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Abstract

CONSTRUCTIONS OF BENT FUNCTIONS

SULAK, Fatih

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ali DOĞANAKSOY

January 2006, 50 pages

In cryptography especially in block design, Boolean functions are the basic

elements. A cryptographic function should have high nonlinearity as it can be

attacked by linear attack.

In this thesis the highest possible nonlinear boolean functions in the even

dimension, that is bent functions, basic properties and construction methods of

bent functions are studied. Also normal bent functions and generalized bent

functions are presented.

Keywords: Cryptography, Boolean functions, Bent Functions, Nonlinearity,

Walsh-Hadamard transformation, Normal Bent Functions, Generalized Bent Fuc-

tions, Bent Function Constructions.
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Öz

BÜKÜK FONKSİYONLARIN OLUŞTURULMASI

SULAK, Fatih

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ali DOĞANAKSOY

Ocak 2006, 50 sayfa

Kriptografide ve özellikle de blok şifre tasarımında Boole fonksiyonları temel

unsurlardır. Kriptololojik bir fonksiyonun doğrusal saldırılara karşı dayanıklı ol-

ması için nonlineeritesinin yüksek olması gerekmektedir.

Bu tezde de mümkün olan en yüksek nonlineeriteye sahip olan fonksiyon-

lar yani bükük fonksiyonlar, onların özellikleri ve oluşturulması incelenmiştir.

Ayrıca normal bükük fonksiyonlara ve genelleştirilmiş bükük fonksiyonlara da

değinilmiştir.

Anahtar Kelimeler: Kriptografi, Boole fonksiyonları, Bükük Fonksiyonlar, Nonli-

neerite, Walsh-Hadamard dönüşümü, Normal Bükük Fonksiyonlar, Genelleştiril-

miş Bükük Fonksiyonlar, Bükük Fonksiyonların Oluşturulması.
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Chapter 1

Introduction

A Boolean function maps a number of input bits into a single bit. In cryp-

tography especially in block design, Boolean functions are the basic elements.

A cryptographic function should have high nonlinearity in order to prevent at-

tacks based on linear approximation. In this thesis the highest possible nonlinear

Boolean functions, that is, bent functions are studied.

Bent functions are first studied by Dillon [6] in 1974 and Rothaus [16] in 1976.

The word “bent” is first used by Rothaus. Further properties and constructions

of bent functions can be found in [2], [8]. Kumar, Scholtz and Welch [11] defined

and studied generalized bent functions.

The thesis is organized as follows:

In Chapter 2, we establish some notations which are used throughout the

thesis and recall the properties of Boolean functions. Then, we state linear and

affine functions. Later, we present nonlinearity and the Walsh-Hadamard trans-

form of Boolean functions, its properties and relations with Sylvester-Hadamard

matrices.

In Chapter 3 basic properties of bent functions are given.

In Chapter 4, we present the construction methods of Bent functions.

In Chapter 5, we present normal bent functions and their properties.
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In Chapter 6, generalized bent functions and their properties are investigated.

Some constructions of generalized bent functions in [11] are also given.

We summarize the thesis in chapter 7.
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Chapter 2

Preliminaries

In this chapter we state the definitions and the notation we use in the following

chapters. The reader may refer to [17] and [19] for further information.

2.1 Boolean Functions

Let Vn be the vector space composed of all n-tuples of elements from GF (2).

An element αk = (a1, a2, . . . , an) in Vn, can be represented by the integer k =∑n
i=1 ai2

n−i. With this representation, the natural ordering of integers induces

an ordering on Vn, so called the lexicographic ordering. We denote the element

of Vn corresponding to the integer k by αk so that Vn = {α0, α1, · · · , α2n−1} and

α0 < α1 < · · · < α2n−1.

For α, β ∈ Vn, the sum α ⊕ β ∈ Vn is obtained by adding corresponding

components of α and β modulo 2.

The standard basis of Vn is denoted by {e1, e2, . . . , en}, where ei represents

the vector having all zero’s except a 1 at the i-th position.

The Hamming weight of an element α ∈ Vn is the number of components

that are equal to 1 and is denoted by w(α). The Hamming distance between

two elements α, β ∈ Vn is the number of unequal components and is denoted by

d(α, β). Obviously, d(α, β) is the Hamming weight of α ⊕ β. From now on “the

3



weight” and “the distance” will mean the Hamming weight and the Hamming

distance, respectively.

Let α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) ∈ Vn. The standard inner product

〈, 〉 on Vn is defined as

〈α, β〉 =
n∑

i=1

aibi.

A Boolean function is a GF (2) valued map, with domain Vn. The set of all

Boolean functions is denoted by Fn. From now on, unless otherwise stated, by

“a function” we mean a Boolean function in Fn

Any f ∈ Fn has a unique representation in each of the following forms:

• The ordered tuple,

Tf = (f(α0), f(α1), . . . , f(α2n−1))

is called the truth table of f .

• Sometimes instead of Tf , it may be more convenient to use the real valued

function of f , which is called the sign function f̂ . It is defined as f̂(α) =

(−1)f(α) = 1− 2f(α) for all α ∈ Vn. The truth table of the sign function f̂

is called the sequence of f and is denoted by ζf . That is

ζf = ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n−1)).

• The polynomial representation

f(x) = a0⊕a1x1⊕· · ·⊕anxn⊕a12x1x2⊕· · ·⊕a12···nx1x2 · · ·xn
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where a0, a1, · · · , a12···n ∈ GF (2), is called the algebraic normal form (ANF)

of f . In this representation each product of variables appearing as a part

of the sum is called a term. Number of variables in each term is called the

degree of that term and the degree of a function is the degree of the term

(not necessarily unique) with largest degree and is denoted by deg(f).

The weight of a function is defined as the number of nonzero entries in Tf and

is denoted by w(f). If the weight of a function is 2n−1, that is the numbers of 0’s

and 1’s are equal, then the function is called balanced. We denote the set of all

balanced functions by Bn. Obviously, |Bn| =
(

2n

2n−1

)
.

Let f, g ∈ Fn. Then by the distance between f and g, we mean the distance

between Tf and Tg on V2n , which is donated by d(f, g). Thus, d(f, g) = w(f ⊕g).

The following lemma is immediate from the definition.

Lemma 2.1.1. For any f, g ∈ Fn, d(f, g) = 2n−1 − 1
2
〈ζf , ζg〉.

Two constant functions, whose weights are equal to 0 and 2n will be denoted

by 0n and 1n, respectively. For a function f ∈ Fn, the complement function f̄ is

defined to be f̄ = f ⊕ 1n. Trivially, it follows that w(f̄) = 2n − w(f).

The support of f is defined to be the set {α ∈ Vn|f(α) = 1} and is denoted

by Supp(f). It is clear that |Supp(f)| = w(f) and that Supp(f) ∩ Supp(f̄) = ∅.

2.2 Linear and Affine Functions

A function f ∈ Fn is called linear if f(α ⊕ β) = f(α) ⊕ f(β) holds for all

α, β ∈ Vn and such a function is of the form f(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn,

ai ∈ GF (2). The set of all linear functions is denoted by Ln.
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A function f ∈ Fn is called affine if f(α ⊕ β) = f(α) ⊕ f(β) ⊕ a holds

for all α, β ∈ Vn and a ∈ {0, 1} and such a function is of the form f(x) =

a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn, ai ∈ GF (2). The set of all affine functions is

denoted by An. Obviously Ln ⊂ An and |An| = 2 |Ln| = 2n+1

From the above definition, it is clear that any linear function f can be written

in the form f(x) = α · x for some α ∈ Vn and this linear function is denoted by

fα.

Theorem 2.2.1. Any non-constant affine function is balanced.

Theorem 2.2.2. For any fαi
, fαj

∈ Ln we have the following:

d(fαi
, fαj

) =

 0 if αi = αj,

2n−1 otherwise.

The set {`0, `1, . . . , `2n−1} of sequences of all linear functions, forms an orthog-

onal basis for R2n
over the set of real numbers R with respect to the standard

inner product on R2n
. It follows that the sign function of any function can be

written uniquely as a linear combination of `0, `1, . . . , `2n−1.

Let f̂(x) =
∑2n−1

i=0 ci`i, where ci ∈ R are the coefficients. If we calculate the

inner product of f̂(x) and `j for any j, we obtain:

〈
f̂(x), `j

〉
=

2n−1∑
i=0

ci 〈`j, `j〉

Using the theorem 2.2.2, the above sum simplifies into:

〈
f̂(x), `j

〉
= cj2

n−1

6



so,

cj = 2−n+1
〈
f̂(x), `j

〉
.

2.3 Walsh Spectrum and Nonlinearity

One of the most important concepts of the Boolean functions is nonlinearity.

Nonlinearity Nf of a function is the distance between the function and the set

An. In particular Nf is defined as:

Nf = min
g∈An

d(f, g). (2.3.1)

High nonlinearity is a very important design criteria, for it is a measure for

linear cryptanalysis introduced by Matsui [12]. By definition, it is clear that

Nf = 0 if and only if f is an affine function.

Nonlinearity simply divides functions into two parts: “affine(linear) functions”

and “nonaffine(nonlinear) functions”. Furthermore as nonlinearity measures the

distance of a function to An, it also measures how well a function is linearly

approximated.

Definition 2.3.1. An n × n matrix Hn with all entries 1 or −1 is called a

Hadamard matrix if Hn · H t
n = nIn, where H t

n is the transpose of Hn and In is

the n× n identity matrix.

Definition 2.3.2. The Walsh transform of a real-valued function f : Vn → R, is

7



again a real-valued function Wf : Vn → R defined by:

Wf (ω) =
∑
α∈Vn

f(α)(−1)〈α,ω〉, (2.3.2)

where w ∈ Vn.

Also the inverse Walsh transform is defined by:

f(α) = 2−n
∑
ω∈Vn

Wf (ω)(−1)〈α,ω〉.

Observe that, the Walsh transform and its inverse are defined for real valued

functions. Therefore, for a Boolean function f , while computing its Walsh trans-

form, the sum and values of inner product are treated as integers. We denote the

Walsh transform of f and f̂ by Wf and Wf̂ , respectively. Similarly, we denote

the inverse Walsh transform by W−1
f and W−1

f̂
.

Lemma 2.3.3. If f̂ is the sign function of f , then

Wf̂ (ω) = −2Wf (ω) + 2nδ(ω),

which is equivalent to

Wf (ω) = 2n−1δ(ω)− 1

2
Wf̂ (ω),

where δ(ω) is the Kronecker delta function.

The ordered tuple, (Wf̂ (α0), Wf̂ (α1), . . . ,Wf̂ (α2n−1)), is called the Walsh spec-

trum of f and is denoted by TWf̂
.

The following theorem gives a necessary and sufficient condition for a Walsh

8



transform to belong to sign function of a Boolean function:

Theorem 2.3.4. g : Vn −→ R is the Walsh transform of sign function f̂ of a

function f if and only if the following holds for all λ in Vn:

∑
ω∈Vn

g(ω)g(ω + λ) = 2nδ(λ) =

 2n for λ = α0

0 otherwise

If we re-compute the equation for λ = α0, we get the following identity which

is known as Parseval identity.

Corollary 2.3.5. ∑
ω∈Vn

(
Wf̂ (ω)

)2

= 22n. (2.3.3)

It is obvious that, for any f ∈ Fn,

Wf̂ (αi) =
∑
β∈Vn

(−1)f(β)(−1)〈β,αi〉

=
∑
β∈Vn

(−1)f(β)(−1)fαi (β)

= 〈ζf , `i〉 .

Thus, Wf̂ (αi) is in fact, nothing but the difference between the number of 0’s and

the number of 1’s in T(f⊕fαi )
. Then, it is easy to see that:

d(f, fαi
) =

1

2
(2n −Wf̂ (αi)) (2.3.4)

From the equation above, it follows that:

TWf̂
= ζfHn,

9



Another criterion, a cryptographically good Boolean function should satisfy is

correlation immunity. A Boolean function, whose output distribution probability

is unchanged when any m of input bits are kept constant, is called m-th order

correlation immune where m ∈ {1, 2, . . . , n}. Furthermore, if a balanced Boolean

function is m-th order correlation immune, f is then said to be m-resilient.

Correlation immunity and resiliency of a function f can be characterized

through the Walsh transform of f as follows,

Theorem 2.3.6. Any f ∈ Fn is m-th order correlation immune where m ∈

{1, 2, . . . , n} if and only if Wf̂ satisfies

Wf̂ (ω) = 0, for all ω ∈ Vn with 1 ≤ w(ω) ≤ m.

Theorem 2.3.7. Let Hn =



l0

l1
...

l2n−1


be the matrix of order 2n (n ≥ 0) where

the ith row is the sequence li of the linear function fαi
(x) = 〈αi, x〉 for i =

0, 1, · · · , 2n − 1 where αi ∈ Vn.

The matrix Hn defined in the above theorem is called Slyvester-Hadamard

matrix or order n. This theorem is very useful since it says that the nth order

Slyvester-Hadamard matrix is the complete table of the sequences of all linear

functions in Fn. Since Hn is a symmetric matrix, the above theorem is also valid

for the columns of Hn.

One asks the natural question: What is the maximum possible value of the

nonlinearity of a function?

10



Theorem 2.3.8. For any function f , Nf satisfies the following inequality:

Nf ≤ 2n−1 − 2
n
2
−1.

Proof: Combining equation 2.3.1 and 2.3.4, we conclude that

Nf = 2n−1 − 1

2
max

fαi∈An

∣∣∣Wf̂ (αi)
∣∣∣ . (2.3.5)

From Parseval identity we know that

∑
ω∈Vn

(
Wf̂ (ω)

)2

= 22n.

In this summation there are 2n terms. So the maximum term is not less than

22n

2n = 2n. Then

max
fαi∈An

∣∣∣Wf̂ (αi)
∣∣∣ ≥ 2n/2

Then 2.3.5 yields

Nf ≤ 2n−1 − 2
n
2
−1.

�
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Chapter 3

Properties of Bent Functions

One of the most important class of Boolean functions is bent functions. They

play an important role in cryptography. Bent functions are first studied by Dillon

[6] and Rothaus [16] in seventies. Rothaus used the word “bent” for the first time

and gave constructions of bent functions of degree 3 on F6.

In a private communication to Dillon, Maiorana generalized a class of Rothaus’

bent functions. The general theory of bent functions are studied by Kumar,

Scholtz and Welch [11].

3.1 Basic Properties of Bent Functions

Definition 3.1.1. A function f is called bent if the components of the Walsh

spectrum of f all have the same magnitude, up to the absolute value.

Example 3.1.2. Let f ∈ F2 be defined as f(x) = x1x2+x2. Since Tf = (0, 1, 0, 0)

and Walsh spectrum = [2,2,-2,2], f is a bent function.

Example 3.1.3. Let f ∈ F4 be defined as f(x) = x1 + x1x2 + x3x4 + x4. Since

Tf = (0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0)

12



and

Wf = [4, 4,−4, 4,−4,−4, 4,−4, 4, 4,−4, 4, 4, 4,−4, 4]

f is a bent function.

Using the Parseval identity one easily obtains:

Theorem 3.1.4. f ∈ Fn is a bent function if and only if
∣∣∣Wf̂ (α)

∣∣∣ = 2n/2 for all

α ∈ Vn.

Rothaus gave the basic properties of bent functions in his article [16]. Follow-

ing theorems are due to him and Dillon [5], [6].

Theorem 3.1.5. ([16]) Let f be a bent function. g, defined by setting (−1)g(x) =

Wf̂(α)

2n/2 for all α ∈ Vn, is also a bent function.

Proof: Since f is bent, by theorem 3.1.4 g is in Fn.

f̂(x) =
1

2n

∑
α∈Vn

Wf̂ (α)(−1)〈α,x〉 =
1

2n/2

∑
α∈Vn

(−1)g(α)+〈α,x〉 =
1

2n/2
Wĝ(x).

Thus, g is bent. �

The function g in the previous theorem is called the dual of f . The dual of a

bent function will be used to construct new bent functions, in the next chapter.

Also it is easy to observe that if g is the dual of a function f then the dual of g

is f .

Lemma 3.1.6. ([16]) A function f is bent if and only if the matrix A = (aij) of

order 2n where aij = 1
2n/2 Wf̂ (αi +αj) for 0 ≤ i, j ≤ 2n−1 is a Hadamard matrix.

13



Proof: Let AAt = (xij) where xij = 1
2n

∑2n−1
t=0 Wf̂ (αi + αt)Wf̂ (αj + αt). But

since ∑
α∈Vn

Wf̂ (α)Wf̂ (α + β) =

 22n if β = 0,

0 otherwise.

we get:

xij =

 2n if i = j,

0 otherwise.

We conclude that A is a Hadamard matrix. The converse is trivial. �

Given f ∈ Fn, the function fα ∈ Fn defined by gα(x) = f(x) + f(x + α) is

called the directional derivative of f in the direction α ∈ Vn.

Theorem 3.1.7. ([5]) All directional derivatives of a bent function are balanced.

Theorem 3.1.8. ([16]) A function f is bent if and only if the matrix defined by

Mf = (mij); where mij = (−1)f(αi+αj), 0 ≤ i, j ≤ 2n − 1

is a Hadamard matrix.

Proof: Let MM t
f = (xij) where

xij =
∑

αt∈Vn

(−1)f(αi+αt)+f(αj+αt)

If we change the variable we get:

xij =
∑
θ∈Vn

(−1)f(θ)+f(αi+αj+θ)

But the function inside the summation is nothing but a directional derivative of

14



f . By using theorem 3.1.7 we get:

xij =

 2n if i = j,

0 otherwise.

We conclude that Mf is a Hadamard matrix. The converse is trivial. �

Theorem 3.1.9. ([16]) If f ∈ Fn is a bent function, then n is even, n = 2k; the

degree of f is at most k, except for the case k = 1.

Proof: That n is even follows from the observation that
∣∣∣Wf̂ (α)

∣∣∣ = 2n/2 is an

integer. For the second statement, let n > r > k > 1. We define the functions f

and g:

f(x1, x2, · · · , xr, 0, 0, · · · , 0) = g(x1, x2, · · · , xr)

and put

(−1)g(x) =
1

2r

∑
α1,α2,··· ,αr=0,1

Wĝ(α1, α2, · · · , αr)(−1)α1·x1+α2·x2+···+αr·xr .

We have

(−1)f(x) =
1

2n

∑
α1,α2,··· ,αn=0,1

Wf̂ (α1, α2, · · · , αn)(−1)α1·x1+α2·x2+···+αn·xn .

Comparing these equations and using the uniqueness of the Walsh transform,
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we conclude

Wĝ(α1, α2, · · · , αr) =
1

2n−r

∑
αr+1,αr+2,··· ,αn=0,1

Wf̂ (α1, α2, · · · , αn). (3.1.1)

At this point letting ω = 0 in 2.3.2, we get:

Wĝ(0) =
∑
α∈Vn

(−1)g(α) = number of 0′s− number of 1′s. (3.1.2)

But also

number of 0′s + number of 1′s = 2n. (3.1.3)

Then we find that

number of 0′s = 2n−1 +
1

2
Wĝ(0).

If we combine this result with equation 3.1.1, the number of 0’s of g is equal

to

2r−1 +
1

2n−r+1

∑
αr+1,αr+2,··· ,αn=0,1

Wf̂ (0, 0, · · · , αr+1, αr+2, · · · , αn).

Since f is bent,
∣∣∣Wf̂ (0, 0, · · · , αr+1, αr+2, · · · , αn)

∣∣∣ = 2n/2 for all 2n−r sum-

mands. So the number of 0’s of g and the weight of g is even for n > 2. However

w(g) ≡ a12...r(mod 2) where a12...r is the coefficient of x1x2 . . . xr [17]. Thus,

a12...r = 0 and the degree of g is less than r for any arbitrary r > k. We conclude

that deg(f) ≤ k.

�

Since bent functions are defined only for even values of n, from now on unless

otherwise stated explicitly we assume that n is even and n > 2. Also we find that
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this theorem gives us an obvious upper bound for the number of bent functions,

that is the number of bent functions is at most 2(n
0)+(n

1)+···+( n
n/2).

Fact 3.1.10. A function f is bent if and only if the complement f̄ of f , is bent.

Example 3.1.11. Let f ∈ F4 be defined as f(x) = x1x2 + x3x4. Since

Tf = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0)

and

Wf = [4, 4, 4,−4, 4, 4, 4,−4, 4, 4, 4,−4,−4,−4,−4, 4],

f is a bent function.

Let g ∈ F4 be defined as g(x) = 1 + x1x2 + x3x4. Since

Tg = (1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1)

and

Wg = [−4,−4,−4, 4,−4,−4,−4, 4,−4,−4,−4, 4, 4, 4, 4,−4],

g is also a bent function.

Fact 3.1.12. A bent function cannot be correlation immune.

The following theorem is very important because it enables us to obtain many

new bent functions once we have one. Moreover, in the next chapter completeness

of a class of bent functions will be obtained on the basis of this theorem.

Theorem 3.1.13. [16] A bent function is invariant
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• under a linear or an affine transformation in coordinates, that is f is bent

if and only if the function h = f ◦ θ is bent where θ(x) = xA + α, A is a

nonsingular matrix of order n and α is any vector in Vn.

• by adding an affine function, that is f is bent if and only if f + φ is bent

for any affine function φ.

Example 3.1.14. Let f ∈ F4 be defined as f(x) = x1x2 + x1x3 + x2x4. f is a

bent function. Let g ∈ F4 be defined as g(x) = x1x2 + x1x3 + x2x4 + x1. Since

Tg = (0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0)

and

Wg = [4, 4,−4, 4, 4,−4,−4,−4, 4, 4, 4,−4, 4,−4, 4, 4],

g is also a bent function.

The following theorem says that bent functions are the furthest functions to

the set of all affine functions.

Theorem 3.1.15. Let f be a function. Then f is bent if and only if d(f, An) =

Nmax where Nmax = 2n−1 − 2
n
2
−1 is the largest value of nonlinearity.

The following theorem says that bent functions are not balanced.

Theorem 3.1.16. Let f be a bent function. Then w(f) = 2n−1 ± 2
n
2
−1.

Proof: If we combine equation 3.1.2 and 3.1.3 we find that

w(f) = number of 1′s = 2n−1 − 1

2
Wf̂ (0)

18



But since Wf̂ (0) = ±2n/2 we conclude

w(f) = 2n−1 ± 2
n
2
−1

�

A main obstacle in the study of bent functions is the lack of recurrence laws.

There are few constructions deriving bent functions from smaller ones. But it

seems that most of them appear without any roots to bent functions in lower

dimensions. In the next chapter, construction methods will be given.

Theorem 3.1.17. ([16]) Let the function h be defined as h(z) = f(x) + g(y) for

z = (x, y) ∈ Vm ⊕ Vn. Then h is bent if and only if f and g are bent.

Definition 3.1.18. A function f is said to be decomposable if there is a linear

transformation on the input coordinates such that h can be written as a sum of

functions on disjoint variables as in Theorem 3.1.17.

In other words h ∈ Fn is decomposable if there exists a binary matrix of order

n such that h(zA) = f(x)+g(y) where z = (x, y) ∈ Vn for x ∈ Vk, y ∈ Vt satisfying

k + t = n. If there exists no such matrix, then h is said to be indecomposable.

If h is a decomposable bent function for n = 2k, then by Theorem 3.1.17

deg(f) < k and deg(g) < k if k 6= 2. So we obtain:

Theorem 3.1.19. ([16]) If f is a bent function in Fn where n = 2k for k ≥ 3,

then f is indecomposable.
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Chapter 4

Constructions of Bent

Functions

4.1 Rothaus’ Bent Function Classes

In 1975, Rothaus [16] presented the first two classes of bent functions. He

made an exhaustive search on all polynomials in V6. It was feasible due to the

observation that the degree three part of any bent function in V6 could be brought

into one of the following four forms by a linear transformation in coordinates:

1. x1x2x3

2. x1x2x3 + x4x5x6

3. x1x2x3 + x2x4x5

4. x1x2x3 + x2x4x5 + x3x4x6

Then all of the 215 possible quadratic parts were tried. Answers were found

in classes 1,3 and 4 of which typical ones are listed below:

1. x1x2x3 + x1x4 + x2x5 + x3x6

2. x1x2x3 + x2x4x5 + x1x2 + x1x4 + x2x6 + x3x5 + x4x5
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3. x1x2x3 + x2x4x5 + x3x4x6 + x1x4 + x2x6 + x3x4 + x3x5 + x2x6 + x4x5 + x4x6

It is observed that all the members in a class are related to each other by

an affine transformation of coordinates followed by the addition of linear terms.

Also, since all quadratic bent functions are known [14], all bent functions in Vn

for n ≤ 6 are known. For case n = 8 Hou [10] classified bent functions of degree

lees than or equal to 3. It is still an open problem to classify all bent functions

in V8.

Finally, two general classes of bent functions are presented in [16].

Theorem 4.1.1 (Rothaus Class I). ([16]) Let n = 2k and x, y ∈ Vk and f

be any function in Fk. Then the function Q(x, y) ∈ F2k given by Q(x, y) =

x1y1 + x2y2 + · · ·+ xkyk + f is bent.

Example 4.1.2. Let’s take k = 2. Then f = x1x2 + x3x4, whose truth table is

given by

Tf = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]

and whose Walsh spectrum is given by

Wf = [4, 4, 4,−4, 4, 4, 4,−4, 4, 4, 4,−4,−4,−4,−4, 4]

is a bent function.

Theorem 4.1.3 (Rothaus Class II). ([16]) Let A(x), B(x), C(x) be bent functions

on F2k such that A(x)+B(x)+C(x) is also bent. Let y, z ∈ V1. Then the function

Q(x, y, z) = A(x)B(x) + B(x)C(x) + C(x)A(x)

+[A(x) + B(x)]y + [A(x) + C(x)]z + yz
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is a bent function in F2k+2.

Example 4.1.4. Let’s take k = 2, A(x) = B(x) = x1x2 + x3x4 and C(x) =

x1x2 + x3x4 + x1x3. Then A(x) + B(x) + C(x) = C(x) is a bent function. Let

x5, x6 ∈ V1. Then Q(x) = x1x2 + x3x4 + x5x6 + x1x3x6 is a bent function in F6

4.2 Maiorana McFarland’s Class

Maiorana McFarland’s class of bent functions is a generalization of Rothaus’

class I. This class is not complete (recall theorem 3.1.13) and denoted by M; its

completed version is denoted by M#.

Theorem 4.2.1 (Maiorana McFarland Class). ([13]) Let k be an arbitrary posi-

tive integer and n = 2k. Then the function f ∈ Fn given by

f(x) = x2 · π(x1) + g(x1)

where x1, x2 ∈ Vk are defined by

x = [x1, x2]

π is an arbitrary permutation of Vk and g is an arbitrary function from Vk into

V1 is bent.

The number of functions in Fn/2 is 22n/2
and the number of permutations in

Vn/2 is 2(n/2)!. So the number of functions satisfying the condition in the above

theorem is 22n/2
2(n/2)!.
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Example 4.2.2. Lets consider the vector space V4. First we divide yi’s into two:

x1 = [y1, y2] and x2 = [y3, y4]

Let π(x1) = [y2, y1] and g(x1) = y1 + y1y2. Then

f(y) = x2 · π(x1) + g(x1) = [y3, y4] · [y2, y1] + y1 + y1y2 = y2y3 + y1y4 + y1 + y1y2,

whose truth table is given by

Tf = [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

and whose Walsh spectrum is given by

Wf = [4,−4, 4, 4, 4,−4,−4,−4, 4, 4, 4,−4, 4, 4,−4, 4],

is a bent function.

4.3 Partial Spreads (PS)

Dillon [6] defines Partial Spreads as union of two disjoint classes PS− and

PS+:

• the elements of PS− are those functions whose supports are the unions of

2k−1 disjoint k-dimensional subspaces of Vn, less the point 0 (k = n/2). In

this definition disjoint means that any two of these spaces have only 0 as

common element and therefore their sum is direct and equal to Vn, that is
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they are the sums of 2k−1 characteristic functions of disjoint k-dimensional

subspaces.

• the elements of PS+ are those functions whose supports are the unions

of 2k−1 + 1 disjoint k-dimensional subspaces of Vn. They are the sums of

2k−1 + 1 characteristic functions of disjoint k-dimensional subspaces.

The Walsh transform of any function of PS is deduced from the function itself

by replacing the spaces by their duals, PS is not complete but the completed

version, which is denoted by PS#, can be obtained by changing the subspaces

into flats, two of them having a single (fixed) point in common, and by adding

affine functions. PS# does not include M# and M# does not include PS#.

Example 4.3.1. Let’s try to construct a bent function in PS− for k = 3, that

is f ∈ F6. We start by choosing 4 disjoint 3-dimensional subspaces. Let the

subspaces of F6 are defined as

G1 = {(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0),

(0, 1, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0)}

G2 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 1)}
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G3 = {(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0),

(0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0), (1, 1, 1, 1, 1, 1)}

G4 = {(0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 1, 0, 0, 0, 1), (1, 0, 0, 1, 1, 0),

(0, 1, 1, 1, 0, 1), (1, 0, 1, 0, 1, 0), (1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 1)}

Then the truth table of the function f is given by

Tf = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0)

is a bent function.

PS is a very important class of bent functions but it is not defined expilicitly.

But Dillon defines an explicit subclass of PS− denoted by PSap.

Definition 4.3.2. PSap is the set of all the functions of the form g(x
y
), (with

x
y

= 0 if x = 0 or y = 0) where g is a balanced function on Vn/2 which vanishes

at 0 (g(0) = 0).
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4.4 Carlet’s Bent Functions

Carlet [2] used known bent functions and altered them to obtain new bent

functions. Dillon [6] presented a result in this sense, which may be stated as

follows: “Let f be a bent function on Fn; suppose its support contains a k-

dimensional linear subspace E of Fn. Then, denoting by φE the function of

support E, the function f + φE is bent”. Carlet used this result to obtain new

classes.

Theorem 4.4.1. ([2]) Let E be a (n/2)-dimensional linear subspace of Fn and

π be a permutation on Fn/2 such that, for any (x, y) in E, the number: x · π(y)

equals 0. Then the function defined on Fn as:

f(x, y) = x · π(y) + φE(x, y)

is bent, where φE denotes the function of support E.

This class does not lead to an effective construction method since there is no

simple description of all the subspaces and permutations satisfying the condition

of theorem 4.4.1. But there is a simple subcase of the theorem.

Definition 4.4.2. Class D consists of all functions f ∈ Fn of the form:

f(x, y) = φE(x, y) + x · π(y)

where E is a subspace of Fn equal to E1 × E2, E1 and E2 being subspaces of

Fn/2 with dim E1 + dim E2 = n/2 and π is any permutation on Fn/2 such that

π(E2) = E⊥
1 .
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Class D0 consists of all the functions f ∈ Fn of the form:

f(x, y) =

n/2∏
i=1

(xi + 1) + x · π(y)

D0 corresponds to the case: E = 0×Fn/2.

By theorem 4.4.1 D and D0 are bent function classes. Carlet [2] showed that

D and D0 are neither included in M#, nor included in PS#. Also he showed

that the bent functions of degree 3 on F6 all belong to class D#
0 .

The sizes of D and M have approximately same order since the number 22n/2

of functions in Fn/2 is small, compared with the number of permutations on the

same space: (2n/2)!.

Theorem 4.4.3. ([2]) Let L be any linear subspace of Fn/2 and π be a permuta-

tion on Fn/2 such that, for any element λ of Fn/2, the set π−1(λ + L) is a flat.

Then the function defined on Fn as:

f(x, y) = x · π(y) + φ⊥L(x, y)

is bent.

Definition 4.4.4. Class C consists of all functions f ∈ Fn of the form:

f(x, y) = x · π(y) + φ⊥L(x, y)

where L and π satisfy the conditions of theorem 4.4.3.

Class C contains D0 (which corresponds to the case L = Fn/2), so it is not

included in classes M# and PS#. As well, C is not included in class D# since it
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contains functions of degrees less than n/2.

The following theorem Carlet [3] proved that from a set {fx′ , x
′ ∈ Vr} of bent

functions on Vn (n, r even) and under a certain condition, we can deduce the

bentness of the function (x, x′) → fx′(x) on Vn+r.

Theorem 4.4.5. ([3]) Let n and r be two positive even integers and f be a

function on Vn+r = Vn × Vr such that, for any element x′ of Vr, the function on

Vn defined as fx′ : x → f(x, x′) is bent. Then f is bent if and only if for any

element s of Vn, the function

ϕs : x′ −→ f̃x′(s)

is bent on Vr.

Example 4.4.6. Let us choose n = 2 and replace x with (x1, x2), x′ with x and

r with n. Take:

f(x1, x2, x) = g(x)h(x)+g(x)k(x)+h(x)k(x)+[g(x)+h(x)]x1+[g(x)+k(x)]x2+x1x2

We know that any function of the form x1x2 +a1x1 +a2x2 +a3 is bent on V2. So f

is bent for any x. It is trivial to check that the dual of the function x1x2 +a1x1 +

a2x2 +a3 is x1x2 +a2x1 +a1x2 +a1a2 +a3. Here a1 = g(x)+h(x), a2 = g(x)+k(x)

and a3 = g(x)h(x) + g(x)k(x) + h(x)k(x).

According to theorem 4.4.5, f is bent if and only if the following functions

are bent:

• for s1 = s2 = 0: a1a2 + a3 = g(x)

• for s1 = 0, s2 = 1: a1 + a1a2 + a3 = h(x)
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• for s1 = 1, s2 = 0: a2 + a1a2 + a3 = k(x)

• for s1 = s2 = 1: 1 + a2 + a1 + a1a2 + a3 = 1 + g(x) + h(x) + k(x). And

1 + g(x) + h(x) + k(x) is bent if and only if g(x) + h(x) + k(x) is bent.

So it leads to the Rothaus Class II.

Carlet [3] used this theorem to construct new classes. He used M, PSap and

D0 as known classes. The first proposition uses classes M and D0.

Proposition 4.4.7. ([3]) Let n be a positive even integer and m, r two positive

integers whose sum is equal to n. The elements of Vn are written in the form

(x, y, x′, y′), where x, y are elements of Vm/2 and x′, y′ are elements of Vr/2. Let

π and π′ be permutations on Vm/2 and Vr/2 respectively and h be a function in

Fr/2. Then the following function f ∈ Fn is bent:

f(x, y, x′, y′) = x · π(y) + x′ · π′(y′) + δ0(x)h(y′)

where δ0 denotes the Dirac symbol at 0, that is δ0 = 1 if x = 0, δ0 = 0 otherwise.

The definition of f in the proposition 4.4.7 is very similar to that of Maiorana

McFarland class but it is not included in M#.

Second proposition uses the single class PSap.

Proposition 4.4.8. ([3]) Let n be any positive even integer and m, r two positive

integers whose sum is equal to n. Let k be a function in Fm/2 × Fr/2 such that

for any element x of Vm/2, the function x′ → k(x, x′) is balanced on Vr/2 and for

any element x′ of Vr/2, the function x → k(x, x′) is balanced on Vm/2. Then the
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following function f ∈ Fn is bent:

f(x, y, x′, y′) = k(
x

y
,
x′

y′
)

Third proposition uses classes M, PSap and D0.

Proposition 4.4.9. ([3]) Assume n = 4q. Let π and π′ be two permutations on

Vq and g ∈ Fq be a balanced function. Then the following function f ∈ Fn = (Fq)
4

is bent:

f(x, y, x′, y′) = x′ · π′
[
y′ + π

(
x

y

)]
+ δ0(x

′)g

(
x

y

)

4.5 Dobbertin’s Bent Functions

Definition 4.5.1. ([7]) Let σ, φ and γ be chosen such that:

σ : Vn −→ V1 balanced,

φ : Vn −→ Vn bijective,

γ : Vn −→ Vn arbitrary.

The function fσ,φ,γ on V2n associated to the triple (σ, φ, γ) is defined as follows:

f(x, φ(y)) =

 σ
(

x+γ(y)
y

)
if y 6= 0,

0 otherwise.

This construction is called triple construction. If fσ,φ,γ is a bent function then

(σ, φ, γ) is called a bent triple associated to fσ,φ,γ.

Lemma 4.5.2. ([7]) Let U be a subspace of Vn and y0 ∈ Vn. Then there is an
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onto linear mapping ρ : Vn → U such that a one to one correspondence between

all functions σ ∈ Fn with

Supp(Wσ) ⊆ y0 + U

and all functions τ on U is given by setting

σ(x) = τρ(x) + 〈x, y0〉 .

Moreover, all σ are ablanced if and only if y0 /∈ U .

Theorem 4.5.3. ([7]) Let (σ, φ, γ) be given as described in the triple construction.

Suppose φ(x) = xd, γ(x) = xd′ (or γ = 0) for d, d′ < 2n − 1 and let a non-trivial

subspace U of Vn and y0 ∈ Vn−U be given such that the following conditions are

satisfied:

1. φ is bijective, that is d is relatively prime to 2n − 1.

2. φ and γ are not affine, that is d and d′ are not powers of 2.

3. φ and γ are affine on y0 + U .

Define σ : Vn −→ V1 as a nonaffine balanced function such that the support of

Wσ is a subset of y0 + U . This means that σ is of the form

σ(x) = τρ(x) + Tr(xy0),

where ρ : Vn → U is an onto linear mapping chosen according to the previous

lemma and τ is an arbitrary nonaffine function on U . Then (σ, φ, γ) is a bent
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triple. The explicit definition of the corresponding bent function is:

f(x, yd) =

 τρ
(

x
y

+ yd′−1
)

+ Tr
(
(x

y
+ yd′−1)y0

)
if y 6= 0,

0 otherwise.

This class is a generalization of PSap. Dobbertin denotes this class by N . He

proved that class N is not contained in M# [7].

4.6 Constructions of Bent Functions from Two

Known Bent Functions

If we are given two bent functions, we can construct another bent function of

higher dimension. The results of this sections can be found in [18].

Definition 4.6.1. We call the sequence of a function a bent sequence if the

function is bent. A sequence is called an affine sequence (a linear sequence) if it

is the sequence of an affine function (a linear function).

Definition 4.6.2. We call a (1,−1) matrix of order 2m × 2n a bent type matrix

if each row is a bent sequence of length 2n and each column is a bent sequence

of length 2m.

Definition 4.6.3. We call a (1,−1) matrix of order 2m×2n an affine type matrix

if each row is an affine sequence of length 2n and each column is an affine sequence

of length 2m.

Definition 4.6.4. Let A1 and A2 be affine type matrices of order 2m × 2n. If

A2 = QA1P where Q and P are diagonal matrices of order 2m and 2n whose

diagonals consist of ±1, we say A1 and A2 are equivalent.
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Lemma 4.6.5. ([18]) Let b0, b1, · · · , b2n−1 be a bent sequence and c0, c1, · · · , c2n−1

be an affine sequence. Then b0c0, b1c1, · · · , b2n−1c2n−1 is a bent sequence.

Theorem 4.6.6. ([18])

Let B = (bij) be a bent type matrix of order 2m × 2n. Write

βj = (b1j, · · · , b2mj), j = 1, 2, · · · , 2n and

αi = (bi1, · · · , bi2n), i = 1, 2, · · · , 2m

Then both

(2−
1
2
mβ1Hm, · · · , 2−

1
2
mβ2nHm) and

(2−
1
2
nα1Hn, · · · , 2−

1
2
nα2mHn)

are bent sequences of length 2m × 2n

Theorem 4.6.7. ([18]) Let A be an affine type matrix of order 2m × 2n, P be a

diagonal matrix of order 2n whose diagonal is a bent sequence of length 2n, say

a0, a1, · · · , a2n−1 and Q be a diagonal matrix of order 2m whose diagonal is a bent

sequence of length 2m, say b0, b1, · · · , b2m−1. Then QAP is a bent type matrix of

order 2m × 2n.

Theorem 4.6.8. ([18]) Let a1, a2, · · · , a22k−1 be the βth
0 , βth

1 , · · · , βth
22k−2−1

entries

of η1 respectively and let b1, b2, · · · , b22k−1 be the βth
22k−2+1

, βth
22k−2+2

, · · · , βth
22k−1−1

entries of η1 respectively.
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Next let the βth
0 , βth

1 , · · · , βth
22k−2−1

entries of η1 be a1, a2, · · · , a22k−1 respectively

and let the βth
22k−2+1

, βth
22k−2+2

, · · · , βth
22k−1−1

entries of η1 be −b1,−b2, · · · ,−b22k−1

respectively.

Set η = (η1, η2). Then η is a bent sequence of length 22k.

Theorem 4.6.9. ([18]) Let a1, a2, · · · , a22k−1 be the βth
0 , βth

1 , · · · , βth
22k−2−1

entries

of η1 respectively and let b1, b2, · · · , b22k−1 be the βth
22k−2+1

, βth
22k−2+2

, · · · , βth
22k−1−1

entries of η1 respectively.

Next let the βth
0 , βth

1 , · · · , βth
22k−2−1

entries of η1 be −a1,−a2, · · · ,−a22k−1 respec-

tively and let the βth
22k−2+1

, βth
22k−2+2

, · · · , βth
22k−1−1

entries of η1 be b1, b2, · · · , b22k−1

respectively.

Set η = (η1, η2). Then η is a bent sequence of length 22k.
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Chapter 5

Normal Bent Functions

Normality is first introduced by Dobbertin [8]. Bent functions, we have studied

until here are all normal functions and Dobbertin proposed the conjecture that

any normal bent function is normal. But then some examples of non-normal bent

functions are given using a specific algorithm. It is still an open problem to find

an infinite class of non-normal bent functions.

5.1 Introduction of Normality

Definition 5.1.1. ([4]) A function f ∈ Fn is said to be normal when it is constant

on an affine subspace U of Fn of dimension dn/2e where dn/2e is equal to n/2

for even n and to (n + 1)/2 for odd n. In this case f is said to be normal with

respect to U . The function f is said weakly normal when it is affine, and not

constant, on a flat U of dimension dn/2e.

The normality is connected with the problem of the determination of the

highest dimension of the affine space where f is constant.

Definition 5.1.2. ([4]) A function f ∈ Fn is said to be k-normal, k ≤ m if there

exists a k-dimensional flat on which f is constant. The function f is said weakly

k-normal if it is affine, and not constant, on some k-dimensional flat.
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Theorem 5.1.3. ([4]) Let f ∈ Fn. Then f is k-normal with respect to U if and

only if there is υ ∈ Fn such that f + ϕυ is affine on U where ϕυ denotes a linear

function in Fn, that is ϕυ : x ∈ Fn 7−→ υ ·x. When υ /∈ V ⊥, where V denotes the

subspace which has U as a coset, then f + ϕυ is affine and not constant on U .

Example 5.1.4. Let f ∈ F8 given by

f(x) = x1x2x3x4 + x2x4x8 + x1x3 + x5x6 + x6x7 + x7x8.

Let U be a subspace of dimension 4, defined by x1 = x4 = x5 = x7 = 0. Since

each term of f contains at least one xi, i ∈ 1, 4, 5, 7, f(0, x2, x3, 0, 0, x6, 0, x8) = 0

for all x. Then f is normal with respect to U .

We see an obvious property here. If

f(x1, . . . , xm) = x1A1 + · · ·+ xtAt

where t = n/2 for even n and t = (n − 1)/2 for odd n and each Ai denotes the

function of n− 1 variables {xj|1 ≤ j ≤ n, j 6= i}. Then f is normal with respect

to U , the subspace defined by x1 = · · · = xt = 0.

We obtain a general result easily.

Theorem 5.1.5. ([4]) Let k be an integer and 1 ≤ k ≤ n and let f ∈ Fn given

by,

f(x1, · · · , xn) =
∑

u∈Fn,w(u)>k

λu

(
n∏

i=1

xui
i

)
, λu ∈ {0, 1}
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Then f is k-normal, equal to zero, with respect to any subspace U defined by

xi1 = · · · = xin−k
= 0; 1 ≤ ij ≤ n.

Proof: Each term of f is of degree strictly greater than k. So each term is

zero. �

It is known that for n ≥ 4 any function is 2-normal and for n ≥ 6 any function

is 3-normal [4]. This result is based on Dubuc’s [9] theorem.

Theorem 5.1.6. ([9]) For n ≤ 7, any function of n variables is bn/2c -normal.

5.2 Normal Bent Functions

Theorem 5.2.1. ([4]) Let n = 2t and assume that f ∈ Fn is bent. We denote

by V any subspace of dimension t. Then we have:

1. f is normal with respect to V if and only if its dual function f̃ is normal

with respect to V ⊥;

2. f is normal with respect to a + V , a /∈ V if and only if f̃ + ϕa is normal

with respect to V ⊥;

3. f is normal with respect to a + V , a /∈ V if and only if f̃ is weakly normal

with respect to V ⊥.

The previous theorem is important because it leads to an improvement when

we want to check if any bent function is normal.

Corollary 5.2.2. ([4]) Let f ∈ Fn, n = 2t, be a bent function and let f̃ be its

dual. Let V be a subspace of dimension t. Then f is not normal with respect to
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any coset of V if and only if f̃ is neither normal nor weakly normal with respect

to V ⊥.

Theorem 5.2.3. ([4]) Any cubic function of 8 variables is normal.

If there exists non-normal bent functions of 8 variables the degree should be

greater than 3. But since maximum degree of bent functions of 8 variables is 4,

the degree should be equal to 4. It is still an open problem whether there exists

non-normal bent bunctions of 8 variables and degree 4 or not. It is known that

there exists non-normal bent functions of 10 variables [1]. Canteut [1] presented

a class of weakly non-normal class of bent functions of 14 variables.
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Chapter 6

Generalized Bent Functions

6.1 Introduction

All definitions in this thesis considers binary bent functions but sometimes

it may be useful to study generalized bent functions. The general theory of the

bent functions from Zn
q to Zq is developed by Kumar, Scholtz and Welch [11].

Then, generalized bent functions are studied by Nyberg [15].

6.2 Basic Definitions

Let q be a positive integer and Zq denote the set of integers modulo q. Let

u = ei 2π
q

be the qth root of unity in C, where i =
√
−1 and C denotes the set of complex

numbers. Let f be a function from the set Zn
q of n-tuples of integers modulo q to

Zq.

Definition 6.2.1. The Walsh Transform of uf is defined as follows:

F (w) =
1√
qn

∑
uf(x)−w·x, w ∈ Zn

q .
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Definition 6.2.2. A function f : Zn
q → Zq is bent if |F (w)| = 1 for all w ∈ Zn

q .

Definition 6.2.3. Let f be a function mapping from Zn
q into Zq. For each pair

of elements Z in Zn
q and C in Zq, the function fZ,C given by

fZ,C(X) = f(X) + Z ·X + C, for all X ∈ Zn
q

with the arithmetic being in modulo q, is called an affine (C 6= 0) or linear

(C = 0, Z 6= 0) translate of f .

Definition 6.2.4. A n × n matrix H whose entries are integral powers of a

complex primitive nth root of unity and which satisfies

HH∗ = nI

is called a generalized Hadamard matrix.

Definition 6.2.5. f is called a regular bent function if the Walsh transform F

of uf can be expressed in the form

F (λ) = wg(λ), for all λ ∈ Zn
q ,

for some function mapping Zn
q into Zq.

6.3 Properties

All of the properties given in this section can be found in [11].

1. Every affine or linear translate of a bent function is also bent.

40



2. A bent function remains bent under a linear or affine transformation in

coordinates.

3. If f and g are bent functions over Zm
q and Zn

q respectively, the function

f + g over Zm+n
q defined by (f + g)(x1, x2, · · · , xm+n) = f(x1, x2, · · · , xm)+

g(xm+1, xm+2, · · · , xm+n) , for all (x1, x2, · · · , xm+n) ∈ Zm+n
q is a bent func-

tion.

4. A function f with values in Zq is bent if and only if the matrix H whose

(x, y)th entry is wf(x−y) is a generalized Hadamard matrix.

5. If f is a bent function defined on Zn
q , the Walsh coefficients of γf have unit

magnitude for every choice of complex primitive qth root γ of unity.

6. Let n be odd q ≡ 2(mod4). In addition, let q satisfy either of the following

two conditions:

• q=2

• q 6= 2 but such that there exists and integer b satisfying

2b = −1(mod
q

2
)

Then bent functions over Zn
q do not exist.

7. Let f be a bent function over Zn
q and let q and n satisfies any one of the

following conditions:

• q = pk, p prime, q 6= 2,

41



• q =
∏r

i=1 pki
i , r > 1 , pi prime all i, (i = 1, 2, · · · , r) with the primes

pi being such that for each integer i, (i = 1, 2, · · · , r) there exists an

integer fi for which

pfi

i = −1(mod
q

pki
i

)

Then each Walsh coefficient F (λ), λ ∈ Zn
q of wf is a root of unity.

8. Let w = ei 2π
q , γ = ei 2π

2q and δ = ei 2π
4q . Let λ ∈ Zn

q be fixed and let f be a

bent function over Zn
q whose Walsh coefficient F (λ) is a root of unity. Then

F (λ) is of the form

• F (λ) = ωk, if both m and q are even,

• = γk, if m is even but q is odd,

• = ωk, if m is odd and q = 0 (mod 4),

• = γk, if m is odd and q = 1 (mod 4),

• = δ2k+1, if m is odd and q = 2 (mod 4),

• = δ2k+1, if m is odd and q = 3 (mod 4),

for some integer k.

9. Let f be a regular bent function defined on Zn
q having Walsh transform F .

Let g be the function given by

F (λ) = wg(λ), forallλ ∈ Zn
q ,

Then g is also a regular bent function over Zn
q
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6.4 Constructions

In this section constructions for bent functions over Zn
q for every possible value

of q and n excepting the case when n is odd and q = 2(mod4) are given.

Theorem 6.4.1. ([11]) Let q and k be arbitrary positive integers. Set n = 2k.

Then the function f over Zn
q given by

f(x) = x2 · π(x1) + g(x1) (6.4.1)

where x1, x2 ∈ Zn
q are defined by

x = [x1, x2]

and π is an arbitrary permutation of the elements of Zk
q and g is an arbitrary

function mapping from Zk
q into Zq, is bent.

Proof: ([11]) The Walsh Transform F of wf is given by

F (λ) =
1

qk

∑
x∈Zn

q

wf(x)−λ·x (6.4.2)

Let λ ∈ Zn
q be fixed and λ1, λ1 ∈ Zk

q be defined by

λ = [λ1, λ2]. (6.4.3)

Replacing the sum over x in equation 6.4.2 with the sums over components x1, x2

of x and substituting the expressions for f(·) and λ contained in equation 6.4.2
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and equation 6.4.3, one obtains

F (λ) =
1

qk

∑
x1∈Zk

q

ωg(x1)−λ1·x1

∑
x2∈Zk

q

ωx2·(π(x1)−λ2)

The inner sum vanishes unless π(x1) = λ(2) or equivalently unless

x1 = π−1(λ2),

and therefore

F (λ) = wg(π−1(λ2))−λ1·π−1(λ2)

so that

|F (λ)| = 1.

Since λ is chosen arbitrarily, f is bent. �

Theorem 6.4.2. ([11]) Let q be odd. Then the function f over Zq defined by

f(k) = k2 + ck

is bent for all c in Zq.

Definition 6.4.3. Z1,t
q = {k ∈ Zq |0 ≤ k ≤ t− 1}.

Theorem 6.4.4. ([11]) Let q be a perfect square and r be defined by q = r2.
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Then the function f over Zq given by

f(k) = r · k1π(k2) + g(k2)

where k1, k2 ∈ Z1,r
q are defined by

k = rk1 + k2,

and π is an arbitrary permutation of the elements of Z1,r
q and g is an arbitrary

integer-valued function defined on Z1,r
q , is bent.

Theorem 6.4.5. ([11]) Let q = 22k+1, k > 0. Let the function h mapping the

integers 0,1 into Z1,8
q , be given by

h(z) = c4z + 2z, z ∈ 0, 1

where c is either 0 or 1. Let the function f over Zq be defined by

f(x) = g(y1) + y1x +
q

8
h(xk)

where xj, j = 0, 1, 2, · · · 2k are digits in the binary representation of x, that is

x =
2k∑

j=0

xj2
j;

y1, y2 and y3 are the partial sums,

y1 =
k−1∑
j=0

xj2
j, y2 = xk2

k and y3 =
2k∑

j=k+1

xj2
j
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and g is an arbitrary integer-valued function defined on Zq. Then f is bent.
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Chapter 7

Conclusion

In this thesis we investigated bent functions from the cryptographic view. We

presented the most important properties of bent functions. We include the proofs

of important properties and theorems. We also gave examples.

We presented the most important construction methods of bent functions.

Although there exists some other construction methods, we have not considered

them since they mostly do not lead to new classes.

We cover normal bent functions since Dobbertin [8] uses such functions to

achieve highly nonlinear balanced functions. These functions are very important

in cryptography.

In cryptography we focus on binary functions. But there is a general theory

of bent functions introduced by Kumar, Scholtz and Welch [11]. We include this

study in the thesis, for completeness.
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[19] Sertkaya İ., Nonlinearity preserving post-transformations, Insttute of Applied

Mathematics, Middle East Technical University, Ankara, Turkey, (2004).

50


