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Abstract

STATISTICAL METHODS IN CREDIT RATING

SEZGİN Özge

M.Sc., Department of Financial Mathematics

Supervisor: Assist. Prof. Dr. Kasırga YILDIRAK

September 2006, 95 pages

Credit risk is one of the major risks banks and financial institutions are faced with.

With the New Basel Capital Accord, banks and financial institutions have the op-

portunity to improve their risk management process by using Internal Rating Based

(IRB) approach. In this thesis, we focused on the internal credit rating process. First,

a short overview of credit scoring techniques and validation techniques was given. By

using real data set obtained from a Turkish bank about manufacturing firms, default

prediction logistic regression, probit regression, discriminant analysis and classifica-

tion and regression trees models were built. To improve the performances of the

models the optimum sample for logistic regression was selected from the data set

and taken as the model construction sample. In addition, also an information on

how to convert continuous variables to ordered scaled variables to avoid difference

in scale problem was given. After the models were built the performances of models

for whole data set including both in sample and out of sample were evaluated with

validation techniques suggested by Basel Committee. In most cases classification and

regression trees model dominates the other techniques. After credit scoring models

were constructed and evaluated, cut-off values used to map probability of default ob-

tained from logistic regression to rating classes were determined with dual objective

optimization. The cut-off values that gave the maximum area under ROC curve and

minimum mean square error of regression tree was taken as the optimum threshold

after 1000 simulation.

iv



Keywords: Credit Rating, Classification and Regression Trees, ROC curve, Pietra

Index

v



Öz

KREDİ DERECELENDİRMEDE İSTATİSTİKSEL TEKNİKLER

SEZGİN Özge

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Kasırga YILDIRAK

Eylül, 2006 95 sayfa

Kredi riski, bankalar ve finansal kuruluşların karşılaştıkları başlıca risklerden biridir.

Yeni Basel Sermaye Uzlaşısıyla birlikte, bankalar ve finansal kuruluşlar iç dere-

celendirmeye dayanan yaklaşımla risk yönetimi yöntemlerini geliştirme olanağına

sahiptirler. Bu tezde iç derecelendirme yöntemi üzerinde durulmuştur. İlk önce,

kredi skorlama teknikleri ve geçerlilik testleri hakkında kısa bir tanıtım verilmiştir.

Daha sonra, imalat sanayi firmaları hakkında Türkiye’deki bir bankadan elde edilen

gerçek veri seti kullanılarak borcu ödememe tahmini, lojistik regresyon, probit re-

gresyon, ayırma (diskriminant) analizi ve sınıflandırma ve regresyon ağaçları model-

leri oluşturulmuştur. Modellerin performanslarını geliştirmek için, lojistik regresyon

için en iyi örneklem tüm veri kümesi içinden seçilmiştir ve modellerin kurulması için

kullanılacak örneklem olarak alınmıştır. Ayrıca, değişkenlerin ölçü farklılıkları prob-

lemini engellemek için, sürekli ölçekli verinin nasıl sıralı ölçekli veriye dönüştürüldüğü

hakkında bilgi verilmiştir. Modeller kurulduktan sonra modellerin performansları

örneklem içi ve dışı tüm veri seti için Basel Komitesi tarafından önerilen geçerlilik

testleriyle değerlendirilmiştir. Tüm durumlarda klasifikasyon ve regresyon ağaçları

modeli diğer yöntemlerden üstündür. Kredi skorlama modelleri oluşturulduktan ve

değerlendirildikten sonra, lojistik regresyon sonucu elde edilen ödememe olasılıklarını,

derece sınıflarına atayan kesim noktaları iki amaçlı optimizasyon ile belirlenmiştir.

1000 simülasyondan sonra ROC eğrisi altında kalan maksimum alanı veren ve re-

gresyon ağacı için minimum hata kareler ortalamasını veren kesim noktaları alınmıştır.
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Chapter 1

Introduction and Review of

Literature

Managing credit risk becomes one of the main topics of modern finance with the

recent dramatic growth in consumer credit. Credit risk is the risk of financial loss

due to the applicants’ failure to pay the credit back. Financial institutions and banks

are trying to deal with the credit risk by determining capital requirements according

to the risk of applicants and by minimizing the default risk with using the statistical

techniques to classify the applicants into ”good” and ”bad” risk classes. By taking

into account these facts Basel Committee on Banking Supervision put forward to use

risk based approaches to allocate and charge capital. According to the Committee

credit institutions and banks have the opportunity to use standard or internal rating

based (IRB) approach when calculating the minimum capital requirements [1].

The standard approach is based on the ratings of external rating agencies such as

Standard and Poors (S&P) and Moody’s whereas IRB is based on institutions’ own

estimates. IRB system can be defined as a process of assessing creditworthiness of

applicants. The first step is to determine the probability of default of the applicant by

means of statistical and machine learning credit scoring methods such as discriminant

analysis, logistic regression, probit regression, non-parametric and semi-parametric

regression, decision trees, linear programming, neural networks and genetic program-

ming.

The results of credit scoring techniques can be used to decide whether to grant or not

to grant credit by assessing the default risk. Since 1941 beginning with the Durand’s

[2] study most of the studies in literature has been concentrated on using qualitative

methods for default prediction. Less attention has been given to the second step
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of IRB approach. After default probability is estimated, observations are classified

into risk levels by cut-off values for default probabilities. By this way credit scoring

results not only used to decide to give credit, it can be also applied to credit risk

management, loan pricing and minimum capital requirement estimation.

This thesis is not only concentrated on credit scoring models but also the applicants

were mapped to the rating grades. This thesis is organized as follows:

Firstly, future works of default prediction are summarized, then short overview about

classification and New Basel Capital Accord [3] is given in Chapter 2 and Chapter

3. Chapter 4 and Chapter 5 give the technical details about statistical credit scoring

techniques and validation techniques. In Chapter 6 data set and the sample selected

are described, the model parameters are estimated, performances of models are com-

pared and optimal scale determination is explained. Concluding remarks are given

in Chapter 7.

1.1 REVIEW OF LITERATURE

Credit assessment decision and the default probability estimation have been the most

challenging issues in credit risk management since 1930’s. Before the development of

mathematical and statistical models, the credit granting was based on judgemental

methods. Judgemental methods have many shortcomings. First of all, the methods

are not reliable since they depend on creditors’ mode. The decisions may change

from one person to another, so they are not replicable and difficult to teach. They

are unable to handle a large number of applications [4]. By the development of

classification models and ratio analysis, these methods took the place of judgemental

methods.

The studies using ratio analysis generally use the potential information of financial

statements to make decision about the firm’s profitability and financial difficulties.

One of the most important studies about ratio analysis was conducted by Beaver in

1966 [5]. The aim of the study was not only to predict the payment of loans but

also to test the ability of accounting data to predict by using likelihoods. To avoid

sample bias, a matched sample of failed and non-failed firms was used in univariate

ratio analysis. Additionally, by profile analysis the means of ratios were compared. In

1968, Beaver [6] expanded his study to evaluate whether market prices were affected

before failure. The conclusion shows that investors recognize the failure risk and

change their positions of failing and so the price decline one year before failure.
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Beaver’s study [5] was repeated and compared with linear combination of ratios in

1972 by Deakin [7].

The earliest study about statistical decision making for loan granting was published

by Durand in 1941 [2]. Fisher’s discriminant analysis was applied to evaluate the

creditworthiness of individuals from banks and financial institutions. After this study,

the discriminant age of credit granting was started. This study followed by Myers

and Forgy [8], Altman [9], Blum [10] and Dombolena and Khoury [11].

In 1963, Myers and Forgy [8] compared discriminant analysis with stepwise multiple

linear regression and equal weighted linear combination of ratios. In this study, both

financial and non-financial variables were used. Firstly, the variables in nominal scale

were scaled into a ”quantified” scale from best to worst. Surprisingly, they found that

equal weighted functions’ predictive ability is as effective as other methods.

In 1968, Altman [9] tried to assess the analytical quality of ratio analysis by using the

linear combination of ratios with discriminant function. In the study, the discriminant

function with ratios was called as Z-Score model. Altman concluded that with the Z-

Score model that was built with matched sample data, 95 % of the data was correctly

predicted.

In 1974, Blum [10] reported the results of discriminant analysis for 115 failed and

115 non-failed companies with liquidity and profitability accounting data. In the

validation process, the correctly predicted percentages were evaluated. The results

indicates that 95 % of observations classified correctly at one year prior to default

but prediction power decreases to 70 % at the third, fourth and fifth years prior to

default.

Dombolena and Khoury in 1980 [11] added the stability measures of the ratios to

the model of discriminant analysis with ratios. The standard deviation of ratios over

past few years, standard error of estimates and coefficient of variations were used as

stability measures. The accuracy of ratios was found as 78 % even five years prior to

failure and standard deviation was found to be the strongest measure of stability.

Pinches and Mingo [12] and Harmelink [13] applied discriminant analysis by using

accounting data to predict bond ratings.

Discriminant analysis was not the only technique in 1960’s, there was also the time

varying decision making models built to avoid unrealistic situations by modelling

the applicant’s default probability varying overtime. The first study on time varying

model was introduced by Cyert et al. [14]. The study followed by Mehta [15], Bierman
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and Hausman [16], Long [17], Corcoran [18], Kuelen [19], Srinivasan and Kim [20],

Beasens et al. [21] and Philosophov et al. [22].

In 1962, Cyert et al. [14] by means of total balance aging procedure built a decision

making procedure to estimate doubtful accounts. In this method, the customers were

assumed to move among different credit states through stationary transition matrix.

By this model, the loss expectancy rates could be estimated by aging category.

In 1968, Mehta [23] used sequential process to built a credit extension policy and

established a control system measuring the effectiveness of policy. The system con-

tinues with the evaluation of the acceptance and rejection costs alternatives. The

alternatives with minimum expected costs were chosen. In 1970, Mehta [15] related

the process with Markov process suggested by Cyert et al. to include time varying

states to optimize credit policy. Dynamic relationships when evaluating alternatives

were taken into account with Markov chains.

In 1970, Bierman and Hausman [16] developed a dynamic programming decision rules

by using prior probabilities that were assumed to distributed as beta distribution.

The decision was taken by evaluating costs not including only today’s loss but also

the future profit loss.

Long [17] built a credit screening system with optimal updating procedure that max-

imizes the firms value. By screening system, scoring had decaying performance level

overtime.

Corcoran in 1978 [18] adjusted the transition matrix by adding dynamic changes by

means of exponential smoothing updated and seasonal and trend adjustments.

Kuelen 1981 [19] tried to improve Cyert’s model. In this model, a position between

total balance and partial balance aging decisions was taken to make the results more

accurate.

Srinivasan and Kim [20] built a model evaluating profitability with Bayesian that

updates the profitability of default overtime. The relative effectiveness of other clas-

sification procedures was examined.

In 2001, the Bayesian network classifier using Markov chain Monte Carlo were eval-

uated [21]. Different Bayesian network classifiers such as naive Bayesian classifier,

tree arguments naive Bayesian classifier and unrestricted Bayesian network classifier

by means correctly classified percentages and area under ROC curve were assessed.

They were found to be good classifiers. Results were parsimonious and powerful for
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financial credit scoring.

The latest study on this area was conducted by Philosophov et al. in 2006 [22].

This approach enables a simultaneous assessment to be made of prediction and time

horizon at which the bankruptcy could occur.

Although results of discriminant analysis are effective to predict, there are difficulties

when the assumptions are violated and sample size is small. In 1966, Horrigan [24]

and in 1970, Orgler [25] used multiple linear regression but this method is also not

appropriate when dependent variable is categorical. To avoid these problems, gener-

alized linear models such as logistic, probit and poisson regression were developed.

This is an important development for credit scoring area. In 1980, Ohlson [26] used

the new technique logistic regression that is more flexible and robust avoiding the

problems of discriminant analysis. By using logistic and probit regression, a signifi-

cant and robust estimation can be obtained and used by many researchers: Wihinton

[27], Gilbert et al. [28], Roshbach [29], Feelders et al. [30], Comoes and Hill [31],

Hayden [32] and Huyen [33].

Wiginton’s [27] compared logistic regression with discriminant analysis and concluded

that logistic regression completely dominates discriminant analysis.

In 1990, Gilbert et al. [28] demonstrated that in bankruptcy model developed with

bankrupt random sample is able to distinguish firms that fail from other financially

distressed firms when stepwise logistic regression is used. They found that variables

distinguished bankrupt and distressed firms are different from bankrupt and non-

bankrupt firms.

In 1998, Roszbach [29] used Tobit model with a variable censoring threshold pro-

posed to investigate effects of survival time. It is concluded that the variables with

increasing odds were of decreasing expected survival time.

In 1999, Feelders et al. [30] included reject inference to the logistic models and

parameters estimated with EM algorithms. In 2000, Comoes and Hill [31] used logit,

probit, weibit and gombit models to evaluate whether the underlying probability

distribution of dependent variable really affect the predictive ability or not. They

concluded that there are no really difference between models.

Hayen in 2003 [32] searched univariate regression based on rating models driven for

three different default definitions. Two are the Basel II definitions and the third one

is the traditional definition. The test results show that there is not much prediction

power is lost if the traditional definition is used instead of the alternative two ones.
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The latest study about logistic regression was by Huyen [33]. By using stepwise

logistic regression, a scoring model for Vietnamese retail bank loans prediction was

built.

Since credit scoring is a classification problem, neural networks and expert systems

can also be applied. Beginning of 1990’s and ending of 1980’s can be called as the

starting point of intelligent systems age. By the development of technology and

mathematical sciences, systems based on human imitation with learning ability were

found to solve decision making problem. In 1988, Shaw and Gentry [34] introduced

a new expert system called MARBLE (managing and recommending business loan

evaluation). This system mimics the loan officer with 80 decision rules. With this

system, 86.2 % of companies classified and 73.3 % of companies predicted accurately.

The study of Odom and Sharda’ study in 1990 [35] is the start of neural network

age. Backpropogation algorithm was introduced and was compared with discrimi-

nant analysis. Bankrupt firms found to be predicted more efficiently with neural net-

works. In 1992, Tam and Kiang [36] extended the backpropogation by incorporating

misclassification costs and prior probabilities. This new algorithm compared with

logistic regression, k nearest neighbor and decision tress by evaluating robustness,

predictive ability and adoptability. It was concluded that this extended algorithm is

a promising tool. In 1993, Coats and Fants [37] presented a new method to recognize

financial distress patterns. Altman’s ratios were used to compare with discriminant

analysis and algorithms is found to be more accurate.

Kiviloto’s [38] research included self organizing maps (SOM) a type of neural net-

work and it was compared with the other two neural network types learning vector

quantization and radial basis function and with linear discriminant analysis. As a

result like in previous researches, neural network algorithm performed better than

discriminant analysis especially the self organizing maps and radial basis functions.

Also Charalombous et al. [39] aimed to compare neural network algorithms such as

radial basis function, feedforward network, learning vector quantization and back-

propogation with logistic regression. The result is similar as Kivilioto’s study, the

neural networks has superior prediction results.

Kaski et al. [40] extended the SOM algorithm used by Kivilioto by introducing a

new method for deriving metrics used in computing SOM with Fisher’s information

matrix. As a result, Fisher’s metrics improved PD accuracy.

The genetic programming intelligent system was used in many research. In 2005,

Huang et al. [41] built a two stage genetic programming method. It is a sufficient
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method for loan granting.

In credit scoring, the object of banks or financial institutions is to decrease the credit

risk by minimizing expected cost of loan granting or rejecting. The first study of such

an mathematical optimization problem was programmed by Wilcox in 1973 [42]. He

utilized a dynamic model that is relating bankruptcy in time t with financial stability

at t− i. In 1985, Kolesar and Showers [43] used mathematical programming to solve

multicriteria optimization credit granting decision and compared with linear discrim-

inant analysis. Although the results of mathematical modelling were violated, linear

discriminant analysis gave effective results. In 1997, a two stage integer programming

was presented by Geherline and Wagner [44] to build a credit scoring model.

The parametric techniques such as logistic regression and discriminant analysis are

easily calibrating and interpretable methods so they are popular but non-parametric

methods has the advantage of not making any assumptions about the distribution

o variables although they are difficult to display and interpret so there are also re-

searches using non-parametric and semiparametric methods. Hand and Henley 1996

[45] introduced k nearest neighbor technique that is a non-parametric technique used

for pattern preconization. They extended the model with Euclidian metric adjust-

ment. In 2000, Hardle and Müller [46] used a semiparametric regression model called

generalized partially linear model and showed that performed better than logistic

regression.

1980’s new method for classifying was introduced by Breiman et al. [47] which is

splitting data into smaller and smaller pieces. Classification and regression tree is

an appropriate method for classification of good and bad loans. It is also known as

recursive partitioning.

In 1985, Altman, Frydman and Kao [48] presented recursive partitioning to evaluate

the predictively and compared with linear discriminant analysis and concluded that

performs better than linear discriminant analysis. In 1997, Pompe [49] compared

classification trees with linear discriminant analysis and Neural Network. The 10-fold

cross validation results indicates that decision trees outperform logistic regression but

not better than neural networks. Xiu in 2004 [50] tried to build a model for consumers

credit scoring by using classification trees with different sample structure and error

costs to find the best classification tree. When a sample was selected one by one, this

means that the proportion of good loans is equal to the proportion of bad loans and

type I error divided by type II error is equals to the best results were obtained.
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Chapter 2

CLASSIFICATION

2.1 CLASSIFICATION

The first step of a rating procedure is to build the scoring function to predict the

probability of default. The credit scoring problem is a classification problem.

Classification problem is to construct a map from input vector of independent vari-

ables to the set of classes. The classification data consist of independent variables

and classes.

X = {xi, ..., xn} (i = 1, ..., n), (2.1)

xi = {x11, ..., x1p}, (2.2)

Ω = {wi, ..., wn} and (2.3)

L = {(x1, w1), ..., (xn, wn)}. (2.4)

Here,

X is the independent variable matrix,

xi is the observation vector,

Ω is the set of classes vector, and

L is the learning sample.
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There is a function c(x) defined on X that assigns an observation xi to the num-

bers w1, ..., wn by means of post experience of independent variables. It is called as

classifier.

X
−−→
c(x) Ω (2.5)

The main purpose of classification is to find an accurate classifier or to predict the

classes of new observations. Good classification procedure should satisfy both . If

the relation between independent variables and classes is consistent with the past, a

good classifier with high discriminatory power can be used as an good predictor of

new observations.

In credit scoring, the main problem is to build an accurate classifier to determinate

default and non-default cases and to use the scoring model to predict new applicants

classes.

Training Sample


Training Algorithm


Model

(classifier)


Test Sample


Class Prediction


Validation


Figure 2.1: Classification flowchart

The classification procedure is implemented by the following steps:
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1. The learning sample is divided into two subsamples. The first one is the training

sample used to built the classifier. The second one is the test sample used to

evaluate the predictive power of the classifier.

2. By using the training sample, the classifier is built by mapping X to Ω

3. The classifier is used to predict class labels of each observation in the test

sample.

4. After new class labels are assigned with validation tests discriminatory power

of the classifier is evaluated.

5. The classifier with high discriminatory power is used to predict the classes of

new observations which are not in the learning sample.

The main goal of a classifier is to separate classes as distinct as possible.

2.1.1 Classification Techniques

There are three types of classification techniques mostly used [51]:

Statistical Techniques

During 1960s and 1970s, the mostly used technique was the linear discriminant anal-

ysis invented by Fisher. As statistical techniques and computer science has been

improved, modern techniques have been started to be used. Generally, statistical

techniques have underlying assumptions about their probability model and indepen-

dence of variables sometimes, these can be seen as shortcomings of the models. The

most popular models models are: logistic regression, probit regression, kernel regres-

sion, k nearest neighbor estimation method, etc.

Machine Learning Techniques

They are computing procedures based on computer logic. The main aim is to simplify

the problem to be understood by human intelligence. The methods such as decision

trees and genetic algorithms are kinds of machine learning techniques.
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Neural Network Techniques

Neural networks are the combination of statistical and machine learning techniques.

It combines the complexity of statistical methods with the machine learning human

intelligence imitations. They consist of layers of interconnected nodes, each node

producing non-linear function of its inputs. The popular ones are: backpropagation,

radial basis functions and support vector machines.

2.1.2 The Difficulties in Classification

As mentioned before the fundamental aim of discriminating is to build classifiers

that separate groups as well as possible. There are difficulties in building classifiers.

Sometimes classifiers with high discriminatory power can not be achievable. The

basic reasons causing such problems are:

i To access the data is difficult: As the number of sample size increases, the model

assumptions such as normality are achieved more easily. If the assumptions of

models are not achieved the discriminatory power of the classifier will be low.

The most important factor that affects the model is the quality of the sample.

ii The representative characteristic of independent variables are not successful to

explain the difference between classes: If the representative ability of indepen-

dent variables are low, there will be overlapping problem. That means, obser-

vations with identical attributes may fall into different classes. This problem

can be also defined as not including relating variables. If the sample can not

be discriminated well by the independent variables means, they have low rep-

resentative power. The reason is that the variables with good predictive power

are omitted. To solve this problem, first all possible variables should be used

to build the model, then by using variable selection or dimension reduction

techniques the unnecessary ones can be eliminated.

iii There could be mismeasurement problems of class labels: Since the default def-

inition changed both developed model and predictive structure. It should be

consistent with the aim of the research.
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Chapter 3

BASEL II ACCORD AND

LIMITATIONS FOR

PROBABILITY OF DEFAULT

ESTIMATION

In 2001, the Banking Committee on Banking Supervision issued a new revisited

Capital Accord [1] on capital requirement standards to respond to the deficiencies

in 1988 accord. The fundamentals of the Accord is to protect the economy from

negative signals caused by banks risks and to avoid the value of banks to drop below

of depositors claims.

It has new rules for calculating the risk weights and the supervision of financial

institutions. The most important difference from the viewpoint of credit risk consists

in the estimation of minimum capital requirements estimation. The 1988 Accord

states that banks should hold minimum capital that is the 8% of credits, since in

Basel II Accord the estimation is more closely to its rating grades.

3.1 PRINCIPLES OF BASEL II ACCORD

Basel II consists of three pillars [3]:

Pillar 1

It sets principles for minimum capital requirements to cover both credit and opera-

tional risks. Capital requirement is a guarantee amount against unexpected losses.
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It is taken as equity in banks accounts. To determine minimum capital requirements,

a bank can either use external sources or an internal rating base approach. There

are three fundamental components to calculate the minimum capital requirement

according to Basel II.

a Probability of Default (PD): It is the likelihood that an applicant will default

in one year time period.

b Loss Given Default (LGD): It is the proportion of the exposure that will be

lost if the spllicant defaults.

c Exposure at Default (EAD): The nominal value of loan granted.

The minimum capital requirement (MCR) estimation is shown in (3.1) with respect

to Basel II:

MCR = 0.08*RW*EAD = 0.08 RWA (3.1)

Here

RW is the risk weight calculated by using PD, LGD and remaining maturity of

exposure.

It has specific formulas for each asset type. RWA is the risk weighted asset.

EL = PD*EAD*LGD

MCL=EAD*LGD*PD-b*EL

Where

EL is the expected loss and

b is the proportion of expected loss of loan covered by minimum capital require-

ment.

Pillar 2

It defines principles for supervisors to review assessments to ensure adequate capital.

The rating system and risk management activities are checked by supervisors. Su-

pervisors review process, to be sure that banks have adequate and valid techniques

for capital requirements. Accurate and valid techniques lead to better credit risk

management for the banks. Banks are expected to manage their internal capital

assessments.
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According to Basel Committee, there is a relation between capital required and banks

risk. Banks should have a process for assessing overall capital adequacy in relation

to their risk profile. Supervisors are responsible for the review and evaluation of the

assessment procedure. When supervisors think the validity of the rating process is

not adequate, they can take appropriate actions. They can take early stage actions

to prevent capitals from falling below the minimum levels required to support the

risk characteristic.

Pillar 3

It sets principles about banks disclosure of information concerning their risk. Its

purpose is to maintain the market discipline by completing pillar 1 and pillar 2.

The Basel Committee encourages market discipline by developing sets of disclosure

requirements. According to the new accord, banks should have a disclosure policy

and implement a process to evaluate the appropriateness of the disclosure. For each

separate risk areas banks must describe their risk management objectives and policies.

3.1.1 PD Dynamics

Probability of default is one of the challenging factors that should be estimated while

determining the minimum capital requirement. New Accord has sets principles in

estimating PD. According to Basel II, there are two definitions of default:

a) The bank considers that the obligor is unlikely to pay its credit. There are four

main indicators that bank considers the obligor is unlikely to pat the obligation:

• The bank puts the obligation on an non-accrued stratus

• The bank sells the credit obligation at a material credit related economic

loss.

• The bank consents to a distressed restriction of credit obligation.

• The obligor sought or has been placed in bankruptcy.

b) The obligor past due more than 90 days on credit obligation to the bank.

Banks should have a rating system of its obligor with at least 7 grades having

meaningful distribution of exposure. One of the grades should be for non-

defaulted obligor and one for defaulted only. For each grade there should be

one PD estimate common for all individuals in that grade. It is called as pooled

PD. There are three approaches to estimate pooled PD.
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Historical experience approach:

In this approach, PD for the grade is estimated by using the historical ob-

served data default frequencies. In other words, the proportion of defaulted

obligers in a specific grade is taken as pooled PD.

Statistical Model Approach

In that approach, firstly predictive statistical models are used to estimate de-

fault probabilities of obligor’s. Then, for each grade the mean or median of

PDs are taken as pooled PD.

External Mapping Approach

In this approach, firstly a mapping procedure is established to link internal

ratings to external ratings. The pooled PD of external rating is assigned to

internal rating by means the mapping established before.

Basel II allows the banks to use simple averages of one year default rates while

estimating pooled PD.

While establishing the internal rating process, the historical data should be at

least 5 years, and the data used to build the model should be representative of

the population. Where only limiting data are available or there are limitations

of assumptions of the techniques, banks should add the margins of conservatism

in their PD estimates to avoid over optimism. The margin of conservatism is

determined according to the error rates of estimates depending on the satis-

factory of the models. There should be only one primary technique used to

estimate PD, the other methods can be used just for comparison. Therefore,

the best model should be taken as the primary model representing the data.

After the estimation of PDs, the rating classes are needed to be built. The

banks are allowed to use the scale of external institutions.

In the PD estimation process, just building the model is not enough supervisors

need to know not only the application also the validity of the estimates. Banks

should guarantee to the supervisor that the estimates are accurate and robust

and the model has good predictive power. For this purpose, a validation process

should be built.
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The scoring models are built by using a subset of available information. While

determining the variables relevant for the estimation of PD, banks should use

human judgment. Human judgment is also needed when evaluating and com-

bining the results.
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Chapter 4

STATISTICAL CREDIT

SCORING TECHNIQUES

4.1 GENERALIZED LINEAR MODELS

Generalized linear models (GLM) are the class of parametric regression models which

are the generalization of linear probability models. These kind of models serve to

describe, how the expected values of the dependent variable varies according to the

changes in values of independent variables. In such models, the main aim is to find

the best fitting parsimonious model that can represent the relationship between a

dependent variable and independent variables.

By means of GLM we can model the relationship between variables when the de-

pendent variable has a distribution other than normal distribution. It also allows to

include non-normal error terms such as binomial or poisson.

GLM is specified with three components [52]:

1. The Random Component

In a random component the dependent variable and its conditional distribu-

tion are identified. Dependent variable can be in the form of nominal, ordi-

nal, binary, multinomial, counts or continuous. The distribution would change

according to the scale of dependent variable. Generally, the distribution of

dependent variable comes from exponential family such as: normal, binomial,

poisson ... etc. The general form of exponential family probability distribution

function is given in (4.1):
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fy(y; θ, φ) = exp{yθ − b(θ)

a(φ)
+ c(y, φ)} (4.1)

where

φ is the dispersion parameter,

θ is the canonical parameter and

a(.), b(.), c(.), are real valued functions [52] with

E[Y ] = b′(θ), (4.2)

var[Y ] = b”(θ)a(φ). (4.3)

2. The Systematic Component

The systematic component of the model consists of a set of independent vari-

ables. It is also known as linear predictor function. It is identified as 4.4:

ηi = β0 + β1 ∗ xi1 + ....... + βp ∗ xip (4.4)

In systematic component’s can be quantitative and qualitative independent

variables.

3. The Link Function

The link function is the function g(.) that links the random and the systematic

components:

g(E[Y/X]) = η (4.5)

The most common link functions are shown in Table 4.1:

Table 4.1: The most commonly used link functions

Dist. of Y Scale of Y Link η g−1 (η) E [Y/X] Range

Normal Numeric Identity µ η (-∞,+∞)

Binomial Binary or Multinomial Logit log µ

1−µ
1

1+e−η

0,1,....,n

n

Binomial Binary or Multinomial Probit φ−1(µ) φ(η) 0,1,....,n

n

Poisson Count Log log(µ) eη 0,1,....+∞

The function g(.) is a monotone and invertible, and it transforms the expecta-

tion of the dependent variable to the linear predictor:
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g−1(η) = E[Y/X]. (4.6)

Like the other model fitting processes, the GLM fitting also includes three steps

[52].

1. Model Selection The choice of dependent variables’s scale is so important in

model selection. As mentioned before, the scale of dependent variable can be

nominal, ordinal, binary, numerical, multinomial or counts. According to the

scale of the dependent variable the link function and the model changes. The

common assumption of GLM is the independence of the observations of the

dependent variable before selection a model of GLM this assumption should be

satisfied.

2. Estimation After the selection of the model, it is required to estimate the un-

known parameters. In GLM, generally maximum likelihood estimation (MLE)

method is used instead of the ordinary least square (OLS) method. Then, the

normality assumption of the independent variables is no more required.

In MLE the values of the unknown parameters are obtained by maximizing the

probability of the observed data set [53]. To obtain this estimates we need to

identify the log-likelihood function.

If f(y;θ) is the probability function of the observations of the dependent variable.

Then log-likelihood function is as (4.7):

l(µ; y) = log(f(y; θ)). (4.7)

This function shows the probability of the observed data by means of a func-

tion of unknown parameters. The unknown parameters can be estimated by

maximizing the log-likelihood function or briefly by equalizing the score vector

to zero.

3. Prediction

Prediction means that the value of dependent variable could be at some time

t in the future. After calibrating the model by using historical data, we can

predict future values of the dependent variable if the independent variables at

t are known.
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4.1.1 Binary Choice Models

In binary GLM model, the dependent variable takes only two possible values. In

credit scoring the dependent variable is identified as follows:

y =

{
yi ifyi = 1, i.e., the firm defaults

yi ifyi = 0, i.e., the firm non-defaults

There are discrete or continuous independent variables; the model is:

E[Y/X] = P{Y = 1/X} = P{Xβ + ε > 0/X} = F (Xβ) = π, (4.8)

here

F is the cumulative distribution function (inverse link function),

β is unknown parameter vector of the model and

π is the probability that the dependent variable takes the value 1.

In binary response models, since the dependent variable takes only two possible values

with probability π, it can be assumed that the distribution of the dependent variable

is Bernoulli probability distribution.

The Bernoulli probability function is:

f(y/π) = πy(1 − π)1−y (y = 0, 1), (4.9)

E[y] = π, (4.10)

var[y] = π(1 − π). (4.11)

Maximum likelihood estimation

As mentioned before to estimate unknown parameters we require to write the like-

lihood function. The likelihood function through the observed data is defined by

(4.12):

L(xi) :=
n∏

i=1

π(xi)
yi(1 − π(xi))

1−yi , (4.12)

where
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π(xi) is the probability that each observation with xi independent variable vector

takes the value one as dependent variable.

Since mathematically it is easier to maximize the natural logarithm of the likelihood

function and monotonic transformation does not change the results when finding the

optimum points generally we are working with log-likelihood functions when using

MLE. The log-likelihood for binary data is defined by (4.13):

l(xi) =
n∑

i=1

{yiln( pi(xi)) + (1 − yi)ln(1 − pi(xi))}. (4.13)

The estimate of unknown parameter β̂ is obtained by solving 4.14

∂lnL(β̂)

∂β
= 0. (4.14)

Goodness of fit measures

1. Deviance

In regression models for binary dependent variables, the comparison of the

predicted and observed models is depend on the log-likelihood function. The

model is called saturated if all independent variables are used in the model.

The current model is the fitted model which we want to compare with other

models.

Deviance is a measure of deviation of the model from realized values. The

deviance measure is defined as:

y = −2ln(
likelihood of the current model

likelihood of the saturated model
). (4.15)

When models are compared, we can use deviance as a measure to determine

which one to choose. The model with lower deviance will be choosen.

2. Pearson Chi-Square Goodness of Fit Statistic

It is a simple non-parametric goodness of fit test which measures how well an

assumed model predicts the observed data. The test statistic is:

χ2 =
n∑

i=1

(observed frequency-fitted frequency)2

fitted frequency
; (4.16)
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χ2 is assumed to be chi-square with n− p degrees of freedom.

3. G Likelihood Ratio Chi-Square Statistic

G statistic is a goodness of fit test depends on log-likelihood function. The

purpose of this test is to compare the models with and without independent

variables. The test statistic is:

G = −2ln(
L0

L1
) = −2(lnL0 − lnL1). (4.17)

Here

L0 is the likelihood function value of the model without any independent vari-

ables and

L1 is the likelihood function value of the model with independent variables.

G is assumed to be distributed as chi-square with p-1 degrees of freedom.

4. Pseudo R2

As in linear regression, pseudo R2 measures the explained percentage of de-

pendent variables. It also can be called as the determination coefficient. The

statistic is:

pseudoR2 =
G

G + n
, (4.18)

where

G is the value estimated in equation (4.17).

Pseudo R2 ranges between 0 and 1. When comparing the models, the model

with higher pseudo R2 will be preferred as it is the determination coefficient.

5. Wald Statistic

To assess the significance of all coefficients we can use Wald stratistic as a

significance test. It is also known as pseudo t statistic. The statistic is:

W =
β̂i

Se(β̂i)
(i = 1, ..., p + 1), (4.19)

where

β̂i is the maximum likelihood estimate of ith, and regression coefficient.
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Se(β̂i) is the standard error of ith regression coefficient identified as:

Se(β̂i) =
√
covii (4.20)

The result of Wald statistic is assumed to be normally distributed. The result

is asymptotic since the normal distribution provides a valid approximation for

large n.

Binary logistic regression

Binary logistic regression is a type of GLM binary choice models. In logistic

regression as the other binary choice models the dependent variable can take

only two possible values and the distribution is assumed to be Bernoulli.

The link function of the logit model is:

η(π(x)) = ln
π(x)

1 − π(x)
= βX. (4.21)

The link function in logistic regression is called logit. To predict the unknown

parameters the cumulative logistic distribution function is needed:

F (x) = η−1(x) = Λ(x) =
1

1 − exp(−βX)
= π(x). (4.22)

The score vector for logistic regression is:

∂lnL(β̂)

∂β
=

n∑

i=1

xi(yi − Λ(xi)). (4.23)

By using iterative optimization methods the unknown parameters can be esti-

mated. By Wald test and goodness of fit tests, the significance of the model can

be checked. The significant logistic regression model can be applied to predict

future values of observations.

Variable Selection in Logistic Regression

The main goal of statistical models is to build a parsimonious model that ex-

plains the variability in dependent variable. With less independent variables a

model is generalized and interpreted more easily. Since the model with more
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independent variables may give more accurate results for within sample obser-

vations, the model will become specific for the observed data. For this purposes

variable selection is needed.

In variable selection, the first thing to do is to check the significance of each

coefficients. For binary choice models Wald statistic can be used for testing

the significance. After estimating the test statistic we can conclude that if the

significance p<0.05 for any coefficient of the variable with a 95% confidence

level, then the contribution of the variable to the model is important. There is

an important point that if the observations are inadequate, the model could be

unstable and Wald statistic would be inappropriate [53].

After the significance is determined, the insignificant variables are eliminated

and models without these variables are compared to the model with these vari-

ables by means of G likelihood ratio test. For the new model, the significance

of variables should also be checked since the estimated values of coefficients

are changed. To investigate the variables more closely the linearity of relation

between logits and an independent variable can be checked via graphs.

After the significant variables are selected if the model includes much variables

the variable selection methods such as stepwise variable selection can be used.

Stepwise Selection Method

The stepwise selection method is a variable selection method that is used to

include and exclude a significant variable to the model by means of decision

rules. It is also used in linear regression.

(a) Forwardation

Forward variable selection begins with including only the constant term

and evaluation of log-likelihood value of this model. Then log-likelihoods

of models for each variable are estimated. By these estimates, the value of

likelihood ratio tests that the model containing constant term versus an

independent variable is estimated:

G
(0)
j = 2(L0

j − L0) (j = 1, . . . p), (4.24)

where

G
(0)
j is the likelihood ratio test in step 0 statistic and

L0
j is the log-likelihood of the model with jth independent variable in step

0.
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The significance value of G likelihood test is estimated as:

Pr(χ2
1 > G

(0)
j ). (4.25)

The most important variable is selected as the variable with smallest sig-

nificance level. The most important variable is included to the model. If

the significance level is smaller than α we stop in step 0, and otherwise

the process continues.

If the process continues in the next step, the model with the variable in

step 0 is taken as the reference model and second important variable that

could be included to the model is tried to be selected. The likelihood ratio

is estimated for the model with the most important variable versus the

model with both the most important variable and another independent

variable. In this step, the significance value is estimated for p−1 variables

and the variable with minimum significance is included into the model.

Then, the significance level is compared to the α; if it is smaller than α

is stops. This process continues until all variables that are important by

means of alpha criteria are included to the model.

The meaning of α significance value is different than in general since it

determines the number of independent variables. It is recommended to

take α between 0.15 and 0.20 [53].

(b) Backwardation

Backwardation begins with including all variables in the model. In the

first step, one variables deleted and G is estimated for the models with

all variables versus one variable deleted and also the significance value is

estimated as in forwardation method. The variable with the maximum

significance is deleted. This process is also continued until all variables

with significance estimate higher than α are deleted from the model.

Binary probit regression

The probit regression is also a GLM model. As binary logistic regression the

dependent variable can take only two possible values with Bernoulli distribu-

tion.

The link function for probit regression is,
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η(π(x)) = φ−1(π(x)) = βX, (4.26)

where φ−1(.) is the inverse standard normal distribution function.

The link function in probit regression is called probit or normit. To estimate

the unknown parameters, again the cumulative probit function is needed. It is

identified as:

F (x) = η−1(x) = φ(x) = π(x). (4.27)

Here φ(.) is the standard normal distribution function.

The score vector for probit is:

∂logL(β̂)

∂β
=

n∑

i=1

xiφ(xi)
yi − φ(xi)

φ(xi)(1 − φ(xi))
. (4.28)

After the significant probit model is found, it can be also used to predict future

values of dependent variable.

Properties of logit and probit maximum likelihood estimators

i The maximum likelihood estimator β̂ is a consistent estimator for β. Consistency

means that β̂ converges in probability to β:

lim
n→∞

P{‖β̂ − β‖ > ε} = 0, (4.29)

where ε>0.

ii The β̂ is approximately normally distributed with mean vector is β and variance

matrix is equal to the information matrix:

β̂ ∼ N(β, I(β)−1). (4.30)

The information function is:

I(β) = −E[
∂2l

∂βiβj
]. (4.31)

iii The inverse information matrix is the Crammer Rao lower bound. Then β̂ is

also asymptotically efficient which means that it is an unbiased estimator with

minimum variance.
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4.2 CLASSIFICATION AND REGRESSION TREES

The classification and regression trees (CART) model was first introduced by Breiman

et al. (1984) [47]. It is a nonparametric technique alternative to regression type fitting

that is used to split the observations into different classes by building binary decision

trees depending on independent variables. Binary decision trees split sample into

classes by starting from root node and by ending with homogenous sub samples.

Unlike other classification techniques in CART, the decision rules are represented by

tree.

When a decision tree is used to classify the data into classes the tree is called the

classification tree. In classification tree there is a connection between categorical

random variable and discrete, continuous or categorical random variables. If the

dependent variable that we want to predict is a continuous random variable, then the

decision tree is called the regression tree. For both trees the main goal is to produce

accurate set of classifiers, to present the predictive structure of the classification

problem [47]. The only difference is the scale of dependent variable and so the

splitting rules are different. After trees are build they are used, to classify or predict

new observations.

4.2.1 Classification Tree

To build a tree, historical data is required. The data used to build a tree are called

the learning sample. In a classification tree, the learning sample consists of the

measurement space (independent variable matrix) and classes (dependent variable

vector):

δ = {(x11, ..., xi1, ..., xp1, c1), ..., (x1n, ..., xin, ..., xpn, cn)}. (4.32)

Here,

i = 1, ..., p j = 1, ..., n,

p is the number of independent variables,

n is the number of observations,
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X is the measurement space:

X =




x11 x12 . . . xp1
...

... . . .
...

x1n x2n . . . xpn




and ζ is the vector of all possible classes:

ζ = {c1, ......, ck}, (4.33)

k is the number of all possible values the dependent variable can take.

By using the learning sample, we can construct the tree. The first step of the clas-

sification tree is to split the learning sample into classes up to the last observation.

This process is called building Tmax that is the maximum size tree.

After constructing the tree, we have to check whether the size of tree is optimal or

not. If the tree is too large in size, although it has low misclassification rates, it can

provide inaccurate results when applied to new data and it can be so complicated

to interpret. If the tree is too small, then it may not use some information in the

learning sample that leads to higher misclassification rates.

In the last step of the analysis, after building the right sized tree, we use the tree to

classify new observations.

Constructing the tree

In classification tree, binary partitioning is used to construct a tree with nodes. In

binary partitioning the sample is divided into two subsets for each node. It is a

recursive process so that it is also known as recursive partitioning. For partitioning

there is a function called classifier that is used for predicting the class of observation.

It is required to determine how to split a data to produce a classifier.

Building the maximum tree means splitting the learning sample absolutely into ho-

mogeneous classes. The main problem of growing the tree is how to split the learning

sample. For this purpose it is required to answer following questions:

i. How to split the data in to nodes.

ii. How to terminate a node.
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iii. How to assign a class to a terminal node.

The tree starts by dividing the learning sample into two subsamples or the root node

is divided into two sub nodes. Firstly, all observations of an independent variables

are placed in the root node. It is assumed that all observations of that independent

variable divide the learning sample and this is called as split. For all splits the

learning sample is divided into two nodes as seen in Figure 4.1. The node tp is the

parent node and the nodes tl and tr are the left and right child nodes respectively.

tp


tl
 tr


xj
<
xij


Figure 4.1: Splitting node

At each splits the standard questions xi ≤ xij are asked and each observation with an

answer ”yes” are sent to the left child node and with answer ”no” are sent to the right

child node. Then for each split goodness of split criteria are estimated and according

to the criteria a best split is selected. This process is repeated for all independent

variables. After that all variables are observed according to their goodness of split

criteria that reduces the impurity. According to the terminating rule, each node is

determined as terminal or non-terminal and for each terminal node a class is assigned.

This process continues until each observation in the learning sample is assigned to a

class.

Splitting Rules

The splitting rule is used to split the data into smaller pieces with homogeneity. To

determine the best split is to measure the goodness of split criteria. To calculate

goodness of split it is required to define an impurity function. Impurity function
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measures the purity of any node. To estimate impurity function it is needed to know

the proportion of class j in a node t:

π(j) :=
Nj

N
, (4.34)

where

Nj is the number of observations belong to the class j,

N is the number of observations and

π(j) is the prior probability of class j.

We put,

p(j, t) = π(j)
Nj(t)

Nj
, (4.35)

where

Nj(t) is the number of observations in node t belonging to class j.

p(j, t) is the probability of an observation both in class j and in node t.

Furthermore,

p(t) =
∑

J
j=1

p(j, t), (4.36)

where

p(t) is the probability of any observation belonging to node t.

p(j/t) =
p(j, t)

t
=
Nj(t)

N(t)
, (4.37)

where

p(j/t) is the probability of class j in node t.

The impurity function is a function of p(j/t) having the following properties [47]:

i When p(1/t) = p(2/t) =, ...,= p(j/t) = 1
j the impurity function φ(1j ,..., 1

j ) takes

its maximum value.
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ii In a node t when there is only one majority of class,then the the impurity function

φ(p(1/t), ..., p(j/t)) takes its minimum value.

iii φ is a symmetric function of probability of class j in node t.

The impurity function is defined as follows:

i(t)=φ(p(1/t), ......, p(j/t))

When determining the best split we need to measure homogeneity of the nodes. The

best splitting rule can be chosen by maximizing the change in impurity. The change

in impurity is identified in (4.38) :

∆i(t) = i(tp) −E[i(tc)] = i(t) − pLi(tL) − pRi(tR), (4.38)

where

PL is the proportion of observations in the left child node and

PR is the proportion of observations in the right child node.

There are many splitting rules introduced but two of them Gini index and towing

rule which are first used by Breiman et al. [47], they are the most frequently used

ones.

1. The Gini Index

Gini index is a node impurity index. It is the most commonly used rule to

determine the best splitting rule. The impurity function in Gini criterion is as:

i(t) =
∑

j 6=i

p(j/t)p(i/t); (4.39)

It can also be represented as:

i(t) = 1 −
J∑

j

p2(j/t). (4.40)

For a binary class problem it can be represented as:

i(t) = 2p(1/t)p(2/t). (4.41)
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Since it is linear in proportion and quadratic, it gives more weight to the purer

nodes.

The change in impurity is:

∆i(t) := i(t) − pLi(tL) − pRi(tR)

= 1 −
J∑

j

p2(j/t) − pL(1 −
J∑

j

p2(j/tL)) − pR(1 −
J∑

j

p2(j/tR)),

or since pL+pR=1

∆i(t) = −
J∑

j

p2(j/t) + pL

J∑

j

p2(j/tL) − pR

J∑

j

p2(j/tR). (4.42)

As mentioned before, the best splitting rule is determined by maximizing the

change in impurity. Then, the splitting problem is to select the split which

maximizes (4.42).

2. The Twoing Rule

Unlike Gini index twoing criteria for each node separate classes into two sub-

classses and each time estimates the impurity as if it is a binary class problem.

For any node the best split is determined by maximizing the change in impurity.

In twoing criteria there is no specific measure of impurity. The change in

impurity is identified as:

∆i(t) =
pLpR

4
[

J∑

j=1

p(j/tL)p(j/tR)]2. (4.43)

In Twoing rule, the two classes that will make up together the fifty percentage

of the data is searched. If there are J classes, the algorithm searches for 2J−1

possible splits [47].

Terminating Rule

Terminating a node is a simple process. A splitting process stops when it is impossible

to decrease the impurity of the tree. The change in impurity of the tree is defined as:

∆I(T ) = ∆i(t)p(t). (4.44)
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When drawing the tree, the terminal nodes are represented by rectangles and non-

terminal nodes are represented by circles.

Class Assignment Rule

After determining the terminal nodes, there are two ways to assign a class to each

terminal node.

i The first rule is known as the plurality rule. It is a rule of assigning a class to a

node when if the majority of observations are belonging to that class. In other

words, the class which has the highest probability is assigned. If (4.45) holds

then j is assigned to node t.

j = max p(j/t) (4.45)

When the cost of misclassification is the same then we can use plurality rule.

ii The second rule assigns a class to a node which minimizes the expected misclassi-

fication cost. If the cost of misclassification of classes are different, we cannot

use the plurality rule.

The expected misclassification cost is defined as:

r(t) :=

J∑

j=1

c(i/j)p(j/t), (4.46)

where

c(i/j) is the cost of assigning a class i to a class j observation.

Determining the optimum size of tree

The basic problem of trees is their complexity and non-accuracy. Then by using an

accuracy criterion, it is required to determine the right sized tree which is accurate

with less complexity.

In determining the size of tree, it does not work well to use stop splitting rules with

determining thresholds. It is assigned a node as terminal if it decreases the change

in impurity by a small amount but the child nodes may decrease the impurity with

large amounts. By terminating the node, the good splits tL and tR can be lost. Since

then pruning can be used to form the subtrees.
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Minimal Cost Complexity Pruning

The minimal cost complexity is an effective way to find a right sized tree. In this

method, subsequences of the Tmax are formed.

Breiman et al. [47] stated that a minimal cost complexity measure compares the

complexity and accuracy rate of trees. The complexity of a tree is determined by the

number of terminal nodes.

The cost complexity measures is identified as:

Rα(T ) = R(T ) + αT̃ , (4.47)

where

α≥0, T≤Tmax,

R(T ) is the misclassification cost of tree,

α is the complexity parameter; it is also known as the penalty of additional

terminal nodes and

T̃ is the number of terminal nodes of the tree.

The cost complexity measure is the linear combination of misclassification cost and

complexity measure. If α=0, the optimal tree is the Tmax, if α > 0, the optimal tree

is a sub-sequence of Tmax.

Firstly, for each value of α the subtrees are formed as Tmax,T1,...,t0 with decreasing

number of terminal nodes. ”t0” is the root node of the tree. Secondly, the cost com-

plexity measure is determined for each sub-trees. Then, subtree from these sequence

that minimizes the cost complexity measure is selected as the right sized tree.

When we are using this measure, we are also finding a tree with optimum misclas-

sification rate which is very important for the future predictions. The selection of

misclassification rate can be obtained from both test sample and cross-validation

approaches.

1. Test Sample Technique

In test sample approach the learning sample is divided into two sub-samples

L1 and L2. Generally L2 is taken as the one third of the observations in the

learning sample [47]. In the fist step, by L1 is used to construct Tmax and its

subsequences. For each subsequence the test sample L2 is used to predict the
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values of the dependent variable. The realized values of the dependent variables

are known before, so we can count the misclassified classes for each node and

so for each tree. Also the probability of classifying a class j observation as class

i for each tree can be estimated as follows:

p(i/j, T ) =
N

(2)
ij

N
(2)
j

, (4.48)

where

N
(2)
ij is the number ith class observations that are assigned as class i in L2,

N
(2)
j is the number of jth class observations in L2.

The misclassification cost of a tree is estimated as:

Rts(T ) :=
1

N (2)

J∑

j=1

c(i/J)N
(2)
ij (4.49)

The misclassification cost is a measure of tree accuracy. The tree which has

minimum misclassification cost can be used as the right sized tree. Also the

test sample of misclassification cost estimate can be used in minimum cost

complexity measure.

2. V-Fold Cross Validation Technique

In v-fold cross validation technique the learning sample is divided into v sub-

samples nearly equal sizes as: L1,..., Lv v=(1,...,V)

Each sub-samples are used as the test samples and the sample without vth

sample is used as the learning sample. L − Lv is used to construct Tmax and

the sub-sequences. Now, Lv is used to predict the dependent variable. For each

tree the total number of observations that are miss-classified as class i can be

counted as:

p(i/j, T ) =
Nij

Nj
, (4.50)

Nij =
V∑

v=1

Nv
ij . (4.51)

Here,
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Nv
ij is the number of class j observation in Lv classified as i,

Nj is the number of jth class observations.

The misclassification cost of any tree is identified as:

Rcv(T ) :=
1

N

J∑

j=1

c(i/J)Nij (4.52)

The tree with minimum misclassification cost can be taken. Also as test sample

approach the cross validation estimate of misclassification cost can be used in

cost complexity measure.

4.2.2 Regression Tree

As mentioned before when a dependent variable is continuous, the decision tree is

called a regression tree. The construction of the tree is similar, but there are some

differences. The main difference is the scale of dependent variable, so instead of

classes, numerical predicted values of dependent variable are tried to be assigned to

each terminal node by means of independent variables. For this reason the splitting

rule also differs.

Constructing the tree

The main steps in construction of regression tree is the same as the classification

tree. In the first step, the questions to split learning sample are asked and based on

goodness of splitting rule; the best splits are determined. As in classification tree,

binary partitioning is used to split. After a maximum tree is constructed by using

cost-complexity, cross validation or test sample, approaches the optimal sized tree is

constructed.

Splitting Rule

In a regression tree the splitting rule depends on the within node sum of squares.

The best split is selected as the one that most reduces the average within the node

sum of squares or the re-substitution estimate identified as:

R(t) :=
1

N

∑

xnǫt

(yn − y(t))2. (4.53)

Here,
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y(t)) is the average of observations in node t,

yn are the dependent variables in node t.

The best splitting rule is defined similar to the classification tree that maximizes the

change in the re-substitution estimate [47]:

∆R(t) := R(t) −R(tL) −R(tR). (4.54)

The alternative way is to use weighted variances. In this method, weights are the

proportions of observations that are in the right and left child nodes. The variance

of the node t is:

S2(t) =
1

N(t)

N(t)∑

i=1

(yn − y(t))2. (4.55)

The change in weighted variance is defined as :

∆S2(t) := S2(t) − pLS
2(tL) − pRS

2(tR). (4.56)

The split that maximizes the change in weighted variance is used as the best split.

Terminating Rule

As in classification tree in regression tree to stop a node again terminating rule is

needed. Different from classification tree a node terminates when following condition

is satisfied:

N(t) < N(min)

N(min) is generally taken as 5 [47].

Assigning a Value

The assigned value in the regression tree is the one that minimizes the misclassi-

fication estimate in a node. The estimate of predicted value that minimizes the

sum-of-square is the mean of the dependent variable in that node:

y(t) =
1

N(t)

N(t)∑

n=1

yn. (4.57)

The mean of the observed dependent variable in a terminal node is assigned as the

predicted value.

37



Determining the right-sized tree

After building the maximum tree to determine the optimum sized tree, the pruning

algorithm can be used. For regression tree an error-complexity measure is defined

instead of cost-complexity measure, since the accuracy in regression tree is identified

by means of mean square error estimates. The measure is defined as:

Rα(T ) = R(T ) + αT̃ , (4.58)

where

R(T ) =
T∑

t=1

R(t). (4.59)

As in classification tree for each α the sub-sequence Tmax, T1, ..., t0 is formed and for

each subsequence error complexity measure is estimated and the tree that minimizes

the measure is used as the right-sized tree.

1. Test Sample Technique

Test sample is estimated in the same manner in classification tree. The learning

sample is divided into two sub-samples. L1 is used to form the sub-sequence

and L2 is used to estimate the accuracy such as:

Rts =
1

N2

N2∑

n=1

(yn − y)2. (4.60)

2. Cross Validation

Randomly learning sample is divided into v subsets. Each time Lv is used to

estimate the performance measure and L − Lv is used to prune the tree. The

cross validation estimate is:

Rcv(T ) =
1

N

V∑

v=1

Nv∑

n=1

(yn − y)2. (4.61)

4.3 DISCRIMINANT ANALYSIS

Discriminant analysis (DA) is a multivariate statistical technique that uses the in-

dependent variables to separate the observations into groups. The main goal of the
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analysis is to assign predefined groups for observations. It can be used in two or more

than two group separation problems. It has two main steps [54]:

i To define a function that is used to discriminate the groups (discrimination).

ii To classify the out-of-sample observations to groups by minimizing the classifica-

tion error (classification).

”In credit the scoring problem, the response variable is binary; for this reason ”Fisher’s

Linear Discriminant Analysis” can be used to classify.

4.3.1 Linear Discriminant Analysis for Two Group Seperation

In Linear Discriminant analysis (LDA] the problem is to identify the linear surface

into two groups. It is a statistical decision making based on the differences in means.

The independent variables are linearly combined to form the dependent variables of

two groups. The groups are tried to separated as well as possible.

Discrimination

In LDA, for each group there is a linear discrimination function. In this way, the

analysis has the advantage of dimension reduction when interpreting the results. By

discrimination functions the analysis is transformed to one dimensional simplest form.

The discrimination function is defined as given in (4.62) and (4.63):

y(1) = w1x
(1)
1 + . . . . . .+ wpx

(1)
p , (4.62)

y(2) = w1x
(2)
1 + . . . . . .+ wpx

(2)
p , (4.63)

where

wp×1 is the weight vector of dimension p,

x(1) is the independent variables matrix for group 1 observations and

x(2) is the independent variable matrix for group 2 observations.

Fisher introduce a criteria used in estimation of weight vector. The criterion which

has the property of differences in groups is defined as:
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F :=
wTBw

wTWw
, (4.64)

where

B is the between group sum of square and

W is the within group sum of square.

We put:

B :=
2∑

k=1

nk(xk − x)(xk − x)T , (4.65)

W :=
2∑

k=1

nk∑

i=1

(xi − xk)(xi − xk)
T , (4.66)

xk =
1

nk

nk∑

i=1

xi and (4.67)

x =
1

n

n∑

i=1

nkxk. (4.68)

The optimal weight vector is found as the one that maximizes the Fisher’s criteria.

This is a maximization problem. The criteria is constant with respect to the estab-

lishment of the weight vector on a new scale w → αw, so for simplicity we can be

take the weight vector that satisfies the denominator wTWw=1 as a scalar. Thus,

the problem becomes a minimization problem if defined as follows:

min
w

−1

2
wTBw (4.69)
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st wTWw = 1 (4.70)

The Lagrangien function can be written as:

L(w, λ) := −1

2
wTBw +

1

2
λ(wTWw − 1), (4.71)

where λ is called lagrange multiplier vector.

The first-order optimality conditions, state the existence of w and λ are such that:

Bw + λWw = 0 and (4.72)

(W−1B − λI)w = 0. (4.73)

The problem becomes an eigenvalue decomposition problem. The eigenvector of an

eigenvalue that maximizes the criteria is the optimal weight vector. The solution of

the problem is given by:

ŵ := dS−1
pooled, (4.74)

where
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Spooled :=
1

n1 + n2 − 2
W (4.75)

an d is the mean difference vector defined as:

d :=




x
(1)
1 − x

(2)
1

...

x
(1)
p − x

(2)
p




The linear discrimination function then defined as

ŷ = [x1 − x2]S−1
pooledX. (4.76)

The significance of discrimination function can be tested by Mahalanobis distance

measure. It is a separation criterion of the model defined as:

D2 = [x1 − x2]TS−1
pooled[x

1 − x2] (4.77)

or

D2 = dTS−1
pooledd. (4.78)

To test the significance we can define Hotelling T 2 statistic:
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T 2 =
n1n2

n
D2. (4.79)

Here,

n1 is the number of observations in group 1,

n2 is the number of observations in group 2 and

n is the total number of observations (n1+n2).

To test the significance of Hotelling T 2 statistic, it is needed to convert it into known

test statistic to check the table value. The F distribution derived from Hotelling T 2

is defined as:

F =
n1 + n2 − p− 1

p(n1 + n2 − 2)
T 2. (4.80)

The significance of F statistic is evaluated by comparing it with the F distribu-

tion table value with p, (n1+n2-p-1) degrees of freedom. If the significance value

holds p<0.05, with 95 % of confidence, then it is concluded that the model is efficient

in separating the groups, in other words weight vector is significant.

Classification

As mentioned before, the next step, after the determination of the discriminant func-

tion and significance check consists of the assignment of new observations to the

groups. In Fisher’s problem, the independent variables are converted to ŷ as follows:

ŷ = wTX. (4.81)
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The mid-point estimation of the predicted value ŷ, which is used as a tool in as-

signment rule, is defined as:

m =
1

2
[x1 − x2]TS−1

pooled[x
1 + x2] (4.82)

Suppose new observation has an independent variable vector represented as x0. The

estimated dependent variable for that observation can be estimated as

y0 = [x1 − x2]TS−1
pooledx0. (4.83)

The assignment rule is defined as:

y0 −m ≥ 0: classify the observation as group 1,

otherwise: classify the observation as group 2.

4.4 NONPARAMETRIC AND SEMIPARAMETRIC RE-

GRESSION

Density estimation is a tool to examine the structure of data. When building a

model, to capture the features such as skewness or kurtosis, visualizing the density

of observations is needed. It can be a preferable way to summarize the outcome of

Monte Carlo simulation [55]

Univariate Kernel Density Estimation

The aim of kernel smoothing is to estimate approximately the probability density

function of any random variable without any known functional form. It is a flexible

method when summarizing or constructing a model. Histogram is another a summary

tool that visualizes the density, but since it is a very rough method, kernel estimation

is preferable. The approximate probability density function with kernel smoothing is

defined as

f̂(x) :=
1

nh

n∑

i=1

K(
xi − x

h
) =

1

nh

n∑

i=1

K(ψi), (4.84)
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where

x is a random variable with unknown density function,

{xi : i = 1, ..., n} the iid sample of random variable x,

h is the smoothing parameter, bandwidth or window-width and

K(.) is the kernel function which has the following properties:

i Generally it is symmetric around zero,

ii
∫ ∞

−∞
K(ψ)dψ = 1,

iii
∫ ∞

−∞
ψK(ψ)dψ = 0 and

iv
∫ ∞

−∞
ψ2K(ψ)dψ <∞,

Most popular kernel functions are:

1. Standard Normal Kernel

K(ψ) = (2π)
−1

2 exp(
−1

2
ψ2). (4.85)

2. Uniform Kernel

K(ψ) =
1

2a
(−a < ψ < a). (4.86)

3. Epanechnikov Kernel

K(ψ) = 0.75(1 − ψ2)I(| ψ |≤ 1); (4.87)

here,

I(.) is the indicator function that takes the value 1 when |ψ|≤1,and it takes the

value 0 otherwise.

Asymptotic Properties of Kernel Density Estimation

1. Asymptotic Unbiasedness

For finite samples the density estimation is biased but it is unbiased asymptot-

ically.
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lim
n→∞

E[f̂ ] = f (4.88)

and

sup
x

| E[f̂ − f ] |= 0 as n→ ∞ (4.89)

here n is the number of observations.

2. Asymptotic Consistency

Estimator f̂ converges in mean square to f, since it is asymptotically unbiased

MSE(f̂) → 0 as n→ ∞ (4.90)

where

MSE(f̂) := Bias(f̂)2 + variance(f̂), (4.91)

Bias(f̂) := E[f̂ − f ] =

∫
K(ψ)[f(hψ + x) − f(x)]dψ, (4.92)

V ariance(f̂) :=
1

nh

∫
K2(ψ)f(hψ + x)dψ − 1

n
[

∫
K(ψ)f(hψ + x)dψ]2 and

(4.93)

n is the number of observations.

3. Asymptotic Normality

If there exist any δ such that
∫
K(ψ)2+δdψ <∞. Then,

√
nh[f̂ − E[f̂ ]] ∼ N(0, f(x)

∫
K2(ψ)dψ) as n −→ ∞ (4.94)

The Selection of Smoothing Parameter

Selection of the smoothing parameter is a challenging problem in kernel density esti-

mation since it changes the range of variability of the estimation. When the smooth-

ing parameter h is too small the bias of the estimator will be small but variance will

be large. When h is too large then bias will be large although variance is small. Bias
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and variance are undesirable properties of any statistical estimator. For this purpose,

the selection of h minimizing any criteria that depends both on bias and variance

would be preferable. The most popular way used in selection is to minimize the

criteria MISE (Mean Integrated Squared Error) or the AMISE (Approximate Mean

Integrated Squared Error):

MISE :=

∫
[Bias(f̂2) + V ariance(f̂)]dx, (4.95)

AMISE :=
h4

4
(

∫
ψ2K(ψ)dψ)2(

∫
(f”(x))2dx) +

1

nh

∫
f(x)dx

∫
K2(ψ)dψ. (4.96)

The smoothing parameter that minimizes AIMSE is given in [55]

h := (

∫
K2(ψ)dψ

(
∫
ψ2K(ψ)dψ)2(

∫
(f”(x))2dx)

)
1

5n
−1

5 . (4.97)

Multivariate Kernel Density Estimation

When there is not single independent variable, there are independent variables the

kernel smoothed multivariate densities can also been constructed. Suppose ̂f(x),H

is the multivariate density estimation [56]:

̂f(x,H) =
1

n

n∑

i=1

KH(x− xi), (4.98)

where

x = (x1, ..., xd)
T independent random variables,

xi = (xi1, ..., xid) (i=1,...,n) values of random variables,

H is invariant d× d symmetric smoothing parameter matrix and

KH(.) is the multivariate kernel function defined as

KH(x) = |H|−1

2 K(H
−1

2 x) (4.99)

When determining the smoothing parameter, for multivariate kernel regression it is

also needed to minimize criterion at (4.100):
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MISE := E[

∫
[ ̂f(x,H) − f(x)]2]dx =

∫
variance( ̂f(x,H))dx+

∫
Bias2 ̂f(x,H),

(4.100)

where

Bias ̂f(x,H) = (KH(x)of(x)) − f(x), (4.101)

variance ̂f(x,H) = n−1[(K2
H(x)of(x))(KH (x)of(x))2] (4.102)

The most commonly used smoothing parameter matrix is derived by Wand and Jones

[56] defined as:

H = diagonal(h2
1, h

2
2, ..., h

2
d), (4.103)

where h1, ..., hd are the univariate smoothing parameters.

The more specific way to estimate the kernel density estimation is to use the multi-

plicative kernel [46]

f(x,H) =
1

n

n∑

i=1

1

h1, ..., hd
K(

xi − x

h1
, ...,

xi − x

hd
); (4.104)

here,

H=dioganal(h1, ..., hd)
T ,

Kψ
H=k(ψ1), ..., k(ψd) and

k(.) is the univariate kernel function.

4.4.1 Non-Parametric Regression by Multivariate Kernel Smooth-

ing

The weakness of parametric regression consists in its assumptions. When estimat-

ing the regression parameters, it is assumed that the independent variables comes

from a multivariate normal distribution. Sometimes this assumption cannot been

satisfied for such cases; non-parametric regression is preferred. In non-parametric

regression, the joint distribution functions of independent variables are not known as
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parametric function. The regression model defined by means of the conditional mean

of dependent variable is

Y = E[Y |X = x] + ε = m(x) + ε, (4.105)

where ε is the error term which has the following properties:

E[ε|X] = 0 and

E[ε2|X] = σ2(X).

Non-parametric estimator of m(x)

The non-parametric estimator of the conditional moment is

m̂ =

n∑

i=1

vn(xi, x)yi; (4.106)

here,

vn(xi, x) is the weight for the observations has the following properties:

vn(xi, x) ≥ 0and

∑n
i=1 vn(xi, x) = 1.

The most commonly used estimator for the weight of any observations is ”Nadaraya

Watson Kernel Estimator” defined as

vn(xi, x) =
K xi−x

h∑n
i=1K

xi−x
h

(4.107)

The multivariate kernel estimator of conditional mean estimated by using Nadaraya

Watson Kernel estimator based on locally weighted averages is:

m̂(x,H) :=

∑n
i=1KH(xi − x)yi∑n
i=1KH(xi − x)

. (4.108)

The properties of the estimator defined by Ruppert and Watson 1994 [57] are

Bias(m̂) :=
H2

4
{m”(x) + 2

m
′

(x)f
′

(x)

f(x)
}µ2(k), (4.109)

where µ2(k) is the second moment for kernel density estimation and
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V ariance(m̂) =
1

nH

V ar(Y |X)

f(x)
||K||22. (4.110)

The solution of Naraya Watson estimator is an least square minimization problem.

Least square of moment estimation is [57]:

min
β̂

(Y −Xβ)TW (Y −Xβ), (4.111)

where w = diagonal(KH(xi − x, ...,KH (xn − x)).

The solution is:

β̂ = (XTWX)−1XTWY. (4.112)

The conditional moment estimator is:

m̂(x) = eT (XTWX)−1XTWY, (4.113)

where eT = (1, ..., 0),

m̂(x) = (m̂(x1), ..., m̂(xn))
T .

The conditional mean is also known as weighted average since kernel function is

defined as the weight of observations.

4.4.2 Semiparametric Regression

Semiparametric regression is a tool that concern with flexible non-linear functional re-

lations. In semiparametric regression, there are assumptions between non-parametric

and parametric models. In other words, they are models in which there is an unknown

function and unknown finite dimensional functions. There are a lot of semiparamet-

ric models and the models for binary response variable are generally the extensions

of generalized linear models. The one mostly used in credit scoring area is called a

generalized partially linear model that is separating the explanatory variables into

two.
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Generalized partially linear models

Generalized partially linear model (GPLM) is the extension of generalized linear mod-

els. In GPLM the independent variables are separated into two [58]. Here, Z indicates

p dimensional discrete independent variables and T indicates the q dimensional con-

tinuous independent variables. The model is the conversion of Z ′β+T ′α to a partially

linear form Z ′β +m(T ). The conditional mean function is as:

E[Y/Z, T ] = GZ ′β +m(T ), (4.114)

where,

G is the logistic link function,

m(.) is the unknown parametric function and

β is the unknown finite dimensional parameter vector.

The unknown β and m(.) should be estimated. The estimation of unknown function

and parameters are based on quasi-likelihood function. A quasi-likelihood function

is defined as:

Q(µ; y) =

∫ y

µ

(s− y)

V (s)
ds, (4.115)

where

E[Y |Z, T ] = GZ ′β +m(T )

var[Y |Z, T ] = σ2V (µ),

σ is the scale parameter estimated as:

σ2 = 1
n

∑n
i=1

(yi−µ̂i)
2

V (µ̂i)
.

Since both m(.) and β are unknown, by optimization methods β̂ is obtained for any

specific m(.) and m̂(.) is obtained for known β. For the estimation of m(.), a locally

weighted kernel quasi-likelihood function is used:

Ll(m(.), β) = Σn
i=1KH(ti − t).Q[GZ ′β +m(T ); y]dt (4.116)

Here,

KH(.) is the kernel function used as local weights.
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For the estimation of β, a quasi-likelihood function is used

L(m(.), β) = Σn
i=1Q[GZ ′β +m(T ); y] (4.117)

Firstly β is fixed and assumed to be known, the functionmβ(.) is estimated depending

on β by maximizing the local quasi-likelihood function

m̂β = arg max
m

Ll(m,β) (4.118)

Then, by using m̂β(.) the quasi-likelihood function for β is constructed and optimized

to form β:

β = arg max
β

L(m,β). (4.119)

To find optimum m(.) and β the following should be satisfied.

Σn
i=1Q

′

i{Z
′

iβ +m(Ti)}KH(ti − tj) = 0 (4.120)

and

Σn
i=1Q

′

i{Z
′

iβ +m(Ti)}{Zi +m(T i)
′} = 0 (4.121)

To solve this problem Newton Raphson type algorithm can be used.
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Chapter 5

VALIDATION TECHNIQUES

5.1 CUMULATIVE ACCURACY PROFILE CURVE

A cumulative accuracy profile (CAP) curve is a visual tool used by Moody’s to asses

the scoring model performance. Moody’s uses the term Cumulative Accuracy Profile

since it represents the cumulative probabilities of default over the entire population,

as opposed to the non-defaulting population” [59, 60]. This is also known as ”Gini

Curve”, ”Power Curve” or ”Lorenz Curve”. It measures how a scoring model is

successful in assessing the individuals with low creditworthiness in bad classes. A

high scoring class represents the low default probability of default.

In building CAP curve, the first step is to order all the observations from high rating

class to low rating class. For each scoring class, the following probabilities are esti-

mated:

P sD =
N s
D

ND
, (5.1)

P sND =
N s
ND

NND
, (5.2)

P sT = πP sD + (1 − π)P sND and (5.3)
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π =
ND

N
, (5.4)

where

P sD is the probability of defaulter has a score s

P sND is the probability of defaulter has a score s

P sT is the probability of an individual has a score s

π is the probability of defaulters in the sample

N s
D is the number of defaulter in score s

N s
ND is the number of non-defaulter in score s

N s
T is the number of all observations

Then cumulative probabilities can be estimated for each score as follows:

CsD =

S∑

s=1

P sD, (5.5)

CsND =
S∑

s=1

P sND and (5.6)

CsT =

S∑

s=1

P sT , (5.7)
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where

CsD is the probability of defaulter has a score at least s,

CsND is the probability of defaulter has a score at least s and

CsT is the probability of an individual has a score at least s.

The CAP curve is a graph of all points of CsD and CsT for each scoring class. The ran-

dom model with no discriminatory power is represented by a straight line. A perfect

model exactly assigns all defaulters to the lowest class. Generally, the performance

of a real scoring model is in between these two models.

When comparing two or more scoring models, CAP curve can only be a visualization

tool and can be misleading. Then, summary measure is needed to evaluate the

performance. The success of any model can be summarized and evaluated by accuracy

ratio (AR). It includes both Type I and Type II errors defined as [59]

AR =
ar
ap
, (5.8)

where

ar area between scoring model and random model and

ap area between perfect model and random model.

AR ranges between 0 and 1; the higher the accuracy ratio the more successful the

scoring model. The model with AR closest to 1 is the best model. It is designed to

determine whether the model is better than the random model with zero information

or not. It can be roughly estimated as

AR = 1 − 2

S∑

s=1

P sD[
Cs−1
ND + CsND

2
]. (5.9)
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5.2 RECEIVER OPERATING CHARACTERISTIC

CURVE

The receiver operating characteristic (ROC) curve is a visual tool that represents the

possible distributions of scores for defaulting and non-defaulting applicants. Suppose

a decision maker tries to predict a new observation’s future behavior in the next

period, he or she should determine a cut-off value and classify the observations as

a potential defaulter when the score is lower than that cut-off value, or classify the

observation as a potential non-defaulter when a score is higher than the cut-off value.

There will be four possible scenarios summarized in Table 5.1

Table 5.1: Possible scenarios for payment

Observations Score<x Score>x

Default true (A) misclassified (B)

Non-Default misclassified (C) true (D)

Hit rate is defined as:

HR(x) :=
H(x)

ND
, (5.10)

where,

HR(x) is the hit rate,

H(x) is the number of defaulters predicted correctly with the cut-off value x and

ND is the total number of defaulters in the sample.

False alarm rate is defined as:
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FAR(x) :=
FR(x)

NND
, (5.11)

where,

FAR(x) is the false alarm rate,

FR(x) is the number of non-defaulters predicted incorrectly as defaulters with the

cut-off value x and

NND is the total amount off non-defaulters.

The ROC curve is a graph of HR(x) versus FAR(x) drawn for each cut of value.

To compare the scoring models, the model with steeper ROC curve is the better one

but make a decision only by means of ROC curve may be misleading since it may

be difficult to visualize the difference between curves. For this purpose, summary

statistics are needed. The most common summary statistic is the area under curve

(AUC). The worst model would have AUC equals to 0.5, the best model has AUC

equals to 1. It is estimated as follows [59, 60]:

AUC =

∫ 1

0
HR(FAR)d(FAR) (5.12)

It can be approximately calculated as:

AUC = 1 −
S∑

s=1

P sD[
Cs−1
ND + CsND

2
]. (5.13)

There is a connection between the AUC and AR defined as:

AR = 2AUC − 1. (5.14)
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Pietra Index

Pietra index is also a summary measure of the ROC curve. Geometrically, it repre-

sents two times the maximum area of the triangle can be drawn between ROC curve

and unit square’s diagonal. It can be estimated as follows:

Pietra− Index :=

√
2

4
maxs | HR(s) − FAR(s) | (5.15)

The index is between 0 and 1. The model with Pietra index closest to 1 is the best

model, the model with index equal to 0 have no discriminatory power. Sometimes it

is approximately estimated as the maximum distance between cumulative frequency

distributions of default and non-default observations. To evaluate the performance

of Pietra index, the Kolmograv Simirnow non-parametric test is used.

The approximate estimate of Pietra Index is defined as:

P = maxs{| CPD(s) − CPND(s) |} : (5.16)

and the hypothesis is considered as:

H0:The difference between defaults and non-defaults is insignificant.

H1:The difference between defaults and non-defaults is significant.

The test statistic is defined as

KS =
Dq√

Np(1 − p)
, (5.17)

where

N is the number of observation in the sample,

p is the default probability in the sample and

Dq is the significance value KS statistic.

When the difference is greater than or equal to the table value then H0 hypothesis is

rejected with q significance level. When we reject H0, we conclude that the difference

between default and non-default observations is significant and the model is successful

in discriminating the observations.
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Bayesian Error Rate

It is also a discriminatory power measure of ROC curve depending on both Type I

and Type II errors. It is defined as:

Error Rate := min
s

{| p(1 −HR(s)) + (1 − p)FAR(s) |}, (5.18)

where

1 −HR(s) is the α (Type I) error,

FAR(s) is the β (Type II) error and

p is the default probability of the sample.

Error rate depends on the samples’ default and non-default probabilities; so it is

weaker than the AUC and Pietra index. The smaller the error rate, the more accu-

rate the model is.

5.3 INFORMATION MEASURES

Information measure used for all kind of models without any assumption about the

distribution of the variables. It is a measure of uncertainty information [59, 60].

Information of default probability without taking into account the scores is:

I(p) = −pln(p) + (1 − p)ln(1 − p). (5.19)

Information takes into account the model and it is defined by,

I(s) = −P (D|s)ln(P (D|s)) + P (ND|s)ln(P (ND|s)). (5.20)

The conditional information measure is the expected value of information of the

model:

I(score) = −E[P (D|s)ln(P (D|s)) + P (ND|s)ln(P (ND|s))] =
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−
S∑

s=1

P (s)(P (D|s)ln(P (D|s)) + P (ND|s)ln(P (ND|s))).

When evaluating the predictive power of the model, any interpreting by means of

information measures is not adequate. Therefore, summary measures such as condi-

tional entropy ratio (CIER) and Kullback Leibler Distance are used for comparison.

5.3.1 Kullback Leibler Distance

Kullback Leibler (KL) distance is the measure of difference between information with

and without any model:

K − L distance := I(p) − I(score). (5.21)

The model with maximum distance measure is the best one since the distance is

interpreted as the information added to the prediction by the model.

5.3.2 Conditional Information Entropy Ratio

Conditional Information Entropy Ratio(CIER) is the normalized measure of the

Kullback Leibler distance. It represents the reduction in uncertainty defined as [59,

60]:

CIER =
I(p) − I(score)

I(score)
. (5.22)

Since it represents the reduction in uncertainty, the higher the ratio the more accurate

the model is. The model with CIER equal to 0 is the model with no discriminatory

power; this means that this model does not add any information to the default event.

5.4 BRIER SCORE

Brier Score is the measure of residual sum of square of non-linear models. It is also

known as the mean square error. It measures the estimation accuracy of the default

probability defined as

Brier =
1

n

n∑

i=1

(yi − p̂i)
2, (5.23)

60



where

yi is the dependent variable of the ith observation and

p̂i is the default probability estimation of the model for the ith observation.

The Brier Score is between 0 and 1. The smaller the score is, the more accurate

is the model. The model with lowest mean square error will be the best one. The

expectation of the Brier score is the variance of the dependent variable. Since the

dependent variable is binary, it is assumed to distribute as binomial. The binomially

expectation is:

E[Breier] = p(1 − p), (5.24)

where

p is the default probability of the sample and

(1 − p) is the non-default probability of the sample.
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Chapter 6

APPLICATION AND RESULTS

6.1 DATA

In this section data used in this study is described. The data used was provided by

a Turkish bank. It consists of 29 independent variables; 13 are ordered independent

variables and 16 are the financial ratios obtained from manufacturing industry firms.

The response variable has two categories 0 indicates non-defaulted and 1 indicates

defaulted firms. There are 1649 observations including 61 defaulted and 1578 non-

defaulted firms. The variables in data not only include applicant’s previous credit

history but also the external source information about operations and market.

The first 13 variables have four levels on ordinal scale. In 1989, Hosmer and Lemeshow

stated that traditionally, variables of this type have either been analyzed if they were

continuous or categorical [53]. In addition, In 2002, Agresti [61] stated that:

”The position of ordinal variables in the qualitative and quantitative classification

is fuzzy. Analysts often treat them as qualitative using this methods for nominal

variables. But in many respects, ordinal variables more closely resemble interval

variables than they resemble nominal variables”

By taking into account these concepts, we used the qualitative nature of our ordered

variables instead of treating them as if they were nominal variables. Therefore, we

did not need to include them to the models as dummy variables.

When the independent variables are on different scales, the variables can be trans-

formed to the same scale to get more efficient results. In this study, the ratios were

transformed to ordered form having four levels representing an order from low per-

formance to higher performance. By this process, we transformed all our variables
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to common nature. Some ratios representing high performance when they are high,

some are desirable when they are low. By transforming the ratios to ordered form,

we also attained to rank our variables.

When transforming, the limits were determined after interviewing with the credit

experts from banks. The exact limits and number of groups were determined after

several simulation trials. The limits for each ratio that gives the best determination

power was taken as the mapping limit.

6.1.1 Variables

1. Credit in follow-up period,

2. Rediscount,

3. Payment routine,

4. Firm’s and shareholders’ prestige,

5. Relations with other firms and banks,

6. Firm’s and shareholders’ assets,

7. Financial and managerial risk,

8. Plant and building ownership,

9. Relations with financial institutions,

10. The maturity of the credit,

11. Demand quality of the product,

12. Purchasing and selling maturity structure and

13. Utilization capacity.

14. Current Ratio:
Current Assets

Current Liabilities
(6.1)

Current Ratio is an indicator of a firms’ ability to meet its short term debt

obligations. If the current assets of a firm are more than twice of the current

liabilities then the firm is considered to be successful in meeting its short term

obligations. If the current ratio is equal to 1 this means that the firm could

theoretically survive for one year.
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15. Quick Ratio:

QuickAssets

CurrentLiabilities
(6.2)

QuickAssets = CurrentAssets − Inventories = Accounts Receivable + Cash

Quick Ratio is an indicator of a firms’ liquidity and ability to meet short term

obligations. It is also known as acid-test ratio. The higher the ratio is, the

better the liquidity position of the firm is.

16. Net Working Capital Ratio:

Net Working Capital

Total Assets
(6.3)

Net Working Capital = Current Assets − Current Liabilities

Net working capital is an good indicator of firms’ liquidity. It is widely used for

bankruptcy prediction. A low ratio may indicate a higher risk of bankruptcy.

17. Total Assets Turnover Ratio:

Net Sales

Total Assets
(6.4)

Total Assets turnover Ratio is an indicator of firms’ ability in using its assets

to generate sales and earn profits. A high ratio means that the firm is using

it’s assets efficiently.

18. Fixed Assets Turnover Ratio:

Net Sales

Fixed Assets
(6.5)

Fixed assets turnover ratio is an indicator that shows how effectively the firm

uses its buildings, plant, machines and equipment to generate sales. In other

words, it shows how productive the firm is.

19. Debt Ratio:

(Current + Long Term) Debt

Total Assets
(6.6)

Debt ratio indicates the percentage of assets that have been financed by bor-

rowing. The lower the ratio is, the less risky the firm is since debt may have

high interest payments.
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20. Current Liabilities to Net Worth Ratio:

Current Liabilities

Net Worth
(6.7)

The current liabilities to net worth ratio is an indicator of creditor’s security.

The higher the ratio is the less secure the creditors are. A ratio of 0.5 or higher

may indicate inadequate owner investment.

21. Fixed Assets to Total Assets Ratio:

Fixed Assets

Total Assets
(6.8)

Fixed assets to total assets is a measure extent which fixed assets financed with

shareholder’s equity. A high ratio indicates an insufficient usage of working

capital. In other words, it indicates a low cash reserve that may limit the firms’

ability to respond to a increased demand for its products.

22. Current Liabilities to Net Sales Ratio:

Current Liabilities

Net Sales
(6.9)

Current liabilities to net sales ratio is an indicator of firms’ activity and riski-

ness. The higher the net sales is the lower the ratio is and less risky the firm

is. Default probability would decline, as the ratio becomes smaller.

23. Net Operating Margin:

Operating Income

Net Sales
(6.10)

Net operating margin is the amount of margin generated by operations. It is

an indicator of profitability of firm. The higher the ratio is the more profitable

the firm is in operating. It is the amount of margin generated by operations.

24. Net Profit Margin:

Net Profit

Net Sales
(6.11)

Net profit margin is an indicator of effectiveness of the firm at cost control.

The higher the ratio is, the more effective the firm is to cover its revenue from

sales to profit. It tell us how much profit generated for every unit of revenue.
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25. Return on Assets Ratio (ROA) :

Net Profit

Total Assets
(6.12)

Return on assets is an indicator of profitability of the firm. It shows how much

a firm generates by using its assets. It is also known as return on investments.

26. Financial Expense to EBITDA Ratio:

Interest Expense

EBITDA
(6.13)

EBITDA = Earnings Before Interest, Taxes, Depreciation and Amortization

Financial expense to EBITDA is an indicator of expenditure of borrowing.

27. Return on Equity Ratio (ROE):

Net Profit

Shareholders’ Equity
(6.14)

Return on equity is an indicator which shows how much a firm generates with

the shareholders’ investments. With higher ROE, it is more likely to generate

cash with internal sources.

28. Net Sales Increase:

Current Year’s Net Sales- Prior Year’s Net Sales

Prior Year’s Net Sales
(6.15)

29. Total Assets Growth Rate:

Current Year’s Total Assets

Prior Year’s Growth Rate
(6.16)

6.1.2 Data Diagnostic

The most important part of modelling is to get information from data. The process

usually gives what you expect, but often it also provides clues and hints. The role

of data diagnostic of time series data is to get clues and hints to have powerful idea

about what has happened in the past. To get an idea, it is very important to look

at the data by means of visualizing and evaluating descriptive statistics. In data

analysis, the theoretical assumptions should be achieved and model specifications

should capture the main feature of data.
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An average is one of such a feature; it is the location parameter of distribution. When

taken alone, it tells us little about data. To interpret an average, we need to have a

good idea about the variability. Standard deviation, which is measures the distance

from the mean, is the right measure for variability. The smaller the variance, square

of standard deviation, the more representative the mean is. In Table 6.1, there are

descriptive statistics of ratios .

Table 6.1: Descriptive statistics for ratios

N Min Max Mean Std. Dev. Skewness Kurtosis

x14 1649 0.00 96.82 2.2932 4.33662 13.886 249.464

x15 1649 0.01 55.14 1.2904 2.46420 15.056 289.465

x16 1649 -307.11 709.08 7,5211 30.87337 14.593 310.937

x17 1649 0.00 21.91 1.8204 1.36298 4.196 39.433

x18 1649 -78.29 1128.37 28.5556 70.56754 7.001 70.483

x19 1649 -29.23 338.57 3.6267 13.49042 16.081 330.875

x20 1649 0.00 4.35 0.4786 0.28894 3.921 41.282

x21 1649 -10.64 60.56 0.7183 2.04891 19.656 500.945

x22 1649 0.00 1450.34 1.2467 35.71187 40.590 1648.042

x23 1649 -838.40 0.55 -0.5325 20.66393 -40.502 1643.133

x24 1649 -865.01 0.34 -0.5529 21.32062 -40.497 1642.867

x25 1649 -2.60 0.46 0.0305 0.16199 -6.299 72.895

x26 1649 -189.01 121.28 0.4523 6.35912 -11.919 580.968

x27 1649 -62.97 41.73 0.0809 1.95309 -14.619 784.933

x28 1649 -0.98 874.25 1.6223 29.51309 26.572 737.372

x29 1649 0.00 51.58 0.4060 1.69212 20.822 559.016

In addition to the mean and the standard deviation, there are minimum and max-

imum values in data. The variability in x18, x16, x22 and x28 are the highest since

the range between minimum and maximum values are high, so using the mean is less

representative for the sample.

The distribution of the data is very important for assumptions of future estimations.

We can test normality by means of skewness and kurtosis. One way to observe the

normality property is to look at the kurtosis of the distributions. Kurtosis is the

degree of peakness of a distribution. It is a measure of the extent to which observed

data fall near the center of a distribution or in the tails. Standard normal distribution

has a kurtosis of zero. Positive kurtosis indicates a ”peaked” distribution and negative

kurtosis indicates a ”flat” distribution. Skewness defines the degree of asymmetry of

the distribution. A negative skewness value indicates that the data have a distribution

skewed to left. A positive skewness value indicates a right skewed distribution. A
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zero skewness value indicates that the data has a symmetric distribution.

In Table 6.1, there are skewness and kurtosis statistics. The statistics indicates that

x23, x24, x25, x26 and x27 are skewed to left and other ratios skewed to right. The

kurtosis statistic for all ratios are all positive and high implies that the distribution

of ratios are peaked. Bar graphs are a very common type of graph suited for a

qualitative independent variable. It is used to compare the amounts or frequency of

occurrence of different characteristics of data. The graph allows to compare groups

of data, and to make generalizations about the data. The Figure 6.1 shows the bar

graph of ordered variables.

Figure 6.1: Bargraphs of ordered variables

6.1.3 Sample Selection

In credit rating, the problem mostly faced is rather technical than theoretical. The

credit scoring procedure requires a lot of high quality data. For this purpose, sample

selection is the most challenging problem in credit scoring.

In 1984, Zmijewski [62] studied two types of sample bias in financial distress predic-

tion. One is the bias results when researcher firstly observes the dependent variable
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and then selects a sample based on this knowledge. Secondly, there is the result

when only observations with complete data are used to estimate the model. The

sample bias is observed clearly and probit model is extended by bias adjustment to

avoid bias. However, when statistical inference is investigated not much significance

difference was found.

In 1998, Greene [63] tried to determine how sample selection affects the predictors

bias. He claimed that when the model consists of the individuals who were accepted,

the sample is arguably random. A conditional model taking into account the condi-

tion of only accepted individuals is used to predict probability of default to avoid this

problem. This conditional models predict much higher default rate and this model

could distinguish more sharply the ones who defaulted before.

Geert [64] analyzed the impact of sample bias on consumer credit scoring performance

profitability and concluded that when sample size increases the sample bias decreases.

The possible impact of the effect of sample bias on credit scoring is limited and does

not appear to have a negative influence on scoring performance and profitability.

Since the results of previous studies indicates that the sample bias caused by using

only accepted individuals has no significant effect on discriminatory power and there

is no such data is available in Turkey, in this research only the observations of accepted

applicants are used. On the other hand, the unbalanced valued sample also affects

the reliability of models such as logistic regression and probit regression. In 2005,

Işcanoğlu [65] checked the conditions that logistic regression performs more accurate

and concluded that unbalanced size of defaulted and undefaulted individuals affect

the accuracy of the model. Additionally, she concluded that when the number of

defaulted observations is too small, the accuracy is low, increasing the size of defaulted

observations bias decreases and when sample size increases the bias decreases.

By taking into account her results to obtain more reliable and accurate results, a

sample selection procedure is used. While selecting the sample, logistic regression

was used as the basic model. By fixing the defaulted observations with random

numbers, 1000 different samples were selected independently. The samples, which

were used to construct logistic regression and the significance and explanatory power

of models were compared. The sample giving the significance model with highest

explanatory power was taken as the sample to compare credit scoring models.
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6.2 CREDIT SCORING MODEL RESULTS

6.2.1 Classification and Regression Trees Results

CART is a widely used nonparametric technique for feature selection. The purpose

is to determine a set of if-then else conditions to classify observations. In other words,

it is a sequence of questions which can be answered as yes or no concerning whether

the condition satisfied or not.

It is a form of binary recursive partitioning, it splits the sample into classes with root

node to ending with homogenous sub-samples. This process is called building Tmax.

A desirable tree is the one having a relatively small number of branches and high

predictive power. The optimum tree is built by evaluating the cost and complexity

measure.

In Figure 6.2, the decision tree with optimum cost and complexity is represented. It

can also be called the right-sized tree for credit scoring problem. The right-sized tree

for our problem is built with x1, x4, x14, x17, x18, x19, x20, x22, x28 and x29.

The root node is the one in the top of the tree that is containing all the applicants in

the sample. This node’s split is based on x14; if variable x14 <2.5, the applicants put

into x4; and if x4 <1.5, the applicant is classified as defaulted otherwise classified as

non-defaulted. When the applicants in the child node x1 have the property that x1

<1.36, then the applicants classified as defaulted and the applicants are put into x17,

otherwise. This process continues to the last terminal node. The first split is based

on x14, the second based on x14 and x17, the third based on x18, the fourth x29, the

fifth x20, sixth x22, seventh x19 and the last split based on x28.

At the upper levels of the tree there are more significant variables, less significants are

at the bottom of the tree. Therefore, x14 is the most significant variable for CART

since it is located at the root node.

The CART results not only consist of the tree, they also include a tree report. The re-

port consists of tree sequence, terminal nodes, child nodes, assigned classes , splitting

criteria, variables included to model, cutoff values of the variables, misclassification

rates and cost of complexity parameter.

The right sized tree was obtained after 5 prunings with optimum cross-validation

result. Like the other classification tools the results of CART also depend on the

sample, so this model was built with the sample used by the other analysis.
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Figure 6.2: Classification tree

The CART applications are aimed to achieve the best predictive accuracy with min-

imum expected cost. The expected misclassification cost depends both on cost of

assigning a class i observation as class j observation and prior probabilities of classes.

Priors that are the proportions of classes that minimizing the expected cost may af-

fect the classification of cases. CART has a direct way to incorporating such prior

information to the tree model.

For this purposes, trees including different combinations of misclassification costs,

prior probabilities and splitting rules were constructed to determine the classifica-

tion tree with highest predictive ability. The tree in Figure 6.2 includes equal prior

probability and equal cost of misclassification assumption with Gini splitting rule.

In Table 6.2, the cross validation estimates of the all combinations with Gini and

Twoing splitting rule are shown. The trees giving the best cross-validation estimates

are the ones constructed with Gini splitting rule, having misclassification of defaulted

applicants as non-defaulted is 3 unit cost and having misclassification cost of non-

defaulted case as defaulted is 1 unit cost for both equal probabilities and when prior
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probability of default is taken as 0.1 and non-defaulted 0.9.

Table 6.2: Cross-validation results for alternative classification trees

p=0.5,q=0.5 p=0.1,q=0.9

(1,1) (1,2) (1,3) (2,1) (3,1) (1,1) (1,2) (1,3) (2,1) (3,1)

Gini 2.3% 3.4 % 3.82% 2.18% 1.82% 2.3% 3.46% 3.4% 2.12% 1.82%

Twoing 2.3% 3.09 % 3.4 % 2.67 % 2.12 % 2.3% 3.40% 3.40% 2.73% 2.12%

Figure 6.3: The best classification tree

The prior probabilities did not change the result. In both cases the two trees have

0.0182 cross-validation result. Both trees can be used in prediction. The prior prob-

ability p=0.1 and p=0.9 is taken since the sample is assumed to come from Bernoulli

so the predictions can be taken as class proportions. In this thesis the tree with

Gini splitting rule, equal prior probabilities and having misclassification of defaulted
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applicants as non-defaulted is 3 unit cost and having misclassification cost of non-

defaulted case as defaulted is 1 unit cost is taken as optimal tree. It is shown in

Figure 6.3.

6.2.2 Logistic Regression Results

Like linear regression, logistic regression is also a method to produce a prediction

equation with regression weights. But unlike linear regression there are no assump-

tions about the linearity relation between independent and dependent variables and

about the normality of independent variables. Therefore, there is no need to check

the normality of independent variables before analyzing.

Logistic regression applies maximum likelihood estimation after transforming the de-

pendent variable. In this study, to select the variables to use in regression equation

backward selection method was used. Firstly, all variables were included to the model

that significance of coefficients and overall significance are evaluated. The insignifi-

cant variables with 95 % confidence level were thrown away, with the other variables

the model is again constructed and significance of variables checked and insignificant

ones are again thrown away. This procedure continued until the significant model

with significant parameters is found. In this study, after three steps the significant

model was found. The coefficients are summarized in Table 6.3.

Table 6.3: Logistic regression model parameters

Variables Coeff. Std. Errors Wald P-Values Lower 95 % Upper 95 %

x1 2.604538 0.680633 3.83 0 1.270522 3.93856

x10 1.81057 0.456525 3.97 0 0.915798 2.70534

x14 3.029178 0.835939 3.62 0 1.390767 4.66759

x15 -1.47571 0.549624 -2.68 0.007 -2.55295 -0.3985

x16 1.373796 0.501039 2.74 0.006 0.391778 2.35582

x17 7.28283 1.437741 5.07 0 4.46491 10.1008

x18 -1.94684 0.400815 -4.86 0 -2.73242 -1.1613

x20 0.789897 0.37517 2.11 0.035 0.054578 1.52522

x22 1.376298 0.382063 3.6 0 0.627468 2.12513

x24 3.885938 1.163319 3.34 0.001 1.605875 6.166

x25 -2.90873 0.984381 -2.95 0.003 -4.83808 -0.9794

constant -44.8438 8.451162 -5.31 0 -61.4078 -28.28

Although, the dependent variable takes values 0 and 1, the regression equation does

not give prediction values of 0 and 1. The regression equation of linear combinations
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of independent variables gives the log odds, and log odds are used to compute the

predicted values of probabilities of default. The parameter coefficients are called

logits of explanatory variables used to estimate log odds. One unit of increase in a

variable with β1 logit is associated with a β1 change in log odds of the dependent

variable. It does not directly affect the change in dependent varaible.

The regression equation of our model was found as:

ln(
P (Y = 1)

1 + P (Y = 1)
) = log-odds = −44.84381 + 2.604538x1 + 1.81057x10 +

3.029178x14 − 1.47571x15 + 1.373796x16 + 7.28283x17 − 1.94684x18

+0.789897x20 + 1.376298x22 + 3.885938x24 − 2.90873x25 .

By using transformations, log odds are transformed to probabilities of default. A

firm is classified as ”defaulted” if it has a probability of default greater than 0.5, and

”non-defaulted” otherwise. There is no theoretical reason why 0.5 is chosen generally

as the cutoff point but it is implicitly chosen by taking into account the assumption

of loss function that is assumed to be symmetric across two types of error.

The output of logistic regression includes logits, Wald statistics, log likelihood, chi-

square statistic and pseudo-R2 statistic. Our results are summarized in Table 6.4

Table 6.4: Logistic regression statistics

Log-likelihood -33.791208

Pseudo R2 0.8311

Chi-square statistic 332.55

P-Value 0.000

Log-likelihood is the natural logarithm of likelihood. Likelihood indicates how likely

the observed values of dependent variable are predicted with observed values of in-

dependent variables. In our study, likelihood was found to be -33.791208. Log like-

lihoods are negative since likelihoods is a probability between 0 and 1. Likelihood

and log likelihood can be used when comparing logistic models with different variable

combinations.

The overall significance of model is evaluated by goodness of fit test. In logistic

regression, generally, the chi-square test derived from log likelihood value is used.

The hypothesis for overall significance is defined as:
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H0: β1 = β2=...=βp=0.

H1: At least one of the coefficient is different than 0.

The rejecting or accepting can be determined by comparing chi-square value with chi-

square table value or by comparing the p value with α significance level. In our study

the chi-square statistic was found as 332.55 and p value was found to be 0.000. The

significance of the model was proved since p=0.000 < α = 0.05 with 95 % confidence

level. This means H0 was rejected and the equation of log-odds not only consist of

constant coefficient.

In logistic regression, like other regression types there is also a chance to test the

significance of individual model parameters. For this purpose Wald statistic is a

commonly used tool. It is the square of coefficients divided by the standard errors.

In Table 6.3, the coefficients, standard errors, Wald statistics, p values and confidence

intervals are summarized. The hypothesis tested by Wald statistic is defined as:

H0: βi=0 (i=1,...,p).

H1: βi 6= 0.

The decision about the hypothesis is taken by comparing Wald statistic with standard

normal table value or p value compared with α significance level. Since all p values are

smaller than α = 0.05 all these 11 variables contribution to the model is significant.

Pseudo R2 is the determination coefficient, interpreted like the R2 in linear regression.

In our model it is 83,11 % that means 83.11 % variability is dependent variable can be

explained by independent variables. But generally it is not suggested to use pseudo

R2 as a comparison tool in logistic regression.

6.2.3 Probit Regression Results

Probit regression is an alternative method for logistic regression. They are both

generalized linear models. Their underlying assumptions and evaluation tests are

same. Like logistic regression a transformation of probability of Y such that it equals

to 1 is obtained before maximum likelihood estimation. While logit transformation

is conducted to obtain odds, the function used in probit regression is the standard

normal cumulative distribution function.

Generally, both models come to the same conclusion, but the meanings and magni-

tudes of coefficients are different. In this study, like logistic regression the variables

were selected with a backward selection algorithm. After two steps, the variables in
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Table 6.6 are selected. They are the same variables the ones were selected in logistic

regression. The probit regression results are shown in Table 6.5 and Table 6.6.

Table 6.5: Probit regression statistics

Log-likelihood -33.050788

Pseudo R2 0.8348

Chi-square statistic 332.03

P-Value 0.000

Table 6.6: Probit regression model parameters

Variables Coeff. Std. Errors Wald P-Values Lower 95 % Upper 95 %

x1 1.467358 0.366954 4 0 0.7481402 2.18658

x10 1.026047 0.250032 4.1 0 0.5359937 1.5161

x14 1.678499 0.449107 3.74 0 0.7982667 2.55873

x15 -0.79628 0.292105 -2.73 0.007 -1.368794 -0.2238

x16 0.764288 0.280438 2.73 0.006 0.2146386 1.31394

x17 4.030123 0.773951 5.21 0 2.513207 5.54704

x18 -1.08406 0.218014 -4.97 0 -1.511361 -0.6568

x20 0.443471 0.205909 2.15 0.035 0.0398973 0.84705

x22 0.78544 0.209872 3.74 0 0.3740992 1.19678

x24 2.190696 0.647229 3.38 0.001 0.9221511 3.45924

x25 -1.64083 0.54457 -3.01 0.003 -2.708164 -0.5735

constant -25.0479 4.600916 -5.44 0 -34.06557 -16.03

The regression coefficients in probit regression corresponds to the logits of logistic

regression. But the pobit coefficients indicate the effect of the independent variables

on the dependent variable. They indicate the change in the cumulative normal prob-

ability of the dependent variable when independent variable changes by one unit.

While logit model expressed log odds the probit model expressed z-scores.

The Z-score equation of this study is obtained as follows:

Φ−1(P (Y = 1)) = −25.0479 + 1.467358x1 + 1.026047x10 + 1.678499x14

−0.79628x15 + 0.764288x16 + 4.030123x17 − 1.084064x18+

0.443471x20 + 0.78544x22 + 2.190696x24 − 1.64083x25

To predict probabilities of default by using the Z-score values to the standard normal
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distribution table is needed. As in logistic regression, after the probabilities of defaults

predicted, the individuals were classified by using the value 0.5 as a threshold.

The logistic regression coefficients are approximately 1.8 times the probit regression

coefficients. These two models can be converted to each other.

Like logistic regression, the output includes log likelihood, chi-square test statistic,

pseudo R2, Wald statistic and coefficient confidence intervals summarized in Table

6.6

The first step in interpretation of the model is to test the overall significance. The

result of the goodness of fit statistic is 334.03; it can be compared with chi-square

table value with 11 degrees of freedom or by comparing the p value with α significance

level. Since p=0.000 < 0.05 with 95 % confidence null hypothesis that includes only

the constant term in the Z-score model was rejected, and we concluded that the

model is significant.

Pseudo R2 was found as 83.48 % that gives the explained part of the variability

in dependent variable. Like logistic regression all the variables were found to be

significant when Wald statistic was used. All the p values in Table 6.6 are smaller

than α = 0.05; then, with 95 % confidence level, all the 11 variables are important

in predicting the probability of Y taking the value 1.

6.2.4 Linear Discriminant Analysis Results

Before using discriminant analysis, to assess assumptions it is helpful to visualize

the data and check descriptive statistics. Figure 6.1 show the distributions of data

and Table 6.1 shows the descriptive statistics. As mentioned before skewness and

kurtosis indicate that the data are not suitable for discriminant analysis. Although

the assumptions could not be achieved, discriminant analysis was used in this study

by taking into account the previous researches which were claimed that discriminant

analysis is an effective tool for credit scoring even if the assumptions does not hold.

For discriminating, Fisher’s linear discriminant analysis was used in this study. The

purpose of LDA is to establish linear combinations of variables which discriminates

the groups best. The most common use of discriminant analysis is to include many

variables to the model and using a stepwise procedure to select optimal set of vari-

ables. In this study, a forwardation variable selection was used by taking Wilk’s

lamda as a criterion. This variable was then paired with other variables and the pair
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giving the best result of criterion was taken. This procedure continues untill the cri-

terion reaches to the value given before or until all variables are selected. When two

variable combinations give the same performance measure, the more parsimonious

model is chosen.

In this study, after 8 steps the optimal variable combination was found including x1,

x5, x14, x17, x18, x19, x21, x22. From 29 variables these 8 variables were found to be

optimal to built the discriminant function.

The output of discriminant analysis consists of discriminant function weights, Wilk’s

lambda statistic and standardized canonical discriminant function.

Table 6.7: Discriminant analysis model parameters

Variables coefficients for Y=0 coefficients for Y=1

x1 2.677 5.748

x5 7.215 9.544

x14 8.652 12.856

x17 9.850 14.565

x18 -0.497 -2.319

x19 2.226 2.885

x21 -1.539 -0.577

x22 5.118 6.732

constant -36.845 -75.530

The weights are used to combine linearly the variables that will produce score which

maximizes the distance between two groups. The Fisher’s discriminant weights are

shown in Table 6.7. The LDA function was built as follows:

D0 = −36.845 + 2.677x1 + 7.215x5 + 8.652x14 + 9.850x17

−0.497x18 + 2.226x19 − 1.536x21 + 5.118x22,

and

D1 = −75.530 + 5.748x1 + 9.544x5 + 12.856x14 + 14.565x17

−2.319x18 + 2.885x19 − 0.577x21 + 6.732x22.
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Here, D0 and D1 are the discriminant functions for defaulted and non-defaulted

individuals respectively. In addition to the weights of discriminant functions, there

are standardized beta coefficients shown in Table 6.8, they are given for each variable

in the discriminant function. They show the relative magnitude of the contribution of

each variable. The variables giving larger standardized coefficients are the ones that

contribute more in discrimination. In other words, the larger the coefficient the more

important the model is. In this study, x17 has the highest coefficient; this means it

is the most important one in discriminant analysis.

Table 6.8: Discriminant analysis standardized coefficients

Variables Standardized coefficients

x1 0.307

x5 0.331

x14 0.581

x17 0.979

x18 -0.591

x19 0.161

x21 0.217

x22 0.578

The significance of any discriminant function is assessed by using Wilk’s lambda.

The null hypothesis used to conclude the result of Wilk’s lambda is that the means

of each variables vectors for each group are equal. When the hypothesis is rejected,

the discriminant function is found to be significant in discriminating the groups. The

smaller the value, the more significant the model is. Table 6.9 shows Wilk’s lambda

statistics for each steps. To decide whether to reject or accept the hypothesis, p

value can be used. As the p values compared to the α = 0.05 null hypothesis is

rejected, and concluded that these models are significant. The discriminant function

is successful to discriminate defaulted and non-defaulted individuals. As seen from

the Table 6.9 in steps 8 the Wilk’s lambda value is the smallest.

When variables chosen for models are compared, there is a difference in size of vari-

ables chosen between models. But there is common 5 variables significant to classify

in each model: x1, x14, x17, x18, x22. These variables are the common variables so

we can say that they are important variables in credit scoring. The most significant

variable for CART is x14 but for discriminant analysis is x17 it changes from one
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Table 6.9: Discriminant analysis Wilk’s lambda statistics

Step Number of Variables Wilk’s Lambda F statistic df1 df2 P-value

1 1 0.716 247,449 1 625 0.000

2 2 0.627 185.779 2 624 0.000

3 3 0.554 167.228 3 623 0.000

4 4 0.497 157.280 4 622 0.000

5 5 0.440 158.101 5 621 0.000

6 6 0.418 143.877 6 620 0.000

7 7 0.402 131.280 7 619 0.000

8 8 0.399 116.553 8 618 0.000

method to another.

6.3 VALIDATION RESULTS

In the previous section, the separate models for each techniques were presented.

The dynamics of methods and variables included to the models are different, so the

predictive abilities are expected to be different and should be tested to determine the

best model.

In this section, model performances were evaluated by means of predictive power

and discriminatory power tests. For the prediction power misclassification rates were

estimated and compared. For discriminatory power, ROC curve, CAP curve, Pietra

index, Bayesian error rate, K-L distance and CIER techniques suggested by Basel

committee were used [66].

The Table 6.10 represents the misclassification rates. The models were built by a

sample, but the accuracy of models were evaluated for whole data. As seen from

Table 6.10, CART has the minimum misclassification error rate, 98.18 % percent of

data is predicted correctly. The results for all models are nearly equal, approximately

98 % of the observations is correctly predicted.

Table 6.10: Misclassification rates of models

CART Logistic Regression Probit Regression Discriminant Analysis

Misclassification Rates 1.82 % 2.18 % 1.94 % 1.88%
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In Table 6.11, Figure 6.5 and Figure 6.4, the discriminatory power test results are

summarized.

In Figure 6.4, there are the CAP curves of models. It is a curve of cumulative

proportions of true good risks against the proportions of true bad risks. The steeper

the curve, the more successful the models is. As seen from Figure it is not easy

to compare the models so; the AR statistic should be used. When AR results are

evaluated, CART dominates the other three modes. Discriminant analysis has the

lowest performance.
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Figure 6.4: CAP curves of models

In Figure 6.5, the ROC curves of models are represented. The ROC curve is a curve

of the true positive rate against false positive rate. Like CAP curve, the models with

steeper curve has better discriminatory power. The mostly used summary statistic
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of the curve is AUC. The higher the AUC, the better the models is. The results of

AUC is consistent with the results of AR. The performance of CART is the best, it

is followed by logistic regression, probit regression and discriminant analysis, respec-

tively.
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Figure 6.5: ROC curves of models

Pietra index is also a summary statistic of ROC curve relating with the area between

the curve and the unit square diagonal. The model is desirable when it has a higher

index and the results are the same with results of AUC.

Bayesian error rate is also known as a summary statistic of ROC, but it is simply the

sum of type I and type II errors, so it gives the same result with the misclassification
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Table 6.11: Discriminatory power results of models

CART Logistic Reg. Probit Reg. Discriminant

AR 0.9193 0.9099 0.9035 0.8962

AUC 0.9354 0.9256 0.9190 0.9114

Pietra Index 0.3079 0.3010 0.2963 0.2909

Bayesian Error Rate 0.0182 0.0218 0.0194 0.0188

K-L Distance -0.1002 -0.1212 -0.1339 -0.1468

CIER -0.3876 -0.4336 -0.4584 -0.4813

rate.

KL-distance and CIER are information based tests. They give the information added

to the discriminatory power by the models. KL-distance is the distance between with

and without model information and CIER is the normalized measure of KL-Distance.

The model with maximum distance is the best model. In Table 6.11, there are the

results of these information measures. The result are again the same, CART added

the maximum information to the discrimination and is followed by logistic regression,

probit regression and discriminant analysis

In summary, our empirical results show that in most cases CART performs better

than others. All the models have different predictive and discriminatory power and

also the information included.

The most accurate measures suggested by Basel Committee are AR and AUC. The

results of both measure are the same result. It is better to use CART and logistic

regression for our data.

6.4 ASSIGNMENT OF RATINGS

When banks or financial institutes use models to estimate probabilities of default,

they require to assign the individual applicants to discrete rating classes by deter-

mining cutoff thresholds. In other words, the scoring model results are divided into

intervals so the applicants of each interval can be associated with a single PD.

There are important points that should be taken into account, while assessing rating

classes. Firstly, when assigning a rating class, the bank must assess the risk of the

applicant, this means that the number of classes and thresholds should be sufficient
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to ensure the differentiation of risk in each category. According to Basel II, there

must be at least seven classes; the first one represents the non-defaulted applications

and the last one represents only the defaulted applicants. The classes in between

have monotonically increasing risk profiles.

In the internal rating based approach, there is not only one way to assign rating

class. According to Basel II, banks or institutions can apply the cut-off values used

by rating agencies such as Fitch, S & P and Moody’s. The rating cutoff values of S

& P is represented in Table 6.12

Table 6.12: S & P rating scale with cut-off values

Rating Map Lower Limit Upper Limit

AAA 0 0.002

AA 0.002 0.01

A 0.01 0.04

BBB 0.04 0.15

BB 0.15 0.42

B 0.42 0.96

CCC 0.96 1

The rating classes can be determined intuitively by experts or a mapping procedure

that mimics the assignment rules of the rating agencies can be taken. However, they

are all standard methods and may not fit for all situations.

For each application profile the cut-off that is giving optimum risk differentiation and

satisfying within group homogeneity is needed. Therefore, it is better to construct

the cutoff values special for each sector and each applicant profile and adjust the

cut-off values for each adjustment periods of scoring.

In this study a data specific cut-off values were constructed with dual objective opti-

mization. The main issue here is to choose a threshold that satisfies two objectives.

First objective is to maximize area under ROC curve. It is needed to improve the

classification performance across classes. When the case in which default predicted

are default realized, the analysis gives higher AUC statistic. However, we have one

more problem, that is the firms which were assigned to a specific class must act alike.

In other words, homogeneity within a class should be satisfied. To achieve this ob-

jective ROC curve is not enough since it does not represent the statistical properties

of the classless in consideration. For this purpose, a criterion that represents the

84



statistical property of a rating class should be optimized. Since the validation results

indicated that CART is the best model for our data set, we used mean square error

(MSE) of the regression tree as a criterion to be minimized to achieve our second

objective.

The process begins with the estimation of PDs of each applicants by using logistic

regression. In the high rating classes the PD is lower. By using this information,

first PDs were sorted, then they were assigned to classes that in each class there

are approximately equal number of applicants. This is an intuitive way of rating

assignment. There are 7 classes and AUC higher than 0.9. Since it is just an intuitive

way of assignment, it should be improved to get better results by optimizing our two

objective. The process continued with the evaluation of two criteria.

To improve the intuitive ranking method, different combinations of cut-off values

were obtained by moving the thresholds up and down. Since the cut-off values in

intuitive method has AUC high enough, there is no need to move the thresholds

much. Firstly, to choose combinations 1000 times 7 random numbers limited by 40

were chosen. Then the thresholds places were moved up and down by these numbers.

To evaluate the criterion, firstly for each combination the ROC curve was constructed

and the AUC statistic was estimated. Secondly all the applicants were assigned to

classes by using all threshold combinations. Thirdly, teh applicants who were ranked

in classes were used as an ordered data to construct regression tree. Then the MSEs

for regression tree were estimated. There were 1000 AUC and MSE estimates for the

combination that had been moved up, 1000 estimates for the combinations that had

been moved down.

The last stage is to find a cut-off value that gives the optimum result. Since one

criterion should be maximized and the other should be minimized, a sum function

combining both was written. Since maximizing AUC is minimizing the negative of

AUC, negative weight was given to AUC criterion in the function. The cut-offs giving

minimum value of function is taken as the optimum result. The cut-off value and

groups are summarized in Table 6.13
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Table 6.13: Optimum rating scale

Rating Map Lower Limit Upper Limit

A 0 0.000000301

B 0.000000301 0.000002996

C 0.000002996 0.000020061

D 0.000020061 0.000223369

E 0.000223369 0.003878509

F 0.003878509 0.143434960

G 0.143434960 1
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Chapter 7

CONCLUSION

In this thesis, technical aspects of internal rating were given. The internal rating pro-

cess has three steps. The first step is to construct credit scoring models. Since credit

scoring is a statistical classification problem, statistical classification techniques were

summarized. To improve the models reliability the problems faced in classification is

tried to be minimized. Firstly, all possible variables relating with default prediction

were obtained from a Turkish bank. Secondly, to minimize the sample bias in logistic

regression an optimum sample was chosen by Monte Carlo simulation. The data set

was tried to be taken as large as possible to satisfy the asymptotic properties of the

models. However, we had no chance to build our own data set so it was impossible to

use conditional models including both accepted and unaccepted applicants to avoid

sample bias; also we had no chance to compare different default definitions. Since

the variables were in different scales, the continuous variables were transformed to

ordered scale by determining thresholds after taking the opinions of credit experts

of banks. After overcoming such problems summarized above credit scoring models

were built. The models were constructed with different significant variables but it

was concluded that credit in the follow-up period, current ratio, total asset turnover

ratio, fixed asset turnover ratio and current liabilities to net sales were found to be

significant for all models. The pseudo R2 of logistic regression and probit regres-

sion is approximately 0.83. This, means that by our variables and data set the 83%

variability in default and non-default cases can be explained.

The second stage is the evaluation of the models. The models performances were eval-

uated with misclassification rates, ROC curve, CAP curve, Pietra index, Bayesian

error rate, K-L distance and CIER for whole data set. CART has the minimum mis-

classification rate, 98.18% of data is predicted correctly with CART. The results are
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the same for other discriminatory power tests. CART dominates the other techniques.

In most cases, logistic regression has the second best performance.

The last stage is the assignment of ratings. Cut-off values used to map PD’s to rating

classes were assigned by evaluating two criteria: AUC and MSE for regression tree.

Seven classes were built after assessing 2000 results of 1000 simulation. PDs estimated

by logistic regression were assigned to classes with simulated thresholds. Then these

results were used to built a regression tree and a threshold giving optimum result

was chosen.

In future works, if it is possible to obtain specific data set, the models with different

default definitions for Turkish manufacturing firms can be compared and conditional

models including all applicants can be built. The aim of this thesis was to use

statistical credit scoring methods; non-statistical techniques such as neural networks

can also be applied and compared with statistical techniques. The results of this

study can be used take a decision about new applicants whether to grant or not to

grant credit. In addition, the results of internal ratings can be applied to construct

credit risk measurement models.
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