DERIVATIVE FREE OPTIMIZATION METHODS:
APPLICATION IN STIRRER CONFIGURATION
AND DATA CLUSTERING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BASAK AKTEKE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF SCIENTIFIC COMPUTING

JULY 2005

Approval of the Graduate School of Applied Mathematics

j ———
Prof. Dr. Aydin AY%NA,

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

i
E/g e .
Prof. Dr. Bilent KARASOZEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members

Prof. Dr. Gerhard Wilhelm Weber
Prof. Dr. Biilent Karasozen
Assist. Prof. Yusuf Uludag

Assoc. Prof. Dr. Tanil Ergeng

Dr. Hakan Oktem

74

7

Prof. Dr. E{ﬁlent KARASOZEN

Supervisor

O g Juhs

Fid

7 7T U7

==

okt

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name: Bagak Akteke

Signature: W/&)

iii

ABSTRACT

DERIVATIVE FREE OPTIMIZATION METHODS:

APPLICATION IN STIRRER CONFIGURATION
AND DATA CLUSTERING

Bagak Akteke
M.Sc., Department of Scientific Computing

Supervisor: Prof. Dr. Biilent Karasozen

July 2005, 89 pages

Recent developments show that derivative free methods are highly demanded
by researches for solving optimization problems in various practical contexts.
Although well-known optimization methods that employ derivative information
can be very efficient, a derivative free method will be more efficient in cases
where the objective function is nondifferentiable, the derivative information is
not available or is not reliable. Derivative Free Optimization (DFO) is devel-
oped for solving small dimensijonal problems (less than 100 variables) in which
the computation of an objective function is relatively expensive and the deriv-
atives of the objective function are not available. Problems of this nature more
and more arise in modern physical, chemical and econometric measurements
and in engineering applications, where computer simulation is employed for the

evaluation of the objective functions.

In this thesis, we give an example of the implementation of DFO in an approach
for optimizing stirrer configurations, including a parametrized grid generator,
a flow solver, and DFO. A derivative free method, i.e., DFO is preferred be-

cause the gradient of the objective function with respect to the stirrer’s design

iv

variables is not directly available. This nonlinear objective function is obtained
from the flow field by the flow solver. We present and interpret numerical re-
sults of this implementation. Moreover, a contribution is given to a survey and

a distinction of DFO research directions, to an analysis and discussion of these.

We also state a derivative free algorithm used within a clustering algorithm in
combination with non-smooth optimization techniques to reveal the effective-
ness of derivative free methods in computations. This algorithm is applied on
some data sets from various sources of public life and medicine. We compare
various methods, their practical backgrounds, and conclude with a summary

and outlook. This work may serve as a preparation of possible future research.

Keywords: Derivative Free Optimization, Quadratic Interpolation,
Trust-Region Method, Well-Poisedness, Nonlinear Optimization,
Stirrer Configurations, Support Vector Machines, Non-Smooth Optimization,

Inverse Problems, Statistical Learning, Data, Clustering.

.o

OZ

TUREVSIZ OPTIMIZASYON METOTLARI:

KARISTIRICI KONFIGURASYONLARI
VE VERI SINIFLANDIRMASI UYGULAMASI

Bagak Akteke
Yiiksek Lisans, Bilimsel Hesaplama Boliimii

Tez Yoneticisi: Prof. Dr. Biilent Karastzen

Temmuz 2005, 89 sayfa

Son yillardaki geligmeler, tiirevsiz optimizasyon tekniklerinin, optimizasyon
problemlerini ¢ézmede arastirmacilar tarafindan oldukca fazla talep edildigini
gostermektedir. Her ne kadar, tiireve dayali yaygin optimizasyon metotlari, op-
timizasyon problemlerini ¢ozmede genel olarak yeterli olsalar da, fonksiyonun
tiirevlenemedigi, tlirev hesaplamasinin kolay olmadig1 ya da giivenilir olmadig:
durumlarda, tiirevsiz yéntemler, problemin ¢éziimiinde ¢ok daha etkin olmak-
tadir. Derivative Free Optimization (DFO) adli program fonksiyon hesapla-
malarmin ugragtirict oldugu ve fonksiyonun tiirevinin elde edilemedigi kiiglik
boyutlu (100 degiskenden az) problemleri ¢ozmek icin geligtirilmigtir. Bu tiir
problemlerle, fonksiyon degerlerinin bilgisayar benzetimleri kullanilarak hesa-
plandigy modern fizik, kimya, ekonometrik olgimler ve miihendislik uygula~
malarinda sik sik kargilagilmaktadir.

Bu tezde, kimyasal karigtiricilarin geometrik konfigiirasyonu optimizasyonuna
yonelik, parametrize edilmig ag iireticisini ve akigkan hesaplayicimi igeren bir
DFO uygulamas: 6rnek olarak verilmistir. Burada tiirevsiz bir metot olan DFO

tercih edilmistir ¢linkii karigtiricinin tasarim degigkenlerine gore fonksiyonun

tiirevi dogrudan elde edilememektedir. Bu uygulama ile ilgili niimerik sonuclar
yorumlanarak sunulmaktadir. Bunlara ek olarak, gesitli DFO aragtirmalarinin
analizi ve bunlarin bir degerlendirmesi yapilarak bu konuyla ilgili ¢aligmalara
katkida bulunulmusgtur.

Ayrica, tilirevsiz metotlarin hesaplamalarda bagarili sonuglar verdigini
gostermek amaciyla plirlizli (non-smooth) optimizasyon teknikleri ile birlikte
kullamlan, tirevsiz bir siniflandirma algoritmas: incelenmektedir. Bu amacla,
bu algoritma giinliik yagamda ve tipta sik sik kargilagilan cegitli veri kiimelerine
uygulanmaktadir. Bu metotlar teorik olarak karsilastirip, tiirevsiz optimiza-

syon alaninin gu anki genel goriinlimii ve ozeti verilmektedir.

Anahtar Kelimeler: tiirevsiz optimizasyon, trust-region metodu,
well-poisedness, dogrusal olmayan optimizasyon, karigtirici konfigiirasyonlari,
support vector machines, piiriizlii optimizasyon, ters problemler,

istatiksel 6grenme, veri, stmiflandirma.

vii

To my family

viii

ACKNOWLEDGMENT

I would like to express my gratitude to all those who supported me in any means
to complete this thesis. I am grateful to my supervisor Professor Dr. Biilent
Karasozen for giving me the possibility to do the necessary research work and

for guiding me through my graduate study in our institute.

I am deeply indebted to Professor Dr. Gerhard-Wilhelm Weber for his help,
stimulating suggestions and encouragement in all the time of writing this thesis.
He is a kind friend for me rather than a co-supervisor. I thank him for his careful

examination of this thesis and for many valuable contributions.

I would like to thank to the members of my committee, Dr. Hakan Oktem,
Assoc. Prof. Dr. Tanil Ergeng and Assist. Prof. Yusuf Uludag, for their
helpful suggestions. Thanks to Dr. Adil Bagirov and Prof. Dr. Alexander

Rubinov for sharing their studies with me which enriched this thesis a lot.

I am grateful to my colleagues and my bosses from my company for their pa-
tience and support. Many thanks to Fatma Bilge Yilmaz, Meral Sezer, Dr.
Omur Ugur, Siireyya Ozééﬁr, Aysun Tezel and Serap Yiicel for their encour-

agement, support and valuable helps.

Special thanks to my brother Halil Akteke for his wise suggestions during the
preparation of this thesis. I am grateful to him and his wife Nuran Akteke who
gave me the best thesis completion present i.e., Elfin Duru. It is a great pleasure
that T have now the opportunity to express my gratitude to my mother Kamile
Akteke and my father Muzaffer Akteke for their limitless love and for letting

me free in my choices.

Special thanks to Caner Oztiirk for being with me all the way. IHis efforts to
ensure my concentration on my studies for preparing this thesis are unforget-

table.

X

TABLE OF CONTENTS

ABSTRACT .« ittt et teeeiate e eaetaeeaaaenseanannnnnens iv
[0 /2 vi
ACKNOWLEDGEMENTS e itttitttiteeenerernnnenoaeenaeannnns ix
TABLE OF CONTENTS &t ttitttttteneiteneaaeeeeaannnneeens X
LIST OF TABLES . .itttttttttettiiteeeetuanneesnnanenennnnns Xiv
LIST OF FIGUREStttttniiitteaeieeeainneeanannnennnn XV
CHAPTER
1 INTRODUGTION . .tttitteetenitteeeaaneeeaannaeeannnns 1
1.1 Solution Strategies, 3

1.2 Review about the History of
Derivative Free Optimization Methods 4

1.3 General Properties of
Derivative Free Methods 6

1.4 Qutlineofthethesis 7

2 OVERVIEW OF UNCONSTRAINED AND CONSTRAINED

DIFFERENTIABLE OPTIMIZATION .. oviete et ieeeennnnns 8

2.1 Unconstrained Differentiable Optimization
2.1.1 Line-Search Methods
2.1.2 Trust-Region Methods

2.1.2.1 Introduction

2.1.2.2 Outline and Properties of the Trust-Region Al-

gorithm

2.2 Constrained Differentiable Optimization
2.2.1 Some Foundations
2.2.2 Linear Programming
2.2.2.1 Introduction

2.2.2.2 Primal-Dual Methods

2.2.3 Nonlinear Programmming

3.1.1 Trust-Region Framework
3.1.2 Quadratic Interpolation
3.1.3 Algorithm

3.2 Derivative Free Optimization

via Support Vector Machines
3.2.1 Introduction into SVMs
3.2.2 SVMs in Classification
323 SVMsinDFO.................

324 A-Poisedness

4 OPTIMIZATION OF STIRRER CONFIGURATIONS

4.1 Optimization Problem of
Stirrer Configurations

4.2 Numerical Toolbox
421 FASTEST3D i ..
4.2.2 Grid Generation Tool
423 DFO e

4.3 Illustration of the Numerical Toolbox

4.4 TImplementation of the Numerical Tool
4.4.1 Optimization of the Power Number

4.4.2 Optimization of the Newton Number

DERIVATIVE FREE OPTIMIZATION

BY NON-SMOOTH ANALYSIS AND

VARIOUS APPLICATIONS

5.1 Overview of Clustering

5.2 Clustering via Non-Smooth Optimization
5.2.1 Algorithmic Framework

5.2.2 An Algorithm for Solving Optimization Problems in the

Algorithmic Framework

5.2.2.1 Some Elements of Non-smooth Analysis
5.2.2.2 Consequence for the Clustering Problem
5.3 Discrete Gradient Method
5.3.1 Definition of Discrete Gradient
532 The Algorithm
54 Numerical Results.

xii

5.5 Concluding Remark 7

B CONCLUSION ittt e ee e e e et ee e e eeaenaanann, 78
PN 24 53 5100 0) 5, SO 80
A SOME NOTATION ottt e e e et 80

B A SUBROUTINE OF DFO rOR STIRRER CONFIGURATION 81

REFERENCESiiuutttiiitiiiiiiiiiiiiiiieineenane, 82

xiii

4.1
4.2

4.3

5.1

5.2

5.3

5.4

9.5

5.6

5.7

LIST OF TABLES

Geometrical parameters of stirrer configuration [54]. 48
Optimization of power number [54]. 55
Optimization of Newton number for Re=100. 57
Results for German towns data base (relative errors) [6]. 72

Results for the first Bavarian postal zones data set (relative errors)
Bl - - - e 72

Results for the second Bavarian postal zones data set (relative errors)
[[. . "V - - - - - SO O Y i 73

Results for the first Bavarian postal zones data set (relative errors,

running time) [6]. 74
Results for the Fishers iris data set (relative errors, running time) [6]. 74

Results for the TSPLIB (n=1060) data set (relative errors, running

Results for the TSBLIB (n=3038) zones data set (relative errors,
running time) [6]. Lo L o 76

xiv

21
2.2
2.3

3.1

3.2

3.3

3.4
3.5

4.1
4.2
4.3
4.4
4.5

4.6

4.7

LIST OF FIGURES

Three possible iterations in a line-search algorithm [19].
Six iterations of a trust-region algorithm [19].

A confidence ellipsoid and its projections [2].

Two quadrics whose intersection curve I projects onto the parabola
C:z=y?[25]. e

Newton fundamental polynomials [14].

SVM finds a hyperplane for separating the data set into two classes
@5l “EEA. AU Y. Ay - e

Support vectors and the margin p [45].

Linear support vector machines model [19].

A typical stirrertank [72]. oL Lo L
The configuration of a stirrer tank [54].
Flow chart of control script [54].
Power curve for standard tank configuration [54].
Newton number versus number of the loops [54].

Comparison of the velocity field for vertical planes between two baf-
fles at Reynolds number 1000 [54]:
(i) optimized parameter obtained from DFO,

(i) standard parameters.o Lo

Dimensionless impeller parameter versus number of the loops [54]:

(i) dimensionless disk thickness , (i) clearance , (iii) baffle length. .

40

47

59

CHAPTER 1

INTRODUCTION

The problem of minimizing a nonlinear function f : R®™ — R of several variables
when the derivatives of the function are not available is attempted to besolved
by the derivative free methods. This function may in fact be smooth, but also
a non-smooth function is possible here. A formal statement of the underlying

problem can be found in [17] as follows:

min f(z)
CP) such that a; < ¢;(z) < b; (i=1,2,...,m),
ze€FCR",

where V f(z) cannot be computed or just does not exist for every z. Here, I is an
arbitrary subset of R”, and z € F is called the easy constraint while the functions
ci(z) (i =1,2,...,m) represent difficult constraints [17]. By easy constraints,
we mean bound constraints on the variables, linear constraints, or more general
nonlinear smooth constraints whose values and the Jacobian matrix can be
computed cheaply. Difficult constraints are any nonlinear constraints whose

value is expensive to compute and whose derivatives are unavailable [56].

For a small repetition and preparation the following chapters likewise, we recall

some basic concepts of differentiable optimization in Chapter 2 firstly.

Then, we will consider the algorithm of DFO (derivative free optimization) in
the ﬁrét section of Chapter 3 for the unconstrained case, i.e., problem (CP)
with M = R", where M denotes the feasible set of (CP). The solution strategy
of DFO for the constrained problems will also be explained in Chapter 3 [17].
Additionally, we present a different approach of DFO with support vector ma-

chines which can be used for solving the constraint problem (CP) in the third
section of Chapter 3 [19].

Now, we introduce the unconstrained optimization problem formally,
UP) minimize f(z),

where z € R™ and again V f(z) cannot be computed for every z.

Optimization problems in which the derivatives cannot be computed, arise in
modern physical, chemical and econometric measurements and in engineering
applications, where computer simulation is employed for the evaluation of the
objective functions. The main motivation for improving algorithmic solutions

to these problems is the high demand from practitioners for such tools.

In [15] and [55], Conn, Scheinberg and Toint state that there are three im-
portant features characterizing problems of derivative free optimization. We
present them in Chapter 3. In fact, firstly, evaluating the objective function
f(z) at a given vector z is computationally very expensive. This kind of ex-
pensive evaluations cause extensive linear algebra calculations in an algorithm
when the optimal value of these evaluations is being looked for. The second
feature is about the computation of derivatives. In this type of nonlinear op-
timization problems, the nature of the objective function prevent us from the
computation of any associated derivatives (gradient or Hessian). Finally, the
objective function value is usually computed with some noise which puts addi-

tional requirements on the minimization’s robustness.

There are cases where the objective function is not smooth. While trust-region
algorithms are more useful for various engineering applications (Chapter 4)
and, in particular, data classification, non-smooth optimization is of special
importance for data clustering. In Chapter 5, we introduce into non-smooth

optimization based on the research of Bagirov, Rubinov and Yearwood [6, 7, 8].

Throughout this thesis, we give various and specific motivations and correspond-

ing computations.

1.1 Solution Strategies

Several strategies can be considered when we are faced with the problems which
do not allow utilization of direct derivatives of gradients [14]. The first is to ap-
ply existing direct search optimization methods, like the well-known and widely-
used simplex reflection algorithm of [47] or its modern variants, or the parallel
direct search algorithm of [63] and [64]. This first approach has the advantage
of requiring little effort from the user, however, it may require substantial com-
puting resources like a great number of function evaluations. This is because it
does not take into account the advantage of the objective function’s smoothness

well enough.

The second approach is using automatic differentiation tools [30]. Automatic
differentiation is utilized to define computer programs which calculate the deriv-
atives of a function by some procedures. These computer programs calculate
the Jacobian of vector-valued functions which are from n-dimensional to m-
dimensional Euclidean space, i.e., from R™ to R™. On the other hand, if the
function is scalar-valued, i.e., from R” to R, then the computer program should
calculate the gradient (and Hessian) of the function [31]. However, such tools
are not preferred in solving problems which we consider, i.e., (CP) or (UP). This
is mainly because in the automatic differentiation tools approach, the function
to be differentiated is required to be the result of a callable program which

cannot be treated as a black box.

A third possibility is to make use of finite difference approzimation of the deriv-
atives (gradients and possibly Hessian matrices). In general, given the cost of
evaluating the objective function, evaluating its Hessian by finite differences
is much too expensive. One can utilize quasi-Newton Hession approximation
techniques instead [22]. Incorporating finite differences for computing gradients
in conjunction with the quasi-Newton Hessian approximation techniques has

proved to be helpful and sometimes surprisingly efficient.

Indeed, the additional function evaluations required in the calculation of the

derivatives may be very costly and, most importantly, finite differencing can
be unreliable in the presence of noise if the differentiation step is not adapted

according to the noise level.

The objective functions in the problems we consider are obtained from some
simulation procedures; therefore, automatic differentiation tools are mot ap-
plicable as mentioned above. This forces one to consider algorithms without
proceeding the approximation of the derivatives of the objective function at a

given value.

We will look at discrete gradients from mon-smooth optimization, where the

approach can be interpreted as an approximation or mimicking of derivatives.

1.2 Review about the History of
Derivative Free Optimization Methods

Although it is not exactly known when the idea of derivative free methods
for minimization was first introduced, we see that the approach of using the
direct search methods arose in 1950’s [16]. A detailed review on the historical

developments of derivative free optimization methods can be found in [16].

The idea of employing available objective function values f(z) for building the
quadratic model by interpolation was firstly introduced by Winfield in 1960’s
[69, 70]. This model is assumed to be valid in a neighborhood of the current
iterate, which is described as a trust-region, whose radius is iteratively adjusted.
The model is then minimized within the trust-region, hopefully yielding a point
with a lower function value. As the algorithm proceeds and more objective
function values become available, the set of points defining the interpolation
model is updated in such a way that it always contains the points closest to
the current iterate. In [70], Winfield recognizes the difficulty that interpolation
points must have certain geometric properties, although he does not seem to

consider what happens if these properties are not obtained.

Twenty five years later, Powell [51] proposed & method for constrained opti-
mization, whose idea is close to that of Winfield. In his proposal, the objective
function and constraints are approximated by linear multivariaie interpolation.
He explored Winfield’s idea further by describing an algorithm for unconstrained
optimization using a quadratic multivariate interpolation model of the objective

function in a trust-region framework [52].

The crucial difference between Powell’s and Winfield’s proposals is that in the
first one, the set of interpolation points is updated in a way that geometric
properties of these points are preserved [16]. This means that the differences
between points of this set are guaranteed to remain “sufficiently” linearly inde-
pendent. Adding this condition to the interpolation set was good for avoiding

the difficulties associated with earlier proposals.

The first convergence theorems for methods of this type were presented by Conn,
Scheinberg and Toint in [14]. They also described some alternative techniques

to strengthen the geometric properties of the set of the interpolation points.

In [19], we find the discussion on the studies of a derivative free optimization
method via support vector machines (see [36] for details) to improve the con-
vergence properties of the method with the approach of low tolerance to noise,
good initial reduction in the objective function exploiting the geometry of the
interpolation points. In Chapter 3, we give a brief discussion on implementation

of the support vector machines using DFO.

The appearance of min-type, max-type or other nondifferentiable functions has
given rise to mom-smooth analysis and optimization [13]. In Chapter 4, we
introduce into both modern areas of mathematical programming and present

recent applications to data clustering.

With the motivations and examples in data classifications and data clustering
given in Chapter 3 and 5, respectively, we also guide the interested reader
in the emerging fields of supervised and unsupervised statistical learning [36],

respectively, and into data mining [24].

1.3 General Properties of

Derivative Free Methods

Derivative free methods for unconstrained optimization build a linear or quadra-
tic model of the objective function and apply one of the fundamental approaches
of continuous optimization, i.e., a trust-region or a line-search, to optimize this
model [18]. While derivative based methods typically use a Taylor-based model
which is an approximation of the objective function, derivative free methods
use interpolation, regression or other sample-based models. If the problem has
constraints, the strategy of derivative free methods is usually to apply sequential

quadratic programming methods for the linearization of the constraints.

There are two important components of derivative free methods. Sampling
befter points in the iteration procedure is the first one of these components.
The other one is searching appropriate subspaces where the chance of finding a

minimum is relatively high.

In order to be able to use the extensive convergence theory for derivative based
methods, these derivative free methods need to satisfy some properties. For
instance, to guarantee the convergence of a derivative free method, we need to
ensure that the error in the gradient converges to zero when the trust-region or
line-search step are reduced. Hence, a descent step will be found if the gradient
of the true function is not zero at the current iterate (for details see [18]). To
show this, one needs to prove that the linear or quadratic approximation models

satisfy Taylor-like error bounds on the function value and the gradient.

Finally, for our approach to derivative free optimization given by non-smooth

optimization, we shall use so-called discrete gradients [7, 8].

1.4 QOutline of the thesis

Firstly, we briefly present the foundations of differentiable optimization in Chap-
ter 2. We do this because of the need to recall the fundamental approaches of
numerical optimization, to introduce by this the basic ideas of trust-region al-

gorithm and, herewith, prepare our introduction of derivative free optimization.

We focus on the derivative free optimization (DFO) developed by Conn, Schein-
berg and Toint in Chapter 3. The theoretical aspects of DFO is explained in
detail there. We contribute to a state-of-the-art survey and distinction of the
various different new DFO research directions, to an analysis and a discussion
of them. This contribution is mainly on combining support vector machines

(SVM) model with DFO instead of the quadratic interpolation model.

In Chapter 4, we explain how we implement DFO, which is a FORTRAN soft-
ware package in a modern approach for optimizing stirrer configurations. In this
implementation, a parametrized grid generator, a flow solver, and DFO v2.0 are
integrated within an optimization tool. We present the numerical results ob-

tained by running this tool and present a discussion on them.

In Chapter 5, we show how a derivative free algorithm is used within a cluster-
ing algorithm from [6] in combination with non-smooth optimization techniques.
This algorithm is applied on various data sets from modern life and, in partic-
ular, medicine. Our contribution is to extend the usage of learning methods
given by combining support vector machines with DFQO, to the clustering algo-
rithm of Bagirov and Yearwood. Herewith, we widen the view towards various

statistical learning and data mining applications.

Then, this thesis ends in Chapter 6 with a conclusion and an outlook to possible

future research directions.

CHAPTER 2

OVERVIEW OF UNCONSTRAINED
AND CONSTRAINED

DIFFERENTIABLE OPTIMIZATION

2.1 Unconstrained Differentiable Optimization

There are basically two fundamental approaches for solving smooth wuncon-
strained minimization problems which we introduced at the beginning of Chap-

ter 1 already:
UP) min f(z),

where z € R”, and f : R® — R is a C'—function (see Appendix A), i.e.,

continuously differentiable. These approaches are:

(1) line-search methods, and

(ii) trust-region methods.

For (ii), we shall even agsume that f is a C2—function, i.e., twice continuocusly
differentiable. Detailed explanation which we give in this Chapter are based on

the following references: [20, 38, 46] and [48].

Our main interest is in trust-region methods, since in derivative free optimiza-

tion, a trust-region algorithm is used to solve the optimization problems without

derivatives. However, let us for a better understanding explain the line-search

methods first.

2.1.1 Line-Search Methods

These methods are the oldest and most widely used methods in unconstrained
optimization. The strategy in the line-search is to choose a direction p; and to
search along this direction from the current iterate zj for a new iterate with a
lower function value. In line-search methods, the next iteration is obtained

as follows:

Tyl = Tk + QPk-

Here, zj is the current approximation of a solution of (UP), pi is the search
“direction at the point z, and «y is the step length which is a real number

(scalar) chosen so that we have descent:

f@eea) < flzg)-

An illustration of line-search method is given in Figure 2.1:

Figure 2.1: Three possible iterations in a line-search algorithm [19].

The previous inequality with respect to the objective function implies a decrease

in the function value at every step towards the minimum. To have a decrease

in the function value, py needs to be a descent direction at zx. That is, pr must
satisfy
pgvf (zx) <0,

where pL'V f(zy) is just the directional derivative of f(zx + apr) at @ = 0. At
each iteration, pI V f(zr) < 0 should be satisfied when we compute the search

direction.

If px is a descent direction, then for small a, i.e., @ > 0 and a = 0, we obtain:

flzr + apr) < f(zx)-

From now on and without loss of generality, we assume that (@ = ar > 0).

The name line-search bases on the fact that every iteration in line-search meth-
ods searches for the new point zx1 along the line y(a) := zx + apg. The ideal

choice of o would be the solution of the following auxiliary problem, where

min f(z) == f(zr + apg)

(LS)
such that o > 0.

Usually, finding exactly the minimum value of this one-dimensional minimiza-
tion problem is an expensive task, since it requires too many function evalu-
ations. Instead, an approximate minimum will be acceptable if the iteration
results with a sufficient decrease in the function value. However, a reduction in

the function value on its own does not guarantee the convergence to the solution
of (UP):

One needs additional assumptions to guarantee the sufficient reduction in the
function value at each iteration and, hence, to guarantee the convergence to the
smallest value of f. These assumptions are as follows, where (a) and (b) are on

the search direction pg, and (c¢) and (d) are on the step length oy, [46]:

(a) pr allows “sufficiently descent”,

(b) pr is “gradient related”,

10

(c) ai allows “sufficient decrease”, and

(d) ai is “not too small”.

On (a): Even if we require that the inequality pf V f(zx) < 0 should be satisfied,
there is the possibility of py and V f(z;) becoming almost orthogonal. This
would cause little progress towards a solution in the iteration procedure. We

can avoid this possibility by assuming

_ ngf(xk) .
pellz - IV f(zx)|l2 2 (k € No),

where £ > 0 is some specified tolerance. This is an angular condition, because

by our knowledge from linear algebra we can write it in the form
cos(x) > e (ke Np),

where 6y is the angle between p, and —V f(zy) [38].

On (b): We say that py, is gradient related if

Ipell 2 AV F (@)l (8 € No),

where A > 0 is some constant. This ensures that the norm of p; cannot go too

much below the norm of V f(zy).

It is easy to make these two conditions (a) and (b) becoming fulfilled, by slight

modifications in the method used for calculating the search direction.

On (c): In every line-search iteration step, the step length should achieve a -
nontrivial reduction of f. Here, “nontrivial” can be defined in terms of a linear

Taylor series approximation. Based on

Fze + apr) = f(zx) + opi V f(z),

we require so-called Armijo-condition [46]:

11

(AC) Sk + owpr) < flow) + parpi V(zk) (k€ Np),

where g € (0,1]. If g = 0, then a small decrease in the function value is
requested; hence, Armijo-condition is relatively easy to satisfy. If u ~ 1, then
a big decrease in f is requested, so that the condition is hard to satisfy. If
ar = 0, then f(zr + apr) = f(zx), which means that the linear approximation
is good and a nontrivial reduction will be achieved. If a; > 0, then the decrease
predicted by the linear approximation may strongly differ from the real decrease
of f, and (¢) can be violated. Therefore, (c) prevents aj from becoming “too

big

On (d): To prevent ay from becoming “too small”:

e A simple line-search with backtracking can be used allowing a convergence

result (not recommended for practice).

e Wolfe condition [46]:

Pk VF (2 + oxpie) | < ENPEV fzr)| VK € Ny,
where ¢ € [0, 1).

Using Wolfe condition to control ay is usually a complicated task. A discussion

on this fourth condition can be found in [46].

Theorem 2.1. For our minimization problem (UP), let xy be a given initial
point and define (Tr)ren, 0Y Thi1 = Tk + kPr, where oy > 0 is a scalar, and py

is an n—dimensional vector (k € Ny). We assume:

(a) The lower level set LS := {z € R™ | f(z) < f(z0)} s bounded (hence,
by the continuity of f, compact).

(b) The gradient V f is Lipschitz continuous:
AL>0: [[Vf(@)=ViWllz< L-[lz—yll2 Vz,y €R",

12

where || - || denotes the Euclidean norm.
(c) Condition (c) imposed on oy, (k € Np) (sufficient decrease).

(d) Condition (b) imposed on oy (k € Np) (gradient relation) and
(boundedness)
AM20: ||| <M VkeN,.

(e) Condition (c) imposed on o, being chosen as the first element of the
sequence (5) jeN, satisfying this (Armijo condition) (k € No; simple line-

search).

Then, it is fulfilled:
klim Vf(zr) = Op.
Proof. See the book of Nash and Sofer, pp. 317 [46]. |

This theorem only implies the convergence of the gradients, it does not say that
(Zx)ken, tends to a local minimizer. One must impose stronger assumptions on
(UP) in order to obtain a stronger theorem which implies convergence in the

space of states, towards a local solution z*.

Now, let us come to the second basic kind of approach.

2.1.2 Trust-Region Methods
2.1.2.1 Introduction

The concept of the trust-region first appears in a paper of Levenberg (1944) and

Marquardt (1963) for solving nonlinear least squares problems.

Trust-region methods are iterative numerical procedures like the line-search
methods in which an approximation of the objective function f(z) by a model
my(p) is computed in a neighborhood of the current iterate xj, which we refer

to as the trust-region. The model my(p) should be constructed so that it is

13

easier to handle than f(z) itself. Let us assume for this that our function f is

of class C2.

We solve the following subproblem to obtain the next iteration at each step

k of a trust-region method,

) 1
min, mx(p) == f(zx) + Vf(ze)'p+ EPTV2f (zr)p
subject to [[p|| < Ay,

(QP):..

where Ay > 0 is the trust-region radius and || - || is defined to be the Euclidean
norm. These subproblems are constrained optimization problems in which the
objective function and the constraint are both quadratic. The constraint is a
quadratic inequality constraint and can be written as —pTp + A2 > 0. In fact,
usually, the model my(p) is a quadratic function which is truncated from a

Taylor series for f around the point z:

m(p) = f(ox) + Vi @) o+ 55 VA (@elp (k€ No).

We note that one can choose any other norm in the formulations. In this
thesis, we will consider the Euclidean norm | - || = || - ||2 since it makes some

computations easier. For researches using other kinds of norms we refer to [26].

Hence, our trust-region for the model mg(p) is a bounded neighborhood of the

current iterate zj, [48]:
B(zg) = {zr +p | llpll2 < Ax}-

After constructing the model my(p) and its trust-region, then, one seeks a trial
step p to the next iteration zyy1 = zx + p which will result in a reduction for

the model while the size of the step is bounded by B(zy), i.e., [[plz < As.

Then, the objective function is evaluated at zx + p to compare its value to the
one predicted by the model at this point. If the sufficient reduction predicted

by the model is accomplished by the objective function, zx + p is accepted as

14

the next iterate and the trust-region is possibly expanded to include this new
point (i.e., Ay increases). If the reduction in the model is a poor predictor of
the actual reduction of the objective function, then the trial point is rejected.
We conclude that the trust-region is too lafge and the size of the trust-region
is reduced (i.e., Ay decreases), with the hope that the model provides a better
prediction in the smaller region [20]. The illustration of the trust-region steps

can be seen in Figure 2.2 (cf. [19]).

Figure 2.2: Six iterations of a trust-region algorithm [19].

2.1.2.2 Outline and Properties of the Trust-Region Algorithm

In a trust-region algorithm, a strategy for determining the trust-region radius
A at each iteration is needed to be developed [48]. The trust-region radius can
be determined by looking at the agreement between the model function my and
the objective function f at previous iterations. Given a step pg, we define the

ratio

15

o [(zk) — f(zk + pr) actual reduction
k1= =

= = . 2.1.1
my(zx) — my(zr +pr) predicted reduction ()

There are various definitions for p; in the mathematics literature, but we shall
prefer (2.1.1) in particular here. We note that the denominator of py, namely,
the predicted reduction, is always nonnegative since the step p; is computed

from the subproblem (QP)¥, over a region that includes the step p = 0.

In fact, pi can be called a measure of how good the model m(p) predicts the
reduction in the f-value. If p; is closer to zero or megative, then the actual
prediction is much smaller than the predicted one. This indicates that the
model cannot be trusted in this region with radius Ag. Thus, p; will be rejected
and Ay will be reduced. On the other hand, if p; is close to 1, an adequate
prediction is obtained. We safely expand the trust-region since the model can
be trusted over a wider region, i.e., Ay should be increased. If py is positive
but not close to 1, then the trust-region radius is not changed. This process is

described in the following algorithm.

Algorithm 2.2. Choose some zg as an initial guess, A as the overall bound on
the step lengths, Ay € (0, A) as an initial trust-region radius and the constant
el
fork=0,1,...

Solve (QP)%, to obtain py.

Evaluate pg from (2.1.1):

1
If o, < =
Pr = 1)
Ak+1 = Z”Pk”>
else
. 3
if pr > i and ||px|| = Ax
Agi1 = min{2A;, A},
else
Ak:+1 = Ak7
if pr > 7

16

Tri1 = Tk + Pk,
else

Tpt+1 = Tk,
end(for)

Remark 2.3. We note that the idea of trust-regions is similar to the one about
confidence intervals that is dealt with in statistical analysis and statistical learn-
ing. There, the limits containing the value of a random variable with a proba-
bility of, let us say, 95% are called the 95% confidence limits for the parameter.
In the univariate case of one variable, the interval between confidence limits is
called the confidence interval. A pair of 95% confidence limits around an ex-
pected or estimated value of the considered parameter means an interval where
it has probability of 95% that your variable’s value in a sampling set is just
located here. For the shape, the convention is to use a line segment centered on
the measured value in one dimension, whereas confidence ellipses or ellipsoids
are most frequently used in higher dimensions (see Figure 2.3). The latter sets
by their shape or eccentricity also imply the degree of relatedness between the

random variable’s components [2]. O

Let us state the following result which can be compared with Theorem 2.1:

Theorem 2.4. For our minimization problem (UP), let zo be a given initial
point and (Tg)ken, be defined by the trust-region algorithm as stated above. We

assume:

(a) The lower level set L (o) := {z € R | f(z) < f(m0)} is bounded
(hence, by (b), compact).

(b) f€C? ie., f, Vf and V2f are continuous in LI (x;).

Then, it is fulfilled:
klim Vf(zg) = 0y

17

Figure 2.3: A confidence ellipsoid and its projections [2].

Proof. See the book of Nash and Sofer [46]. O

Like the one we stated in the previous section, this theorem implies convergence
of the gradients to zero, however, it does not say that (x)gen, tends to a local
minimizer. To obtain a stronger theorem which states convergence towards a

local solution z*, additional assumptions must be imposed on (UP).

Let us briefly summarize the approaches which the line-search and the trust-
region methods use for finding the solution of ({/P). The line-search algorithms
choose a search direction pj at the current iteration z, and, then, take a step
for the new iteration with a lower function value along this direction. This step
has the length of a. Herewith, line-search finds an approximate value of o by

generating a limited number of the trial step lengths.

Trust-region algorithms construct a model function my, to be used instead of
the actual objective function f. This model which is easier to handle than the
objective function itself is constructed by means of the gradient and Hessian
information of f and by some f-values which are already in our hands. The
search direction p which will minimize the model m; is being looked for in

some region around the current iterate zj. The size of this region is adjusted

18

according to the sufficiency of the decrease in f at every iteration step.

We conclude that the line-search and the trust-region approaches differ in choos-
ing the direction and the distance of the move to the next iterate. In line-search
algorithms, the search direction py is being fixed firstly and, then, an appropriate
distance oy, is identified. In frust-region algorithms, however, a region around
the current iterate is chosen with a maximum radius Ag, then a direction is

being looked for to obtain the sufficient decrease in f.

2.2 Constrained Differentiable Optimization

2.2.1 Some Foundations

In this section, we explain the minimization problems with constraints. Gener-

ally, the constraint optimization problems are formulated as follows:

minimize f(z)
(CP) subject to hi(z) =0 (fe€l:={1,2,...,m}),
gilz) >0 (jeJ:={1,2,...,s}).

The functions f, h; and g; in (CP) are supposed to be smooth, real-valued
on R™. Here, the meaning of smooth is being one or two times continuously
differentiable depending on our analytical necessity. As before, f is the objective
function, while the constraints h;(z) = 0 and g;(z) > 0 are called equality

constraints and inequality constraints, respectively.

The set of z’s which satisfy the constraints is the feasible set, introduced as

follows:
M:={zeR"|hiz)=0(i€l), gj(z) 20 (j € J)}.

Therefore, we can rewrite the constraint optimization problem (CP) as

CcP) minimize f(z) subject to z € M.

19

We need to define some important concepts which will be used in the following
chapters of this thesis. If the reader is well-familiar with them, then he/she can

skip them and directly go to a latter subsection or to Chapter 3.

Definition 2.5. Let a vector (or, point) z* € R™ be given.

(i) We call z* a local solution of (CP), if * € M and there is a neighborhood
N(z*) € R™ of z* such that

f@*) < flz) Vze MNN(z*).

(ii) We call z* a strict local solution of (CP), if z* € M and there is a neigh-
borhood N (z*) C R™ of z* such that

f@) < f(z) VoeMnN(E)\{z"}

(iii) We call z* an isolated local solution of (CP), if z* € M and there is a
neighborhood N (z*) C R" of z* such that z* is the only local solution of
(CP) in M NN (z*). O

We continue with a numerical example on constraint optimization problems to

increase the understanding:

Example 2.6. [38, 48] Let the following minimization problem be given:

(CP) minimize T+ T

subject to z%Z+ 22 —2=0.
Here, we see that there is one equality constraint, whereas there is no inequality
constraint, i.e., I = {1} and J = 0. One can see that the feasible set M is
the circle centered at the origin with radius v/2. The solution z* is obviously
(—1,—1)7, this is the global solution of (CP): From any other point on the
circle, it is easy to find a way to move which stays feasible (i.e., remains on the

circle) while decreasing f.

20

By careful inspection, we see that the gradient of the equality constraint Vh(z)
of (CP) is parallel to the gradient of the function Vf(z) at z* = (-1, -1)T:

Vf(z*) = X*Vh(z*),

where * = A} = ~%. i

In fact, this condition which is necessary when we are looking for a (local)

minimizer, can be expressed as follows:
V.L(z*,X*) =0,

where L : R® x R®* — R is called the Lagrange function and defined as
L(z,A) := f(z) — Ah(z). The value A* is called the Lagrange multiplier at
z* with respect to the equality constraints h(z).

One can also derive other Lagrange multipliers ¢ by modifying Example 2.6
with respect to the inequality constraints g(z). Then, the Lagrange function
becomes L(z,pu) := f(z) — pg(x) and the necessary condition for (local) mini-
mizer becomes

V.L(z* u*) =0,
where p* > 0.

The set of indices j for which the inequality constraints are equal to zero is
defined as

This set is called the active set and the corresponding inequality constraints are
called the active inequality constraints. According to this, we define Karush-

Kuhn-Tucker conditions which are our famous first-order necessary conditions

for (CP):

There exist vectors A* = (A, A5, ..., A%)T and p* = (u;)fe To(a*)?

21

Vi) =3 AVh(z*) + > piVg;(a*),
(KKT) & iedola")

w5 20 (j € Jo(z"))-

The first condition of (XK7T') can also be written as
Vo L(z*, X, u*) =0,

where L is the corresponding Lagrange function (with some artificially aug-

mented vector p*). Here, we refer to [38].

We will need these Karush-Kuhn-Tucker conditions later on when we explain

other approaches to DFO with support vector machines in Chapter 3.

In [38, 46, 48], basic solution methods to the constrained optimization problem

(CP) can be found in greater detail.

2.2.2 Linear Programming
2.2.2.1 Introduction

This subsection briefly introduces into linear programming which is one of the
most important and commonly appearing problem and method classes in con-
strained optimization [37, 48]. By paying attention to (LP), we also introduce
a bit into the methods of interior (and exterior) points to which we will come

in the context of support vector machines (cf. Section 3.2).

Definition 2.7. A linear programming problem in standard form is

minimize e
(LP) subject to Az =b,
z > 0.

Here A is an m X n matrix, m < n, ¢ is an n-vector and b is an m-vector.

Furthermore, ¢’z is the objective function, Az = b and = > 0 are the con-

22

straints of the (LP). In this kind of problems, the objective function and all

the constraints are linear functions. O0

The feasible set M for such a problem which is the set of all the points satisfying
the constraints, is a convex polyhedron in n-dimensional space. Very often, the
simplez method is preferred to solve the linear programming problems (LP) [48].
The minimum of the problem (LP) if existing, is known to be attained at one
of the vertices of the polyhedron “simplex” M. The simplex method, however,
is not in the special scope of this thesis. We are interested in the interior-point
methods which are also used for solving linear programming problems in recent
years. These interior-point methods seek the minimum attained at some vertex

of the feasible set and by coming from the interior of it.

The features of an interior-point method that come into prominence can be
counted as follows by comparing it with the simplex method [48]: The iterations
in the algorithm of interior-point methods are computationally expensive but
make a significant progress towards the solution, in contrast to the simplex
method which requires a large number of inexpensive iterations. The vertices
on the boundary of the feasible region are tested sequentially by the simplex
method to find the minimum value of (LP). However, interior (and ezterior)
point methods approach the solution of (LP) either from the interior (or from
the exterior) of the feasible region. In fact, their iterates generally do not lie
on the boundary of this region but approach the boundary of the feasible set in
the limit.

2.2.2.2 Primal-Dual Methods

Primal-dual methods are known as one of the most efficient interior-point ap-
proaches. They solve the linear problems by formulating them as nonlinear
ones [38, 48]. This reformulation of the problem into a nonlinear form forces
the solution procedures to continue with nonlinear algorithms like Newton’s

method.

Definition 2.8. Let the standard linear programming problem (£LP) be given

23

as above. The dual linear problem with respect to (LP) is

maximize bTy

(DP) subject to ATy +s=c,
s> 0,
where y € R™ (dual variable) and s € R™ (slack variable). O

Primal-dual solutions of (LP) and (DP) fulfill the Karush-Kuhn-Tucker con-
ditions which we already defined above. In our context here, the restatement
of these conditions consists of the following system of first-order necessary op-

timality conditions:

(ATy +s=c,

Ax =D,

zjs; =0 (j=1,2,...,n),
(z,s) > 0.

(KKT)

\

where (z,s) > 0 represents the nonnegativity of all z; and s;.

We note that the corresponding Lagrange function of the problem looks as
follows (cf. Subsection 2.2.1):

L(z,y,s) :=c'z — y" (Az — b) — s"x.

The solutions (z*, y*, s*) of (JCKT) are obtained by a modified Newton’s method
applied on the first three equations in (XK7'). This modification in Newton’s
method is related with the search directions and the step lengths to guarantee
that the inequalities (z,s) > 0 hold at every iteration of primal-dual solution

procedure.

By a restatement of (XK7), we derive primal-dual interior point methods

24

ATy — s — ¢, 0
(kKT F(z,y,s) = Az —b, =101,
XSe 0
\ (z,5) 20,
where F' : R¥t™ — R2vim - X .= diag (z1,Za, ..., %), S := diag (s1,82,.-.,8n),

and e := (1,1,...,1)T.

We parametrize (KX7T) by a scalar 7 > 0 and obtain

((ATy +s=c,
Azx =b,
ZjS; =T (1=12,...,n),

(z,8) > 0.

(KKT),

\

By using the notation given by the function F' and asking for the unknown
(z.,y-, 2-) and noting the necassary positivity, we get the representation of
(KKT), as

0
(KKT), Fzr,yr2:) =1 0 |, (z,8)>0.

T€

We note that by letting 7 — 0, the equations in (KT), approximate to the
ones in (KKT).

2.2.3 Nonlinear Programming

Let us recall the general constrained optimization problem from above:
(CP) minimize f(z) subject to z € M,

where M is the feasible set.

25

From the previous chapter, we know which techniques are considered when the
objective function and the constraints in (CP) are linear. In-the nonlinear
case of (CP), two well known methods which are referred as penalizing methods
come into the mind: penalty and barrier. The motivation of these methods is
the desire to solve the constrained optimization problems by using techniques
of unconstrained optimization. To convert a constrained optimization problem
to an unconstrained one, an auxiliary function is inserted into the objective

function where penalty terms are employed for the violations of the constraints
[38, 48].

We will use the ideas behind the penalizing methods when we explain the ap-
proaches to DFO with support vector machines in Chapter 3. Especially, under-
standing the difference between the approaches of barrier methods and penalty

methods will be necessary there.

In penalty methods, the idea is to impose a penalty for infeasibility and forcing

the iterates to tend to a feasible solution while violating a constraint.

Example 2.9. [48] Consider our problem (CP) with equality constraints only,
namely, |I| > 1 and J = §). The penalty function which is a combination of the
objective function f(z) and the equality constraints h;(z) will be:

1
flz)+ % iezlh?(l’):
where p > 0 is referred to as a penalty parameter. This penalty function is now
handled as the objective function of an unconstrained minimization problem.
The problem with this new objective function will be solved for a series of
decreasing values of p to obtain the solution of the constrained optimization

problem. m|

In barrier methods, the idea changes to impose a barrier to ensure that a
feasible solution never becomes infeasible when reaching the boundary given by

an inequality constraint.

Example 2.10. [48] Consider our problem (CP) with inequality constraints

26

only, namely,] = @ and |J| > 1. The well-known logarithmic barrier function

will have the form

fl@)—n) logg(z),

jeJ
where p > 0 is now referred to as a barrier parameter. By minimizing this
logarithmic barrier function for a series of decreasing values of u, i.e., u — 07,
an approximate feasible solution of the original constrained problem will be

obtained under certain conditions. a

Remark 2.11. The iterations in barrier methods converge to a solution of (CP)
from the interior of the feasible region. Therefore, they are called interior-point
penalty function methods [38, 48]. However, in penalty methods the iterations
generate a sequence of points that converge to a solution of (CP) from the
exterior of the feasible region. Therefore, they are called ezterior-point penalty
function methods [48]. O

Remark 2.12. The most famous example of a barrier method is the interior-

point method for linear programming which we mentioned in Subsection 2.2.2.

O

27

CHAPTER 3

DERIVATIVE FREE OPTIMIZATION

3.1 What is DFO?

DFO [14] has been developed for solving constrained optimization problems of

the following form:

min f(z)
(P) such that a; < ¢;(z) < b; (i=1,2,...,m),
z e F CR"?

where the objective function f(z) and the constraints ¢;(x) are expensive to com-
pute at a given vector z and the derivatives of f at z are not available. Here,
z € F represents easy constraints, where F stands, e.g., for an open of closed
elementary geometrical body such as a cube of a ball, and ¢;(z) (¢ = 1,2,...,m)
are difficult constraints. We note that also inequalities may be allowed as diffi-
cult constraints in (P). The idea is to approximate the objective function by a
model which is assumed to describe the objective function well in a trust-region
without explicitly modeling its derivatives. This model is computationally less

expensive to evaluate and easier to optimize than the objective function itself..

The model is obtained by interpolating the objective function using a quadratic
interpolation polynomial. Quadratic interpolation is preferred to approximate
the objective function since it can be used successfully within a trust-region
method. In the following sections, we will present modern approaches given by

support vector machines, too.

28

3.1.1 Trust-Region Framework

In Chapter 2, we explained the trust-region methods as one of the solution
procedure class for treating (P). Here, a brief review will be helpful to follow

the integration of trust-region methods into DFO algorithm.

Main steps of a typical trust-region method

1. Given a current iterate, build a good local approximation model.

2. Choose a neighborhood around the current iterate where the model is "trusted’

to be accurate. Minimize the model in this neighborhood.

3. Determine if the step is successful by evaluating the true objective function
at the new point comparing the true reduction in value of the objective with

the reduction predicted by the model.

4. If the step is successful, accept the new point as the next iterate. Increase the
size of the trust-region, if the success is really significant. Otherwise, reject

the new point and reduce the size of the trust-region.

5. Repeat until convergence.

3.1.2 Quadratic Interpolation

Consider the problem of interpolating a given or suitably chosen function f(x)
from R" into R by a quadratic polynomial Q(z) at a chosen set of points ¥ =
{y*,4%,...,y?} € R™ The quadratic polynomial Q(z) is an interpolation of the
function f(z) with respect to the set Y if

QW) =) (=12...,p), (3.1.1)

such that f is known at all the finitely many elements of Y. Here, we note
that @ is our model which we defined as my, in Chapter 2 within the context of

trust-region methods; i.e., mg(z) = Q(z).

29

Suppose that the space of quadratic polynomials is spanned by a set of basis
functions ¢;(-) (1 =1,2,...,q). Then, any quadratic polynomial can be written

in terms of these basis functions, i.e., Q(z) = > i, a;¢i(x), where the coefficient
vector & = (a1, @z, ...,)7 is to be determined. We need
nn—1 1
q= 1+n+n+—(—2—) = §(n+1)(’n+2)

1
points to find all of the interpolation parameters. If we have E(n + 1)(n+2)
points, we can ensure that the quadratic model is entirely determined by the
following system of equations (3.1.2). When this is the case, the system of linear

equations

D adiy’) =) (i=12....p) (3.1.2)

=1

can be solved to derive interpolation parameters.

The parameter or coefficient matrix of this system is of type p X g and looks as

follows:

o1yt daly') - Be(yt)

() = ¢1(.y2) ¢2(.y2) ¢q(:y2) (3.1.3)

G1(y") daly?) - Be(yP)

For a given set of points and a set of function values, an interpolation poly-
nomial exists and is unique if and only if ®(Y) is square, i.e,, p = ¢, and
nonsingular. Theoretically, this means that the system (3.1.2) can be solved,
but in practice the solvability of this system depends on whether the matrix
®(Y) is ill-conditioned or not [55].

From the above arguments, we conclude that if we manage to determine the

1
quadratic polynomial uniquely, then we have p = g = §(n +1)(n+2). However,

1
we need to be aware of the fact that not any 3 (n+1)(n+2) points in R™ can be
interpolated by a quadratic polynomial. Obviously, although 3 distinct points

can be interpolated by a quadratic function in univariate interpolation, this is

30

not the case in multivariate interpolation. In fact, 3 points will not be enough
to obtain a quadratic interpolation polynomial whenever the dimension of the
interpolation space is greater than one. By inspection, one can see that 6 points
are necessary to obtain a unique quadratic interpolation of a function in two
dimensions. However, an interpolation set Y of six points lying on one line
cannot be interpolated by a quadratic function. Therefore, the points of Y
must satisfy a geometric condition to ensure the existence and uniqueness of
the quadratic model. This geometric condition is known as the poisedness ofi

the point set [53].

Definition 3.1. [55] A set of points Y is called poised, with respect to a given
subspace of polynomials, if the considered function f(z) can be interpolated
at the points of Y by the polynomials from this subspace, i.e., if there always

exists a suitable interpolating polynomial in that subspace. m|

Remark 3.2. In DFO, poisedness is a necessary geometric condition on the
interpolation set Y that ensures the existence and uniqueness of the quadratic
model Q(z) wanted and used in DFO algorithm. O

We illustrate the implied geometric character of poisedness by the following

examples.

Example 3.3. [55] Supposen =2 and Y is a set of six points on a unit circle.
Then, Y C R? cannot be interpolated by a polynomial of the form ag + ai1z1 +
QLo + al,lrc% + a12T172 + az,zzv%. Hence, Y is not poised with respect to the
space of quadratic polynomials. On the other hand, Y can be interpolated by a
polynomial of the form ap +a1z1 + asZs + a1,17} + a1 22172 + a1,1,1%3. Therefore,

Y is poised in an appropriate subspace of the space of cubic polynomials. O

We present one more example for the non-poised case to have a well under-

standing of the notion of poisedness from [12]:

Example 3.4. [25] Consider the two quadrics' ¢i(z,y) = 2z + z? — y? and

q2(z,y) = % + 32, whose intersection curve I projects in the (z, y)-plane to the

LA quadric is a surface defined by an implicit equation of degree 2 in R3

31

conics C(z,y) = 0 with C(z,y) = z — y? (see Figure 3.1). Namely,

2 +z2—y? = 2492
& 2r = 27,

<:> xr = y2'

The conics can be seen in Figure 3.1:

Figure 3.1: Two quadrics whose intersection curve I projects onto the parabola
C:z=1y?[25]

If one tries to interpolate a height funetion using points on I, uniqueness of the
interpolant is not achieved since any quadric in the pencil? of ¢; and ¢, goes

through 1. |

Definition 3.5. A set of points Y is called well-poised, if it remains poised
under small perturbations. For example, if n = 2, six points almost on a line
may define a poised set. However, since some small perturbation of the points

might make them aligned, it is not a well-poised set. |

For the sake of completeness, a brief presentation of A-poisedness can be found

in the last section of this chapter.

As we mentioned before, a set of points is poised if ®(Y') is nonsingular with
respect to the space of quadratic polynomials [55]. If we look for an understand-
ing of this by the fact that an interpolation polynomial exists and is unique if

and only if ®(Y') is square and nonsingular, then we conclude:

2A pencil of quadrics generated by two quadrics q; and gs is the set of quadrics:
{dg1 — ¢ | » € RU {o0}}; i.e., the ‘infinite’ quadric ¢ = “oc” is included.

32

Y is poised if the determinant of ®(Y") is nonvanishing, i.e., if

$1(y") 2y') - Se(yh)

3(Y) :=det qbl(:yZ) ¢2(:y2) ¢q(:y2) = det(®(Y))

(3.1.4)

o1(yP) Pa(y?) -+ Be(yF)
£ 0.

The measure of poisedness in a DFO algorithm can be explained by a method-
ology based on Newton fundamental polynomials [14]. In DFO, the approach of
handling the poisedness in combination with the Newton fundamental polyno-
mials is a distinctive issue. This is so, because it allows us not only to choose a
good interpolation set from a given set of sample points but also to find a new
sample point which improves the poisedness of the interpolation set. If we had
no such a useful tool, then, removing a point from the set would have caused
the conditioning of the coeflicient matrix to get worse in the updating step for
the interpolation set of DFO. There is also a detailed work on DFO in which
the quadratic approximation model is determined by Lagrange interpolation

polynomials in [65] instead of the Newton fundamental polynomials.

Let us focus on the Newton fundamental points [14]: The points y in our inter-
polation set Y = {y*,4?,...,yP} which is a subset of R™ are organized into d+1
blocks, where Y1 (1 =0,1,2,...,d) is the I-th block, containing |V | = (l+’l‘_1)

points.

Definition 3.6. A single Newton fundamental polynomial of degree I corre-

sponds to each point (3*)¥ € Y satisfying the following conditions:

NI = 636, for all (y9)m e Y™ with m € {0,1,2,...,1}. O
Here, we refer to Kronecker’s symbol for 4,7 =0,1,2,...,1:
1 ifi=;
by ifi=j
0, else.

33

Consider the set of interpolation points beirig partitioned into three disjoint
blocks Y, Yl Y2 which correspond to the constant term, the linear terms
and the quadratic terms of a quadratic polynomial, respectively (see Figure

3.2).

)

Figure 3.2: Newton fundamental polynomials [14].

n(n +1)
2
elements. The basis {NV;(-)} of NFP is also partitioned into three blocks { N2(-)},

{N}(-)} and {N2(-)} with the appropriate number of elements in each block.

Hence, Y has a single element, YV has n elements and Y has

The unique element of {N2(-)} is a polynomial of degree zero, each of the n
elements of {N}(-)} is a polynomial of degree one and, finally, each of the

n(n +1) elements of {N2(-)} is a polynomial of degree two.

The basis elements and the interpolation points are set in one-to-one corre-
spondence, so that the points from block Y'¥ correspond to polynomials from
block {N}(-)}. A Newton fundamental polynomial N;(-) and a point y* are in
correspondence with each other if and only if the value of that polynomial at

that point is one and its value at any other point in the same block or in any

34

previous block is zero. In other words, if y* corresponds to N;, then, N;(y*) = 1
and N;(y?) = 0 for all other indices j.

Example 3.7. Consider the quadratic interpolation on a plane. We require six

interpolation points using three blocks:
Y% ={(0,0}, YW ={(1,0),(0,1)}, and Y = {(2,0),(1,1),(0,2)}

corresponding to the initial basis functions 1, z;, T2, 22, 7172 and z2, respec-
tively. Applying the procedure from [53], we find the basis of NFP:
2z

N{)=1, N11=x1, N21:m2, Nf—Tl, N22=x1:c2 a,ndN32:

72— Ty
5

3.1.3 Algorithm

Now, we are ready to present an outline of the DFO algorithm which can be
found in [16] and [55].

Algorithm 3.8. The steps of DFO are as follows:

Step 0: Initialization

Let be given a starting point z; and the value f(z,). Choose an initial trust-
region radius Ay > 0. Choose at least n additional points not further than
Ag away from z, to create an initial well-poised interpolation set Y and initial
basis of Newton fundamental polynomials. Determine xg € Y which has the

best objective function value; i.e., zg solves the enumeration problem

(EP)o min f(z) subjectto zeVY.

Set £ = 0, choose parameters ng, 71, where 0 <o < <land 0 <y <7 <
1 <.

Step 1: Buzld the model

35

Using the interpolation set Y and basis of NFP, build a quadratic interpolation
polynomial Qg(z).

Step 2: Minimize the model within the trust-region

Set
B, = {x e R” | “.12 — $k|| < Ak}

Compute the point Zj solving the quadratic optimization problem
(OP)k min Qr(z) subject to =z € B;.

Compute f(£;) and the ratio

o= fzk) = f(E)
Qr(zr) — Qr(Zx)

Step 3: Update of the interpolation set

e If p > mg, include Z; in Y, dropping one of the existing interpolation

points if necessary.
e If pi < ng, include Z; in Y, if it improves the quality of the model.

o If pr < mo and there are less that n + 1 points in the intersection of Y and
By, generate a new interpolation point in By, while preserving/improving

well-poisedness.

e Update the basis of the Newton fundamental polynomials.
Step 4: Update of the trust-region radius

o If py > m1, increase the trust-region radius:

A1 € [Ag, 12k

36

o If pi, < mo and the cardinality of Y N By was less than n 4+ 1 when Z; was

computed, reduce the trust-region radius:
Api1 € oA, 71A%].

o Otherwise, set Agyq := Ag.

Step 5: Update of the current iterate

Determine Zp with the best objective function value by solving the discrete

problem of enumeration

(EP)x min f(z) subject to z € Y\{zr}.

If improvement is sufficient (in the sense of prediction), i.e.,

f(ze) — f(Zx)
Qr(zr) — Qr(Zr) Z o

then we put

b= f(zx) — f(Zx) '
Qr(zr) — Qr(dx)

Set zy41 := Zy. Otherwise, set xp,1 := zk. Increase k by one, k «— k + 1, and

go to Step 1. O

Remark 3.9. [55] The interpolation set is enlarged with the points which are
generated by minimizing the model at each iteration. These points are expected
to contribute to the minimization of the objective function value. Another
aspect in generating interpolation points during the iteration is to improve
the interpolation set and the model. But, whatever the aim in generating the
interpolation points, it is important to gather as much information as possible
from these points about the function value to get rid of the function evaluations

which are usually very expensive and time consuming,. O

Remark 3.10. [55] It is sufficient that the interpolation set Y contains just
two points at the beginning of the algorithm. Although the cardinality of Y is

37

not required to exceed n-+1, it is advantageous to increase the size of Y as long
as it remains well-poised and contains local information. On the other hand,

maintaining full quadratic interpolation may be too expensive. For example, if
(n+1)(n+2)

2
quadratic model. It may be unacceptable to evaluate the objective function 231

n = 20, it requires p = = 231 interpolation points to build a full

times before obtaining any progress in the algorithm. 0O

Remark 3.11. In step 3, we see that there is no obligation in choosing a
technique to update the interpolation set. There are various ways of improving
an interpolation set and various criteria for adding or deleting interpolation
points. In [55], the preferred technique is based on the properties of Newton

fundamental polynomials concerning threshold pivoting,. O

3.2 Derivative Free Optimization

via Support Vector Machines

3.2.1 Introduction into SVMs

Conn, Scheinberg and Toint [19] suggest a derivative free optimization method
via support vector machines (SVM). This section serves for a short introduction
into this approach. The goal of their study is to solve any optimization problem

of the form

min f(z)

(P)
such that z € M C R"

where M is the feasible set. For solving (P) they use a derivative free opti-
mization method where the model of the objective function, explained in the
previous chapter as Q(z), is derived by means of support vector machines in-

stead of quadratic interpolation.

The aims behind the idea of integrating into derivative free optimization (DFO),

a support vector machine which is in fact a supervised learning algorithm (see

38

[36] for details), are the following [19]:
e to improve the convergence properties of DFO,
e to decrease the tolerance to noise in the model Q(z),

to guarantee the good initial reduction in Step 2 of Algorithm 3.8,

to take into account the appearance of outliers and to rule them out, and

to exploit the geometry of the interpolation points.

In order to understand the basic ideas of SVMs better, we explain them for a

standard application in classification theory firstly.

3.2.2 SVMs in Classification

Consider the training vectors p; € R” (i = 1,2,...,m) from the training data

set P. Given two classes of these vectors, for all i = 1,2,...,m we put:

1, if p; in class 1,
1 ¥y (3.2.5)
—1, if p; in class 2.

Let us assume that we are able to divide the data set into two given disjoint
classes by a separator without any misclassification. A separator is a linear
classifier that separates the data. In higher dimensional spaces, a separator
classifier is called a hyperplane classifier. For example, in the 2-dimensional
spaces a hyperplane is simply a line, and in 3-dimensional spaces a hyperplane
is a 2-dimensional affine subspace [3]. We will also mention what the approach

is when we allow training errors to separate the data set into two classes [45].

In support vector machines method, a hyperplane w’p + b = 0 is found for

partitioning the data set as shown in (3.2.6) (see Figure 3.3) such that

(pri) +b6>0 if y; =1,

(3.2.6)
(’lUsz') +b<0 if Y; = —‘1,

39

Figure 3.3: SVM finds a hyperplane for separating the data set into two classes
[45].

where y; is defined by (3.2.5).

This hyperplane maintains a mazimum margin from any point in the data
set. Statistical learning theory suggests that choosing the maximum margin
hyperplane for separation of the data into two classes enables one to make a

maximal generalization to classify the unseen data points [57].

Figure 3.4: Support vectors and the margin p [45].

As delineated in Figu;!g 3.4, let us define r, the distance from any data point to
w p+b

the separator: r := . Any data point closest to the separator is called a

support vector. Furthermore, we define p which is the margin, i.e., the distance

between w'p +b=+1 and wTp+b=—1.

Assuming all the data are at least distance 1 from the hyperplane, we rewrite

40

(3.2.6) from above as follows:

wTi+b>1, if '=1,

(w'p) +b 2 vi (3.2.7)
(wip) +b6< -1, if y;=—1

For support vectors which are defined as the closest points to the separator, the

inequalities become equalities, i.e., (wTp;) +b =1 and (wTp;) +b=—1.

Therefore, the distances of support vectors to the separator satisfying (w”p;) +

—1— and r = i,
. , [[w]] [[wl] ,
acknowledging the distance 2 between —1 and 1, the support vectors on different

b=1and (wp;)+b=—1arer := respectively. By

sides of the separator are far from each other by the distance of
2
p=—, 3.2.8
] (5:25)

which is equal to the margin. A SVM finds the maximum of this margin by

solving the following optimization problem:

2
]

subject to the constraints (3.2.7).

max

3.2.3 SVMs in DFO

After an equivalent reformulation of this maximization problem [44], we obtain a
quadratic problem which will be solved by the support vector machine algorithm

and can be stated as follows:

. 1 r
Mifypy W W

(MIP)
such that y;((wPp;) +6)>1 (i=1,2,...,m).

Here, optimizing the objective function just comes from an equivalent reformu-
lation of (3.2.8). This is a mized-integer problem, since the vector w and the
scalar b are real, while the vector y = (y1,¥a,---,¥m)" consists of the integers

Yy; € {—1, +1}.

41

As we mentioned, it is usual to be faced with non-separable data in real-world
problems for which there exists no hyperplane to separate the data set into
two different classes without any misclassification. The theory of support vec-
tor machines suggests a way of mapping the inseparable data into a higher-
dimensional space and defines a separating hyperplane there, to overcome the
problem of inseparability. This higher-dimensional space is called the feature
space. Any consistent training set can be made separable with an appropri-
ately chosen feature space of sufficient dimensionality. We remark here that it
is a computationally expensive task to translate the training set into a higher-
dimensional space. Moreover, this artificial way of separation may result with
trivial solutions that overfit data. To give a short indication about this increase
of dimensions, think of polynomial regression model, e.g., in two variables z;
and zo. We substitute #; := 1, &3 1= 2, &3 1= 22, 3 1= 11 - T, and I5 = 73,
arising in feature space of dimension 5. If our given dimension is still 2, but
the degree of the regression polynomial is g, then the feature space dimension
is becoming ﬁq—;—l). For further details, we refer to the theory of statistic and

learning (linear discriminant analysis and logistic regression [36]).

In the following, we explain the ideas of Conn, Scheinberg and Toint by still
referring to the linear case of a SVM. For a better understanding, recall that we
are back to ménimization of f again which was not the case with the SVM
before. The model Q(p) in DFO used by them is:

Qlp) =w"p+4,

illustrated in Figure 3.5. This model means a linear approzimation of the un-

known function f, where we only know the perturbed (noisy) values of f.

In Figure 3.5, the shown SVM model is constructed by referring to finitely
many data points (measurements). This figure also reflects the realization of

the function affected by noise in the linear case.

Now, the adjusted form of the (MZP) defined above becomes considered in our
DFO algorithm as follows:

42

N, 3
W . True function

Figure 3.5: Linear support vector machines model [19].

. 1
min —wTw

(P)svm 2
such that |wPp; +8— f(p)| <e (E=1,2,...,m).

Here, w can be imagined to be an approzimation to the first derivative of f(z),
i.e., to the gradient of f(z), and B is the intercept we remember from inverse
problems and statistical learning [2, 67]. The aim behind the formulation of
this optimization problem (P)sys is to minimize the gradient of f in norm,
i.e., to push it or its approximation to zero in norm: ||w|| — 0. The constraints
of (P)syu reflect that some error in our model is allowed, i.e., some difference
between the model values and the measurement (data) values, the latter ones
being considered as perturbed evaluations of f. Hence, the problem can be

stated as finding w and § under error bounds of a given tolerance e.

43

Now, we rephrase and, additionally, relax

quadratic optimization problem (P)sya:

4 m
i, e 6
(RP)svm { such that wip;+8+¢& > fp)—¢ (i=1,2,...,m),
wip+0—& < fp) +e¢ (i=1,2,...,m),
\ £ € >0

Here, c is a parameter to bring a balance in approximately fitting any outliers
(see Figure 3.5); & and ¢, are the perturbation parameters which imply an
exterior-point approach. By & = (£1,6,...,6,)T and ¢ = (£,&,...,€.)7,
one can tune the amount of violation of constraints from (P)svm, both being

requested to be nonnegative coordinate-wise.

Remark 3.12. In the theory of inverse problems, we know about the tradeoff
between the minimization of the error (mostly in terms of sums of squares),
and the minimization of the norm of the unknown parameter vector. This
second goal can be interpreted as a diminishment of the system’s complexity
and, herewith, a diminishment of numerical instability. In statistical learning
[36, 66], this wish for a “small” parameter vector is treated by testing of zero
hypotheses. Here, in our approach by SVMs, the authors give priority to this
second goal and, as we explained, this is associated with the minimization of
f(z) also. Furthermore, concerning the first goal, a tolerance is given. For the
minimization of f, the parameter @ is not important; for a reason like this, 3
was not included into the parameter vector w which has to be minimized in
norm. There are further approaches and methods developed to deal with this
tradeofl, e.g., by so-called Tikhonov regularization [2]. O

The solution of (RP)syas involves constructing a dual problem, introduced in

T 41T is associated with all

Chapter 2, where a Lagrange multiplier vector (o

the constraints in the problem.

As we explained in Section 2.2 on constrained optimization, we obtain a Karush-

Kuhn-Tucker condition with respect to the variable w of the following form:

44

oL
(KKT) e w,a,7) = w—PTa+PTy=0,

o,y 2 0,

where L is the Lagrange function of (RP)svu, PT = (p1,p2,-..,0,)F and 0 = 0,,

is the origin in the input and sample space R™.

This Karush-Kuhn-Tucker condition (X7') immediately gives

u;=(PT]——PT)(3).

Substituting w in this way yields that the following representation of (RP)svir

can in vector notation be written as:

g’g]ig’ﬁ %(aT, 71Q (3) + c;(ﬁi +&)

such that Q; (:) + Be+& > f(P) —ee,
Qi(3) + Be — € < f(P) +ee,
€ >0, 0<a,v<ec,

where e := (1,1,...,1)T € R* and

Q \ [PPT —PPT
-Q) \ -PPT PPT

Here, the important feature consists in the construction of the model Q. Al-
though it is explained in the first section of this chapter that the model is usually
obtained from quadratic interpolation, now we can also use approximation

by support vector machines to construct our model for DFO.

3.2.4 A - Poisedness

Let us finish this chapter with the definition of an issue used by Conn, Schein-
berg and Vicente [18] in the algorithmic framework of their studies for building
and maintaining sample sets with good geometry. They have suggested the

45

notion of a A-poised sample set, where A is a nonnegative constant.

Definition 3.13. Given A > 0, P is A-poised if for any z € B(A), there are
numbers A, Ag, ..., Ay, € R such that

z—pr=Y NEi—p), IN<A (G=12...,m) (3.2.9)

=2

Here, B(A) = {z € R™ | ||z[|z < A} is a closed ball of radius A centered at the
origin and P = {p1,ps, ..., Pm}- O

We may assume that p; = 0 and, herewith, p; is the center of B(A). This as-
sumption can be made without loss of generality, since it can always be satisfied
by a translation performing p — 0. For example, the smallest ball around the

origin containing P may just be B(A), i.e., P C B(A) tightly.

Definition 3.13 deals with the governing of the relation between the sets P
and B(A). We see that A-poisedness is a condition that can be interpreted as
a well-distribution condition of P with respect to B(A). Thus, we conclude
that the points p; should not lie too close and not much on a line etc.. The
nonnegative constant A is “controlling” about how far the vectors are stretched,

i.e., expanded or contracted.

Considering this well-distribution issue, we observe that in Definition 3.13 the
equation (3.2.9) is a linear combination, controlled by a condition generalizing

a convex combination: |A;| < A instead of both 0 < \; <1land Y 'y A =1.

Herewith, the set B(A) is generated (spanned) by the sample set P. Hence,
P must be sufficiently “independent” in order that such a spanning of B(A) is

possible.

‘We note that in the context of the studies of Conn, Scheinberg and Vicente [18],

B(A) can be interpreted as the trust-region.

46

CHAPTER 4

OPTIMIZATION OF STIRRER

CONFIGURATIONS

In this chapter, we introduce and treat the optimization problem of configuring
a stirrer which is a common device for mixing different substances and, then, we
explain the implementation of the numerical tool which is employed for finding
the optimized stirrer configuration. This research serves for various practical
applications in chemistry [72], petrol or food engineering, in pharmacy, medi-
cine and waste recycling [21]. Optimization of stirring configurations has been
the scientific content of a joint project supported by the Volkswagen Founda-
tion between Institute of Applied Mathematics of METU together with the
Department of Mechanical Engineering of Darmstadt University of Technology.

Figure 4.1: A typical stirrer tank [72].

A typical stirred vessel consists of three parts: vessel, baffles and impeller as
shown in Figure 4.1 [72]. There are many types of stirrers (and vessels) accord-

ing to the mixing task they get involved with. In order to choose a suitable

47

stirrer among the existing ones or to design a new one for a certain process, we
need to understand the flow behaviors in the stirrers during the mixing process.
We note that the flow model can be described by Navier-Stokes equations [54].
A detailed study on the numerical investigation of the hydrodynamics in the
stirrer tanks and the explanations of the employed numerical methods is pre-
sented in [72]. Figure 4.2 shows an illustration of the stirrer tank which is
considered in this chapter. The design variables of this stirrer which will be the

parameters of our optimization problem are also shown.

Figure 4.2: The configuration of a stirrer tank [54].

In a standard stirrer tank, the values of these geometrical parameters in terms

of the tank diameter are given in Table 4.1:

Parameter Value

tank (vessel) diameter T = 0.15m
impeller diameter D =T/3=0.05m
bottom clearance C=H/2=0.75m

height of the liquid H=T=0.15m

length of the baffles W =3D/10 = 0.015m
length of the blade I =D/4=0.0125m
height of the blade w=D/5=0.0lm

disc thickness z = D/5=0.00175m
diameter of the disc =~ Dp =3D/4 = 0.0375m

Table 4.1: Geometrical parameters of stirrer configuration [54].

We note that the flow field and mixing process are very complicated even in a

48

simple stirred vessel. The rotation of the impeller blades makes the fluid in the
vessel to interact with the stationary baffles adjacent to the stirrer walls. This
generates a complex, three-dimensional turbulent flow. The other parameters
of the stirrer tank like impeller clearance from the tank bottom, diameter of the
impeller disc and baffle length also affect the generated flow. The nature of the

optimization process depends on these design parameters [62).

4.1 Optimization Problem of

Stirrer Configurations

The problem can be thought as a nonlinear optimization problem with nonlinear

constraints as follows [54]:

minimize f(«)

(80) subject to ol < ay < o, (k=1,2,...,N),
hi(a) =0 (tel:={1,2,...,m}),
G@)20 (el={L2...,s}),
where @ = (ay, s, .. ., ay)T. By using our definition of (P) from Chapter 3, we

recall that a € F corresponds to easy constraint and see now that can be written
as F := TIY [o}, af]. The functions h;(a), g;(c) are the difficult constraints.
The objective function f may correspond to the Newton number, power number,
mixing time, stresses, etc., which are derived from the flow field. The parameters
oy, are the design variables determining the stirrer geometry which are presented
in Figure 4.2, or operating parameters like the rotational speed. The equality
constraint and the inequality constraint functions h; and g;, respectively, can
be restrictions of the stirrer geometry, of operational parameters, or of other

quantities depending on the flow field.

49

4.2 Numerical Toolbox

This tool involves the following components [54]:

(a) an efficient parallel multigrid flow solver,
(b) a specially designed parametrized grid generator for stirrer geometries,

(c) a derivative-free optimization method.

For the configuration of a stirrer, this kind of numerical optimization tools is

accepted to be useful as far as it can deal with the geometries of the stirrer.

The flow solver employs a finite volume method for non-orthogonal, boundary-
fitted block structured grid. In this study, the solver is Flow Analysis by Solving
Transport Equations Simulating Turbulence (FASTEST) [54].

The grid generator, another component of the optimization tool, is good for
providing a parametrized generation of block-structured grids for stirrer geome-
tries. For finding the optimum geometry, abundant modifications of the grids

need to be done; this task is easy in parametrized grids [54].

Our derivative free method is DFO which is based on a trust-region framework

with quadratic interpolation as already explained in Section 3.1.2.

4.2.1 FASTEST 3D

When we consider the complete FASTEST3D program, there are three com-

puter subprograms we encounter [54]:

(1) a pre-processor for generating the numerical grid,
(2) a flow predictor,

(3) a post-processor for the graphical visualization of the result.

50

The details of the process during these three steps of a typical FASTEST3D
program can be stated as follows: The process begins with the generation of the
grid according to the shape and the size of the tank and the impeller. The grid
generation is the subject of the next section. The code of FASTEST3D requires
some parameter inputs such as angular velocity, fluid properties, clicking step
size and time step number. The solution to the mixing problem is produced by
running the code which yields the quantities characterizing the flow field like

velocity components, turbulence, pressure quantities and power consumption.

One of the advantages of FASTESTS3D is its flexibility. This means that it can
be modified according to different fluid flow problems. Although it lacks of
being a user friendly program, any user with programming skills and practical
experience in running the similar programs will not have difficulties to modify

the code according to the needs.

After this brief review of FASTEST3D, obviously the reason for choosing it is
its flexibility which makes the discretization of even very complex geometries
possible. Considering the parallelization procedures of the general flow and of
the flow solver, the essential issues are block structured grid partitioning, block
connecting, data dependence handling at block interfaces, data structures in
the communication and the implementation of the communication in the code
[59]. The grid movement of the stirrer grid as against the vessel is handled
by a clicking mesh approach. We note that our solver was already proved to
be successful in computing complex problems of stirrer technology on parallel

computers with high numerical and parallel efficiency [54].

4.2.2 Grid Generation Tool

The success of FASTEST3D in handling the complex geometries associated with
stirrer configurations which we mentioned above is based on the grid generation
process. The grid generation tool overcomes the difficulties related with the
geometry since it involves the algebraic method based on transfinite interpola-

tion [27] for the generation of a multi-block boundary fitted grid. Moreover, a

51

built-in library of impellers which are commonly used in chemical and process
industries is included. This allows any combination of impeller, baffle, and ves-
sel geometries [54]. The input parameters of the tool are radii of disk (impeller),
vessel or numbers and dimensions of blades, baffles, etc.. Therefore, the grid
generation is parametrized with respect to the characteristic geometry quan-'
tities for the different stirrer types which means that the design variation can
easily occur. We note that this concept tells us the possibility of using the geo-
metrical input parameters to the grid generation tool as the design parameters

for the optimization purpose.

Without numerical efficiency and robustness in the flow solver, the optimization
procedure will demand a large number of individual flow simulations which may
lead to “nasty” grids. However, our flow solver FASTEST3D employs a finite-

volume solver which specially takes this aspect into account [54].

4.2.3 DFO

We know the theoretical details of DFO from Chapter 3. In the context of the
numerical tool, DFO is employed for finding the optimum of (SC). The main
benefit of using a derivative free method is that the local gradient of f does
not have to be provided by the flow solver. As a matter of fact, the gradient of
f with respect to the design variables is not directly available for the complex

discrete Navier-Stokes system [50].

4.3 Illustration of the Numerical Toolbox

Now, since we described the components of our numerical tool, we can continue
with the implementation of the tool as a program code which is schematized in

Figure 4.3.

The process can be summarized as follows:

1. Optimizer: The optimizer is started and computes a new set of design

52

Infistisaton
Qplimizer
&ﬁg@m
Flow skt * Head bt solution
Food infistsolufion Flow solver l
J—- ConEnsh SR Wrta renul}
Wiite reut ; —-‘é{mwmm
™
Comargence fow stlver e
]
® el Somismativs apfmizer
Y|
Exolude desionvariabies
Bl

Figure 4.3: Flow chart of control script [54].

variables. Afterwards it turns into a waiting state.

. Grid variation: Getting the signal that the new design variables are avail-
able, the grid generation tool becomes active and creates the new geometry

and corresponding numerical grid.

. Flow simulation: Getting the signal that the new grid is available, the
flow solver computes the flow field and the corresponding objective function
for the new geometry. As a starting value, the solution from the previous

simulation is used.

. Test of flow solver convergence: If the flow solver has sufficiently much
converged, the optimizer gets a signal to continue. It may happen that the
flow solver does not converge. Then, another run with more conservative
numerical parameters, i.e., reduced relaxation factors, is started. If this also

fails, a corresponding set of design variables is excluded.

53

5. Test of optimizer convergence: The optimizer decides by a given cri-
terion, whether the current value of the objective function is accepted as the
(approximative) optimum. If yes, then the procedure is finished, if not, then

the procedure is continued with Step 1.

4.4 Implementation of the Numerical Tool

4.4.1 Optimization of the Power Number

Power number is a dimensionless number which relates the resistance force to

the inertia force. It is expressed as

P
Ny = D%

Here, P is the power in watt, p is the density in kg/m3, N is the rotational
speed of the impeller in rev/sec and D is the impeller diameter. A plot of the

power curve, i.e., N, versus Re is shown in Figure 4.4.

1000 -
e Bt 21 8, (1863}
- o Simudatien
100
10 4
1 PRTWSETHS ST TS W R W Ty ST PV NN S A aey TT B NAr W W Ve oY
2.1 1 10 100 1000 100000 100000

Figure 4.4: Power curve for standard tank configuration [54].

2

Here, Re denotes the Reynolds number which can be defined Re = ‘where

1 is the dynamic fluid viscosity.

54

The optimum value of the power number is computed with respect to the design
variables baffle length and bottom clearance, where the working fluid is glucose
solution and Reynolds number is 100. We note that other design variables of
the stirrer are hold constant during the optimization process. The rotational
speed of the impeller is N = 189.54rpm?, density of the glucose solution is p =
1330kg/m3. These values are used by FASTEST 3D to produce corresponding
power number value. The power number value produced by FASTEST 3D are
fed into DFO as initial values with the subroutine FUN, then the optimum value
is computed by DFO. The initial values of the impeller parameters, baffle length
(W) and bottom clearance (C) are also inputted by the subroutine FUN. The
subroutine FUN can be found in Appendix B. The values which are computed
at every step of DFO until finding the optimum value is given in Table 4.2.

| clearance (mm) | baffle length (mm) | power number
initial condition 75 15 3.18431998
after 1st loop 75.7615504 15.5398182 3.22962
after 2nd loop 75.0 14.0 3.17557649
after 3rd loop 74.0 13.0 3.16774136
after 4th loop 73.2500126 14.0 3.17688619
after 5th loop 74.2566223 13.5 3.17183382
after 6th loop 74.25 12.75 3.16495611
after 7th loop 74.5 12.5 3.16287491
after 8th loop 74.1267361 12.0 3.15914713
after 9th loop 73.1804206 11.0 3.15205714
after 10th loop 72.106706 9.0 3.13914519
after 11th loop 70.9642869 5.0 3.10280395
after 12th loop 73.0235831 5.0 3.10927274
after 13th loop 71.7418922 5.0 3.1067214
after 14th loop 68.9642269 5.0 3.10168401

Table 4.2: Optimization of power number [54].

We remark that one time step is approximately completed in 20 seconds of
computing time on an eight processor Red-stone cluster machine. Hence, a
steady state flow in the sense of a frozen rotor computation is reached in about

8 hours computing time [54].

Yrpm is the abbreviation for rotation per minute.

55

4.4.2 Optimization of the Newton Number

The numerical optimization tool we described can be used to minimize the
NeWton number for Re = 100, where the involved design variables are the
disk thickness z, the bottom clearance C, and the baffle length W. According
to these variables the constraints can be prescribed as 0.001 < z < 0.005,
0.002 < € £0.075 and 0.005 < W < 0.03. Let us keep the other parameters of

the standard configuration constant.

B 10 20 0 40 &0
Hharmbet of lops

Figure 4.5: Newton number versus number of the loops [54].

Figure 4.5 shows the Newton number versus the number of cycles of the opti-
mization algorithm. From this figure we observe that the Newton number first
sharply drops and then slowly approaches the minimum in a slightly oscillating

manner.

The Newton number value produced by FASTEST 3D are inputted into DFO as
initial values with the subroutine FUN (see Appendix B), as well as the initial
values of disk thickness (z), bottom clearance (C) and baffle length (W), then
the optimum value is computed by DFO.

The change in the values during the optimization process and the optimized

Newton number can be seen in Table 4.3.

Figure 4.6 shows the velocity fields in a plane midway between two baffles for the

56

l clearance (m) | baffle length (m) | disc thickness (m) INewton numben
initial condition 0.10633 0.015 0.00175 3.19967866
after 1st loop || 0.129503979| 0.0159044909 | 0.00350440904 | 2.67351747
after 2nd loop| 0.11504933 | 0.0171563964 | 0.00500000999 | 2.73856258
after 3rd loop || 0.080999991| 0.0167459387 | 0.00500000992 | 2.70852542
after 4th loop || 0.13676001 | 0.0170457874 | 0.00500000999 | 2.46210527
after 5th loop|0.0810001754] 0.030000009 | 0.000999991356 | 3.41583061
after 6th loop|} 0.13676001 | 0.00499999009 | 0.00500000999 | 2.44725537
after 7th loop|| 0.13676001 | 0.00927787172 | 0.00500000998 | 2.45263529
after 8th loop|[0.136759929| 0.00500000839 | 0.000999996444 | 2.87033367
after 9th loop|| 0.13675556 | 0.0128115706 | 0.00100015391 | 2.87464595
after 10th loop|| 0.134806931| 0.00597657184 | 0.00499995707 | 2.46530557
after 11th loop||0.135783619| 0.00500188821 | 0.0040236691 | 2.55282521
after 12th loop|| 0.136759084 | 0.00527586658 | 0.00451204941 | 2.49486613
after 13th loop|0.136560001| 0.0051999984 | 0.00500000791 | 2.44932532
after 14th loop| 0.13676001 | 0.00519997366 | 0.00500000999 | 2.44754863

Table 4.3: Optimization of Newton number for Re=100.

optimized and the standard geometry cases. This figure reveals the differences
in the optimized and the standard geometry by means of the flow patterns. We
remark that the whole optimization process completes in 5 days on the eight

processor Redstone cluster machine.

Finally, Figure 4.7 reflects how the three design variables change during the
optimization process. We infer that the optimum value of disk thickness ap-
proaches its upper bound, however, the optimum value of the bottom clearance

and the baflle length seems to be in between their given bounds.

Here, power consumption is considered but not the total energy consumption.
Energy consumption calculation would require some sort of mixing time deter-
mination which is beyond the scope of this study. Since only power is considered,
there is a tendency in the baffle length to decrease as the solution approaches
to the optimum point. It should be noted that baffles introduce turbulence that
dissipates mechanical energy. Therefore reducing the baffle length results with

a decrease in power consumption.

o7

et
St ~‘s(~"ﬁ““w #

s)

o st it s
st e T G
25 gt

s
sencon

o8 S G AsHD]
ovigi e e

o
Fit s st

Hesiewin

i St i et

{

Figure 4.6: Comparison of the velocity field for vertical planes between two baffles
at Reynolds number 1000 [54]:

(i) optimized parameter obtained from DFO,

(ii) standard parameters.

58

(i)

TN |
a 1 » a @ @
Humber of loeps
()
Bags: — e S $
g 1B 20 n i1 80,
Humber of loops
iy
$0g
832
B ¥ o i — .
B 16 28 ‘a0 L 0
Number of loops

Figure 4.7: Dimensionless impeller parameter versus number of the loops [54]:
(i) dimensionless disk thickness , (ii) clearance , (jii) baffle length.

59

CHAPTER 5

DERIVATIVE FREE OPTIMIZATION
BY NON-SMOOTH ANALYSIS AND

VARIOUS APPLICATIONS

In this chapter, we will examine a derivative free algorithm from the paper of
Bagirov and Yearwood [6], which is developed for solving the minimum sum
of squares clustering problem. This problem is a non-smooth and non-convex
optimization problem; in Section 5.2 it is modelled and discussed. The algorithm
will be examined in Sections 5.2-5.3, it is based on non-smooth analysis and
optimization methods [6]. Herewith, they take into account a further important
field of modern continuous optimization [13] which for their application in data

mining turns out to be very appropriate and helpful.

A further aim of Bagirov and Yearwood in their study is to discuss the applica-
tion of this algorithm to large-scale data sets as being reported in Section 5.4.
To explain the reasons for the ideas behind their derivative free algorithm, let

us firstly take a look at clustering in Section 5.1.

5.1 Overview of Clustering

In general, the unsupervised classification of the patterns is called clustering.
The clustering process can be thought as dividing patterns into clusters accord-

ing to their similarities [1, 6].

The aim of cluster analysis is to partition a given finite set X which has finitely

60

many points of d-dimensional space R, i.e.,
X ={z',2?%,...,2"}, where z*ecR?¢ (i=1,2,...,n).

As a result of this partitioning and referring to a firstly given (later on in
Section 5.2 optimized) number ¢ € N, we come to ¢ overlapping or disjoint

subsets C; (i = 1,2,...,q) satisfying

i=1

The sets C; (1 =1,2,...,q) are called clusters. The clustering problem can be
cither a hard clustering problem or a fuzzy clustering one. A clustering
problem is called a hard clustering problem if a data point belongs to only
one cluster. In fuzzy clustering, there may exist two or more clusters including
the same data point, i.e., the clusters may overlap. In this chapter, the hard

clustering problem is considered rather than the fuzzy clustering, i.e.,
Ci[)Ce=0 if i#k (,k=12,...,9).

We note that there are no constraints on the clusters C; (¢ = 1,2,...,q) and

every point z € X is contained in exactly one set C;.

Considering the fact that each cluster C; can be identified by its center denoted
by a;, the clustering problem can be reduced to the following optimization
problem (see [10, 11, 60]), which is known as minimum sum of squares

clustering:

minimize 0(C,a) = %Z Z |a* — z||?,

(CL:O)) . ~ i=1 z€C;
subject to C € C,

C ={Cy,Cy...,Cy}, a=(a*d?%...,a?)T € R4

\

Here, || - || denotes the Euclidean norm, C is a set of clusters, C is a set of

61

all possible g-partitions of the set X, a* is the center of the cluster C; (i =
1,2,...,q). Let |C;] denote a cardinality of the set of clusters. Then, the

centers or centroids a’ can be represented by (cf. [6])

a* Z z.
[Cz[z€C;
In general, instead of (CLO), its rewritten form (RCLO) is used when direct

application of mathematical programming techniques is considered:

4

minimize P(a,w) = Z Z wy;lla? — 2,

z—l j=1

(RCLO) 4 subject to w;jE{O,l} (t=1,2,...,n; 7=1,2,...,q9) and

Zwij =1 (i=1,2,...,n), where

\ a=(aa?...,a0)7T and w = (Wij)iz19,.n; j=12,..q-

We note that (RCLO) is a mized-inieger optimization problem. The centers

can be rewritten as
n .
> wija?
i=1
i1
D Wi
i=1

Here, w;; is the association weight of the pattern z* with cluster j, given by

1, if pattern ¢ is allocated to cluster j (1 =1,2,...,n; j=1,2,...,9),
Wiz =
N 0, otherwise.

(5.1.1)

We note that w is an n X ¢ matrix, while a is a d X ¢ matrix.

Furthermore, (RCLO) is a global optimization problem with possibly many lo-
cal minima [6]. There are a number of algorithms in the literature that can be
used for solving these kinds of problems like dynamic programming [60], branch

and bound [23], k-means [1] algorithms. An overview of these algorithms can be

62

found in [32]. In general, solving the clustering problems with these algorithms
is a task which takes significantly much time. This fact makes it necessary
to develop clustering algorithms which will compute the local minimizers by
making use of optimization techniques in the solution procedures. In [6], a
clustering algorithm is suggested which is based on non-smooth optimiza-

tion techniques.

5.2 Clustering via Non-Smooth Optimization

5.2.1 Algorithmic Framework

Before stating the algorithm, let us give a modeling and analysis of the non-

smooth optimization approach to minimum sum of squares clustering.

The problems (CLO) and (RCLO) which we stated in the previous section, can
be reformulated as a clustering problem in terms of unconstrained non-smooth

and non-convez optimization as follows (see [7, 8, 10, 11]):
€cLP) minimize f(a) (a = (a*,d?...,a9)7T € R%9),

where
1 : i)2
fla) = 72 1j21113.212"q la® — z*||%. (5.2.2)

i=

The intuitive clear equivalence between the problems (CLO), (RCLO) and
(CLP) is also explicitly proved in [10]. The number of variables in (RCLO)
is (n +d) x q, whereas it is d x ¢ in (CLP). This shows that the number of
variables in (CLP) does not depend on the number of instances n. In fact,
the number of instances n is greater than the number of attributes d in many

real-world data bases.

As an advantage, we note that the non-smooth optimization problem (CLP)
contains only the continuous real variables but not the integer coefficients w;;,

whereas the problem (RCLO) reveals both integer and continuous variables.

63

If the number of clusters is greater than one, i.e., ¢ > 1, then the objective
function (5.2.2) in problem (CLP) is non-convex and non-smooth. We call
a global optimization problem large-scale if the number q of clusters and the
number d of attributes are large. In clustering analysis, it is important to
choose a meaningful number g of clusters. We usually do not know how
many clusters represent the considered set X a priori. This difficulty can be
overcome by calculating clusters step-by-step in the optimization algorithm as

discussed in the next section.

We also emphasize that the non-smooth form of the objective function in the
problem (CLP) makes it possible to accelerate the calculation of the objective

function significantly by reducing the number of records in a data set.

Algorithm (Framework) 5.1. This is an algorithm developed for solving
cluster analysis problem (CLO) where, in addition, the minimization is also

with respect to g € N.
Step 1: Initialization

Select a tolerance ¢ > 0. Select an initial point a® = (a$,a,...,a%)”T € R% and
solve the minimization problem (CLP) with ¢ = 1. Let a'* € R? be a solution to

this problem and f* be the corresponding objective function value. Set k = 1.
Step 2: Computation of the next cluster center

Select a point y° € R? and solve the following unconstrained (non-smooth)

minimization problem:

(MP) minimize f*(y) (y € RY),

where f¥(y) :=) min {|la’ — &I, |a® — 2%, |a* — 2%, [ly — 2°|*}.
i=1
Step 3: Refinement of all cluster centers

Let 7*T1* be a solution to problem (M7P). Take

ak:+1,0 — (al*} 032* fox gk+1,*)T

Y S as a new starting point and solve the follow-

ing unconstrained (non-smooth) minimization problem:

64

(MP2) . minimize [*(a) (= (a'a?...,aF)T € RIXEHD),

where f¥1(a) := Z . mixllC+1 lla? — |2

Pl R

Step 4: Stopping criterion
Let a**1* be a solution to the problem (M7P2) and f*+1* be the corresponding

value of the objective function. If

kx _ pk+1x
f“ = f

fl*

< €,

then stop, otherwise set k¥ «— k + 1 and go to Step 2.]

The important item which we should discuss is about the choice of the tolerance
€ > 0. Large values of ¢ can result in the appearance of large clusters, whereas
small values can produce small and artificial clusters. In order to explain this,

we give an example.

Example 5.2. [6] Let us consider one artificial data set on R?. There are three
isolated clusters in this data set given by the following formulas, respectively:

Xt = {xk € R? | o* = (2%, 28), =¥ = élsin(k)[, zk =24 [cos(k)|, k= 1,2,...,50} ,

X% = {a:k eR? | 2% = (zF,2F), =¥ = é(l +sin(k)), =k = |cos(k)|, k= 1,2,...,50},
X3 = {xk eR? | z* = (2%, 28), ¥ =24 |cos(k)|, =k = g +sin(k), k= 1,2,...,50}.

If ¢ = 107, then Algorithm (Framework) 5.1 with the appropriate subalgorithm
for solving the subproblems exactly calculates these three clusters; if € = 1072,
then this algorithm divides the third cluster into three clusters and leaves two
other clusters unchanged. If ¢ > 0 is smaller, then we get a further division
of these clusters. So, if ¢ is small enough, we obtain some artificial clusters.
The results of numerical experiments show that the best values for € are ¢ €
[1071,1077]. O

65

5.2.2 An Algorithm for Solving Optimization Problems

in the Algorithmic Framework

Let us also explain an algorithm for solving non-smooth optimization problems
(MP) and (MP2) in the clustering Algorithm 5.1. We state some definitions

from non-smooth analysis for more easily following of the issue.

5.2.2.1 Some Elements of Non-smooth Analysis

Definition 5.3. Let ® : R? — R be a given function. This function is said to
be a locally Lipschitz continuous on RP? if for any bounded subset S € RP

there exists a constant L > 0 such that

[®(y) — @(w)| < Llly —ul| Vy,ues. O

The function @ is differentiable almost everywhere [13] and one can define for
it a Clarke subdifferential by

0®(y) == co {v eR? | I(y* € D(®), y* -y (k- +o0)) 1 v = klim V@(yk)} .

—+00

Here, D(®) C R? denotes the domain set where ® is differentiable and “co”

denotes the convex hull of a set. This set is nonempty [13].

Since the objective functions f* and f* in problems (MP) and (MP2), respec-
tively, are represented as a sum of minima of norms, they are locally Lipschitz

continuous.

Definition 5.4. (Directional Derivative)
A given function @ : R? — R is called differentiable at the point y € RP with
respect to the direction g € R? if the limit

. P(y+ag)—2(y)
, I =
(y,g) = lim >

exists. In case of this directional differentiability of ® at y, the number ®'(y, g)

66

is said to be the derivative of the function ® with respect to the direction g € RP
at the point y. |

Definition 5.5. (Clarke Upper Derivative)
The Clarke upper derivative ®°(y, g) of a given function ® : R? — R at the
point y with respect to the direction g € RP is defined as follows:
. B(utag)—
q)o(ya g) = lim Supoz—)-l—O,u—»y —M?XM' O

It should be noted that the Clarke upper derivative always exists for locally

Lipschitz functions.

Definition 5.6. (Clarke Regularity)
A given function @ : R? — R is said to be Clarke regular at the point y € RP
if

(y,g9) = ®°y,g) forall geRP. O

5.2.2.2 Consequence for the Clustering Problem

For Clarke regular functions there exists a full calculus (see, e.g., [10, 11]).

However, in general, for non-regular functions such a calculus does not exist.

Functions represented as a minimum of norms such as arising in our classification
problems, are not Clarke regular. Since the sum of non-regular functions is
not regular, our functions f* and f* in general are not regular. Therefore,
subgradients of these functions cannot be calculated using subgradients of their
terms. We can conclude that the calculation of the subgradients of the functions
f* and fF is a very difficult task and, hence, the application of methods of non-
smooth optimization requiring a subgradient evaluation at each iteration, can
not be effective. Therefore, we use the so-called discrete gradient method to
solve the problems (MP) and (MP2) in which the subgradients of the objective
function are replaced by its discrete gradients. A detailed description of this

method can be found in [4].

67

The discrete gradient method uses values of the objective function only. It
should be noted that the calculation of the objective functions in the problems
(MP) and (MP2) can be expensive when the number of instances in the data
set is large. We will show that the use of the discrete gradient method allows

one to significantly reduce the number of objective function evaluations.

5.3 Discrete Gradient Method

In this subsection, we will briefly introduce the discrete gradient method. We
start with the definition of the discrete gradient. Here, we follow the authors
[6] along a refined way of approximating or substituting a given or not given

gradient (directional derivative) by difference quotients.

5.3.1 Definition of Discrete Gradient

Let @ : R? — R be a locally Lipschitz continuous function defined on R?. Let
Sy :={g e R”| [|lg[l =1},

G:={ccR|e=(ees...,¢,)7, lej| =1, 5 =1,2,...,p},
I(g,0) :=={i e {L,2,...,p} | |gs| =}, and
Pi={z:(0,00) > R | 2(A) €R, z(A) >0 (A>0), A'2(A) = 0, (A — 0)},
where a € (0,p/?] is a fixed number.

Here, S; is the unit sphere, G is the set of vertices of the unit hypercube in R?,

and P is the set of so-called univariate positive infinitesimal functions.

We define operators H} : RP — RP (i = 1,2,...,p; j = 0,1,...,p) by the

68

formula

. a5 G3,0, ..., 0), if § <1,
Hige— { 0000) st (5.3.3)
(91:927“- 7gi~1:0; 9it1; - >gj7 0)7 lf.] > 4.
We can see that
, . 0,...,0,9;, L0), i=1,2,...,p, j#i,
Hig— Hilg = (95,0), ifj P, J#i (5:3.4)
0 if j =¢.

For any e := (ey,€2,...,€p)T € G we put: e(8) := (fe1, B, ..., (Pe,)T, where
8 € (0,1]. For y € R, we consider vectors

yf :=yg(g,e,z,)\,,8)=y+)\g—z()\)er(ﬁ) G=1,2,....,p; j=12,...,p).

From (5.3.4), it follows that
PR 0,...,0,2(\), €;(8),0,...,0), ifj=1,2,....d, j#i,
‘ ’ 0 if j =i,

(5.3.5)
It is clear that HYg = 0 and 39(g,e,2, A\, 8) =y + Ag for all i € I(g,).

Definition 5.7. The discrete gradient of a given function ® : R? — R at

some point z € R? and any ¢ € I(g, «) is the vector
Fi(a)?g, ¢, 2,)‘:18) = (Iwia F%’ AR F;)>T € RP (g € Sl)
with the following coordinates of difference quotient type for j =1,2,...,p

= (zNe; (B) 7 (24 H(9,6.2, A, 8)) — (4 (9., 2,1, 0))) (4 #1),

F§=(>\gz-)“1((¥ (9,6, A, 8)) — B(y) ~ Z Ii(Ag; — Z(/\)ea(ﬂ)))

J=1,37#4

69

Now, let us state the discrete gradient method with the sequences (Ax)xengs
(zk)keNo and (,Bk)keNm where 514: >0, 2, € P, A > 0, ﬂk € (0, 1] (k € No), 51‘, —
0F, 2z — 0%, Ay — 01, B — 01 (k — +00), and let numbers ¢; € (0,1), ¢z €

(0, ¢1] be given.

5.3.2 The Algorithm

Algorithm 5.8. The discrete gradient method is working as follows:
Step 1: Choose any starting point y° € R? and set k = 0.
Step 2: Set s = 0 and y* = y*.

Step 3: Apply the algorithm stated in [6] for the calculation of the descent
direction at y = y*, § = 6, 2 = 25, A = Ag, 8 = Bi, ¢ = c;. This algorithm
terminates after a finite number of iterations [> 0. As a result, we get the set

Dy (y*) which is the topological closure of D;(y*), and an element v* such that
lvg]l = min{|lv]l | v € Di(ys)}-

Furthermore, either ||v¥|| < & or for the search direction g¥ := —|[v*|[~2vF it
holds
B(ys + Aegs) — @(y5) < —cr vl

Step 4: If [[v¥| < &, then set y**! := y*, k « k + 1 and go to Step 2.
Otherwise, go to Step 5.

Step 5: Construct the following iteration y*, | := y¥+0,9¥ , where o, is defined

as follows:

0, = arg max{o > 0 | ®(y; +ogy) — D(y;) < —coo v}

Step 6: Set s «— s+ 1 and go to Step 3. |

70

5.4 Numerical Results

The numerical experiments presented in this section are carried out on a
Pentium-4, 1.7 GHz, PC to verify the effectiveness of the clustering algorithm
[6]. The algorithms which are compared on three standard problems are k-
means (K-M) [1], j-means (J-M+) [33], variable neighborhood search (VNS)
[34], global k-means (G1) [43], fast global k-means (G2) [35], tabu search (TS)
[29], genetic algorithm (GA) [58] and simulated annealing (SA) [39)].

Additionally, the results obtained using K-M, TS, GA and SA and presented
in [61], as well as, the results obtained using K-M, J-M+, VNS, G1, G2 and
presented in [33, 35] for comparison. We note that TS, GA and SA have been
applied to problem (RCLO) which is equivalent to the non-smooth optimization
formulation of a clustering problem (CLP).

In the tables below, the best known value for the global minimum is reported
for some selected problems. These values are given as nf(z*) where n is the
number of instances and z* is a local minimizer. For each algorithm we define
the relative error E by

i U fomt) g0

f opt
Here, f and fopt denote the solution found by some considered algorithm and
the best known solution, respectively. In the forthcoming tables, please find the

corresponding values for E.

The average results for 10 restarts from [33, 35] for K-M, J-M+ and VNS are
used. However, for the clustering Algorithm (Framework) 5.1, one resulf is

presented since the starting points are updated by the algorithm itself.

The three clustering test problems used for comparing the Algorithm (Frame-
work) 5.1 with K-M, TS, GA and SA are as follows [60]:

1. The first set is known as German towns, which uses the Cartesian coordi-

nates of 59 towns and has 59 records with 2 attributes.

2. The second set contains 89 postal zones in Bavaria (Germany) and their

71

names. It contains 89 records with 3 attributes.

3. The third set consists of the above Bavarian postal zones but with four
attributes; these are the number of self-employed people, of civil servants,

clerks and manual workers. The number of instances is again 89.

Results of the numerical experiments are presented in Tables 5.1-5.3.

g || best known value nf(z*) | K-M | TS | GA | SA | Alg. 5.1
E E E E B

2 0.121426 - 10° 0.00 |{ 0.00 | 0.00 | 0.00 | 0.00

3 0.77009 - 10° 1.45 |1 0.00 | 0.00 | 0.29 | 0.29

4 0.49601 - 10° 0.55 [0.00 | 0.00 | 0.00 | 0.00

5 0.39453 - 10° 2.75 1 0.00 | 0.15 | 0.15| 0.15

Table 5.1: Results for German towns data base (relative errors) [6].

From Table 5.1, we see that Algorithm (Framework) 5.1 achieves better results
than k-means for all number of clusters and has similar results with simulated
annealing. Although the results of tabu search and Algorithm (Framework)
5.1 are close, tabu seach is better for three and five clusters. The genetic
algorithm is slightly better than Algorithm 5.1 for three clusters. The solutions
obtained by the Algorithm 5.1 are very similar and close to the solutions of
global optimization techniques. It can be derived that this algorithm can be
used to calculate the deep local minima. of the objective function in a clustering
problem [6]. By a deep local minimizer we understand a local solution with its
objective value being relatively close to the value of the global solution and,

herewith, locally the best clearly.

g || best known value nf(z*) | K-M TS GA SA | Alg. 5.1
E E E E E
2 0.60255 - 10*2 7.75 | 0.00 { 0.00 | 0.00 0.00
3 0.29451 - 10%? 23.48 | 23.48 | 23.48 | 23.48 | 0.00
4 0.10447 - 10%2 166.88 | 18.14 | 0.00 | 0.39 0.00
15 0.59762 - 10*2 335.32 | 33.35 | 0.00 | 40.32 | 0.00

Table 5.2: Results for the first Bavarian postal zones data set (relative errors) [6].

72

From Table 5.2 we can see that Algorithm 5.1 again gives better results than
the k-means algorithm. Algorithm 5.1 achieves better results than TS and SA
for all values of g, except ¢ = 2 and a better result than GA for g = 3 [6].

q || best known value nf(z*) | K-M TS GA SA | Alg 5.1
E E E E E

0.199080 - 10 144.25 | 0.00 | 144.25 | 144.25 | 144.25
0.173987 - 10 106.79 | 0.00 | 0.00 | 77.77 | 0.00
0.755908 - 1019 303.67 | 0.00 | 0.00 9.13 0.00
0.540379 - 10™° 446.13 | 15.76 | 15.76 | 18.72 0.00

Oy [N

Table 5.3: Results for the second Bavarian postal zones data set (relative errors)

[6].

The results presented in Table 5.3 show that for this data set, Algorithm (Frame-
work) 5.1 achieves better results than the k-means algorithm and SA. The result
obtained by our Algorithm 5.1 for ¢ = 5 is better than those obtained by TS
and GA. However, TS is best for ¢ = 2 [6]. From Tables 5.1-5.3, we infer that
at least for these three data sets, Algorithm (Framework) 5.1 works better than
the k-means algorithm and achieves close, similar and sometimes better results
than tabu search, genetic and simulated annealing algorithms. These results
confirm that the proposed algorithm, i.e., Algorithm 5.1, may be used for find-
ing a global minimum of the objective function of a clustering problem since it

finds deep local minima successfully as seen in Tables 5.1-5.3 [6].

For the comparison of the proposed algorithm with K-M, J-M+, VNS, G1 and

(G2 we have used the following data sets:

1. the first Bavarian postal zones data set;
2. Fishers iris data set: it contains 150 instances and 4 attributes [16];

3. 2-dimensional data on 1060 points in the plane from a traveling salesman
problem of [34] (TSPLIB; n = 1060);

4. 2-dimensional data on 3038 points in the plane from a traveling salesman
problem of [34] (TSPLIB; n = 3038).

73

q Sopt K-M J-M+ VNS VNS-1 | G1 | G2 | Algorithm 5.1

Emean| Epest |[EmeanBrestBmeanEpest] E E B E time
2 ||0.60255 - 1012 7.75 7.75 | 0.00 [0.00| 0.00 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.01
3 |[l0.29451-10%2|f 23.40 | 20.02 | 0.00 |[0.00| 7.04 [0.00| 0.00 | 0.00 | 0.00 [0.00 [0.12
4 |l0.10447-102 |} 156.17 | 0.08 | 0.00 |0.00| 0.00 |0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.30
5 |l0.59762 .10 || 315.28 | 23.58 | 0.00 |0.00| 0.00 [0.00| 0.00 | 0.00 | 0.00 [0.00 | 0.54
6 |00.35909- 10 || 531.44 | 27.79 |27.70(27.65 11.06 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.71
7 10.21983 - 1011 || 832.60 | 69.39 |44.00{0.00| 7.07 [0.00| 0.00 | 0.00 | 0.00 | 1.48 { 1.06
8 ||0.13385- 10'1|1239.64| 0.00 | 0.24 [0.00| 0.00 [0.00{ 0.00 | 0.00 | 0.00 | 0.00 | 1.61
9 |(0.84237- 1019/ 1697.17| 35.81 |28.59|0.00(0.00 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 2.52
10 ||0.64465 - 100|/1638.30| 57.81 | 0.16 [0.00| 0.00 |0.00 | 0.00 | 0.00 | 0.00 | 11.32 | 3.61
14 |{0.21155-10%0(|1922.39| 67.10 |11.48(0.00|0.00 [0.00| 0.00 | 1.48 | 0.11 | 0.00 | 7.86
18 || 0.98069 - 10° |[2703.85| 244.13 | 5.62 |0.00| 1.11 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 13.65
22 |[0.54214-10° ||4735.31| 228.89 | 18.55[4.71| 5.56 [0.00| 0.00 | 0.00 | 0.00 | 0.74 | 20.26
26 |(0.28223 - 10° ||8835.90| 105.62 | 6.19 [0.00| 0.00 [0.00| 0.00 | 6.44 | 9.14 | 1.96 | 28.01
30 |/ 0.17138.10° {14032.88 171.98 | 8.17 [0.00| 0.53 [0.00f '0.00 | 0.00 | 3.80 | 0.01 | 34.48

Table 5.4: Results for

running time) [6].

The results presented in Table 5.4 demonstrate that for the first Bavarian postal
zones data set Algorithm 5.1 performs better than K-M and J-M-+, and slightly
better than VNS. The results obtained by Algorithm 5.1 and G2 are almost
similar. G1 performs better than Algorithm 5.1 for ¢ = 7, 10, 22. The deviation

of the results obtained by Algorithm 5.1 from the global minimum is zero or

very small for all g except ¢ = 10 [6].

the first Bavarian postal zones data

set (relative errors,

q Sont K-M J-M+ VNS VNS-1 | G1 G2 | Algorithm 5.1

Emean |Boes| Bmean | Brest |Emeanifbesy E | E | E | B | time
2 152.35 0.00 [0.00] 0.00 0.00 | 0.00 |0.00(0.00 0.00 | 0.00 | 0.00 0.02
3 78.851 13.35 (0.00] 0.00 0.00 | 0.00 [0.00(0.00 0.00 | 0.00 | 0.00 0.19
4 57.228 11.26 (0.00] 2.40 0.00 | 0.00 |0.00| 0.00 0.00 | 0.00 { 0.00 0.56
5 46.446 13.83 10.00 3.97 0.00 | 1.46 |0.00| 0.00 0.00 | 0.06 | 0.00 0.83
6 39.040 16.21 |0.00| 4.26 0.00 | 0.01 {0.00| 0.00 0.00 | 0.07 | 0.00 1.09
7 34.298 17.43 |0.00f 2.86 0.00 | 0.00 |0.00 0.00 0.02 | 1.55 | 1.34 2.47
8 29.989 20.81 10.00(2.76 0.00 | 0.02 (0.00(0.00 0.01 | 0.25 | 0.00 3.25
9 27.786 18.80 |0.00 1.62 0.00 | 0.00 |0.00| 0.00 0.01 | 0.82 | 1.37 4.72
10 || 25.834 1743 10.16| 2.84 0.00 | 0.42 (0.00(0.00 0.51 | 1.00 | 0.00 5.91

Table 5.5: Results for the Fishers iris data set (relative errors, running time) [6].

74

The results for the Fishers iris data set presented in Table 5.5 show that for
this data set, Algorithm 5.1 gives better results than K-M and J-M+, and
slightly better results than G2. The results by VNS and Algorithm 5.1 are
quite similar. G1 gives better or similar results for all values of g except ¢ = 10.
We can see that the deviation of the results from the global minimum obtained

by Algorithm 5.1 is zero or small for all g [6].

q Sopt K-M [J-M+ | VNS | Algorithm 5.1
E E E E time

10 || 0.17548-10%0 || 0.03 | 0.19 | 0.04 | 0.18 | 5.49

20 || 0.79179-10° | 3.96 | 0.04 | 0.83 | 0.72 | 81.11
30 || 0.48125.10° || 10.51 | 1.82 | 0.42 | 0.56 | 189.40
50 || 0.25551-10° || 16.58 | 3.84 | 1.70 | 0.98 | 534.84

Table 5.6: Results for the TSPLIB (n=1060) data set (relative errors, running time)

[6].

From Table 5.6, we learn that the results by J-M-+, VNS and Algorithm (Frame-
work) 5.1 for the TSPLIB (n = 1060) data set are comparable and these algo-
rithms perform better than K-M. Again, Algorithm 5.1 produces results which
are very close to best known ones. For the TSPLIB (n = 3068) data set the
results by Algorithm 5.1 are better than those for K-M and J-M+ and compa-
rable with those for VNS and G2. We can conclude that Algorithm 5.1 reaches
the best known solution in many cases and gives results which are close to the

best ones in all other cases [6].

The results presented in Tables 5.1-5.7 show us that by using Algorithm (Frame-
work) 5.1 one can calculate the global minimizer or best known solution of the
minimum sum of squares clustering problem in 37 cases out of 55 (67%). More-
over, we can calculate a solution which is close to the best one in all other
cases. Although Algorithm 5.1 allows us to find at least a deep local minimizer
in many minimum sum of squares clustering problem, there is no guarantee that

we can always find one with this local method.

Algorithm (Framework) 5.1 requires much more computational time than K-M

and J-M+. However, it requires significantly less computational time than G1

75

q fopt K-M J-M+ VNS VNS-1 | G1 | G2 | Algorithm 5.1

Emcan] Ebest |BmeariBoestBmeaniFres) E | E | E | B | time
2 || 0.31688-10%¢ |l 0.00 | 0.00 | 0.00 |0.00| 0.00 [0.00| ©0.00 | 0.00 | 0.00 | 0.00 | 0.02
3 || 0.21763-10'® |[1.55 | 0.00 | 1.29 |0.00| 1.37 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.26
4 || 0.14790-10'° || 0.03 | 0.00 | 0.00 [0.00| 0.00 |0.00| 0.00 | 0.00 | 0.00 | 0.00 0.46
5 || 0.11982-10%° |f 0.12 | ©0.00 | 0.11 |0.00| 0.10 [0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.76
6 0.96918-10° || 1.22 | 0.00 | 1.98 |0.00| 0.01 |0.00(0.00 | 0.00 | 0.02 | 0.00 | 1.25
7 0.83966-10° || 1.65 | 0.00 | 1.48 [0.00{ 0.73 |0.00| 0.00 | 0.00 | 0.84 | 0.00 | 1.79
8 0.73475-10° || 1.80 | 0.00 | 1.48 [0.00{ 0.62 [0.00| 0.00 | 0.00 | 1.28 | 1.71 | 2.57
9 0.64477-10° || 1.47 | 0.00 | 0.99 |0.01| 0.11 |0.00| 0.00 | 0.00 | 1.41 | 0.00 | 4.10
10 || 0.56025-10° | 2.44 | 0.00 | 1.81 [0.00{ 0.06 |0.00| 0.00 | 0.00 | 0.00 | 0.00 | 5.85
20 || 0.26681-10° |[8.16 | 0.02 | 2.60 |0.05| 0.09 {0.01] 0.00 | 0.01 | 0.42 | 0.45 | 61.65
30 || 0.17557-10° || 4.04 | 0.60 | 2.89 |0.42| 0.91 [0.01| 0.00 | 0.00 | 1.48 | 0.82 | 255.17
40 || 0.12548-10° || 6.21 | 0.67 | 8.49 |0.00{ 0.93 {0.00| 0.00 | 0.42 | 1.42 | 0.70 | 586.13
50 || 0.98400-10% |[6.79 | 0.79 | 3.51 |0.74| 0.33 [0.00| 0.00 | 0.07 | 1.18 | 1.04 | 1062.10

Table 5.7: Results for the TSBLIB (n=3038) zones data set (relative errors, running
time) [6].

algorithm. The ability of Algorithm (Framework) 5.1 to solve minimum sum of

squares clustering problems in large data sets is also limited.

The numerical experiments presented in this chapter show that Algorithm
(Framework) 5.1 is able to solve clustering problems in data sets with n x d <
5-10° and d < 1000 for a reasonable time without using any complexity reduc-

tion procedures!

Remark 5.9. There are many further fields where clustering theory and, here-
with, the explanations of this chapter will more and more become fruitful.
Among of them, we mention computational biology and bioinformatics (see,
e.g., [28]) and financial mathematics (see, e.g., [42]). In the first one of these
areas, clustering is used in gene ezpression data analysis and molecular mech-
anisms of heavy metal response in P. chrysosporium [49]. In the second one,
customers of loan banks are clustered and prototypes of contracts prepared by
loan banks in this way [40, 41]. Here, a new approach consists in modeling the
payments by hidden Markov models (HMM) and classifying them by clusters
[41]. O

76

5.5 Concluding Remark

In this chapter, we learned about how valuable an enrichment non-smooth meth-
ods are for derivative free optimization and its practical utilization. We saw
that in the emerging area of data mining with its various clustering problems,
non-smooth optimization means a precious alternative and promises worthwhile

future applications in science, technology, social and public live. O

77

CHAPTER 0

CONCLUSION

Mathematical programming in the absence of derivatives or, what is even more
worse, in the presence of finitely many values of f only, is one of the greatest
and most challenging problems in modern applied mathematics. This thesis
tried to give a valuable overview, a structuring of given approaches, new con-
tributions and views. These new views come, e.g., from mathematical data
evaluation theory, i.e., statistical learning, inverse problems and data mining.
A special contribution consists in the author’s participation in the search on

stirrer configuration.

Two implementations of derivative free methods have been used in this thesis.
The first one we made for our derivative free method, applied to a stirrer con-
figuration problem from chemical engineering, manufacturing or ecology. We
used DFO, a FORTRAN package developed for solving general nonlinear opti-
mization problems. We optimized the power number and the Newton number

for standard stirrer configuration when the Reynolds number is 100.

The second implementation we did is for the derivative free clustering algorithm
in combination with the non-smooth optimization methods. We have presented
the results of this derivative free algorithm and compared them with various
algorithms from the literature. We have confirmed and recommended that this
clustering algorithm can be used for finding a global minimum of the objective
function of a clustering problem. It is able to very well approximate the best
known solution in many cases and to give results which are close to the best

ones in all other cases.

We are looking forward for worthwhile and important applications of derivative

78

free optimization, serving for overcoming various future challenges of modern

civilization and life.

79

APPENDIX A

SOME NOTATION

Let an open set U € R and a number k € NgU{oo} be given [68]. For a k—times
continuously differentiable, i.e., C*-function f : U — R we denote the partial

derivative of r** order (r < k) at some point z € U by

of =
——— |z Qq, 09, ..., EN)‘ E Olyy =T,
8:‘1;111 gzzags() (? 3 7 I jzl v

The sequence of differentiation can be changed arbitrarily - also in notation.
(Sometimes the whole differentiation operator stands in front of f.) In the case

r = 0, this number is f(z) itself. The row vector of first partial derivatives

folz) = E(2),
b
(Oz (@)) je{1,2,..,n}
is denoted by V f(z) := D f(z), while D7 f(z) stands for the transposed column
vector (k > 1).

Let V2f(z) := D?f(z) represent the matrix of second partial derivatives, called
the Hessian (k> 2):

82F)
z
(3’”2'3””:‘() i€{1,2,..n}; je{1,2,m}

In case n = 1, we use symbols %(m), %(w) and replace z by ¢ sometimes.

80

APPENDIX B

A SUBROUTINE OF DFO FOR

STIRRER CONFIGURATION

The following is the subroutine which we use in the optimization process for
finding the Newton number and power number. The values of power number
and Newton number are inputted into DFO as initial values with the subroutine
FUN. Then, these values are optimized by DFO.

SUBROUTINE FUN(N, X, F, IFERR)
DOUBLE PRECISION X(N), F
LOGICAL IFERR, ex
INTEGER N, status
open (20, File=‘a.dat)
doi=1, N
write(20, %) X(i)
end do
close(20)
100 inquire (File=‘b.dat’, Exist=ex)
if (ex) then
open(95, File=‘b.dat’)
read(95, *) F
close(95)
status=unlink (‘b.dat’)
IFERR = .false.
else
pause ’testing...’
goto 100

endif

81

[1]

[2]

[3]

[5]

[7]

[8]

REFERENCES

D. Akume and G.-W. Weber, Cluster algorithms: Theory and Methods, Journal
of Computational Technologies 7, 1 (2002) 15-27.

R.C. Aster, B. Borchers and C. Thurber, Parameter Estimation and Inverse
Problems, Academic Press, 2004.

M. Awad and L. Khan, Applications and Limitations of Support Vector Ma-
chines, ed. John Wang to appear in Encyclopedia of Data Warehousing and
Mining by Information Science Publishing, 2004.

A.M. Bagirov, Minimization methods for one class of nonsmooth functions and
calculation of semi-equilibrium prices, in: Progress in Optimization: Contribu-
tion from Australasia, A. Eberhard et. al. (eds.), Kluwer Academic Publishers
(1999) 147-175.

A.M. Bagirov, A method for minimization of quasidifferentiable functions, Op-
timization Methods and Software 17, 1 (2002) 31-60.

A.M. Bagirov and J. Yearwood, A new nonsmooth optimization algorithm
for minimum sum-of-squares clustering problem, Centre for Informatics and
Applied Optimization, School of Information Technology and Mathematical
Sciences, University of Ballarat, Victoria 3353, Australia.

A.M. Bagirov, A.M. Rubinov and J. Yearwood, Using global optimization to
improve classification for medical diagnosis and prognosis, Topics in Health
Information Management 22 (2001) 65-74.

A.M. Bagirov, A.M. Rubinov and J. Yearwood, Global optimization approach
to classification, Optimization and Engineering 22 (2001) 65-74.

82

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

R. Bates, P. Fondy and R. Corpstein, An examination of some geometrical
parameters of impeller power, Ind. Eng. Chem. Proc. Des. Dev. 2 (1963) 310-
314.

H.H. Bock, Automatische Klassifikation, Vandenhoeck and Ruprecht,
Gottingen, 1974.

H.H. Bock, Clustering and neural networks, in: Advances in Data Science and
Classification, A. Rizzi, M. Vichi and H.H. Bock (eds.), Springer-Verlag, Berlin,
1998, 265-277.

F. Cazals and M. Pouget, Estimating differential quantities using polynomial
fitting of osculating jets, Eurographics Symposium on Geometry Process-
ing, 2003, http://graphics.stanford.edu/courses/cs468-03-fall/
Papers/cazals_jets.pdf.

F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

A.R. Conn, K Scheinberg and Ph.L. Toint, On the convergence of derivative-
free methods for unconstrained optimization, in: Approximation Theory and
Optimization: Tributes to M.J.D. Powell, A. Iserles and M. Buhmann (eds.),
Cambridge University Press, Cambridge, UK, 1997, 83-108.

A.R. Conn and Ph.L. Toint, An algorithm using quadratic interpolation for
unconstrained derivative free optimization, in: Nonlinear Optimization and
Applications, G. Di Pillo and F. Giannessi (eds.), New York, Plenium Publishing
(1996) 27-47.

A.R. Conn, K. Scheinberg and Ph.L. Toint, Recent progress in unconstrained
nonlinear optimization without derivatives, Mathematical Programming 79
(1997) 397-414.

A.R. Conn, K Scheinberg and Ph.L. Toint, Derivative free optimization algo-
rithm for constrained problems, preprint, IBM T.J. WATSON Research Center,
1999.

83

[18] A.R. Conn, K. Scheinberg and L.N. Vincente, Geometry of sample sets in
derivative free optimization part I: polynomial interpolation, preprint, Depar-
tamento de Matemdtica, Universidade de Coimbra, April 2003, revised: Sep-
tember 2004.

[19] A.R. Conn, K. Scheinberg and P.L. Toint, A derivative free optimization

method via support vector machines, 1999.

[20] A.R. Conn, N.ILM. Gould and P.L. Toint, Trust-Region Methods, MPS-SIAM
Series on Optimization, SIAM, Philadelphia, 2000.

[21] D. Cekmecilioglu, Feedstock optimization of in-vessel food waste composting
systems for inactivation of pathogenetic microorganisms, Seminar on Com-
putational Biology and Medicine, Institute of Applied Mathematics, 2005,
http://www.fde.metu.edu.tr/personal_sites/deniz/.

[22] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[23] G. Diehr, Evaluation of a brarich and bound algorithm for clustering, SIAM J.
Scientific and Statistical Computing 6 (1985) 268-284.

[24] M. Dunham, Data Mining Introductory and Advanced Topics, ISBN:
0130888923, Prentice Hall, 2003.

[25] L. Dupont, D. Lazard, S. Lazard and S. Petitjean, Near-optimal parame-
terization of the intersection of quadrics, presentation, San Diego, 2003,

http://www.loria.fr/~dupont/files/sandiego2003.pdf.

[26] M.J. Greenberg, Euclidean and Non-Euclidean Geometries (3rd ed.), W.H.
Freeman, New York, 1993.

[27] L.E. Eriksson, Practical three-dimensional mesh generation using transfinite

interpolation, SIAM J. Sci. Stat. Comput. 6, 3 1985, 712-741.

[28] W.J. Ewens and G.R. Grant, Statistical Methods in Bioinformatics: An Intro-
duction, Springer-Verlag, New York, 2001.

84

[29] F.W. Glover and M. Laguna, Tabu Search, Springer, 1997.

[30] A. Griewank, Computational differentiation and optimization, in: Mathemati-
cal Programming: State of Art, J.R. Birge and K.G. Murty (eds.), The Uni-
versity of Michigan, Ann Arbor, MI (1994) 102-131.

[31] A. Griewank and G. Corliss, Automatic Differentiation Algorithms, SIAM,
Philadelphia, PA, 1991.

[32] P. Hansen and B. Jaumard, Cluster analysis and mathematical programming,

Mathematical Programming, 79 (1-3) (1997) 191-215.

[33] P. Hansen and N. Mladenovic, J-means: a new heuristic for minimum sum-of-

squares clustering, Pattern Recognition, 4 (2001) 405-413.

[34] P. Hansen and N. Mladenovic, Variable neighborhood decomposition search,
Journal of Heuristics 7 (2001) 335-350.

[35] P. Hansen, E. Ngai, B.K. Cheung and N. Mladenovic, Analysis of global k-
means, an incremental heuristic for minimum sum-of-squares clustering, dis-

cussion papers, Group for Research in Decision Analysis 2002.

[36] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning,
Springer, New York, 2001.

[37] M. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill,
Boston, 2002.

[38] B. Karasozen and G. W. Weber, Numerical Optimization, lecture notes, Insti-
tute of Applied Mathematics, METU, Ankara, Spring 2003.

[39] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated an-
nealing, Science 220 (1983).

[40] B. Knab, R. Schrader, I. Weber, K. Weinbrecht and B. Wichern, Ein
Mesoskopisches Simulationsmodell zur Kollektivfortschreibung, preprint, ZAIK,

University of Cologne (1997).

85

[41] B. Knab, A. Schliep, B. Steckemetz and B. Wichern, Model-based clustering
with Hidden Markov Models and its application to financial time-series data,

preprint, ZAIK, University of Cologne (2002).

[42] D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to
Finance, Chapman&Hall, 1996.

[43] A. Likas, M. Vlassis and J. Verbeek, The global k-means clustering algorithm,
Pattern Recognition, 36 (2003) 451-461.

[44] C. Lin, Support vector machines for data classification, talk at Centrum voor
Wiskunde en Informatica, 2004, http://www.csie.ntu.edu.tw/~cjlin/
talks/cwi.pdf.

[45] R.J. Mooney, Support vector machines, Machine Learning Group, Depart-
ment of Computer Sciences, University of Texas at Austin, http://www.cs.

utexas.edu/users/mooney/cs391L/svm. ppt.

[46] S.C. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill,
1996.

[47] J.A. Nelder and R. Mead, A simplex method for function minimization, Com-
puter, j.7 (1965) 308-313.

[48] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Oper-
ations Research, 1999.

[49] S. Ozcan, V. Yildinm, L. Kaya, D. Becher, M. Hecker and G. ézcengiz, Phane-
rochaete Chrysoporium Proteomo and a large-scale study of heavy metal re-

sponse, preprint, Department of Biology, METU (2005).
[50] S. Pope, Turbulent Flows, University Press, Cambridge, 2000.

[51] M.J.D. Powell, A direct search optimization method that models the objective
and constraint functions by linear interpolation, in: Advances in Optimization

and Numerical Analysis, Proceedings of the 6th Workshop on Optimization and

86

Numerical Analysis, Oaxaca, Mexico, Vol. 275, Kluwer Academic Publishers,
Dordrecht (1994) 51-67.

[52] M.J.D. Powell, A direct search optimization method that models the objective
by the quadratic interpolation, presentation at the 5th Stockholm Optimization
Days, 1994.

[63] T. Sauer and Y. Xu, On multivariate Lagrange interpolation, Mathematics of
Computation 64 (1995) 1147-1170.

[54] M. Schifer, B. Karasézen, Y. Uludag, K.Yapict and O. Ugur, Numerical method
for optimizing stirrer configurations, preprint, Institute of Applied Mathematics,
METU, 2004.

[65] K. Scheinberg, Derivative free optimization method, preprint, IBM T.J. WAT-
SON Research Center, 2000.

[66] Manual for FORTRAN software package DFO v2.0, preprint, IBM T.J. WAT-
SON Research Center, 2003.

[57] SDSC, A national laboratory for computational science and engineering,
Overview of the SVM algorithm, http://svm.sdsc.edu/svm-overview.

html.

[58] B.A. Shapiro, J-C. Wu, D. Bengali and M. Potts, The massively parallel genetic
algorithm for RNA folding: MIMD implementation and population variation,
Bioinformatics 17 (2001) 137-148.

[69] J. Shi, Parallelization of the Multigrid Solver for Flows in Complex Geome-
tries: FASTEST2D-LBR, abstract, 2000 http://www.fz-juelich.de/zam/
gaststudenten/abstracts2000.html#SECTIONO5000.

[60] H. Spath, Cluster Analysis Algorithms, Ellis Horwood Limited, Chichester,
1980.

87

[61] K.S. Al-Sultan and M.M. Khan, Computational experience on four algorithms
for the hard clustering problem, Pattern Recognition Letters 17 (1996) 295-
308.

[62] G.B. Tatterson, Scaleup and Design of Industrial Mixing Process, McGraw-Hill,
New York, 1994.

[63] V. Torczon, On the convergence of the multidimensional search algorithm,
SIAM J. Optimization 1 (1991) 123-145.

[64] V. Torczon and J.E. Dennis, Direct search methods on parallel machines, SIAM
J. Optimization 1 (1991) 448-474.

[65] X. Wanf, Derivative-free optimization algorithms, report, Department of Com-
puting and Software, McMaster University, 2003.

[66] G. W. Weber, Statistical Learning and Simulation, lecture notes, Institute of
Applied Mathematics, METU, Ankara, Fall 2003-2004.

[67] G. W. Weber, Inverse Problems, lecture notes, Institute of Applied Mathemat-
ics, METU, Ankara, Spring 2004.

[68] G.W. Weber, Generalized Semi-Infinite Optimization and Related Topics, in:
Research and Exposition in Mathematics, K.H. Hofmann and R. Wille (eds.),

Heldermann Verlag, Germany.

[69] D. Winfield, Function and Functional Optimization by Interpolation in Data
Tables, Ph.D. Thesis, Harvard University, Cambridge, MA, 1969.

[70] D. Winfield, Function minimization by interpolation in a data table, Journal of
the Institute of Mathematics and its Applications 12 (1973) 339-347.

[71] M.H. Wright, Direct search methods: Once scorned, new respectable, in: Pro-
ceeding of the 1995 Dundee Biennal Conference in Numerical Analysis, D.F.
Griffiths and G.A. Watson (eds.), Addison-Wesley, Reading, MA, and Long-
man, Harlow, UK, 1996,

88

[72] K. Yapici, Numerical Method for Optimizing Stirrer Configurations, M.Sc. The-
sis, Graduate School of Natural and Applied Sciences, METU, 2004.

89

