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ABSTRACT

MULTI-YEAR TIME SERIES CROP MAPPING

Teke, Mustafa
Ph.D., Department of Information Systems
Supervisor: Prof. Dr. Yasemin Yardimci Cetin

January 2020, 101 pages

Recent automated crop mapping via supervised learning-based methods have
demonstrated unprecedented improvement over classical techniques. However, most crop
mapping studies are limited to same-year crop mapping in which the present year’s labeled
data is used to predict the same year’s crop map. Classification accuracies of these
methods degrade considerably in cross-year mapping. Cross-year crop mapping is more
useful as it allows the prediction of the following years’ crop maps using previously
labeled data. We propose Vector Dynamic Time Warping (VDTW), a novel multi-year
classification approach based on the warping of angular distances between phenological
vectors. The results prove that the proposed VDTW method is robust to temporal and
spectral variations compensating for different farming practices, climate and atmospheric
effects, and measurement errors between years. We also describe a method for
determining the most discriminative time window that allows high classification
accuracies with limited data. We carried out tests of our approach with Landsat 8 time-
series imagery from years 2013 to 2015 for classification of corn and cotton in the Harran
Plain, and corn, cotton, and soybean in the Bismil Plain of Southeastern Turkey. In
addition, VDTW was tested with corn and soybean in Kansas, the US for 2017 and 2018
with the Harmonized Landsat Sentinel data. The VDTW method improved the cross-year
overall accuracies by 3% with fewer training samples compared to other state-of-the-art
approaches including spectral angle mapper (SAM), dynamic time warping (DTW), time-
weighted DTW (TWDTW), random forest (RF), support vector machines (SVM) and
deep long short-term memory (LSTM).

Keywords: time series, crop mapping, phenology, multi-year classification, dynamic
programming



0z

COKLU-YIL ZAMAN SERiSi URUN HARITALAMA

Teke, Mustafa
Doktora, Bilisim Sistemleri Boliimii

Tez Yoneticisi: Prof. Dr. Yasemin Yardimci Cetin

Ocak 2020, 101 sayfa

Son yillarda gelistirilen 6greticili makine 0grenme yontemleri klasik yontemlere gore
benzeri goériilmemis iyilestirme saglamislardir. Ancak, iirin siniflandirma ¢aligmlarinin
¢ogu ayni yila ait verinin yine ayn1 yila ait egitim verisi kullanmaktadir. Bu yontemlerin
farkli yillara ait egitim verisi kullandi1g1 durumlarda siniflandirma sonuglar1 6nemli 6lgiide
diismektedir. Yillar arasi iiriin eslemesi, daha once toplanmis verileri kullanarak sonraki
yillardaki {iriin deseni haritalarin1 tahmin edilmesine izin verdigi i¢in daha kullaniglidir.
Bu c¢aligsmada, fenoloji vektorleri arasindaki acisal mesafeye gore bilkkme gergeklestiren
vektor dinamik zaman biikme algoritmasi gelistirilmistir. Testler, 6nerilen VDTW
yonteminin farkli tarim uygulamalarini, iklim ve atmosferik etkileri ve yillar arasindaki
Olcim hatalarini telafi eden zamansal ve spektral degisimlere karsi giirbiiz oldugunu
gostermektedir. Ayrica, sinirli veri ile yiksek siniflandirma dogruluklarina izin veren
optimal zaman penceresini belirlemek i¢in bir yontem de gelistirilmistir. Testlerde, 2013-
2015 yillar1 arasinda Harran Ovasi’nda pamuk ve misir, Bismil Ovasi’nda misir, pamuk
ve soya fasiilyesi iirlinlerini iceren zaman serisi Landsat 8 uydu goriintiileri kullanilmistir.
Bunun yaninda, 2017 ve 2018 yillarinda ABD, Kansas'taki VDTW misir ve soya
fasulyesini Harmonize Landsat Sentinel (HLS) verileriyle testler gerceklestirildi. VDTW
yontemi, spektral ag1 eslestiricisi (SAM), dinamik zaman biikkme (DTW), zaman agirliklt
DTW (TWDTW), rastgele orman (RF), destek vektor makineleri (SVM) ve derin uzun
kisa siireli bellek (LSTM) dahil olmak iizere diger en basarili yaklasimlara kiyasla daha
az veri kullanarak yillar arast dogruluklar1 %3 iyilestirdi.

Anahtar Sozciikler: zaman serisi, fenoloji, c¢oklu-yil simiflandirma, dinamik
programlama
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CHAPTER 1

INTRODUCTION

The world population has been increasing so that it is expected to be over nine billion
in 2050(United Nations, 2015). Providing the necessary amount of food for the
increasing human population is a significant concern. On the other hand, advanced
agricultural technologies, such as precision agriculture and precision irrigation are
rapidly emerging to optimize water, fertilizers, and pesticides, thereby enabling higher
crop yield. Remote sensing is a critical technology that would enable us to observe the
growth of field crops. Satellite imagery is a standard method to monitor large areas.

Advanced applications, such as precision agriculture or crop yield estimation, require
accurate crop mapping. Early-season crop yield estimates are a vital factor for food
security. Crop maps are also required for statistical purposes to analyze annual changes
in agricultural production. There are a variety of field crops with similar phenologies
and spectral signatures or the same crop may have distinct growing periods due to
climate differences in the same country.

There are various organizations that focus on crop monitoring. Group on Earth
Observation’s (GEO) Global Agriculture Monitoring (GEOGLAM), European
Commission’s Monitoring Agricultural Resources (MARS) Crop yield forecasting
system (MCYFS), USDA Foreign Agriculture Services (FAS), Chinese Cropwatch
System are examples of global crop monitoring systems (Rembold & Maselli, 2006).
Recently, Waldner, et al. (2016) developed a global cropland layer at 250m
resolution(Waldner et al., 2016). Kotera, et al. presented a global cropland and water
index map from time-series MODIS imagery (Kotera, Berberoglu, Nagano, & Cullu,
2015). One of the most notable examples of crop mapping systems is CropScape.
CropScape enables the USDA National Agricultural Statistics Services to map US data
for statistical purposes in collaboration with George Mason University (Han, Yang,
Di, & Mueller, 2012).

European Commission allocates agricultural subsidies under Common Agricultural
Policy to farmers and farming businesses. Land Parcel Identification System is the
basis of the distribution of subsidies that amounted to around €41 billion in 2011
(Jansen, Badea, Milenov, & Moise, 2014). Turkey also maintains an LPIS system:
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Farmer Registration System (Turkish: Cift¢i Kayit Sistemi, CKS). Yearly agricultural
subventions up to $3 billion are distributed through declarations through CKS. Even a
fractional improvement in the LPIS based subvention system could have very high
returns.

Turkey is an ecologically diverse country. Many types of crops are grown in different
regions of the country. Some field crops usually have similar reflectance, while their
phenology and physical structures cause differences in electro-optical systems. A
major tool to differentiate among crops is the use of multi-temporal or time-series
satellite imagery classification. Time-series satellite image classification involves
extracting features defining the growth of the crops, e.g., maximum NDVI or time
between sowing and harvest.

The multi-year classification of crops is conducted in the Harran Plain, Sanliurfa,
Turkey. Corn and cotton are major crops of the Harran Plain (Celik & Giilersoy, 2013).
Corn is planted after the harvest of winter wheat. These crops have similar
phenological periods.

Crop mapping from satellite or aerial data by using remote sensing methods is an
intensely studied area. In our past studies, we considered the use of multispectral,
hyperspectral, and synthetic aperture radar (SAR) in crop classification. The
increasing temporal resolution of earth observation satellites allows us to collect time-
series data: Landsat 8 has a 16-day temporal resolution. On the other hand, recently
launched Sentinel-1(a/b) and Sentinel-2(a/b) satellites will have a 5-day temporal
resolution. The availability of high temporal resolution satellite imagery has enabled
researchers to develop advanced time-series satellite imagery classification
applications.

Field surveys are the most basic method of crop mapping. However, they are expensive
and may not cover all fields (Esetlili et al., 2018). Furthermore, crop field surveying
is prone to human errors (Simsek, Fatih Fehmi ;Teke, Mustafa;Altuntas, 2016). An
effective multi-year crop mapping methodology is required to monitor the status of
crops, verify and monitor subventions, forecast crops, ensure price stability, and obtain
agricultural statistics. Remote sensing is a critical technology that would allow us the
mapping of field crops by using aerial and satellite imagery from various sources and
modalities. Crop mapping methods may use single, multi-temporal and time-series
satellite imagery. These algorithms typically require field data collection for each year
of interest. Hence, they are expensive. Cross-year crop mapping enables the use of
previous field surveys for the present year, thereby reduces the effort needed to
training sample collection.

Governments need to forecast crop yields to feed their population. This task becomes
a challenge for large countries by only using information declared by farmers. Also,
governments and the food industry need to estimate foreign crop yields to plan
international trade. In addition to crop yield estimates, governments support farmers
depending on the type of crop they plant in the farmlands.
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Remote sensing is the primary tool to classify large vegetation areas quickly and
efficiently. However, the capability of discriminating vegetation types with
multispectral imagery is limited.

Phenology is described as the study of periodic plant and animal life cycle events and
how these are influenced by seasonal and interannual variations in climate, as well as
habitat.

The common method to estimate the type of vegetation and crop yield is to use
vegetation phenology computed from time series of remote sensing data. Vegetation
phenology uses multispectral data and detects the existence of vegetation by checking
the value NDVI and other vegetation indices. Vegetation planting, growing and
harvesting times are predicted then results are compared with vegetation phenology
information to classify the crop. However, phenological classification requires
capturing data regularly to monitor the growth of the crop. Continuous acquisition of
images of the same area may not be feasible: due to cloud cover or long revisit time
intervals of the satellites. Also, there may a phenological shift of the same crop due to
the effects of climate, soil, or date of planting.

In this study, it is aimed to develop an efficient cross-year crop mapping algorithm
that uses a limited number of training samples and resistant to annual measurement
and growth variations.

The main contribution of the study is the novel vector distance-based optimal time
warping algorithm: VDTW. VDTW method overcomes difficulties in cross-year crop
classification in which training and test data are selected from different years: spectral
shifts due to changes in illumination at the observation moment and temporal shifts in
growth due to yearly climate variations or farming practices. We simulated different
cases of illumination and growth changes. Furthermore, we tested our methodology in
a multi-year approach in two regions (the Bismil and the Harran Plain) with distinct
cropping practices. The proposed approach requires a lesser number of training
samples compared to other methods; thus, it reduces the costly collection of field data.

In our second contribution, we focused on exploiting crop phenologies to use fewer
and effective image acquisitions. A method that automatically determines the optimal
time window in which crops have discriminative phenological features was developed.
This optimal time windows selection algorithm allows mid-season crop classification
enabling early accurate prediction of crop vyields. In this way, the necessary
precautions for transport, storage as well as price volatility could be taken.

Chapter 1 of the study presents the introduction, the statement of the problem, the
purpose of the study, the significance of the study, research questions, the assumptions,
limitations, delimitations, the definitions of terms, and organization of the study.

Chapter 2 is a review of recent literature.

Chapter 3 provides information on data.



Chapter 4 presents the methodology that will be used in the study, including a
description of the data collection procedures and validation of results.

Chapter 5 is the results and findings of the developed method.

Chapter 6 is a discussion of the conclusions of the study.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

2.1. Analysis of the Literature

We surveyed multi-temporal and time-series crop mapping literature with an emphasis
on cross-year crop mapping. Land use/land cover (LULC) is an extensively studied
research area (Gomez, White, & Wulder, 2016)(R. Congalton et al., 2014)(Garcia-
Mora, Mas, & Hinkley, 2012). Moreover, crop mapping is a sub-research area of
LULC. Multi-temporal and time-series electro-optical satellite imagery were used in
the majority of the studies in crop mapping that we surveyed. Multi-temporal images,
which are less frequently acquired than time-series imagery, were also commonly used
in crop mapping studies.

2.1.1. Phenological and Time Series Vegetation Classification

Twenty-six periodic AVHRR data acquired in the year 1992 of western Great Plains,
USA, is analyzed to classify wheat, milo, corn, fallow and grass by Jakubauskas et al.
(Jakubauskas, Legates, & Kastens, 2002). NDVI time-series information is processed
with Fourier analysis and amplitude, and phase values are obtained. Harmonics (first,
second, etc.) are extracted from the signal. In the study, the stepwise discriminant
analysis is used as a classifier. To measure the classification results of AVHRR data,
labeled land use information of Landsat satellite imagery is downscaled to 1000 m
resolution. They were able to acquire 52% classification accuracy.

Twenty-meter resolution AVIRIS data were collected in May, June, and September
between 1998 and 2002 from California to discriminate spectra of five different
vegetation and impervious surfaces are considered in (Dennison & Roberts, 2003).
Dennison and Roberts address the problem of selecting vegetation as training data at
different seasons for classification and obtaining a unique spectral signature from
multiple observations. To overcome this challenge, they developed end member
average root mean square method (EAR) to select endmembers for multiple spectral
mixture analysis; this method selects a spectral signature from multiple training
samples that were acquired at different seasons. They found out that images with water
surplus were modeled 8-16% better than images with water deficit. Modeled spectra
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are tested for each year: classification accuracy varies between accuracies for soil
water surplus images are between 59% and 90%, while classification accuracies for
soil water deficit images are between 52% and 81%.

Nidamanur and Zbell studied the classification of winter rape with HyMap
hyperspectral imagery (Nidamanuri & Zbell, 2011). In this study, spectral signatures
of crops (winter rape, winter barley, winter rye, alfalfa) which co-exist with winter
rape at four distinct growing seasons. They also collected spectral data with in-situ
measurements to develop spectral libraries. Spectral angle mapper (SAM) and spectral
feature fitting (SFF) methods are used for classification. In their study, they found out
that winter rape has a unique vegetation characteristic while other crops studied have
common less distinct characteristics. They suggest that every vegetation type should
be considered as different cases while characterizing their spectra.

36 10-days MODIS images to classify forest into evergreen, deciduous, and shrubs
(Yu, Zhuang, Chen, & Hou, 2004). In the study, Yui et al. applied the unsupervised
classification to time series analysis of phenology data: the mean NDVI, first- and
second-order amplitude and phase are used to produce unsupervised classification
map.

In (Wardlow, Egbert, & Kastens, 2007), 12-month time series 250m MODIS data for
the state of Kansas are analyzed by using NDVI and EVI indices to find the type of
crops at 2000 crop sites. Alfalfa, corn, sorghum, soybeans, and winter wheat spectra
are analyzed. Wardlow et al. found out that vegetation indices of the crops consisted
of each vegetation general multi-temporal signature. However, there are some minor
differences in the phenology of the crops in some regions, depending on climate and
planting differences. They also found out that most vegetation NDVI and EVI
responses were similar in the growing season, but they began to differ in the
senescence phase of the crops. In (Wardlow et al., 2007), Wardlow and Egbert used
MODIS data to classify alfalfa, corn, sorghum, soybeans, winter wheat, fallow in
Kansas. They used decision trees as a classifier; all classification accuracies are higher
than 84%.
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Figure 1: Change of NDVI values through a year (Wardlow et al., 2007).
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Figure 2: Effect of irrigation on NDVI values, irrigated crops have higher NDVI values(Wardlow et al.,
2007).
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Figure 3: Classification results for nine Agricultural Statistics Districts (ASDs) of the State of
Kansas(Wardlow et al., 2007).

In another study, 12 crop types in Germany using 35 Landsat TM/ETM images
acquired between the years 1987 and 2002 were used imagery are classified by a
spectral and temporal approach (S. Foerster, Kaden, Foerster, & ltzerott, 2012). In the
study, Foerster et al. used a spectral and temporal approach to classify crop types by
using a hierarchical classification method and compared its performance against
maximum likelihood classifier. They also used meteorological information as weather
conditions could accelerate or delay vegetation of crops. This classification is
conducted by using NDVI values acquired at different seasons of the year. A
hierarchical method is used to classify vegetation by first classify vegetation into
coarse groups of summer, winter, and perennial grass/fallow land. In subgroups, a fine
classification is applied by using phenological information: phenological information
obtained by NDVI analysis is matched for classification. However, the study reaches
a lower performance value of 65.7% while the Maximum Likelihood classifier has
72.8% accuracy. The research suggests that timing and the number of image
acquisitions are essential for vegetation classification using phenological information.

12 Landsat scenes from Landsat-5 and Landsat-7, which were acquired at different
dates from 2002 to 2004, are analyzed to classify crops (Soybeans, Corn, Sugarcane,
Pasture, and Riparian forest) in (Leite et al., 2011). Leite et al. deployed Hidden
Markov Models (HMM), where the growth stages are states. Properties of vegetation
are modeled as state transition parameters of the HMM model. Images are segmented
before classification and are used for training and test areas. Classification using HMM
was able to reach 85% average accuracy. Phenological stage (Prepared Soil, Growth
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phase, Adult phase, Post-Harvesting) average accuracy is found to be 81%, and growth
phase accuracy is determined as 55%.

Common reeds and submerged macrophytes which are wetlands vegetation are
classified by using SPOT-5 time series data which was acquired at different times of
the year between 2005 and 2006 in (Davranche, Lefebvre, & Poulin, 2010) by
Davranche et al. In the study, they used near-infrared band between March and June,
the Optimized Soil Adjusted Vegetation Index in December, and the Normalized
Difference Water Index (NDWI) in September for common reeds. Submerged
macrophyte was classified with the shortwave-infrared band in December, the NDWI
of September, the red band in September, and the Simple Ratio index in March. These
vegetation indices and band values are used in classification trees. The accuracy of the
classification is of 98.6% in 2005 and 98.1% in 2006 for common reed, and 86.7% in
2005 and 85.9% in 2006 for submerged macrophytes. They note that with a small
training size (N=25), classification trees are potent tools to discriminate vegetation

types.

Another application of analyzing time-series data is to estimate vegetation area of
winter wheat by using the MODIS Enhanced vegetation index (Y. Pan et al., 2012). In
this study, data belongs to two representative regions in China: one around Tongzhou,
Beijing (TZ), and the other located around Shuyang, Jiangsu (SY). MODIS data are
16-day composite EVI products from September 2006 to June 2007 (for TZ) and
September 2008 to June 2009 (for SY). In the study, Pan et al. developed a Crop
Proportion Phenology Index (CPPI) which expresses time-series MODIS Enhanced
Vegetation Index (EVI) data and area of winter wheat in China. Crop areas which are
needed to determine winter wheat areas for constructing test data are collected by using
high-resolution multispectral sensors (Landsat and SPOT) as MODIS has a very low
resolution. EVI is less susceptible to biases from haze and clouds; however, EVI time-
series information is further filtered by a Savitzky—Golay filter to reduce the effects of
cloud cover and other sources of noise. CPPI is computed from phenological state
change points. Calculate accuracies for two different sites are 90.5% and 93.8%. The
study concludes that the value of EVI and the area of winter wheat are correlated. The
authors conclude CPPI could be applied to further crop types by using a limited
number of training samples.

2.1.2. Time Series Crop Classification

Maus et al. proposed time-weighted dynamic time warping (TWDTW), which is an
improvement over DTW by incorporating time difference between samples as an
additional cost (Maus et al., 2016). TWDTW method has two different time costs:
linear and logistic function-based. TWDTW method improved the cross-year
classification performance compared to the DTW method. In another study, pixel-
based and object-based TWDTW methods were compared with Random Forest (RF)
with Sentinel-2 time series data. Object-based TWDTW acquired comparable results
to the RF method (Belgiu & Csillik, 2018).



Zhong et al. used Landsat TM and ETM+ images of 2006-2010 to classify maize and
soybean in central USA (Zhong, Gong, & Biging, 2014). They developed a phenology-
based multi-year classifier. In addition to phenology, spectral features are used. Images
are first segmented into individual fields. Spectral features are computed from the
mean value of segments. Spectral, phenological, Pheno-spectral, Pheno-index, and
Accu-heat (Accumulated Heat is used). Phenology of crops is extracted from EVI.
Pheno-spectral variables are spectral values at specific phenological transition dates.
Pheno-indices are NDSVI (normalized differential senescent vegetation index
(SWIR1, Red)) and NDTI (normalized difference tillage Index (SWIR1, SWIR2)) at
phenological transition dates (Dates where phenological transitions occur: growing
starts or holds, etc). Values at transition dates are interpolated by using curve fitting
functions. Accumulated heat is a new variable introduced by the study. Accumulated
heat is cumulative of heat values obtained at five different growing periods. Selected
feature groups are used in random forest classifier. Classification performed over the
same year and cross-year data. Several combinations of input variables are compared
in the tests. Phenology based classification shows comparable performance to other
methods that use combined features.

[ Mean same-year accuracy (%) B Mean cross-year accuracy (%)

90.1
89.3 89.4
M 83.3 88.4 g 88.8
88.1 R 26.9 87.7 —

Figure 4: Same Year and Cross Year Accuracies (Zhong et al., 2014)

Geo-parcel based identification of crops using the fusion of high-resolution imagery
and time series medium resolution imagery was proposed in (Y. Yang et al., 2017).
Parcel boundaries were detected by using high-resolution GF-2 (0.8m) imagery. Time
series medium resolution GF-1(16m) and Landsat 8 data were used EV1 phenological
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feature extraction. Phenological metrics extracted from EVI phenology and geo-parcel
information were used as features to Random Forest classifier to obtain 93.72% overall
accuracy.

Massey et al. developed a decision tree based crop classification for commonly grown
crops in the continental USA with 250m resolution MODIS time-series satellite
imagery(Massey et al., 2017). The study was conducted in 12 separate agricultural
economic zones (AEZs). Corn-soybean, wheat-barley, potato, alfalfa, cotton, and rice
were classified; corn was merged with soybean and wheat was merged with barley.
Overall accuracies were higher than 78% for 2001-2014 years.

Thenkabail et al. used spectral matching techniques to AVHRR (Advanced Very High-
Resolution Radiometer) time series data for determination of LULC and irrigated area
classification (Thenkabail, GangadharaRao, Biggs, Krishna, & Turral, 2007).

Mingwei et al. used the Fourier transform of time series NDVI to classify double
cropping in Northern China with MODIS images (Mingwei et al., 2008). Wheat,
Wheat-Maize, Maize, and Cotton are classified. FFT is used for feature extraction from
1%t 2" and 3" harmonics from 8-day MODIS composite images. R? scores for cotton
and maize are 0.84 and 0.72, respectively. While the use of FFT produces positively
correlated results, the FFT method requires full data to operate, which could be
possible for high-temporal resolution satellites such as MODIS.

Time series classification of tobacco fields with CBERS 02B and Landsat TM images
are studied in (Peng, Deng, Cui, Ming, & Shen, 2009). SAM and Maximum Likelihood
Classifier are compared while time series classification with SAM produced higher
classification accuracy: 83.4%.

Time Series RapidEye images are used to classify crops (cotton, rice, corn, winter
wheat, alfalfa, and melons) in Mid-Asia (F Léw, Michel, Dech, & Conrad, 2013).
Seven images were acquired monthly, and a different number of features were used
with the SVM classifier. The use of at least three images was able to produce 85% or
higher classification accuracies.

Son et al. developed a phenology-based time series classification method using
MODIS EVI for rice classification in Vietnam (Son, Chen, Chen, Duc, & Chang,
2013). MODIS images between December 2000 and December 2012 are used in this
study. Empirical Mode Decomposition method is used to extract time-series features.
Single, double, and triple cropped areas with/without irrigation were classified using
this approach. Accuracies were 81.4% for 2002, 80.6% for 2006 and 85.5% for 2012.

Xue et al. used MODIS time-series imagery for LULC (forests, grasslands, water, etc.)
classification (Xue, Du, & Feng, 2014). Phenological features were represented with
the BFAST method. TIMESAT is used phenological feature extraction, DTW is used
for feature selection (remote outliers and select the finest samples), and finally,
ensemble and SVM methods are used for classification to obtain 96.44% overall
accuracy.
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TIMESPEC — A Software Tool for Analyzing Time-Series of Spectral Data is
introduced in (M. Foerster, Welle, Schmidt, Nieland, & Kleinschmit, 2014).
TIMESPEC provides a toolkit for analysis of time-series satellite data. This study also
summarizes toolkits, which could be used in time series satellite data analysis such as
TIMESAT.

Another attempt for time series data processing is SPIRITS (Software for the
Processing and Interpretation of Remotely Sensed Image Time Series) software, which
was supported by the EU and developed by VITO (Eerens et al., 2014).

Integration of low-resolution time-series MODIS data with higher resolution Landsat
TM was used in (Li, Cao, Jia, Zhang, & Dong, 2014). Phenological features were
extracted from MODIS images, while ML classifier is used with Landsat data to
increase classification accuracy from 92.38% (with Landsat only) to 94.67%
(MODIS+Landsat).

Sakamato et al. studied time series corn yield with MODIS data in the U.S. (Sakamoto,
Gitelson, & Arkebauer, 2014). Wide Dynamic Ranged Vegetation Index (WDRVI) is
used with Shape Model Fitting (SMF) for phenological feature extraction. SMF
algorithm is used to detect corn crop for further yield estimation analysis.

Hao et al. compared hybrid classifiers with time-series NDV|1 for crop classification in
North Xinjiang, China (Hao, Wang, & Niu, 2015). Multiple voting (M-voting) and
probabilistic fusion (Pfusion) are the hybrid strategies that were used with Landsat 5
and HJ-1 NDVI data. Random Forest (RF), Support Vector Machine (SVM), and See
5 (C 5.0) are used as single classifiers. Cotton, grape, winter wheat, watermelon,
maize, wheat-maize are classified. Hybrid strategies produced higher classification
rates with low sample size; however, a high number of samples classification results
were similar. Also, OBIA (object-based image analysis) did not improve numerical
results while obtaining a better visual classification.

Spectro-temporal profiles were utilized with NDVI, EVI, and WDRVI using MODIS
imagery to discriminate corn and soybean in Brazil (de Souza, Mercante, Johann,
Lamparelli, & Uribe-Opazo, 2015a). Spatiotemporal profiles obtained from EVI and
WDRVI performed better than using SAM classifier with 80% accuracy. Corn and
soybean have similar phenologies, which make discrimination of these crops difficult.

Landsat-RICE system was developed to identify paddy rice fields by using Landsat
imagery in China (Dong et al., 2015). Time series Landsat imagery between 1986 and
2010 is used with developed phenology-based algorithms, which exploit unique
characteristics of ice to obtain 84-95% accuracy at separate time windows. The
algorithms use rules at certain phenological states.

Pan et al. discussed crop mapping capabilities of China’s HJ-1A/B satellites (Z. Pan
et al., 2015). In their study, phenological feature extraction, data preprocessing, and
data smoothing were applied.
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Pena and Brenning used eight Landsat 8 imagery for fruit classification in Chile (M.
A. Pena & Brenning, 2015). Time series of NDVI, NDWI, and full band (band values)
information is used as features with LDA, RF and SVM classifiers. LDA with full
band time-series performed best, while NDVI performed worst with all classifiers
considered.

Tatsumi et al. studied the classification of time series Landsat 7 ETM+ images in Peru
(Tatsumi, Yamashiki, Torres, & Taipe, 2015). Alfalfa, asparagus, avocado, cotton,
grape, maize, mango, and tomato were classified with the RF classifier resulting in
81% overall accuracy.

Yan and Roy developed improved the Laplacian Eigenmaps (LE) nonlinear DR
algorithms to overcome missing data in time series crop classification: LE-SAM and
LE-SAM-R (Yan & Roy, 2015). Tests were conducted with Landsat WELD data of 3
distinct regions (Texas (cotton, corn, wheat), Kansas (alfalfa, sorghum, wheat, corn),
and South Dakota (hay, sorghum, sunflower, winter wheat, spring wheat)) for various
crops. The dimension of time series data is reduced to five dimensions. The
classification was performed with the Random Forest classifier. While LE-SAM-R
increases classification accuracy, results vary for the same crop in different regions:
Texas (87.8%), Kansas (78.3%), and South Dakota (77.7%).

Zheng et al. used 24 time-series Landsat 5 TM and 7 ETM+ of 2010 for classification
of crops in Phoenix, AZ, U.S. (Zheng, Myint, Thenkabail, & Aggarwal, 2015). The
SVM method was selected as the classifier with random and intelligent sample
selection. Six single crops (alfalfa, cotton, corn, wheat, barley, and potatoes) and three
double crops (barley-cotton, wheat-sorghum, and wheat-cotton) are classified. Overall
accuracy was 86%, while wheat and barley are mixed.

16-day MODIS time-series data of 2001 was used for land use classification(urban,
forest, agriculture) by using a various number of samples in the USA (Shao & Lunetta,
2012). EVI and band-7 (SWIR) are selected as input features of 23 MODIS images
SVM classifier was able to provide higher classification results compared to NN and
CART with a lower number of training samples at 91%.

2.1.3. Time Series Fusion and SAR

A study conducted in the Lombardy region, Italy, demonstrated the use of multi-
temporal SAR and EO images in corn, rice and wheat classification (Fontanelli et al.,
2014). 13 Landsat 8 and 15 Cosmo-SkyMed X-band images of May-December 2013
were used in the study. Time series data stacked together. MLC, EMD and SAM
methods are applied to time series of optical, SAR and optical-SAR data. MLC applied
to optical-SAR data produced the best results at 94%.

Jiao et al. studied object-oriented mapping of wheat, oat, soybean, and canola and
forage using 19 time-series RADARSAT-2 data of 2011 and 2012 in Ontario, Canada
(Jiao et al., 2014). Multi-temporal decompositions in a hierarchical, object-oriented
classification were able to obtain 95% classification accuracy.
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Multi-temporal TerraSSAR-X and RADARSAT-2 images were used for early season
crop classification in Canada (McNairn, Kross, Lapen, Caves, & Shang, 2014).
Accuracies above 90% were able to be obtained with decision tree classifier for corn
at the end of the growing season. However, more images were required for soybean
classification.

Guarini et al. compared 11 HH and 10 VH polarization time series CosmoSky-Med
images of 2014 in Austria to classify carrot, corn, potato, soybean, sugar beet (Guarini,
Bruzzone, Santoni, & Dini, 2015). SVM machine classifier is used as a classifier,
which resulted in higher accuracy with HH, polarized SAR images: 84.50% vs.
81.63%.

Optical and SAR Time Series images are fused for efficient crop identification (Blaes,
Vanhalle, & Defourny, 2005). 15 ERS and RADARSAT and 3 optical images (SPOT
& Landsat ETM+) of 2000 in Belgium are used. Grass, wheat, maize, sugar beet,
barley, and potato are classified. Hierarchical classification with a fusion of temporal
SAR and EO images increased classification performance, a minimum of 5% up to
89%. The hierarchical classification scheme is based on Farmer’s declarations in
which suspicious declarations are processed by using spectral signatures in the first
step. In the second step, MLC is used. The computer-assisted photo interpretation
(CAPI) and in-situ field visits performed for suspected fields.

Multi-temporal and multi-sensor classification of crops (forage, soybean, corn, and
cereal) was proposed by (Shang, McNairn, Champagne, & Jiao, 2008). Classification
of crops in Canada is performed with single Landsat TM optical or SAR images. Use
of at least one electro-optical and SAR images increased classification rates while
further use of multi-temporal imagery let the classification results to be 85% minimum.

Ozdaric1 Ok and Akyiirek developed a method for segment-based classification of
multitemporal Electro-optic and SAR images in Karacabey, Bursa, Turkey (Ok &
Akyurek, 2012). Three Kompsat-2 and three ENVISAT ASAR images acquired in
June, July, and August in 2008. Crops that are classified are corn, grass, rice, sugar
beet, tomato, wheat. Segment based approach produces higher accuracies about 10%
compared to pixel-based approach: 79.18% vs. 88.71%.

Sentinel-1 imagery with phenological sequence patterns was developed for grasslands,
maize, canola, sugar beets, and potatoes mapping in Germany (Bargiel, 2017). PSP
approach outperformed Random Forest and Maximum Likelihood methods.

Veloso et al. combined time-series Sentinel-1 and Sentinel-2 data to generate crop
maps of wheat, rapeseed, maize, soybean, and sunflower in southwest France (Veloso
et al., 2017). Their most significant finding was that the use of VH/VV ratio could be
used for the analysis of biophysical parameters.

2.1.4. Multi-temporal Crop Classification

14



Lucas et al. used eCognition Expert software to classify multi-temporal Landsat ETM+
images of 2001-2002 for land use/land classification (grassland, tree types, soil, water
bodies etc.) (Lucas, Rowlands, Brown, Keyworth, & Bunting, 2007). Four Landsat
images were obtained in March, April, July, and September. Rule-based classification
is performed in four stages. Average accuracy using rule-based classification with
multi-temporal images was 80%.

George Mason University developed the CropScape system for USDA NASS (Han et
al., 2012). Rule-based classification for each region and year from multi-temporal
Landsat and other satellites are used. Rules are manually developed for each region
using RuleQuest and applied by ERDAS Imagine software.

Hemissi et al. conducted a temporal-spectral-spatial classification of Hyperion images
(four 2003, three 2009, two 2010) in Tunisia (Hemissi, Farah, Saheb Ettabaa, &
Solaiman, 2013). Classes that are considered in this study are carex, henne, bare soil,
water, and palm. Multi-temporal spectral data is constructed as a 3D feature space for
spectral signatures. An adopted SOM method is used for classification, which resulted
in 89.46% accuracy.

An object-oriented multi-temporal crop classification methods for four Landsat 7
ETM+ SLC-off images of 2012 in Montana, the USA with random forest classifier
(Long, Lawrence, Greenwood, Marshall, & Miller, 2013). Multi-temporal data is used
to classify cereal, pulse, and other classes. The object-based classification approach
produced higher classification accuracies than pixel-based methods with 85.5%
accuracy.

Conrad et al. investigated the optimum number of imagery acquisitions using
RapidEye imagery in Uzbekistan (Conrad et al., 2014). Crops, which are classified in
this study, are cotton, wheat, rice, maize, alfalfa, sunflower, watermelon. Nine
RapidEye images were acquired in 2009. Mean, and standard deviation of five bands
with NDVI and EV1 values of all nine images were used as features. In their study, the
optimal number of images required for optimal classification is found to be at least
five. The overall accuracy of the Random Forest classifier is 85.7%.

Pena et al. used bi-temporal ASTER images of 2006 in California, the USA, to detect
summer crops with machine learning methods (J. M. Pena et al., 2014). The C4.5
decision tree, logistic regression (LR), support vector machine (SVM) and multilayer
perceptron (MLP) neural network methods were evaluated as single-level and two-
level classifiers: while SVM + SVM classifier performed higher than other classifiers
at 89% accuracy.

Celik et al. used SPOT 6 images of the Harran region from multi-temporal June, July,
and September of for corn and cotton crop classification(Celik, Sertel, & Ustundag,
2015). NDVI obtained from multi-temporal images used object-based classification to
reach 94% classification accuracy.
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CROPCLASS system is a semi-automatic crop classification system, which uses
census parcels (Garcia-Torres, Caballero-Novella, Gomez-Candon, & Pena, 2015).
Decision trees are used with seven multi-temporal GeoEye imagery between April-
October 2010 in Spain. Crops that were considered in the study are broad beans,
chickpeas, citrus orchards, cotton, corn, Mediterranean forest, oat, olive orchards,
poplars grove, potatoes, sunflower, and winter wheat. CROPCLASS system was able
to classify crops at 80.7% accuracy.

Low et al. developed a decision fusion system to classify multi-temporal RapidEye
imagery for crop classification of alfalfa, cotton, fruit trees, rice, wheat, melon (Fabian
Low, Conrad, & Michel, 2015). The decision fusion approach used decision tree (DT),
random forest (RF), support vector machine (SVM), and multilayer perceptron (MLP)
classifiers to increase accuracy by 6%. Final accuracies changes between 64% and
74% at various sites. The authors claimed that their methodology is applicable to other
satellite imagery such as Sentinel-2 and could be used with images acquired at
different years.

2.1.5. Temporal Windows for Phenological Changes

Van Niel and McVicar studied the determination of optimal temporal windows for the
detection of rice, maize, sorghum, and soybeans by using 17 Landsat 7 ETM images.
An iterative multi-temporal classification approach has been developed. The use of
multiple images at different temporal windows for each crop increased classification
accuracy up to 95.8% compared to 89.4% of single date imagery (Niel & McVicar,
2004).

Wavelet-based filter for determining Crop Phenology (WFCP) for rice paddy fields as
proposed by (Sakamoto et al., 2005). EVI time series are obtained from MODIS
images. Data is smoothed before being processed. The Coiflet 4 wavelets were found
to be better in predicting phenological date then Fourier transform and other wavelet
transforms (Daubechies and Symlet)

2.1.6. Spectral Angle Mapper (SAM)

Knight et al. applied the SAM method for LULC classification with MODIS NDVI
time series data (Knight, Lunetta, Ediriwickrema, & Khorram, 2006). Major LULC
classes are Agriculture, Urban, Water, Deciduous Trees, and Coniferous Trees.
Accuracies were between 50-80% with varying ratios of training pixels.

Rembold and Maselli used the SAM method to determine inter-annual crop area
variation (Rembold & Maselli, 2006). Winter wheat areas are estimated from time-
series NDVI of NOAA-AVHRR images at different years. Time series data is
collected in 10-day periods. Data is shifted 1-2 10-day periods. Summer crops, winter
crops, forests,

Yang et al. used the SAM method for classification of crop areas using a single SPOT-
5 image (C. Yang, Everitt, & Murden, 2011). However, ML and SVM methods
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performed better than SAM for crop classification did. Single date imagery could be
effective if the imagery is acquired at a date where the discrimination is higher.

SAM is combined with ML classifier in (Yonezawa, 2007) for LULC classification.
Feature extraction is performed using SAM scores in 3x3 window: Total SAM score
of each pixel’s neighboring is computed by using spectral bands. ML-SAM method
is applied to QuickBird images.

2.1.7. Dynamic Time Warping (DTW)

Petitjean and Weber used Dynamic Time Warping for land cover classification with
46 time-series FORMOSAT-2 images of 2006 (Petitjean & Weber, 2014). Time-series
data were segmented into spatio-temporal regions for optimal classification
performance.

2.1.8. Error Metrics

Niet at al studied the required number of samples (n) for given (p) band images in the
case of multi-temporal images(Van Niel, McVicar, & Datt, 2005). It is determined 2-
4p samples are enough to obtain similar performance of 30p samples using ML
classification of 17 Landsat ETM+ images.

2.1.9. Data Smoothing

Arvor et al. compared smoothing algorithms for time-series MODIS-EVI data for
classification(Arvor, Jonathan, Meirelles, Dubreuil, & Lecerf, 2008). Savitzky-Golay
filtering led to higher classification results to other smoothing methods such as
Weighted Least Squares (WLYS).

Kim et al. compared the effect of Savitzky-Golay filtering in LULC classification of
MODIS data in South Korea (Kim et al., 2014). It was concluded that the use of EVI
with SG filtering produced the highest results.

2.1.10. Studies Regarding South Eastern Anatolia Region of Turkey

Aydogdu et al. studied the aggregation between crop classification and CKS records
using Landsat image classification results(Aydogdu, Akgar, & Cullu, 2005). The
aggregation between CKS and classification results were 85-92%.

Alganci et al. conducted a study in Sanliurfa for land use classification using SPOT 6
imagery(U Alganci, Sertel, Kaya, & BerkUstundag, 2013). The object-based
classification method produced up to 90% classification results for barley, lentil, and
wheat.

Alganci et al. studied multi-resolution pixel and object-based classification methods
for corn and cotton (Ugur Alganci, Sertel, Ozdogan, & Ormeci, 2013). eCognition
software is used for segmentation and segment-based feature extraction. OBC, SVM,
ML, and SAM methods are compared. OBC produced the highest accuracy, while
SVM results are acceptable; on the other hand, ML and SAM results are worst.
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Celik and Giilersoy studied the development of irrigated areas in Harran Plain. They
analyzed crop fields with Landsat imagery between 1984 and 2011(Celik & Giilersoy,
2013).

2.1.11. Ground Truth Error

Carlotto studied the effect of erroneous training data in remote sensing(Carlotto,
2009). The actual performance of classifiers is observed by increasing the number of
samples in the case of erroneous ground truth data. Foody studied the effect of
mislabeled training data with the SVM classifier (Foody, 2015). SVM classification
accuracy was decreased by 8% when training data with 20% mislabel was given. On
the other hand, discriminant analysis was affected by 3.11% by the same amount of
mislabeled data. Recent work made a detailed analysis of class label noise by using
time series data (Pelletier et al., 2017). RF, SVM-RBF and SVM-Linear classifiers
were compared with synthetic and real datasets. The RF classifier is found to be more
robust to low class label noise.

2.1.12. Deep Learning

DL has gained popularity in recent years due to its applications in numerous areas
(Lecun, Bengio, & Hinton, 2015). Deep convolutional neural networks and recurrent
neural nets were applied for crop mapping (Kamilaris & Prenafeta-Boldt, 2018;
Liakos, Busato, Moshou, Pearson, & Bochtis, 2018). DL methods achieved higher
classification accuracies compared to other classification methods such as SVM and
RF (Kussul, Lavreniuk, Skakun, & Shelestov, 2017). However, DL requires a vast
amount of training data and an extensive amount of computing power. The crop-
mapping studies that used DL, mentioned above, were tested with only same-year data,
while the majority of the data were used in training.
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2.2. Phenology Feature Extraction

In this section, vegetation indices that are used to extract phenological features are
presented. Their formulas are given in the form of band names. Vegetation indices
have values in the range of [—1, 1].

2.2.1. Normalized Difference Vegetation Index (NDVI)

NDVI is the most used vegetation index. Chlorophyll pigments in leaves absorb visible
light while the cell structure of the leaf reflects the majority of the light in near-infrared
(NIR) wavelengths. NDVI is formulated as:

NDVI — NIR — Red "
~ NIR + Red

Healthy photosynthetically active vegetation generally has higher NDVI values.
Vegetation has NDVI values of greater than 0.3.

2.2.2. Enhanced Vegetation Index (EVI)

EVI index is an optimized index for detecting vegetation biomass without affecting
canopy (vegetation structure) background noise and atmospheric effects.

The Enhanced Vegetation Index is an improved vegetation index that compensates
canopy cover and atmospheric effects. C1 and C2 are atmospheric terms for red and
blue bands, while L is the canopy background adjustment factor (A. Huete et al., 2002).

— NIR — Red 2
" NIR+ C1 X Red — C2 X Blue + L

L is canopy background adjustment; C1 and C2 are aerosol resistance coefficients.
EVI reduces saturation, atmospheric noise, and background noise. C1=7.5,C2=6
and L =1 are used for Landsat 8(Landsat 8 Surface Reflectance Product Guide v1.2,
2015). While NDVI is chlorophyll sensitive, EVI is more sensitive to vegetation
canopy changes.

2.2.3. Soil Adjusted Vegetation Index (SAVI)

Soil adjusted vegetation index (SAVI) incorporates soil brightness correction factor (L)
defined as 0.5 to accommodate most land cover types (Qi, Chehbouni, Huete, Kerr, &
Sorooshian, 1994). L = 0.5 is selected for Landsat 8 (U.S. Geological Survey, 2017).
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2.2.4. Optimized Soil Adjusted Vegetation Index (SAVI)

Optimized Soil adjusted vegetation index (OSAVI) estimates soil line by using
simulations and experiments (Rondeaux, Steven, & Baret, 1996). Values of soil
variability X was determined experimentally as 0.16.

osavi = N1 — Red (4)
" NIR+ Red+ X

2.2.5. Modified Soil Adjusted Vegetation Index (MSAVI)

Modified Soil Adjusted Vegetation Index replaces L in SAVI with an inductive
function(Qi et al., 1994). Instead of computing the soil line experimentally, MSAVI
computes L value from NIR and Red bands. Soil adjusted vegetation indices aim to
improve the insensitivity of NDVI to canopy cover changes with the addition of soil
line parameters. In this text, MSAVI refers to the second version of MSAVI: MSAVI2.

(2 x NIR + 1- /(2 x NIR + 1)2- 8 x (NIR — Red))
2

MSAVI = ®)

2.2.6. Enhanced Normalized Difference Vegetation Index (ENDVI)
Healthy vegetation reflects NIR and green spectra, mostly because of photosynthesis.

oy NIR + Green — 2 X Blue ©)
" NIR + Green + 2 X Blue

2.2.7. Green Normalized Difference Vegetation Index (GNDVI)

GNDVI replaces NIR band with Red compared to NDVI (Motohka, Nasahara, Oguma,
& Tsuchida, 2010). Healthy vegetation reflects green spectra the most in the visible
range. GNDVI is also useful in RGB imagers where NIR band is not available.

GNDVI = Green — Red @
" Green + Red

2.2.8. Wide Dynamic Range Vegetation Index (WDRVI)

Wide dynamic range vegetation index was developed to remove the weakness of
NDVI when crops reach maturity and excessing LAI values over two NDV| saturates
(Gitelson, 2004). WDRVI achieves a more sensitive crop canopy measurement by
modifying NIR values. WDRVI is more sensitive to changes to canopy cover, which
is useful in precision agriculture applications. WDRVI is defined in equation (8):

WDRV] — a X NIR — Red ®
"~ ax NIR + Red

Where optimal values of a were measured as between 0.1-0.2
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2.3. Summary

A majority of the studies on multi-temporal or time-series satellite imagery crop
classification did not take time into account as a feature and focused on mapping crops
using same-year data for both training and validation. However, multi-year analysis
enables earlier classification of crops based on previous years’ data. Only a limited
number of studies conducted multi-year comparisons such as Zhong et al. used Landsat
TM and ETM+ images of 2006-2010 to classify maize and soybean in central USA
(Zhong et al., 2014). These studies presented classification accuracies where cross-
year results were considerably lower compared to same-year results, and they required
a substantial amount of training samples. Even if cross-year crop mapping eliminated
the necessity of yearly training sample collection, these studies still needed
considerable training data. Again, most studies did not incorporate annual temporal
variations in their studies; one notable exception is the work of (Maus et al., 2016). RF
and SVM were the most used classifiers in crop mapping.

Furthermore, deep learning (DL) methods were considered for cross-year crop
mapping. DL has gained popularity in recent years due to its applications in numerous
areas (Lecun et al., 2015). Deep convolutional neural networks and recurrent neural
nets were applied for crop mapping (Kamilaris & Prenafeta-Bolda, 2018; Liakos et al.,
2018). DL methods achieved higher classification accuracies compared to other
classification methods such as SVM and RF (Kussul et al., 2017). However, DL
requires a vast amount of training data and an extensive amount of computing power.
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CHAPTER 3

DATA

3.1. Study Areas

In this study, the VDTW method in three different regions: The Harran Plain and The
Bismil Plain in Turkey and Kansas, USA. The Harran and The Bismil Plain are located
in the South East of Turkey. The locations of the Harran Plain (blue) and the Bismil
Plain are shown in Figure 5. The region has a Mediterranean climate with about 400-
450mm vyearly rainfall, according to the General Directorate of Meteorology of
Turkey.

In this study, two separate areas are selected in Southern Anatolia Region of Turkey:
The Harran Plain and The Bismil Plain

Bismil County is around the Tigris River. Wheat, corn, and cotton are grown in both

regions. In addition to these crops, Soybean is grown after winter wheat in the Bismil
Plain.
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Figure 5: The Harran and The Bismil Plains are depicted in Turkey.
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Figure 6: The Harran and The Bismil Plains are shown in detail.
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Figure 7: The Kansas dataset is depicted.

3.1.1. The Harran Plain

The Harran Plain is located in the South East of Turkey. The locations of the Harran
Plain (blue) and the Bismil Plain are shown in Figure 1. The region has a
Mediterranean climate with about 400-450mm yearly rainfall according to the General
Directorate of Meteorology of Turkey.

3.1.2. The Bismil Plain

The Bismil dataset covers the Bismil Plain around Bismil city in Diyarbakir County.
Bismil city is located along the Tigris River. The area extends next to the border
between Batman and Diyarbakir counties. Corn, cotton and soybean are the crops in
this dataset.

3.1.3. Kansas

The Kansas dataset covers the North Eastern part of Kansas State. The test area is
selected as the overlap of Landsat 8 Path 28/Row 33 and Path 27/Row33 tiles also
fully covered by a Sentinel-2 tile. The Kansas data set extends on Brown, Jackson,
Nemaha, Shawnee, Pottawatomie, and Wabaunsee counties. Major crops in the region
are corn and soybean.
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3.2. Satellite Data

3.2.1. Landsat 8

Landsat 8 was launched on February 11, 2013. Landsat 8 has two sensors: the
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The temporal
resolution is 15-16 days. Swath width 183 km.

Landsat 8 satellite images are being used as primary test data for the study. Landsat 8
has 8 spectral bands. Launched in February 2013 provides images with 16 days of
revisit time.

Landsat 8 data were converted to surface reflectance by the U.S. Geological Survey
(USGS)(Landsat 8 Surface Reflectance Product Guide v1.2, 2015). Harmonized
Landsat Sentinel data were used for the Kansas dataset.

Comparison of Landsat 7 and 8 bands with Sentinel-2
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Figure 8: Landsat 7, Landsat 8 and Sentinel-2 Bands Source:

http://landsat.usgs.gov/L8 band combos.php.
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Table 1; Landsat 8 satellite spectral information.

Bands

Central wavelength
(nm)

Bandwidth (nm)

Spatial resolution

(m)

Band 1 - Coastal
aerosol

Band 2 - Blue
Band 3 - Green
Band 4 - Red

Band 5 - Near
Infrared (NIR)

Band 6 - SWIR 1
Band 7 - SWIR 2

Band 8 -
Panchromatic

Band 9 - Cirrus

443
483
560
660

865
1650
2220

640
1375

20
65
75
50

40
100
200

180
30

30
30
30
30

30
30
30

15
30

The imagery of the Harran Plain is from early June to the end of October. Twenty
images from 2013, 19 images from 2014 and 20 images from 2015 are used. Imagery
acquisition details for the Harran Plain are presented in Figure 9 and Table 2.
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Figure 9: Landsat 8 imagery Harran dataset acquisitions.
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Table 2: Landsat 8 imagery Harran dataset acquisitions DoY and date information.

2013 2014 2015
DoY Date DoY Date DoY Date
156 04/06 158 07/06 161 10/06
162 11/06 165 14/06 168 16/06
171 20/06 174 23/06 177 26/06
178 27/06 181 30/06 184 03/07
187 06/07 190 09/07 193 12/07
194 13/07 197 16/07 200 19/07
203 22/07 206 25/07 209 28/07
210 29/07 213 01/08 216 04/08
219 07/08 222 10/08 225 13/08
226 14/08 229 17/08 232 20/08
235 23/08 238 26/08 241 29/08
242 30/08 245 02/09 248 05/09
251 08/09 254 11/09 257 14/09
258 15/09 261 18/09 264 21/09
267 24/09 270 27/09 273 30/09
274 01/10 277 04/10 280 07/10
283 10/10 - - 289 16/10
290 17/10 293 20/10 296 23/10
299 26/10 302 29/10 305 01/11
306 02/11 309 05/11 312 08/11

Nine of images from the Harran dataset in 2013 are shown in Figure 10 as true-color
and in Figure 11 as NIR false-color.
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Figure 10: Landsat 8 Harran Images, 2013.
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Figure 11: Landsat 8 Harran NIR false-color images, 2013.
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The images, which are used for the Bismil Plain, are from April to November. Bismil
dataset has 21 images in 2013 and 2014, and 19 images in 2015. The detailed
information regarding images of each year is presented in Figure 12 and Table 3.

2013 m2014 #2015
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$ B & \0 X"Q xé \0 o R R P QO S
S N & \v\gv%v\% %b% DA

Figure 12: Landsat 8 Bismil dataset imagery acquisitions.
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Table 3: Bismil dataset imagery dates DoY and date information .

2013 2014 2015
DoY Date DoY Date DoY Date
116 26/04 - - 122 02/05
123 03/05 - - - -
- - 135 15/05 138 18/05
139 19/05 - - 145 25/05
148 28/05 151 31/05 - -
155 04/06 158 07/06 161 10/06
164 13/06 167 16/06 170 19/06
171 20/06 174 23/06 177 26/06
180 29/06 183 02/07 186 05/07
187 06/07 190 09/07 193 12/07
196 15/07 199 18/07 202 21/07
203 22/07 206 25/07 209 28/07
212 31/07 215 03/08 218 06/08
219 07/08 221 10/08 225 13/08
228 16/08 231 19/08 234 22/08
235 23/08 - - 241 29/08
244 01/09 247 04/09 - -
251 08/09 254 11/09 257 14/09
260 17/09 263 20/09 266 23/09
267 24/09 270 27/09 - -
- - 279 06/10 282 09/10
283 10/10 287 14/10 289 16/10
- - 295 22/10 - -
302 29/10 305 01/11
308 04/11 311 07/11 - -
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Figure 13: Landsat 8 Bismil true color images, 2013.
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Figure 14: Landsat 8 Bismil NIR false color images, 2013.
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3.2.2. Sentinel-2

Sentinel-2A was launched on 23" June 2015, and Sentinel-2B was launched on 7"
March 2015. Both satellites have combined 5-day revisit time. Sentinel-2 satellites also
provide higher resolution 10-meter imagery compared to Landsat 8 satellite.

Table 4: Sentinel-2 a/b satellites spectral information.

Sentinel-2A Sentinel-2B
Sentinel-2bands ~ Central o iy Central g dwidtn  SPatal
wavelength (nm) wavelength (nm) resolution

(nm) (nm) (m)
Band 1 - Coastal 442.7 21 442.2 21 60
aerosol
Band 2 — Blue 492.4 66 492.1 66 10
Band 3 — Green 559.8 36 559 36 10
Band 4 — Red 664.6 31 664.9 31 10
Band 5 — 7041 15 703.8 16 20
Vegetation red edge
Band 6 — Vegetation 740.5 15 739.1 15 20
red edge
Band 7 — Vegetation 782.8 20 779.7 20 20
red edge
Band 8 — NIR 832.8 106 832.9 106 10
Band 8A —Narrow NIR  864.7 21 864 22 20
Band 9 — Water vapour  945.1 20 943.2 21 60
Band 10 - SWIR - 13735 31 1376.9 30 60
Cirrus
Band 11 - SWIR 1613.7 91 1610.4 94 20
Band 12 - SWIR 2202.4 175 2185.7 185 20
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Harmonized Landsat 8 and Sentinel-2 (c) data were employed for the Kansas dataset.
HLS Project aimed at merging Sentinel-2 data to Landsat 8 data. Thus, Sentinel-2
bands were resampled and radiometrically translated. Processing steps are described
in Figure 15.

Sentinel-2 Processing Landsat-8 Processing
Sentinel-2 MSI (L1C) Landsat-8 OLI (L1)
Y Y Y

Atmospheric Correction and Cloud Masking

X Y Y

Spatial Coregistration

BRDF normalization

Band Pass Adjustment

\d L4
$10 $30 L30
(MSI SR 10m) (MSI NBAR 30m) (OLI NBAR 30m)

Y A J

Temporal compositing

Y
M30
(10-day NBAR 30m)

Figure 15: Landsat 8 and Sentinel-2 data harmonization steps.

The HLS data enabled more cloud-free data acquisitions. The Kansas data set has 20
images (15 Landsat 8 and seven Sentinel-2) in 2017 and 22 (five Sentinel-2 and 17
Landsat 8) images in 2018 as shown in Figure 16 and Table 5. Harmonized Landsat
Sentinel project resamples Sentinel-2 imagery in to match Landsat 8 in spatial and
spectral properties(Claverie et al., 2018).
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Figure 16: Landsat 8 and Sentinel-2 Kansas dataset imagery acquisition dates in 2017 and 2018.

Table 5: Kansas Imagery Dates with DoY, date and satellite information.

2013 2014
DoY Date Satellite DoY Date Satellite
126 06/05 L8 125 05/05 S2
133 13/05 L8 130 10/05 S2
149 29/05 L8 152 01/06 L8
158 07/06 L8 165 14/06 S2
160 09/06 S2 168 17/06 L8
180 29/06 S2 180 29/06 S2
190 09/07 L8 185 04/07 S2
197 16/07 L8 190 09/07 S2
200 19/07 S2 193 12/07 L8
206 25/07 L8 200 19/07 S2
215 03/08 S2 215 03/08 S2
222 10/08 L8 220 08/08 S2
229 17/08 L8 230 18/08 S2
235 23/08 S2 241 29/08 L8
245 02/09 L8 255 12/09 S2
254 11/09 L8 257 14/09 L8
260 17/09 S2
265 2209 S2
270 27/09 S2
275 02/10 S2 275 02/10 S2
280 07/10 S2
286 13/10 L8 290 17/10 S2
295 22/10 L8 295 22/10 S2
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True-color and false-color HLS data are shown in Figure 17 and Figure 18,
respectively. Sentinel-2 frames are full data frames while Landsat 8 frames partially
cover the region.

Figure 17: Kansas Dataset 2018 true-color imagery.

Figure 18: Kansas Dataset 2018 false-color imagery.
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3.3. Crops of Interest

Major summer crops of the Harran Plain are corn and cotton. Cotton is the first product,
and corn is grown as the second product after winter wheat. Corn is grown after winter
wheat. Both corn and cotton have similar phenological periods, which makes the
classification of these crops challenging.

On the other hand, both Corn and cotton are primary products in Bismil. Both crops
have distinct phenological periods. Soybean in the area is grown after winter wheat.

Kansas dataset contains corn and soybean as this region is part of the Corn Belt.
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Figure 19: Harran, Bismil, and Kansas crop calendars.
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3.4. Ground Truth

Ground truth preparation is crucial and needs utmost care. In this section, details of
ground truth preparation will be explained.

The ground truth of the Harran and Bismil datasets are based on the Ministry of
Agriculture and Forestry’s National Registry of Farmers (NRF, Turkish: Cift¢i Kayit
Sistemi, CKS) for Turkey. In the NRF, farmers declare the crops that they will grow
in order to apply for government agricultural subsidies (Yomralioglu, Inan, Aydinoglu,
& Uzun, 2009). On the other hand, the ground truth of the Kansas dataset is based on
USDA NASS’s the Cropland Data Layer (CDL). The CDL data was created based on
USDA’s Farm Services Agency (FSA) Common Land Unit (CLU) data.

The NRF contains vectors of agricultural fields. Regarding the GT, census data was
used as the baseline: the declaration from the National Registry of Farmers. In the case
of the Kansas dataset, CLU 2008 was used data as field boundaries.

The median vegetation index (V1) time-series vector data of each field is assigned as
a sample in the tests. A summary of the characteristics the Harran Dataset is presented
in Table 6, The Bismil dataset is presented in Table 7, and the Kansas dataset is
depicted in Table 8.

The majority of the crops in the Harran dataset are cotton about 80%. On the other
hand, corn is the major crop in the Bismil dataset. The ratio of soybean is very low in
the Bismil dataset. Finally, Corn in the Kansas dataset having a 60% ratio against
soybean.

Table 6: Number, percentage distribution, and areas of corn and cotton fields in the Harran dataset in
2013, 2014 and 2015.

#Fields %Samples  Area (ha)

o Corn 1192 21.8 12366
§ Cotton 4285 78.2 43968
Total 5477 56333
< Corn 692 13.2 7321
§ Cotton 4561 86.8 47395
Total 5253 54716
o Corn 517 15.4 5863
§ Cotton 2849 84.6 31094
Total 3366 36957
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Table 7: Number, percentage distribution, and areas of corn, cotton and soybean fields in the Bismil
dataset in 2013, 2014 and 2015.

#Fields %Samples Area (ha)
Corn 674 61.38 8887
® Cotton 347 31.60 3991
& Soybean 77 7.02 238
Total 1098 13116
Corn 721 54.91 11606
S, Cotton 438 33.36 5115
& Soybean 154 11.73 312
Total 1313 17033
Corn 793 64.37 11842
o Cotton 349 28.33 2580
& Soybean 90 7.30 271
Total 1232 14693

Table 8: Number, percentage distribution, and areas of corn and soybean fields in the Kansas dataset in

2017 and 2018.

#Fields %Samples Area (ha)
. Comn 1167 41.66 67952
§ Soybean 4083 58.34 89479
Total 5250 157431
o COM 2307 42.99 71714
§ Soybean 3059 57.01 86913
Total 5366 158627
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CHAPTER 4

METHODOLOGY

4.1. Background

4.1.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique that finds the optimal alignment in
translation and scaling between two time-series data sequences (Miiller 2007) by using
dynamic programming(Bellman, 1966). The sequences are matched in a non-linear
way to measure similarities. DTW method outperformed primary time series
classification methods (Bagnall, Lines, Bostrom, Large, & Keogh, 2017).

DTW uses the dynamic programming approach to find the optimal distance between
two signals, thus determining the similarity between two signals. As the similarity
increases, the distance between signals decreases resulting in lower scores.

Figure 20 shows the alignment of corn and cotton crops. The input signals have a size
of 20 and resulted in optimal warping is performed over 20 dimensions. The similarity
score between these crops is 0.81 by using the Euclidean distance. The optimal
warping path of these corn and cotton samples are displayed in Figure 21. The similar
parts of these signals warped on the diagonal.
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Figure 20: Warping of Two Vegetation Phenologies of corn and cotton having a Euclidean distance of
0.81.
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Figure 21: Computation of optimal warping path between corn and cotton samples
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4.1.2. Spectral Angle Mapper

Spectral angle mapper is a commonly used measure in hyperspectral image analysis
describing the angular distance between two spectra (Kruse et al., 1993). The angle

between two vectors, ﬁ and 0, is computed in radians as
—).é)
o= cos™! _)B—_) 9)

(HRE

SAM is robust to illumination changes so that the effects of yearly climate changes are
reduced. VDTW method is based on a vectoral distance between two samples, which
Is the core of SAM.

4.1.3. Crop Phenology

The phenology of crops is measured by using vegetation indices, which were described
in section 0. Phenology information generated by using the ordering of phenological
observations in time. Due to differences in growing practices and crop conditions,
there were variations in as displayed box plots Figure 22. Variations of different crops
in the Harran Plain is depicted in Figure 23 and Figure 24.
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Figure 22: Variations in MSAVI phenologies of corn and cotton samples in the Harran Plain in 2013.
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Figure 23: Median values of corn and cotton in the Harran dataset in different years.
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Figure 24: Variations in NDVI values of corn and cotton at different years.
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4.1.4. Crop Phenology Indicators

Crop phenology is defined by extracting important transition dates and other critical
phenological indicators. Double logistic(double sigmoid) is used as an efficient
phenology indicator (Zhong et al., 2014) (Zhang et al., 2003).

Double sigmoid is a combination of two sigmoid signals. Several functions could
define a sigmoid. Double hyperbolic function for feature extraction is given below:

f(x) = a + 0.5xb* (tanh(p * (x — Di)) + tanh(q * (x — Dd) (10)
where

e a: minimum NDVI Value

e b: maximum NDVI Value,

e p: the curve of NDVI increase

e Di: center day of increase

e (: the curve of NDVI decrease

e Dd: center day of NDVI decrease

Besides, transition days are used as a function

e D1: Start of NDVI increase
e D2: End of NDVI Increase
e Da3: Start of NDVI Decrease
e D4: End of NDVI Decrease

Features in this representation are used in this study (Figure 25).
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Figure 25: Double sigmoid phenological transition points (Zhong et al., 2014)

4.1.5. Data Smoothing

In this study, time-series data smoothing was applied as a preprocessing step. Savitzky-
Golay filtering, spline fitting, and piecewise curve fitting were compared.
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Non-static observation conditions (such as atmosphere, weather, and sun position) and
changes in crop phenology cause variations in measurements. Comparisons of these
methods are presented as NDV I phenologies, which are expected to resemble a smooth
double logistics function. SG filtering was performed by a second-order polynomial,
and a window size of five samples is presented in Figure 26. The piecewise curve
fitting is displayed in Figure 27. Second-order spline fitting results are shown in Figure
28.

Among these methods, Savitzky-Golay filtering produced smoother phenologies while
other methods produced data that mostly resembled original forms.
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Figure 26: Smoothing of corn and cotton NDVI phenologies by SG filtering.
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Figure 27: Smoothing of corn and cotton NDVI phenologies by piecewise smoothing.
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Figure 28: Smoothing of corn and cotton NDVI phenologies by spline smoothing.
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4.2. Time Series Simulations

Phenological variations of a crop were studied in various experimental settings within
the datasets. For this purpose, crop signatures were simulated to analyze the behavior
of VDTW, DTW, and SAM methods, their advantages, and shortcomings in time
series crop mapping. Shift and scale are simulated in different scenarios. Figure 29
shows the case if sowing dates vary while harvest dates are the same. Figure 31 shows
that crops are sown at the same time, but harvest dates differ. In Figure 33, an extreme
case is shown, where the crop’s both sow and harvest times vary. Figure 35 shows
where growth duration of the crop stays the same, but its sow and harvest time shifts
in time: this simulation corresponds to some growers sowing earlier or later and yearly
climate changes. Both DTW and VDTW similarity scores did not change against
varying sowing and harvesting dates(Figure 32, Figure 34, Figure 36). Figure 37
depicts variances in phenological observation in the growing period. These differences
may be caused by different atmospheric conditions or variations in fields or farming
practices. Finally, an extreme case is displayed in Figure 39, where phenological
variations are observed globally. It was observed that SAM and VDTW methods
obtained similar scores; on the other hand, DTW scores varied based on different
values.

These simulations showed that VDTW is invariant to shifts in time as DTW and
produced near-valued scores as SAM to shifts in values.
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Figure 29: Varying sowing dates simulation.
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Figure 31: Varying harvest dates simulation.
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Figure 32: Varying harvest dates similarity scores.
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Figure 33: Varying sowing and harvest dates simulation.
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Figure 34: Varying sowing and harvest dates similarity scores.
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Figure 35: Varying crop growth in time simulation.
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Figure 37: Offsetting crop growth simulation 1.
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Figure 38: Offsetting crop growth simulation 1 similarity scores
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Figure 39: Offsetting crop growth simulation 2
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Figure 40: Offsetting crop growth simulation 2 similarity scores
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4.3. Vector Dynamic Time Warping Method

Dynamic time warping handles signals, which are shifted or scaled in time. When the
original signal shifted in time, DTW handles shifts in time or change in scale. On the
other hand, depending on the distance metric such as Euclidian distance, differences
in scale or bias of the signal increases scores.

Spectral Angle Mapper (SAM) method was developed to provide robustness w.r.t.
illumination changes in hyperspectral data.

There are two significant findings in the simulations:

1. The growth of the crops shifts in time due to climate and other factors.
2. Observations are dependent on illumination and atmospheric conditions.

While DTW is robust to shifts in time, it is not robust to variations in growth and yearly
illumination changes. DTW uses Euclidian distance. Instead of using Euclidean
distance, it is proposed to utilize spectral angles distances.

Both DTW and SAM have disadvantages while dealing with time series phenological
data. Phenological measurements in crops vary in time, and illumination changes at
different times cause variations in measurements.

A new method is proposed, which is both robust to shift in crop growth and
illumination differences: Vector Dynamic Time Warping (VDTW). While DTW is
based on Euclidean distance d, it is proposed to use angular distance a, as shown in
Figure 41. VDTW computes the optimal warping path of spectral distances between
two phenological observations.

Let c[i] be the corn VI data and d[j] be the cotton VI data, respectively. We generate a
vector signal uj as follows:
— cli] —c[i — 1]

u; = t(l)_t(l_l), i:],2, ..... , n (11)

where t(i) represents the time of the i-th measurement. Similarly, a vector time-series
vjis generated from d[i] VI data.
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Figure 41: Angular distance metric between phenology of two crops at an observation date

The first step in VDTW algorithm is constructing n-by-m distance matrix ¥ whose
elements v; ; is computed as the angle o between E)i EUVi=2,..,n and 71- EV
Vi=2,..,m

Y, ; is computed as follow:

Pi_1j-1 = €O~ ———x il (12)
[ (KA

The accumulated distance matrix is computed from ¥ by computing recursive sum of
distances:

dij=Yij+min{d;_qj_1,di_1)d;j_1} (13)

Computation is subject to following boundary conditions:
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( l/)i,j l=1,]=1
| i
; 2<i<n-1,j=1
di,j_{ LY j
| j
k lpi,k l=1,2<]Sm—1
k=2

(14)

The pseudocode of VDTW is given in Algorithm 1. VDTW algorithm computes a

similarity score between two vectors 4 and V. The same crop type is more likely to
have low scores around 0, meaning high similarity.

Algorithm 1: VDTW Algorithm

1:

O

10:

11:

12:

13:

14:

15:

Let u input vector with size n.

: Let v input vector with size m.
: Let D be an mxn matrix initialised to zero.

: for i in 2 to m do

for j in 2 to n do
Y(i-1, j-1) « acos( ( u(i)*v(i)+u(i-1)*v(i-1) ) / ..

( Tu(d,i-1)[*[v(E, 3-1))

: D(1,1) « ¥(1,1)

: for i 2 to m do

d(i, 1) « ¥(i, 1) + d(i-1, 1)
for j 2 to n do
d (1, j) « (1, J) + d(1, j-1)
for i in 2 to m do
for j in 2 to n do
d(i, j) <« (i, 3) + min( d(i-1,3-1), d(i-1, j), d(i, j-1))

Score «d(m,n)

DTW algorithm constructs a Euclidean cost matrix between data points of signals. The
cost matrix of VDTW is based on vector distances. Another major difference in cost
matrix computation is that two data points are needed to compute the angle between
these points. For this reason, VDTW starts computing the cost matrix starting from the
second data points of signals.

Distance and accumulated distance matrices of DTW and VDTW are compared.
Euclidean distances of NDVI values are ranged between the minimum and maximum
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values of samples, which are compared. The maximum value in the distance DTW
matrix is 0.47 for the crops, which are shown in Figure 42. Regions, where the crops
have close vegetation index values, are shown darker. The Accumulated distance
matrix of VDTW is shown in Figure 43. On the other hand, the maximum normalized
vector distance between two crops, which are shown in Figure 44, is 0.04 radians. The
Accumulated distance map of VDTW is displayed in Figure 45.
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Figure 42: DTW Distance Matrix between corn and cotton in 2013 the Harran Plain.

61



of

40 | .

80 | b

€10¢ ulop

100 - 7

140 F .

0.5 1 T T T T T T T 1
NDVI

20 40 100 120 140

60 80
Cotton 2013

Figure 43: DTW Accumulated Distance Matrix between corn and cotton in 2013 the Harran Plain.
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Figure 44: VDTW Distance Matrix between corn and cotton in 2013 the Harran Plain.
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Plain.

DTW and VDTW are compared with various settings: same year-different crop and
same crop-different year. Warping paths of and warped crops phenologies are shown
in Figure 46, Figure 47, and Figure 48. Top graphics show accumulated distance
matrices. Bottom graphics show warped signals in Euclidean or vector distances.

Figure 46 presents warping paths of corn and cotton in the year 2013 in the Harran
Plain. The warping paths of DTW and VDTW are similar. However, DTW’s warping
path is smoother compared to VDTW. Accumulated distance matrix between corn and
cotton in 2013 is given in Table 9. VDTW determined the vector distance between
corn and cotton in 2013 as 0.56 radians.

Figure 47 shows warping paths and warped phenologies of the corn crop in 2013 and
2014 years. VDTW is able to warp the same crop better than different crops, as shown
in Figure 46. Accumulated distance matrix between corn in 2013 and 2014 is given in
Table 10. VDTW determined the vector distance between corn in 2013 and 2014 as
0.45 radians.

DTW is more robust in warping two signals than VDTW. For this reason, DTW is able
to produce lower scores compared to the maximum value of the distance matrix. On
the other hand, the accumulated path score of VDTW is greater than the maximum
vector distance. VDTW can produce more discriminative scores.

Another same year crop warping performance is shown in Figure 48 for cotton in 2013
and 2014 years. Accumulated distance matrix between corn in 2013 and 2014 is given
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in Table 11. VDTW determined the vector distance between cotton in 2013 and 2014
as 0.45 radians.

The vector distance between corn and cotton in the same year is higher than the same
crop in the cross-years. Moreover, the corn crop’s scores were higher compared to
cotton in the cross-years. This is due to the corn’s variation between years as it is
grown after the winter wheat harvest. On the other hand, the growth of the corn is more
stable between years.

VDTW can achieve higher warping performance compared to different crops in the
same year, which are shown in Figure 46 and Figure 48 in the year 2013 and 2014,
respectively.
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Figure 46: Corn2013-Cotton2013 DTW and VDTW comparison. Top graphics show accumulated
distance matrices, and bottom graphics show warped signals.

Table 9: Accumulated distance matrix of VDTW for corn and cotton in 2013

0.00 ] 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00{0.28|050|0.71)10.87)099]108|116[1.24(131[138|144|148]151]154]156
0.00]10.37/038[0.39]039]041/048|055]063|0.71]{0.80]090]|101[113]125]132
0.00{039[043|044)1046)048]054]061[068[0.76[0.84|0.93|1.03]115]1.27]140
0.00{0.41|0.41|0.45]0.52)0.60]0.66|0.73]0.80[0.87[095|1.05|115]1.26]1.39] 152
0.00]0.43/044[045]049]|055[/0.65][0.75]0.86|0.98]1.06]1.15]|126[137]149]162
0.00{0.51|0.47|047)046)0.48|0.53[0.59[0.66[0.73/0.80)0.89]0.99]|110|122[134
0.00] 0.65|055[0.54]0.48)|047|047]049]051|053]0.56]0.60]0.65[0.71]0.78 | 0.86
0.00{0.76 | 0.67 | 0.65] 0.55) 048|047 | 0.47]0.48 [0.48 |0.48 | 0.50 | 0.53 | 0.57 | 0.62 | 0.67
0.00 [ 0.830.80 | 0.76 | 0.62 | 0.51 | 0.48 | 0.48 | 0.48 [ 0.48 [ 0.48 | 0.50 | 0.53 | 0.57 | 0.62 | 0.67
0.0010.90/0.93[0.88]0.69]|053|0.48|0.48]0.48|0.48|0.48]0.50|0.53 [0.57|0.62] 0.68
0.00{0.97|1.06 | 1.00]0.76 | 0.55] 0.50 | 0.49 [ 0.49 [ 0.48 | 0.49 | 0.49 | 0.51 | 0.53 | 0.56 | 0.60
0.00]107|116[115]0.87]0.61|053|052]052|051]0.51]0.49]|0.50(0.50]0.51]0.53
000(122|131|134]1.02)0.71]0.62|0.60|0.60[0.59|0.58|0.55|0.54]0.54]051]0.53
0.00]140/148[154]1119]|084|0.73]0.71]0.70 | 0.69 | 0.67 | 0.62 | 0.61 [ 0.60 | 0.54 | 0.55
0.00[154|162|168)133)0.93]081]079]0.78[0.76 |0.74 | 0.67 | 0.65) 0.64 | 0.59 | 0.56
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Figure 47: Corn in 2013-Corn in 2014 DTW and VDTW comparison.

Table 10: Accumulated distance matrix of VDTW for corn in 2013 and 2014

50

100 150
Day of Year

0.00 | 0.00 [ 0.00 [ 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 [ 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.04 | 0.10 [ 0.34 | 064 | 087 | 101 | 1.11 | 119 | 1.26 | 1.33 | 1.39 | 1.46 | 153
0.00 | 012 | 0.08 [ 012 | 0.21 | 0.24 | 0.26 | 0.31 | 0.39 | 0.47 | 0.56 | 0.65 | 0.74 | 0.82
000|035 (016|014 | 013 | 018 | 032 ] 038 | 046 [ 0.53 [ 0.61 | 0.69 | 0.78 | 0.85
000 | 061 [ 0.21 [ 0.24 [ 0.13 | 0.13 | 0.23 | 0.37 | 053 [ 0.65 [ 0.73 | 0.81 | 0.90 | 0.97
000 | 087 [ 0.26 [ 0.29 [ 0.15 | 0.16 | 0.21 | 0.30 | 0.41 [ 0.52 | 0.64 | 0.76 | 0.88 | 0.99
000 | 1.04 { 0.30 [ 0.31 [ 0.23 | 0.20 | 0.19 | 024 | 031 [ 0.38 [ 0.45 | 0.53 | 0.61 | 0.67
000 | 116 [ 0.39 [ 0.38 | 0.36 | 0.30 | 0.21 | 0.20 | 0.22 [ 0.24 | 0.27 | 0.30 | 0.33 | 0.35
000 | 1.24] 052 [ 049 | 052 | 0.44 ]| 025 | 020 | 0.20 | 0.21 [ 0.21 | 0.22 | 0.23 | 0.23
000 | 1.32 ] 066 [ 061 ) 0.70 | 059 | 031 | 021 | 021 | 0.21 [ 0.21 | 0.22 | 0.23 | 0.23
000 | 139 ] 078 [ 072 ) 082 ] 073 ] 036 | 022 | 022 | 021 [ 0.22 | 0.23 | 0.23 | 0.23
000 | 146 | 0.77 [ 0.84 ) 094 | 088 | 042 | 0.24 | 021 | 0.22 | 0.22 | 0.22 | 0.23 | 0.24
0.00 | 1.50 | 0.77 [ 0.97 | 1.09 | 1.06 | 050 | 0.28 | 0.23 | 0.25 [ 0.24 | 0.23 | 0.24 | 0.26
0.00 | 1.50 | 0.82 | 1.02 | 1.27 | 1.28 | 0.64 | 0.37 | 030 | 0.31 [ 0.31 ] 0.29 | 0.30 | 0.33
000 | 151 [ 0.89 [ 1.09 | 1.34 | 153 | 0.79 | 048 | 0.39 [ 0.40 [ 0.40 | 0.37 | 0.38 | 0.40
0.00 | 1.57 ] 094 | 113 ) 1.37 | 156 | 092 | 057 | 046 | 0.46 | 047 | 0.42 | 043 | 045
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Figure 48: DTW and VDTW comparison of Cotton in 2013-Cotton in 2014.

Table 11:; Accumulated distance matrix of VDTW for cotton in 2013 and 2014

0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00

0.00 | 0.06 | 0.09 | 0.16 [ 0.18 | 0.21 | 0.28 | 0.35 | 043 | 0.50 [ 0.58 | 0.68 | 0.79 | 0.87

0.00 | 0.05 | 0.08 | 010 [ 0.16 | 0.25 | 0.36 | 0.43 | 051 | 0.58 | 0.66 | 0.77 | 0.87 | 0.95

0.00 | 0.06 | 0.08 | 0.10 [ 0.15 | 0.22 | 0.34 | 045 | 057 | 0.64 [ 0.73 | 0.83 | 0.93 | 1.01

000 (011 ) 012|011 ) 012 | 015] 022 | 0.29 | 0.37 | 0.44 [ 053 | 0.63 | 0.73 | 0.82

000 | 019 ) 018 | 016 ) 012 | 012 ]| 014 | 017 | 020 | 0.23 [ 0.26 | 0.32 | 0.37 | 041

000 | 031])028[024)015] 013 ] 013|014 | 015] 0.17 [ 0.18 | 0.22 | 0.26 | 0.28

0.00 | 043 ] 039 [ 033) 020|016 ] 013 | 014 | 015] 016 [ 017 | 0.21 | 0.24 | 0.26

0.00 | 057 | 050 [ 043 ) 025 ] 019 ]| 013 | 014 | 015 ] 015 | 0.17 ] 0.20 | 0.23 | 0.25

000 | 0.70 | 0.62 [ 053 | 0.30 | 0.22 | 013 | 0.14 | 014 ] 0.14 [ 015 ] 0.18 | 0.21 | 0.22

000 | 084 ] 074 | 064 ) 035 | 025]| 014 | 014 | 014 ] 0.14 | 015 ) 0.17 | 019 | 0.20

000 | 099 | 087 | 0.76 [ 042 | 0.30 | 0.16 | 015 | 0.15 | 0.15 | 0.15 | 0.15 | 0.17 | 0.18

000 | 115) 102 | 089 ) 050 | 036 | 018 | 0.17 | 0.16 | 0.17 [ 015 ] 0.15 | 0.17 | 0.18

000 | 132 ] 117 | 103 ) 059 | 043 ]| 022 | 021 | 018 | 0.19 [ 0.16 | 0.15 | 0.17 | 0.19

000 | 150 ) 1.33 [ 118 ) 069 | 051 | 027 | 0.25 | 021 | 0.22 | 0.18 | 0.17 | 0.18 | 0.20

0.00 | 1.69 | 151 | 1.33 | 0.80 | 0.60 | 0.32 | 0.30 | 0.25 | 0.26 [ 0.22 | 0.18 | 0.19 | 0.22
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4.4. Multiyear Crop Mapping Strategy

A summary of the algorithm steps is presented in Figure 50. Atmospheric or
illumination effects may degrade the performance of times series classification
methods. Data smoothing methods have been used to reduce these effects (Arvor et
al., 2008), and in this study, time-series data is smoothed by the Savitzky-Golay (SG)
filtering method(Kim et al., 2014).

Landsat 8 cloud and shadow masks are produced by the Fmask algorithm (Zhu &
Woodcock, 2012). Cloud information cloning was applied, so that cloudy samples
were linearly interpolated with the Inverse Distance Weighting (IDW) method by
using the nearest two cloud-free images (Kalkan & Maktav, 2018). Even though the
Fmask algorithm could detect clouds successfully, it may not detect cloud shadows as
effectively (Figure 49). However, it is found that the Fmask algorithm and SG
smoothing, followed by computation of the median of time-series field phenology was
adequate for successful classification. Kansas dataset uses the Harmonized Landsat 8
and Sentinel-2 satellite imagery (HLS). However, the Fmask algorithm (Fmask v3),
which was used in HLS data, is not optimal with Sentinel-2 data. This resulted in
missed shadows and clouds in some cloudy Sentinel-2 scenes. The Fmask. Moreover,
Fmask version 4was used, which improved shadow and cloud detection with Sentinel-
2 data. The double sigmoid was used fitting instead of SG of crop phenologies to
remove the remaining artifacts.

Figure 49: Clouds and fheir shadows detected by the FMask algorithm.
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Data is linearly interpolated between [¢;, t, ] to enable cross-year classification where
t; and t,, be the lower and upper limits of the time window. Time series classification
is used to classify with same year or cross year classification. Optionally, data is
classified with the partial time series approach. Finally, a cropland layer is produced
showing the classification results.

Time Series Compute Vegetation

Satellite Ind
Imagery ndex

Cloud Information

Cloud Map Clonning

Data Smoothing

Interpolate Data

Partial?

Partial Time
Series
Classification

Time Series
Classification

Cropland
Layer

Figure 50: Multi-year time-series classification algorithm steps.
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4.5. Partial Time Series Classification

A new method is presented in the previous section. In this study, a partial time series
approach is proposed, which achieves high classification accuracies with fewer data
using distinct temporal time periods in phenological properties of crops.

For example, corn and cotton in the Harran Plain are sown at specific dates. However,
they both start to have the same growth phenological properties starting from mid-
August, after which their growths are nearly the same. Figure 51 shows corn and
cotton’s discriminative regions in their early growth until mid-August. The proposed
partial time-series method exploits this phenologically invariant region for improved
cross-year crop classification.
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Figure 51: Median phenologies of corn and cotton in 2013.

The partial time series algorithm has three major steps. The algorithm finds the optimal
classification window around the pivot day.

Algorithm steps:

First, the pivot day where the difference between the NDVI of crops is maximum is
determined (Figure 52 (a)). The median values of all samples from each crop are used
in this computation. The pivot day is determined as:

J = arg max abs(NDVI¢, (J) — NDVIc,(J)) (15)

L<J<ty
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where J* denotes pivot day, ¢;and c,are two crops, t; denotes the minimum common
day and, t,, denote the maximum common day shared by time series data of all years.
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Figure 52: (a) Maximum difference of VI values between corn and cotton, (b) DTW scores between
corn and cotton centered on the pivot day expanding on both sides, (c) First and second derivatives of
DTW scores.

Centering the pivot day, DTW scores of vectors extending in both directions are
computed (Figure 52(b)). Lower DTW scores represent higher similarity. The increase
in DTW scores is steady after certain periods, which coincides with discriminative
regions of corn and cotton.

Score(J) = DTW(NDVI,([J*,JD, NDVI([J*,J]), (16)
where t; < J < t,.

The algorithm finds the first days from the pivot by extending to initial and final dates
until first and second derivatives are zero (Figure 52(c)). First and second derivatives
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indicate that DTW scores are steady after these days as a result of determining the
boundaries of the optimal time window.

find score(J)' = 0 AND score(J)" =0 a7

The optimal time window [01, 02] for classification of corn and cotton are computed
as day 170 and day 227, corresponding to mid-June and mid-August.

In the case of three or more crops, each crop is compared to others and a minimum
length time window is selected against other crops.
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CHAPTER 5

RESULTS & DISCUSSIONS

5.1. Data Representation

The median of each field is used as a sample in the tests. As a result of median field
sampling, each field is represented by a single sample, thus decreasing redundancy and
equalize the distribution of samples regardless of field sizes. Another advantage is that
partly cloudy fields are also represented by their spectral values. The final advantage
is the decrease of computation time in tests.

5.2. Performance Metrics

Performance evaluations in this study are based on confusion matrix analysis. The
confusion matrix is used to evaluate the performance of a classifier with labeled
samples as input and classifier results as outputs.

A sample confusion matrix is presented in Table 12. The sample data contains 17 corn
and 13 cotton samples. Assume that a classifier decided 15 of these samples as corn
and rest as cotton.

Table 12: Sample confusion matrix.

Corn Cotton
Corn 10 7
Cotton 5 8

Overall Accuracy (OA): Overall accuracy is simply the ratio of the sum of diagonal
entries in confusion matrix to all samples in the data. In this case, overall accuracy is
18/30 = 0.6. Overall accuracy is itself is necessary as a performance metric but often
other statistics such as producer’s accuracy, user’s accuracy, and Cohen’s kappa.
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Error of omission: ratio of omitted samples, which are misclassified:
Corn: 7/(5+10) = 7/17.

Cotton: 5/(5+8) = 5/13.

Error of commission: ratio of falsely included samples:

Corn: 5/(5+10) = 5/15 = 33.3%.

Cotton: 7/(7+8) = 7/15 = 38.4%.

Producer’s Accuracy (PA): Producer’s accuracy is the measurement of how accurate
the classifier detects each crop, i.e., how many of the samples are present. The
producer’s accuracy presents the accuracy of each crop. The producer’s accuracy is
the complement of omission error: Producer’s accuracy = 1 — omission error.

Corn: 10/(10+7) = 10/17 = 58.82%
Cotton: 8/(5+8) = 8/13 = 61.53%.

User’s Accuracy (UA): It is determined as the ratio of correctly found crops over the
sum of samples which are labeled the same as the crop. User’s accuracy is the
complement of commission error: Producer’s accuracy = 1 — commission error.

Corn: 10/(10+5) = 10/15 = 66.6%.
Cotton: 8/(7+8) = 8/15 = 53.3%.

Cohen’s Kappa: Kappa analysis is a statistical method if the classifiers’ agreement is
by chance. Kappa is measured as the difference between agreement by classifiers and
confusion matrix(R. G. Congalton & Green, 2008). Cohen’s Kappa was introduced in
1960. It had been commonly used in sociology and psychology fields. It was first used
in remote sensing in 1981(R. G. Congalton & Green, 2008).

_ ObservedAccuracy — ExpectedAccuracy 18
= 1 — ExpectedAccuracy (18)

ExpectedAccuracy
B ActualFalse X PredictedFalse + ActualTrue X PredictedTrue (19)

B Total X Total

For this sample case Kappa values is calculated as follow =
Expected Accuracy: (7x5 + 8x10) / (30x30) = 115/900 = 0.127

k = (0.6 — 0.127)/(1-0.127) = 0.5418
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5.3. Optimal Vegetation Index Selection

The most commonly used spectral indices were compared with the VDTW classifier.
NDV!I is the most well-known and deployed phenological feature. Other indices such
as EVI (Maus et al., 2016). Tests were performed with 50 samples. The stratified
random selection was used, and tests were performed 100 times.

NDVI, SAVI, and MSAVI all performed highest in same year crop classification. EVI
performed closely. ENDVI and WDRVI performances were considerably lower.
Cross-year performances of NDVI and SAVI were similarly higher than other
vegetation indices except for MSAVI. MSAVI contributed to a 0.6% increase in the
cross-year accuracy. Detailed performance analysis is presented in Table 13.

Table 13: Overall accuracy comparisons of notable vegetation indices.

Vegetation Index Same Year % Cross Year

NDVI 99.6 98.0
MSAVI 99.6 98.6

EVI 99.4 96.9

SAVI 99.6 98.0
ENDVI 98.8 93.6
OSAVI 99.6 92.2
WDRVI 97.3 92.1

Soil-vegetation indices such as SAVI, OSAVI, and MSAVI. Soil line values are
selected in SAVI and OSAVI by experimentally or experience. On the other, MSAVI
incorporates the computation of soil line into its equation (5).

Phenologies of corn and cotton of the Harran Plain between 2013 and 2015 are
presented in Figure 53. These phenologies were computed by field medians of all
samples for each year. The Harran plain is overlapped by Landsat 8 orbital paths 172
and 173 thus have positive and negative observation angles. These various angles and
different observation conditions, such as current weather and sun position, lead to
different reflectance values.

Huete et al. compared NDVI and SAVI at various observation angles(A. R. Huete,
Hua, Qi, Chehbouni, & van Leeuwen, 1992). In their study, they found out the
measurement of NDVI was asymmetric about nadir viewing angles while SAVI was
symmetric. On the other hand, MSAVI computes the soil line automatically makes it
more resistant to canopy cover estimation.
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Figure 53: Depiction of corn and cotton phenologies by NDVI, EVI, and MSAVI vegetation indices.

Furthermore, the most common vegetation indices were compared, namely NDVI and
EVI with MSAVI in different classifiers. The Kansas dataset contains both Landsat 8
and Sentinel-2 imagery. Even though Sentinel-2 imagery is BRDF matched to Landsat
8, this dataset is more suitable for comparison, especially in cross-year tests. Moreover,
each year contains imbalanced combinations of these satellite imagery. The use of
MSAVI improved the overall cross-year classification accuracies by 2% compared to
NDVI (Table 13). The usage of MSAVI and EVI resulted in the similar the same-year
accuracies while MSAVT’s the cross-year overall accuracies are higher than EVI.

Table 14: Comparison of MSAVI, NDVI, and EVI vegetation indices in same-year and cross-year tests
with the Kansas dataset.

SY CY
MSAVI 9874  87.31
NDVI 98.56  85.29
EVI 98.75  85.97
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5.4. Analysis of Preprocessing Steps on Classification Performance

In this section, data preprocessing steps are compared. The same-year and the cross-
year tests were performed to demonstrate contributions of individual preprocessing
steps. The Savitzky-Golay(SG) data smoothing method was selected as the default
method.

Time-series satellite data were preprocessed by data smoothing and cloud information
cloning. Furthermore, missed cloud detection of Sentinel-2 data reduced the cross-
tests. Double Sigmoid curve fitting was employed to correct missing cloud detection
where SG filtering could not correct those gaps efficiently.

Figure 54 shows a median crop sample from the Kansas dataset with two cloudy
acquisitions. The Fmask algorithm was able to detect only one of them while the first
cloudy sample was partially smoothed by the SG filter. Double Sigmoid curve fitting
did generate a smoother phenological signature. A missing crop map detection at the
end of the crop phenology is displayed in Figure 55. SG filter modified the phenology
causing incorrect data.
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Figure 54: A median crop sample from the Kansas Dataset with two cloudy acquisitions.
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Figure 55: A median crop sample from The Kansas dataset with single cloudy acquisitions

The same-year and cross-year accuracies are described in Table 15. Application of
preprocessing has a more significant effect in the same-year than cross-year. The
same-year accuracy was increased by 1.24%. The cross-year accuracy was increased
by 14.76%. In addition, cloud cover, variations caused by Landsat 8 and Sentinel-2
degrades cross-year accuracies as different years have an unmatched composition of
these satellites data as described in 3.2.2.

Table 15: Preprocessing step performance analyses.

Same-year  Cross-year

No Preprocessing 97.44 72.82
SG 98.19 75.09
SG-Cloud Cloning 98.57 78.73
Dsigmoid-Cloud Cloning 98.64 87.58
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5.5. VDTW Search Window Selection

DTW and VDTW methods could be set to work within a specific time window. The
length of the DTW search window should consider the possible phenological variation
between years.

Tests were run to determine the optimal time window in the same-year and the cross-
year settings. Optimal Time Window of the VDTW method is determined
experimentally. Computation cost is lowered by limiting the time-window. Search
window limitation by window size T is shown in Figure 56.

T
T

Figure 56: Visualization of DTW warping window limits.

Optimal window sizes were determined experimentally for the datasets. Tests were
performed by using median phenology. The same year and cross-year accuracies were
computed to determine an optimal time window for different datasets.

Important phenological transition dates were extracted by fitting double sigmoid
functions to the median phenology of crops, as described in 0.

Phenologies of corn and cotton in the Harran Plain are similar. They overlap starting
around day 200. The maximum difference of corn and cotton phenologies to reach
maturity is about twenty days.

Tests showed that same year accuracies reached top accuracy at seven days difference
and it is the point where cross-year accuracies start to decrease for VDTW (Figure 57).
In a similar trend, the same-year and cross-year overall accuracies of DTW starts to
decrease by window size of seven. The seven-day window is due to the phenological
differences of the corn and cotton in the Harran Plain.
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Figure 57: Optimal VDTW window size search for the Harran dataset.
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Figure 58: Optimal DTW window size search for the Harran dataset.

An increase in NDVI [D1, D2] and decrease in NDVI [D3, D3] is provided in Table
16 for the crops in the Harran Plain. Same year minimum differences 11 days at D2
(end of NDVI increase) in 2013, 12 days at D2 and D4 in 2014, 11 days at D4 in 2015.
Cross year differences have similar values such as difference at D3 between Cotton in
2013 and corn in 2015 is 12 days.
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Table 16: Phenological transition dates of corn and cotton in the Harran Plain.

Di Dd D1 D2 D3 D4
o [Corn 213 | 289 | 203 | 223 | 270 | 308
& | cotton 196 | 286 | 179 | 212 | 252 | 323
< [Corn 209 | 298 | 200 | 218 | 270 | 327
& | Cotton 191 | 278 | 175 | 206 | 243 | 315
wn [ Corn 211 | 290 | 201 | 220 | 264 | 316
& | Cotton 190 | 281 | 172 | 208 | 248 | 317

Bismil dataset contains three distinct crops. Both the same and cross-year classification
accuracies reach the highest accuracies at 21 days differences for VDTW (Figure 59);
then, it starts to decrease for the cross-year. Similarly, the DTW method obtains the
highest overall accuracies starting from a window size of 21 days (Figure 60).
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Figure 59: Optimal VDTW window size search for the Bismil dataset.
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Figure 60: Optimal DTW window size search for the Bismil dataset.

Phenological indicators for the Bismil dataset is provided in Table 17. The time
difference is 20 days at D3 between cotton and soybean in 2013. This value increases
to 30 days in 2014 while it decreases to 17 days in 2015 — time differences between
cotton and soybean change between 30 and 40 days. The time difference between
cotton and soybean at D4 was very close as these crops have similar harvest seasons
as low as five days in 2014.

Table 17: Phenological transition dates of Corn, Cotton, and Soybean in the Bismil Plain

Di Dd D1 D2 D3 D4

Corn 132 | 232 | 116 | 148 | 208 | 256

§ Cotton 186 | 299 | 168 | 204 | 264 | 334
h Soybean | 214 | 297 | 199 | 229 | 284 | 310
Corn 136 | 232 | 118 | 153 | 212 | 252

§ Cotton 180 | 290 | 161 | 200 | 255 | 325
h Soybean | 219 | 308 | 202 | 236 | 285 | 330
Corn 146 | 242 | 131 | 160 | 219 | 264

g Cotton 180 | 289 | 162 | 198 | 263 | 314
A Soybean | 220 | 304 | 210 | 231 | 281 | 326

The overall accuracies of VDTW are stable against varying window sizes (Figure 61).
DTW’s same year accuracies decreased increasing the window size. On the other hand,
VDTW’s and DTW’s cross-year overall accuracies were similar in shape having
different values (Figure 62). VDTW cross-year accuracies have local maxima values
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at which the cross-year overall accuracies have a 1.5% difference compared to
minimum overall accuracy.
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Figure 61: Optimal VDTW window size search for the Kansas dataset.
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Figure 62: Optimal DTW window size search for the Kansas dataset.

Phenological transition dates of the Kansas dataset are presented in Table 16. The time
difference of at D2 between corn and soybean is 44 days in 2017 and 36 in 2018.
However, the harvest of corn is closer to the harvest of the soybean in 2017.
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Table 18: Phenological transition dates of corn and soybean in the Kansas dataset.

Di | bd | b1 | D2 | D3 | D4
~ | Ccom 164 | 240 | 151 | 176 | 221 | 262
S |Soybean | 195 | 261 | 168 | 220 | 250 | 273
o | Com 157 | 205 | 145 | 168 | 183 | 229
S |Soybean | 178 | 269 | 154 | 204 | 257 | 280

The decrease of VDTW performance is related to differences between phenological
indicators. Minimum Phenological differences between crops are 11 days in the Harran
Plain, 30 days in the Bismil Plain and 36 days in the Kansas dataset. The window sizes
are increased as the phenology of crops are distanced. For each dataset, the window
sizes are different. Thus, the window sizes were experimentally selected. Moreover,
selecting different windows size for each dataset confirmed the most recent literature
in which 15 and 30-day time windows were selected for various cropping
patterns(Csillik, Belgiu, Asner, & Kelly, 2019).
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5.6. Multi-Year Tests

In this study, the median of each field was used as a sample. A stratified random
selection strategy was applied to training sample selection (Olofsson et al., 2014), and
selected training samples were excluded from the test samples in same-year tests. The
same training samples for each test are used in training for all methods. Tests were
repeated 100 times to minimize the effect of non-representative outlier samples such
as crops grown too early or too late. Different methods were compared against various
numbers of training samples to evaluate their performance with a limited number of
training samples. Congalton suggested using at least 50 samples from each class when
the number of classes is less than 12 (R. G. Congalton, 1988). In the tests, the number
of training samples was varied in 5,10,...,50 based on their findings.

Detailed tests were performed for same-year and cross-year classification accuracies.
Double sigmoid features with RF classifier and SVM, Time-series (VDTW, SAM, and
DTW, TWDTW) and partial time-series (PVDTW) were compared in this study. RF
classifier contains 1000 trees. SVM has the RBF kernel, and its parameters are selected
after an extensive grid search of cross-validation of training samples. As DL methods
gained much attention in classification, two-layer deep long short-term memory
(LSTM) was used with 100 units at each layer followed by a softmax layer (Reimers
& Gurevych, 2017).

In cross-year tests, the Harran dataset is the most challenging since corn and cotton’s
phenologies vary each year after peak growth until the harvest. Same-year and cross-
year percent overall accuracy scores of tested methods are shown in Table 19. The
tests have shown that VDTW provides the highest overall accuracies both in the same
year at 99.22% (Figure 63) and cross-year at 98.29% (Figure 64).

SAM and RF methods had similar accuracies in the same year; however, RF was not
robust to growth changes in the cross-year as SAM. SAM cross-year scores were
below 94.78%. RF was able to reach 94.45% with a maximum number of training
samples. VDTW was more robust to the shifts in growth and changes in illumination
compared to other methods. The best two performers VDTW and TWDTW achieved
the cross-year 50 training sample and 100-replication overall average classification
accuracies of 98.29% and 95.29%, respectively. The 95% confidence interval for
overall accuracy differences between VDTW and TWDTW methods were between
2.77% and 3.23%. (Table 19). TWDTW’s time cost improved DTW’s cross-year
overall accuracy from 93.31% to 95.29%. The effect of window size of VDTW and
DTW was investigated by extensive runs. Even though window size makes a
difference in the accuracy, VDTW was always superior. Time series with Deep LSTM
initially produced lower accuracies for training sample size < 20 for each class. Deep
LSTM obtained similar overall accuracies with DTW and SAM for the training sample
size of 50 (~%21 of samples) for each class. Moreover, shallow networks did not
produce high accuracies compared to deep networks.

Tests with a varying number of training samples revealed that VDTW maintained high
classification accuracies with a fewer number of samples compared to other methods
as shown in Figure 63. In other words, the advantage of the proposed approach is its
ability to attain high classification accuracy independent of the training set size.
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Partial time-series applied to VDTW also achieved similar accuracy values as the core
method. Partial time-series, the applied version of VDTW, PVDTW, reduces the
amount of data by using fewer data limited by time windows. These time windows are
based on phenological differences between crops.

RF and SVM classifiers, which use features extracted from time-series data, have
lower performance than other methods in the tests. Performances of RF and SVM are
lower since curve fitting is designed for single cropping and may not always fit the
optimal curve for double cropping case. Time-series methods such as proposed
VDTW, SAM, and DTW are robust to double cropping cases.

Finally, the VDTW method was tested with data from Kansas. Crops in Kansas are
distinctly grown. Same year crop mapping accuracies were high for all classifiers, as
shown in Table 21. TWDTW method obtained highest the same-year overall accuracy
of 99.02%, followed by VDTW and LSTM having overall accuracies of 98.74% and
98.60%. On the other hand, VDTW resulted in higher overall accuracies than
TWDTW by 1.72% and other methods in the cross-year tests.
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Figure 63: Harran dataset same-year classification results at various training sample sizes.
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Figure 64: Harran dataset same-year classification results at different training sample sizes.
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Table 19: Percent average overall accuracies of proposed and compared methods with 50 samples from
each class for the Harran Dataset. Samples are selected with the stratified random selection

VDTW PVDTW DTW TWDTW SAM RE  SVM |_DseTe|E)/|

Same-year 99.22 9886 9764 9854 9877 9872 98.36  98.76
Cross-year 98.29 97.58 93.31 95.29 94.78 94.45 92.40 94.74
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Figure 65: The Bismil dataset same-year classification results at various training sample sizes.
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Figure 66: The Bismil dataset cross-year classification results at different training sample sizes.

Table 20: Percent average overall accuracies of proposed and compared methods with 50 samples from
each class for the Bismil Dataset. Samples are selected with the stratified random selection.
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Deep

VDTW PVDTW DTW TWDTW SAM RF SVM LSTM

Same-year 99.90 98.99  99.89 99.94 9994 9946 9855  99.88
Cross-year 99.74  98.67  99.13 99.78 99.76  98.75 95.60  99.80

Table 21: Percent average overall accuracies of proposed and compared methods with 50 samples from
each class for the Kansas Dataset. Samples are selected with the stratified random selection

Deep

VDTW PVDTW DTW TWDTW SAM RF SVM LSTM

Same-year 98.38  97.57  78.53 98.63 9842 9835 9791  98.30
Cross-year 89.68 84.89 73.01 88.40 8555 86.06 86.26 87.10

The user’s accuracy and producer’s accuracy for the Harran dataset are presented in
Table 22. User’s accuracies are similar for both crops; however, several mislabeled
corns result in lower producer’s accuracy for corn. Both user’s and producer’s
accuracies of cotton are over 99% in same-year tests and 98% in cross-year tests.

Table 22: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50
samples for the same-year and cross-year.

User's Accuracy Producer's Accuracy
Corn Cotton Corn Cotton
Same-year 97.29 99.57 97.90 99.48
Cross-year 95.28 99.16 95.73 98.72

High user’s accuracy both in the same and cross-year tests show that misclassification
percentage of corn and cotton is low. However, low user’s accuracy of corn indicates
that 4.72% of corn is labeled as cotton in cross-year tests. Misclassification error is
2.71% in the same-year tests. Kappa values were 0.97 for the same-year tests and 0.94
for the cross-year tests.

A detailed view of VDTW classification is provided in the form of confusion tables.
The confusion matrix in Table 23 shows the number of fields that were correctly
classified as corn and cotton with training data from the same or other years. Cotton
was correctly classified while some percent of corn is misclassified as cotton.
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Table 23: Average Confusion Matrix of 100 tests for VDTW Classification with 50 samples in the
Harran Plain. Columns are observations, while rows are predictions. Years in rows are training and
years in rows are test years.

2013 2014 2015
Corn Cotton Corn Cotton Corn Cotton

o Corn 1108 34 619 13 513 4

& Cotton 34 4201 73 4548 4 2845

< Corn 1158 231 622 30 514 19

& Cotton 34 4054 20 4481 3 2830

0 Corn 1123 39 656 13 466 3

&  Cotton 69 4246 36 4548 1 2796

Table 24: Average Percent Confusion Matrix of 100 tests for VDTW Classification with 50 samples in
the Harran Plain. Columns are observations while rows are predictions. Years in rows are training, and
years in rows are test years.

2013 2014 2015

Corn Cotton Corn Cotton Corn Cotton
) Corn 97.11 2.89 97.96 2.04 99.22 0.78
& Cotton 0.79 99.21 1.57 98.43 0.15 99.85
= Corn 85.04 14.96 95.61 4.39 96.82 3.18
& Cotton 0.82 99.18 0.45 99.55 0.09 99.91
L0 Corn 96.67 3.33 98.06 1.94 99.45 0.55
& Cotton 1.61 98.39 0.78 99.22 0.04 99.96

Table 25: Average percent overall accuracy results for the VDTW classification with 100 samples in
the Harran Plain.

2013 2014 2015
2013 99.39 97.96 96.47
2014 97.84 99.54 99.10
2015 98.64 98.43 99.56
Same Year 99.5 Cross Year 98.1

Classification accuracy of cotton was above 99.81% in the same-year tests and 99.64%
in cross-year tests. The accuracy of corn was as low as 91.81% in cross-year tests in
2016. The difference in classification accuracies was partly due to how corn is sown
after the harvest of wheat, so a late harvest of wheat may shift the growth of corn in
different years. On the other hand, the plantation of cotton is not dependent on other
agricultural activities.
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As the distinct growth times of crops in the Bismil dataset allow classifiers to reach
high classification results, VDTW has high same and cross-year accuracies.

Both user’s and producer’s accuracies are close to 100% (Table 26). The Cross-year
producer’s accuracy of cotton shows that 1% of cotton classified incorrectly and
labeled as corn. Kappa values were 0.99 for the same-year and the cross-year tests.

Table 26: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50
samples in the Bismil Plain for the same-year and cross-year.

User's Accuracy Producer's Accuracy
Corn Cotton Soybean Corn Cotton Soybean
Same-year 99.87 99.96 100 99.98 99.70 100
Cross-year 99.57 99.98 99.99 99.99 99.06 100

The confusion matrix of the Kansas dataset is depicted in Table 27. The same year
user’s and producer’s accuracies of corn and soybean are above 98%. However, cross-
year accuracies are lower (Table 28). VDTW mislabel 22.84% of the corn fields
trained with 2018 data and tested with 2017 and 13.98% of soybean fields trained with
2018 data and tested with 2017 data. Crops in 2018 were sown eight days earlier on
average compared to 2017. This caused lower accuracies in the cross-year tests.

Table 27: Average Confusion Matrix of 100 tests for VDTW Classification with 50 samples in the
Kansas dataset. Columns are observations, while rows are predictions. Years in rows are training and
years in rows are test years.

2017 2018
Corn  Soybean Corn Soybean
~  Corn 2048 142 2283 429
& Soybean 78 2855 24 2630
% Corn 1679 31 2224 76
& Soybean 497 3016 33 2933

Table 28: Average User’s Accuracy and Producer’s Accuracy of VDTW classification results with 50
samples for the same-year and cross-year for the Kansas Dataset.

User's Accuracy Producer's Accuracy
Corn Soybean Corn Soybean
Same-year 98.33 99.04 98.67 98.79
Cross-year 91.17 92.48 88.06 92.47

Same year user’s and producer’s accuracies are between 98.33-99.04% (Table 28).
However, the cross-year user’s and producer’s accuracies are up to 10% lower. Kappa
values were 0.97 for the same-year and 0.81 for the cross-year tests.
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5.7. Discussions

Test results show that the proposed approach improved overall accuracy results in both
the same-year and cross-year tests. VDTW fuses advantages of both DTW and SAM
methods; thus, it provides flexibility in time and measurement variations: DTW can
be flexible in time; SAM is robust to illumination changes and measurement
differences.

Previous work had an overall accuracy difference of 10% between same-year and
cross-year Zhong et al. used Landsat TM and ETM+ images of 2006-2010 to classify
maize and soybean in central USA (Zhong et al., 2014). The proposed approach also
improved same-year crop mapping accuracies in the Harran Plain compared to
previous object-based (Ugur Alganci, Ozdogan, Sertel, & Ormeci, 2014) and multi-
temporal (Celik et al., 2015) studies. The results with the Kansas dataset was also in
conjunction with the previous work Zhong et al. used Landsat TM and ETM+ images
of 2006-2010 to classify maize and soybean in the central USA (Zhong et al., 2014).
having 9-10% accuracy difference between the same-year and the cross-year tests.
Yearly change of cropping practices decreased the accuracy of all classification
methods in the Kansas dataset.

On the other hand, the VDTW method was more robust compared to other methods in
the cross-year tests. TWDTW approach was proposed to improve DTW performance
(Maus et al., 2016). However, it did not include changes in illumination and variations
in measurements as in SAM or VDTW approach. Deep LSTM’s accuracy was
improved as the number of training samples were increased. This result was expected
as DL requires a large amount of data and fine-tuning of parameters. RF with a double-
sigmoid features approach has similar results compared to SAM and DTW methods.

Our multiyear crop mapping approach overcame difficulties in cross-year
classification. In addition to SG data smoothing, vegetation index values of cloudy
data samples were interpolated. This cloud information cloning approach improved
cross-year overall accuracies.

NDVI and EVI were commonly used in phenological feature extraction (de Souza et
al., 2015a) (Z. Pan et al., 2015). However, the use of MSAVI was proposed since it
was obtained higher the cross-year overall accuracies with the use of the MSAVI. Soil
adjusted vegetation indices, such as SAVI, include the effect of the soil line as a
parameter; on the other hand, MSAVI computes the soil line parameter automatically.
For this reason, the use of MSAVI further reduced variations in observation angles.

A limited time window version of VDTW, PVDTW, achieved similar overall
accuracies with fewer data. PVDTW enables mid-season crop classification and has
efficient computation requirements. The partial time window method may be applied
to other classification algorithms, such as DTW and SAM under the proposed multi-
year crop mapping approach.

VDTW and PVDTW methods are not as vulnerable as the other methods to the paucity
of available training data. This property is useful since an operational system can use
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pure phenologies (as low as a single time-series signature), or it can still operate
sufficiently with fewer temporal data samples.

The proposed methods can also be extended to the classification of other crops, such
as discrimination of wheat-barley, corn-soybean (Massey et al., 2017), and rice-corn
(Tang, Zhu, Zhan, & Ding, 2018), which have overlapped phenological phases.

The difference of the first derivative of vegetation index (VI) was evaluated as an
alternative to angles between VI time-vectors (Goérecki & tuczak, 2014). The
correlation between two distinct vectors, which have different values and the same
slopes, were different. VDTW incorporates Euclidean similarity implicitly, thus
resulting in better discrimination.

Missing data acquisitions in large time windows may lower multi-year crop mapping
performances. These time windows are growth and harvest, where the changes are
exponential rather than linear. The use of the curve fitting with the double logistic
function or other non-linear methods may eliminate this problem.

According to the investigations in the Harran Plain, farmers may re-sow cotton if the
seedlings did not emerge due to drought or heavy rains. In this case, the growth of the
cotton crop was delayed, and its phenology resembled that of corn. Another issue is
the growing of cotton as the second crop. However, this practice is not common and
may produce low crop yields (Copur & Yuka, 2016).

One last challenge for the VDTW method is that it requires more computation power
than both DTW and SAM methods. Compared to the DTW, vector dot products are
computed at each point instead of a simple absolute distance operation. However,
VDTW achieved high performance with fewer training samples. It is also suggested
using the median of training samples to generate crop mapping from training data for
time-sensitive or large-scale applications.
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CHAPTER 6

CONCLUSIONS

In this study, vector dynamic time warping (VDTW), a modified version of DTW, was
developed and presented in a multi-year crop mapping approach for efficiently
classifying crops with similar phenologies, such as corn and cotton, and other crops
with distinct phenologies. The proposed method is based on the optimal time vector
alignment of crop phenologies for overcoming the difficulties experienced in previous
efforts. VDTW for crop mapping is robust against spectral and temporal shifts in
yearly crop growths. Simulations were conducted to analyze weaknesses of both DTW
and SAM. VDTW is developed to overcome their weaknesses and render it to both
variations in time and illumination changes.

VDTW method was tested with multiple crops and in separate regions yielding high
classification accuracies. Classification of corn and cotton, which are investigated in
this study is challenging due to the overlaps in their phenological characteristics. On
the other hand, the crops in the Bismil Plain have distinct phenologies. Corn and
Soybean in Kansas have partially overlapping phenologies; however, phenology of
crops in 2018 shifted considerably compared to 2017. The proposed VDTW method
provided the highest same-year and cross-year overall classification accuracies. The
tests with the Kansas dataset showed that there is still room for improvement in cross-
year crop mapping. Agro-meteorological information including temperature (such as
growing degree days) and rainfall may be employed to improve the cross-year
accuracies.

Another improvement of this study is employing discriminative regions for efficient
crop classification PVDTW method uses optimal time window selection to achieve
comparable accuracies of its base method, with less temporal data. Optimal time-
periods to discriminate against these crops are determined by the PVDTW algorithm.

Both VDTW and PVYDTW methods achieved higher classification accuracy compared
to other methods with a limited number of training samples, thus reducing the repeated
effort of collecting ground samples. Time constraints were analyzed DTW and
VDTW: it is suggested to determine optimal time windows for each dataset in
consideration.

Various vegetation indices including, EVI, NDVI and MSAVI were compared.
MSAVI was robust against variations in the cross-year tests. The use of MSAVI
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contributed the cross-year accuracy in Kansas dataset since it included both Landsat 8
and Sentinel-2 imagery as they have different BRDF attributes.

Data smoothing improved the cross-year crop mapping performance. In addition,
effective cloud detection is required to ensure optimal performance of VDTW in the
cross-year setting.

The proposed methods can also be expanded to classify other types of crops. Besides,
the VDTW method may also be adapted to different research areas (e.g., data mining
and speech recognition) where DTW is commonly preferred.

The approach developed is highly suitable for crop mapping at regional scales.
However, further additional datasets are required to expand the VDTW to countrywide
levels. In the meantime, the proposed approach may be used to improve the accuracy
of the Ministry of Agriculture and Forestry’s National Registry of Farmers in the near
future for the crop types taken into consideration in this study.
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