinoma cells that were treated with multiple different therapeutic agents (drugs, 

inhibitor compounds and their combined versions). Small molecule inhibitors targeting 

the cascade of PI3K/AKT/mTOR, namely pan-PI3K inhibitors, isoform-specific PI3K 

inhibitor, and isoform-specific or non-specific AKT inhibitors, mTOR inhibitor, and were 

analyzed beyond the list of the genes (See Figure 3.2).  

 

Figure 3.2: The illustrative diagram of molecular targeted agents in 

Raf/MEK/ERK pathway and PI3K/AKT/mTOR cascade are depicted. 

Three targets of Sorafenib and small molecule inhibitors targeting 

PI3K/AKT/mTOR pathway are demonstrated. 
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3.2.2     Interactome 

 

The weighted interactome used in this analysis is obtained from Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING). The database combined different kind 

of information from several protein-protein interaction resources for many organisms. A 

score between 0 and 1 which indicates confidence score of each PPI is assigned to the 

associations of the proteins. The number of protein-protein interactions in interactome of 

our study is 79.160. These experimentally validated molecular interactions are taken from 

STRING v9.1. STRING database covers 5,214,234 proteins from 1133 organisms, and 

332,235,675 interactions in version 9.1 (Franceschini et al., 2013).  

 

3.3     Network Modelling with DeMAND Algorithm 

 

3.3.1     Theoretical and Algorithmic Backgrounds of DeMAND 

 

In this thesis study, we mainly focused on elucidating the significant molecular targets 

across treatments with multiple targeted agents by inferring the dysregulation of the 

Interactome. In other words, we revealed the mechanism of action of molecular targeted 

therapeutic agents in the context of different HCC networks beyond the list of genes. 

Toward this purpose, we reconstructed multiple hepatocarcinoma networks treated with 

different molecular targeted agents to develop a further understanding of the gene 

perturbation level and compared the significantly enriched biological responses 

predominantly in the aspects of cellular state.  

DeMAND is a Bioconductor package that is developed by Califano Lab. It is a 

combination of experimental and computational methods. Very concisely, DeMAND 

algorithm reveals the mechanism of action of targeted therapeutic agents through the 

dysregulation of the Interactome. In other words, DeMAND searches for the mechanism 

of action of the molecular targeted therapeutic agents in a network context as an alternative 

to differential gene expression analysis. It integrates the possible interactions between 

each entity using a reference interactome to obtain an analysis beyond a gene list. We used 

String interactome for the network reconstruction in our study. From a pharmacological 

perspective, mechanism of action (MoA) of a compound briefly specifies a biochemical 

process in which a molecular targeted therapeutic agent exerts its therapeutic effects. 

According to Scannell et al, in order to determine both on-target and off-target effects of 

the agents, the interrogation of MoA is indispensable (Scannell et al., 2012). Wehling 

mentioned that throughout the phases of clinical trials the majority of drugs turns out to 

be unsuccessful because of these 2 main reasons, insufficient efficacy and potential 

toxicity (Wehling, 2009). As a consequence, whether there is a significant progress in 

characterization of MoA, the production of drug discovery pipelines is constitutively 

activated (Woo et al., 2015).   
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The primarily required inputs for the network modeling algorithm are GEPs (control sets 

and molecular targeted agents treated perturbed sets) as the dataset and the molecular 

interaction network (obtained from a weighted interactome, STRING). From an 

algorithmic perspective, to run DeMAND, the fundamental objects within certain criteria 

are experimental data provided from GEPs (N>=6, N indicates the number of the 

expression signatures), annotation based on the data, interactome, case index (to index the 

molecular targeted therapeutic agents treated samples), and control index (to index the 

control samples) (Woo et al., 2015). In this network modelling approach, N is quite low 

if we compare it to the other network-based genomics methods that makes it 

advantageously preferable for small or average-numbered of datasets.  

Network-based genomics methods for MoA characterization have sample size more than 

100 and initial knowledge of the pathways are required beforehand (Bansal, Gatta, & di 

Bernardo, 2006; Mani et al., 2008; Woo et al., 2015). Integrative analyses with pathways 

and subsets of gene interactions are carried out by these methods. In our study, we have 

20 hepatocarcinoma profiles and 2 of them are standing as controls (treated with DMSO). 

The low number of samples prevents using previously mentioned network-based 

genomics methods. In our dataset, there is not any priorly provided information of 

pathways that makes these methods unsuitable, unlike DeMAND algorithm (Woo et al., 

2015).   

Following providing the inputs, the essential principle of DeMAND algorithm is 

comparisons of GEPs from treatments of molecular targeted agents versus from control 

samples for all of the targeted therapeutic agents. Except for GEPs comparison, the 

dysregulated edges are primarily identified within STRING and the level of dysregulation 

are calculated. To detect the statistical significance of edges, very briefly, 2-dimensional 

probability distribution for all the edges before and after perturbation within STRING is 

assessed. By applying Kullback-Leibler divergence (KLD), the level of alteration in these 

previously mentioned 2-dimensional probability distribution is evaluated. In addition to 

detecting the dysregulated edges, all the genes are subsequently inspected as if to their 

connected edges are among the dysregulated interactions. The output of DeMAND 

algorithm is a list of genes that are belonging to network incorporating with the 

corresponding p-values evaluated by both Fisher’s and Brown’s methods. These p-values 

demonstrate the level of dysregulated interactions around the genes in the network. 

Additionally, DeMAND algorithm provides a reconstructed network in which 2 nodes and 

their perturbed connection is indicated. The statistical significance of the corresponding 

level of edge dysregulation is also provided (KLD and KLD.p (p-value of KLD)) in this 

reconstructed network (Woo et al., 2015).  

To analyze the initial reconstructed networks, we detected significant edges by adjusting 

threshold to 0.05 for KLD.p values in the edge lists. From the perspective of nodes in the 

network, we sought to know how much of them appear as significant by assigning p-value 

threshold to 0.05. Each gene and interaction within these networks had a value signifies 

how strongly these genes were affected from the perturbation of molecular targeted 

therapeutic agents. Using only a p-value threshold gave a hairball-like network G (V, E) 
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and needed more filtering to come up with a better network. In addition to the significance 

of edges, DeMAND algorithm gives also the significance of the nodes. Therefore, we 

applied an additional filtering in which the set of significantly regulated genes (p-

value<0.005) were added to a set. Then, we searched for the direct interaction of the 

significant nodes in G. Afterwards, if one partner of the edge was significant and the other 

partner was insignificant then the first neighbors of the insignificant node would be 

checked if at least 3 neighbors were significant then that edge would also be added to the 

filtered network. The last step was to find the largest connected component which would 

be the final network to be analyzed further. The reconstructed network analysis was 

performed with NetworkX package in Python.  

3.3.2     Statistical Background of DeMAND Algorithm  

 

DeMAND modelling algorithm inputs a molecular interactome Ɛ and a group of gene 

expression profiles, 𝐺𝐸𝑃 in which each pair of genes interact within this network. A 

probability distribution is formed by the expression of genes under certain conditions, and, 

for non-linearity, a molecular targeted therapeutic agent perturbed group 𝐺𝐸𝑃𝑝 and a 

control group (in our case, DMSO-treated) 𝐺𝐸𝑃𝑐, which consist of the calculations of 𝑁 

genes and 𝑀𝑝 and 𝑀𝑐 samples, the summation of priorly defined both samples constituting 

𝑀 samples, are created.  

As a brief summary, probability distribution functions at the integer point (𝑘,𝑙) for the 

samples of molecular targeted therapeutic agent perturbation and control, respectively, are 

constructed through each molecular interaction 𝐺𝑖 ↔ 𝐺𝑗 in the network to determine the 

joint probability distribution of the gene expressions 𝐸𝑖 and 𝐸𝑗 for the genes 𝐺𝑖 and 𝐺𝑗, 

respectively, where 1 ≤ 𝑖, j ≤ 𝑁, 1 ≤ (𝑘,𝑙) ≤ 𝑀 and 1 ≤ 𝑚 ≤ 𝑀. The discrete probability 

distributions are stated as the following distributions (Distribution 1 and Distribution 2).  

   𝑃𝑖𝑝𝑗 (𝑘,) ∝ 𝛴𝑚∈ 𝑀𝑝 (𝑘 ₋ 𝐸𝑖𝑚, ₋ 𝐸𝑗𝑚,,)                                              (1) 

   𝑃𝑖𝑐𝑗 (𝑘,) ∝ 𝛴𝑚∈ 𝑀𝑐 (𝑘 ₋ 𝐸𝑖𝑚, ₋ 𝐸𝑗𝑚,,)                    (2) 

where 𝜎 ≈ 1.06⋅ 𝜎̂ ⋅𝑀-1/6 with 𝜎𝑖 and 𝜎𝑗 being the standard deviations of Gaussian function 

and dataset’s standard deviation is given as 𝜎̂.  

Of the priorly defined the distributions of the probability for the samples of control and 

molecular targeted therapeutic agent perturbation, Kullback-Leibler divergence (KLD), 

which implies the amount of deprived information due to an approximation, is computed 

as below to measure the divergence of one of the distributions from the other one 

(Equation 3): 

   (𝑃𝑖𝑐𝑗⧵𝑃𝑖𝑝𝑗) =𝛴𝑘=1
𝑀 𝛴𝑙=1

𝑀 𝑃𝑖𝑐𝑗 (𝑘,) log (
𝑃𝑖𝑗

𝑐 (𝑘,𝑙)

𝑃
𝑖𝑗
𝑝

(𝑘,𝑙)
)                                  (3) 
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In order to assure that the distance between the distributions is symmetric, a measure of 

dysregulation for the edges in the network is calculated as the following equation 

(Equation 4).  

   (𝑃𝑖𝑐𝑗, 𝑃𝑖𝑝𝑗) = 
𝐾𝐿𝐷(𝑃𝑖𝑗

𝑐 \𝑃𝑖𝑗
𝑝

)+𝐾𝐿𝐷(𝑃𝑖𝑗
𝑝

\𝑃𝑖𝑗
𝑐 )

2
                    (4) 

In addition to the KLD calculations, to determine the significance of dysregulation of the 

edges in the network statistically, the 𝑝-value of KLD, which is denoted 𝑃𝑣𝑖𝑗, is found. 

Apart from the edge dysregulation, the dysregulation of genes is also computed by taking 

all the connected edges of a single gene 𝐺𝑖 into consideration. For this purpose, the 𝑝-

values of these interactions, in other words connected edges, are incorporated by Fisher’s 

method. The combined 𝑝-values form a chi-square distribution with 2𝑘 degrees of 

freedom. Here, 𝑘 stands for the number of merged interactions in the following 

distribution, as shown (Distribution 5): 

    𝑥2 = 𝛴𝐺𝑖 ↔ 𝐺𝑗∈ Ɛ ₋ 2 log 𝑃𝑣𝑖𝑗         (5) 

To improve the approach of gene dysregulation, as a gene might have multiple edges 

(interactions) that connect itself to other nodes within a network, the resulting 𝑝-values of 

these interactions are not statistically independent, which is a requirement for the 

application of Fisher’s method. Therefore, an altered version of Brown’s method is used 

to formulate the variance of the chi-square in the following distribution (Variance 6).  

    𝜎2(X2) = 4𝑘 + 𝛴𝑖=1
𝑘 𝛴𝑗=𝑖+1

𝑘 φ(ρ𝑖𝑗)         (6) 

Here, ρ𝑖𝑗 signifies the related connection among the residual parameters of the genes 𝑖 and 

𝑗 and the following function as below (Function 7):  

   φ(ρ𝑖𝑗) = {
ρ𝑖𝑗(3.25 + 0.75ρ𝑖𝑗)           0 ≤ ρ𝑖𝑗 ≤ 1

ρ𝑖𝑗(3.27 + 0.71ρ𝑖𝑗)   − 0.5 ≤ ρ𝑖𝑗 ≤ 0
        (7) 

Thereafter, the new assigned degrees of freedom for the chi-square distribution after 

integrating the Function 7 is as the following equation (Equation 8): 

     𝑑𝑓 = 
8𝑘2

𝜎2(𝑋2)
           (8)   

The associated connection between interactions is calculated via the related link among 

residuals by relying on the hypothesis that the residuals of two independent interactions 

will not be connected, and a possible connection among the residuals suggests a mutual 

gene within these interactions. Hence, the derived 𝑝-value indicates the statistical 

significance of the gene 𝐺𝑖‘s dysregulation in the network. 
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3.4     Overrepresentation Enrichment Analysis 

In order to have a knowledge on the functional enrichment terms, WebGestaltR package 

was used as a bioinformatics resource; such that, Gene Ontology terms (GO Biological 

Process, GO Molecular Function, GO Cellular Function), and pathway information via 

pathway databases as Reactome and KEGG were obtained (Liao, Wang, Jaehnig, Shi, & 

Zhang, 2019). We provided one column multiple text files for all the corresponding 

situations in the reconstructed hepatocarcinoma networks as our input.  

The significance was assigned to 0.05 which was the threshold value for the False 

Discovery Rate (FDR), the organism was human, standing as “hsapiens” and the 

enrichment method was specified as ORA. Apart from the several essential parameters of 

WebGestaltR, negative logarithms of the corresponding p-values with base 10 were 

calculated and added as a new column into the generated matrix (also known as newly 

adjusted p-values). Each column represented to the adjusted p-values of the corresponding 

drug and/or PI3K/AKT/mTOR signalling pathway inhibitors and each row corresponded 

to the different enrichment term. To further analyze the overall results, several 

heatmaps/plots were drawn to easily visualize the built data matrix.  

 

3.5    Network Visualization with Cytoscape 

18 reconstructed hepatoma networks were visualized in Cytoscape (3.7.0). For the node 

shapes, triangles represented more significant nodes as their p-values were smaller than 

the p-values of circular nodes. Aside from the shape of the nodes, color of the nodes was 

assigned according to the expression level value. For specifying node colors, 

overexpressed genes were indicated by red color and downregulated genes were displayed 

by dark blue color. Whether the expression value of an individual node was 0, white color 

was depicted for the node in the optimized network figure. In addition to the node shapes 

and colors, node size was adjusted with respect to DyNet Rewiring Score (Dn-Score). 

When Dn-Score was close to 0, the size of the node was much smaller. Except for the 

properties of the nodes, edge color was arranged with respect to the Kld.p values 

(calculated by DeMAND). For this purpose, dark red color was set to the more significant 

edges (having less Kld.p values). In addition to the edge color, maximum edge width was 

appointed to less Kld.p values of edges.  

Each network was clustered by clusterMaker2 application plug-in. As concepts of network 

partition, Community clustering (GLay) algorithm was applied to all the reconstructed 

networks of both hepatocarcinoma cell lines. In order to detect the most significant nodes 

in multiple reconstructed hepatocarcinoma networks, we applied to measure the 

betweenness centrality value of the corresponding important nodes.  
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CHAPTER 4 

 

 RESULTS AND DISCUSSION 

 

 

In this chapter, our results of network-based analysis of molecular targeted agent 

treatments in hepatocellular carcinoma are presented. Initially, we detail the statistical 

evidences of our reconstructed HCC networks provided by our model, DeMAND. 

Following that, literature targets of drug treatments/inhibitors are stated to identify target 

genes and to check the presence of these genes in the reconstructed networks. For 

determining common characteristics between Sorafenib-related multiple networks and 

identifying potential similarities, overlapping genes are analyzed. As a concluding 

perspective, we demonstrate several resulting outcomes of this study that elucidate the 

inclusion of the reconstructed networks in pathways and in significant terminology 

insights to reveal fundamental biological signatures.  

 

4.1. Reconstruction of Molecular Targeted Agent Treated Multiple Networks in 

 Hepatocarcinoma 

4.1.1   The Obtained Outputs of DeMAND Algorithm and Statistical Interpretation 

 of the Reconstructed HCC Networks   

From a pharmacological point of view, mechanism of action (MoA) of a compound 

specifies a biochemical process in which a drug exerts its therapeutic effects. According 

to Scannell et al, in order to determine on-target and off-target effects, the interrogation 

of MoA is indispensable (Scannell et al., 2012). Throughout the phases of clinical trials, 

the majority of drugs turns out to be unsuccessful because of these 2 main reasons, 

insufficient efficacy and potential toxicity (Wehling, 2009). Hence, if there is a significant 

progress in characterization of MoA, drug discovery pipelines’ productions will be arisen 

(Woo et al., 2015).   

Lately, network-based methods for MoA characterization have been developed (Bansal et 

al., 2006; Mani et al., 2008). Integrative analyses with pathways and subsets of gene 

interactions are carried out by these methods. As a limitation, the methods need to have 

sample size more than 100 and initial knowledge of the pathways are required beforehand 

(Woo et al., 2015). In our study, we have 20 samples and 2 of them are standing as 

controls. The low number of samples prevents using previously mentioned network-based 

methods. In our dataset, there is not any priorly provided information of pathways that 

makes these methods unsuitable, unlike DeMAND algorithm. DeMAND searches for the 
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mechanism of action of the drugs in a network context as an alternative to differential 

gene expression analysis. It integrates the possible interactions between each entity using 

a reference interactome to obtain an analysis beyond a gene list. In this study, we used 

String interactome for the network reconstruction (Woo et al., 2015). 

This study aims for the analyzing of drugs, inhibitors and their combinations in HCC 

through network-based modelling approach (DeMAND). In this work, we have used the 

microarray (Human Genome U133 Plus 2.0 Affymetrix Array) dataset which has been 

designed for the treatment of hepatocarcinoma cell lines with Sorafenib, 

PI3K/AKT/mTOR signalling pathway inhibitors and the combination of Sorafenib with 

some of PI3K/AKT/mTOR pathway inhibitors. For this purpose, we have 20 array sample 

outputs with different treatments, including DMSO as a control for both cell lines. 

Thereafter, we compare each treatment with control DMSO and generate 9 different 

networks for each HCC cell line. The cell lines are Huh7 and Mahlavu, respectively. All 

experiments are done in three replicates to be reliable and precise. The weighted context-

free interactome (containing only protein-protein interactions) used in our analysis is 

obtained from STRING database. The number of experimentally validated protein-protein 

interactions in the network is 79.160 (Franceschini et al., 2013). 

As an example, the first network of Huh7 cell line is treated with Akti-2 agent. The initial              

reconstructed network is composed of 1387 nodes and 1942 edges. Within p-value 

threshold 0.05, the number of observed nodes is obtained as 465 upon single treatment 

with Akti-2 in Huh7 network. If we further adjust p-value threshold to 0.01, the number 

of significant nodes is obtained as 332 within the same Huh7 network. In addition to the 

p-value thresholds, when we assign FDR cutoff to 0.05, we obtain 261 significant nodes 

upon single treatment with Akti-2. If we further adjust FDR cutoff to 0.01, there are 204 

nodes detected in this Huh7 network. From the perspective of Mahlavu cell line, Akti-2 

treated network includes 1240 nodes and 1938 edges. Within p-value cutoff 0.05, there 

are 633 nodes detected as significant in this network. When we set the p-value cutoff to 

0.01 in the network, there are 475 significant nodes. Apart from the p-value cutoffs, when 

FDR threshold is set to 0.05, the number of significant nodes in the network is 373. Within 

FDR threshold 0.01, there are 258 nodes observed as significant Akti-2 treated Mahlavu 

network (See Table 4.1).   

Furthermore, the sixth reconstructed Huh7 network which is treated with Sorafenib, the 

well-known targeted drug of hepatocarcinoma, is composed of 1487 nodes and 1770 

edges. Within p-value threshold 0.05, the number of observed nodes in this network is 

obtained as 459. Whether we further set p-value threshold to 0.01, the number of 

significant nodes is decreased to 164. Other than the p-value thresholds, when we adjust 

FDR cutoff to 0.05, we obtain only 24 nodes in this Huh7 network. Within FDR cutoff 

0.01, there are only 3 significant nodes identified in the network. For Mahlavu cell line, 

Sorafenib treated network has 1215 nodes and 1607 edges. Within p-value threshold 0.05, 

the number of significant nodes is obtained as 768. When we further decreased the p-value 

cutoff to 0.01, this network contains 429 significant nodes. Except for the p-value 

thresholds, when FDR cutoff is set to 0.05, the number of nodes is decreased to 237. 
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Within FDR cutoff 0.01, there are 113 nodes observed as significant upon single treatment 

with Sorafenib in Mahlavu network (See Table 4.1).  

Table 4.1: The corresponding numbers of the each filtered network belonging to HCC. 

 

Molecular Targeted 

Therapeutic Agents  

 

# of 

Nodes 

 

# of 

Edges 

# of 

Nodes at 

p-value 

0.05 

# of 

Nodes at 

p-value 

0.01 

# of 

Nodes 

at FDR 

0.05 

# of 

Nodes 

at FDR 

0.01 

Huh7 Akti-2  1387 1942 465 332 261 204 

LY294002 1302 2067 692 552 468 319 

Akti-1-2 1340 1851 471 341 265 207 

PI3kialpha  1661 2291 726 288 51 12 

Rapamycin  1131 1600 639 496 403 280 

Sorafenib 1487 1770 459 164 24 3 

Sorafenib-Akti2 1523 1910 553 191 25 6 

Sorafenib-PI3kialpha  1409 1606 547 197 25 0 

Wortmannin 1226 1704 614 456 372 234 

Mahlavu Akti-2 1240 1938 633 475 373 258 

LY294002 1201 1455 443 328 254 193 

Akti-1-2 1250 1966 636 481 382 261 

PI3kialpha  1184 1509 715 352 130 53 

Rapamycin  1167 1468 446 319 240 194 

Sorafenib 1215 1607 768 429 237 113 

Sorafenib-Akti2 1346 1786 707 294 70 18 

Sorafenib-PI3kialpha  1214 1750 797 509 383 203 

Wortmannin 1032 1646 684 480 347 220 

 

In order to have a better network, we further apply an additional filtering. Following that, 

Akti-2 treated Huh7 network contains 342 nodes and 815 edges (See Figures 4.1). Within 

the p-value threshold 0.05, the number of observed nodes is decreased to 218 and likewise, 

the edge numbers, 349. Whether we apply stricter p-value threshold, 0.01, we obtain 214 

significant nodes in Huh7 network. Aside from the p-value thresholds, when we adjust 

FDR cutoff to 0.05, we obtain 199 nodes and 298 edges. Within FDR cutoff 0.01, there 

are 167 significant nodes and 231 edges detected in Akti-2 treated Huh7 network. For 

Mahlavu cell line, the initial reconstructed network treated with Akti-2 contains 390 nodes 

and 910 edges (See Figure 4.3). Within p-value threshold 0.05, the total numbers of 

significant nodes and edges are 347 and 737, respectively. When we further decrease the 

p-value cutoff to 0.01, Akti-2 treated Mahlavu network has 343 significant node. In 

addition to the p-value cutoffs, when FDR cutoff is set to 0.05, the number of nodes is 

decreased to 317 and similarly, the edge numbers, 663. Within FDR cutoff 0.01, there are 

242 nodes and 551 edges observed as significant upon single treatment with Akti-2 in 

Mahlavu network (See Table 4.2).  

Additionally, Sorafenib treated Huh7 network includes 104 nodes and 144 edges (See 

Figure 4.5). Within p-value threshold 0.05, the total numbers of observed nodes and edges 
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in this network is obtained as 77 and 50, respectively. Whether we use stricter threshold, 

at p-value threshold 0.01, the number of significant nodes is decreased to 69. Apart from 

the p-value thresholds, when we assign FDR cutoff to 0.05, the network has only 19 nodes 

and these nodes are not connected to each other with edges. Within FDR cutoff 0.01, there 

are only 3 separated nodes without any edges identified in the network. For Mahlavu cell 

line, Sorafenib treated contains 304 nodes and 624 edges (See Figure 4.8). Within p-value 

cutoff 0.05, the number of significant nodes is obtained as 301 and there are 614 

significant edges. When we further decrease the p-value cutoff to 0.01, the number of 

nodes in the network is decreased to 286. Other than the p-value cutoffs, when FDR cutoff 

is set to 0.05, the numbers of significant nodes and edges in the network are 210 and 370, 

respectively. Within FDR cutoff 0.01, there are 105 nodes and 132 edges observed as 

significant upon single treatment with Sorafenib in Mahlavu network (See Table 4.2).  

Table 4.2: The corresponding numbers of the each filtered network belonging to HCC. 
 

Molecular 

Targeted 

Agents  

 

# of 

Nodes 

 

# of 

Edges 

# of 

Nodes 

at p-

value 

0.05 

# of  

Edges 

at  

pvalue 

0.05 

# of 

Nodes 

at p-

value 

0.01 

# of 

Nodes 

at 

FDR 

0.05 

# of 

Edges 

at 

FDR 

0.05 

# of 

Nodes 

at 

FDR 

0.01 

# of 

Edges 

at 

FDR 

0.01 

Huh7 Akti-2  342 815 218 349 214 199 298 167 231 

LY294002 505 1298 444 1051 432 421 971 303 775 

Akti1-2 334 778 225 365 218 202 309 168 241 

PI3kialpha  222 467 185 322 149 46 10 12 0 

Rapamycin  431 904 381 703 378 357 661 268 535 

Sorafenib 104 144 77 50 69 19 0 3 0 

Sorafenib-

Akti2 

139 227 118 152 96 19 1 4 0 

Sorafenib- 

PI3kialpha  

107 142 88 72 79 19 1 0 0 

Wortmannin 383 797 327 569 326 311 542 215 400 

Mahlavu 
Akti-2 

 

390 

 

910 

 

347 

 

737 

 

343 

 

317 

 

663 

 

242 

 

551 

LY294002 287 539 216 272 204 181 194 158 175 

Akti1-2 402 943 355 755 351 323 684 243 559 

PI3kialpha  271 505 263 477 229 115 114 49 20 

Rapamycin  259 532 201 302 188 177 221 155 201 

Sorafenib 304 624 301 614 286 210 370 105 132 

Sorafenib-

Akti2 

229 416 223 396 185 65 42 17 4 

Sorafenib-

PI3kialpha  

428 964 423 948 411 364 799 202 409 

Wortmannin 369 809 360 779 355 311 674 210 466 
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4.1.2    Visual Illustrations of the Clustered Versions of the Reconstructed Multiple 

 HCC Networks Representative Images  

After reconstructing the hepatocarcinoma networks, 18 networks were initially drawn in 

Cytoscape, to display the optimized network figures. The instructions of the drawing 

network image is shown in the legend of the each figure. For the node properties, color of 

the nodes is assigned according to the expression level value. To be more specific, highly 

expressed genes are displayed by red color; conversely, downregulated genes are 

displayed by dark blue color. The color intensity shows the corresponding value of the 

gene expression level of each individual node. Whether the expression value of an 

individual node is 0, white color will be depicted for the node in the network image. Size 

of the node is adjusted according to the DyNet Rewiring Score (Dn-Score). Whether Dn-

Score is close to 0, the size of the node will be much smaller. As a node shape, a triangular 

node is more significant due to having less p-values than the circular-shaped nodes. In 

addition to the properties of the nodes, edge color is arranged with respect to the Kld.p 

values (calculated by DeMAND). Dark red color is set to the more significant edges 

(having less Kld.p values). Maximum edge width is appointed to less Kld.p values of 

edges.  

After visualizing networks, each network was clustered by clusterMaker2 application. As 

concepts of network partition, Community clustering (GLay) algorithm was applied to all 

the reconstructed networks of both hepatoma cell lines. As an example network image, 

Akti-2 agent treated Huh7 network have 13 different clusters in the clustered version (See 

Figure 4.1). The following figures (Figure 4.1- 4.10, Appendix A.1-8) are corresponding 

clustered network images of Huh7 and Mahlavu cell lines, respectively. The number of 

nodes, edges and clusters in the networks are stated. Afterwards, we used this clusters to 

draw scatter plots of significant networks and further analyses in the following sections.  

 

 

  



 

 

Figure 4.1: Visual representation of the clustered version of Akti-2 treated Huh7 network. Total number of nodes in this network is 342, also the 

number of edges is 815. The network is separated into 13 distinct clusters. Triangles represent more significant nodes as their p-values are smaller 

than the p-values of circular nodes. Overexpressed genes are indicated by red color and downregulated genes are displayed by dark blue color.  
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Figure 4.2: Visual illustration of the clustered version of Pi3kialpha treated Huh7 network. The network is divided into 9 different clusters. 

Total number of nodes in this network is 222, also the number of edges is 467. Node size is adjusted with respect to Dn-Score. If Dn-Score 

is close to 0, the size of the node will be much smaller. Edge color is arranged with respect to the Kld.p values (calculated by DeMAND). 

Dark red color is set to the more significant edges (having less Kld.p values). Maximum edge width is appointed to less Kld.p values of edges.  
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Figure 4.3: Visual representational image of the clustered version of Akti-2 treated Mahlavu network. Total number of nodes in this network is 

390 also the number of edges is 910. The network is separated into 11 distinct clusters. Triangles represent more significant nodes as their p-

values are smaller than the p-values of circular nodes. Overexpressed genes are indicated by red color and downregulated genes are displayed by 

dark blue color.  
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Figure 4.4: Visual illustration of the clustered version of Pi3kialpha treated Mahlavu network. The network is divided into 10 different 

clusters. Total number of nodes in this network is 271, also the number of edges is 505. Node size is adjusted with respect to Dn-Score. If 

Dn-Score is close to 0, the size of the node will be much smaller. Overexpressed genes are indicated by red color and downregulated genes 

are displayed by dark blue color. Dark red edge color is set to the more significant edges (having less Kld.p values). Maximum edge width is 

appointed to less Kld.p values of edges.  
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4.1.2.1     Pathway Analyses of Molecular Targeted Agents, Akti-2 and PI3Kia  

HPV infection, WNT and HIF-1 signalling pathways are enriched in a single treatment 

with Akti-2 in Huh7 cells. Multiple studies have shown that HIF and WNT pathways are 

associated with each other. In fact, HIF causes abnormal signalling of WNT pathway, and 

that correlates a crosstalk between these cascades (Bogaerts, Heindryckx, Vandewynckel, 

Van Grunsven, & Van Vlierberghe, 2014; Khalaf et al., 2018). Multiple clusters are 

enriched in several distinct KEGG pathways of cancers, namely gastric, endometrial, 

colorectal, breast, prostate cancers, acute myeloid leukemia, basal cell carcinoma which 

might be associated with off-target effects. The analyzed figure of this network is in 

Appendix section.  

Protein transport is enriched in a treated with a single agent, PI3Ki-α in Huh7 cells. The 

first cluster has also KEGG enrichment terms in platinum drug resistance, and its 

correlated result, colorectal cancer which may be included in off-target effects. 

Additionally, synaptic vesicle cycle and SNARE interactions in vesicular transport are 

enriched in Cluster 4 which indicate a relation with nervous system, and is likely to be 

another off-target effect. The analyzed image of this network may be observed in 

Appendix.  

Several virus infections are detected, namely EBV, HPV, helicobacter pylori, vibrio 

cholera infection in a single treatment with PI3Ki-α in Mahlavu cells. Progesterone-

mediated oocyte maturation is another functional KEGG enrichment term as a member of 

endocrine system.  Energy metabolism and genetic information processing (including 

DNA repair mechanisms) are significantly enriched KEGG terminologies. The analyzed 

network figure might be observed in Appendix. 

In addition to the previously mentioned virus infections, HIV-1 and Kaposi sarcoma-

associated herpesvirus infections are also detected. Hepatitis B, hepatitis C, non-alcoholic 

fatty liver disease are enriched terms that might probably cause HCC. Several signal 

transduction pathways are enriched, including AMPK, FoxO, Ras, JAK-STAT, HIF-1, 

NF-kappa B, VEGF signalling pathways, and immune system responses, namely natural 

killer cell mediated cytotoxic activity, B cell receptor, T cell receptor, chemokine, Toll-

like receptor signalling pathways. Aside from the off-target effects in the previous 

clustered versions of the reconstructed networks, melanoma, glioma, pancreatic cancer, 

chronic myeloid leukemia, and renal cell carcinoma are standing as off-target effects in a 

single treatment with Akti-2 for Mahlavu cell line. 

4.1.2.2     Gene Ontology Biological Process Analyses of Molecular Targeted Agents,    

     Akti-2 and PI3Kia  

Multiple clusters (specifically, clusters 1, 4, 5) are enriched in protein transport (parent 

term, transport), negative regulation of cell cycle (mostly the following child terms, 

negative regulations of mitotic cell cycle, cell cycle process). Second cluster is composed 

of many RNA processing terms, as well. Additionally, RNA metabolic process is 
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significantly enriched parent term for Cluster 3. First cluster also consists of apoptotic 

signalling pathway as a significantly enriched GO biological process functional term. 

Cluster 9 includes translation-related multiple child terms in Huh7 cells treated with 

PI3Ki-α as a single agent. Although PI3Ki-α is used at very low doses, it demonstrates an 

effective behaviour as our conclusion.  

All clusters are enriched in various different categorical terms for biological process. First 

cluster is mostly enriched in localization related child terms. Cluster 4 includes several 

enrichment terms related to cellular metabolic process. Sixth cluster comprises of 

chromosome organization terms, and the second cluster consists of RNA metabolic 

process terms. Additionally, third cluster is enriched in transport-related GO biological 

process functional enrichment terms. Organelle organization and cell growth are induced 

as enrichment terms in Huh7 cells treated with a single agent, Akti-2.  

All clusters are enriched in various different categorical functional terms for GO 

biological process in Mahlavu cells treated with Akti-2 inhibitor. Protein 

dephosphorylation is an enrichment term that is found in several clusters.  Third cluster 

consists of translation and localization associated terminologies. Cluster 8 is enriched in 

transport, immune responses (i.e, regulation of immune response), dephosphorylation, 

viral life cycle. Seventh cluster is enriched in apoptotic process related terms, including 

regulation of apoptotic signalling pathway, leukocyte apoptotic process, cell death, and so 

on. Several off-target biological processes are demonstrated in Cluster 7, namely immune 

system process (child terms, leukocyte migration, cell differentiation, etc.), hematopoietic 

or lymphoid organ development (i.e., hemopoiesis), inflammatory response, and cytokine 

production.  

All clusters are enriched in various different categorical terms for GO biological process. 

Multiple clusters (mostly, third cluster) are enriched in protein transport-related terms 

(parent term, transport). Cluster 10 consists of RNA metabolic processes (i.e., RNA 

processing). Sixth cluster is mostly enriched in DNA repair mechanisms. In addition to 

these, Cluster 9 is enriched in transcription-related processes in Mahlavu cells treated with 

PI3Ki-α as a single agent.   

 

 

 

 

 

 



 

 

Figure 4.5: Visually depicted network illustration of the clustered version of Sorafenib treated Huh7 network. The network is separated into 

9 distinct clusters. Total number of nodes in this network is 104, also the number of edges is 144. Node size is adjusted with respect to Dn-

Score. If Dn-Score is close to 0, the size of the node will be much smaller. Edge color is arranged with respect to the Kld.p values. Dark red 

color is set to the more significant edges (having less Kld.p values). Maximum edge width is appointed to less Kld.p values of edges.  
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Figure 4.6: Visual network image of the clustered version of Sorafenib-Akti2 treated Huh7 network. Total number of nodes in this network 

is 139, also the number of edges is 227. The network is grouped into 10 different clusters. Color of the nodes is assigned according to the 

expression level value. Overexpressed genes are indicated by red color and downregulated genes are displayed by dark blue color. If 

expression value is 0, node color will be white. The color intensity shows the corresponding value of the gene expression level of each 

individual node. 
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Figure 4.7: Visual representational figure of the clustered version of Sorafenib-Pi3kialpha treated Huh7 network. The network is grouped 

into 9 distinct clusters. Total number of nodes in this network is 107, also the number of edges is 142. Node size is adjusted with respect to 

DyNet Rewiring Score (Dn-Score). If Dn-Score is close to 0, the size of the node will be much smaller. Triangles represent more significant 

nodes as their p-values are smaller than the p-values of circular nodes. 
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Figure 4.8: Visual illustration of the clustered version of Sorafenib agent treated Mahlavu network. Total number of nodes in this network is 

304, and the number of edges is 624, as well. The network is grouped into 10 different clusters. Node size is adjusted with respect to Dn-

Score. If Dn-Score is close to 0, the size of the node will be much smaller. Edge color is arranged with respect to the Kld.p values. Dark red 

color is set to the more significant edges (having less Kld.p values). Maximum edge width is appointed to less Kld.p values of edges.  
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Figure 4.9: Visual depicted image of the clustered version of Sorafenib-Akti2 treated Mahlavu network. Total number of nodes in this network 

is 229, and the number of edges is 416. The network is grouped into 11 different clusters. Color of the nodes is assigned according to the 

expression level value. Overexpressed genes are indicated by red color and downregulated genes are displayed by dark blue color. If 

expression value is 0, node color will be white. The color intensity shows the corresponding value of the gene expression level of each 

individual node. 

 

 

4
0
 

 

 

 

 



 

 

Figure 4.10: Visual illustrational image of the clustered version of Sorafenib-Pi3kialpha treated Mahlavu network. Total number 

of nodes in this network is 428, and the number of edges is 964. The network is separated into 13 different clusters. Triangles 

represent more significant nodes as their p-values are smaller than the p-values of circular nodes. Overexpressed genes are indicated by 

red color and downregulated genes are displayed by dark blue color.  
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4.1.2.3     Overrepresentation Analyses of the Clusters in Sorafenib-Related Multiple 

        Networks 

Hereafter, we compare the common aspects and distinct features of only Sorafenib-related 

multiple reconstructed hepatoma networks. To do this, we first divide heterogeneous 

networks into the different clusters that comprise ultimately more similar nodes and assign 

the same FDR threshold value to all of the networks. Afterwards, negative logarithm base 

10 was applied to the p-values of the genes in all clusters. Consequently, by doing this 

analysis, our objective is to clarify hidden significant terminology more precisely and 

elucidate functional enrichment terms that dispose of background effect of the whole 

unclustered version of the network.  

4.1.2.3.1     KEGG Pathway Analyses of the Clustered Multiple Hepatocarcinoma  

       Networks 

Only 3 significant KEGG pathway enrichment terms for a single treatment with Sorafenib 

in Huh7 network are exhibited in the heatmap (See Appendix B.3). In Figure 4.11a, 7 

different KEGG functional enrichment terms are displayed for the same network in the 

plot. Although Sorafenib-treated Huh7 network comprises 9 distinct clusters, 4 different 

clusters are presented in the plot. The reason is that several clusters do not have an 

enrichment score and corresponding functional enrichment term within the specific cutoff 

or very few gene numbers in the clusters are insufficient to have an enriched term. AMP 

activated kinase (AMPK) signalling pathway, one of the enriched significant cascade of 

cluster 7, modulates several processes, namely energy stability, embryonic development, 

biogenesis of mitochondria, cellular growth and autophagy (Hardie, 2011). As Ferretti et 

al. claimed that, the level of AMPK molecular activity is sharply depleted in hepatoma 

tumors, by considering this, AMPK is known to incorporate in hepatoma cells (Ferretti et 

al., 2019).  

In Figure 4.11b, human papillomavirus infection is one of the significantly enriched 

pathway belonging to Cluster 2 in combined treatment of Sorafenib and Akti-2. Blackadar 

stated that HPV is one of the infectious carcinogens (Blackadar, 2016). Insulin signalling 

pathway is another functionally enrichment term as a member of endocrine system. The 

second Huh7 cluster in combined treatment of Sorafenib and Akti-2 is also enriched in 

endometrial and prostate cancers which may be included in off-target effects.  

In Figure 4.11c, previous studies highlighted that EBV is involved in HCV infection which 

may result in hepatocarcinogenesis (Abdel Sammad, El-Bassuoni, & Talaat, 2013; W. Li 

et al., 2004). Cluster 2 in combined Huh7 treatment of Sorafenib and PI3Ki-α is enriched 

in colorectal, breast and gastric cancers which might be related to off-target effects. In 

addition to the enriched terminologies, after comparing all Sorafenib-related Huh7 

networks, negative regulations of DNA repair, MAPK activity, and DNA replication are 

detected in the combination of Sorafenib and PI3Ki-α.  
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In Figure 4.12a, several virus associations are detected, including viral carcinogenesis, 

HPV, helicobacter pylori infection in a single agent treatment with Sorafenib in Mahlavu 

cells. Also, lipid, carbohydrate and energy metabolisms, DNA repair mechanisms and 

replication, signal transduction (in particular, mTOR signalling) are significantly 

enriched. Gastric and thyroid cancers, fanconi anemia pathway and acute myeloid 

leukemia are enrichment terms that may be included in off-target effects. Additionally, a 

recent study mention that DNA repair mechanisms (in our case, nucleotide excision, base 

excision, mismatch repairs) and DNA replication are supported in Fanconi anemia 

pathway (Rodríguez & DAndrea, 2017) that is a correlation with our finding results.  

In Figure 4.12b, several virus infections are detected, namely HBV, helicobacter pylori, 

vibrio cholera infection in combined treatment with Sorafenib and Akti-2 in Mahlavu 

cells. Progesterone-mediated oocyte maturation is another functionally enrichment term 

as a member of endocrine system. Carbohydrate and energy metabolisms, cell growth 

(specifically, cellular senescence, and cell cycle) are significantly enriched. Lipid 

metabolism is negatively regulated in the combined agents of Sorafenib and Akti-2 in 

Mahlavu cells.  

In Figure 4.12c, several distinct Mahlavu clusters are enriched in virus associations, 

namely viral carcinogenesis, EBV, helicobacter pylori, vibrio cholera infection and 

alcoholism is another significant term in combined treatment with Sorafenib and PI3Ki-

α. Apoptosis is the most significant functional term. Lipid metabolism is negatively 

regulated in the combination of agents, Sorafenib and PI3Ki-α in Mahlavu cells.  
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Figure 4.11: Enriched KEGG pathway terms for each 

cluster (which has an enrichment score and corresponding 

functional enrichment term within the specific cutoff) in 

Sorafenib-treated multiple Huh7 networks are 

demonstrated with a previously given threshold FDR ≤ 

0.05. Afterwards, negative logarithm base 10 was applied 

to the p-values of the genes in all clusters. 



 

 

Figure 4.12: Enriched KEGG 

pathway terms for each 

cluster in Sorafenib-treated 

multiple Mahlavu networks 

are demonstrated with a 

previously given threshold 

FDR ≤ 0.05. Subsequently, 

negative logarithm base 10 

was applied to the p-values of 

the genes in all clusters. 
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4.1.2.3.2     GO Biological Process Analyses of the Clustered Multiple Hepatocarcinoma 

        Networks 

Cluster 1 is enriched in several GO biological process enrichment terms, namely cellular 

component organizations (chromatin, chromosome, organelle organizations), primary 

metabolic processes (nucleic acid metabolic process), and DNA damage and repair 

mechanisms (cellular response to DNA damage and stimulus, nucleotide-excision repair). 

Second cluster is enriched in mainly translation-associated events and localization. In 

addition to the functional enrichment term categories given in Cluster 2, third cluster 

comprises the significant processes such as RNA processing, macromolecule metabolic 

process and transport. Cluster 5 significantly enriched in cellular component organization, 

RNA processing and gene expression in a treatment with Sorafenib as a single Huh7 agent 

(See Figure 4.13).  

Cluster 6 is significantly enriched in DNA damage and repair mechanisms and regulation 

of macromolecule metabolic process. Second cluster includes the functional terms, 

namely negative regulation of cell cycle (child terms, negative regulation of mitotic cell 

cycle and cell cycle arrest), regulation of programmed cell death (specifically, regulation 

of apoptotic signalling pathway), RNA metabolic process, and cell death (in particular, 

neuron death) in a combined treatment with Sorafenib and Akti-2 in Huh7 cell line (See 

Figure 4.14).     

Cluster 1 is enriched in cellular response to stress, response to stimulus, regulation of 

biological quality (specifically, regulation of protein stability), cellular process (in 

particular, protein folding), establishment of protein localization, and protein-containing 

complex assembly. In this context, Sauzay and her colleagues highlighted that Sorafenib 

may get involved in the processes of chaperoning and protein folding in Huh7 cell line 

(Sauzay et al., 2018). One of the enrichment terms in second cluster is regulation of 

organelle organization (child term, regulation of cytoskeleton organization). Fifth and 

ninth clusters is enriched in 3 distinct significant terms, including cellular protein 

modifications (protein acylation, peptidyl-lysine modification), macromolecule 

modification (covalent chromatin modification), and cellular protein modification 

processes (post-translational protein modification, protein modification by small protein 

removal) and protein catabolic process, respectively. Significantly enriched genes are 

belonging to protein biosynthesis and protein modification following Sorafenib treated 

hepatoma cells (Cervello et al., 2012), correlating with our results. Third cluster is 

significantly enriched in response to organic substance, RNA processing, RNA 

biosynthetic process, negative regulation of DNA repair and gene expression in a 

combined treatment with Sorafenib and PI3Ki-α in Huh7 cell line (See Figure 4.15).  

 

. 



 

 

Figure 4.13: Enriched GO biological process terms for each cluster (which has an enrichment score and corresponding 

functional enrichment term within the specific cutoff) in Sorafenib-treated Huh7 network are demonstrated with a 

previously given threshold FDR ≤ 0.05. Afterwards, negative logarithm base 10 was applied to the p-values of the 

genes in all clusters. The color intensity, based on adjusted p-values, depicts the level of significancy of the 

corresponding functional enrichments. GeneCount refers to the number of genes involved in the associated biological 

process enrichment category.  
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Figure 4.14: Enriched GO biological process terms for each cluster (which has an enrichment score and corresponding 

functional enrichment term within the specific cutoff) in the combination of Sorafenib-Akti2 treated Huh7 network are 

demonstrated with a previously given threshold FDR ≤ 0.05. Thereafter, negative logarithm base 10 was applied to the p-

values of the genes in all clusters. The color intensity, based on adjusted p-values, depicts the level of significancy of the 

corresponding functional enrichments. GeneCount refers to the number of genes involved in the associated biological process 

enrichment category. 
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Figure 4.15: Enriched GO biological process terms for each cluster (which has an enrichment score and corresponding 

functional enrichment term within the specific cutoff) in the combination of Sorafenib-PI3Ki-α treated Huh7 network are 

demonstrated with a previously given threshold FDR ≤ 0.05. Subsequently, negative logarithm base 10 was applied to the p-

values of the genes in all clusters. The color intensity, based on adjusted p-values, depicts the level of significancy of the 

corresponding functional enrichments. GeneCount refers to the number of genes involved in the associated biological process 

enrichment category. 
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Cluster 1 is solely composed of metabolic process events, including drug metabolic 

process, cofactor metabolic process, generation of precursor metabolites and energy, 

organic substance metabolic processes (nucleoside bisphosphate metabolism, 

ribonucleotide metabolic process), and so on. There are 15 functional enrichment terms 

for the category of GO biological process in the first cluster. Second cluster is enriched in 

several transport associated biological processes and process utilizing autophagic 

mechanism (parent term, cellular process). Third cluster is enriched in several cellular 

catabolic and metabolic processes, translation, signal transduction pathways, cellular 

protein modification processes (protein polyubiquitination, post-translational protein 

modification). Cluster 4 is enriched in several biological process terms. Cellular 

component organization, cellular development process (in particular, muscle cell 

differentiation), intracellular signal transduction (child term, signal transduction by p53 

class mediator), cell-cell signalling by Wnt (parent term, cell communication) are a couple 

of the functional terms in a Mahlavu treatment with Sorafenib as a single agent (See Figure 

4.16).  

Second cluster consists of organelle organization-related terminologies (specifically, 

DNA conformation change, organelle fission), DNA metabolic process (child term, DNA 

recombination), cellular biosynthetic process (e.g. DNA replication), cellular protein 

catabolic process and cellular protein modification process. Third cluster comprises of 

several cellular metabolic processes. In cluster 4, several RNA metabolic process events 

(e.g.,RNA splicing) and macromolecule localization are significantly enriched. Transport 

is main functional enrichment term in Clusters 6 and 7. Cluster 5 includes the parent terms, 

namely localization, translation, nucleic acid metabolic process and cellular component 

biogenesis. One of the enriched terms in Cluster 8 is process utilizing autophagic 

mechanism (parent term, cellular process) in a combined treatment with Sorafenib and 

Akti-2 in Mahlavu cells (See Figure 4.17).  

Second cluster comprises of several intracellular transport categorical functional terms 

and process utilizing autophagic mechanism. Multiple clusters have several enrichment 

terms in the category of negative regulation of cell cycle (e.g., negative regulations of both 

cell cycle progress, mitotic cell cycle, etc.), negative regulation of organelle organization 

and cellular protein localization in the combination of multiple agents, Sorafenib and 

PI3Ki-α in Mahlavu cells (See Figure 4.18).  



 

 

Figure 4.16: Enriched GO biological process terms for each cluster in Sorafenib-treated Mahlavu network are 

demonstrated with a previously given threshold FDR ≤ 0.05. After that, negative logarithm base 10 was applied to the 

p-values of the genes in all clusters. The color intensity, based on adjusted p-values, depicts the level of significancy 

of the corresponding functional enrichments. GeneCount refers to the number of genes involved in the associated 

biological process enrichment category.  
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Figure 4.17: Enriched GO biological process terms for each cluster (which has an enrichment score and corresponding 

functional enrichment term within the specific cutoff) in the combination of Sorafenib-Akti2 treated Mahlavu network 

are demonstrated with a previously given threshold FDR ≤ 0.05. Then, negative logarithm base 10 was applied to the 

p-values of the genes in all clusters. The color intensity, based on adjusted p-values, depicts the level of significancy 

of the corresponding functional enrichments. GeneCount refers to the number of genes involved in the associated 

biological process enrichment category.  
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Figure 4.18: Enriched GO biological process terms for each cluster (which has an enrichment score and corresponding functional enrichment 

term within the specific cutoff) in the combination of Sorafenib-PI3Ki-α treated Mahlavu network are demonstrated with a previously given 

threshold FDR ≤ 0.05. Following that, negative logarithm base 10 was applied to the p-values of the genes in all clusters. The color intensity, 

based on adjusted p-values, depicts the level of significancy of the corresponding functional enrichments. GeneCount refers to the number of 

genes involved in the associated biological process enrichment category.  
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4.2     Literature and Obtained Targets of Drug Treatments and Small Molecule 

 Inhibitors in HCC Networks  

 

The literature and obtained (direct and indirect) targets of molecular targeted agents in our 

hepatocarcinoma networks are examined individually to find out whether our 

reconstructed networks are specific to the perturbations of drugs, inhibitors or their 

combination. Indirect targets are off-target effectors. 

The target of Akti-2 inhibitor is AKT2 gene (Bhutani, Sheikh, & Niazi, 2013). When we 

added an extra filter to our method, no target was observed in the networks of both cell 

lines. In order to demonstrate a target, we selected the first neighbors of selected nodes in 

the network, and obtained AKT2 gene as a target for Akti-2. Akti1-2 inhibits both AKT1 

and AKT2 genes (Bhutani et al., 2013). Again, no target was detected in the networks of 

Huh7 and Mahlavu cell lines. After the selection of the first degree neighbour of nodes, 

AKT2 gene was come up as our target. Before demonstrating the first degree neighbors 

of the nodes, RAC3 and PRKCB were two significant nodes in our network that might be 

related targets for both AKT inhibitors in two inhibitor treated Mahlavu cells (See Table 

4.3).  

The literature targets of LY294002 are PI3KCG and PIM1 (Jacobs et al., 2005; Semba, 

Itoh, Ito, Harada, & Yamakawa, 2002). These targets were not found in both networks. 

LY294002 is a PI3K inhibitor. PIK3R3, MCM2 and MCM8 were important nodes within 

the threshold of extra filtering in Huh7 cells. When we applied the first degree neighbor 

nodes to seek a literature target, mTOR and ATR were found. Liu, et al. suggested that 

both genes are distantly related to Class IV of (P. Liu, Cheng, Roberts, & Zhao, 2009). 

For Mahlavu cells, PIK3C3 and MCM2 were in significant nodes (within the cutoff of 

extra filter). When we picked the first degree neighbors of our nodes, mTOR, ATR, 

MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7 were determined as indirect targets 

(See Table 4.3).  

PI3Ki-α inhibits PI3K alpha isoforms. For Huh7 cells, PIK3C3 (VPS34) and MCM4 

genes were detected in the network as potential significant targets of PI3Ki-α (Burke, 

2018). When we applied the first degree neighbor nodes to find out more important genes, 

ATR, MCM2, MCM4, MCM5, MCM6, and MCM7 were found as off-target effectors. In 

the aspect of Mahlavu cells, PIK3C3, MCM2, MCM5, MCM6 and MCM7 genes were 

seen in the network. To seek more nodes, we picked first degree neighbors of nodes and 

obtained ATM, ATR, and MCM4 as indirect targets (See Table 4.3). 

The literature targets of Rapamycin (trade name: Sirolimus), are mTOR, FKBP1A and 

FGF2 (Lau, So, & Leung, 2013; Lisi, Aceto, Navarra, & Dello Russo, 2015). Interestingly, 

mTOR was obtained as a target for Huh7 cell line. No other target was observed after 

searching for the selected degree node neighbors in Huh7 cells once more. Before carrying 

out our target mTOR in Mahlavu cells, we again applied the first degree neighbors of 

selected nodes within our network. As expected, Rapamycin is involved in mTOR 

signalling pathway and pathways in cancer (See Table 4.3). 
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The well-known literature targets of Sorafenib (trade name: Nexavar) is BRAF, RAF1, 

PDGFR, VEGFR, and FGFR (Morse et al., 2019). It is a multi-kinase inhibitor. Sorafenib 

is involved in several pathways, namely MAPK signalling pathway, ErbB signalling 

pathway, VEGF signalling pathway, pathways in cancer, renal cell carcinoma, thyroid 

cancer, and hepatocellular carcinoma (Katopodis et al., 2019; Smolle, Taucher, Petru, & 

Haybaeck, 2014). Before checking the first degree neighbors, we did not detect any target 

within the strict cutoff for both cell lines, unfortunately. In order to observe nodes, we 

picked the first degree neighbors of nodes and obtained RAF1 and FGFR2 in Huh7 cells. 

BRAF, RAF1, RET and FGFRL1 were determined as our new targets in Mahlavu cells 

(See Table 4.4).   

Sorafenib-Akti2 network is a combination of Sorafenib and Akti-2 inhibitor. Before 

searching for the first degree neighbors, we did not detect any known target within the 

strict cutoff for both cells. To observe nodes, we picked the first degree neighbors of nodes 

and obtained PDGFRB, FGFRL1, AKT1, RAC1 and RAC3 in Huh7 cells. In the aspect of 

Mahlavu cells, RAF1, BRAF, PDGFRA, RET, AKT1 and RAC2 were detected as our 

targets (See Table 4.4). 

Sorafenib-PI3Kialpha network is a combination of Sorafenib and PI3Kialpha. Before 

searching for the first degree neighbors, we did not detect any known target within the 

strict cutoff for both cell lines. In order to observe nodes, we picked the first degree 

neighbors of nodes and obtained PDGFRA, PDGFRB, RET, MCM2, MCM3, MCM4, 

MCM5, MCM6, MCM7, mTOR, and PLK1 in Huh7 cells. In the aspect of Mahlavu cells, 

FGFRL1, MCM4, MCM5, MCM6, MCM7, MCM8, mTOR, and PLK1 were detected as 

our new targets (See Table 4.4). 

The literature targets of Wortmannin are PIK3CG, PLK1, PIK3CA, and PIK3R1. It is a 

PI3K inhibitor. It is more potentially effective than LY294002 (Mcnamara & Degterev, 

2011). PIK3R1, MCM4 and MCM8 were obtained as targets for Huh7 cells. Before 

carrying out mTOR in Huh7 cells, we again applied the first degree neighbors of selected 

nodes within our network. In the aspect of Mahlavu cells, PIK3C3, PIK3R1 and MCM3 

genes were detected in the network. In order to seek more nodes, we picked first degree 

neighbors of nodes and obtained PLK1, mTOR, MCM4 and MCM7 (See Table 4.3). 
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Table 4.3: Obtained targets of Rapamycin and several inhibitors including their involvement in various regulated 

pathways are listed. *sign indicates the previously mentioned multiple description of the genes in the network. 

 

 

Network Cell Line  Obtained Targets  Gene Description Regulated 

Processes/Pathways 

Akti-2  

Akti-1-2 

Huh7, 

Mahlavu 

AKT2 RAC-Beta 

Serine/Threonine (S/T) 

Specific Protein Kinase 

including SH2-like 

domains 

PI3K/AKT/mTOR  

Insuling receptor 

signaling pathway 

MAPK pathway 

Ras pathway 

Cell survival, cell cycle 

progression, 

angiogenesis, 

metabolism, apoptosis 

LY294002  Huh7 PIK3R3, mTOR, ATR, 

MCM2 

Phosphatidylinositol 3-

kinase (PIK3) regulatory 

subunit gamma  

Metabolic homeostasis 

DNA damage sensor  

DNA replication 

licensing factor 

EGFR tyrosine kinase 

inhibitor resistance  

ErbB signaling pathway 

Endocrine resistance  

HIF-1 signaling pathway 

Cell cycle 

p53 signalling pathway 

DNA replication 

LY294002 Mahlavu PIK3C3,mTOR, 

ATR,MCM2,MCM3, 

MCM4, MCM5, MCM6, 

MCM7  

PIK3 catalytic subunit 

type 3  

(S/T) Protein Kinase 

mTOR and ATR  

Mini-chromosome 

maintenance proteins 

(MCM) 

Inositol phosphate 

metabolism 

Metabolic pathways 

Phospholipase D 

pathway 

Fanconi anemia pathway 

Human papillomavirus 

infection 

Cell cycle 

PI3Ki-α Huh7 PIK3C3, ATR,  MCM2, 

MCM4, MCM5, MCM6, 

MCM7 

PIK3 catalytic subunit 

class III 

Ataxia telangiectasia 

and RAD3-related 

Mini-chromosome 

maintenance complex 

components 

Apelin signaling pathway 

Phagosome 

Cellular senescence 

Initial phase of 

eukaryotic DNA 

replication 

PI3Ki-α Mahlavu PIK3C3, ATM, ATR,  

MCM2, MCM4, MCM5, 

MCM6, MCM7 

PIK3 catalytic subunit 

type III  

Ataxia Telangiectasia 

Mutated 

DNA replication 

licensing factors 

Tuberculosis 

Apoptosis 

p53 signaling pathway 

Human 

immunodeficiency virus 

1 infection 

Cell cycle  

Rapamycin Huh7, 

Mahlavu 

mTOR Mechanistic 

(mammalian) target of 

rapamycin 

AMPK signaling 

pathway 

Wortmannin Huh7 PIK3R1, 

MCM4*,MCM8*, 

mTOR* 

PIK3 regulatory subunit 

gamma  

 

Natural killer cell 

mediated cytotoxicity  

GnRH Secretion 

Insulin Resistance  

Wortmannin Mahlavu PIK3C3, PIK3R1*, 

MCM3*, PLK1*, 

mTOR*, MCM4*, 

MCM7* 

PIK3 catalytic subunit 

type III  

Phagosome 

Axon guidance 

Progesterone-mediated 

oocyte maturation 

Insulin signaling 

pathway 
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Table 4.4: Obtained targets of Sorafenib and several agents including their involvement in various regulated 

pathways are listed. *sign indicates the previously mentioned multiple description of the genes in the network. 

 
Network Cell 

Line 

Obtained Targets Gene Description Regulated 

Processes/Pathways 

Sorafenib Huh7 RAF1, FGFR2 RAF-1 proto-

oncogene 

Fibroblast growth 

factor receptor II 

MAPK pathway 

Ras pathway 

Regulation of actin 

cytoskeleton 

Sorafenib Mahlavu BRAF, RAF1, RET, 

FGFRL1 

B-RAF proto-

oncogene S/T  

protein kinase 

RAF proto-

oncogene S/T 

protein kinase 

Proto-oncogene 

Tyrosine (Y) 

protein kinase RET 

Fibroblast growth 

factor (FGF) 

receptor-like1 

Hepatocellular 

carcinoma 

Hepatitis C and 

Hepatitis B 

MAPK signaling 

pathway 

Central carbon 

metabolism in 

cancer 

FGF receptor 

signaling pathway 

Sorafenib-

Akti2 

 

Huh7 PDGFRB,AKT1,FGFRL1, 

RAC1,RAC3 

Platelet-derived 

growth factor 

receptor beta 

RAC S/T protein 

kinase 

Fibroblast growth 

factor receptor-like 

I 

Rac family small 

GTPaseI 

MAPK signaling 

pathway 

PI3K/Akt pathway 

Signaling pathways 

regulating 

pluripotency of stem 

cells 

FGF receptor 

signaling pathway 

Ras signaling 

pathway 

Sorafenib-

Akti2 

Mahlavu PDGFRA,BRAF,AKT1,RET, 

RAF1,RAC2 

platelet derived 

growth factor 

receptor alpha 

S/T protein kinase 

AKT S/T kinase1 

RET proto-

oncogene 

RAF-1 proto-

oncogene 

RAS-related C3 

botulinum toxin 

substrate2 

Chemokine pathway 

cAMP signalling 

pathway 

Platelet activation 

Thyroid cancer 

Gap junction 

Focal adhesion 

 

Sorafenib-

PI3Kialpha 

Huh7 PDGFRA*, PDGFRB*, 

RET*, MCM2, MCM3, 

MCM4, MCM5, MCM6, 

MCM7, mTOR* and PLK1 

 

 

MCM proteins 

Polo-like kinase 1 

 

Calcium signaling 

pathway 

JAK-STAT pathway 

ERK signaling 

DNA replication 

Longevity regulating 

pathway 

Oocyte meiosis 

Sorafenib-

PI3Kialpha 

Mahlavu FGFRL1*, MCM4*, 

MCM5*, MCM6*, MCM7*, 

MCM8*, mTOR, PLK1* 

Mechanistic target 

of Rapamycin 

Thermogenesis 

FoxO signaling 

pathway 
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4.3     Common Characteristics of Sorafenib-Related Multiple Network Comparisons   

In order to detect common patterns and traits between Sorafenib-related multiple agents 

treated networks and to identify potential similarities, overlapping genes are analyzed 

through the following steps. 

4.3.1  DeMAND Reveals That Sorafenib Interferes with Protein Folding Through 

 Chaperone Activity in Huh7 Cell Line 

To find out the overlapping part of multiple Huh7 networks and perform more analysis on 

these important genes, Venn Diagrams are initially depicted.  

For a triple comparison of Huh7 cells, Sorafenib treated network includes 104 nodes. The 

combination of Sorafenib treated with PI3Kialpha inhibitor network has 107 nodes. Another 

pairwise combination of Sorafenib and Akti2 treated network contains 139 nodes. The 

number of intersection of three networks which corresponds to the overlapping genes is 15 

(See Figure 4.19).  

For a pairwise diagram instance, Akti2 treated Huh7 network includes 342 nodes. The 

pairwise combination of Sorafenib and Akti2 treated Huh7 network has 139 nodes. The 

number of overlapping proteins of both Huh7 networks shown in the intersection part 

which corresponds to 58 (See Figure 4.19). 

  

 

  
 

 

 

 

  

Figure 4.19: Demonstration of Venn diagrams of Huh7 cell lines. To find out the 

number of overlapping genes in Sorafenib treated network, the combination of 

Sorafenib-Akti2 treated network and the combination of Sorafenib-PI3Kialpha 

treated Huh7 network, Venn Diagrams are depicted. Pairwise Venn diagrams are 

also drawn to observe and compare Sorafenib-treated network versus inhibitors 

(Akti-2 and Pi3kialpha). Sor is the abbreviation of Sorafenib and PI3kia is the 

abbreviation of PI3kialpha in the diagrams.  
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Table 4.5: The overlapping genes in Sorafenib-related multiple Huh7 networks that are 

Sorafenib treated network, the combination of Sorafenib-Akti2 treated network and the 

combination of Sorafenib-PI3Kialpha treated Huh7 network are demonstrated. 

Overlapping Genes in Huh7 Networks 

ATP6V1A BUD31 CCT2 CCT3 DARS 

DHX15 GNL2 HSP90AA1 HSP90AB1 KARS 

KRR1 PFDN2 RPF2 RPS14 SUMO1 

 

Gene Ontology (GO) Biological Process enrichment analysis was performed in order to 

have a general idea about the larger processes in which overlapping genes in Sorafenib-

related multiple Huh7 networks were involved. These overlapping genes mostly took part 

in the protein assembly, organization, transport, cellular component biogenesis, 

chromosome organization, localization, cellular process, homeostatic process, regulation 

of biological quality, metabolic processes and RNA processing (Figure 4.20). The genes 

were resulted in the following enrichment terms such as chaperone-mediated protein 

complex assembly, ribonucleoprotein complex subunit organization, toxin transport, 

ribonucleoprotein complex biogenesis, telomere organization, protein localization to 

nucleus, protein folding, anatomical structure homeostasis, DNA biosynthetic process, 

DNA metabolic process, ncRNA processing (See Figure 4.20). 

 

Figure 4.20: GO biological process no redundant overrepresentation enrichment analysis 

(ORA) of overlapping Huh7 genes was conducted by WebGestaltR package. Functional 

enrichment biological process terms were resulted with a previously given threshold FDR 

≤ 0.05. n was the total number of overlapping genes for each specific biological process 

enrichment terms category in the bar chart. Negative logarithm base 10 was applied to the 

p-values of overlapping genes in Huh7 network. Fold change represented these adjusted 

p-values.  
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GO Molecular Function enrichment analysis was performed in order to have an idea 

about molecular-level activities of overlapping genes in Huh7 network. These overlapping 

genes were mostly involved in enzyme binding and protein binding (Figure 4.21). The 

genes were resulted in functional enrichment terms, including unfolded protein binding, 

protein binding involved in protein folding, ubiquitin-like protein ligase binding, and 

disordered domain specific binding (See Figure 4.21).  

 

 
Figure 4.21: GO molecular function no redundant ORA of overlapping Huh7 genes was 

performed by WebGestaltR. Enriched molecular functional terms were resulted with a 

previously given threshold FDR ≤ 0.05. n was the number of overlapping genes for each 

specific molecular function enrichment terms category in the bar chart. Negative 

logarithm base 10 was applied to the p-values of overlapping genes in Huh7 network. Fold 

change represented these adjusted p-values.  

 

GO Cellular Component enrichment analysis was performed in order to have an idea 

about the locations where overlapping genes in Huh7 network were carried out their 

functions. Cellular component enrichment outcomes of these overlapping genes were 

localized in chaperone complex and myelin sheath (See Figure 4.22).  

 

 
Figure 4.22: GO cellular component no redundant enrichment analysis of overlapping 

Huh7 genes was done by WebGestaltR package. Enriched cellular component terms are 

resulted with a previously given threshold FDR ≤ 0.05. n was the total number of 

overlapping genes for each specific cellular component enrichment terms category in the 

bar chart. Negative logarithm base 10 was applied to the p-values of overlapping genes in 

Huh7 network. Fold change represented these adjusted p-values.  

 

To have an idea about pathways that overlapping genes in Huh7 network were involved 

in, we conducted a KEGG pathway enrichment analysis. Unfortunately, the overlapping 

genes did not have any functional enrichment KEGG pathway terms within FDR threshold 

0.05.  
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Reactome pathway enrichment analysis was performed to have a general idea about 

pathways in which overlapping genes in Huh7 network were taken part in. These 

overlapping genes were mostly included in protein folding, cellular response to heat 

stress, metabolism of amino acids and derivatives, axon guidance, translation, and cilium 

assembly (Figure 4.23). The genes were resulted in the following enrichment terms, 

namely chaperonin-mediated protein folding, HSF1 activation, selenoamino acid 

metabolism, Sema3A PAK dependent axon repulsion, cytosolic tRNA aminoacylation, 

and BBSome-mediated cargo-targeting to cilium (See Figure 4.23).  

 

Three aspects of gene ontology and Reactome pathway induce correlated enriched 

resulting outcomes with each other. One of the enriched consequences of cellular 

localization, chaperone complex, is significantly related to protein binding involved in 

protein folding and unfolded protein binding which refer to chaperone activity as a 

molecular functional term. Of the biological process enrichments associated with 

overlapping Huh7 genes, chaperone-mediated protein complex assembly and protein 

folding are essential terms consistent with the previous results. Given the enriched terms 

of Reactome pathway, protein folding and its child terms, including chaperonin-mediated 

protein folding and cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 

etc. indicate that protein folding is the most significant category of overlapping Huh7 

genes in Reactome pathway. Collectively, these findings suggest that overlapping genes 

in Sorafenib-related multiple Huh7 networks potentially interfere with protein folding 

through chaperone activity.  

In this context, Sauzay et al. highlighted that Sorafenib can get involved in the processes 

of chaperoning and protein folding in Huh7 cell line (Sauzay et al., 2018). 

 

 
Figure 4.23: Reactome pathway enrichment analysis of overlapping Huh7 genes was 

conducted by WebGestaltR package. Enriched terms are resulted with a previously given 

threshold FDR ≤ 0.05. Negative logarithm base 10 was applied to the p-values of 

overlapping genes in Huh7 network. Fold change represented these adjusted p-values. 
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4.3.2     DeMAND Indicates That Sorafenib Modulates Regulation of Autophagy in 

  Mahlavu Cell Line 

 

To find out the overlapping part of multiple Mahlavu networks and perform more analysis 

on these important genes, Venn Diagrams are initially depicted.  

For a triple comparison of Mahlavu cell line, Sorafenib treated network has 304 nodes. An 

example of drug and drug inhibitor together network, combination of Sorafenib treated with 

PI3Kialpha inhibitor, includes 428 nodes. Another example of drug and drug inhibitor 

combination network, Sorafenib and Akti2 network contains 229 nodes. The number of 

intersection of three networks which corresponds to the overlapping genes is 51 (See Figure 

4.24).  

For a pairwise Venn diagram instance, Akti2 treated Mahlavu network has 390 nodes. The 

combination of Sorafenib and Akti2 treated Mahlavu network has 229 nodes. The number 

of overlapping proteins of both Mahlavu networks is 72 (See Figure 4.24). 

 

Figure 4.24: Demonstration of Venn diagrams of Mahlavu cells. In order to find out the 

number of overlapping genes in Sorafenib treated network, the combination of Sorafenib-

Akti2 treated network and the combination of Sorafenib-PI3Kialpha treated Mahlavu 

network, Venn Diagrams are depicted. Pairwise Venn diagrams are also drawn to observe 

and compare Sorafenib-treated network versus inhibitors (Akti-2 and Pi3kialpha). Sor is 

the abbreviation of Sorafenib and PI3kia is the abbreviation of PI3kialpha in the diagrams. 

GO Biological Process enrichment analysis was conducted to have a general idea about 

the larger processes where overlapping genes in Mahlavu network were involved in. These 

overlapping genes mostly took part in DNA repair, response to stimulus, localization, 

transport, cellular component organization or biogenesis, translation, homeostatic process, 

chromosomal organization, several cellular processes, including drug metabolic process 

(See Figure 4.25). The genes were resulted in the large variety of functional enrichment 

terms, namely interstrand cross-link repair, DNA damage response detection of DNA 
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damage, ribonucleoprotein complex localization, trivalent inorganic cation transport, 

protein-DNA complex subunit organization, translational initiation, cell redox 

homeostasis, telomere organization, and antibiotic metabolic process (See Figure 4.25).  

Since the number of overlapping genes in Mahlavu networks was more than Huh7 

networks, more enriched functional term outcomes in various categories were obtained in 

Mahlavu cells. For instance, interstrand cross-link repair, postreplication repair, and 

nucleotide-excision repair are child terms of DNA repair observed in only Mahlavu 

networks.   

Given the numbers and categories of GO biological process terms, parent terminology is 

similar for both cell lines; however, child terms belonging to a particular parent term are 

more various in Mahlavu cells. For example, parent term transport has only a child term 

toxin transport in Huh7 network. The same parent term has 3 child terms, including ATP 

hydrolysis coupled transmembrane transport, ATP hydrolysis coupled cation 

transmembrane transport, and trivalent inorganic cation transport. 

Common GO biological process enrichment terms between Mahlavu and Huh7 cell lines 

are ribonucleoprotein complex biogenesis (parent term: cellular component biogenesis) 

and telomere organization (parent term: chromosome organization).  

 

 

Figure 4.25: GO biological process no redundant ORA of overlapping Mahlavu genes was 

done by WebGestaltR. Functional enrichment biological process terms were resulted with 

a given threshold FDR ≤ 0.05. n was the total number of overlapping genes for each 

specific biological process enrichment terms category in the bar chart. Negative logarithm 

base 10 was applied to the p-values of overlapping genes in Mahlavu network. Fold 

change represented the adjusted p-values.  
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GO Molecular Function enrichment analysis was conducted to have an idea about 

molecular-level activities of overlapping genes in Mahlavu network. These overlapping 

genes were involved in fundamental key concepts, including structural constituent of 

ribosome, ATPase activity, and heat shock protein binding (See Figure 4.26). Common 

GO molecular function enrichment term between Mahlavu and Huh7 cell lines is protein 

binding (at the parent name level). 

 

Figure 4.26: GO molecular function no redundant ORA of overlapping Mahlavu genes 

was done by WebGestaltR package. Enriched molecular functional terms were resulted 

with a given threshold FDR ≤ 0.05. n was the number of overlapping genes for each 

specific molecular function enrichment terms category in the bar chart. Negative 

logarithm base 10 was applied to the p-values of overlapping genes in Mahlavu network. 

Fold change represented the adjusted p-values.  

GO Cellular Component enrichment analysis was performed to have an idea about the 

locations where overlapping genes in Mahlavu network were carried out their functions. 

Cellular Component enrichment outcomes of these overlapping genes were localized in 

several different locations, namely myelin sheath, ribosome, cytosolic part, pigment 

granule, chaperone complex, vesicle lumen, and proton-transporting two-sector ATPase 

complex (See Figure 4.27). Common GO cellular component enriched terms between 

Mahlavu and Huh7 cell lines are chaperone complex and myelin sheath, respectively.  

 

Figure 4.27: GO cellular component no redundant ORA of overlapping Mahlavu genes 

was done by WebGestaltR package. Enriched cellular component terms were resulted with 

a given threshold FDR ≤ 0.05. n was again the number of overlapping genes for each 

specific cellular component enrichment terms category in the bar chart. Negative 

logarithm base 10 was applied to the p-values of overlapping genes in Mahlavu network. 

Fold change represented the adjusted p-values.  
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KEGG pathway enrichment analysis was performed in order to have a general idea about 

pathways in which overlapping genes in Mahlavu network were taken part in. These 

overlapping genes were included in ribosome.  

Reactome Pathway enrichment analysis was conducted to have an idea about pathways 

in which overlapping genes in Mahlavu network were taken part in. The number of 

enriched Reactome pathway terms is obtained as 177 (Figure 4.28). These overlapping 

genes were included in various different categories. The most enriched term groups in 

Reactome pathways are belonging to cell cycle, cellular responses to external stimuli, 

disease, signal transduction, DNA repair, translation, DNA replication, programmed cell 

death, transport of small molecules, axon guidance, immune system, transcription, and 

several metabolism categories, including the metabolism of amino acids and derivatives 

and metabolism of RNA. The genes were resulted in the following enrichment terms, 

namely S phase, cellular responses to stress, infectious disease, degradation of DVL, 

translesion synthesis by POLK, eukaryotic translation initiation, DNA replication pre-

initiation, regulation of apoptosis, iron uptake and transport, regulation of expression of 

SLITs and ROBOs, Dectin-1 mediated noncanonical NF-kB signalling, regulation of 

RUNX3 expression and activity, selenoamino acid metabolism, AUF1 (hnRNP D0) binds 

and destabilizes mRNA (See Figure 4.28).  

Due to the number of overlapping genes in Mahlavu networks was more than Huh7 

networks, more enriched term results in various categories were obtained in Mahlavu 

cells. For instance, cell cycle related terms, including mitotic G1-G1/S phases, S phase, 

mitotic G2-G2/M phases, regulation of mitotic cell cycle, p53-Independent G1/S DNA 

damage checkpoint, and many other child sub-pathways observed in only Mahlavu 

networks.  

Common Reactome pathway enrichment terms between Mahlavu and Huh7 cell lines are 

HSF1-dependent transactivation, HSF1 activation, attenuation phase (parent term of the 

previous 3 terms: cellular response to heat stress (child sub-pathway of cellular responses 

to external stimuli)), and selenoamino acid metabolism (parent term: metabolism of amino 

acids and derivatives).  

 

Three aspects of gene ontology, KEGG and Reactome pathways induce various 

enriched resulting outcomes. One of the enriched consequences of cellular compartment, 

pigment granule, which is derived from lysosome, is related to 2 molecular functional 

terms, namely heat-shock protein binding-through chaperone-mediated autophagy- and 

ATPase activity-through autophagy-. Of the biological process enrichments associated 

with overlapping Mahlavu genes, process utilizing autophagic mechanism, response to 

topologically incorrect protein and protein-containing complex disassembly are essential 

terms. In addition to the biological terms, by incidence, cellular process, response to 

stimulus and cellular component organization are parent terms of the biological 

enrichments. From the perspective of Reactome pathway level enrichment, cellular 

responses to stress, HSF1-dependent transactivation, cellular responses to heat stress and 

attenuation phase refer that cellular response to stress (parent term: cellular response to 

external stimuli) is a remarkable category of overlapping Mahlavu genes in Reactome 
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pathway. Taken together, these findings observed from distinct ontologies and pathway 

suggest that overlapping genes in Sorafenib-related multiple Mahlavu networks might 

potentially interfere with autophagy through cellular responses to external stimuli (in our 

case, Sorafenib and co-treatments of Sorafenib with inhibitors). 

In the light of previous analysis context, Yazdani, et al. and Dominguez et al. highlighted 

that Sorafenib can get involved in the regulation of autophagy and its subtypes in 

hepatoma cells (Prieto-Domínguez et al., 2016; Yazdani, Huang, & Tsung, 2019).  

 

Another enriched consequences of cellular compartment, proton-transporting two-sector 

ATPase complex, is significantly related to ATPase activity as a molecular functional 

term. Of the biological process enrichments associated with overlapping Mahlavu genes, 

ATP hydrolysis coupled transmembrane transport, trivalent inorganic cation transport, 

and ATP hydrolysis coupled cation transmembrane transport are essential terms with the 

previous results. In addition to the biological terms, by incidence, transport is a parent 

name terminology of the enrichments. Given the enriched terms of Reactome pathway, 

iron uptake and transport and its child term transferrin endocytosis and recycling which 

incorporate the event of ATP hydrolysis remark that transport of small molecules is a 

significant category of overlapping Mahlavu genes in Reactome pathway. Collectively, 

these findings suggest that overlapping genes in Sorafenib-related multiple Mahlavu 

networks Sorafenib can potentially get involved in the processes of ATPase associated 

events which might be involved in transport activity.  

In this context, Jiang et al., emphasized that sodium-potassium pump inclusion is 

constitutively increasing in many cancers. Further, ATPase complex might be involved in 

demonstrating several distinct functions (Jiang et al., 2018).  

 

Another enriched results of cellular compartment, ribosome, is significantly correlated 

with structural constituent of ribosome as a molecular functional term. Given the enriched 

terms of biological process, protein localization to endoplasmic reticulum, cytoplasmic 

translation, translational initiation, and RNA catabolic process are vital category of 

overlapping Mahlavu genes. Subsequently, translation, cellular protein localization, and 

macromolecule catabolic process are parent name terminologies of the biological 

enrichments. From the perspective of KEGG pathway level enrichment, ribosome is a 

crucial functionally enriched term consistent with the previous results. Of the Reactome 

pathway enrichments associated with overlapping Mahlavu genes, translation, 

metabolism of amino acids and derivatives, GTP hydrolysis and joining of the 60S 

ribosomal subunit, eukaryotic translation initiation, peptide chain elongation, and 

formation of a pool of free 40S subunits remark that translation is a crucial category. 

Altogether, these findings observed from distinct ontologies and pathways indicate 

overlapping genes in Sorafenib-related multiple Mahlavu networks potentially interfere 

with translation events.   



 

 

Figure 4.28: Reactome pathway enrichment analysis of overlapping Mahlavu genes was done by WebGestaltR package. Enriched terms are resulted with a 

previously given threshold FDR ≤ 0.05. n was the total number of overlapping genes for each specific Reactome pathway enrichment terms category in the 

bar chart. Negative logarithm base 10 was applied to the p-values of overlapping genes in Mahlavu network. Fold change represented these adjusted p-values. 
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Table 4.6: The overlapping genes in Sorafenib-related multiple Mahlavu networks that are Sorafenib treated network, the combination of Sorafenib-Akti2 

treated network and the combination of Sorafenib-PI3Kialpha treated Mahlavu network are indicated.  

Overlapping Genes in Mahlavu Networks 
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4.4     Functional Enrichment Analyses of the Reconstructed Networks 

 

In order to retrieve biological information about our reconstructed networks of both 

hepatocarcinoma cell lines and identify involved larger biological processes, molecular-

level activities, cellular localizations, and their inclusion in pathways (namely, KEGG and 

Reactome), we performed overrepresentation enrichment analysis for each network. For 

this purpose, WebGestaltR package was used to reveal fundamental biological insights. 

Following that, we drew several heatmaps to visualize network similarity and difference 

and had a prior knowledge on the tendency of enriched terms in the reconstructed networks 

before clustering our dataset.  

 

4.4.1     GO Biological Process Analyses of Huh7 and Mahlavu Cell Lines 

 

As shown in heatmap figure in Appendix, columns indicate 9 reconstructed Huh7 

networks, and rows are the union of corresponding functional enriched GO biological 

process terms in the heatmap. The enriched Huh7 terms were listed by a given threshold, 

FDR ≤ 0.01. To visualize all 9 Huh7 networks together in a single heatmap, this threshold 

was chosen. Thereafter, the negative logarithm base 10 of FDR results of significantly 

enriched terms were applied. We further found that cellular component biogenesis, 

intracellular protein transport, translation, protein localization and folding, cellular 

catabolic process and metabolic process are highly enriched in Sorafenib-treated Huh7 

network. As clearly observed from the enrichment terms, for Huh7 cell line, Sauzay and 

her colleagues have highlighted that Sorafenib intrude on several protein mechanisms, 

namely folding, chaperoning, turnover and production of proteins which correlate with 

our resulted network treated with single agent, Sorafenib (Sauzay et al., 2018). In the 

concept of the most significant enriched terms, Huh7 cells treated with Sorafenib and co-

treatment of Sorafenib and Akti-2 demonstrate similar characteristic pattern. Co-treatment 

of Sorafenib and Akti-2 is resulted in downregulation of enrichment terms, including 

regulation of cell cycle, nucleic acid metabolic process, and cellular component 

organization compared to single treatment of Akti-2. Single treatment with Akti-2 agent 

and Akti-1-2 agent shows nearly the same characteristics. 

 

Contrary to the network similarity, combined treatment of Sorafenib and PI3ki-α indicates 

a different behavioral pattern. Of the GO biological process enrichments associated with 

co-treatment of Sorafenib and PI3ki-α, RNA metabolic process, transcription and RNA 

processing are significant category of the genes in this network. Co-treatment of Sorafenib 

and PI3ki-α negatively regulates cell cycle process and DNA repair compared to single 

treatment of Sorafenib. Singh and her colleagues have highlighted that the alpha isoform 

of PI3K is involved in cell cycle process, DNA repair mechanisms and replication (Singh, 

Dar, & Dar, 2016). Single treatment with PI3ki-α also results in negative regulation of cell 

cycle process. Although PI3Ki-α is used at very low doses, it demonstrates an effective 

behavior, as our conclusion. In the aspect of single agent treatment with PI3ki-α, several 

catabolic processes are enriched, including protein catabolic processes (child term, 

regulation of protein catabolic process and proteasomal protein catabolic process) and 

nucleic acid catabolic process (specifically, RNA catabolic process). Intriguingly, single 
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treatment of PI3ki-α cause several immune responses in Huh7 cells within FDR ≤ 0.01. 

Production of molecular mediator of immune response and somatic diversification of 

immune responses are the child terms of immune system process. Heatmap figure is in the 

section of Appendix B.  

 

We analyze that the total number of enriched GO biological process terms in Sorafenib-

treated network is 73 for Mahlavu cell line (within FDR ≤ 0.01); whereas, this number 

equals to 24 for Sorafenib-treated Huh7 cells (This is an expected result of overall nodes 

in both networks, 304 nodes vs 104 nodes (See Table 4.2), and Mahlavu cell line is more 

aggressive type due to PTEN deficiency which acts as a tumor suppressor for the 

downstream of the PI3K/AKT signaling cascade (Chamcheu et al., 2019). All of the most 

significant terms in Huh7 cells also appear as much significant as in Mahlavu cells. Here, 

the critical point is that since the number of the enrichment terms in Mahlavu cells is 

higher, the number of highly-enriched terms appear as significant is also higher in 

Mahlavu cells. In addition to the most significant enriched terms in Huh7 cells, we found 

several categories of process, namely cellular metabolic process, transcription, organic 

acid metabolic process, cellular component organization, and RNA metabolic process. 

Further, given the numbers and categories of GO biological process terms, RNA metabolic 

and catabolic processes, negative regulation of cell cycle (child term, cell cycle arrest), 

cellular protein localization, translation, intracellular transport, drug metabolic process, 

cellular component biogenesis and chromosome organization. Co-treatment of Sorafenib 

and Akti-2 is resulted in reduction of enrichment terms such as macromolecule 

localization, response to chemical and stimuli compared to single treatment of Akti-2. In 

the concept of the most significant enriched terms, Mahlavu cells treated with Sorafenib 

and co-treatment of Sorafenib and PI3ki-α demonstrate similar characteristic pattern. Of 

the GO biological process enrichments associated with co-treatment of Sorafenib and 

PI3ki-α, translation, intracellular transport, cell cycle phase transition (G1/S phase 

transition, mitotic cell cycle phase transition), transcription, organelle organization, 

response to stimulus, several catabolic processes (proteasomal protein catabolic process, 

regulation of protein catabolic process, RNA catabolic process) are significant enriched 

terminologies. Co-treatment of Sorafenib and PI3ki-α is resulted in inhibition of 

enrichment terms, namely negative regulation of DNA repair and RNA metabolic process 

compared to single treatment of PI3ki-α. Although cell cycle arrest is enriched in Mahlavu 

cells upon treatment with Sorafenib as a single agent, combination of Sorafenib and PI3ki-

α demonstrates a different characteristic, and enriched in cell cycle phase transition-

related terminologies, same as the trend in treatment with PI3ki-α. Again, PI3Ki-α is used 

at very low doses, yet it demonstrates an effective behavior in Mahlavu cells. Heatmap 

figure is in Appendix B section. 

 

4.4.2     GO Molecular Function Analyses of Huh7 and Mahlavu Cell Lines 

Protein binding, transferase activity, catalytic activity, nucleic acid binding, and protein 

folding chaperone are the main enriched GO molecular function terms in combined 

treatment of Sorafenib and PI3kiα. Combined treatment of Sorafenib and PI3kiα is 

resulted in inhibition of enrichment terms binding (bindings of protein-containing 
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complex, chromatin, nucleic acid, and protein) and catalytic activity. As clearly observed 

from the enrichment terms, for Huh7 cell line, Sauzay et al. emphasized that Sorafenib 

intrude on several protein mechanisms, namely folding, chaperoning, turnover and 

production of proteins (Sauzay, et al., 2018). The enriched Huh7 terms were listed by a 

given threshold, FDR ≤ 0.05. Further, single treatment of Sorafenib is resulted in enzyme 

binding (i.e., histone deacetylase binding), transferase activity, pyrophosphatase activity, 

catalytic activity and nucleic acid binding. Freese and her colleagues mentioned that 

histone deacetylase is an enzyme which majorly acts in carcinogenesis and further stages 

of hepatoma. Such that, epigenetics is a newly emerging field in the perspective of targeted 

therapy and if the level of high expression of histone deacetylases is observed, it can be it 

can be concluded that they may contribute to promote hepatocarcinoma by mis-acetylation 

of histone proteins  (Freese et al., 2019; Y. Li et al., 2019). Huh7 cells co-treated with 

Sorafenib and Akti-2 demonstrates similar enrichment characteristic trend with the 

previous networks. Additionally, transcription factor binding (parent term: protein 

binding) is only enriched in this network. In the concept of the significant GO molecular 

function terms, single treatment with both inhibitors (Akti-2 and PI3ki-𝛼) behaves 

differently in Huh7 cells (See Figure 4.15). Co-treatment of Sorafenib and Akti-2 is 

resulted in inhibition of enrichment terms, namely catalytic activity and binding (in 

particular protein binding, nucleic acid binding, chromatin binding). (See Figure 

Appendix B.5) 

 

For Mahlavu cells, combined treatment of Sorafenib and Akti-2 resulted in several GO 

molecular function enrichment terms, including binding, kinase activity, nucleotide 

binding, protein binding, enzyme regulator activity, hydrolyase activity and nucleic acid 

binding. Co-treatment of Sorafenib and Akti-2 is resulted in reduction of enrichment terms 

protein folding chaperone, ubiquitin-like protein ligase binding (parent term enzyme 

binding), damaged DNA binding (parent term nucleic acid binding), protein binding (child 

terms, including SMAD binding, phosphoprotein binding, protein N-terminus binding), 

catalytic activity (child term electron transfer activity), enzyme regulator activity, and 

enzyme binding (histone deacetylase and phosphatase bindings. The enriched Mahlavu 

terms were listed by a given threshold, FDR ≤ 0.05. In addition to Sor-Akti-2 treatment, 

single treatment of Sorafenib is resulted in enzyme binding, transferase activity, 

pyrophosphatase activity, catalytic activity, ATPase activity, and bindings of chromatin, 

enzyme, nucleic acid and proteins. In the context of the significant GO molecular function 

terms, single treatment with both inhibitors (Akti-2 and PI3ki-𝛼) behaves distinctively in 

Mahlavu cells (See Figure 4.16). Combined treatment of Sorafenib and PI3kiα is resulted 

in transferase activity, peptidase activity, nucleic acid binding, enzyme binding, 

transcription factor binding, and protein binding (chaperone binding, misfolded protein 

binding, etc.). Interestingly, kinase regulator activity is significantly enriched in 

combination of Sorafenib and PI3kiα network in Mahlavu cells; however, treatments with 

both single agents, (Sorafenib, PI3kiα) are not enriched with the specific, kinase regulator 

activity. Co-treatment of Sorafenib and PI3kiα is resulted in inducing enrichment terms 

such as translation initiation factor binding, chaperone binding (parent terms: protein 

binding), tRNA binding (nucleic acid binding), metal cluster binding (parent terminology 
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binding), ubiquitin-like protein ligase binding (parent term enzyme binding), ligase 

activity (parent term catalytic activity) (See Figure Appendix B.6). 

 

4.4.3     GO Cellular Component Analyses of Huh7 and Mahlavu Cell Lines 

Single treatment of Sorafenib is enriched in GO cellular compartment enrichments, namely 

replication fork and nuclear chromatin (parent term: chromosome) related to the DNA 

replication. Histone deacetylase-associated genes (first class of HDACs, i.e., HDAC2) are 

observed in nuclear chromatin functional cellular localization term. Although Sorafenib 

suppresses the activity of histone deacetylases, we have observed their corresponded 

enrichment term in tumorigenic cells (T. P. Liu, Hong, & Yang, 2017). Also, euchromatin, 

another enriched term, is related to mRNA synthesis. In addition to transcription, 

translation related terms are observed. The enriched Huh7 terms were listed by a given 

threshold, FDR ≤ 0.05. Huh7 cells co-treated with Sorafenib and Akti-2 demonstrates the 

enrichment terms in translation, nucleic acid metabolic process (child term 

methyltranseferase complex required for mRNA cap), and protein-containing complex 

(child terms Sm-like protein family complex, sno-RNA, spliceosomal complex). Cervello 

et al. highlighted that significantly enriched genes are belonging to transcription, protein 

biosynthesis and protein modification following Sorafenib treated hepatoma cells 

(Cervello et al., 2012), in the sense of correlating with our outcomes. Combined treatment 

of Sorafenib and PI3kiα is resulted in similar enrichment terms transcription and 

translation except transferase complex (child terms complexes of acetyltransferase and 

transferase complex, transferring phosphorus-containing groups), secretory granule (child 

term ficolin-1-rich granule). Herein, co-treatment with Sorafenib and PI3kiα suppresses 

the activity of histone deacetylases in hepatoma cells (See Figure Appendix B.7). 

Mahlavu cells co-treated with Sorafenib and Akti-2 is mainly enriched in localization of 

protein-containing complex (mediator complex, exoribonuclease complex, preribosome, 

peptidase and transferase complexes), chromosome (condensed chromosome, 

chromosomal region). Combination of Akti-2 and Sorafenib is resulted in reduced 

mitochondria related localizations such as mitochondrion and mitochondrial inner 

membrane and DNA replication related terminology compared to single treatment in 

Mahlavu cells. Single treatment of Sorafenib is enriched in nucleus-related GO cellular 

compartment enrichments, including DNA repair complex, nucleolus, chromosome, 

transcription factor complex, and chromatin. Sorafenib demonstrates a distinctive 

enrichment character than the co-treatment of Sorafenib with Akti-2 in the sense of 

protein-containing complexes. Sorafenib-treated Mahlavu cells are also enhanced the 

enrichments of cell junction and membrane protein complex. The network treated with 

only Sorafenib shows similar enrichment characteristic patterns with combined treatment 

of Sorafenib and PI3kiα. Co-treatment of Sorafenib and PI3kiα is enhanced in 

mitochondrion-related enriched terms compared to single treatment of PI3kiα. Whether 

Sorafenib and PI3kiα combination network is compared with the single treatments, more 

nucleus related terms are enriched in the combination drug treatment. The enrichment 

terms observed in the combination network is chromosome, DNA-packaging complex, 

nuclear body, and nucleus. The enriched Mahlavu terms were listed by a given threshold, 
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FDR ≤ 0.05. Interestingly, co-treatment with Sorafenib and PI3kiα suppresses the activity 

of histone deacetylases in Mahlavu cells, unlike single agent (Sorafenib) treatment. In 

Sorafenib treated Mahlavu cells, histone deacetylase molecules are detected in several 

localizations, including nuclear chromatin, ATPase complex, transcription factor complex 

(See Figure Appendix B.8). 

 

4.4.4     KEGG Pathway Analyses of Huh7 and Mahlavu Cell Lines 

 

Nucleotide metabolism, transcription, folding, sorting and degradation are the main 

enriched KEGG pathway terms in combined treatment of Sorafenib and PI3ki-𝛼 Huh7 

network. Interestingly, co-treatment of Sorafenib and PI3ki-𝛼 resulted in inhibition of 

enrichment terms, namely cell growth and death, DNA replication, translation, folding, 

sorting and degradation, proliferation, DNA repair, and transcription. Additionally, single 

agent treatment of Sorafenib is resulted in several KEGG enriched terminologies, 

including translation, transcription, replication and repair. Huh7 cells co-treated with 

Sorafenib and Akti-2 do not provoke any KEGG pathway enrichment terms, except 

translation related terms. Co-treatment of Sorafenib and Akti-2 resulted in inhibition of 

enrichment terms, including carbohydrate metabolism, folding, sorting and degradation, 

cell growth and death, and aging. As an observation, single treatment with both inhibitors 

(Akti-2 and PI3ki-𝛼) behaves dissimilarly in Huh7 cells. In the concept of the significant 

KEGG pathway enriched terms, both Sorafenib and Sorafenib-Akti-2 networks contain 

more common patterns for Huh7 cell line; conversely, Sorafenib-PI3ki-𝛼 network acts 

differently (See Appendix B.3). The enriched Huh7 terms were listed by a given threshold, 

FDR ≤ 0.05. Single treatment with Akti-2 agent and Akti-1-2 agent shows nearly the same 

functional term with their similar expression level. 

 

Combined treatment of Sorafenib and PI3kiα is resulted in inhibition of enrichment terms, 

including folding, sorting and degradation, cell cycle, nucleotide metabolism, DNA 

replication, and infectious viral disease in Mahlavu cells. Co-treatment of Sorafenib with 

PI3ki-𝛼 exhibited enhanced enrichment terms in cell growth and death category 

(specifically, cellular senescence and necroptosis), and transport category (in particular, 

RNA transport). Mahlavu cells co-treated with Sorafenib and PI3ki-𝛼 inhibit carbohydrate 

metabolism enrichment terms. Furthermore, Mahlavu cells co-treated with Sorafenib and 

Akti-2 do not provoke any KEGG pathway enrichment terms in the category of replication 

and repair; whereas, the network is resulted in translation, aging and carbohydrate 

metabolism. Co-treatment of Sorafenib and Akti-2 resulted in inhibition of enrichment 

terms including several signal transduction terms, transport and catabolism (sub-pathway 

term autophagy). Moreover, single treatment of Sorafenib is enriched in several KEGG 

pathways such as lipid and carbohydrate metabolisms, translation, transcription, folding, 

sorting and degradation. Single treatment with Akti-2 and PI3ki-𝛼 acts differently in 

Mahlavu cells. Common KEGG pathway enrichment terminologies between Sorafenib-

PI3ki-𝛼 treated Mahlavu and Huh7 cell lines are folding, sorting and degradation, 

transcription, and nucleotide metabolism. Translation and transcription are mutual KEGG 

pathway terms of co-treatment of Sorafenib and Akti-2 and single treatment of Sorafenib 
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in both hepatoma cell lines (See Appendix B.4). The enriched Mahlavu terms were listed 

by a given threshold, FDR ≤ 0.05.  

 

4.4.5     Reactome Pathway Analyses of Huh7 and Mahlavu Cell Lines 

Common Reactome pathway enrichment terms between Sorafenib-related three networks 

are translation, metabolism of amino acids, axon guidance, and disease (sub-pathway 

terms, including infectious disease, influenza infection, influenza life cycle, influenza 

viral RNA transcription and replication). Primarily, axon guidance is the off-target effect 

observed in Sorafenib-related three Huh7 networks. Blackadar et al. and Plummer et al. 

stated that viruses and bacteria are some of the infectious carcinogens that may cause 

severe situations (Blackadar, 2016; Plummer et al., 2016). El Dika and her colleagues 

mentioned that HBV, liver inflammation, diabetes, non-alcoholic steatohepatitis to 

cirrhosis is promoted by HIV (El Dika, Harding, & Abou-Alfa, 2017). In addition to the 

mutual terminology, Huh7 cells treated with Sorafenib agent is also enriched in Reactome 

pathway events mostly related to translational process, and metabolism of RNA. Cervello 

and his co-workers highlighted that significantly enriched genes are belonging to 

transcription, and protein biosynthesis-related mechanisms following Sorafenib treated 

hepatoma cells (Cervello et al., 2012), in the concept of correlating with our resulting 

outcomes.  

Combined treatment of Sorafenib and Akti-2 resulted in several Reactome pathway Huh7 

enrichment terms that are mainly categorized in translation and rRNA processing. The 

network treated with only Sorafenib demonstrates similar Reactome enrichment 

characteristic patterns with combined treatment of Sorafenib and Akti-2; whereas, 

combined treatment of Sorafenib and PI3kiα indicates a distinctive trend. Combined 

treatment of Sorafenib and PI3kiα resulted in several pathways, including HIV infection 

and HIV-related pathways, RNA metabolic process, transcription, RNA splicing, 

programmed cell death (child terms, apoptosis and regulation of apoptosis), diseases of 

signal transduction, transcription, and so on. These results are validated through the 

similar conclusions with the previous different enrichment ontologies (See Appendix B). 

FGFR2, one of the significant targets of Sorafenib (Morse et al., 2019), related pathways 

are detected in the co-treatment of Sorafenib and PI3ki-𝛼. The parent term name of all the 

sub-pathways is FGFR in disease.  

Common Reactome pathway enrichment terms between Sorafenib-related three Mahlavu 

networks are translation, metabolism of amino acids, programmed cell death, disease 

(virus-related sub-events and infectious disease), cellular responses to external stimuli, 

transcription-related processes, metabolism of RNA, immune system, axon guidance 

(parent term, developmental biology), cellular response to stress (including hypoxia-

related sub-events), transport, signal transduction (mainly, Notch and Wnt signaling), and 

so on. Several studies have shown HIF-related events and WNT pathways are associated 

with each other. Actually, HIF provokes abnormal signaling of WNT pathway, and that 

correlates a crosstalk between these cascades (Bogaerts et al., 2014; Khalaf et al., 2018). 

Additionally, immune system-related sub-pathway events and axon guidance are the off-
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target effect observed in Sorafenib-related three Mahlavu networks. Mahlavu cells treated 

with single agent, Sorafenib is enriched in Reactome pathway events mostly related to 

infectious disease (HIV infection, influenza infection), RNA metabolic process (mRNA 

splicing, mRNA capping, nonsense-mediated decay), energy-related metabolism events, 

namely pyruvate metabolism and citric acid (TCA) cycle, apart from the common 

Reactome pathway terminologies. Although Reactome gives more functional enrichment 

terms, the parent terminology of this database is correlated with the results of KEGG 

pathway. These outcomes are validated through the similar conclusions with the previous 

different enrichment ontologies (See Appendix B).  

Combined treatment of Sorafenib and Akti-2 resulted in several Reactome pathway 

enrichment terms that are mainly categorized in pyruvate metabolism and TCA cycle, 

immune system, transcription, Notch signaling, and programmed cell death (apoptosis) 

other than mutual enrichment terminologies. T cell receptor (TCR) signaling, B cell 

receptor (BCR) signaling, Interleukin-1 family signaling, CLEC7A (Dectin-1) signaling 

which might be associated with off-target effects in the co-treatment of Sorafenib with 

Akti-2. In the aspect of related signal transduction pathway, Huang et al. have emphasized 

the upregulation of Notch4 receptor in 68% of tumorigenic hepatoma cells (Huang, Li, 

Zheng, & Wei, 2019).  

Combined treatment of Sorafenib and PI3kiα resulted in several functional pathways, 

namely Wnt signaling, Notch signaling, signaling by Hedgehog, BCR signaling, signaling 

by nuclear receptors, and telomere maintenance, microRNA biogenesis, programmed cell 

death (apoptosis). BCR signaling, signaling by nuclear receptors (also including sub-

pathway term, Estrogen (ESR)-mediated signaling) are off-target effects upon treatments 

with both agents, Sorafenib and PI3kiα. For the context of related terminologies, Wnt 

signalling dysregulation activates several embryonic development pathways that lead to 

hepatic oncogenesis (Wands & Kim, 2014). The more Notch1 receptor is overexpressed, 

the more tumorigenic potential candidate hepatoma cells become (Ning, Wentworth, 

Chen, & Weber, 2009). Bogaerts et al. suggested that Notch signaling modulates several 

processes including apoptosis that is correlated with our results (Bogaerts et al., 2014). 

Corte and her colleagues mentioned that signaling by Hedgehog is crucial for both 

production of liver cancer cells and their progress by involving with its aberrantly 

activated form at the embryonic developmental stage of healthy liver cells which result in 

stem cell growth and promotion recruiting tumorigenic liver cells derivation (Della Corte 

et al., 2017). From the telomere perspective, Zeng et al. expressed that in order to retain 

the length of telomere, high levels of telomerase enzyme have been found in many cancers 

due to the short length form of telomere is detected in carcinogenesis (Nault, Ningarhari, 

Rebouissou, & Zucman-Rossi, 2019); as a result, both length is hazardous in the context 

of hepatocarcinoma (Zeng et al., 2017). 
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4.5  Most Significant Nodes in Sorafenib-Related Multiple Reconstructed  

 Hepatocarcinoma Networks 

 

To observe the importance of the nodes in Sorafenib-related multiple reconstructed 

networks, and compare similarities/differences between the networks, the most significant 

nodes based on the value of betweenness centrality are shown in Table 4.7.  In Table 4.7, 

top 10 ranking genes are listed in descending order according to centrality value 

(betweenness centrality) with their correspondent known cellular compartments and 

functions in Sorafenib-related multiple reconstructed networks for both hepatoma cell 

lines. Some of the genes can be detected multiple times in the reconstructed networks.   

As shown in Figure 4.29, top 10 Huh7 genes in a single treatment of Sorafenib are resulted 

in very essential parental term categories, namely metabolism of proteins and RNA, 

developmental biology, infectious disease, and metabolism events. Combined treatment 

of Sorafenib and Akti-2 displays a similar enrichment pattern with Sorafenib-treated 

reconstructed network. In addition to these enrichment terms, co-treatment of Sorafenib 

and Akti-2 network is resulted in signal transduction (specifically, mTOR signalling and 

mTORC1-mediated signalling), and specific stress-related processes, including cellular 

response to heat stress. Apart from the previous networks, the combination of Sorafenib 

and PI3kiα is enriched in metabolism of proteins (in particular, chaperonin-mediated 

protein folding). Huh7 cells treated with this combination demonstrate disparate 

biological characteristic signature than other Sorafenib-treated multiple Huh7 networks.  

mTOR, a Ser/Thr kinase, regulates several crucial cellular aspects, namely metabolism, 

cell growth, and aging. The atypical kinase is a part of two complexes, mTORC1 and 

mTORC2, respectively (Saxton & Sabatini, 2017). In the light of RPS6 and mTOR 

interaction reflecting from our inferences of Reactome pathway analysis, Calvisi et al. 

emphasized that RPS6 is a target of mTORC1 and resulting signals of the targets induce 

lipogenesis in HCC cells. Subsequently, the proteins involved in lipogenesis promotes 

mTOR-mediated cell growth in hepatoma cells (Calvisi et al., 2011). 

As shown in Figure 4.30, top 10 Mahlavu genes in a single treatment of Sorafenib are 

resulted in 164 Reactome pathway enrichment terms (within FDR ≤ 0.05). As its number 

implies, there are many enriched terms. Notch and Wnt signalling have more Reactome 

sub-pathway terminologies in this network. Apart from these crucial pathways, the top 10 

genes provoke enrichment terms such as diseases of signal transduction, MAPK family 

signalling cascades, immune system responses (including cytokine signalings (several 

sub-pathways, IL-1 signaling), and signallings of BCR and TCR). The immune system 

associated signaling pathways are the off-target effects.  

Wnt signalling, a well-known conserved cascade, regulates multiple fundamental 

processes, including cellular differentiation and proliferation, angiogenesis, and stages of 

human embryogenesis (Komiya & Habas, 2008). Further, Wands et al. suggested that Wnt 

signalling dysregulation activates several embryonic development pathways that lead to 

hepatic oncogenesis (Wands & Kim, 2014). Wnt/ß-catenin cascade is known for its role 

in liver cell function and development. Given the enriched terms of Reactome pathway in 
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Figure 4.30, Khalaf and his colleagues have hypothesized that hypoxia and its related term 

pathways (in particular, hypoxia-inducible factors) cause abnormal signalling of Wnt/ß-

catenin (Khalaf et al., 2018). As Bogaerts and her colleagues emphasized that, there is a 

crosstalk between Wnt/ß-catenin and hypoxia that has been validated by the experimental 

results (Bogaerts et al., 2014). 

 

Notch signalling, an evolutionary conserved cascade, modulates several essential 

processes, namely cellular differentiation and proliferation, morphogenesis, stem-cell 

maintenance, and apoptosis (Bogaerts et al., 2014). 4 distinct Notch receptors, 

specifically, Notch1, Notch2, Notch3 and Notch4, are involved in tumorigenesis in 

hepatoma cells (Huang et al., 2019). Of Reactome pathway enrichments associated with 

top ranking genes in a single treatment with Sorafenib, Notch1 and Notch4 involving 

signalling sub-pathways are obtained along with the parent pathway, Notch signalling. 

Huang and his colleagues have emphasized the upregulation of Notch4 receptor in 68% 

of tumorigenic hepatoma cells (Huang et al., 2019). Additionally, Ning and his co-workers 

suggested that the more Notch1 receptor is overexpressed, the more tumorigenic potential 

candidate hepatoma cells become (Ning et al., 2009). 

 

As shown in Figure 4.31, top 10 Mahlavu genes in a combined treatment of Sorafenib and 

Akti-2 are resulted in 79 Reactome pathway enrichment terms (within FDR ≤ 0.05). The 

functional enrichment terms are surprisingly mainly categorized in VEGF signalling, one 

of the notable targets of Sorafenib, ErbB signalling pathway (via EGFR and ErbB-2) and 

immune response. To make it clear, VEGFR2-related term is a Reactome sub-pathway 

that belongs to VEGF signalling. As Gampel and her colleagues suggested that 

KDR/FLK-1 is a gene which encodes VEGFR2 protein (Gampel et al., 2006). At this 

point, the results of the overlapping id of proteins indicate that heatshock family proteins 

(in particular, HSP90 class) and mTOR is a member of the subterm which substantiate no 

targeted gene and VEGF related protein product is observed.  

 

Vascular endothelial growth factor, VEGF, is a metabolically crucial protein that is 

indispensable for the processes of both vascularization and angiogenesis. Of note, 

Angiogenesis is one of the acquired characteristic abilities of the cancerous cells, briefly, 

a hallmark of cancer (Hanahan & Weinberg, 2011). There are 5 types of VEGF ligands, 

namely VEGFA-D and placental growth factor. VEGFR, a Tyrosine kinase receptor, is 

specific for its ligand and 3 major kinds of these receptors are VEGFR1-3 (C. K. Lin et 

al., 2019). In hepatoma cells, the upregulated levels of VEGF expression is detected and 

very high levels of VEGF is marked at metastatic stage (Matsui et al., 2015). Concisely, 

upon stimulation by ligand and its specific VEGF receptor, the process of phosphorylation 

is occurred. As a result, vascular endothelial survival, proliferation and migration are 

constitutively increased (Miettinen, Rikala, Rys, Lasota, & Wang, 2012). At this level, the 

role of Sorafenib is to block the potential activity of VEGFR2 autophosphorylation which 

is intervened by VEGF ligands (Wilhelm et al., 2008).  

Interestingly, top 10 Mahlavu genes in a combined treatment of Sorafenib and PI3Ki-α 

are not resulted in any pathway enrichment terms within our determined FDR cutoff (FDR 

≤ 0.05).  



 

 

Figure 4.29: Enriched terms of top ranking genes in Sorafenib-related multiple Huh7 networks are listed with a previously 

given threshold FDR ≤ 0.05. Thereafter, negative logarithm base 10 was applied to the p-values of the top ranking genes in 

hepatoma cells. The x axis is assigned to the logarithmically adjusted p-values. The color intensity, based on adjusted p-values, 

shows the level of significancy of the corresponding functional enrichments. Gene count refers to the number of genes involved 

in the corresponding Reactome pathway enrichment category. The total number of enriched terms is 35. 
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Figure 4.30: Enriched terms of top ranking genes in Sorafenib-treated Mahlavu network are listed with a previously given threshold FDR ≤ 0.05. Next, negative 

logarithm base 10 was applied to the p-values of the top ranking genes in hepatoma cells. The y axis is assigned to the logarithmically adjusted p-values. The 

color intensity, based on adjusted p-values, depicts the level of significancy of the corresponding functional enrichments. CountofGenes refers to the number of 

genes involved in the corresponding Reactome pathway enrichment category. The total number of enriched terms is 164. 
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Figure 4.31: Enriched terms of top ranking genes in Sorafenib-Akti2 treated Mahlavu network are listed with a previously given threshold FDR ≤ 0.05. 

Afterwards, negative logarithm base 10 was applied to the p-values of the top ranking genes in hepatoma cells. The y axis is assigned to the logarithmically 

adjusted p-values. The color intensity, based on adjusted p-values, depicts the level of significancy of the corresponding functional enrichments. Gene 

count refers to the number of genes involved in the corresponding Reactome pathway enrichment category. The total number of enriched terms is 79.  
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      Name        Centrality        Location                                                          Function 

 

 

 

Sorafenib treated 

Huh7 network 

 

 

RPL10A      0.453268         Unknown                                       Large ribosomal subunit (60S) component 
ASF1B         0.371925        Nucleus                                         Histone deposition, exchange, removal 
EIF5B          0.344495        Cytoplasm                                     Translation initiation 
FBL              0.329647        Nucleolus                                      rRNA processing through methylation 
RPL8            0.287876       Cytoplasm                                     Large ribosomal subunit (60S) component 
HSP90AB1  0.224688        Cytoplasm, Melanosome              Cell cycle control, signal transduction 
YEATS4      0.214638         Nucleus                                        Transcriptional activation by histone acetylation 
RPL37          0.198145        Unknown                                      Binding to 23S rRNA 
MCTS1        0.196373         Cytoplasm                                    Translation initiation 
RPS4X         0.165124        Cytoplasm                                    Small ribosomal subunit (40S) component 

 

 

 

Sorafenib treated 

Mahlavu network 

 

PCNA           0.149277       Nucleus                                         DNA replication 
MED31         0.100637       Nucleus                                         Mediator complex component 
PFDN5          0.093512      Nucleus, Cytoplasm                      Chaperonin-mediated protein folding 
UBA52          0.076544       Ubiquitin: Cytoplasm, nucleus      Chromatin structure maintenance 
HDAC1         0.071903       Nucleus                                         Histone deacetylation 
SUMO1         0.069055       Nucleus, cell membrane              Nuclear transport, DNA replication and repair 
RPL3             0.060503       Nucleolus, cytoplasm                   Large ribosomal subunit (60S) component 
PSMD2         0.060451       Unknown                                      Cell cycle progression, apoptosis, DNA repair 
HSP90B1      0.054777       ER lumen, melanosome                Processing and secreted proteins transportation 
ATP6V1B2   0.050986       Endomembrane system                Acidifying intracellular eukaryotic organelles 

 

 

 

Sorafenib-Akti2 

treated Huh7 

network 

RPS6             0.186896      Unknown                                      Cell growth control 
PSMD4         0.171179       Unknown                                       Maintenance of homeostasis  
HSP90AB1   0.152654       Cytoplasm, Melanosome              Cell cycle control, signal transduction 
NAT10          0.106472       Nucleolus, Midbody                       Acetylation of histone and tRNA  
RPS24           0.103909      Unknown                                       pre-rRNA processing and 40S maturation 
PFDN2          0.093783       Cytoplasm, Mitochondrion            Chaperonin-mediated protein folding 
RPL13A        0.086199       Cytoplasm                                     Repression of inflammatory genes 
RPS14           0.084463      Unknown                                       Small ribosomal subunit (40S) component 
RPF2             0.083967       Nucleolus                                     Large ribosomal subunit (60S) assembly  
MTOR           0.080149       Lysosome, Cytoplasm                  Cellular metabolism regulator, growth, survival 

 

 

 

Sorafenib-Akti2 

treated Mahlavu 

network 

PCNA           0.115123        Nucleus                                       DNA replication 
RPLP0          0.099738        Nucleus, Cytoplasm                    Large ribosomal subunit (60S) component  
HSP90AB1  0.097462         Cytoplasm, Melanosome            Cell cycle control, signal transduction 
MTOR          0.095784         Lysosome, Cytoplasm                Cellular metabolism regulator, growth, survival 
RPL8            0.086992        Cytoplasm                                   Large ribosomal subunit (60S) component 
HSP90AA1  0.081894         Cell Membrane, Melanosome     Cell cycle control, signal transduction 
CCNB1         0.079462        Nucleus,Cytoplasm,centrosome Cell cycle control at G2/M transition 
MED31         0.077753        Nucleus                                       Mediator complex component  
RUVBL2      0.072295         Nucleoplasm, Cytoplasm            ATPase and DNA helicase activities  
UBA52         0.068779         Ubiquitin: Cytoplasm, nucleus    Chromatin structure maintenance 

 

 

 

Sorafenib-PI3Kia 

treated Huh7 

network 

 

POLR2C       0.254899        Nucleus                                      Eukaryotic mRNA synthesis 
RUVBL2      0.252597         Nucleoplasm, Cytoplasm            ATPase and DNA helicase activities  
TUFM           0.237713        Mitochondrion                             Protein translation in mitochondria 
CAD              0.231285        Nucleus, Cytoplasm                   Nucleotide metabolism  
HSP90AB1   0.201812        Cytoplasm, cell membrane         Cell cycle control, signal transduction 
CCT6A         0.195366        Cytoplasm                                   Folding of Actin and Tubulin  
PSMD4         0.173453        Unknown                                    Maintenance of homeostasis 
SUMO1        0.159236        Nucleus, Cell Membrane            Nuclear transport, DNA replication and repair  
POLR1B       0.145165        Nucleolus                                   Transcription of rRNA 
CCT3            0.130216        Cytoplasm                                  Telomere maintenance  

 
 
 

Sorafenib-PI3Kia 

treated Mahlavu 

network 
 

PCNA           0.102494        Nucleus                                       DNA replication 
NARS           0.090176        Cytoplasm                                   tRNA aminoacylation 
ASF1A          0.085435        Nucleus                                       Histone deposition, exchange, removal 
POLR2B       0.071666        Nucleus                                       mRNA and many non-coding RNAs synthesis 
RPLP0          0.063374        Nucleus, Cytoplasm                    Large ribosomal subunit (60S) component 
HSP90AB1   0.060987        Cytoplasm, Nucleus                    Cell cycle control, signal transduction 
ABCE1         0.058507        Cytoplasm, Mitochondrion           Block activity of Ribonuclease L. 
USP14          0.048995        Cytoplasm, Cell membrane         Deubiquitination 
SUMO1        0.048832         Cell membrane, nucleus             Nuclear transport, DNA replication and repair  
TADA2A        0.046475        Nucleus, chromosome                Chromatin remodelling 

 

  

Table 4.7: Top ranking genes in Sorafenib-related multiple networks of both cell line with their corresponding 

subcellular localizations, functions and centrality values. Centrality refers to the betweenness centrality. 
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CHAPTER 5 

 

45. CONCLUSION 

5.1     Concluding Remarks 

In this thesis study, we focused on elucidating the hidden significant molecular targets or 

modulators in hepatocarcinoma networks which were treated with multiple molecular 

targeted agents by inferring the dysregulation of the Interactome. In other words, we 

revealed the mechanism of action of molecular targeted therapeutic agents in the context 

of multiple different hepatoma networks beyond the list of genes. Toward this purpose, 

we reconstructed 18 hepatocarcinoma networks treated with distinct molecular targeted 

agents to develop a further understanding of the gene perturbation level and compared the 

significantly enriched biological responses predominantly in the aspects of cellular state.  

Acquired resistance to Sorafenib in hepatocarcinoma, the parallel alternative 

PI3K/AKT/mTOR signaling pathway, its high alteration rate (~51%), and the unchanged 

survival ratio of hepatoma leads to designing a molecular targeted therapy in which 

targeted therapeutic agents with the combination of well-known multi-kinase inhibitor 

Sorafenib are imperatively needed. For this purpose, small molecular agents which were 

targeting the cascade of PI3K/AKT/mTOR, namely pan-PI3K inhibitors, isoform-specific 

PI3K inhibitor, and isoform-specific or non-specific AKT inhibitors, and mTOR inhibitor 

were analyzed in two distinct hepatoma cell lines that have a differential PI3K/AKT 

cascade behavior. Huh7 cell line has normoactive pathway. On the other hand, due to 

tumor suppressor PTEN deletion, Mahlavu cell line has a hyperactive pathway. In addition 

to the small compound inhibitors, Sorafenib targets multiple kinases. In this study, 

Raf/MEK/ERK pathway was targeted by Sorafenib (primarily inhibiting Raf kinase), and 

VEGFR and PDGFR were also inhibited by Sorafenib that targeting cellular growth, 

proliferation and angiogenesis (Figure 3.2). From pharmacology-based targeted therapy 

perspective, it is indispensable to understand the underlying mechanism how Sorafenib 

and PI3K/AKT/mTOR pathway inhibitors act at signaling level, and further increasing the 

efficiency of Sorafenib by combined treatments and also to elucidate the off-target effects 

of multiple molecular targeted agents or combination of them.   

We used DeMAND network modelling algorithm developed by Califano Lab to compare 

GEPs (from CanSyL dataset) and assesses the alteration in the individual interactions from 

STRING (Interactome). DeMAND searches for the mechanism of action of the agents in 

a network context as an alternative to differential gene expression analysis. It integrates 



84 

 

the possible interactions between each entity using a reference interactome to obtain an 

analysis beyond a gene list. The required steps to have a final optimized reconstructed 

network and the needed additional filtering were detailed in the pipeline (Figure 3.1). 

Experimentally validated PPI obtained from STRING v9.1, although it is a non-context 

specific network, are used to clearly observe the signaling pathways that are involved in 

HCC. By choosing STRING interactome, both direct and indirect targets in the signaling 

pathways can be easily detected. Thereafter, we reconstructed 18 molecular targeted 

specific networks from each GEP. Each gene and interaction within these networks have 

a significant value that corresponds how strongly these genes are affected from the 

chemical network perturbation. Each distinct reconstructed network had a different 

number of genes and interactions (Tables 4.1 and 4.2). In Table 4.1, first two columns 

(except the name of the targeted agents) that indicate the number of reconstructed nodes 

and edges are the solely results of DeMAND. The average number of nodes and edges are 

about 1300 and 1900. The vast amount of the calculated KLD.p values is equal to 1; hence, 

we set specific thresholds to eliminate the least significant and insignificant results in the 

reconstructed networks. In Table 4.2, undirected reconstructed networks with the 

corresponding filtered numbers of nodes and edges are specified. CTNNB1 and GSK3B 

which are famous hepatoma mutations are detected in some of the reconstructed HCC 

networks (e.g., Figures 4.6 and 4.7). CTNNB1 is detected in 26% HCC tumors and both 

mutations are associated with Wnt signalling cascade. 

 

To find out whether our reconstructed networks are specific to the perturbations of drugs, 

small molecule inhibitors or their combination, the literature and obtained targets of 

molecular targeted therapeutic agents in our hepatocarcinoma networks are examined 

individually (Tables 4.3 and 4.4). Obtained targets validate on-target and off-target effects 

in the reconstructed networks. MCM proteins are determined as indirect targets. Off-target 

effects are obtained from ATM and ATR (regulators of damage of DNA) through MCM 

complex subunits which reveal the subunit-related mechanism of action, as well. Both 

ATM and ATR genes are associated with p53 signaling pathway.  

Additionally, since our molecular targeted agents were inhibitors, we did not expect to 

detect their direct targets in the reconstructed networks. For this reason, we also checked 

the first degree neighbors of the nodes to check the presence of the targets. Most of the 

primary targets were not observed in the networks except only one target in LY294002 

agent treated Mahlavu network, PI3Ki-α treated networks of both cell lines, Wortmannin 

agent treated Huh7 network, Rapamycin treated Huh7 network. Both PI3Ki-α and 

Rapamycin are used at very low doses; such that, whether the doses are increased (for 

instance, up to the dose of Sorafenib), we will probably not observe the direct targets in 

the reconstructed networks. Another perspective is that, although PI3Ki-α is used at very 

low doses (0.1 µM), it demonstrates an effective behavior as our conclusion. Its 

combination treatment with multikinase inhibitor Sorafenib works more effectively, 

suggesting that more potential promising targeted agent treatment in hepatocarcinoma. 

DeMAND reveals not only mechanism of action but drug similarity, as well. Co-treatment 

of Sorafenib and Akti-2 displays similar enrichment patterns with Sorafenib-treated 

reconstructed network for Huh7 cell line (e.g., Figure 4.29). RPS6 is a major downstream 
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target of mTORC1 in hepatoma. For the suggested mechanism of action, AKT-mTORC1-

RPS6 is detected which promotes lipogenesis. 

 

After performing overlapping genes analyses, to specifically determine common 

characteristics between Sorafenib-related multiple networks and to identify MoA of 

molecular targeted therapeutic agents in both HCC cells, we figured out that protein 

folding through chaperone-mediated activity is interfered with our well-known 

multikinase inhibitor, Sorafenib in Huh7 cell line (Figures 4.19 - 4.23). We listed the 

common genes in Sorafenib-related multiple reconstructed networks by DeMAND (Table 

4.5). As a literature evidenced support of this association between Sorafenib and protein 

folding through chaperone-mediated activity revealed by DeMAND, Sauzay and her 

colleagues deduced a closer inference in our context (Sauzay et al., 2018).  

 

In the aspect of overlapping genes analyses for Mahlavu cell line, we deciphered that the 

regulation of autophagy (through cellular responses to external stimuli) is potentially 

interfered with our molecular targeted agent, Sorafenib (Figures 4.24 - 4.28). It is based 

on DeMAND’s elucidating discovery for the first time in Mahlavu cells. Yazdani et al. 

and Dominguez et al. suggested the connection between Sorafenib and regulation of 

autophagy with a similar resulting outcome in hepatocarcinoma cell lines (but not 

including Mahlavu cells) (Prieto-Domínguez et al., 2016; Yazdani et al., 2019). Mutual 

genes in Sorafenib-related multiple reconstructed networks by DeMAND are listed (Table 

4.6).  

 

Another overlapping genes analyses for Mahlavu cell line, we suggested that processes of 

ATPase associated events involved in transport activity are potentially intensified with 

our multikinase inhibitor agent, Sorafenib (Figures 4.24 - 4.28). As a literature support of 

this relation between Sorafenib and processes of ATPase associated events involved in 

transport activity revealed by DeMAND, Jiang et al., emphasized that this pump’s 

aberrant activity in several cancers. Sodium-potassium pump inclusion is constitutively 

increasing in many cancers (Jiang et al., 2018). It is again based on the elucidating 

potential discovery of DeMAND for the first time in Mahlavu cells and needs more 

considerable supporting information from HCC clinical studies. HSP90AB1 (heat-shock 

protein) and ATP6V1A (V-type ATPase) are the common overlapping genes detected in 

both hepatoma cell lines. HSP90AB1 is a molecular chaperone protein.  

 

5.2     Future Perspectives 

For targeted therapy approach, we may combine multiple different agents together. In 

this study, we mostly analyzed PI3Ki-α and Akti-2 inhibitors, combination with 

Sorafenib. Whether we add one more agent, associated with mTOR; three agents in 

combined form will be together for more highly efficient molecular targeted therapy. 

From our inferences, mTOR or related TOR complex proteins, are involved in several 

different enrichment categorical terms more often than any other target. Therefore, new 

agent might be dual PI3K/mTOR inhibitors or mTOR inhibitor agent.  
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Recent studies have demonstrated that histone deacetylase promote hepatocarcinoma by 

mis-acetylation of histone proteins  (Freese et al., 2019; Y. Li et al., 2019) in Huh7 cells. 

Such that, we may apply to use histone deacetylase inhibitors (HDACi) for our next step 

(based on our significant results of associated with histone deacetylases). In other words, 

epigenomics data may be integrated into our future network studies in HCC.  

 

Additionally, microRNA biogenesis, our significantly found functional terminology in 

co-treatment of Sorafenib and PI3kiα network, Bai et al. have highlighted that 

microRNAs are included in hepatocarcinogenesis promotion in a very recent study (Bai, 

Gao, Du, Yang, & Zhang, 2019). We may consider about using microRNA inhibitors to 

obtain the outcomes of targeted therapy elaborately and comprehensive understanding. 

 

For more extensive research, we may consider integrating the mutation data related to 

hepatocarcinoma associated with our work and subsequently reveal the mechanism of 

action via network-based molecular targeted therapeutic agent transcriptomics.  
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Figure A.1: Visual network image of the clustered version of Akti-1-2 treated Huh7 network. Total number of nodes in this network is 334, also the 

number of edges is 778. The network is divided into 14 distinct clusters.   
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Figure A.2: Visual illustration of the clustered version of LY294002 treated Huh7 network. The network is separated into 14 distinct clusters. Total 

number of nodes in this network is 505, also the number of edges is 1298. 
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Figure A.3: Visual depicted network illustration of the clustered version of Rapamycin treated Huh7 network. Total number of nodes in this network 

is 431, also the number of edges is 904. The network is separated into 14 distinct clusters.   
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Figure A.4: Visual depicted representation of the clustered version of Wortmannin treated Huh7 network. Total number of nodes in this network is 

383, also the number of edges is 797. The network is separated into 13 distinct clusters. 
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Figure A.5: Visual representational image of the clustered version of LY294002 treated Mahlavu network. Total number of nodes in this network is 287, and the 

number of edges is 539, as well. The network is grouped into 11 different clusters.   
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Figure A.6: Visual representational figure of the clustered version of Akti-1-2 treated Mahlavu network. The network is separated into 13 different 

clusters. Total number of nodes in this network is 402, and the number of edges is 943.  
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Figure A.7: Visual representation of the clustered version of Rapamycin treated Mahlavu network. Total number of nodes in this network is 259, 

and the number of edges is 532, as well. The network is divided into 9 different clusters.   
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Figure A.8: Visual depicted representation of the clustered version of Wortmannin treated Mahlavu network. The network is divided into 16 different 

clusters. Total number of nodes in this network is 369, and the number of edges is 809. 
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Figure B.1: GO biological process no redundant overrepresentation enrichment analysis of Mahlavu cell line was performed by WebGestaltR package. Heatmap 

demonstrates enriched biological process terms for each specific reconstructed Mahlavu network. Functional enrichment terms were listed by a given threshold, FDR 

≤ 0.01. Subsequently, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The total number of enriched terms in the heatmap is 182. 
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Figure B.2: GO biological process no redundant overrepresentation enrichment analysis of Huh7 cell line was performed by WebGestaltR package. 
Heatmap demonstrates enriched biological process terms for each specific reconstructed Huh7 network. Functional enrichment terms were listed by a 
given threshold, FDR ≤ 0.01. Next, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The total number of enriched 
terms in this heatmap is 146. 
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Figure B.3: KEGG pathway enrichment analysis of Huh7 cells was performed by WebGestaltR. 

Heatmap demonstrates enriched KEGG pathway terms for each specific reconstructed Huh7 

network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total 

number of enriched terms in this heatmap is 41. Additionally, we took the negative logarithm 

base 10 of FDR values of significantly enriched terms. The color intensity, based on adjusted 

logarithmic scale of FDR values, shows the level of significancy of the corresponding 

functional enrichments. Unless there is any enrichment score for the corresponding specific 

category of KEGG pathway enrichment terms in the network, white color is depicted for this 

purpose in the heatmap. 



110 

 

 
Figure B.4: Heatmap demonstrates enriched KEGG pathway terms for each specific reconstructed 

Mahlavu network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The 

total number of enriched terms in this heatmap is 75. Moreover, we took the negative logarithm base 

10 of FDR values of significantly enriched terms. The color intensity, based on adjusted logarithmic 

scale of FDR values, shows the level of significancy of the corresponding functional enrichments.  
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Figure B.5: GO molecular function no redundant ORA of Huh7 cells was performed by WebGestaltR. 

Heatmap demonstrates enriched molecular function terms for each specific reconstructed Huh7 

network. Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number 

of enriched terms in this heatmap is 55. Afterwards, we took the negative logarithm base 10 of FDR 

values of significantly enriched terms. The color intensity, based on adjusted logarithmic scale of FDR 

values, shows the level of significancy of the corresponding functional enrichments. Unless there is any 

enrichment score for the corresponding specific category of molecular function enrichment terms in the 

network, white color is depicted for this purpose in the heatmap. 
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Figure B.6: GO molecular function no redundant ORA of Mahlavu cells was performed by WebGestaltR. Heatmap 

demonstrates enriched molecular function terms for each specific reconstructed Mahlavu network. Functional 

enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched terms in this heatmap is 

64. Following that, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The color 

intensity, based on adjusted logarithmic scale of FDR values, shows the level of significancy of the corresponding 

functional enrichments. Unless there is any enrichment score for the corresponding specific category of molecular 

function enrichment terms in the network, white color is depicted for this purpose in the heatmap. 
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Figure B.7: GO cellular component no redundant ORA of Huh7 cells was performed by WebGestaltR. 

Heatmap demonstrates enriched cellular component terms for each specific reconstructed Huh7 network. 

Functional enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched 

terms in this heatmap is 50. Further, we took the negative logarithm base 10 of FDR values of 

significantly enriched terms. The color intensity, based on adjusted logarithmic scale of FDR values, 

shows the level of significancy of the corresponding functional enrichments. Unless there is any 

enrichment score for the corresponding specific category of cellular component enrichment terms in the 

network, white color is depicted for this purpose in the heatmap. 
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Figure B.8: GO cellular component no redundant ORA of Mahlavu cells was performed by WebGestaltR. Heatmap 

demonstrates enriched cellular component terms for each specific reconstructed Mahlavu network. Functional 

enrichment terms were listed by a given threshold, FDR ≤ 0.05. The total number of enriched terms in this heatmap is 

47. Furthermore, we took the negative logarithm base 10 of FDR values of significantly enriched terms. The color 

intensity, based on adjusted logarithmic scale of FDR values, shows the level of significancy of the corresponding 

functional enrichments. Unless there is any enrichment score for the corresponding specific category of cellular 

component enrichment terms in the network, white color is depicted for this purpose in the heatmap. 


