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ABSTRACT 

 

BIOLOGICAL DATA INTEGRATION AND RELATION PREDICTION BY 

MATRIX FACTORIZATION 

 

Abay, Gökçe 

MSc, Department of Bioinformatics 

Supervisor: Assist. Prof Dr. Aybar Can Acar 

Co-Supervisor: Assoc. Prof Dr. Tunca Doğan 

 

January 2020, 101 pages 

 

The available molecular sequence data has increased greatly in the last decades, thanks 

to the new technological developments in the field of life-sciences. In order for this 

data to be useful to the scientific community, it should be characterized. Traditionally, 

this characterization is done manually, where the experimentally produced molecular 

data is curated and stored in the biological databases. The huge volume of the currently 

available data summons the need for the automatic and systematic analysis. A crucial 

part of this systematic analysis is data integration with the identification of the 

relationships between the elements from different biological data types. In this study, 

we propose to integrate large-scale gene/protein annotation data using non-negative 

matrix factorization (NMF), which is a frequently used method for recommender 

systems with successful real-world applications. NMF has also been employed for 

uniting multi-relational data in many different fields including bioinformatics and 

cheminformatics. Within the purposes of this study, we first collected protein 

annotations such as molecular functions, biological processes, sub-cellular 

localizations and disease relations from different resources such as UniProt-GOA and 

DisGeNET, and organized them as binary relation matrices. We then applied various 

NMF-based algorithms to this multi-dimensional relational biomolecular sequence 

annotation data (i.e. genes/proteins vs. functions, genes/proteins vs. diseases, diseases 

vs. functions) and evaluated the results of each model in terms of their capacity to learn 

the intrinsic structure in relational data, via cross-validation. The results indicated that 

NMF has the capacity to retrieve most of the known protein annotations without using 

any sequence or structure-based protein features (AUROC: 0.80 – 0.94, accuracy: 0.53 

– 0.64, F1-score: 0.06 – 0.40, MCC: 0.13 – 0.38). Using NMF, the ultimate aim here 

is to predict the unknown binary relationships between these biological entities; and to 



 

v 

 

represent these entities (i.e., proteins, functions and disease entries) as informative and 

non-redundant quantitative feature vectors (using the low-rank feature matrices 

generated by the factorization process), which can be used in diverse data mining and 

machine learning tasks in the future, such as the automated annotation of proteins or 

the construction of biological knowledge graphs. 

Keywords: Nonnegative matrix factorization, multi-relational data, biological data 

integration, machine learning, protein annotation. 
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ÖZ 

 

MATRİS FACTORİZASYONU YÖNTEMİ İLE BİYOLOJİK VERİ 

ENTEGRASYONU VE İLİŞKİ TAHMİNİ 

 

Abay, Gökçe 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Aybar Can Acar 

Ortak Tez Yöneticisi: Doç. Dr. Tunca Doğan 

 

Ocak 2020, 101 sayfa 

 

Yaşam bilimleri alanındaki yeni teknolojik gelişmeler sayesinde, üretilen moleküler 

sekans verisi miktarında son yıllarda büyük bir artış olmuştur. Bu verinin bilimsel 

literatüre fayda sağlayabilmesi için anlamlandırılması gerekmektedir. Geleneksel 

olarak bu anlamlandırma işlemi, deneyler ile üretilen moleküler verinin elle işlenmesi 

ve biyolojik veri tabanlarında saklanması suretiyle yapılır. Ancak bu verinin muazzam 

büyüklüklere ulaşması, otomatik ve sistematik analiz ihtiyacını doğurmuştur. Bu 

sistematik analizin önemli bir kısmını, farklı veri tabanlarından elde edilen öğelerin 

arasındaki ilişkilerin tanımlanması ile verinin entegre edilmesi oluşturmaktadır. Bu 

çalışmada negatif olmayan matris faktorizasyonu (non-negative matrix factorization – 

NMF) yöntemi ile büyük çaplı gen/protein verisini entegre edecek bir yaklaşım 

önerilmektedir. NMF ürün tavsiye sistemlerinde sıklıkla kullanılan ve başarılı 

uygulamaları olan bir yöntemdir. NMF ayrıca biyoenformatik ve kemoenformatik gibi 

alanlarında çoklu-ilişkili verinin birleştirilmesi için de uygulanmıştır. Bu çalışmanın 

amacı doğrultusunda, öncelikle moleküler işlev, biyolojik süreç, hücre-içi lokasyon ve 

hastalık ilişkileri gibi protein anotasyonları UniProt-GOA, DisGeNET gibi farklı 

kaynaklardan toplanmıştır ve bu veri ikili ilişki matrisleri olarak düzenlenmiştir. 

Sonrasında bu çok-boyutlu ilişkili biyomoleküler sekans anotasyon verisine 

(genler/proteinler ve işlevler, genler/proteinler ve hastalıklar, hastalıklar ve işlevler) 

çeşitli NMF tabanlı algoritmaları uygulanmıştır; ardından her modelin sonuçları ilişkili 

verideki esas yapıyı öğrenme yeteneği üzerinden çapraz doğrulama aracılığıyla 

değerlendirilmiştir. Sonuçlar, NMF’in bilinen protein anotasyonlarının çoğunu 

herhangi bir sekans veya yapı tabanlı protein özelliği kullanmadan ortaya çıkarma 

yeteneğine sahip olduğunu göstermiştir (AUROC: 0.80 – 0.94, doğruluk: 0.53 – 0.64, 
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F1-skoru: 0.06 – 0.40, MCC: 0.13 – 0.38). Bu çalışmanın nihai amacı, NMF’i 

kullanarak bu biyolojik varlıklar arasındaki bilinmeyen ikili ilişkileri tahmin etmektir. 

Devamında ise, bu varlıkları (proteinler, işlevler ve hastalık girdileri) faktorizasyon 

işlemiyle üretilmiş düşük boyutlu matrislerini kullanarak bilgilendirici ve artıksız 

niceliksel öznitelik vektörleri olarak ifade etmektir. Bu öznitelik vektörlerinin 

gelecekte proteinlerin otomatik anotasyonu veya biyolojik ağların oluşturulması gibi 

çeşitli veri madenciliği ve makine öğrenmesi uygulamalarında kullanılması 

hedeflenmektedir. 

Anahtar kelimeler: negatif olmayan matris faktorizasyonu, çoklu ilişkili veri, 

biyolojik veri birleştirmesi, makine öğrenmesi, protein anotasyonları.  
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. Motivation 

Biological data production has greatly increased thanks to the technological 

developments in recent years. Due to this increase, data characterization and analysis 

(traditionally, achieved by manual curation and the storage of experimentally produced 

data in biological databases) needs to be automated and systematized. A crucial part 

of this systematic analysis is data integration with the identification of relationships 

between the elements from different biological data types, such as functions of 

biomolecules, biological processes and their relationship with disease mechanisms. 

Automatic identification of these relations can be achieved via several computational 

approaches, such as network-based or module-assisted methods (Sharan et al., 2007). 

These automatically identified relationships may be a decent starting point to plan and 

to conduct targeted experiments, rather than trying to find a relationship by trial and 

error. Possessing prior information in this regard can be a huge advantage since an 

experimental procedures may long durations and high costs. In this thesis, we aimed 

to address this problem and suggested a computational approach for automated 

integration of biomolecular data. 

 

1.2.  Biological Definitions 

1.2.1. Genes, Proteins and Functions 

Genes can be identified as information storage units of the organisms, holding all the 

data of the organism (Lewis, 2005). Genes are responsible for various activities; some 

are involved in protein encoding while some others take role as regulatory units and 

so on. Their building blocks are DNA molecules that form the nucleotide sequences. 

Genes that are responsible for protein encoding does not directly produce proteins. 

Instead, there exists a flow called central dogma, which contains the procedures 

replication, transcription, and translation. Replication is the creation of a copy of a 

gene of interest, while transcription is the production of mRNA molecules from that 

gene. The mRNA molecules produced by the transcription process is involved in 

production of amino acid sequences (proteins). The process of protein production from 

the mRNA is called translation. Amino acid sequences produced in translation fold in 

favorable positions to have a certain 3-dimensional shape. This shape, the structure of 

the protein, determines its function (Doolittle, 1985). Proteins are essential molecules 
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in biological systems, and they not only contribute to the structure of the cell, but also 

involve in almost all of cell’s, and though, the organism’s dynamic processes. Some 

of these molecular processes include enzymic activity, transporting of molecules, 

message carrying as well as acting as antibodies, hormones, toxins and many more 

(Alberts et al., 2008). 

 

1.2.2. Diseases 

A disease is the abnormality in the structural and functional condition of an organism 

(William Burrows & Dante G. Scarpelli, 2019). Diseases can be caused by several 

factors. Genetic diseases are caused by a change in DNA sequence from its normal 

state (Genetic Disorders | NHGRI, n.d.). This type of diseases may be resulted from 

mutations in one gene or in combination of genes. Mutations are the changes in the 

nucleotide sequence of the genes that can or cannot be resulted in functional changes 

(Ripley, 2013). The mutations can affect a part of the genome or can occur in only one 

nucleotide, which is then called point mutations. Depending on where in the gene the 

mutation occurred, and what kind of change it procures, mutations are named 

differently. If the point mutation substitutes an amino acid in the original protein 

sequence, it is called a missense mutation. While a mutation which is not changing the 

wild-type protein sequence is called a silent mutation. A point mutation can sometimes 

lead to premature termination of the production of amino acid sequence. This type of 

mutation is named as a nonsense mutation (William S. Klug, Michael R. Cummings, 

2006). Mutations can result in a functional change or the entire loss of function in the 

protein depending on where in the gene sequence it occurs. These functional changes 

in the protein may result in diseases and disorders varying in type and severity. 

 

1.3.Biological Databases 

The biological entities of discovered proteins, genes, functions, diseases etc. are stored 

in biological databases as entries. A biological ontology is a way to store this 

information using standard vocabulary. An annotation is the storage of relations 

between biomolecules and relevant function defining ontological terms, in biological 

databases. This does not only provide a more systematic approach, but also provides 

organization for the data. There are several biological ontologies available for different 

biological data types, such as gene ontology, disease ontology and human phenotype 

ontology. Furthermore, these ontologies are connected to each other via cross-

ontology mappings. 

In the following sub-sections of this section, the data used in the study are explained 

along with the databases that provide this data. 
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1.3.1. Protein Databases 

The most well-known resource for proteins is the UniProt (The Universal Protein 

Resource) (UniProt Consortium, 2018), in which, protein entries include information 

related to amino acid sequences, functions, locations, the genes they are encoded from, 

interaction with other proteins and so on. UniProt is composed of two main databases. 

The first one includes manually curated and reviewed data, named UniProtKB/Swiss-

Prot, and the second one includes data obtained via electronical annotations that are 

yet to be reviewed, which is named UniProtKB/TrEMBL. Another database storing 

protein related information is PDB (Protein Data Bank), which is the archive of 3-D 

structures of these biomolecules (Berman et al., 2002). In PDB, the structure 

information is stored with the related sequence and ligand information, which are small 

molecules that bind to the protein of interest (Gordon & Perugini, 2016). 

 

1.3.2. Gene Ontology 

Functions of genes/proteins are stored as Gene Ontology based annotations 

(Ashburner et al., 2000). The functions are categorized in three main branches; cellular 

component (CC), molecular function (MF) and biological process (BP). Cellular 

component indicates where in the cell the protein performs its mission, molecular 

function is the information about what specific molecular job the protein does in the 

cell, while biological process defines large scale mechanisms such as the oxygenation 

of tissues.  

There exists a hierarchical system among the GO terms, where higher (more generic) 

terms are called parent terms and the lower (more specific) ones are called child terms 

(Hennig et al., 2003). For example, the GO term “molecular function” is one of the 

three most generic terms (a parent term), while “protein binding” is one of the child of 

terms of “molecular function”. The term “protein binding” has its own children terms 

as well. 

 

1.3.3. Disease Ontologies 

Disease databases hold information regarding which genes the genetic disorders are 

related to each other, where and on which function on the body it is observed, and so 

forth. There are several disease databases, such as OMIM, Orphanet and DECIPHER. 

OMIM (Online Mendelian Inheritance in Man) is a catalog of human genetic disorders, 

focusing on the molecular relationship between genetic variation and phenotypic 

expression (Hamosh et al., 2005). Orphanet, on the other hand, is the portal that 

collects and stores the information about rare diseases (Montani et al., 2013). There 

also exist databases that collect information from multiple disease resources, such as 

DisGeNET. DisGeNET is a platform containing publicly available collections of genes 

and human diseases, obtained from various databases (Piñero et al., 2019, 2017, 2015). 
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This database also integrates data from other resources, such as the expert curated 

repositories, animal models, scientific literature and so on. DisGeNET includes gene-

disease associations from UniProt, ClinGen, CTD and such, as well as variant-disease 

associations obtained from ClinVar, GWAS Catalog, GWAS database and so on. 

 

1.4. Nonnegative Matrix Factorization 

Matrix factorization is the decomposition of a two-dimensional matrix using the 

properties of matrix algebra, where the matrix contains different entity types at its 

columns and rows, and the relationship between these entities are expressed with 

values inside the corresponding cells (Cai et al., 2008). Matrix factorization is a 

frequently used method for recommender systems, which learns from the users’ 

previous interactions to recommend new items that the user might be interested (Koren 

et al., 2009). The method is successfully applied in real-world cases. It has also been 

employed for uniting multi-relational data in various fields. 

 

1.4.1. Matrix  

A matrix is a two-dimensional array with size m x n, where m represents the quantity 

of rows of the matrix, while n represents the quantity of columns. Matrices can be fully 

or partially filled with real or complex numbers, and they are used to solve various 

mathematical problems (Cherney et al., 2013). Algebraic operations can be applied on 

matrices, provided that they follow particular rules. For instance, if the matrices are 

the same size they can be added or subtracted; or if the inner dimensions are the same 

size they can be multiplied. 

 

1.4.2. NMF Algorithm 

Nonnegative matrix factorization (NMF) is based on matrix multiplication. The 

principle is to obtain two low-rank matrices by factorizing the main matrix, where the 

large matrix is recovered when the low-rank matrices are multiplied (Lee & Seung, 

2001). This method saves computational space in storing information since matrices 

takes up exponentially more space as they get bigger, as well as the computation time, 

while operating with the data stored in the matrix as smaller matrices are easier to work 

with. As for the recommendation systems’ aspect, the low-rank matrices are 

constructed by discovering the similarities between entities of the original matrix 

(called latent factors) by the factorization algorithm, and thus learning the intrinsic 

properties, which is then used for predicting the unknown values in the matrix. In 

Figure 1.1. a simple representation of latent factors is visualized through movie genres 

and user gender. Here, the latent factor number is arbitrarily selected as two, at the 

input level; in other words, the algorithm is instructed to distribute movies and users 

along 2 axis, according to their similarities. When the results are examined, it is 



 

5 
 

observed that the algorithm had implicitly grouped the movies into two main genres 

of serious and escapist; and the users according to their genders (Koren et al., 2009). 

As the latent factor values get higher, the model becomes more complex and what the 

groups are constructed upon becomes more and more incomprehensible by examining 

alone. On the other hand, very low values of latent factors are usually not sufficient to 

successfully express the data, and thus, produce random results. Therefore, there is a 

trade off in between and the correct selection of the number of latent factors is critical. 

 

 

Figure 1.1. An example of simple latent factor inductions of the algorithm. (Koren et 

al., 2009). 

 

1.5. Aim of the Thesis 

The aim of this thesis is, first, to gather and to integrate the available large-scale 

biomolecular relation data. Second, to predict the relationships of genes/proteins with 

biological processes, molecular functions, cellular locations, and with genetic diseases, 

using matrix factorization. 

Our hypothesis in this study was that, it can be possible to estimate the unknown 

relations between proteins, functional aspects and diseases, using only their previously 

known relations. In literature, protein function annotation studies mostly employ 

sequence information while constructing machine learning-based prediction tools. 

Here, our expectation was that, the model would learn the intrinsic structure of the data 

not only via known explicit protein to function/disease relations, but also using the 
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implicit relations between functions or between diseases. We expect that, the relation 

predictions produced by our approach will be complementary to the conventional 

sequence/structure feature based protein function annotation methods. 

 

1.6. Outline of the Thesis 

In chapter 2, the literature review is presented. At first, previous studies on 

recommender systems are explained, and then the articles that used the matrix 

factorization approach are reviewed, as well as the studies focusing on the integration 

of multiple data types. 

In chapter 3, the methodology is described in detail. First, the algorithm and the 

mathematical definitions behind the algorithm is explained, followed by the data types 

and their retrieval from different databases. Lastly, we get down to the details of how 

the chosen algorithms are applied to our data. 

In chapter 4, the results and performance values that were retrieved from different 

algorithmic applications are presented. It displays the change in performance values, 

as the applied method is upgraded from the baseline NMF to more complex algorithms. 

In chapter 5, the discussion and the conclusion of study is given. Finally, potential 

future works are explained. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

2.1. Recommender Systems and Matrix Factorization 

Nonnegative matrix factorization is firstly applied in 1999 to learn different parts and 

features of faces and to detect semantic features of the texts. The study had brought 

new aspect to the problem since other algorithms like principal components and vector 

quantization had been learning the data not via parts of the objects (Lee & Seung, 

1999). The method then became a popular approach for recommender systems, starting 

from the Netflix Prize in 2006. Netflix is a streaming service for watching movies, TV 

shows, documentaries and other visual production (Adhikari et al., 2012). Netflix Prize 

was a competition that the company itself started by sharing a sample data of user-

product rating as training set to the participants and expecting them to come up with 

expected ratings the users would give to other movies etc., i.e. rating predictions. The 

company calculated the performance improvements via not-shared data, and promised 

to give the big prize to the first participating team whose work would do at least 10% 

better than the company’s existing systems, and a smaller money prize for the leading 

team that would not be able to reach the threshold (Koren et al., 2009). The winning 

team was announced as BellKor's Pragmatic Chaos with 10.06% improvement to the 

company’s own algorithm in 2009. After the popularity the method had gained from 

the competition, it has been applied to other fields as well, like life-sciences.  

 

2.2. Applications of Matrix Factorization 

As matrix factorization has started to be used in more and more fields, the researchers 

wanted to produce more accurate and abundant predictions via adding more data to the 

algorithm so that it could learn relations from other data types to predict binary 

relations. Lippert et al.(2008) has studied on such approach to predict movie ratings 

and gene functions of yeast. In movie-rating prediction application, they added user’s 

rating to the movies as well as information about users (gender, age and occupation) 

and movie entries (the movies are separated to 20 different genres). For the gene 

function prediction, different types of data such as gene, function, chromosome, 

phenotype, motif are inserted to the algorithm to obtain predictions. The algorithm 

they proposed is then compared to the regular matrix factorization and singular value 

decomposition algorithms. 

Another study focuses on nonnegative matrix factorization with multiple data types 

for movie rating prediction (Singh & Gordon, 2008). In this study of collective matrix 
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factorization, they factorized all data matrices, and used the shared entities between 

matrices to predict new relationships between the elements of matrices. They also 

introduced weight matrix for the user-movie rating matrix, to indicate whether the 

rating was present in the initial data matrix. If the rating was present, the value in the 

weight matrix was 1, and 0 if the rating was not available in initial data. By using of 

the weight matrix, they made sure that the initially unavailable ratings had not been 

used while predicting new ratings, and in general, predicting new relationships 

between the entities of different data types. The relations used in the study (other than 

movie ratings of users and the weight matrix) were genres for each movie, and a list 

of actors in each movie. They showed that using relations improved predictions 

compared to the matrix factorization methods that use a single matrix. 

There exists another study that collects all matrices in a one large matrix (collective 

matrix factorization) instead of using all the data matrices separately via Singular 

Value Thresholding algorithm (Bouchard et al., 2013). They put the matrices together 

after computing their nuclear norms, which can also be represented by decomposition 

norm, based on same mentality of matrix factorization. An example for the collection 

of all matrices as one can be seen in Figure 2.1. In the figure, the relation diagram of 

three data types are given, in addition to the placement of their norm matrices. The 

matrices are placed in a way so that none of the relations represented in the diagram is 

missed. They applied this method in two types of real-life data: MovieLens and Flickr, 

the first being a movie rating database containing users’ ratings, their demographic 

information and the movies descriptors; and the other  being a social photo 

bookmarking site, of which the data having user-user interaction, user-tags, item-item 

feature etc. 

 

 

Figure 2.1. A symmetric block matrix representation of collective matrix factorization 

and the entity relations (Bouchard et al., 2013). 
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Hybrid nonnegative matrix factorization (HNMF) algorithm was presented by Luo et 

al. with the purpose of integrating phenotypic and genotypic features of hypertension 

patients for clustering and therefore future predictions (Luo et al., 2019). Their 

difference from the previous methods is that they use specialized loss functions for 

different data types, with purpose of obtaining better results in the end. This algorithm 

is applied for three data types (patients, genotype and phenotype features) with two 

relations, these being patient-genotype and patient-phenotype. The low-rank matrices 

of the data types are constructed and then improved by benefitting from binary 

relations between other data entities. This algorithm is used in our study as well, so its 

mathematical approach and the application with the data will be explained in Chapter 

3 in more detail. 

Another differentiation of the NMF method is an algorithm based on Nonnegative 

Matrix Tri-Factorization (NMTF). Their purpose of using this method is drug 

repositioning by using different features of drugs and targets as data types (Ceddia et 

al., 2019; Dissez et al., 2019). The difference of this method is that they can determine 

different numbers of latent factors for each of the data types, instead of the traditional 

approach of using same number of latent factors for both data types in a particular 

relation matrix. To achieve this the algorithm adds a third matrix that connects the low-

rank matrices while factorizing. The study uses intra-type relations for some of the 

data types as well with the relations with different entries. Another contribution they 

added to the method is how to start the latent factor matrices of the data types. 

Traditionally, and in most of the cases mentioned before, the low-rank matrices are 

started with random values and then are updated in each iteration according to the 

update rules. On the other hand, they compare four different starting methods and use 

the one with the most efficient result based on the claim that random starting makes 

the results inconsistent at each application. To further improve the results of the 

algorithm, intra-type relations are also added for some of the data types, claiming that 

the proteins, pathways that interact with each other etc. tend to be classified together 

and show similar biological characteristics. This algorithm is also used in this thesis 

as the last upgrade to the baseline nonnegative matrix factorization algorithm, so its 

principles etc. will be explained again in Chapter 3 in more detail. 

 

2.3. Matrix Factorization Applications on Biological Data 

Matrix factorization and its derivatives are used in multiple fields of sciences, 

including computational biology. The scientific problems in this field include 

molecular pattern discovery, as in protein and gene microarray studies and expression 

profiles, cross-platform and cross-species analyses, function-gene relations, drug-

target interactions and so on (Devarajan, 2008). Pehkonen et al. used nonnegative 

matrix factorization to identify and visualize the clusters of genes via their functional 

classes (Pehkonen et al., 2005). They obtained various grouping results for different 

numbers of clusters, in other words, different numbers of latent factors. They shared 

these various clusters they obtained with their developed tool called GENERATOR 

and the differentiation of clusters as the clustering number changes. Additionally, they 

reported the comparison of their tool and other computational tools to show the 

performance of their algorithm. 
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Another popular objective is drug-target interactions. Since the drug prediction 

experiments take years, cost huge amounts of money and have no guarantee to be 

successful in the end of the experiment, the knowledge in the field is limited. There 

are databases for drug molecules that are experimentally proven such as ChEMBL 

(Gaulton et al., 2012), DrugBank (Wishart, 2012) and so on. The scarcity of 

information due to previously explained reasons encourages the scientists of the field 

to find methods for automatic and systematic predictions. One example that matrix 

factorization is used for drug-target prediction is performed by Cobanoglu et al. 

(2013). They used Probabilistic Matrix Factorization to find additional interactions 

between drugs and their target molecules (proteins etc.) given that they give all the 

drugs and target molecules of interest and some of the binary interactions. Another 

necessity of the method is that the number of initially known interactions should be 

high enough for the method to outperform the ones available in literature. The 

visualization of the method for drug-target prediction is shown in Figure 2.2. In the 

figure, the initially available interactions between drugs and target molecules are 

represented by black lines, while new predictions of interactions are shown with red 

lines, along with the probability of that association. Initial interactions are used to 

construct the latent vectors of different entities, and then the vectors of drug and target 

entities are multiplied to obtain the likelihood of that entity pair in association with 

each other. 

 

Figure 2.2. Probabilistic matrix factorization for drug-target interaction. (Cobanoglu 

et al., 2013). 

Another study that focuses on integration of multiple datasets introduces intra-type 

relations as well to the algorithm so that the similarities between entities of same data 

type can also be considered for relation predictions (Žitnik & Zupan, 2015). They use 

this algorithm on two experiments: gene function prediction and drug-target 

prediction. For gene function prediction, they used genes, ontology terms (function 

annotations), experimental conditions, publications, descriptors, and pathways as data 

types; and also added scores of interaction and similarity for data types such as genes 

and functions. The other case was for pharmacological (drug-target) prediction, in 

which they used chemicals, pharmacologic actions, publications, depositors and their 

categorization, and substructure fingerprints, with chemicals having similarity scores 

as intra-type information.  
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Drug-target interaction prediction studies are very popular due to above-mentioned 

reasons. Each study tries to achieve more accurate results by adding different types of 

extra information to the algorithm. One such study uses an algorithm called 

Collaborative Matrix Factorization (Zheng et al., 2013). The method is based on the 

approach of adding similarity matrices representing different properties of main data 

types (drugs and targets) to improve the drug-target prediction. They add chemical 

structure and ATC (Anatomical Therapeutic Chemical) (Skrbo et al., 2004) similarities 

for chemical drugs; and genomic sequence, gene ontology (GO) and protein-protein 

interaction (PPI) network similarity matrices for targets in addition to the relation 

matrix of drugs and target molecules. 

Last but not least, there is another study which is similar to the one above by the data 

they used, but separated in some aspects by the factorization method. They study used 

Bayesian matrix factorization to predict drug-target interactions from chemical and 

genomic kernels (Gönen, 2012). They separated the drug-target interactions for 

humans into four groups, which were enzymes, ion channels, G-protein-coupled 

receptors and nuclear receptors. Then they inserted these groups of interactions to 

Bayesian matrix factorization for predictions. They used only the chemical similarities 

between drugs and the genomic similarities of proteins (targets). Their method of 

Bayesian matrix factorization was claimed to be combining kernel-based 

dimensionality reduction, matrix factorization, and binary classification (for 

prediction). 

All the methods mentioned above either focus on the binary relations completely 

independent from each other (i.e., no multi-type data integration), or they use 

biological data types and relations that are different than ours, while integrating 

multiple relations. The main contribution of our study is integrating the protein-

function relations (with functions of all three main GO categories) and the 

protein(gene)-disease relations, together with intra-type relationships between protein 

entities (protein–protein interactions -PPI-), to predict the unknown relations between 

these input entities. Another important contribution of this study is testing the idea that 

inserting more relational data to the model would improve the prediction performance. 
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CHAPTER 3 

 

3. MATERIALS AND METHODS 

 

3.1. Overview of the Method 

The pipeline of the study can be observed in Figure 3.1. At the beginning of this work, 

the binary relation datasets protein and functional aspects were downloaded from the 

UniProt–GOA database, while the relationships between proteins and diseases were 

retrieved from the DisGeNET database. After the conversion of the data into relation 

matrices of Protein x CC, Protein x MF, Protein x BP and Protein x Disease, the 

matrices were inserted to the chosen algorithms. First, the simple nonnegative matrix 

factorization algorithm was used to obtain relation predictions, without any 

integration. Then, to observe the improvements of the multiple relation data 

integration, the HNMF method was used, in which, pairs of relation matrices are 

inserted as input to the algorithm. Lastly, the NMTF algorithm was used, where it was 

possible to insert all of the data matrices at once, that being the main purpose of this 

study. Finally, the performance evaluations were performed for each algorithm and 

compared to each other for a thorough discussion. Every methodological step 

mentioned above is explained in detail in following sub-sections of this chapter. 
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Figure 3.1. The pipeline of the methodology. 
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3.2. Datasets 

3.2.1. Retrieval of Protein GO Annotation Datasets 

As explained earlier in this thesis, GO (Gene Ontology) annotations are consisted of 

three main branches; cellular component (CC), molecular functions (MF) and 

biological process (BP). All protein – GO term binary relationships were exported 

from GO Annotation Database of EMBL-EBI (Huntley et al., 2015). The fields 

included in the data file can be seen in Table 3.1.  

Table 3.1. The columns in GO annotation data file. 

Column Content Example 

1 DB UniProtKB 

2 DB Object ID P12345 

3 DB Object Symbol PHO3 

4 Qualifier NOT 

5 GO ID GO:0003993 

6 DB:Reference (|DB:Reference) PMID:2676709 

7 Evidence Code IMP 

8 With (or) From GO:0000346 

9 Aspect F 

10 DB Object Name Toll-like receptor 4 

11 DB Object Synonym (|Synonym) hToll 

12 DB Object Type protein 

13 Taxon(|taxon) taxon:9606 

14 Date 20090118 

15 Assigned By SGD 

16 Annotation Extension part_of(CL:0000576) 

17 Gene Product Form ID UniProtKB:P12345-2 

 

First filter applied to the data was for taxonomy; the taxon of interest was human in 

the study. The next filter was exclusion of electronically curated relations by other 

prediction algorithms, to work on experimentally proven and curated annotations only. 

For this, the annotations coded with IEA (which indicates that the curation is done via 

prediction algorithms) as evidence code are excluded from the data. Afterwards, the 

relations are separated according to their GO term types, from which respective data 

matrices are constructed in the later steps. Then the unnecessary columns in the data 

were deleted, as in removing all columns except protein and GO IDs. From the 

remaining list of binary relationships, the repeating rows were removed in order to 

have only the unique pairs in the end. 

As the next step, the parent GO terms were added to the relationship list, to improve 

the performance of algorithm; since it was important for the algorithm to catch the 

common features between entries. The data file downloaded from the UniProt - GOA 

database of UniProt (Binns et al., 2009) had been containing only the most specific 

terms, meaning the terms in the downloaded data had no child terms. 
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3.2.2. Retrieval of Protein – Disease Relation Dataset 

The protein – disease relation data was exported from DisGeNET website. The data 

downloaded from this database was already filtered as experimentally curated. Unlike 

the GO Annotation database, the data in this platform contains gene IDs as one of the 

columns instead of proteins. So, they were converted to protein UniProtKB ID for 

consistency among relation data. Like in protein – GO terms data, the unnecessary 

columns and then the repeating rows were removed. 

The next procedure was to take the protein IDs that were present in binary relationships 

with all three GO categories and disease entries, as the number of the entities of the 

same group used in the algorithms should be the same. Taking the common proteins 

was necessary for not only a meaningful comparison among results of different 

applications, but also for the NMF applications using multiple relation matrices to 

work. As clarification; the HNMF and NMTF algorithms would not work unless the 

number of proteins in the inserted data matrices is the same. Afterwards, again for 

performance-related reasons we applied a filter such that only the GO terms that are 

associated with at least 50 proteins and disease terms that form binary relationship at 

least with 30 proteins were remained. Lastly, the data was converted to matrix form, 

wherein the cell that corresponds to that particular entity binary was filled as 1 if the 

protein – GO (or disease) pair is present in the data (i.e. the binary relationship between 

that protein and GO/disease term), and 0 otherwise. In the end, four different relation 

data matrices were constructed, which are Protein x CC, Protein x MF, Protein x BP 

and Protein x Disease relations. The size of the data matrices before and after the 

common proteins are taken is shown in Table 3.2. and Table 3.3, respectively. 

Table 3.2. The number of each entries and the binary relation number before common 

proteins in all matrices were taken. 

 Binary relation number Protein number GO/disease number 

Protein x CC 117,163 16,345 364 

Protein x MF 72,425 15,583 446 

Protein x BP 137,444 15,043 1679 

Protein x Disease 83,446 7227 3670 

 

Table 3.3. The size of the data matrices after all filters were applied and common 

proteins were taken. 

 Binary relation number Protein number GO/disease number 

Protein x CC 52,203 5424 280 

Protein x MF 34,270 5424 274 

Protein x BP 75,880 5424 987 

Protein x Disease 71,376 5424 930 

 

The histogram graph of proteins for each matrix can be observed in Figure 3.2. The 

graphs show the occurrence numbers of the proteins; for example, how many of the 
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proteins has a binary relationship with a GO term only once, how many of them occurs 

two-times and so on.  
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a. 

  

b.  

 

c.  

 

d. 

  

Figure 3.2. The histogram of matrices with respect to proteins. a. Protein x CC, b. 

Protein x MF, c. Protein x BP, and d. Protein x Disease matrices. 
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As can be seen in the histogram figures, there were proteins present only once in the 

binary relationship list, so they had not shared any common relations with other 

entities. To explain in more detail, these proteins that are present only once would not 

contribute to the algorithm since it learns from the shared relationships between 

entities. So, as an additional NMF analysis to compare the effect of data structure, 

these proteins were also excluded from the data to observe whether it would boost the 

performance of the algorithms. Afterwards, again the common proteins (proteins 

present in all 4 matrices) were taken. The final size of the matrices after this procedure 

can be seen in Table 3.4. 

Table 3.4. The size of the matrices after the proteins with one binary relationship were 

removed. 

 Binary relation number Protein number GO/disease number 

Protein x CC 37,300 3575 279 

Protein x MF 25,444 3575 273 

Protein x BP 59,221 3575 987 

Protein x Disease 65,785 3575 930 

 

A representation of the constructed matrices can be seen below in Table 3.5. In the 

matrices, the row elements are protein entries, and the columns are GO / disease terms. 

The cells were filled as 1 if there is a binary relation between the protein and 

GO/disease terms, and filled with 0 if there was no relation between the entities.  

Table 3.5. Representation of an example data matrix for Protein x MF. 

 GO:0005515 GO:0003674 GO:0140096 GO:0016787 GO:0035091 … 

A1A4Y4 1 0 0 0 0  

A1X283 1 0 0 0 1  

A3KN83 0 1 0 0 0  

A6NNW6 0 1 0 0 0  

P00797 1 0 1 1 0  

…       

 

3.3. Mathematical Definitions 

In this section of the thesis, some of the mathematical terms are explained as an 

introduction before the baseline algorithm and the upgraded versions are explained in 

detail. 

 

3.3.1.  Matrix and Basic Operations 

A matrix is a rectangular array with size r x k (i.e. with r number of rows and k number 

of columns), containing real or complex numbers, and each number on the matrix is 

called entries (Cherney et al., 2013). Various operations can be applied to a matrix as 

well as among multiple matrices. The transpose of a matrix of r x k size is a matrix of 
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k x r size, in which the rows and columns of the matrix are replaced with each other. 

Matrices can be added and subtracted if their sizes are equal. Matrix multiplication is 

an operation where one matrix is obtained from two matrices. For two matrices to be 

multiplied, the inner sizes of the matrices when put side by side should be equal. For 

clarification, imagine two matrices, first with size of m x j and the second with size of 

k x n. For these two matrices to be multiplied, j should be equal to k (j = k). The result 

of this multiplication is an m x n matrix. 

 

[

𝑎11 ⋯ 𝑎1𝑗

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑗

] ∙  [
𝑏11 ⋯ 𝑏1𝑛

⋮ ⋱ ⋮
𝑏𝑘1 ⋯ 𝑏𝑘𝑛

]  =  [

𝑐11 ⋯ 𝑐1𝑛

⋮ ⋱ ⋮
𝑐𝑚1 ⋯ 𝑐𝑚𝑛

] 

 

where a11…are elements of matrix A of size m x j, b11… are elements of matrix B of 

size k x n, and c11… are elements of matrix C of size m x n. 

 

3.3.2.  Likelihood Function 

The definition of likelihood function is the joint probability of observing x1…xn given 

that the parameter is Θ (Liu & Jiang, 2013). The mathematical notation of the function 

is: 

L (Θ | 𝑥1, 𝑥2, . . . , 𝑥𝑛)  =  p(𝑥1, 𝑥2, . . . , 𝑥𝑛)  =  ∏ p(x𝑖| Θ )

n

i=1

  

where L is the likelihood and p( ) is the probability. 

Because the likelihood function gets harder to solve as n becomes larger, a workaround 

is used as: 

log L (Θ | x1, 𝑥2, . . . , 𝑥𝑛)  =  log ∑ p(x𝑖| Θ)

𝑛

𝑖=1

  

where log is the logarithmic function. 

The purpose of the function is to find the most likely parameters given the 

observations, thus making this an optimization problem. Since we try to find the 

maximum similarity, there comes the maximum likelihood estimation (MLE), whose 

mathematical formulation is: 

θ𝑀𝐿𝐸  =  arg maxΘ log L (Θ | x1, x2, . . . , xn) 

 

 

(2) 

(1) 

(3) 

(4) 
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3.4. Nonnegative Matrix Factorization Algorithm 

Nonnegative matrix factorization (NMF) is an algorithm based on the idea that a 

matrix V with size m x n is factorized into two low-rank feature matrices W (m x k) 

and H (k x n) such a way that when they are multiplied the original matrix is regained 

(Lee & Seung, 1999). 

 

𝑉 ≈ 𝑊 𝑥 𝐻 

 

Below in Figure 3.3. a schematic representation of matrix factorization is also 

available.  

 

 

Figure 3.3. Schematic figure of matrix factorization.  

k represents the latent factor (the cluster value of the data types) that is determined in 

the beginning, and the low rank matrices are computed accordingly. Finding the best 

k value is important since there is a trade-off between approximation and complexity 

for the model, where greater k values provide better approximations (because the 

generalization and thus data loss degree is smaller) while smaller k gives less complex 

model for computation.  

The algorithm tries to find the optimum low-rank matrices that would give the closest 

result to the original data matrix; in other words, it tries to make the difference between 

original data matrix V and the multiplication of the low-rank matrices W and H 

minimum. So; 

arg minA,B =  || 𝑉 −  𝑊 ∙ 𝐻 ||𝐹
2  

is taken, which is called loss function, where the loss between the data matrix and the 

predicted matrix is calculated. In the equation  ||  || 𝐹
2  notation is the Frobenius norm. 

Frobenius norm of a matrix is the square root of the sum of the absolute squares of its 

elements (entries, cells) (Golub & Loan, 1996): 

||𝐴||𝐹 = √∑ ∑ |𝑎𝑖𝑗|2

𝑚

𝑗=1

𝑚

𝑖=1

 

(5) 

(6) 

(7) 



 

22 
 

where A is a m x n sized matrix, and aij is the element of A in i-th row and j-th column. 

In order to find the optimum solution, the low rank matrices are updated and compared 

to the original matrix. Traditionally, they are started with random values and then 

updated in each iteration until the best matrices to minimize the difference is reached. 

The stopping criterion can be either a very small value of loss that will be the result of 

loss function, or a maximum number of iterations to be reached. The update methods 

(i.e. the learning method of the algorithm) are generally improved from two basic 

algorithm; stochastic gradient descent and alternating least squares (Koren et al., 

2009). In stochastic gradient descent every element of predicted matrix is compared to 

the data matrix and updated by a given learning rate in every iteration, (Bottou, 2012). 

Alternating least squares method for the update of low-rank matrices is preferred for 

some since stochastic gradient descent may cost too much computational time. The 

update method simplifies the optimization problem by taking each low-rank matrix as 

constant to optimize the other one, and continues the procedure until convergence 

(Stanford, 2015). 

In this study, first of all, the baseline NMF algorithm was applied, where only one 

matrix was introduced to the method and the factorization results for each matrix was 

independent from the others. For this, the nnmf function of the MATLAB (R2018b) 

software was used. Since there were multiple parameters for the algorithm that can 

change the result, the algorithm was first run for a small toy matrix of 15x10 to find 

the best parameter combinations for the iteration number, update rule and so on. 

Afterwards, different latent factor (k) values were tested to find out the best option for 

each relation data matrix. At last, the algorithm's performance was evaluated with 10-

fold cross-validation. The results obtained from this algorithm were to be compared to 

the results from algorithms using multiple-relation data matrices, to observe the 

performance improvement from using the multiple relation matrices simultaneously. 

 

3.4.1. HNMF Algorithm  

HNMF algorithm is an upgraded version of the baseline NMF algorithm., where the 

approach in the study was to maximize the addition of likelihoods (joint likelihood) of 

two approximations to achieve introducing two relations to the base model (Luo et al., 

2019). They used discrete values for genotypic data (counts of genetic variants) and 

continuous values for phenotypic data. For this reason, they used Kullback-Leibler 

(KL) divergence for the genotype part of the likelihood function, and Frobenius norm 

for phenotype part of the function. They have also added a parameter lambda to the 

joint likelihood function so that the trade-off between the loss functions can be entered. 

As the update rule of low-rank matrices (of patients, phenotype values and genotype 

values) they adapted the alternating projected gradient descent method, and the 

stopping criteria as either small enough joint loss or convergence in difference between 

loss of last two iterations is reached. 
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Below in Figure 3.4 the HNMF model in the original study can be observed according 

to their own data types. Xp and Xg represents their relation matrices of Patients x 

Phenotypic variables and Patients x Genetic Variables, respectively. F is the low-rank 

latent groups matrix for patients while Gp and Gg are the low rank matrices for 

phenotypic and genotypic groups. In this study the model was adapted to the data here 

as the Xg matrix is the Protein x Disease matrix and the Xp matrix is either Protein x 

CC, Protein x MF or Protein x BP in each application. 

 

Figure 3.4. A hybrid nonnegative matrix factorization model (Luo et al., 2019). 

For adaptation to data in this study, the joint likelihood function is converted so that 

both parts are suitable for KL-loss since all data is of categorical values (either 1 or 0); 

likewise, the update rules are converted accordingly. The study has shared their 

MATLAB code as an open source, thus giving opportunity to update the equations to 

fit this study. 

Parameters, functions etc. in the equations given below are explained where they are 

firstly encountered and are not defined again as they reappear. 

The minimized negative log likelihood function in the matrix form of original study: 

𝐿 (𝐹,  𝐺𝑝, 𝐺𝑔)  =   ∑  [ 
𝜆

2
 

𝑖𝑗

||𝑋𝑝  − 𝑋̂𝑝||𝐹
2 + 𝑋̂𝑔  −  𝑋𝑔 𝑙𝑜𝑔 (𝑋̂𝑔) 

where λ is the weight of the function, 𝑋̂𝑝 is F.Gp and 𝑋̂𝑔 is F.Gg 

 

(8) 
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The updated version of the function to fit the case in this study: 

𝐿 (𝐹,  𝐺𝑝, 𝐺𝑔)  =   ∑  [ 
𝜆

2
 

𝑖𝑗

( 𝑋𝑝  −  𝑋̂𝑝 𝑙𝑜𝑔 (𝑋̂𝑝)) +  𝑋̂𝑔  −  𝑋𝑔 𝑙𝑜𝑔 (𝑋̂𝑔)] 

Here we converted the first part of the equation, where 𝑋𝑝 matrix and its derivatives 

are involved. 

The update equations for each of the factor matrices for original study: 

𝛻𝐺𝑝 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝜆 ( 𝐹 𝐹𝑇𝐺𝑝  −  𝐹 𝑋𝑝) 

 

𝛻𝐺𝑔 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝐹 (𝐸𝐺  −  𝑋̃𝑔) 

 

𝛻 𝐹 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝜆 (− 𝐺𝑝 𝑋𝑝
𝑇  +  𝐺𝑝 𝐺𝑝

𝑇 𝐹)  +  𝐺𝑔 (𝐸𝐹  −  𝑋̃𝑔
𝑇 ) 

where 𝐸𝐺  and 𝐸𝐹 are all-one matrix and 𝑋̃𝑔 = 𝑋𝑔 / 𝑋̃𝑔. 

The update equations of low-rank matrices are converted for this study as: 

𝛻𝐺𝑝 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝐹 (𝐸𝑝  −  𝑋̃𝑝) 

 

𝛻𝐺𝑔 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝐹 (𝐸𝐺  −  𝑋̃𝑔) 

 

𝛻 𝐹 𝐿 (𝐹, 𝐺𝑝, 𝐺𝑔)  =  𝜆 (𝐺𝑝 (𝐸𝑞  −  𝑋̃𝑝
𝑇 )]  +  𝐺𝑔 (𝐸𝐹  −  𝑋̃𝑔

𝑇 ) 

where λ is taken as 1 in this study since their weight are equal. We converted the 

equation (13) according to our data, and also the first part of equation (15), since (15) 

is the sum of (13) and (14). 

As the next step, as in basic NMF procedure, firstly the algorithm is run for toy 

matrices (of 15x10 and 15x8, respectively) to determine the parameters like iterations, 

tolerance etc. Then the algorithm of both versions (before and after conversion) is run 

with the determined parameters to find the most befitting latent values (k) for relation 

matrix pairs to be inserted. Another reason of this part was to compare the 

performances of both versions, to see whether the conversion improved the 

performance as presumed. One of the constant matrix for taken the pairs was Protein 

x Disease matrix as we wanted to use one relation matrix with GO term and the other 

with disease terms so that the algorithm would be able to learn the correlation between 

diseases and functions. After determining the optimum k values for every relation pair, 

10-fold cross validation is applied for evaluation, and then performance scores are 

obtained. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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3.4.2.  NMTF Algorithm 

NMTF algorithm is another model based on NMF approach, where the improvement 

of the algorithm to the baseline is the ability to use all the relation matrices at one run. 

In this method different k values for each data type in a relation can be given, with the 

purpose of obtaining better results due to data types having the opportunity of being 

clustered via their respective optimum group numbers (Ceddia et al., 2019; Dissez et 

al., 2019). As mentioned in Section 2.3.2., they also compared different starting 

methods for low-rank matrices in order to achieve more consistent results. They 

compared the results of random uniform, random ACOL, k-means clustering and 

spherical k-means clustering methods for starting of low-rank matrices and discovered 

that spherical k-means clustering gives the best result. We used their spherical k-means 

clustering method as well for this part of the study. 

 

Figure 3.5. An example schematic representation of relation diagram. (Dissez et al., 

2019). 

An example representing the diagram of interactions among data types in the original 

study is given in Figure 3.5. In their case, drugs were related with indications, diseases 

and proteins; therefore, the relation matrices involving drugs were indications x drugs 

(R12), drugs x proteins (R23) and drugs x diseases (R25). The relation diagram of their 

data was a little different from this study, so the formulas in update rules etc. are 

converted accordingly. Unlike in the source study, the data types in this study were 

proteins (1), CC (2), MF (3), BP (4) GO annotation terms and diseases (5). Thus, the 

relation matrices here were R12 (Protein x CC), R13 (Protein x MF), R14 (Protein x 

BP) and R15 (Protein x Disease). The diagram applied to our study based on the above 

one is available in Figure 3.6. 
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Figure 3.6. The schematic representation of the relation diagram of this study. 

The NMTF objective function in the original study according to their data was: 

 

𝐽(𝐺, 𝑆) = ||𝑅12 − 𝐺1𝑆12𝐺2
𝑇||

2
+ ||𝑅23 − 𝐺2𝑆23𝐺3

𝑇||
2

+ ||𝑅34 − 𝐺3𝑆34𝐺4
𝑇||

2

+  || 𝑅25  −  𝐺2𝑆25𝐺5
𝑇||2  +  𝑡𝑟(𝐺3

𝑇 𝐿3 𝐺3)  +  𝑡𝑟(𝐺4
𝑇 𝐿4 𝐺4) 

 

where Gx’s are the data types’ respective low-rank matrices, Sx’s are the intermediate 

matrices of latent factor (k) values, Lx’s are the intra type relation matrices of their 

respective data types, and tr is trace function. Trace of a square matrix A is the sum of 

the diagonal elements (Lang, 2013): 

𝑇𝑟 (𝐴)  =  ∑ 𝑎𝑖𝑖

𝑛

𝑖=1

 

 

The NMTF objective function for our data is: 

 

𝐽(𝐺, 𝑆) = ||𝑅12 − 𝐺1𝑆12𝐺2
𝑇||

2
+ ||𝑅13 − 𝐺1𝑆13𝐺3

𝑇||
2

+ ||𝑅14 − 𝐺1𝑆14𝐺4
𝑇||

2

+  || 𝑅15  −  𝐺1𝑆15𝐺5
𝑇||2  +  𝑡𝑟(𝐺1

𝑇 𝐿1 𝐺1)  

 

(16) 

(18) 

(17) 
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where 1 is the representation of protein, 2 of CC, 3 of MF, 4 of BP and 5 of disease 

terms. The trace function is for protein-protein interaction matrix. The equation was 

updated according to the relation diagram of this study. 

The update rule equations are converted to fit the data of this study as well. The original 

form of update rule equations was: 

𝐺1  ←  𝐺1 √
𝑅12𝐺2𝑆12

𝑇

𝐺1𝐺1
𝑇𝑅12𝐺2𝑆12

𝑇  

 

𝐺2  ←  𝐺2 √
𝑅12

𝑇 𝐺1𝑆12  +  𝑅23𝐺3𝑆23
𝑇  +  𝑅25𝐺5𝑆25

𝑇

𝐺2𝐺2
𝑇𝑅12

𝑇 𝐺1𝑆12  +  𝐺2𝐺2
𝑇𝑅23𝐺3𝑆23

𝑇  +  𝐺2𝐺2
𝑇𝑅25𝐺5𝑆25

𝑇  

 

𝐺3  ←  𝐺3 √
𝑅23

𝑇 𝐺2𝑆23  + 𝑅34𝐺4𝑆34
𝑇

𝐺3𝐺3
𝑇𝑅23

𝑇 𝐺2𝑆23  + 𝐺3𝐺3
𝑇𝑅34𝐺4𝑆34

𝑇  

 

𝐺4  ←  𝐺4 √
𝑅34

𝑇 𝐺3𝑆34

𝐺4𝐺4
𝑇𝑅34

𝑇 𝐺4𝑆34

 

 

𝐺5  ←  𝐺5 √
𝑅25

𝑇 𝐺2𝑆25

𝐺5𝐺5
𝑇𝑅25

𝑇 𝐺2𝑆25

 

 

𝑆12  ←  𝑆12 √
𝐺1

𝑇𝑅12𝐺2

𝐺1
𝑇𝐺1𝑆12𝐺2

𝑇𝐺2

 

 

𝑆23  ←  𝑆23 √
𝐺2

𝑇𝑅23𝐺3

𝐺2
𝑇𝐺2𝑆23𝐺3

𝑇𝐺3

 

 

𝑆34  ←  𝑆34 √
𝐺3

𝑇𝑅34𝐺4

𝐺3
𝑇𝐺3𝑆34𝐺4

𝑇𝐺4

 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 



 

28 
 

 

𝑆25  ←  𝑆25 √
𝐺2

𝑇𝑅25𝐺5

𝐺2
𝑇𝐺4𝑆25𝐺5

𝑇𝐺5

 

 

The above equations are converted for this study as shown in below: 

𝐺1  ←  𝐺1 √
𝑅12𝐺2𝑆12

𝑇 +  𝑅13𝐺3𝑆13
𝑇 +  𝑅14𝐺4𝑆14

𝑇 +  𝑅15𝐺5𝑆15
𝑇

𝐺1𝐺1
𝑇𝑅12𝐺2𝑆12

𝑇  +  𝐺1𝐺1
𝑇𝑅13𝐺3𝑆13

𝑇  +  𝐺1𝐺1
𝑇𝑅14𝐺4𝑆14

𝑇  +  𝐺1𝐺1
𝑇𝑅15𝐺5𝑆15

𝑇  

 

 

𝐺2  ←  𝐺2 √
𝑅12

𝑇 𝐺1𝑆12

𝐺2𝐺2
𝑇𝑅12

𝑇 𝐺1𝑆12

 

 

𝐺3  ←  𝐺3 √
𝑅13

𝑇 𝐺1𝑆13

𝐺3𝐺3
𝑇𝑅13

𝑇 𝐺1𝑆13

 

 

𝐺4  ←  𝐺4 √
𝑅14

𝑇 𝐺1𝑆14

𝐺4𝐺4
𝑇𝑅14

𝑇 𝐺1𝑆14

 

 

𝐺5  ←  𝐺5 √
𝑅15

𝑇 𝐺1𝑆15

𝐺5𝐺5
𝑇𝑅15

𝑇 𝐺1𝑆15

 

 

𝑆12  ←  𝑆12 √
𝐺1

𝑇𝑅12𝐺2

𝐺1
𝑇𝐺1𝑆12𝐺2

𝑇𝐺2

 

 

𝑆13  ←  𝑆13 √
𝐺1

𝑇𝑅13𝐺3

𝐺1
𝑇𝐺1𝑆13𝐺3

𝑇𝐺3

 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 



 

29 
 

 

𝑆14  ←  𝑆14 √
𝐺1

𝑇𝑅14𝐺4

𝐺1
𝑇𝐺1𝑆14𝐺4

𝑇𝐺4

 

 

 𝑆15 ←  𝑆15 √
𝐺1

𝑇𝑅15𝐺5

𝐺1
𝑇𝐺1𝑆15𝐺5

𝑇𝐺5

 

In the original study, the drug and protein data types were in relation with more than 

one other data type, so the update rules regarding these data types contained all the 

relation and low-rank matrices they were involved in. For example, the protein data 

type was present in both drug x protein and protein x pathway relations (please refer 

to Figure 3.4 for more clear representation), so the update rule of the low-rank matrix 

of protein contains matrices from both relations’ approximations. In the converted 

version of the equations for this study, protein was the data type involved in all the 

relation matrices, so the update rule of it contains all the relation and low-rank 

matrices. 

Their code for the application was also available as an open source, but the 

programming platform was Python in this case. Python v.3.7 was used to run this 

section of the experiment. After adaptation to the data of this study, firstly run the data 

matrices and compared their error rates to determine the k values to be used, and then 

applied 10-fold cross-validation and obtained the performance scores. 

 

3.5. Performance Evaluation 

For every method used in this study, at first the latent factor (k) values are determined 

via error comparison. The algorithms are run with training data to detect the best k 

values for each matrix. For comparison, the error rates are used, of which the formula 

is; 

𝑒𝑟𝑟𝑜𝑟 =  
∑ |𝑑𝑎𝑡𝑎 𝑚𝑎𝑡𝑟𝑖𝑥𝑖𝑗  −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥𝑖𝑗|𝑖𝑗

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑚 𝑥 𝑛)
 

where i and j are the index numbers of each element of matrices.  

 

The result is then compared with random error rate, which is defined as; 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑚 𝑥 𝑛)
 

 

(35) 

(36) 

(37) 

(38) 
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Random error is a special case of error when a model predicts all points as zero without 

any prediction (machine learning). Logically, it is needed to take k values that give 

lower error values than of random error value, so that it can be said that the model 

performs better than random predictor for that k value. 

After the determination of k values to be used with the training data, 10-fold cross 

validation is applied to test the performance of the method, where the available data in 

hand (the annotations) are divided into ten parts of equal size, and each time one of the 

parts are excluded from the training data to be fitted to the model. After obtaining the 

results for 10-fold cross-validation, as an additional analysis we performed 3-fold cross 

validation. By further evaluating the algorithms with 3-fold cross validation we aimed 

to prevent overfitting of the models; in other words, to memorize the data instead of 

learning, and thus failing to model future data (Oxford, n.d.). Another aim was to 

create more challenging test for the models to compare the performance of the models 

by the training data sparsity. While applying 3-fold cross validation, we took the latent 

factor (k) values for a matrix same in each application, to compare the performance 

changes as the model becomes more complex. 

Later, according to the results depending on different threshold values, where the 

predicted point is considered positive if equal or above the threshold and negative 

otherwise, the confusion matrices are constructed, and then these points are compared 

to the data points. The confusion matrix contains the four main classes identifying each 

result point; true positive (TP – both the prediction and the given point is positive), 

true negative (TN – both the prediction and the given data is negative), false positive 

(FP – where the data point is negative but the prediction for it is positive), and false 

negative (FN – where the real data point is positive but the prediction is negative). 

From these, performance scores are calculated to better understand the model, such as 

recall, precision, false positive rate (FPR), accuracy and so on. 

Recall (also called sensitivity or true positive rate -TPR-) shows how many of the 

positive values in the data are correctly predicted as positive. 

Recall =  
TP

TP + FN
 

 

 

Precision shows the ratio of how many of the predicted positives are true. 

 

Precision =  
TP

TP + FP
 

 

False positive rate (FPR) is the ratio of how many of the negative points are predicted 

as positive. It is used with TPR for ROC curve plotting. 

False Positive Rate (FPR)  =  
FP

FP +  TN
 

(39) 

(40) 

(41) 
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Accuracy is the ratio indicating how many of the predictions are correct, positive or 

negative. 

Accuracy =  
TP + TN

TP + TN + FN + FP
 

 

F1 score helps the data to be better understood when the precision and recall are 

misleading due to imbalance of the data.  

F1 score = 2 × 
Precision × Recall

Precision + Recall
 

 

Another score to describe the imbalanced data in a better way is Matthews correlation 

coefficient (MCC). 

MCC =  
TP × TN −  FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

 

With TPR and FPR scores for each threshold, the receiver operating characteristic 

(ROC) curve is plotted, which shows the performance of the prediction model. The 

diagonal line in the graph shows the random (uninformative) guessing, and the models 

having ROC curves that are above this diagonal line are said to be better predictor than 

random while the models with curves below the line are said to predict worse than 

random classifiers. An example of ROC curve can be seen in Figure 3.7. The green 

curve in the figure, which is also pointed by black arrows, is the ROC curve, and the 

red diagonal line is the random classifier. For comparison of different models, the Area 

Under the Curve (AUC) is calculated, which is the area between ROC curve and the x 

axis, where the area is bounded by x=1. It is interpreted as the higher the AUC, the 

better the predictive model. 

 

(42) 

(43) 

(44) 
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Figure 3.7. An example of ROC curve. The area under the curve gives the AUC value. 

(Hajian-Tilaki, 2013). 

 



 

33 
 

CHAPTER 4 

 

4. RESULTS 

 

 

4.1. Application of the Baseline NMF Algorithm 

Following the algorithm run with toy matrices (with the purpose of determining the 

parameters), it is observed that there was no significant performance difference for 

iteration number and tolerance value selections, so the default parameters were 

employed. On the other hand, “als” update method was found to perform better than 

“mul” method, so the experiments in this field from this point were continued with the 

“als” update method. 

Afterwards, the algorithm was run with the actual training data to detect the best k 

values for each matrix. The graphical plots of this analysis for each relation matrix can 

be seen in Figure 4.1. The random prediction model error was 0.034 for Protein x CC, 

0.023 for Protein x MF, and 0.014 for Protein x BP and Protein x Disease matrices. 

One of the criteria while selecting the number of latent factors was that the value 

should have lower error rate than the random predictor. The other criterium was the 

value being not too high, so that, there would still be a classification among data type 

entities. If the k values were too close to the number of entities of the original data 

matrices, there would be no grouping at all. As a result of this experiment, k values of 

50, 50, 100 and 100, were selected as the number of latent factors for CC, MF, BP and 

diseases, respectively. 
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Figure 4.1. The comparison of error values of NMF algorithm and uniform predictor 

for respective relation matrices. 

After determining the latent factor (k) values, the model was evaluated with 10-fold 

cross validation, and then the performance scores were calculated. Below are the 

scores for the threshold 0.5 in Table 4.1. The threshold was chosen as 0.5 while giving 

the scores since it is the middle point of 0 and 1. Furthermore, the threshold is generally 

taken as 0.5 in literature as well. The MCC scores for matrices are 0.26, 0.29, 0.32, 

and 0.40 for Protein x CC, Protein x MF, Protein x BP and Protein x Disease matrices, 

respectively. On the other hand, the given scores for the threshold of 0.5 are not the 

optimal performance scores of the models. However, the commonly chosen threshold 

of 0.5 was not the one giving the best performance results, the models gave the best 

performance scores when the threshold was taken as 0.02. Since this threshold is not 

close to the universal threshold of 0.5, the scores for this threshold were presented in 

separate tables as well. The scores according to the threshold of 0.02 can also be seen 

in Table 4.2. The scores for all threshold values are available in Appendix A.1.  
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Table 4.1. The scores at threshold 0.5 for each relation matrix in the baseline NMF 

algorithm for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 6558 52170 30 45642 0.13 1.00 0.00 0.56 0.22 0.26 

PxMF 0.5 5305 34250 20 28965 0.15 1.00 0.00 0.58 0.27 0.29 

PxBP 0.5 14065 75853 27 61815 0.19 1.00 0.00 0.59 0.31 0.32 

PxD 0.5 19389 71356 14 51981 0.27 1.00 0.00 0.64 0.43 0.40 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.2. The scores at threshold=0.02 for each relation matrix in the baseline NMF 

algorithm for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.02 45403 46065 6135 6797 0.87 0.88 0.12 0.88 0.88 0.75 

PxMF 0.02 29022 30890 3380 5248 0.85 0.90 0.10 0.87 0.87 0.75 

PxBP 0.02 64165 66833 9047 11715 0.85 0.88 0.12 0.86 0.86 0.73 

PxD 0.02 59794 63476 7894 11576 0.83 0.88 0.11 0.86 0.85 0.72 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

The ROC curves and the AUC values are given in Figure 4.2. It is seen that the AUC 

values for the algorithm run with each matrix are 0.94, 0.92, 0.93 and 0.92 for Protein 

x CC, Protein x MF, Protein x BP and Protein x Disease matrices, respectively. 
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a.      b. 

  

c.      d. 

  

Figure 4.2. The ROC curves and AUC values for NMF cross-validation scores. a. 

Protein x CC, b. Protein x MF, c. Protein x BP, d. Protein x Disease 

As mentioned in Chapter 3, the tests were re-run with further filtered datasets. The 

performance evaluation of these analyses was done via 3-fold cross-validation, in order 

to test the performance of models when they were run in more challenging conditions. 

The latent factor values were 150 for Protein x CC and Protein x MF matrices, and 200 

for Protein x BP and Protein x Disease matrices. The results of these analyses for 

baseline NMF algorithm can be examined in Table 4.3 and Table 4.4 for thresholds 

of 0.5 and the threshold giving the best performance scores for each matrix model, 

respectively. The scores for all matrices are around 0.65 when the best threshold 

(score-wise) was taken. On the other hand, the scores when the threshold was taken as 

0.5 were 0.13 for Protein x CC, 0.19 for Protein x MF, 0.21 for Protein x BP and 0.27 

for Protein x Disease matrices. 
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Table 4.3. The scores at threshold 0.5 for each relation matrix in the baseline NMF 

algorithm for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 1120 37297 2 33020 0.03 1.00 0.00 0.54 0.06 0.13 

PxMF 0.5 1575 25439 4 21034 0.07 1.00 0.00 0.56 0.13 0.19 

PxBP 0.5 4786 59216 4 51173 0.09 1.00 7E-05 0.56 0.16 0.21 

PxD 0.5 8209 65778 6 54912 0.13 1.00 9E-05 0.57 0.23 0.27 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.4. The scores at threshold giving the best scores for each relation matrix in the 

baseline NMF algorithm for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.01 24626 33443 3856 9514 0.72 0.86 0.10 0.81 0.79 0.63 

PxMF 0.01 16560 22774 2669 6049 0.73 0.86 0.10 0.82 0.79 0.64 

PxBP 0.02 42754 53021 6199 13205 0.76 0.87 0.10 0.83 0.82 0.67 

PxD 0.02 48616 57686 8098 14505 0.77 0.86 0.12 0.82 0.81 0.65 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

 

4.2. Application of the HNMF Algorithm  

In HNMF method, the parameters such as tolerance, “max_iter”, “max_sub_iter”, 

“timelimit” etc. were determined by running the algorithm with the handmade toy data 

matrices. There was not any significant difference observed as the parameters change. 

So, the iteration number was taken as high as 500 since small iteration number may 

cause lower performance; the tolerance as 1e-6 (the default tolerance in the code), and 

the “timelimit” was kept high so that the algorithm was not terminated prematurely. In 

addition, the lambda value was kept as 1, meaning no weight is given to any of the 

matrices. Later, different latent factor (k) values were observed with training data to 

find the optimum ones for each pair. In this stage, the error values of the algorithms 

for before and after the equation conversions were compared. The comparison of error 

rates for both versions can be seen in Table 4.5. Since even one run could took days 

in some cases, the tested latent factor values were limited. It is observed that the results 

were improved as expected in the converted part of the algorithm. For example, the 

error rate for Protein x CC matrix was 0.0454 before conversion while it improved to 

0.0180 after the algorithm was tinkered with. As a result, the latent factor (k) values 

were taken as 150 for the pairs of Protein x CC / Protein x MF and Protein x Disease 

matrices, while as 200 for Protein x BP and Protein x Disease pair since the size of 

Protein x BP matrix was bigger than the other two GO term matrices.  
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Table 4.5. The error rates for the HNMF algorithm before and after the loss functions 

and the update equations were converted. 

 model k Error (P x __) Error (P x D) 

 

 

 

 

 

 

HNMF before conversion 

PxMF and PxD 

10 0.0313 0.0218 

20 0.0321 0.0204 

50 0.0338 0.0174 

100 0.0343 0.0142 

150 0.0333 0.0133 

200 0.0314 0.0102 

PxCC and PxD 
50 0.0486 0.0175 

150 0.0454 0.0120 

PxBP and PxD 

50 0.0247 0.0177 

150 0.0248 0.0125 

200 0.0246 0.0110 

 

 

 

 

HNMF after conversion 

PxMF and PxD 
50 0.0250 0.0186 

150 0.0168 0.0132 

PxCC and PxD 
50 0.0281 0.0187 

150 0.0180 0.0137 

PxBP and PxD 

50 0.0212 0.0200 

150 0.0171 0.0159 

200 0.0154 0.0144 

(Please refer to Methods 3.4.1). The lowest error rates for each model is in bold. Protein x (__) represents 

the other pair used in the model with Protein x Disease matrix, and it is indicated in the model column. 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease 

Afterwards, the cross validation was performed with determined k values for each 

model using the updated algorithm. Below in Table 4.6. and Table 4.7 the 

performance scores for the model with Protein x CC and Protein x Disease matrices 

can be examined for thresholds of 0.5 and 0.02, respectively. As in the case of baseline 

NMF algorithm, the optimal scores were calculated when the threshold was taken as 

0.02, but results for threshold of 0.5 were also given for clearer comparison with the 

studies in literature. Likewise, in Table 4.8. the performance scores for threshold of 

0.5, and in Table 4.9 the scores for the threshold of 0.02 for the HNMF model with 

Protein x MF and Protein x Disease model is showed. Lastly, in Table 4.10. and in 

Table 4.11 the scores for the model run with Protein x BP and Protein x Disease 

matrices can be seen, for the thresholds of 0.5 and 0.02 respectively. The MCC scores 

for Protein x Disease is around 0.40 for all three models at threshold=0.5. MCC score 

is 0.45 for Protein x CC matrix, 0.37 for Protein x MF matrix, and 0.32 for Protein x 

BP matrix. The complete versions of the tables are available in Appendix A.2. In 

Figure 4.3. the ROC curves and AUC scores can be seen for each model. The AUC 

values are around 0.87 for every matrix in this experiment.  
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Table 4.6. The scores for threshold of 0.5 for Protein x CC and Protein x Disease model 

of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 17811 52112 88 34389 0.34 1.00 0.00 0.67 0.51 0.45 

PxD 0.5 19665 71299 71 51705 0.28 1.00 0.00 0.64 0.43 0.40 

PxCC: Protein x CC, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

Table 4.7. The scores for threshold of 0.02 for Protein x CC and Protein x Disease 

model of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.02 40620 49881 2319 11580 0.78 0.95 0.04 0.87 0.85 0.75 

PxD 0.02 53149 68116 3254 18221 0.74 0.94 0.05 0.85 0.83 0.72 

PxCC: Protein x CC, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

Table 4.8. The scores for threshold of 0.5 for Protein x MF and Protein x Disease 

model of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxMF 0.5 8556 34223 47 25714 0.25 0.99 0.00 0.62 0.40 0.37 

PxD 0.5 20324 71280 90 51046 0.28 1.00 0.00 0.64 0.44 0.40 

Protein x MF, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, 

F-sc.: F-score 

Table 4.9. The scores for threshold of 0.02 for Protein x MF and Protein x Disease 

model of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxMF 0.02 25503 32661 1609 8767 0.74 0.94 0.05 0.85 0.83 0.71 

PxD 0.02 52468 68233 3137 18902 0.74 0.94 0.04 0.85 0.83 0.71 

Protein x MF, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, 

F-sc.: F-score 

Table 4.10. The scores in threshold of 0.5 for Protein x BP and Protein x Disease model 

of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxBP 0.5 13934 75808 72 61946 0.18 0.99 0.00 0.59 0.31 0.32 

PxD 0.5 18975 71282 88 52395 0.27 1.00 0.00 0.63 0.42 0.39 

PxBP: Protein x BP, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 
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Table 4.11. The scores in threshold of 0.02 for Protein x BP and Protein x Disease 

model of HNMF application for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxBP 0.02 58258 72158 3722 17622 0.77 0.94 0.05 0.86 0.85 0.73 

PxD 0.02 53643 67838 3532 17727 0.75 0.94 0.05 0.8 0.83 0.72 

PxBP: Protein x BP, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 
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a.1.      a.2.  

  

b.1.      b.2.  

  

c.1.      c.2.  

  

Figure 4.3. The ROC curves and AUC values for HNMF cross-validation scores. a. 

Protein x CC and Protein x Disease model (a.1. Protein x CC, a.2. Protein x Disease), 

b. Protein x MF and Protein x Disease model (b.1. Protein x MF, b.2. Protein x 

Disease), c. Protein x BP and Protein x Disease model (c.1. Protein x BP, c.2. Protein 

x Disease). 

To investigate the unexpected appearance of straight line in the ROC curves of HNMF 

models above, the graphs were re-drawn to discover where in the curve each threshold 

point was. The new ROC curves can be seen in Figure 4.4. As can be seen in the 
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figures, the straight line was drawn between the closest threshold points (0 and 1e-6) 

while connecting the scatter points because there was no point in between. 

 

a.1.     a.2. 

  

b.1.     b.2. 

  

c.1.     c.2. 

  

Figure 4.4. The ROC curves for HNMF models, along with threshold points. a. Protein 

x CC and Protein x Disease model (a.1. Protein x CC, a.2. Protein x Disease), b. Protein 

x MF and Protein x Disease model (b.1. Protein x MF, b.2. Protein x Disease), c. 

Protein x BP and Protein x Disease model (c.1. Protein x BP, c.2. Protein x Disease). 

As in baseline NMF model, the HNMF models were also run with new dataset, and 

evaluated by 3-fold cross-validation. The results of these analyses can be seen in Table 

4.12, Table 4.13, Table 4.14, Table 4.15, Table 4.16 and Table 4.17 for each matrix 

pair (the pairs were same as in the 10-fold cross-validation), at the thresholds of 0.5 

and the one giving the best scores. 
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Table 4.12. The scores for threshold of 0.5 for Protein x CC and Protein x Disease 

model of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 8539 37235 64 25601 0.25 0.99 0.00 0.64 0.40 0.38 

PxD 0.5 11155 65722 62 51966 0.18 0.99 0.00 0.60 0.30 0.31 

PxCC: Protein x CC, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

Table 4.13. The scores for threshold of 0.02 for Protein x CC and Protein x Disease 

model of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.03 23480 35463 1836 10660 0.69 0.93 0.05 0.83 0.79 0.67 

PxD 0.01 43562 61723 4061 19559 0.69 0.91 0.06 0.82 0.79 0.65 

PxCC: Protein x CC, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

Table 4.14. The scores for threshold of 0.5 for Protein x MF and Protein x Disease 

model of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxMF 0.5 4404 25414 29 18205 0.19 0.99 0.00 0.62 0.33 0.33 

PxD 0.5 11468 65734 50 51653 0.18 1.00 0.00 0.60 0.31 0.32 

Protein x MF, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, 

F-sc.: F-score 

Table 4.15. The scores for threshold of 0.02 for Protein x MF and Protein x Disease 

model of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxMF 0.02 15348 24127 1316 7261 0.68 0.92 0.05 0.82 0.78 0.66 

PxD 0.02 42038 62410 3374 21083 0.67 0.93 0.05 0.81 0.77 0.64 

Protein x MF, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, 

F-sc.: F-score 
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Table 4.16. The scores in threshold of 0.5 for Protein x BP and Protein x Disease model 

of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxBP 0.5 6733 59179 41 49226 0.12 0.99 0.00 0.57 0.21 0.25 

PxD 0.5 10977 65717 67 52144 0.17 0.99 0.00 0.59 0.30 0.31 

PxBP: Protein x BP, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

Table 4.17. The scores in threshold of 0.02 for Protein x BP and Protein x Disease 

model of HNMF application for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxBP 0.02 37770 56124 3096 18189 0.67 0.92 0.05 0.82 0.78 0.65 

PxD 0.02 43069 62107 3677 20052 0.68 0.92 0.06 0.82 0.78 0.65 

PxBP: Protein x BP, PxD: Protein x Disease, Thr.: Threshold, Rec.: Recall, Prec.: Precision, Acc: 

Accuracy, F-sc.: F-score 

 

4.3.Application of NMTF Algorithm 

In the last method of the study, NMTF algorithm, as first step the latent factor (k) value 

combination was determined. All the results were obtained for spherical k-means as 

initialization method for low-rank matrices. The k values and the error rates before 

protein - protein interaction were added to the algorithm are given in Table 4.18, where 

R12, R13, R14 and R15 matrices are Protein x CC, Protein x MF, Protein x BP and 

Protein x Disease matrices, respectively, together with averages of error rates for every 

k set. To determine the best latent factor numbers, the average of errors for each matrix 

was taken. The latent factor numbers were determined as 150 for CC, 2500 for 

proteins, 150 for MF, 150 for BP and 150 for disease data types. Full version of the 

table is available in Appendix A.3. 

Table 4.18. The best latent factor (k) value set and the resulting lowest error rates 

(without PPI matrix). 

 k1 (CC) k2 (Prot) k3 (MF) k4 (BP) k5 (Dis) 

k10 150 2500 150 150 150 

 R12 R13 R14 R15 Avg error 

error 0.027782 0.03032 0.024335 0.024669 0.026777 

CC: Cellular Component, Prot: Protein, MF: Molecular Function, BP: Biological Process, Dis: Disease 

Avg: Average 

The optimum latent factor (k) values and the error rates obtained from prediction 

matrices when run with these k values with the PPI matrix added are given in Table 

4.19. The k values were determined as 50 for CC and MF, 150 for BP and disease, and 

500 for protein data types. The average of error rates obtained by running the algorithm 

with these latent factor values is calculated as 0.037. 
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Table 4.19. The best latent factor (k) value set and the resulting lowest error rates (with 

PPI matrix). 

 k1 (CC) k2 (Prot) k3 (MF) k4 (BP) k5 (Dis) 

k3 50 500 50 150 150 

 R12 R13 R14 R15 Avg error 

error 0.055046 0.037071 0.028604 0.028466 0.037297 

CC: Cellular Component, Prot: Protein, MF: Molecular Function, BP: Biological Process, Dis: Disease 

Avg: Average 

After the determination of latent factor (k) values, 10-fold cross-validation was applied 

and the performance scores were obtained. The performance scores of models without 

and with the PPI matrix added to the algorithm at threshold=0.5 are available in Table 

4.20 and Table 4.22. The best thresholds and their scores for the NMTF algorithms 

without and with PPI matrix added to the algorithm are given in Table 4.21. and Table 

4.23, respectively, for each relation matrix.  

For both experiments (i.e. without and with PPI matrix) the thresholds were taken as 

0.5 when showing the results of the algorithm. The MCC scores for Protein x CC 

matrix are close for without and with the addition of PPI matrix to the algorithm, but 

it is observed a little lower for the model with PPI matrix (0.44) than the model without 

it (0.47). The MCC scores of Protein x MF are 0.39 in the model without PPI matrix, 

and 0.35 with PPI matrix ; 0.23 and 0.18 for Protein x BP matrix, and 0.20 and 0.17 

for Protein x Disease matrix, with respective to PPI matrix addition. The full version 

of scores are available in Appendix A.3 and Appendix A.4.  

The ROC curves and the AUC values of NMTF algorithm run without PPI matrix can 

be examined in Figure 4.5. The AUC scores for Protein x CC, Protein x MF, Protein 

x BP and Protein x Disease matrices are 0.96, 0.91, 0.85 and 0.82, respectively. 

Likewise, the ROC curves and the AUC scores for the algorithm run with PPI matrix 

are available in Figure 4.6. The AUC score for Protein x CC matrix is 0.95 while it is 

0.90 for Protein x MF matrix, 0.84 for Protein x BP matrix and 0.79 for Protein x 

Disease matrix.  

Table 4.20. The performance at threshold=0.5 for NMTF algorithm without PPI matrix 

for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 19383 52117 83 32817 0.37 1.00 0.00 0.68 0.54 0.47 

PxMF 0.5 9323 34230 40 24947 0.27 1.00 0.00 0.64 0.43 0.39 

PxBP 0.5 7660 75862 18 68220 0.10 1.00 0.00 0.55 0.18 0.23 

PxD 0.5 5627 71358 12 65743 0.08 1.00 0.00 0.54 0.15 0.20 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 
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Table 4.21. The thresholds of best performance for NMTF algorithm without PPI 

matrix for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.03 46171 47772 4428 6029 0.88 0.91 0.08 0.90 0.90 0.80 

PxMF 0.03 27061 30346 3924 7209 0.79 0.87 0.11 0.83 0.83 0.68 

PxBP 0.02 52717 64945 10935 23163 0.69 0.83 0.14 0.78 0.76 0.56 

PxD 0.02 46929 60903 10467 24441 0.66 0.82 0.15 0.76 0.73 0.52 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.22. The performance at threshold=0.5 for NMTF algorithm with PPI matrix 

for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 17287 52078 122 34913 0.33 0.99 0.00 0.66 0.50 0.44 

PxMF 0.5 7745 34237 33 26525 0.23 1.00 0.00 0.61 0.37 0.35 

PxBP 0.5 4717 75867 13 71163 0.06 1.00 0.00 0.53 0.12 0.18 

PxD 0.5 3900 71358 12 67470 0.05 1.00 0.00 0.53 0.10 0.17 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.23. The thresholds of best performance for NMTF algorithm with PPI matrix 

for 10-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.03 46497 46821 5379 5703 0.89 0.90 0.10 0.89 0.89 0.79 

PxMF 0.03 26092 30181 4089 8178 0.76 0.86 0.12 0.82 0.81 0.65 

PxBP 0.02 51318 64365 11515 24562 0.68 0.82 0.15 0.76 0.74 0.53 

PxD 0.02 43079 61017 10353 28291 0.60 0.81 0.15 0.73 0.69 0.47 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 
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a.      b. 

  

c.      d. 

  

Figure 4.5. The ROC curves and AUC scores of matrices for the NMTF model without 

PPI matrix. 
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a.      b. 

  

c.      d. 

  

Figure 4.6. The ROC curves and AUC scores of matrices for the NMTF model with 

PPI matrix. 

NMTF algorithm was also re-applied to the new dataset, and evaluated by 3-fold cross-

validation for aforementioned reasons. The results of NMTF models with and without 

the PPI matrix introduced to the algorithm is available in Table 4.24, Table 4.25, 

Table 4.26 and Table 4.27, for thresholds of 0.5 and the ones giving the best scores. 

The k values in this experiment were 150 for CC and MF, 200 for BP and Disease, and 

2000 for Protein data types. 

Table 4.24. The performance at threshold=0.5 for NMTF algorithm without PPI matrix 

for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 7956 37279 20 26184 0.23 1.00 0.00 0.63 0.38 0.37 

PxMF 0.5 4084 25432 11 18525 0.18 1.00 0.00 0.61 0.31 0.32 

PxBP 0.5 3034 59215 5 52925 0.05 1.00 8E-5 0.54 0.10 0.17 

PxD 0.5 3082 65778 6 60039 0.05 1.00 9E-5 0.53 0.09 0.16 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 
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Table 4.25. The thresholds of best performance for NMTF algorithm without PPI 

matrix for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.03 28348 34510 2789 5792 0.83 0.91 0.07 0.88 0.87 0.76 

PxMF 0.02 18048 21620 3823 4561 0.80 0.83 0.15 0.83 0.81 0.65 

PxBP 0.02 35191 51781 7439 20768 0.63 0.83 0.13 0.76 0.71 0.52 

PxD 0.02 39638 56024 9760 23483 0.63 0.80 0.15 0.74 0.70 0.49 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.26. The performance at threshold=0.5 for NMTF algorithm with PPI matrix 

for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.5 8090 37279 20 26050 0.24 1.00 0.00 0.64 0.38 0.37 

PxMF 0.5 4681 25429 14 17928 0.21 1.00 0.00 0.63 0.34 0.35 

PxBP 0.5 3127 59217 3 52832 0.06 1.00 5E-05 0.54 0.11 0.17 

PxD 0.5 3057 65781 3 60064 0.05 1.00 5E-05 0.53 0.09 0.16 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

Table 4.27. The thresholds of best performance for NMTF algorithm with PPI matrix 

for 3-fold cross-validation. 

 Thr. TP TN FP FN Rec. Prec. FPR Acc. F-sc MCC 

PxCC 0.03 28646 34424 2875 5494 0.84 0.91 0.08 0.88 0.87 0.77 

PxMF 0.02 18820 21518 3925 3789 0.83 0.83 0.15 0.84 0.83 0.68 

PxBP 0.02 35771 51678 7542 20188 0.64 0.83 0.13 0.76 0.72 0.53 

PxD 0.02 39036 55891 9893 24085 0.62 0.80 0.15 0.74 0.70 0.48 

PxCC: Protein x CC, PxMF: Protein x MF, PxBP: Protein x BP, PxD: Protein x Disease, Thr.: 

Threshold, Rec.: Recall, Prec.: Precision, Acc: Accuracy, F-sc.: F-score 

 

4.4. Performance Comparison Between Different Algorithms 

For more clear comparison, the AUC values of all models according to the relation 

matrices are given in Table 4.28. Likewise, the comparison of accuracy, F and MCC 

scores are given in Table 4.29, 4.30 and 4.31, respectively for the threshold of 0.5. 

There exists more than one score for Protein x Disease matrix run with HNMF model 

for each table; however, the best of the three is given in the table of scores below. The 

accuracy, F-score and MCC scores at threshold giving the best performance scores are 

given in Table 4.32, Table 4.33 and Table 4.34. 
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Table 4.28. AUC values of all the models performed in this study. 

 NMF HNMF NMTF (without PPI matrix) NMTF (with PPI matrix) 

Protein x CC 0.94 0.88 0.96 0.95 

Protein x MF 0.92 0.86 0.91 0.90 

Protein x BP 0.93 0.87 0.85 0.84 

Protein x Dis 0.92 0.87 0.82 0.79 

 

Table 4.29. Accuracy scores of all models performed in this study (at threshold=0.5). 

 NMF HNMF NMTF (without PPI matrix) NMTF (with PPI matrix) 

Protein x CC 0.56 0.67 0.68 0.66 

Protein x MF 0.58 0.62 0.64 0.61 

Protein x BP 0.59 0.59 0.55 0.53 

Protein x Dis 0.64 0.64 0.54 0.53 

 

Table 4.30. F-scores of all models performed in this study (at threshold=0.5). 

 NMF HNMF NMTF (without PPI matrix) NMTF (with PPI matrix) 

Protein x CC 0.22 0.51 0.54 0.50 

Protein x MF 0.27 0.40 0.43 0.37 

Protein x BP 0.31 0.31 0.18 0.12 

Protein x Dis 0.43 0.44 0.15 0.10 

 

Table 4.31. MCC scores of all models performed in this study (at threshold=0.5). 

 NMF HNMF NMTF (without PPI matrix) NMTF (with PPI matrix) 

Protein x CC 0.26 0.45 0.47 0.44 

Protein x MF 0.29 0.37 0.39 0.35 

Protein x BP 0.32 0.32 0.23 0.18 

Protein x Dis 0.40 0.40 0.20 0.17 

 

Table 4.32. Best Accuracy scores of all models performed in this study. 

 Thr. NMF Thr. HNMF Thr. NMTF (without 

PPI matrix) 

Thr. NMTF (with 

PPI matrix) 

Protein x 

CC 

0.02 0.88 0.02 0.87 0.03 0.90 0.03 0.89 

Protein x 

MF 

0.02 0.87 0.02 0.85 0.03 0.84 0.03 0.82 

Protein x 

BP 

0.02 0.86 0.02 0.86 0.02 0.78 0.02 0.76 

Protein x 

Dis 

0.02 0.86 0.02 0.85 0.02 0.76 0.02 0.73 

Thr.:Threshold 
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Table 4.33. Best F-scores of all models performed in this study. 

 Thr. NMF Thr. HNMF Thr. NMTF (without 

PPI matrix) 

Thr. NMTF (with 

PPI matrix) 

Protein x 

CC 

0.02 0.88 0.02 0.85 0.03 0.90 0.03 0.89 

Protein x 

MF 

0.02 0.87 0.02 0.83 0.03 0.84 0.03 0.82 

Protein x 

BP 

0.02 0.86 0.02 0.85 0.02 0.78 0.02 0.77 

Protein x 

Dis 

0.02 0.86 0.02 0.84 0.02 0.76 0.02 0.73 

Thr.:Threshold 

Table 4.34. Best MCC scores of all models performed in this study. 

 Thr. NMF Thr. HNMF Thr. NMTF (without 

PPI matrix) 

Thr. NMTF (with 

PPI matrix) 

Protein x 

CC 

0.02 0.75 0.02 0.75 0.03 0.80 0.03 0.79 

Protein x 

MF 

0.02 0.75 0.02 0.71 0.03 0.68 0.03 0.65 

Protein x 

BP 

0.02 0.73 0.02 0.73 0.02 0.56 0.02 0.53 

Protein x 

Dis 

0.02 0.73 0.02 0.72 0.02 0.52 0.02 0.47 

Thr.:Threshold 

 

4.5. Computation Time Comparison Between Different Algorithms 

For the comparison, the running-time of each algorithm for 3-fold cross-validation is 

given in Table 4.35. The time given is in hours. For the baseline NMF algorithm, the 

times are given for each matrix. For HNMF algorithm the times are given for Protein 

x CC and Protein x Disease, Protein x MF and Protein x Disease and Protein x BP and 

Protein x Disease models. Their running time is given in the row for the matrix inserted 

to the model with Protein x Disease matrix. For example, the running time of the 

Protein x CC and Protein x Disease model of HNMF algorithm is given in Protein x 

CC row. For this reason, the Protein x Disease row is empty for HNMF algorithm. 

Since NMTF algorithm allows all relation matrices to be inserted simultaneously, there 

is no different run times for each matrix. Instead, one run-time is given for each NMTF 

application with and without PPI matrix. The baseline NMF algorithm only took 

seconds, while each NMTF algorithm run in around 4 hours. On the other hand, the 

HNMF applications lasted the longest to finished. The running time of the HNMF 

algorithm was about 8 hours for Protein x CC and Protein x Disease model, and close 

to 12 hours for Protein x MF and Protein x Disease model. On the other hand, the 

Protein x BP and Protein x Disease model took days to finish. The model took more 

than 109 hours to finish. All algorithms were run in a computer with Intel® Core™ 

i7-8750H CPU @ 2.20 GHz, 16 GB RAM and in Windows 10 64-bit operating system. 
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Table 4.35. Running time of each algorithm. 

 NMF HNMF NMTF (without PPI matrix) NMTF (with PPI matrix) 

Protein x CC 0.0021 8.1 4.21 4.64 

Protein x MF 0.0022 11.65 

Protein x BP 0.0027 109.2 

Protein x Dis 0.0031  
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

 

Recent technological developments in many different scientific fields resulted in a 

dramatical increase in the size of the produced biological data, making the manual 

review and curation processes almost an impossible task. Automatic annotation 

systems have become crucial in order to ease the workload of manual curators. In this 

study, we investigated different nonnegative matrix factorization (NMF) algorithms 

for large-scale biological data integration and relation prediction, where new relation 

predictions were obtained by only using the existing relations between protein/gene 

vs. functions and proteins/genes vs. diseases.  

The hypothesis of this study was that the performance of the system could be improved 

by inserting more relational data to the system, for it to better learn the similarities 

between entities. For this, first of all, each relational data matrix was inserted to the 

baseline NMF algorithm separately, then stepwise integration of other relation data 

was achieved with HNMF and NMTF algorithms. HNMF algorithm was able to use 

only two of relation data at the same time, while NMTF allowed all relation data to be 

added simultaneously. NMTF also provided the opportunity to insert PPI information 

to the algorithm, with the aim of improving the quality and quantity of the predictions. 

We compared the results of the baseline NMF, HNMF and NMTF (with and without 

PPI information). While comparing the performances, the scores were considered for 

the binary classification threshold of 0.5. Actually, as can be seen in confusion 

matrices given in Appendix A.1 and other sections of Appendix A, the optimal 

thresholds providing the best performance scores change for each application. 

However, for the comparison to be fair, a standard threshold should have been selected, 

and it was chosen as 0.5 (the midpoint between 0 and 1, which are the minimum and 

maximum values), as in most of the studies in the literature. Even though the models 

seemed to be performing lower for the threshold of 0.5, we were mostly interested in 

their comparison with each other. The algorithms were firstly evaluated by 10-fold 

cross-validation. We then evaluated the algorithms by 3-fold cross-validation, since 

we suspected of overfitting of the models in some cases (e.g. BP and disease matrix 

factorizations), when we examined the results. The trend in results were similar when 

the scores for thresholds of 0.5 and 0.02 (the mostly optimal threshold) are examined. 

Another purpose of 3-fold cross-validation was to perform a more challenging test for 

the models to be able to clearly observe the separation in performance. 

When we compared the NMF algorithms, generally it can be said that the baseline 

NMF method displayed the worst performance, while the more complicated NMF 
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methods such as HNMF and NMTF performed significantly better. It is considered 

that this outcome was obtained dues to the use of multiple relations between several 

data types during factorization, unlike the baseline NMF algorithm, which uses the 

relation between only two different data types. If the results of HNMF and NMTF are 

to be compared, it was observed that the performance of HNMF and NMTF algorithms 

are close to each other; although the HNMF algorithm performed slightly better in 

general. It was expected for the NMTF algorithm to perform better since it integrates 

all relation matrices simultaneously. It is believed that, the opposite was occurred 

because the processed data was quite incomplete, noisy and heterogeneous, resulting 

in the learning process not to be as good as expected. When the contribution of PPI 

matrix was examined, it was observed that the addition of PPI information resulted in 

slightly better scores. This was not observed when the results of 10-fold cross-

validation were examined because there was a technical error while constructing the 

PPI information matrices in that analysis. This error has been eliminated when the 

datasets were reconstructed to perform the 3-fold cross-validation. As a result, 3-fold 

cross-validation results should be taken into account while evaluating the contribution 

of PPI information. The increase in the performance with the inclusion of PPI 

information is thought to be the contribution of an extra source of data. 

The HNMF algorithm was observed to performed slightly better when Protein x 

Disease was factorized together with Protein x Cellular Component and Protein x 

Molecular Function, compared to the model with Protein x Biological Process. 

However, we expected the model with BP data type to produce better scores since BP 

is more closely related to the occurrence of diseases. Since, the occurrence of diseases 

is directly related to the disruptions in biological processes. We believe that the reason 

is again the heterogeneity and noisiness of the BP data, resulting in bias while the 

model learns the features from the data during the factorization process. 

For the relation matrices with CC and MF, the best performances were obtained by the 

NMTF algorithm, with a slight improvement with the addition of PPI information. 

This is believed to be the outcome of NMTF using all relations simultaneously, 

providing better a extraction of the latent features of proteins, cellular components and 

molecular functions. However, this was not the case when the scores of biological 

process and disease relation models were examined. This may be resulted from 

overfitting of the models, since biological process and disease relations are much 

noisier and more heterogeneous. 

Protein function prediction problem has been a struggle for some time for the scientific 

community. One of the projects that address this problem is the CAFA challenge. 

CAFA (abbr. for Critical Assessment of Function Annotation) is an ongoing 

experiment for assessing protein function prediction methods via computational 

algorithms. In CAFA publications, the F-scores for protein - molecular function 

relation prediction is around 0.7, and even lower for other relations such as cellular 

components and biological processes (Dessimoz et al., 2013; Jiang et al., 2016; 

Radivojac et al., 2013; Zhou et al., 2019). The results we obtained for these relations 



 

55 
 

are similar to the ones found in CAFA, especially for MF and CC prediction. 

Considering, Protein x BP and Protein x Disease relations, our performance was 

significantly lower. One of the underlying reasons for this can be that, the available 

Protein x Disease relation data is not clean, since it includes many false positives. 

In general, it is possible to say that, NMF is not an optimal approach for multiple 

relation prediction of biological data, especially when the data is highly incomplete 

(i.e., low number of known relations), since the only available information for the 

algorithm to learn the features are these relations. There could also be some additional 

reasons for the observed low performance in some cases. One of the reasons might be 

the algorithms relying on random factors. In NMF algorithms, as in some other 

machine learning approaches, optimization is to be achieved via starting from a 

random point, followed by an approximation to reach the optimum point. In cases 

where starting point is not efficient, lower performance values can be observed by 

getting stuck into local minima. This problem might be further promoted by the 

addition of more types of relational data to the system, where the search space for the 

optimum point is expanded.  

Another disadvantage in this study was the size of the data. Even with the data filtering 

operations, complex algorithms took extremely long times to run. When we compared 

the run times of 3 different algorithms for 3-fold cross-validation, we observed that 

the baseline NMF algorithm took only seconds to finish, regardless of the matrix type. 

Both NMTF algorithms (with and without PPI matrix) took a little more than 4 hours. 

However, the HNMF algorithm took the most time to finish for all 3 models. 

Especially, the Protein x BP and Protein x Disease model of HNMF algorithm took 

close to a week to finalize, since it was the most complex pair of the matrices. In 

general, the running time increased as the complexity of the model increased. 

Although, the HNMF algorithm took much more time to finish compared to NMTF 

algorithm, which is more complex than HNMF algorithm. This might be resulted from 

the selection of stopping criteria of the algorithms. While the NMTF algorithm used 

maximum number of iterations to finish the run, HNMF used a convergence threshold 

to finalize. The running time of the NMTF algorithm may increase if a constant 

convergence value is selected as the stopping criteria, or even run longer than HNMF 

algorithm. In the end, running of the algorithms may be impossible to run as the size 

of the data increase and as more relations are added to the algorithms. 

For future work, we plan to construct the Protein x Disease relation data categorically 

by separating it into multiple matrices according to disease types, to make it more 

homogeneous. Then these different groups of disease matrices may be inserted to the 

algorithms as separate relation matrices. In addition, we plan to insert additional 

relational data to the algorithm, such as GO semantic similarities and disease – disease 

interactions as new intra-type relations. We also intend to improve the PPI information 

used in the factorization by including second, third and fourth degree neighborhoods 

in the PPI matrix using different scoring schemes reflecting the interaction proximity 

on the network (i.e. 1 for first, 0.75 for second, 0.5 for third, 0.25 for fourth neighbors). 
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Another type of intra-type gene/protein information can be the gene co-expression 

profiles. Similar genes (proteins) tend to be expressed or silenced together in a 

biological processes (Stuart et al., 2003). As a result, co-expressed genes can be 

denoted by higher values in the gene-gene/protein-protein matrices. Another possible 

addition to this study as future work would be to embed the low-rank latent features 

of biological entities by dimensionality reduction, for visualization and data 

exploration. These features can be embedded using Principal Component Analysis 

(PCA) or with t-stochastic neighbor embedding (tSNE) methods to visualize the 

features’ characterizations on a 2 or 3 dimensional plane (Abdi & Williams, 2010). 

This way, the nature and the biological relevance of the discovered latent vectors can 

be assessed from a general perspective (i.e. similar proteins from the same protein 

families should be embedded close to each other, or semantically similar GO terms 

should appear close to each other). 

The approach proposed here only depends on known relations between the modeled 

biological entities, instead of molecular properties/features (e.g. sequence or structural 

information) as used in conventional machine learning based gene/protein annotation 

methods. As a result, we believe that our prediction results will be complementary to 

these conventional methods. Therefore, ensemble-based predictors that will both 

include NMF models and conventional machine learning models is expected to reach 

increased prediction performances. Another possibility would be the direct use of the 

latent vector representations of biological entities in machine learning based 

predictors, as input feature vectors. We hope that our study will contribute to the 

scientific literature with the results obtained and their discussion, in terms of modeling 

relational biological data. 
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APPENDIX 

 

APPENDIX A 

 

A.1. Confusion Matrices for Baseline NMF 

A.1.1. Protein x Cellular Component  

a. 10-fold cross-validation (k=50) 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 52200 0 52200 0 1 0.5 1 0.5 0.67  

1E-06 52026 7805 44395 174 1.00 0.54 0.85 0.57 0.70 0.28 

1E-05 51983 11469 40731 217 1.00 0.56 0.78 0.61 0.72 0.34 

0.0001 51810 17569 34631 390 0.99 0.60 0.66 0.66 0.75 0.44 

0.001 51134 27638 24562 1066 0.98 0.68 0.47 0.75 0.80 0.57 

0.01 48077 42216 9984 4123 0.92 0.83 0.19 0.86 0.87 0.73 

0.02 45403 46065 6135 6797 0.87 0.88 0.12 0.88 0.88 0.75 

0.03 43064 47854 4346 9136 0.82 0.91 0.08 0.87 0.86 0.74 

0.04 40854 48928 3272 11346 0.78 0.93 0.06 0.86 0.85 0.73 

0.05 38847 49555 2645 13353 0.74 0.94 0.05 0.85 0.83 0.71 

0.06 37168 50031 2169 15032 0.71 0.94 0.04 0.84 0.81 0.69 

0.07 35752 50372 1828 16448 0.68 0.95 0.04 0.82 0.80 0.68 

0.08 34449 50630 1570 17751 0.66 0.96 0.03 0.81 0.78 0.66 

0.09 33244 50840 1360 18956 0.64 0.96 0.03 0.81 0.77 0.65 

0.1 32024 51029 1171 20176 0.61 0.96 0.02 0.80 0.75 0.63 

0.2 23012 51782 418 29188 0.44 0.98 0.01 0.72 0.61 0.52 

0.3 17686 52007 193 34514 0.34 0.99 0.00 0.67 0.50 0.44 

0.4 13080 52128 72 39120 0.25 0.99 0.00 0.62 0.40 0.38 

0.5 6558 52170 30 45642 0.13 1.00 0.00 0.56 0.22 0.26 

0.6 3550 52191 9 48650 0.07 1.00 0.00 0.53 0.13 0.19 

0.7 1329 52198 2 50871 0.03 1.00 0.00 0.51 0.05 0.11 

0.8 377 52200 0 51823 0.01 1 0 0.50 0.01 0.06 

0.9 88 52200 0 52112 0.00 1 0 0.50 0.00 0.03 

1 38 52200 0 52162 0.00 1 0 0.50 0.00 0.02 

Thr: Threshold 
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b.3-fold cross-validation (k=150) 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34140 0 37299 0 1 0.48 1 0.48 0.65  

1E-06 34094 6025 31274 46 1.00 0.52 0.84 0.56 0.69 0.29 

1E-05 33988 9856 27443 152 1.00 0.55 0.74 0.61 0.71 0.37 

0.0001 33669 15896 21403 471 0.99 0.61 0.57 0.69 0.75 0.49 

0.001 31884 24537 12762 2256 0.93 0.71 0.34 0.79 0.81 0.61 

0.01 24626 33443 3856 9514 0.72 0.86 0.10 0.81 0.79 0.63 

0.02 18612 35277 2022 15528 0.55 0.90 0.05 0.75 0.68 0.54 

0.03 13876 36045 1254 20264 0.41 0.92 0.03 0.70 0.56 0.46 

0.04 11108 36408 891 23032 0.33 0.93 0.02 0.67 0.48 0.40 

0.05 9410 36639 660 24730 0.28 0.93 0.02 0.64 0.43 0.37 

0.06 8227 36774 525 25913 0.24 0.94 0.01 0.63 0.38 0.35 

0.07 7531 36878 421 26609 0.22 0.95 0.01 0.62 0.36 0.33 

0.08 6982 36938 361 27158 0.20 0.95 0.01 0.61 0.34 0.32 

0.09 6632 36979 320 27508 0.19 0.95 0.01 0.61 0.32 0.31 

0.1 6348 37023 276 27792 0.19 0.96 0.01 0.61 0.31 0.31 

0.2 4799 37198 101 29341 0.14 0.98 0.00 0.59 0.25 0.27 

0.3 3791 37250 49 30349 0.11 0.99 0.00 0.57 0.20 0.24 

0.4 2843 37283 16 31297 0.08 0.99 0.00 0.56 0.15 0.21 

0.5 1120 37297 2 33020 0.03 1.00 0.00 0.54 0.06 0.13 

0.6 478 37297 2 33662 0.01 1.00 0.00 0.53 0.03 0.09 

0.7 91 37298 1 34049 0.00 0.99 0.00 0.52 0.01 0.04 

0.8 18 37299 0 34122 0.00 1 0 0.52 0.00 0.02 

0.9 4 37299 0 34136 0.00 1 0 0.52 0.00 0.01 

1 0 37299 0 34140 0  0 0.52   
Thr: Threshold 
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A.1.2. Protein x Molecular Function  

a. 10-fold cross-validation (k=50) 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34270 0 34270 0 1 0.5 1 0.5 0.67  

1E-06 33671 5024 29246 599 0.98 0.54 0.85 0.56 0.69 0.24 

1E-05 33608 6275 27995 662 0.98 0.55 0.82 0.58 0.70 0.27 

0.0001 33476 8972 25298 794 0.98 0.57 0.74 0.62 0.72 0.34 

0.001 32829 15826 18444 1441 0.96 0.64 0.54 0.71 0.77 0.48 

0.01 30392 28185 6085 3878 0.89 0.83 0.18 0.85 0.86 0.71 

0.02 29022 30890 3380 5248 0.85 0.90 0.10 0.87 0.87 0.75 

0.03 27738 32042 2228 6532 0.81 0.93 0.07 0.87 0.86 0.75 

0.04 26439 32607 1663 7831 0.77 0.94 0.05 0.86 0.85 0.73 

0.05 25127 32951 1319 9143 0.73 0.95 0.04 0.85 0.83 0.71 

0.06 23864 33160 1110 10406 0.70 0.96 0.03 0.83 0.81 0.69 

0.07 22709 33322 948 11561 0.66 0.96 0.03 0.82 0.78 0.67 

0.08 21668 33430 840 12602 0.63 0.96 0.02 0.80 0.76 0.65 

0.09 20831 33534 736 13439 0.61 0.97 0.02 0.79 0.75 0.63 

0.1 20105 33629 641 14165 0.59 0.97 0.02 0.78 0.73 0.62 

0.2 14822 34028 242 19448 0.43 0.98 0.01 0.71 0.60 0.51 

0.3 11759 34160 110 22511 0.34 0.99 0.00 0.67 0.51 0.45 

0.4 9081 34217 53 25189 0.26 0.99 0.00 0.63 0.42 0.39 

0.5 5305 34250 20 28965 0.15 1.00 0.00 0.58 0.27 0.29 

0.6 3057 34261 9 31213 0.09 1.00 0.00 0.54 0.16 0.22 

0.7 1543 34269 1 32727 0.05 1.00 0.00 0.52 0.09 0.15 

0.8 562 34269 1 33708 0.02 1.00 0.00 0.51 0.03 0.09 

0.9 185 34270 0 34085 0.01 1 0 0.50 0.01 0.05 

1 56 34270 0 34214 0.00 1 0 0.50 0.00 0.03 

Thr: Threshold 
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b.3-fold cross-validation (k=150) 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 22609 0 25443 0 1 0.47 1 0.47 0.64  

1E-06 22488 4351 21092 121 0.99 0.52 0.83 0.56 0.68 0.28 

1E-05 22405 5777 19666 204 0.99 0.53 0.77 0.59 0.69 0.33 

0.0001 22033 9280 16163 576 0.97 0.58 0.64 0.65 0.72 0.42 

0.001 20556 15926 9517 2053 0.91 0.68 0.37 0.76 0.78 0.55 

0.01 16560 22774 2669 6049 0.73 0.86 0.10 0.82 0.79 0.64 

0.02 14030 24075 1368 8579 0.62 0.91 0.05 0.79 0.74 0.61 

0.03 11601 24601 842 11008 0.51 0.93 0.03 0.75 0.66 0.55 

0.04 10139 24855 588 12470 0.45 0.95 0.02 0.73 0.61 0.51 

0.05 9302 25005 438 13307 0.41 0.96 0.02 0.71 0.58 0.49 

0.06 8748 25088 355 13861 0.39 0.96 0.01 0.70 0.55 0.48 

0.07 8352 25157 286 14257 0.37 0.97 0.01 0.70 0.53 0.47 

0.08 8023 25184 259 14586 0.35 0.97 0.01 0.69 0.52 0.46 

0.09 7688 25223 220 14921 0.34 0.97 0.01 0.68 0.50 0.45 

0.1 7419 25250 193 15190 0.33 0.97 0.01 0.68 0.49 0.44 

0.2 5780 25369 74 16829 0.26 0.99 0.00 0.65 0.41 0.39 

0.3 4603 25405 38 18006 0.20 0.99 0.00 0.62 0.34 0.34 

0.4 3347 25424 19 19262 0.15 0.99 0.00 0.60 0.26 0.29 

0.5 1575 25439 4 21034 0.07 1.00 0.00 0.56 0.13 0.19 

0.6 730 25443 0 21879 0.03 1 0 0.54 0.06 0.13 

0.7 180 25443 0 22429 0.01 1 0 0.53 0.02 0.07 

0.8 44 25443 0 22565 0.00 1 0 0.53 0.00 0.03 

0.9 16 25443 0 22593 0.00 1 0 0.53 0.00 0.02 

1 3 25443 0 22606 0.00 1 0 0.53 0.00 0.01 

Thr: Threshold 
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A.1.3. Protein x Biological Process (k=100) 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 75880 0 75880 0 1 0.5 1 0.5 0.67  

1E-06 75446 10818 65062 434 0.99 0.54 0.86 0.57 0.70 0.26 

1E-05 75314 16025 59855 566 0.99 0.56 0.79 0.60 0.71 0.33 

0.0001 74904 25194 50686 976 0.99 0.60 0.67 0.66 0.74 0.42 

0.001 73652 40312 35568 2228 0.97 0.67 0.47 0.75 0.80 0.56 

0.01 68298 61029 14851 7582 0.90 0.82 0.20 0.85 0.86 0.71 

0.02 64165 66833 9047 11715 0.85 0.88 0.12 0.86 0.86 0.73 

0.03 60724 69540 6340 15156 0.80 0.91 0.08 0.86 0.85 0.72 

0.04 57709 71144 4736 18171 0.76 0.92 0.06 0.85 0.83 0.71 

0.05 55050 72143 3737 20830 0.73 0.94 0.05 0.84 0.82 0.69 

0.06 52615 72828 3052 23265 0.69 0.95 0.04 0.83 0.80 0.68 

0.07 50552 73346 2534 25328 0.67 0.95 0.03 0.82 0.78 0.66 

0.08 48551 73729 2151 27329 0.64 0.96 0.03 0.81 0.77 0.65 

0.09 46769 74014 1866 29111 0.62 0.96 0.02 0.80 0.75 0.63 

0.1 45116 74282 1598 30764 0.59 0.97 0.02 0.79 0.74 0.62 

0.2 33243 75363 517 42637 0.44 0.98 0.01 0.72 0.61 0.52 

0.3 26064 75683 197 49816 0.34 0.99 0.00 0.67 0.51 0.45 

0.4 19958 75801 79 55922 0.26 1.00 0.00 0.63 0.42 0.39 

0.5 14065 75853 27 61815 0.19 1.00 0.00 0.59 0.31 0.32 

0.6 8915 75872 8 66965 0.12 1.00 0.00 0.56 0.21 0.25 

0.7 3444 75878 2 72436 0.05 1.00 0.00 0.52 0.09 0.15 

0.8 1490 75880 0 74390 0.02 1 0 0.51 0.04 0.10 

0.9 666 75880 0 75214 0.01 1 0 0.50 0.02 0.07 

1 251 75880 0 75629 0.00 1 0 0.50 0.01 0.04 

Thr: Threshold 
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b.3-fold cross-validation (k=200) 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 55959 0 59220 0 1 0.49 1 0.49 0.65  

1E-06 55775 9274 49946 184 1.00 0.53 0.84 0.56 0.69 0.28 

1E-05 55613 13569 45651 346 0.99 0.55 0.77 0.60 0.71 0.34 

0.0001 55137 20970 38250 822 0.99 0.59 0.65 0.66 0.74 0.43 

0.001 53562 32586 26634 2397 0.96 0.67 0.45 0.75 0.79 0.55 

0.01 47192 48316 10904 8767 0.84 0.81 0.18 0.83 0.83 0.66 

0.02 42754 53021 6199 13205 0.76 0.87 0.10 0.83 0.82 0.67 

0.03 39253 55190 4030 16706 0.70 0.91 0.07 0.82 0.79 0.65 

0.04 36258 56330 2890 19701 0.65 0.93 0.05 0.80 0.76 0.63 

0.05 33806 57046 2174 22153 0.60 0.94 0.04 0.79 0.74 0.61 

0.06 31593 57506 1714 24366 0.56 0.95 0.03 0.77 0.71 0.59 

0.07 29748 57841 1379 26211 0.53 0.96 0.02 0.76 0.68 0.57 

0.08 28008 58089 1131 27951 0.50 0.96 0.02 0.75 0.66 0.55 

0.09 26479 58266 954 29480 0.47 0.97 0.02 0.74 0.64 0.54 

0.1 25190 58404 816 30769 0.45 0.97 0.01 0.73 0.61 0.52 

0.2 17120 58985 235 38839 0.31 0.99 0.00 0.66 0.47 0.42 

0.3 12444 59126 94 43515 0.22 0.99 0.00 0.62 0.36 0.35 

0.4 8560 59179 41 47399 0.15 1.00 0.00 0.59 0.27 0.29 

0.5 4786 59216 4 51173 0.09 1.00 7E-05 0.56 0.16 0.21 

0.6 2529 59219 1 53430 0.05 1.00 2E-05 0.54 0.09 0.15 

0.7 759 59220 0 55200 0.01 1 0 0.52 0.03 0.08 

0.8 269 59220 0 55690 0.00 1 0 0.52 0.01 0.05 

0.9 83 59220 0 55876 0.00 1 0 0.51 0.00 0.03 

1 22 59220 0 55937 0.00 1 0 0.51 0.00 0.01 

Thr: Threshold 
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A.1.4. Protein x Disease (k=100) 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 69464 15448 55922 1906 0.97 0.55 0.78 0.59 0.71 0.29 

1E-05 69272 21083 50287 2098 0.97 0.58 0.70 0.63 0.73 0.36 

0.0001 68789 29937 41433 2581 0.96 0.62 0.58 0.69 0.76 0.46 

0.001 67399 42725 28645 3971 0.94 0.70 0.40 0.77 0.81 0.58 

0.01 62879 58994 12376 8491 0.88 0.84 0.17 0.85 0.86 0.71 

0.02 59794 63476 7894 11576 0.84 0.88 0.11 0.86 0.86 0.73 

0.03 57197 65816 5554 14173 0.80 0.91 0.08 0.86 0.85 0.73 

0.04 55014 67091 4279 16356 0.77 0.93 0.06 0.86 0.84 0.72 

0.05 53157 68043 3327 18213 0.74 0.94 0.05 0.85 0.83 0.71 

0.06 51415 68672 2698 19955 0.72 0.95 0.04 0.84 0.82 0.70 

0.07 49823 69146 2224 21547 0.70 0.96 0.03 0.83 0.81 0.69 

0.08 48285 69537 1833 23085 0.68 0.96 0.03 0.83 0.79 0.68 

0.09 46897 69823 1547 24473 0.66 0.97 0.02 0.82 0.78 0.67 

0.1 45625 70065 1305 25745 0.64 0.97 0.02 0.81 0.77 0.66 

0.2 36202 71030 340 35168 0.51 0.99 0.00 0.75 0.67 0.58 

0.3 30158 71265 105 41212 0.42 1.00 0.00 0.71 0.59 0.52 

0.4 25266 71325 45 46104 0.35 1.00 0.00 0.68 0.52 0.46 

0.5 19389 71356 14 51981 0.27 1.00 0.00 0.64 0.43 0.40 

0.6 14424 71366 4 56946 0.20 1.00 0.00 0.60 0.34 0.34 

0.7 9344 71368 2 62026 0.13 1.00 0.00 0.57 0.23 0.26 

0.8 4003 71369 1 67367 0.06 1.00 0.00 0.53 0.11 0.17 

0.9 1279 71370 0 70091 0.02 1 0 0.51 0.04 0.10 

1 435 71370 0 70935 0.01 1 0 0.50 0.01 0.06 

Thr: Threshold 
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b.3-fold cross-validation (k=200) 

Thr TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.49 1 0.49 0.66  

1E-06 62767 11196 54588 354 0.99 0.53 0.83 0.57 0.70 0.29 

1E-05 62422 16149 49635 699 0.99 0.56 0.75 0.61 0.71 0.35 

0.0001 61665 23999 41785 1456 0.98 0.60 0.64 0.66 0.74 0.43 

0.001 59505 36307 29477 3616 0.94 0.67 0.45 0.74 0.78 0.53 

0.01 52857 52637 13147 10264 0.84 0.80 0.20 0.82 0.82 0.64 

0.02 48616 57686 8098 14505 0.77 0.86 0.12 0.82 0.81 0.65 

0.03 45371 60210 5574 17750 0.72 0.89 0.08 0.82 0.80 0.65 

0.04 42819 61788 3996 20302 0.68 0.91 0.06 0.81 0.78 0.64 

0.05 40587 62816 2968 22534 0.64 0.93 0.05 0.80 0.76 0.63 

0.06 38545 63470 2314 24576 0.61 0.94 0.04 0.79 0.74 0.62 

0.07 36857 63968 1816 26264 0.58 0.95 0.03 0.78 0.72 0.61 

0.08 35221 64305 1479 27900 0.56 0.96 0.02 0.77 0.71 0.59 

0.09 33806 64550 1234 29315 0.54 0.96 0.02 0.76 0.69 0.58 

0.1 32577 64768 1016 30544 0.52 0.97 0.02 0.76 0.67 0.57 

0.2 23688 65541 243 39433 0.38 0.99 0.00 0.69 0.54 0.48 

0.3 18175 65710 74 44946 0.29 1.00 0.00 0.65 0.45 0.41 

0.4 13716 65759 25 49405 0.22 1.00 0.00 0.62 0.36 0.35 

0.5 8209 65778 6 54912 0.13 1.00 9E-05 0.57 0.23 0.27 

0.6 4685 65784 0 58436 0.07 1 0 0.55 0.14 0.20 

0.7 2071 65784 0 61050 0.03 1 0 0.53 0.06 0.13 

0.8 618 65784 0 62503 0.01 1 0 0.52 0.02 0.07 

0.9 161 65784 0 62960 0.00 1 0 0.51 0.01 0.04 

1 59 65784 0 63062 0.00 1 0 0.51 0.00 0.02 

Thr: Threshold 
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A.2. Confusion Matrices for HNMF 

A.2.1. Protein x Cellular Component and Protein x Disease (k=150) 

a. 10-fold cross-validation 

1. Protein x Cellular Component 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 52200 0 52200 0 1 0.5 1 0.5 0.67  

1E-06 40707 49590 2610 11493 0.78 0.94 0.05 0.86 0.85 0.74 

1E-05 40707 49590 2610 11493 0.78 0.94 0.05 0.86 0.85 0.74 

0.0001 40706 49594 2606 11494 0.78 0.94 0.05 0.86 0.85 0.74 

0.001 40699 49609 2591 11501 0.78 0.94 0.05 0.87 0.85 0.74 

0.01 40674 49753 2447 11526 0.78 0.94 0.05 0.87 0.85 0.74 

0.02 40620 49881 2319 11580 0.78 0.95 0.04 0.87 0.85 0.75 

0.03 40495 50009 2191 11705 0.78 0.95 0.04 0.87 0.85 0.75 

0.04 40260 50145 2055 11940 0.77 0.95 0.04 0.87 0.85 0.75 

0.05 39993 50291 1909 12207 0.77 0.95 0.04 0.86 0.85 0.74 

0.06 39700 50435 1765 12500 0.76 0.96 0.03 0.86 0.85 0.74 

0.07 39351 50566 1634 12849 0.75 0.96 0.03 0.86 0.84 0.74 

0.08 39031 50674 1526 13169 0.75 0.96 0.03 0.86 0.84 0.74 

0.09 38696 50803 1397 13504 0.74 0.97 0.03 0.86 0.84 0.73 

0.1 38369 50898 1302 13831 0.74 0.97 0.02 0.86 0.84 0.73 

0.2 34858 51595 605 17342 0.67 0.98 0.01 0.83 0.80 0.69 

0.3 30685 51901 299 21515 0.59 0.99 0.01 0.79 0.74 0.64 

0.4 26570 52027 173 25630 0.51 0.99 0.00 0.75 0.67 0.58 

0.5 17811 52112 88 34389 0.34 1.00 0.00 0.67 0.51 0.45 

0.6 9579 52149 51 42621 0.18 0.99 0.00 0.59 0.31 0.32 

0.7 4828 52167 33 47372 0.09 0.99 0.00 0.55 0.17 0.22 

0.8 2721 52178 22 49479 0.05 0.99 0.00 0.53 0.10 0.16 

0.9 1544 52184 16 50656 0.03 0.99 0.00 0.51 0.06 0.12 

1 979 52186 14 51221 0.02 0.99 0.00 0.51 0.04 0.10 

Thr: Threshold 
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2. Protein x Disease 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 54331 66896 4474 17039 0.76 0.92 0.06 0.85 0.83 0.71 

1E-05 54331 66897 4473 17039 0.76 0.92 0.06 0.85 0.83 0.71 

0.0001 54323 66900 4470 17047 0.76 0.92 0.06 0.85 0.83 0.71 

0.001 54270 66944 4426 17100 0.76 0.92 0.06 0.85 0.83 0.71 

0.01 53766 67572 3798 17604 0.75 0.93 0.05 0.85 0.83 0.71 

0.02 53149 68116 3254 18221 0.74 0.94 0.05 0.85 0.83 0.72 

0.03 52496 68492 2878 18874 0.74 0.95 0.04 0.85 0.83 0.71 

0.04 51748 68821 2549 19622 0.73 0.95 0.04 0.84 0.82 0.71 

0.05 50924 69096 2274 20446 0.71 0.96 0.03 0.84 0.82 0.70 

0.06 50048 69357 2013 21322 0.70 0.96 0.03 0.84 0.81 0.70 

0.07 49135 69573 1797 22235 0.69 0.96 0.03 0.83 0.80 0.69 

0.08 48163 69759 1611 23207 0.67 0.97 0.02 0.83 0.80 0.68 

0.09 47189 69913 1457 24181 0.66 0.97 0.02 0.82 0.79 0.68 

0.1 46193 70040 1330 25177 0.65 0.97 0.02 0.81 0.78 0.67 

0.2 37584 70813 557 33786 0.53 0.99 0.01 0.76 0.69 0.59 

0.3 30358 71125 245 41012 0.43 0.99 0.00 0.71 0.60 0.51 

0.4 24570 71232 138 46800 0.34 0.99 0.00 0.67 0.51 0.45 

0.5 19665 71299 71 51705 0.28 1.00 0.00 0.64 0.43 0.40 

0.6 15880 71332 38 55490 0.22 1.00 0.00 0.61 0.36 0.35 

0.7 11001 71345 25 60369 0.15 1.00 0.00 0.58 0.27 0.29 

0.8 7385 71351 19 63985 0.10 1.00 0.00 0.55 0.19 0.23 

0.9 3737 71360 10 67633 0.05 1.00 0.00 0.53 0.10 0.16 

1 2284 71363 7 69086 0.03 1.00 0.00 0.52 0.06 0.13 

Thr: Threshold 
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b. 3-fold cross-validation 

1. Protein x Cellular Component 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34140 0 37299 0 1 0.48 1 0.48 0.65  

1.00E-06 23800 34696 2603 10340 0.70 0.90 0.07 0.82 0.79 0.65 

1.00E-05 23800 34697 2602 10340 0.70 0.90 0.07 0.82 0.79 0.65 

0.0001 23797 34705 2594 10343 0.70 0.90 0.07 0.82 0.79 0.65 

0.001 23787 34725 2574 10353 0.70 0.90 0.07 0.82 0.79 0.65 

0.01 23722 35050 2249 10418 0.69 0.91 0.06 0.82 0.79 0.66 

0.02 23610 35270 2029 10530 0.69 0.92 0.05 0.82 0.79 0.66 

0.03 23480 35463 1836 10660 0.69 0.93 0.05 0.83 0.79 0.67 

0.04 23260 35660 1639 10880 0.68 0.93 0.04 0.82 0.79 0.67 

0.05 23061 35824 1475 11079 0.68 0.94 0.04 0.82 0.79 0.67 

0.06 22849 35943 1356 11291 0.67 0.94 0.04 0.82 0.78 0.67 

0.07 22609 36079 1220 11531 0.66 0.95 0.03 0.82 0.78 0.67 

0.08 22424 36183 1116 11716 0.66 0.95 0.03 0.82 0.78 0.67 

0.09 22194 36259 1040 11946 0.65 0.96 0.03 0.82 0.77 0.66 

0.1 21907 36359 940 12233 0.64 0.96 0.03 0.82 0.77 0.66 

0.2 18689 36878 421 15451 0.55 0.98 0.01 0.78 0.70 0.60 

0.3 15932 37081 218 18208 0.47 0.99 0.01 0.74 0.63 0.55 

0.4 11777 37190 109 22363 0.34 0.99 0.00 0.69 0.51 0.46 

0.5 8539 37235 64 25601 0.25 0.99 0.00 0.64 0.40 0.38 

0.6 5531 37272 27 28609 0.16 1.00 0.00 0.60 0.28 0.30 

0.7 2763 37285 14 31377 0.08 0.99 0.00 0.56 0.15 0.21 

0.8 1375 37289 10 32765 0.04 0.99 0.00 0.54 0.08 0.14 

0.9 689 37295 4 33451 0.02 0.99 0.00 0.53 0.04 0.10 

1 381 37297 2 33759 0.01 0.99 0.00 0.53 0.02 0.08 

Thr: Threshold 
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2. Protein x Disease 

Thr TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.489671 1 0.49 0.66  

1E-06 44429 60702 5082 18692 0.70 0.90 0.08 0.82 0.79 0.64 

1E-05 44428 60702 5082 18693 0.70 0.90 0.08 0.82 0.79 0.64 

0.0001 44415 60710 5074 18706 0.70 0.90 0.08 0.82 0.79 0.64 

0.001 44357 60767 5017 18764 0.70 0.90 0.08 0.82 0.79 0.64 

0.01 43562 61723 4061 19559 0.69 0.91 0.06 0.82 0.79 0.65 

0.02 42679 62449 3335 20442 0.68 0.93 0.05 0.82 0.78 0.65 

0.03 41920 62851 2933 21201 0.66 0.93 0.04 0.81 0.78 0.65 

0.04 41190 63169 2615 21931 0.65 0.94 0.04 0.81 0.77 0.65 

0.05 40259 63494 2290 22862 0.64 0.95 0.03 0.80 0.76 0.64 

0.06 39408 63731 2053 23713 0.62 0.95 0.03 0.80 0.75 0.63 

0.07 38556 63983 1801 24565 0.61 0.96 0.03 0.80 0.75 0.63 

0.08 37706 64161 1623 25415 0.60 0.96 0.02 0.79 0.74 0.62 

0.09 36860 64345 1439 26261 0.58 0.96 0.02 0.79 0.73 0.61 

0.1 36000 64491 1293 27121 0.57 0.97 0.02 0.78 0.72 0.61 

0.2 28455 65279 505 34666 0.45 0.98 0.01 0.73 0.62 0.53 

0.3 22151 65555 229 40970 0.35 0.99 0.00 0.68 0.52 0.46 

0.4 16269 65675 109 46852 0.26 0.99 0.00 0.64 0.41 0.38 

0.5 11155 65722 62 51966 0.18 0.99 0.00 0.60 0.30 0.31 

0.6 7704 65746 38 55417 0.12 1.00 0.00 0.57 0.22 0.26 

0.7 4133 65757 27 58988 0.07 0.99 0.00 0.54 0.12 0.18 

0.8 2511 65764 20 60610 0.04 0.99 0.00 0.53 0.08 0.14 

0.9 1433 65775 9 61688 0.02 0.99 0.00 0.52 0.04 0.11 

1 946 65777 7 62175 0.01 0.99 0.00 0.52 0.03 0.09 

Thr: Threshold 
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A.2.2. Protein x Molecular Function and Protein x Disease (k=150) 

a. 10-fold cross-validation 

1. Protein x Molecular Function 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34270 0 34270 0 1 0.5 1 0.5 0.67  

1E-06 25590 32530 1740 8680 0.75 0.94 0.05 0.85 0.83 0.71 

1E-05 25590 32530 1740 8680 0.75 0.94 0.05 0.85 0.83 0.71 

0.0001 25589 32530 1740 8681 0.75 0.94 0.05 0.85 0.83 0.71 

0.001 25584 32543 1727 8686 0.75 0.94 0.05 0.85 0.83 0.71 

0.01 25550 32620 1650 8720 0.75 0.94 0.05 0.85 0.83 0.71 

0.02 25503 32661 1609 8767 0.74 0.94 0.05 0.85 0.83 0.71 

0.03 25434 32705 1565 8836 0.74 0.94 0.05 0.85 0.83 0.71 

0.04 25273 32790 1480 8997 0.74 0.94 0.04 0.85 0.83 0.71 

0.05 25070 32890 1380 9200 0.73 0.95 0.04 0.85 0.83 0.71 

0.06 24779 33004 1266 9491 0.72 0.95 0.04 0.84 0.82 0.71 

0.07 24462 33109 1161 9808 0.71 0.95 0.03 0.84 0.82 0.70 

0.08 24099 33213 1057 10171 0.70 0.96 0.03 0.84 0.81 0.70 

0.09 23723 33339 931 10547 0.69 0.96 0.03 0.83 0.81 0.69 

0.1 23385 33412 858 10885 0.68 0.96 0.03 0.83 0.80 0.69 

0.2 20195 33851 419 14075 0.59 0.98 0.01 0.79 0.74 0.63 

0.3 16822 34068 202 17448 0.49 0.99 0.01 0.74 0.66 0.56 

0.4 14249 34155 115 20021 0.42 0.99 0.00 0.71 0.59 0.51 

0.5 8556 34223 47 25714 0.25 0.99 0.00 0.62 0.40 0.37 

0.6 3587 34242 28 30683 0.10 0.99 0.00 0.55 0.19 0.23 

0.7 2460 34251 19 31810 0.07 0.99 0.00 0.54 0.13 0.19 

0.8 1745 34259 11 32525 0.05 0.99 0.00 0.53 0.10 0.16 

0.9 1017 34263 7 33253 0.03 0.99 0.00 0.51 0.06 0.12 

1 716 34264 6 33554 0.02 0.99 0.00 0.51 0.04 0.10 

Thr: Threshold  
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2. Protein x Disease 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 53568 67087 4283 17802 0.75 0.93 0.06 0.85 0.83 0.70 

1E-05 53568 67090 4280 17802 0.75 0.93 0.06 0.85 0.83 0.70 

0.0001 53564 67094 4276 17806 0.75 0.93 0.06 0.85 0.83 0.70 

0.001 53521 67124 4246 17849 0.75 0.93 0.06 0.85 0.83 0.70 

0.01 53050 67700 3670 18320 0.74 0.94 0.05 0.85 0.83 0.71 

0.02 52468 68233 3137 18902 0.74 0.94 0.04 0.85 0.83 0.71 

0.03 51798 68575 2795 19572 0.73 0.95 0.04 0.84 0.82 0.71 

0.04 51085 68892 2478 20285 0.72 0.95 0.03 0.84 0.82 0.70 

0.05 50261 69147 2223 21109 0.70 0.96 0.03 0.84 0.81 0.70 

0.06 49365 69372 1998 22005 0.69 0.96 0.03 0.83 0.80 0.69 

0.07 48518 69590 1780 22852 0.68 0.96 0.02 0.83 0.80 0.69 

0.08 47677 69760 1610 23693 0.67 0.97 0.02 0.82 0.79 0.68 

0.09 46765 69915 1455 24605 0.66 0.97 0.02 0.82 0.78 0.67 

0.1 45913 70067 1303 25457 0.64 0.97 0.02 0.81 0.77 0.66 

0.2 37313 70846 524 34057 0.52 0.99 0.01 0.76 0.68 0.58 

0.3 30802 71117 253 40568 0.43 0.99 0.00 0.71 0.60 0.52 

0.4 25304 71230 140 46066 0.35 0.99 0.00 0.68 0.52 0.46 

0.5 20324 71280 90 51046 0.28 1.00 0.00 0.64 0.44 0.40 

0.6 16008 71317 53 55362 0.22 1.00 0.00 0.61 0.37 0.35 

0.7 11195 71338 32 60175 0.16 1.00 0.00 0.58 0.27 0.29 

0.8 7208 71352 18 64162 0.10 1.00 0.00 0.55 0.18 0.23 

0.9 3649 71358 12 67721 0.05 1.00 0.00 0.53 0.10 0.16 

1 2193 71361 9 69177 0.03 1.00 0.00 0.52 0.06 0.12 

Thr: Threshold 

 

  



 

77 
 

b. 3-fold cross-validation 

1. Protein x Molecular Function 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 22609 0 25443 0 1 0.47 1 0.47 0.64  

1E-06 15496 23937 1506 7113 0.69 0.91 0.06 0.82 0.78 0.65 

1E-05 15496 23937 1506 7113 0.69 0.91 0.06 0.82 0.78 0.65 

0.0001 15490 23940 1503 7119 0.69 0.91 0.06 0.82 0.78 0.65 

0.001 15483 23948 1495 7126 0.68 0.91 0.06 0.82 0.78 0.65 

0.01 15421 24051 1392 7188 0.68 0.92 0.05 0.82 0.78 0.66 

0.02 15348 24127 1316 7261 0.68 0.92 0.05 0.82 0.78 0.66 

0.03 15233 24207 1236 7376 0.67 0.92 0.05 0.82 0.78 0.66 

0.04 15117 24276 1167 7492 0.67 0.93 0.05 0.82 0.78 0.66 

0.05 14940 24382 1061 7669 0.66 0.93 0.04 0.82 0.77 0.66 

0.06 14773 24510 933 7836 0.65 0.94 0.04 0.82 0.77 0.66 

0.07 14511 24616 827 8098 0.64 0.95 0.03 0.81 0.76 0.65 

0.08 14271 24695 748 8338 0.63 0.95 0.03 0.81 0.76 0.65 

0.09 14046 24756 687 8563 0.62 0.95 0.03 0.81 0.75 0.64 

0.1 13752 24850 593 8857 0.61 0.96 0.02 0.80 0.74 0.64 

0.2 11258 25200 243 11351 0.50 0.98 0.01 0.76 0.66 0.57 

0.3 9209 25330 113 13400 0.41 0.99 0.00 0.72 0.58 0.51 

0.4 7521 25381 62 15088 0.33 0.99 0.00 0.68 0.50 0.45 

0.5 4404 25414 29 18205 0.19 0.99 0.00 0.62 0.33 0.33 

0.6 1588 25422 21 21021 0.07 0.99 0.00 0.56 0.13 0.19 

0.7 1017 25429 14 21592 0.04 0.99 0.00 0.55 0.09 0.15 

0.8 663 25436 7 21946 0.03 0.99 0.00 0.54 0.06 0.12 

0.9 440 25438 5 22169 0.02 0.99 0.00 0.54 0.04 0.10 

1 205 25439 4 22404 0.01 0.98 0.00 0.53 0.02 0.07 

Thr: Threshold 
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2. Protein x Disease 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.49 1 0.49 0.66  

1E-06 43580 60882 4902 19541 0.69 0.90 0.07 0.81 0.78 0.64 

1E-05 43578 60882 4902 19543 0.69 0.90 0.07 0.81 0.78 0.64 

0.0001 43571 60891 4893 19550 0.69 0.90 0.07 0.81 0.78 0.64 

0.001 43506 60935 4849 19615 0.69 0.90 0.07 0.81 0.78 0.64 

0.01 42856 61722 4062 20265 0.68 0.91 0.06 0.81 0.78 0.64 

0.02 42038 62410 3374 21083 0.67 0.93 0.05 0.81 0.77 0.64 

0.03 41258 62871 2913 21863 0.65 0.93 0.04 0.81 0.77 0.64 

0.04 40556 63204 2580 22565 0.64 0.94 0.04 0.80 0.76 0.64 

0.05 39753 63517 2267 23368 0.63 0.95 0.03 0.80 0.76 0.63 

0.06 38924 63764 2020 24197 0.62 0.95 0.03 0.80 0.75 0.63 

0.07 38101 63977 1807 25020 0.60 0.95 0.03 0.79 0.74 0.62 

0.08 37283 64160 1624 25838 0.59 0.96 0.02 0.79 0.73 0.62 

0.09 36499 64317 1467 26622 0.58 0.96 0.02 0.78 0.72 0.61 

0.1 35684 64477 1307 27437 0.57 0.96 0.02 0.78 0.71 0.60 

0.2 28220 65310 474 34901 0.45 0.98 0.01 0.73 0.61 0.53 

0.3 21479 65598 186 41642 0.34 0.99 0.00 0.68 0.51 0.45 

0.4 16458 65688 96 46663 0.26 0.99 0.00 0.64 0.41 0.39 

0.5 11468 65734 50 51653 0.18 1.00 0.00 0.60 0.31 0.32 

0.6 7654 65761 23 55467 0.12 1.00 0.00 0.57 0.22 0.26 

0.7 4182 65769 15 58939 0.07 1.00 0.00 0.54 0.12 0.19 

0.8 2505 65778 6 60616 0.04 1.00 0.00 0.53 0.08 0.14 

0.9 1429 65778 6 61692 0.02 1.00 0.00 0.52 0.04 0.11 

1 945 65779 5 62176 0.01 0.99 0.00 0.52 0.03 0.09 

Thr: Threshold 
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A.2.3. Protein x Biological Process and Protein x Disease (k=200) 

a. 10-fold cross-validation 

1. Protein x Biological Process 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 75880 0 75880 0 1 0.5 1 0.5 0.67  

1E-06 58833 71482 4398 17047 0.78 0.93 0.06 0.86 0.85 0.73 

1E-05 58833 71482 4398 17047 0.78 0.93 0.06 0.86 0.85 0.73 

0.0001 58827 71486 4394 17053 0.78 0.93 0.06 0.86 0.85 0.73 

0.001 58812 71522 4358 17068 0.78 0.93 0.06 0.86 0.85 0.73 

0.01 58558 71904 3976 17322 0.77 0.94 0.05 0.86 0.85 0.73 

0.02 58258 72158 3722 17622 0.77 0.94 0.05 0.86 0.85 0.73 

0.03 57839 72379 3501 18041 0.76 0.94 0.05 0.86 0.84 0.73 

0.04 57131 72615 3265 18749 0.75 0.95 0.04 0.85 0.84 0.73 

0.05 56217 72867 3013 19663 0.74 0.95 0.04 0.85 0.83 0.72 

0.06 55093 73158 2722 20787 0.73 0.95 0.04 0.85 0.82 0.71 

0.07 53926 73437 2443 21954 0.71 0.96 0.03 0.84 0.82 0.70 

0.08 52631 73678 2202 23249 0.69 0.96 0.03 0.83 0.81 0.69 

0.09 51342 73870 2010 24538 0.68 0.96 0.03 0.83 0.79 0.68 

0.1 50037 74044 1836 25843 0.66 0.96 0.02 0.82 0.78 0.67 

0.2 37176 75139 741 38704 0.49 0.98 0.01 0.74 0.65 0.55 

0.3 26938 75550 330 48942 0.36 0.99 0.00 0.68 0.52 0.46 

0.4 19225 75721 159 56655 0.25 0.99 0.00 0.63 0.40 0.38 

0.5 13934 75808 72 61946 0.18 0.99 0.00 0.59 0.31 0.32 

0.6 9828 75841 39 66052 0.13 1.00 0.00 0.56 0.23 0.26 

0.7 6001 75856 24 69879 0.08 1.00 0.00 0.54 0.15 0.20 

0.8 4078 75865 15 71802 0.05 1.00 0.00 0.53 0.10 0.17 

0.9 2810 75870 10 73070 0.04 1.00 0.00 0.52 0.07 0.14 

1 1875 75874 6 74005 0.02 1.00 0.00 0.51 0.05 0.11 

Thr: Threshold  
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2. Protein x Disease 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 55186 66008 5362 16184 0.77 0.91 0.08 0.85 0.84 0.71 

1E-05 55186 66010 5360 16184 0.77 0.91 0.08 0.85 0.84 0.71 

0.0001 55183 66018 5352 16187 0.77 0.91 0.07 0.85 0.84 0.71 

0.001 55137 66085 5285 16233 0.77 0.91 0.07 0.85 0.84 0.71 

0.01 54408 67101 4269 16962 0.76 0.93 0.06 0.85 0.84 0.71 

0.02 53643 67838 3532 17727 0.75 0.94 0.05 0.85 0.83 0.72 

0.03 52828 68340 3030 18542 0.74 0.95 0.04 0.85 0.83 0.71 

0.04 52002 68704 2666 19368 0.73 0.95 0.04 0.85 0.83 0.71 

0.05 51052 69023 2347 20318 0.72 0.96 0.03 0.84 0.82 0.71 

0.06 50083 69297 2073 21287 0.70 0.96 0.03 0.84 0.81 0.70 

0.07 49049 69544 1826 22321 0.69 0.96 0.03 0.83 0.80 0.69 

0.08 48051 69748 1622 23319 0.67 0.97 0.02 0.83 0.79 0.68 

0.09 47033 69916 1454 24337 0.66 0.97 0.02 0.82 0.78 0.67 

0.1 46000 70052 1318 25370 0.64 0.97 0.02 0.81 0.78 0.66 

0.2 36894 70835 535 34476 0.52 0.99 0.01 0.75 0.68 0.58 

0.3 29704 71103 267 41666 0.42 0.99 0.00 0.71 0.59 0.51 

0.4 23889 71215 155 47481 0.33 0.99 0.00 0.67 0.50 0.44 

0.5 18975 71282 88 52395 0.27 1.00 0.00 0.63 0.42 0.39 

0.6 14916 71316 54 56454 0.21 1.00 0.00 0.60 0.35 0.34 

0.7 10739 71336 34 60631 0.15 1.00 0.00 0.57 0.26 0.28 

0.8 7336 71346 24 64034 0.10 1.00 0.00 0.55 0.19 0.23 

0.9 3844 71351 19 67526 0.05 1.00 0.00 0.53 0.10 0.17 

1 2337 71356 14 69033 0.03 0.99 0.00 0.52 0.06 0.13 

Thr: Threshold 
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b. 3-fold cross-validation 

1. Protein x Biological Process 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 55959 0 59220 0 1 0.49 1 0.49 0.65  

1E-06 38854 54839 4381 17105 0.69 0.90 0.07 0.81 0.78 0.64 

1E-05 38854 54839 4381 17105 0.69 0.90 0.07 0.81 0.78 0.64 

0.0001 38851 54845 4375 17108 0.69 0.90 0.07 0.81 0.78 0.64 

0.001 38823 54881 4339 17136 0.69 0.90 0.07 0.81 0.78 0.64 

0.01 38243 55703 3517 17716 0.68 0.92 0.06 0.82 0.78 0.65 

0.02 37770 56124 3096 18189 0.67 0.92 0.05 0.82 0.78 0.65 

0.03 37229 56451 2769 18730 0.67 0.93 0.05 0.81 0.78 0.65 

0.04 36545 56718 2502 19414 0.65 0.94 0.04 0.81 0.77 0.64 

0.05 35777 56942 2278 20182 0.64 0.94 0.04 0.80 0.76 0.64 

0.06 34945 57183 2037 21014 0.62 0.94 0.03 0.80 0.75 0.63 

0.07 33893 57423 1797 22066 0.61 0.95 0.03 0.79 0.74 0.62 

0.08 32839 57601 1619 23120 0.59 0.95 0.03 0.79 0.73 0.61 

0.09 31758 57794 1426 24201 0.57 0.96 0.02 0.78 0.71 0.60 

0.1 30763 57943 1277 25196 0.55 0.96 0.02 0.77 0.70 0.59 

0.2 21444 58759 461 34515 0.38 0.98 0.01 0.70 0.55 0.48 

0.3 14662 59020 200 41297 0.26 0.99 0.00 0.64 0.41 0.39 

0.4 9752 59129 91 46207 0.17 0.99 0.00 0.60 0.30 0.31 

0.5 6733 59179 41 49226 0.12 0.99 0.00 0.57 0.21 0.25 

0.6 4316 59194 26 51643 0.08 0.99 0.00 0.55 0.14 0.20 

0.7 2684 59208 12 53275 0.05 1.00 0.00 0.54 0.09 0.16 

0.8 1674 59210 10 54285 0.03 0.99 0.00 0.53 0.06 0.12 

0.9 1101 59214 6 54858 0.02 0.99 0.00 0.52 0.04 0.10 

1 692 59216 4 55267 0.01 0.99 0.00 0.52 0.02 0.08 

Thr: Threshold 
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2. Protein x Disease 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.49 1 0.49 0.66  

1E-06 45253 59540 6244 17868 0.72 0.88 0.09 0.81 0.79 0.63 

1E-05 45253 59540 6244 17868 0.72 0.88 0.09 0.81 0.79 0.63 

0.0001 45244 59546 6238 17877 0.72 0.88 0.09 0.81 0.79 0.63 

0.001 45189 59635 6149 17932 0.72 0.88 0.09 0.81 0.79 0.64 

0.01 44166 61194 4590 18955 0.70 0.91 0.07 0.82 0.79 0.65 

0.02 43069 62107 3677 20052 0.68 0.92 0.06 0.82 0.78 0.65 

0.03 42111 62657 3127 21010 0.67 0.93 0.05 0.81 0.78 0.65 

0.04 41183 63070 2714 21938 0.65 0.94 0.04 0.81 0.77 0.64 

0.05 40238 63481 2303 22883 0.64 0.95 0.04 0.80 0.76 0.64 

0.06 39355 63759 2025 23766 0.62 0.95 0.03 0.80 0.75 0.63 

0.07 38490 63974 1810 24631 0.61 0.96 0.03 0.79 0.74 0.63 

0.08 37512 64165 1619 25609 0.59 0.96 0.02 0.79 0.73 0.62 

0.09 36534 64353 1431 26587 0.58 0.96 0.02 0.78 0.72 0.61 

0.1 35619 64506 1278 27502 0.56 0.97 0.02 0.78 0.71 0.60 

0.2 27988 65286 498 35133 0.44 0.98 0.01 0.72 0.61 0.53 

0.3 21460 65560 224 41661 0.34 0.99 0.00 0.68 0.51 0.45 

0.4 15798 65665 119 47323 0.25 0.99 0.00 0.63 0.40 0.38 

0.5 10977 65717 67 52144 0.17 0.99 0.00 0.59 0.30 0.31 

0.6 7528 65742 42 55593 0.12 0.99 0.00 0.57 0.21 0.25 

0.7 4374 65764 20 58747 0.07 1.00 0.00 0.54 0.13 0.19 

0.8 2644 65770 14 60477 0.04 0.99 0.00 0.53 0.08 0.15 

0.9 1601 65774 10 61520 0.03 0.99 0.00 0.52 0.05 0.11 

1 1120 65777 7 62001 0.02 0.99 0.00 0.52 0.03 0.09 

Thr: Threshold 
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A. 3. Confusion Matrices for NMTF without PPI matrix 

A.3.1. The sets of k values tested for NMTF algorithm without and with PPI matrix. 

 k1 (CC) k2 (Prot) k3 (MF) k4 (BP) k5 (Dis) 

k1 50 100 50 150 150 

k2 50 200 50 150 150 

k3 50 500 50 150 150 

k4 50 1500 50 150 150 

k5 50 2500 50 150 150 

k6 150 100 150 150 150 

k7 150 200 150 150 150 

k8 150 500 150 150 150 

k9 150 1500 150 150 150 

k10 150 2500 150 150 150 

k11 50 100 50 200 200 

k12 50 200 50 200 200 

k13 50 500 50 200 200 

k14 50 1500 50 200 200 

k15 50 2500 50 200 200 

k16 150 100 150 200 200 

k17 150 200 150 200 200 

k18 150 500 150 200 200 

k19 150 1500 150 200 200 

k20 150 2500 150 200 200 

Prot: Protein, Dis: Disease 
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A.3.2. Error rates for each set of k values according to relation matrices along with 

their averages, without PPI matrix. 

 R12 R13 R14 R15 Avg 

k1 0.036273 0.033162 0.026058 0.025634 0.030282 

k2 0.035658 0.032333 0.025733 0.025912 0.029909 

k3 0.034681 0.031946 0.02559 0.025929 0.029536 

k4 0.035074 0.032367 0.025534 0.026204 0.029795 

k5 0.034949 0.032196 0.025849 0.02589 0.029721 

k6 0.029251 0.030031 0.024164 0.024479 0.026981 

k7 0.028154 0.030106 0.02424 0.024898 0.02685 

k8 0.028555 0.03033 0.02422 0.024565 0.026917 

k9 0.027943 0.030293 0.024259 0.025031 0.026881 

k10 0.027782 0.03032 0.024335 0.024669 0.026777 

k11 0.036028 0.032139 0.025794 0.026353 0.030079 

k12 0.036066 0.032338 0.025898 0.025838 0.030035 

k13 0.034603 0.032199 0.025964 0.026088 0.029713 

k14 0.034544 0.032281 0.02586 0.026227 0.029728 

k15 0.034659 0.032429 0.025852 0.025972 0.029728 

k16 0.029992 0.030338 0.024085 0.024538 0.027238 

k17 0.02848 0.03012 0.024089 0.024498 0.026797 

k18 0.028073 0.030099 0.024143 0.024923 0.026809 

k19 0.027998 0.030138 0.024077 0.024911 0.026781 

k20 0.027894 0.030525 0.024303 0.024787 0.026877 

Avg: Average 
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A.3.3 Confusion matrices of NMTF algorithm without PPI matrix. 

1. Protein x Cellular Component 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 52200 0 52200 0 1 0.5 1 0.5 0.67  

1E-06 51986 10199 42001 214 1.00 0.55 0.80 0.60 0.71 0.32 

1E-05 51910 14212 37988 290 0.99 0.58 0.73 0.63 0.73 0.39 

0.0001 51723 20564 31636 477 0.99 0.62 0.61 0.69 0.76 0.48 

0.001 51106 30219 21981 1094 0.98 0.70 0.42 0.78 0.82 0.61 

0.01 48860 43153 9047 3340 0.94 0.84 0.17 0.88 0.89 0.77 

0.02 47368 46223 5977 4832 0.91 0.89 0.11 0.90 0.90 0.79 

0.03 46171 47772 4428 6029 0.88 0.91 0.08 0.90 0.90 0.80 

0.04 45206 48608 3592 6994 0.87 0.93 0.07 0.90 0.90 0.80 

0.05 44322 49175 3025 7878 0.85 0.94 0.06 0.90 0.89 0.79 

0.06 43593 49630 2570 8607 0.84 0.94 0.05 0.89 0.89 0.79 

0.07 42802 49970 2230 9398 0.82 0.95 0.04 0.89 0.88 0.78 

0.08 42125 50230 1970 10075 0.81 0.96 0.04 0.88 0.87 0.78 

0.09 41492 50432 1768 10708 0.79 0.96 0.03 0.88 0.87 0.77 

0.1 40861 50597 1603 11339 0.78 0.96 0.03 0.88 0.86 0.77 

0.2 35086 51475 725 17114 0.67 0.98 0.01 0.83 0.80 0.69 

0.3 29696 51852 348 22504 0.57 0.99 0.01 0.78 0.72 0.62 

0.4 24427 52026 174 27773 0.47 0.99 0.00 0.73 0.64 0.55 

0.5 19383 52117 83 32817 0.37 1.00 0.00 0.68 0.54 0.47 

0.6 14561 52174 26 37639 0.28 1.00 0.00 0.64 0.44 0.40 

0.7 9910 52192 8 42290 0.19 1.00 0.00 0.59 0.32 0.32 

0.8 6096 52197 3 46104 0.12 1.00 0.00 0.56 0.21 0.25 

0.9 3411 52199 1 48789 0.07 1.00 0.00 0.53 0.12 0.18 

1 1751 52200 0 50449 0.03 1 0.00 0.52 0.06 0.13 

Thr: Threshold 
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34140 0 37299 0 1 0.48 1 0.48 0.65  

1E-06 34003 7203 30096 137 1.00 0.53 0.81 0.58 0.69 0.31 

1E-05 33905 9985 27314 235 0.99 0.55 0.73 0.61 0.71 0.37 

0.0001 33670 14204 23095 470 0.99 0.59 0.62 0.67 0.74 0.45 

0.001 32983 20841 16458 1157 0.97 0.67 0.44 0.75 0.79 0.57 

0.01 30793 31096 6203 3347 0.90 0.83 0.17 0.87 0.87 0.74 

0.02 29376 33423 3876 4764 0.86 0.88 0.10 0.88 0.87 0.76 

0.03 28348 34510 2789 5792 0.83 0.91 0.07 0.88 0.87 0.76 

0.04 27494 35139 2160 6646 0.81 0.93 0.06 0.88 0.86 0.76 

0.05 26725 35518 1781 7415 0.78 0.94 0.05 0.87 0.85 0.75 

0.06 26060 35812 1487 8080 0.76 0.95 0.04 0.87 0.84 0.74 

0.07 25442 36010 1289 8698 0.75 0.95 0.03 0.86 0.84 0.73 

0.08 24897 36180 1119 9243 0.73 0.96 0.03 0.85 0.83 0.73 

0.09 24378 36324 975 9762 0.71 0.96 0.03 0.85 0.82 0.72 

0.1 23862 36426 873 10278 0.70 0.96 0.02 0.84 0.81 0.71 

0.2 19252 36994 305 14888 0.56 0.98 0.01 0.79 0.72 0.62 

0.3 15189 37170 129 18951 0.44 0.99 0.00 0.73 0.61 0.54 

0.4 11408 37241 58 22732 0.33 0.99 0.00 0.68 0.50 0.45 

0.5 7956 37279 20 26184 0.23 1.00 0.00 0.63 0.38 0.37 

0.6 5019 37290 9 29121 0.15 1.00 0.00 0.59 0.26 0.29 

0.7 2867 37297 2 31273 0.08 1.00 0.00 0.56 0.15 0.21 

0.8 1533 37298 1 32607 0.04 1.00 0.00 0.54 0.09 0.15 

0.9 785 37298 1 33355 0.02 1.00 0.00 0.53 0.04 0.11 

1 410 37299 0 33730 0.01 1 0 0.53 0.02 0.08 

Thr: Threshold 
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2. Protein x Molecular Function 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34270 0 34270 0 1 0.5 1 0.5 0.67  

1E-06 34076 5384 28886 194 0.99 0.54 0.84 0.58 0.70 0.28 

1E-05 34010 6584 27686 260 0.99 0.55 0.81 0.59 0.71 0.31 

0.0001 33868 8495 25775 402 0.99 0.57 0.75 0.62 0.72 0.35 

0.001 33449 13242 21028 821 0.98 0.61 0.61 0.68 0.75 0.45 

0.01 30827 24908 9362 3443 0.90 0.77 0.27 0.81 0.83 0.64 

0.02 28729 28585 5685 5541 0.84 0.83 0.17 0.84 0.84 0.67 

0.03 27061 30346 3924 7209 0.79 0.87 0.11 0.84 0.83 0.68 

0.04 25722 31312 2958 8548 0.75 0.90 0.09 0.83 0.82 0.67 

0.05 24554 31925 2345 9716 0.72 0.91 0.07 0.82 0.80 0.66 

0.06 23593 32365 1905 10677 0.69 0.93 0.06 0.82 0.79 0.65 

0.07 22775 32673 1597 11495 0.66 0.93 0.05 0.81 0.78 0.65 

0.08 22022 32925 1345 12248 0.64 0.94 0.04 0.80 0.76 0.64 

0.09 21294 33126 1144 12976 0.62 0.95 0.03 0.79 0.75 0.63 

0.1 20660 33271 999 13610 0.60 0.95 0.03 0.79 0.74 0.62 

0.2 16401 33947 323 17869 0.48 0.98 0.01 0.73 0.64 0.55 

0.3 13686 34122 148 20584 0.40 0.99 0.00 0.70 0.57 0.49 

0.4 11468 34193 77 22802 0.33 0.99 0.00 0.67 0.50 0.44 

0.5 9323 34230 40 24947 0.27 1.00 0.00 0.64 0.43 0.39 

0.6 6987 34249 21 27283 0.20 1.00 0.00 0.60 0.34 0.34 

0.7 4566 34264 6 29704 0.13 1.00 0.00 0.57 0.24 0.27 

0.8 2589 34268 2 31681 0.08 1.00 0.00 0.54 0.14 0.20 

0.9 1273 34270 0 32997 0.04 1 0.00 0.52 0.07 0.14 

1 534 34270 0 33736 0.02 1 0.00 0.51 0.03 0.09 

Thr: Threshold 
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 22609 0 25443 0 1 0.47 1 0.47 0.64  

1E-06 22398 3808 21635 211 0.99 0.51 0.85 0.55 0.67 0.25 

1E-05 22333 4599 20844 276 0.99 0.52 0.82 0.56 0.68 0.28 

0.0001 22205 6015 19428 404 0.98 0.53 0.76 0.59 0.69 0.32 

0.001 21786 9759 15684 823 0.96 0.58 0.62 0.66 0.73 0.42 

0.01 19656 18868 6575 2953 0.87 0.75 0.26 0.80 0.80 0.61 

0.02 18048 21620 3823 4561 0.80 0.83 0.15 0.83 0.81 0.65 

0.03 16795 22845 2598 5814 0.74 0.87 0.10 0.82 0.80 0.65 

0.04 15832 23535 1908 6777 0.70 0.89 0.07 0.82 0.78 0.65 

0.05 14977 23964 1479 7632 0.66 0.91 0.06 0.81 0.77 0.64 

0.06 14194 24261 1182 8415 0.63 0.92 0.05 0.80 0.75 0.62 

0.07 13538 24461 982 9071 0.60 0.93 0.04 0.79 0.73 0.61 

0.08 13007 24602 841 9602 0.58 0.94 0.03 0.78 0.71 0.60 

0.09 12535 24727 716 10074 0.55 0.95 0.03 0.78 0.70 0.59 

0.1 12145 24830 613 10464 0.54 0.95 0.02 0.77 0.69 0.58 

0.2 9287 25262 181 13322 0.41 0.98 0.01 0.72 0.58 0.51 

0.3 7469 25368 75 15140 0.33 0.99 0.00 0.68 0.50 0.45 

0.4 5829 25412 31 16780 0.26 0.99 0.00 0.65 0.41 0.39 

0.5 4084 25432 11 18525 0.18 1.00 0.00 0.61 0.31 0.32 

0.6 2444 25440 3 20165 0.11 1.00 0.00 0.58 0.20 0.25 

0.7 1143 25442 1 21466 0.05 1.00 4E-05 0.55 0.10 0.17 

0.8 451 25443 0 22158 0.02 1 0 0.54 0.04 0.10 

0.9 145 25443 0 22464 0.01 1 0 0.53 0.01 0.06 

1 42 25443 0 22567 0.00 1 0 0.53 0.00 0.03 

Thr: Threshold 
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3. Protein x Biological Process  

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 75880 0 75880 0 1 0.5 1 0.5 0.67  

1E-06 75621 4887 70993 259 1.00 0.52 0.94 0.53 0.68 0.17 

1E-05 75514 5991 69889 366 1.00 0.52 0.92 0.54 0.68 0.19 

0.0001 75240 8945 66935 640 0.99 0.53 0.88 0.55 0.69 0.22 

0.001 73785 20237 55643 2095 0.97 0.57 0.73 0.62 0.72 0.34 

0.01 61968 54691 21189 13912 0.82 0.75 0.28 0.77 0.78 0.54 

0.02 52717 64945 10935 23163 0.69 0.83 0.14 0.78 0.76 0.56 

0.03 46277 69066 6814 29603 0.61 0.87 0.09 0.76 0.72 0.55 

0.04 41426 71170 4710 34454 0.55 0.90 0.06 0.74 0.68 0.53 

0.05 37819 72483 3397 38061 0.50 0.92 0.04 0.73 0.65 0.51 

0.06 34988 73300 2580 40892 0.46 0.93 0.03 0.71 0.62 0.49 

0.07 32634 73847 2033 43246 0.43 0.94 0.03 0.70 0.59 0.48 

0.08 30602 74203 1677 45278 0.40 0.95 0.02 0.69 0.57 0.47 

0.09 28789 74491 1389 47091 0.38 0.95 0.02 0.68 0.54 0.45 

0.1 27276 74720 1160 48604 0.36 0.96 0.02 0.67 0.52 0.44 

0.2 18067 75575 305 57813 0.24 0.98 0.00 0.62 0.38 0.36 

0.3 13340 75767 113 62540 0.18 0.99 0.00 0.59 0.30 0.31 

0.4 10109 75834 46 65771 0.13 1.00 0.00 0.57 0.23 0.27 

0.5 7660 75862 18 68220 0.10 1.00 0.00 0.55 0.18 0.23 

0.6 5619 75873 7 70261 0.07 1.00 0.00 0.54 0.14 0.20 

0.7 3910 75877 3 71970 0.05 1.00 0.00 0.53 0.10 0.16 

0.8 2303 75879 1 73577 0.03 1.00 0.00 0.52 0.06 0.12 

0.9 1106 75880 0 74774 0.01 1.00 0.00 0.51 0.03 0.09 

1 435 75880 0 75445 0.01 1 0.00 0.50 0.01 0.05 

Thr: Threshold 
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 55959 0 59220 0 1 0.49 1 0.49 0.65  

1E-06 55662 3635 55585 297 0.99 0.50 0.94 0.51 0.67 0.15 

1E-05 55543 4454 54766 416 0.99 0.50 0.92 0.52 0.67 0.17 

0.0001 55198 6546 52674 761 0.99 0.51 0.89 0.54 0.67 0.20 

0.001 53853 15204 44016 2106 0.96 0.55 0.74 0.60 0.70 0.31 

0.01 43117 43847 15373 12842 0.77 0.74 0.26 0.76 0.75 0.51 

0.02 35191 51781 7439 20768 0.63 0.83 0.13 0.76 0.71 0.52 

0.03 29972 54766 4454 25987 0.54 0.87 0.08 0.74 0.66 0.50 

0.04 26371 56212 3008 29588 0.47 0.90 0.05 0.72 0.62 0.48 

0.05 23809 57020 2200 32150 0.43 0.92 0.04 0.70 0.58 0.46 

0.06 21772 57557 1663 34187 0.39 0.93 0.03 0.69 0.55 0.45 

0.07 20134 57915 1305 35825 0.36 0.94 0.02 0.68 0.52 0.43 

0.08 18767 58151 1069 37192 0.34 0.95 0.02 0.67 0.50 0.42 

0.09 17566 58348 872 38393 0.31 0.95 0.01 0.66 0.47 0.41 

0.1 16473 58503 717 39486 0.29 0.96 0.01 0.65 0.45 0.40 

0.2 10144 59055 165 45815 0.18 0.98 0.00 0.60 0.31 0.31 

0.3 6970 59158 62 48989 0.12 0.99 0.00 0.57 0.22 0.26 

0.4 4674 59200 20 51285 0.08 1.00 0.00 0.55 0.15 0.21 

0.5 3034 59215 5 52925 0.05 1.00 8E-05 0.54 0.10 0.17 

0.6 1788 59220 0 54171 0.03 1 0 0.53 0.06 0.13 

0.7 914 59220 0 55045 0.02 1 0 0.52 0.03 0.09 

0.8 349 59220 0 55610 0.01 1 0 0.52 0.01 0.06 

0.9 154 59220 0 55805 0.00 1 0 0.52 0.01 0.04 

1 50 59220 0 55909 0.00 1 0 0.51 0.00 0.02 

Thr: Threshold 
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4. Protein x Disease 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 70804 4796 66574 566 0.99 0.52 0.93 0.53 0.68 0.16 

1E-05 70587 5820 65550 783 0.99 0.52 0.92 0.54 0.68 0.17 

0.0001 70106 8142 63228 1264 0.98 0.53 0.89 0.55 0.68 0.19 

0.001 68115 18240 53130 3255 0.95 0.56 0.74 0.60 0.71 0.29 

0.01 55481 51784 19586 15889 0.78 0.74 0.27 0.75 0.76 0.50 

0.02 46929 60903 10467 24441 0.66 0.82 0.15 0.76 0.73 0.52 

0.03 41068 64765 6605 30302 0.58 0.86 0.09 0.74 0.69 0.51 

0.04 36700 66732 4638 34670 0.51 0.89 0.06 0.72 0.65 0.50 

0.05 33203 67945 3425 38167 0.47 0.91 0.05 0.71 0.61 0.48 

0.06 30323 68747 2623 41047 0.42 0.92 0.04 0.69 0.58 0.46 

0.07 27960 69324 2046 43410 0.39 0.93 0.03 0.68 0.55 0.45 

0.08 25936 69697 1673 45434 0.36 0.94 0.02 0.67 0.52 0.43 

0.09 24125 70051 1319 47245 0.34 0.95 0.02 0.66 0.50 0.42 

0.1 22533 70277 1093 48837 0.32 0.95 0.02 0.65 0.47 0.40 

0.2 13496 71124 246 57874 0.19 0.98 0.00 0.59 0.32 0.31 

0.3 9553 71284 86 61817 0.13 0.99 0.00 0.57 0.24 0.26 

0.4 7257 71336 34 64113 0.10 1.00 0.00 0.55 0.18 0.23 

0.5 5627 71358 12 65743 0.08 1.00 0.00 0.54 0.15 0.20 

0.6 4337 71364 6 67033 0.06 1.00 0.00 0.53 0.11 0.18 

0.7 3128 71367 3 68242 0.04 1.00 0.00 0.52 0.08 0.15 

0.8 1902 71367 3 69468 0.03 1.00 0.00 0.51 0.05 0.12 

0.9 859 71369 1 70511 0.01 1.00 0.00 0.51 0.02 0.08 

1 300 71370 0 71070 0.00 1 0.00 0.50 0.01 0.05 

Thr: Threshold 

 



 

92 
 

b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.49 1 0.49 0.66  

1E-06 62698 2336 63448 423 0.99 0.50 0.96 0.50 0.66 0.10 

1E-05 62496 3042 62742 625 0.99 0.50 0.95 0.51 0.66 0.11 

0.0001 62053 4823 60961 1068 0.98 0.50 0.93 0.52 0.67 0.13 

0.001 60297 13046 52738 2824 0.96 0.53 0.80 0.57 0.68 0.23 

0.01 47666 47164 18620 15455 0.76 0.72 0.28 0.74 0.74 0.47 

0.02 39638 56024 9760 23483 0.63 0.80 0.15 0.74 0.70 0.49 

0.03 34451 59559 6225 28670 0.55 0.85 0.09 0.73 0.66 0.49 

0.04 30616 61409 4375 32505 0.49 0.87 0.07 0.71 0.62 0.47 

0.05 27509 62535 3249 35612 0.44 0.89 0.05 0.70 0.59 0.45 

0.06 25080 63280 2504 38041 0.40 0.91 0.04 0.69 0.55 0.44 

0.07 23061 63838 1946 40060 0.37 0.92 0.03 0.67 0.52 0.42 

0.08 21285 64222 1562 41836 0.34 0.93 0.02 0.66 0.50 0.41 

0.09 19710 64505 1279 43411 0.31 0.94 0.02 0.65 0.47 0.40 

0.1 18390 64752 1032 44731 0.29 0.95 0.02 0.64 0.45 0.39 

0.2 10688 65566 218 52433 0.17 0.98 0.00 0.59 0.29 0.30 

0.3 7014 65723 61 56107 0.11 0.99 0.00 0.56 0.20 0.24 

0.4 4757 65761 23 58364 0.08 1.00 0.00 0.55 0.14 0.20 

0.5 3082 65778 6 60039 0.05 1.00 9E-05 0.53 0.09 0.16 

0.6 1832 65782 2 61289 0.03 1.00 3E-05 0.52 0.06 0.12 

0.7 885 65783 1 62236 0.01 1.00 2E-05 0.52 0.03 0.08 

0.8 319 65784 0 62802 0.01 1 0 0.51 0.01 0.05 

0.9 113 65784 0 63008 0.00 1 0 0.51 0.00 0.03 

1 37 65784 0 63084 0.00 1 0 0.51 0.00 0.02 

Thr: Threshold 
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A. 4. Confusion Matrices for NMTF with PPI matrix 

A.4.1. The error rates for each matrix for NMTF algorithm with PPI matrix. 

 R12 R13 R14 R15 Avg 

k1 0.055356 0.037618 0.028647 0.0287 0.03758 

k2 0.05509 0.037472 0.028745 0.028391 0.037424 

k3 0.055046 0.037071 0.028604 0.028466 0.037297 

k4 0.055228 0.037821 0.028819 0.028531 0.0376 

k5 0.055127 0.037422 0.028771 0.028933 0.037563 

k6 0.055414 0.03772 0.0287 0.028916 0.037688 

k7 0.055506 0.037917 0.028654 0.028971 0.037762 

k8 0.055522 0.037836 0.028721 0.028812 0.037723 

k9 0.055591 0.037842 0.028762 0.028758 0.037738 

k10 0.055563 0.037867 0.028821 0.029028 0.03782 

k11 0.055316 0.037652 0.028915 0.02874 0.037656 

k12 0.055076 0.037512 0.028562 0.028238 0.037347 

k13 0.055204 0.037659 0.028761 0.028494 0.03753 

k14 0.054863 0.037508 0.028762 0.028404 0.037384 

k15 0.055227 0.037563 0.028773 0.028449 0.037503 

k16 0.055355 0.03774 0.028782 0.028982 0.037715 

k17 0.055344 0.037753 0.028714 0.028887 0.037675 

k18 0.055405 0.037845 0.028812 0.029025 0.037772 

k19 0.055565 0.037968 0.028847 0.028986 0.037841 

k20 0.055512 0.037862 0.02887 0.028972 0.037804 

Avg: Average 
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A.4.2. Confusion matrices of NMTF algorithm with PPI matrix. 

1. Protein x Cellular Component 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 52200 0 52200 0 1 0.5 1 0.5 0.67  

1E-06 52018 7374 44826 182 1.00 0.54 0.86 0.57 0.70 0.27 

1E-05 51974 9760 42440 226 1.00 0.55 0.81 0.59 0.71 0.31 

0.0001 51871 14361 37839 329 0.99 0.58 0.72 0.63 0.73 0.39 

0.001 51434 24488 27712 766 0.99 0.65 0.53 0.73 0.78 0.53 

0.01 49394 41211 10989 2806 0.95 0.82 0.21 0.87 0.88 0.74 

0.02 47856 45078 7122 4344 0.92 0.87 0.14 0.89 0.89 0.78 

0.03 46497 46821 5379 5703 0.89 0.90 0.10 0.89 0.89 0.79 

0.04 45373 47821 4379 6827 0.87 0.91 0.08 0.89 0.89 0.79 

0.05 44385 48507 3693 7815 0.85 0.92 0.07 0.89 0.89 0.78 

0.06 43442 49013 3187 8758 0.83 0.93 0.06 0.89 0.88 0.78 

0.07 42555 49380 2820 9645 0.82 0.94 0.05 0.88 0.87 0.77 

0.08 41724 49715 2485 10476 0.80 0.94 0.05 0.88 0.87 0.76 

0.09 40967 49974 2226 11233 0.78 0.95 0.04 0.87 0.86 0.75 

0.1 40206 50183 2017 11994 0.77 0.95 0.04 0.87 0.85 0.75 

0.2 33692 51247 953 18508 0.65 0.97 0.02 0.81 0.78 0.67 

0.3 28010 51732 468 24190 0.54 0.98 0.01 0.76 0.69 0.59 

0.4 22559 51962 238 29641 0.43 0.99 0.00 0.71 0.60 0.52 

0.5 17287 52078 122 34913 0.33 0.99 0.00 0.66 0.50 0.44 

0.6 12579 52149 51 39621 0.24 1.00 0.00 0.62 0.39 0.37 

0.7 8696 52181 19 43504 0.17 1.00 0.00 0.58 0.29 0.30 

0.8 5522 52193 7 46678 0.11 1.00 0.00 0.55 0.19 0.24 

0.9 3320 52194 6 48880 0.06 1.00 0.00 0.53 0.12 0.18 

1 1873 52199 1 50327 0.04 1.00 0.00 0.52 0.07 0.14 

Thr: Threshold 
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34140 0 37299 0 1 0.47789 1 0.48 0.65  

1E-06 34028 6673 30626 112 1.00 0.53 0.82 0.57 0.69 0.30 

1E-05 33954 9354 27945 186 0.99 0.55 0.75 0.61 0.71 0.36 

0.0001 33760 13815 23484 380 0.99 0.59 0.63 0.67 0.74 0.45 

0.001 33119 20565 16734 1021 0.97 0.66 0.45 0.75 0.79 0.57 

0.01 30963 30896 6403 3177 0.91 0.83 0.17 0.87 0.87 0.74 

0.02 29655 33306 3993 4485 0.87 0.88 0.11 0.88 0.87 0.76 

0.03 28646 34424 2875 5494 0.84 0.91 0.08 0.88 0.87 0.77 

0.04 27854 35039 2260 6286 0.82 0.92 0.06 0.88 0.87 0.76 

0.05 27112 35455 1844 7028 0.79 0.94 0.05 0.88 0.86 0.76 

0.06 26483 35756 1543 7657 0.78 0.94 0.04 0.87 0.85 0.75 

0.07 25840 35978 1321 8300 0.76 0.95 0.04 0.87 0.84 0.74 

0.08 25263 36152 1147 8877 0.74 0.96 0.03 0.86 0.83 0.73 

0.09 24730 36279 1020 9410 0.72 0.96 0.03 0.85 0.83 0.73 

0.1 24165 36393 906 9975 0.71 0.96 0.02 0.85 0.82 0.72 

0.2 19519 36997 302 14621 0.57 0.98 0.01 0.79 0.72 0.63 

0.3 15512 37185 114 18628 0.45 0.99 0.00 0.74 0.62 0.55 

0.4 11578 37242 57 22562 0.34 1.00 0.00 0.68 0.51 0.46 

0.5 8090 37279 20 26050 0.24 1.00 0.00 0.64 0.38 0.37 

0.6 5055 37291 8 29085 0.15 1.00 0.00 0.59 0.26 0.29 

0.7 2867 37295 4 31273 0.08 1.00 0.00 0.56 0.15 0.21 

0.8 1539 37296 3 32601 0.05 1.00 0.00 0.54 0.09 0.15 

0.9 805 37298 1 33335 0.02 1.00 0.00 0.53 0.05 0.11 

1 425 37298 1 33715 0.01 1.00 0.00 0.53 0.02 0.08 

Thr: Threshold 
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2. Protein x Molecular Function 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 34270 0 34270 0 1 0.5 1 0.5 0.67  

1E-06 34158 3236 31034 112 1.00 0.52 0.91 0.55 0.69 0.21 

1E-05 34123 3986 30284 147 1.00 0.53 0.88 0.56 0.69 0.24 

0.0001 34064 5351 28919 206 0.99 0.54 0.84 0.58 0.70 0.28 

0.001 33684 10117 24153 586 0.98 0.58 0.70 0.64 0.73 0.38 

0.01 30393 23987 10283 3877 0.89 0.75 0.30 0.79 0.81 0.60 

0.02 27937 28300 5970 6333 0.82 0.82 0.17 0.82 0.82 0.64 

0.03 26092 30181 4089 8178 0.76 0.86 0.12 0.82 0.81 0.65 

0.04 24540 31224 3046 9730 0.72 0.89 0.09 0.81 0.79 0.64 

0.05 23354 31878 2392 10916 0.68 0.91 0.07 0.81 0.78 0.63 

0.06 22286 32345 1925 11984 0.65 0.92 0.06 0.80 0.76 0.62 

0.07 21281 32674 1596 12989 0.62 0.93 0.05 0.79 0.74 0.61 

0.08 20425 32917 1353 13845 0.60 0.94 0.04 0.78 0.73 0.60 

0.09 19672 33157 1113 14598 0.57 0.95 0.03 0.77 0.71 0.59 

0.1 19025 33335 935 15245 0.56 0.95 0.03 0.76 0.70 0.58 

0.2 14596 33997 273 19674 0.43 0.98 0.01 0.71 0.59 0.51 

0.3 12016 34148 122 22254 0.35 0.99 0.00 0.67 0.52 0.45 

0.4 9878 34208 62 24392 0.29 0.99 0.00 0.64 0.45 0.41 

0.5 7745 34237 33 26525 0.23 1.00 0.00 0.61 0.37 0.35 

0.6 5693 34254 16 28577 0.17 1.00 0.00 0.58 0.28 0.30 

0.7 3844 34266 4 30426 0.11 1.00 0.00 0.56 0.20 0.24 

0.8 2322 34269 1 31948 0.07 1.00 0.00 0.53 0.13 0.19 

0.9 1267 34270 0 33003 0.04 1 0 0.52 0.07 0.14 

1 635 34270 0 33635 0.02 1 0 0.51 0.04 0.10 

Thr: Threshold  
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 22609 0 25443 0 1 0.47 1 0.47 0.64  

1E-06 22514 3495 21948 95 1.00 0.51 0.86 0.54 0.67 0.25 

1E-05 22478 4317 21126 131 0.99 0.52 0.83 0.56 0.68 0.28 

0.0001 22391 5703 19740 218 0.99 0.53 0.78 0.58 0.69 0.33 

0.001 22130 9304 16139 479 0.98 0.58 0.63 0.65 0.73 0.43 

0.01 20347 18659 6784 2262 0.90 0.75 0.27 0.81 0.82 0.64 

0.02 18820 21518 3925 3789 0.83 0.83 0.15 0.84 0.83 0.68 

0.03 17609 22785 2658 5000 0.78 0.87 0.10 0.84 0.82 0.68 

0.04 16583 23469 1974 6026 0.73 0.89 0.08 0.83 0.81 0.67 

0.05 15760 23894 1549 6849 0.70 0.91 0.06 0.83 0.79 0.66 

0.06 15043 24223 1220 7566 0.67 0.92 0.05 0.82 0.77 0.65 

0.07 14394 24427 1016 8215 0.64 0.93 0.04 0.81 0.76 0.64 

0.08 13834 24586 857 8775 0.61 0.94 0.03 0.80 0.74 0.63 

0.09 13371 24701 742 9238 0.59 0.95 0.03 0.79 0.73 0.62 

0.1 12904 24798 645 9705 0.57 0.95 0.03 0.78 0.71 0.60 

0.2 9902 25250 193 12707 0.44 0.98 0.01 0.73 0.61 0.53 

0.3 8066 25361 82 14543 0.36 0.99 0.00 0.70 0.52 0.47 

0.4 6392 25409 34 16217 0.28 0.99 0.00 0.66 0.44 0.41 

0.5 4681 25429 14 17928 0.21 1.00 0.00 0.63 0.34 0.35 

0.6 3028 25440 3 19581 0.13 1.00 0.00 0.59 0.24 0.27 

0.7 1700 25442 1 20909 0.08 1.00 0.00 0.56 0.14 0.20 

0.8 820 25443 0 21789 0.04 1 0 0.55 0.07 0.14 

0.9 393 25443 0 22216 0.02 1 0 0.54 0.03 0.10 

1 157 25443 0 22452 0.01 1 0 0.53 0.01 0.06 

Thr: Threshold 
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3. Protein x Biological Process 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 75880 0 75880 0 1 0.5 1 0.5 0.67  

1E-06 75687 3612 72268 193 1.00 0.51 0.95 0.52 0.68 0.14 

1E-05 75624 4532 71348 256 1.00 0.51 0.94 0.53 0.68 0.16 

0.0001 75425 6833 69047 455 0.99 0.52 0.91 0.54 0.68 0.20 

0.001 74297 16047 59833 1583 0.98 0.55 0.79 0.60 0.71 0.30 

0.01 61836 52892 22988 14044 0.81 0.73 0.30 0.76 0.77 0.52 

0.02 51318 64365 11515 24562 0.68 0.82 0.15 0.76 0.74 0.53 

0.03 44113 68793 7087 31767 0.58 0.86 0.09 0.74 0.69 0.52 

0.04 38961 71064 4816 36919 0.51 0.89 0.06 0.72 0.65 0.50 

0.05 35018 72368 3512 40862 0.46 0.91 0.05 0.71 0.61 0.48 

0.06 31944 73225 2655 43936 0.42 0.92 0.03 0.69 0.58 0.46 

0.07 29397 73785 2095 46483 0.39 0.93 0.03 0.68 0.55 0.44 

0.08 27313 74201 1679 48567 0.36 0.94 0.02 0.67 0.52 0.43 

0.09 25431 74507 1373 50449 0.34 0.95 0.02 0.66 0.50 0.42 

0.1 23713 74726 1154 52167 0.31 0.95 0.02 0.65 0.47 0.40 

0.2 13932 75603 277 61948 0.18 0.98 0.00 0.59 0.31 0.31 

0.3 9323 75788 92 66557 0.12 0.99 0.00 0.56 0.22 0.25 

0.4 6599 75848 32 69281 0.09 1.00 0.00 0.54 0.16 0.21 

0.5 4717 75867 13 71163 0.06 1.00 0.00 0.53 0.12 0.18 

0.6 3386 75875 5 72494 0.04 1.00 0.00 0.52 0.09 0.15 

0.7 2260 75878 2 73620 0.03 1.00 0.00 0.51 0.06 0.12 

0.8 1332 75878 2 74548 0.02 1.00 0.00 0.51 0.03 0.09 

0.9 666 75880 0 75214 0.01 1 0 0.50 0.02 0.07 

1 284 75880 0 75596 0.00 1 0 0.50 0.01 0.04 

Thr: Threshold  
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 55959 0 59220 0 1 0.49 1 0.49 0.65  

1E-06 55708 3420 55800 251 1.00 0.50 0.94 0.51 0.67 0.15 

1E-05 55598 4237 54983 361 0.99 0.50 0.93 0.52 0.67 0.17 

0.0001 55331 6350 52870 628 0.99 0.51 0.89 0.54 0.67 0.20 

0.001 54083 14676 44544 1876 0.97 0.55 0.75 0.60 0.70 0.31 

0.01 43706 43561 15659 12253 0.78 0.74 0.26 0.76 0.76 0.52 

0.02 35771 51678 7542 20188 0.64 0.83 0.13 0.76 0.72 0.53 

0.03 30496 54669 4551 25463 0.54 0.87 0.08 0.74 0.67 0.51 

0.04 26788 56082 3138 29171 0.48 0.90 0.05 0.72 0.62 0.49 

0.05 24091 56959 2261 31868 0.43 0.91 0.04 0.70 0.59 0.47 

0.06 21988 57483 1737 33971 0.39 0.93 0.03 0.69 0.55 0.45 

0.07 20258 57850 1370 35701 0.36 0.94 0.02 0.68 0.52 0.43 

0.08 18797 58121 1099 37162 0.34 0.94 0.02 0.67 0.50 0.42 

0.09 17551 58312 908 38408 0.31 0.95 0.02 0.66 0.47 0.41 

0.1 16488 58475 745 39471 0.29 0.96 0.01 0.65 0.45 0.40 

0.2 10155 59043 177 45804 0.18 0.98 0.00 0.60 0.31 0.31 

0.3 7016 59163 57 48943 0.13 0.99 0.00 0.57 0.22 0.26 

0.4 4787 59199 21 51172 0.09 1.00 0.00 0.56 0.16 0.21 

0.5 3127 59217 3 52832 0.06 1.00 5E-05 0.54 0.11 0.17 

0.6 1814 59220 0 54145 0.03 1 0 0.53 0.06 0.13 

0.7 859 59220 0 55100 0.02 1 0 0.52 0.03 0.09 

0.8 368 59220 0 55591 0.01 1 0 0.52 0.01 0.06 

0.9 163 59220 0 55796 0.00 1 0 0.52 0.01 0.04 

1 58 59220 0 55901 0.00 1 0 0.51 0.00 0.02 

Thr: Threshold 
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4. Protein x Disease 

a. 10-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 71370 0 71370 0 1 0.5 1 0.5 0.67  

1E-06 71093 2006 69364 277 1.00 0.51 0.97 0.51 0.67 0.10 

1E-05 71004 2513 68857 366 0.99 0.51 0.96 0.52 0.67 0.11 

0.0001 70739 3748 67622 631 0.99 0.51 0.95 0.52 0.67 0.13 

0.001 69343 10545 60825 2027 0.97 0.53 0.85 0.56 0.69 0.21 

0.01 54099 49564 21806 17271 0.76 0.71 0.31 0.73 0.73 0.45 

0.02 43079 61017 10353 28291 0.60 0.81 0.15 0.73 0.69 0.47 

0.03 36419 65069 6301 34951 0.51 0.85 0.09 0.71 0.64 0.46 

0.04 31550 67104 4266 39820 0.44 0.88 0.06 0.69 0.59 0.44 

0.05 27825 68294 3076 43545 0.39 0.90 0.04 0.67 0.54 0.42 

0.06 24889 69100 2270 46481 0.35 0.92 0.03 0.66 0.51 0.40 

0.07 22562 69617 1753 48808 0.32 0.93 0.02 0.65 0.47 0.39 

0.08 20594 70012 1358 50776 0.29 0.94 0.02 0.63 0.44 0.37 

0.09 18925 70291 1079 52445 0.27 0.95 0.02 0.63 0.41 0.36 

0.1 17516 70493 877 53854 0.25 0.95 0.01 0.62 0.39 0.35 

0.2 9934 71183 187 61436 0.14 0.98 0.00 0.57 0.24 0.27 

0.3 6898 71298 72 64472 0.10 0.99 0.00 0.55 0.18 0.22 

0.4 5133 71345 25 66237 0.07 1.00 0.00 0.54 0.13 0.19 

0.5 3900 71358 12 67470 0.05 1.00 0.00 0.53 0.10 0.17 

0.6 2950 71365 5 68420 0.04 1.00 0.00 0.52 0.08 0.14 

0.7 2097 71366 4 69273 0.03 1.00 0.00 0.51 0.06 0.12 

0.8 1280 71369 1 70090 0.02 1.00 0.00 0.51 0.04 0.10 

0.9 534 71370 0 70836 0.01 1 0 0.50 0.01 0.06 

1 174 71370 0 71196 0.00 1 0 0.50 0.00 0.03 

Thr: Threshold 
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b. 3-fold cross-validation 

Thr. TP TN FP FN Recall Precision FPR Accuracy F-score MCC 

0 63121 0 65784 0 1 0.49 1 0.49 0.66  

1E-06 62680 2549 63235 441 0.99 0.50 0.96 0.51 0.66 0.11 

1E-05 62468 3231 62553 653 0.99 0.50 0.95 0.51 0.66 0.11 

0.0001 62053 4778 61006 1068 0.98 0.50 0.93 0.52 0.67 0.13 

0.001 60447 11844 53940 2674 0.96 0.53 0.82 0.56 0.68 0.22 

0.01 47647 46016 19768 15474 0.75 0.71 0.30 0.73 0.73 0.45 

0.02 39036 55891 9893 24085 0.62 0.80 0.15 0.74 0.70 0.48 

0.03 33661 59529 6255 29460 0.53 0.84 0.10 0.72 0.65 0.47 

0.04 29808 61472 4312 33313 0.47 0.87 0.07 0.71 0.61 0.46 

0.05 26684 62627 3157 36437 0.42 0.89 0.05 0.69 0.57 0.44 

0.06 24194 63396 2388 38927 0.38 0.91 0.04 0.68 0.54 0.43 

0.07 22146 63921 1863 40975 0.35 0.92 0.03 0.67 0.51 0.41 

0.08 20363 64324 1460 42758 0.32 0.93 0.02 0.66 0.48 0.40 

0.09 18893 64588 1196 44228 0.30 0.94 0.02 0.65 0.45 0.39 

0.1 17564 64818 966 45557 0.28 0.95 0.01 0.64 0.43 0.38 

0.2 10229 65567 217 52892 0.16 0.98 0.00 0.59 0.28 0.29 

0.3 6729 65717 67 56392 0.11 0.99 0.00 0.56 0.19 0.24 

0.4 4520 65767 17 58601 0.07 1.00 0.00 0.55 0.13 0.19 

0.5 3057 65781 3 60064 0.05 1.00 5E-05 0.53 0.09 0.16 

0.6 1814 65784 0 61307 0.03 1 0 0.52 0.06 0.12 

0.7 873 65784 0 62248 0.01 1 0 0.52 0.03 0.08 

0.8 324 65784 0 62797 0.01 1 0 0.51 0.01 0.05 

0.9 107 65784 0 63014 0.00 1 0 0.51 0.00 0.03 

1 36 65784 0 63085 0.00 1 0 0.51 0.00 0.02 

Thr: Threshold 

 


