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Co-supervisor Supervisor

Examining Committee Members

Prof. Dr. Gerhard Wilhelm Weber (METU,IAM)

Assist. Prof. Dr. Hakan Öktem (METU,IAM)
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Assist. Prof. Ali Ulaş Özgür Kişisel (METU,MATH)
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abstract

MODELLING FUNCTIONAL DYNAMICAL SYSTEMS

BY PIECEWISE LINEAR SYSTEMS WITH DELAY

Kahraman, Mustafa

M.Sc., Department of Scientific Computing

Supervisor: Assist. Prof. Dr. Hakan Öktem

Co-supervisor: Prof. Dr. Marat Akhmet

September 2007, 130 pages

Many dynamical systems in nature and technology involve delays in the in-

teraction of variables forming the system. Furthermore, many of such systems

involve external inputs or perturbations which might force the system to have

arbitrary initial function. The conventional way to model these systems is using

delay differential equations (DDE). However, DDEs with arbitrary initial func-

tions has serious problems for finding analytical and computational solutions.

This fact is a strong motivation for considering abstractions and approximations

for dynamical systems involving delay. In this thesis, the piecewise linear systems

with delay on piecewise constant part which is a useful subclass of hybrid dynam-

ical systems is studied. We introduced various representations of these systems

and studied the state transition conditions. We showed that there exists fixed

point and periodic stable solutions. We modelled the genomic regulation of fission

yeast cell cycle. We discussed various potential uses including approximating the

DDEs and finally we concluded.

Keywords: piecewise linear systems, delay systems, external input, hybrid dy-

namical systems with delay, regulatory gene networks.
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öz

FONKSİYONEL DİNAMİK SİSTEMLERİN GECİKMELİ

PARÇALI DOĞRUSAL SİSTEMLER İLE

MODELLENMESİ

Kahraman, Mustafa

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Hakan Öktem

Tez Yardımcısı: Prof. Dr. Marat Akhmet

Eylül 2007, 130 sayfa

Doğa ve teknoloji ile ilgili birçok dinamik sistem değişkenlerin etkileşiminde

gecikmeler içerir. Üstelik bu sistemlerin birçoğu başlangıç fonksiyonunun gelişi-

güzel olmasına neden olan dış girdilere ve düzensizliklere sahiptir. Gecikmeli

diferansiyel denklemler (DDE) ile böyle sistemlerin modellenmesi geleneksel yön-

temdir. Ancak gelişigüzel başlangıç fonksiyonlu gecikmeli diferansiyel denklem-

lerin analitik ve sayısal çözümlerini bulmada ciddi sorunlar vardır. Bu durum

gecikmeli dinamik sistemlerin soyutlanmasının ve yaklaşımının göz önünde bu-

lundurulması için güçlü bir motivasyondur. Bu tezde, hibrid dinamik sistemlerin

bir alt kolu olan parçalı sabit kısmında gecikme içeren parçalı doğrusal sistemler

çalışılmıştır. Böyle sistemlerin değişik gösterimleri tanıtılmış ve hal değiştirme

koşulları çalışılmıştır. Mayanın hücre bölünmesinin genetik düzenlenmesi mod-

ellenmiştir. DDE’lerin yaklaşımını kapsayan değişik uygulamalar ele alınmış ve

son olarak sonuca varılmıştır.

Anahtar Kelimeler: parçalı doğrusal sistemler, gecikmeli sistemler, dış girdi, hib-

rid dinamik sistemler, düzenleyici gen ağları.
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chapter 1

INTRODUCTION

1.1 Background to the Study

Constructing mathematical models of known dynamical processes is a fun-

damental method for many nature science and engineering problems. Once a

mathematical model for a dynamical phenomena has been constructed, it can be

used for predicting the future behavior from the initial conditions, anticipating

the suitable interventions if required or designing a technological system exhibit-

ing the desired behavior.

Recent developments like growing knowledge on genomic, neurophysiologic,

ecological processes improved instrumentation for large scale control systems and

increased computational power for simulating more complex dynamical system

models stimulated a growing interest on developing the dynamical system model

classes.

A promising alternative in this direction is the use of hybrid dynamical sys-

tems. Hybrid systems are systems formed by continuous and boolean variables

regulating each other [32, 52, 78]. Hybrid systems might be one of the oldest

control technologies humanity has used. However, their mathematical formaliza-
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tion is recent due to the developments on control systems. Nowadays, hybrid

systems offer several advances for various modelling [18, 52, 27] and theoretical

problems [19, 52] in nature science. A very useful subclass of hybrid systems is

the piecewise linear systems. The most attractive feature of piecewise linear sys-

tems is their capability of substituting more complex systems into locally solvable

systems. This is essentially important when simulation, solution or analysis of a

first principle model of a dynamical process is not possible with reasonable com-

putational sources. In these cases, approximations and abstractions of an exact

model is much more useful and hybrid dynamical systems form a significant tool

for this purpose.

Increasing effort for modelling history dependent systems like genomic regu-

lation [39], tracking problems led researchers investigating functional dynamical

systems. When time delays are introduced between the interactions of the vari-

ables forming the system, the behavior of the system depends not only to the

initial state. The future of the system is determined by the initial functions of

the variables for the delay duration. Especially, when delays coexist with mul-

tistationarity they result with history dependent responses of the systems which

underlie many complicated adaptation and learning tasks in living organisms.

Integral equations which can not be converted into differential equations, delay

differential equations, delay equations of some more abstract functional differen-

tial equations are typical model of these systems.

Even thought theoretical methods for DDEs and various FDEs are developed

for understanding the functional dynamical systems, their simulation requires

abstractions and approximations. Especially, when the system is affected by

2



external factors like environmental, control or initialization inputs, the initial

functions might be arbitrary leading to the lack of analytical solutions.

1.2 Brief Description of the Study

In this thesis we studied piecewise linear systems with delay where the delay

is introduced into the state transitions. By this approach we handle the functional

part of the system in the piecewise constant part. Firstly, we studied the stability

analysis of piecewise linear systems with delay. A Poincare map is constructed and

existence of fixed point of this map is investigated using the contraction principle.

After the stability study we introduced a more useful model to cell cycle of fission

yeast model. The original model includes differential and algebraic equations.

We constructed a new model by a piecewise linear system with delay preserving

the basic dynamics and relations in the regulation of cell division cycle of fission

yeast. Then, we introduced the idea of approximating delay differential equations

by hybrid dynamical systems with delay. In this thesis, we approximated a simple

delay differential equation by a piecewise linear system with delay. Finally, we

added the other possible applications of hybrid dynamical systems with delay.

1.3 Purpose of the Study

The contribution of this work consists in modelling functional dynamical sys-

tems by piecewise linear systems with delay. We approximate the delay in func-

tional dynamical systems by including the delay in state transitions of piecewise

3



linear system. This idea makes it possible to observe the behavior of functional

dynamical systems in an easy way. We investigated the stability of piecewise lin-

ear systems with delay and observed that stable periodic solutions can be seen.

Conditions to see stable periodic solutions are stated. Regulatory gene networks

have multistationary nature and delayed responses. Therefore, history dependent

responses are seen in these systems. Modelling such processes by systems with

reduced complexity is important in terms of observing the behavior with reason-

able computational sources. In this work, it is aimed to reconstruct a model to

cell division cycle regulation of fission yeast using a piecewise linear system with

delay. It is claimed that the process of cell cycle can be modelled including more

known information related to the process. Therefore, a more realistic model can

be obtained by using piecewise linear systems with delay. Additionally, the sys-

tems will be easier because we will deal with linear differential equations. The

idea of approximating delay differential equations by piecewise linear systems

with delay is introduced. The purpose of this introduction is to show that delay

differential equations can be approximated more easily by using adaptive sam-

pling which comes with the use of piecewise linear systems. Constructing chaos

generators by piecewise linear systems with delay can be considered as a further

research study. Additionally, memorization of external inputs in regulatory gene

networks can be investigated in terms of piecewise linear systems with delay.

4



1.4 Significance of the Study

There are three crucial properties of this work. Firstly, we showed that

the stable periodic solutions can be seen in piecewise linear systems with delay.

A Poincare map can be constructed and stability analysis can be done in this

way. Secondly, functional dynamical systems can be modelled by piecewise linear

systems with delay. Simple models can be used to approximate the complex

dynamics. Finally, regulatory gene networks can be divided into subsystems

and the output of each system can be the external input of other systems. Whole

details of the regulatory gene networks can be included in piecewise linear systems

with delay model by this way.

5



chapter 2

BACKGROUND

This section contains background material for the study. Background mate-

rial for the cell cycle regulation of fission yeast is included in the chapter named

”Fission Yeast Cell Cycle Model”.

2.1 Dynamical Systems

2.1.1 A Dynamical View of the World

Dynamical systems are aimed at describing the principles of nature in terms

of mathematical relations. Natural sciences like mechanics, electricity, mag-

netism, and thermodynamics use dynamical systems formalism to describe be-

haviors of processes and to express laws of discipline. Dynamical systems describe

the evolution of system in time. Some systems evolve in continuous time, and

some others evolve in discrete time steps.

For example, the simple differential equation used to describe the population

dynamics in continuous time is

dx
dt

= kx,

6



where k represents the (fixed) relative growth rate of the population. Here, a

differential equation is used to capture the dynamics of the system.

The differential equation can be solved by separating the variables

( 1
x
)dx = kdt

and, integrating,

log |x| =
∫

( 1
x
)dx =

∫
kdt = kt + C,

so

|x(t)| = eCekt with eC = |x(0)|,

x(t) = x(0)ekt.

This solution gives the population in continuous t. This model can be used

for species that can reproduce continuously. On the other hand, the discrete-

time model for population dynamics is more appropriate when generations do not

overlap [30] as observed in butterflies whose existence and reproduction is strictly

seasonal. For this case, denoting the present population by x, next year’s popu-

lation is f(x) = kx for some positive constant k, which is the average number of

offspring per butterfly. If the population dynamics is evolved in discrete time step

for each year, xi denotes the population in year i. Therefore, xi+1 = f(xi) = kxi

and x1 = kx0, x2 = kx1 = k2x0, and so on. The population grows exponentially

like in the continuous model.

7



2.1.2 Linear Maps

Maps are important for dynamical systems as seen in the discrete time model

of population dynamics of butterfly. In this work, contraction on linear maps is

used. Therefore, introductory information is presented related to scalar linear

maps and contractions in Euclidean space for case of one variable and several

variables.

Scalar Linear Maps and Linearization

Definition 2.1: A map is a way of associating unique objects to every point in

a given set. So a map from A → B is an object f such that for every a ∈ A, there

is a unique object f(a) ∈ B. The terms function and mapping are synonymous

with map [7, 37, 72].

Maps are good mathematical tools for constructing models. Scalar linear

map xi+1 = f(xi) = kxi with k > 0 describes the dynamics of the primitive

discrete time population model. This model diverges if k > 1 and goes to 0

if k < 1 for any initial value x0 6= 0. For this model, asymptotic behavior is

independent of the initial condition.

Most interesting dynamical systems are not linear. However, by the help

of linearization nonlinear systems can be approximated. Differentiability, means

there exist a good linear approximation near any given point. Such linear approx-

imations can sometimes be useful for dynamics when the orbits of a nonlinear

map stay near enough to the reference point for the linear approximation to be

relevant [30].

8



The proposition below gives relation of asymptotic behavior of maps and

linearization of maps.

Proposition 2.1: Suppose F is a differentiable map of the line and F (b) = b.

If all orbits of the linearization of F at b are asymptotic to b, then all orbits of F

that start near enough to b are asymptotic to b as well.

Contraction in Euclidean Space

Firstly, define Euclidean space [29, 72].

Definition 2.2: Euclidean n-space is the space of all n-tuples of real numbers

(x1, x2, ..., xn) and is denoted Rn×Rn is a vector space and has lebesque covering

dimension n. Elements of Rn are called n-vectors, R1 = R is the set of real

numbers (i.e. the real line), and Rn is called the Euclidean plane. In Euclidean

space, covariant and contravariant quantities are equivalent, so −→e j = −→ej .

Now define contracting maps [30] with respect to the Euclidean distance

d(x, y) =
√∑n

i=1(xi − yi)2.

Definition 2.3: A map f of a subset X of Euclidean space is said to be

Lipschitz continuous with Lipschitz constantλ, or λ-Lipschitz if

d(f(x), f(y)) ≤ λd(x, y)

for any x, y ∈ X. The map f is said to be a contraction or a λ −contraction if

λ < 1. If a map is Lipschitz-continuous, then

Lip(f) = supx 6=y
d(f(x),f(y))

d(x,y)
.
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Example 2.1: The function f(a) =
√

a is a contraction on [1,∞).

For two points a, b ∈ [1,∞) check

d(f(a), f(b)) ≤ λd(a, b);

for f(a) =
√

a√
(
√

a−
√

b)2 ≤ λ
√

(a− b)2

is satisfied for λ < 1. So the function is a contraction.

The Case of One Variable

Derivative test [30] is an easy way of checking the contraction condition.

Proposition 2.2: Let I be an interval and f : I → R a differentiable function

with |f ′(x)| ≤ λ for all x ∈ I. Then f is λ - Lipschitz.

Proof: By Mean-Value Theorem, for any two points x, y ∈ I there exists a

point c between x and y such that

d(f(x), f(y)) = |f(x)−f(y)| = |f ′(c)(x−y)| = |f ′(c)|d(x, y) ≤ λd(x, y).

Example 2.2: The function f(a) =
√

a is a contraction on [1,∞).

Using Proposition 2.2 it is easy to find |f ′(x)| ≤ 1
2x
≤ 0, 5 for x ≥ 1 which

defines contraction on [1,∞).

Proposition 2.3 gives stronger condition [30] for contraction.

Proposition 2.3: Let I be a closed bounded interval and f : I → I a

continuously differentiable function with |f ′(x)| ≤ 1 for all x ∈ I. Then, f is a

10



contraction.

Proof: The maximum λ of |f ′(x)| is attained at some point x0, because f ′ is

continuous. It is less than 1, since |f ′(x)| ≤ 1.

The evolution of dynamical process is represented as fn(x), in case of maps,

where fn(x) means applying the function f to initial state n times. The terms

orbit, initial value, fixed point, periodic point are defined in Definition 2.4.

Definition 2.4: Let x be a point and let f be a map. The orbit of x under f

is the set of points {x, f(x), f2(x), ...., fn(x)}. The starting point x for the orbit

is called the initial value of the orbit. A point p is a fixed point of the map f

if f(p) = p. A periodic point is a point x such that fn(x) = x for some n ∈ N ,

that is a point in Fix(fn). Such an n is said to be a period of x. The smallest

such n is called the prime period of x [5, 30].

Example 2.3: Consider the map g(x) = 2x(1−x) from the real line to itself.

The orbit of x = 0.2 under g is {0.2, 0.32, 0.4352....} and the points x = 0 and

x = 0.5 are the fixed point of g.

The convergence of sequence generated by orbits is determined by the Propo-

sition 2.4 [30].

Proposition 2.4: (Contraction Principle) Let I ⊂ R be a closed interval,

possibly infinite on one or both sides, and f : I → I a λ-contraction. Then f has

a unique fixed point x0 and |fn(x) − x0| ≤ λn|x − x0| for every x ∈ R, that is,

every orbit of f converges to x0 exponentially [30].

Proof: By iterating |f(x)− f(y)| ≤ λ|x− y|, it is seen that
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(1) |fn(x)− fn(y)| ≤ λn|x− y|

for x, y ∈ R and n ∈ N; so for x ∈ I and m ≥ n the triangular inequality can be

used to show

(2) |fm(x)− fn(x)| ≤
∑m−n−1

k=0 |fn+k+1(x)− fn+k(x)|

≤
∑m−n−1

k=0 λn+k|f(x)− x| ≤ λn

1−λ
|f(x)− x|.

The right - hind side of (2) became arbitrarily small as n gets large. This

shows that (fn(x))n is a Cauchy sequence. Thus for any x ∈ I the limit of fn(x)

as n →∞ exists because Cauchy sequences converges. The limit is in I because

I is closed. This limit is the same for all x. Denote this limit by x0 and show

that x0 is a fixed point for f . If x ∈ I and n ∈ N, then

|x0 − f(x0)| ≤ |x0 − fn(x0)|+ |fn(x)− fn+1(x)|+ |fn+1(x)− f(x0)|

≤ (1 + λ)|x0 − fn(x)|+ λn|x− f(x)|

Since |x0− fn(x)| → 0 and λn → 0 as n →∞, f(x0) = x0 is obtained. That

|fn(x)− x0| ≤ λn|x− x0| for every x ∈ R follows from (1) with y = x0.

Here, the familiar fact

∑n
k=0 rk = 1−rn+1

1−r

and, as n →∞,

∑∞
k=0 rk = 1

1−r

is used.
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The Case of Several Variables

Same contraction principles can be applied in higher dimensions as stated in

Proposition 2.5 [30]. Euclidean distance is used instead of absolute value in this

case.

Proposition 2.5: (Contraction Principle) Let X ⊂ Rn be closed and f :

X → X a λ-contraction. Then f has a unique fixed point x0 and d(fn(x), x0) =

λnd(x, x0) for every x ∈ X [30].

Proof: Iterating d(f(x), f(y)) ≤ λd(x, y) shows

(1) d(fn(x), fn(y)) ≤ λnd(x, y)

for x, y ∈ X and n ∈ N. Thus, (fn(x))n is a Cauchy sequence, because

(2) d(fm(x), fn(x)) ≤
∑m−n−1

k=0 d(fn+k+1(x), fn+k(x))

≤
∑m−n−1

k=0 λn+kd(f(x), x) ≤ λn

1−λ
d(f(x), x)

for m ≥ n, λn → 0 as n → ∞. Thus, limn→∞ fn(x) exists (because Cauchy

sequences in Rn converges) and is in X because X is closed. By (1) it is the same

for all x. If x0 denotes this limit, then

d(x0, f(x0)) ≤ d(x0, f
n(x)) + d(fn(x), fn+1(x)) + d(fn+1(x), f(x0))

≤ (1 + λ)d(x0, f
n(x)) + λnd(x, f(x))

for x ∈ X and n ∈ N. Now f(x0) = x0 because d(x0, f
n(x)) → 0 (n →∞).
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The Derivative Test

Here contraction property is verified for the case of several variables [30],

using the derivative.

Let f :Rn→Rm be a map with continuous partial derivatives. Then, at each

point one can define the derivative or differential of f = (f1, f2, ...., fn) as the

linear map defined by the matrix of partial derivatives

Df =



∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn

. . . .

. . . .

. . . .

∂fm

∂x1

∂fm

∂x2
. . . ∂fm

∂xn


Norm of the differential is the norm of the matrix Df .

Given a square matrix A, a matrix norm ||A|| is a nonnegative number

associated with A having the properties [28, 72]

1. ||A|| > 0 when A 6= 0 and ||A|| = 0 if and only if A = 0,

2. ||kA|| = |k|||A|| for any scalar k,

3. ||A + B|| ≤ ||A||+ ||B||,

4. ||AB|| ≤ ||A||||B||.

Spectral norm is the natural norm induced by the L2-norm [28, 67, 72]. Let

A† be the adjoint of the square matrix A, so that A† = a∗ji, then
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||A||2 = (maximum eigenvalue of A†A)0.5

= max||x||2 6=0
||A||2
||x||2

The definition of convex set [14, 72] is important because it is needed in the

derivative test.

A set in Euclidean space Rd is convex if it contains all the line segments

connecting any pair of its points. If the set does not contain all the line segments,

it is called concave as seen in Figure 2.1.

Figure 2.1: A convex (left) and a concave (right) set.

Finally, derivative test [30] can be defined for several variables. Since Lemma

2.1 [30] is used in Theorem 2.1 and Theorem 2.2 it is presented firstly.

Lemma 2.1: If g : [a, b] → Rm is continuous and differentiable on (a, b), then

there exists t ∈ [a, b] such that

||g(b)− g(a)|| ≤ || d
dt

g(t)||(b− a).

Proof: Let v := g(b)− g(a), φ(t) := v(v, g(t)). By Mean Value Theorem for
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one variable there exists a t ∈ (a, b) such that φ(b)− φ(a) = φ′(t)(b− a), and so

(b− a)||v|||| d
dt

g(t)|| ≥ (b− a)(v, d
dt

g(t)) = d
dt

φ(t)(b− a) = φ(b)− φ(a)

= (v, g(b))− (v, g(a)) = (v, v) = ||v||2

divide by ||v|| to finish the proof.

Theorem 2.1: If C ⊂ Rn is convex and open and f : C → Rm is differentiable

with ||Df(x)|| ≤ M for all x ∈ C, then ||f(x)− f(y)|| ≤ M ||x− y|| for x, y ∈ C.

Proof: The line segment connecting x and y is given by c(t) = x + t(y − x)

for t ∈ [0, 1], and it is contained in C by convexity. Let g(t) = f(c(t)). Then by

the chain rule

|| d
dt

g(t)|| = ||Df(c(t)) d
dt

c(t)|| = ||Df(c(t))(y − x)|| ≤ M ||y − x||.

By Lemma 2.1, this implies ||f(y)− f(x)|| = ||g(1)− g(0)|| ≤ M ||y − x||.

Corollary 2.1: If C ⊂ Rn is a convex open set, f : C → C a map with

continuous partial derivatives, and ||Df(x)|| ≤ λ < 1 at every point x ∈ Rn, then

f is a λ−contraction [30].

An open set may not contain the limits of Cauchy sequences in it. Therefore,

the following theorem [30] considers the closure of a set.

Theorem 2.2: If C ⊂ Rn is an open strictly convex set, C its closure, f :

C → Rn differentiable on C and continuous on C with ||Df || ≤ λ < 1 on C, then

f has a unique fixed point x0 ∈ C and d(fn(x), x0) ≤ λnd(x, x0) for every x ∈ C.

Proof: For x, y ∈ C we parameterize the line segment connecting x and y by

c(t) = x+ t(y−x) for t ∈ [0, 1] and let g(t) = f(c(t)). Then c((0, 1)) is contained
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in C by strict convexity and

|| d
dt

g(t)|| = ||Df(c(t)) d
dt

c(t)|| = ||Df(c(t))(y − x)|| ≤ λ||y − x||.

By Lemma 2.1 this implies ||f(y) − f(x)|| ≤ λ||y − x||. Thus, f is a

λ−contraction and has a unique fixed point x0. Furthermore, d(fn(x), x0) =

λnd(x, x0) for every x ∈ C.

2.1.3 Stability of Fixed Points of Maps

The stability of fixed points of one - dimensional maps is mentioned here.

The idea is also applicable for maps in Rn.

The idea of stability of fixed points of one-dimensional maps can be described

as in [5]. Assuming that the discrete-time system exists to model real phenomena,

not all fixed points are alike. A stable fixed point has the property that points

near it are moved even closer to the fixed point under the dynamical system. For

an unstable fixed point, nearby points move away as time progresses. A good

analogy is that a ball at the bottom of a valley is stable, while a ball balanced at

the tip of a mountain is unstable.

The question of stability is significant because a real-world system is con-

stantly subject to small perturbations. Therefore, a steady state observed in a

realistic system must correspond to a stable fixed point. If the fixed point is

unstable, small errors or perturbations in the state would cause the orbit to move

away from the fixed point, which would then not be observed.

The derivative of the map at a fixed point p is a measure of how the distance
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between p and a nearby point is magnified or shrunk by f . The concept of “near”

is made precise by referring to all real numbers within a distance ε of p as the

epsilon neighborhood Nε(p). Denote the real line by R. Then Nε(p) is the interval

of numbers {x ∈R: |x− p| < ε}.

Definition 2.5: Let f be a map on R and let ρ be a real number such that

f(ρ) = ρ. If all points sufficiently close to ρ are attracted to ρ, then ρ is called a

sink or an attracting fixed point. More precisely, if there is an ε >0 such that for

all x in the epsilon neighborhood Nε(ρ), limk→∞ fk(x) = ρ, then ρ is a sink. If

all points sufficiently close to p are repelled from ρ, then ρ is called a source or

a repelling fixed point. More precisely, if there is an epsilon neighborhood N ε(ρ)

such that each x in N ε(ρ) except for ρ itself eventually maps outside of N ε(ρ),

then ρ is a source.

Theorem 2.3: Let f be a (smooth) map on R, and assume that p is a fixed

point of f .

1. If |f ′(ρ)| < 1, then ρ is a sink.

2. If |f ′(ρ)| > 1, then ρ is a source.

Proof: PART 1. Let a be any number between |f ′(ρ)| and 1; for example, a

could be chosen to be (1 + |f ′(ρ)|)/2. Since

limx→ρ
|f(x)−f(ρ)|

|x−ρ| = |f ′(ρ)|,

there is a neighborhood N ε(ρ) for some ε >0 so that

|f(x)−f(ρ)|
|x−ρ| <a

for x in Nε(ρ), x 6= ρ.
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In other words, f(x) is closer to ρ than x is, by at least a factor of a (which is

less than 1). This implies two things: First, if x ∈ N ε(ρ), then f(x) ∈ N ε(ρ); that

means that if x is within of ρ, then so is f(x), and by repeating the argument, so

are f 2(x), f 3(x), and so forth. Second, it follows that

|fk(x) - p| ≤ ak|x− p|

for all k≥1. Thus ρ is a sink.

2.1.4 Dynamical System Classification According to Res-

olution

Dynamical systems can be classified based on the resolution of their state

variables and the resolution of their time sets over which the state evolves as John

Lygeros mentioned [42].

Based on type of their states, dynamical systems can be classified into:

1. Continuous: if the state take values in Euclidean space Rn for some n ≥ 1.

x ∈ Rn is used to denote the state of a continuous dynamical system.

2. Discrete: if the state takes values in a countable or finite set {q1, q2, ....}.

q is used to denote the state of a discrete system. For example, a light switch

is a dynamical system whose state takes on two values, q ∈ {ON,OFF}. A

computer is also a dynamical system whose state takes on a finite (albeit very

large) number of values.

3. Hybrid: if some of the state variables take values from Rn while some

other state variables take values from a finite set. For example, the closed loop
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system we obtain when we use a computer to control an inverted pendulum is

hybrid: part of the state (namely the state of the pendulum) is continuous, while

another part (namely the state of the computer) is discrete.

Based on the set of times over which the state evolves, dynamical systems

can be classified as:

1. Continuous time: if the set of times is a subset of the real line. The symbol

t ∈ R is used to denote continuous time. Typically, the evolution of the state of a

continuous time system is described by an ordinary differential equation (ODE).

For example, continuous time population dynamics explained in ”A Dynamical

View of the World” section

dx
dt

= kx.

2. Discrete time: if the set of times is a subset of the integers than k ∈ Z,

is used to denote discrete time. Typically, the evolution of the state of a discrete

time system is described by a difference equation. For example, discrete time

population dynamics explained in ”A Dynamical View of the World” section

xk+1 = kxk.

3. Hybrid time: if the evolution is over continuous time but there are also

discrete “instants” where something “special” like state transitions or jumps hap-

pens.
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2.1.5 Examples of Dynamical Systems

Given examples based on classification of dynamical systems according to

resolution will be beneficial to clarify the subject. Pendulum, manufacturing

machine, and thermostat are good examples, as John Lygeros mentioned [42].

A Continuous System: (Pendulum)

Consider the pendulum given in Figure 2.2. Here, l is the length of weight-

less solid rod, m is mass of the ball, θ denotes angle the pendulum makes with

the downward vertical.

Figure 2.2: The pendulum.

The evolution of θ is governed by
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ml d2θ
dt2

+ dl dθ
dt

+ mg sin(θ) = 0,

where d is the dissipation constant.

Finding θ as a function of time will explain the dynamics of the pendulum.

This means finding the solution of ODE. At t = 0 pendulum starts with initial

position θ0 and initial velocity dθ
dt

.

This function must satisfy

θ(0) = θ0,

dθ(0)
dt

= dθ0

dt
,

ml d2θ(t)
dt2

+ dl dθ(t)
dt

+ mg sin(θ(t)) = 0, for all t ∈ R

Such a function is known as a trajectory of the system.

To simplify the notation typically, ODE is written is state space form

dx
dt

= f(x)

where

x =

 x1

x2

 =

 θ

dθ
dt

,

which gives rise to the state space equation

dx
dt

=

 dx1

dt

dx2

dt

 =

 x2

−g
l
sin(x1)− d

m
x2

 = f(x).

The vector x ∈ R2 is the state of the system.

Solving the ODE for θ is equivalent to finding a function
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x(0) =

 x1(0)

x2(0)

 =

 θ0

dθ0

dt


dx(t)

dt
= f(x(t)), for all t ∈ R

Figure 2.3 shows the trajectory of the system for l = 1, m = 1, d = 1, g = 9.8,

θ(0) = 0.75 and dθ
dt

(0) = 0.

Figure 2.3: Trajectory of the pendulum.

In order to visualize the solutions of pendulum system phase plane plots

(plots of x1(t) vs x2(t)) are convenient. Figure 2.4 shows the phase plan plot of

the trajectory of Figure 2.3.
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Figure 2.4: Phase plane plot of the trajectory of Figure 2.3.

A Discrete System: (Manufacturing Machine)

A manufacturing machine is defined as a machine processing parts of type p

one at a time.

This machine can be in one of three states: Idle (I), working (W ), and down

(D). Additionally, depending on some certain events machine can transition

between these states.

If this machine is modelled as a dynamical system it will have three discrete

states

q ∈ Q = {I,W, D}

and some certain events which cause state transitions
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σ ∈ Σ = {p, c, f, r},

where

p = a part in any type arrives,

c = complete processing,

f = failure,

r = repair.

The state after event occurs is given by a state transition relation

∂ : Q× Σ → Q

For example, if the machine is idle state and part p is arrived, then it turns

to working state.

∂(I, p) = W

A Hybrid System: (Thermostat)

Consider a thermostat controlled radiator heats a room as seen in Figure 2.5.

The radiator can be in one of two states: ON, OFF. If the radiator is in the

OFF state, the temperature of the room decreases exponentially towards 0 degree

(0 degree is assumed as environmental temperature) according to the differential

equation

dT
dt

= −aT

for some a > 0.
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Figure 2.5: Thermostat controlled heater.

When the thermostat turns the hater on a state transition occurs from OFF

to ON state. In ON state, temperature of the room increase exponentially towards

30 degrees according to the differential equation

dT
dt

= −a(T − 30).

Assume that the aim is to keep the room temperature at around 20 degrees.

Then, the discrete states are

q ∈ Q = {ON,OFF}

and the events are

σ ∈ Σ = {T ≤ 19, T ≥ 21}

A trajectory of thermostat system is seen in Figure 2.6.
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Figure 2.6: A trajectory of the thermostat system.

Thermostat system has both continuous and discrete state.

2.2 Hybrid Dynamical Systems

In this section, hybrid dynamical systems and related topics are covered

at an introductory level. The basics of graph theory are presented first, then

information related to automata is given. After piecewise linear systems are

introduced an example related to hybrid dynamical systems is included. Finally,

the graph representation of hybrid dynamical systems is mentioned by water tank
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example.

2.2.1 Basics of Graph Theory

A hybrid dynamical system can be seen as a graph whose nodes are states

and edges are possible state transitions between states. Therefore, it will be

beneficial to start with graph theory and present the basics.

A graph is a collection of vertices, certain unordered pairs of which are called

its edges [73]. A graph is described by its vertices and by edges between vertices.

A sample graph and its vertices and edges are seen in Figure 2.7.

Figure 2.7: A simple graph.

A graph can be represented as a pair G = (V, E) of sets satisfying E⊂[V]2

where V is the set of vertices; thus, the elements of E are 2-element subsets of V

[15]. By this representation V represents the vertices of graph and E represents

the edges of the graph. For example, if the graph in Figure 2.7 is considered,
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V = {a, b, c, d, e, f} and E = {{a, c}, {a, d}, ...}.

The degree of a graph vertex v of a graph G is the number of graph edges

which contain v [64]. A vertex of degree 0 is isolated. d(V ) represents the degree of

the vertex v. We denote δ(G) := min{d(V )|v ∈ V } and ∆(G) := max{d(V )|v ∈

V } .

A path in a graph is a non-empty graph P = (V, E) of the form

V = {x0, x1, ..., xk} , E = {x0x1, x1x2, x2x3, ..., xk−1xk},

where the xi are all distinct [15]. A sample path of the graph presented in Figure

2.7 is seen in Figure 2.8.

Figure 2.8: A sample path.

If two ends of a path are connected this is called a cycle (if P = x0...xk−1 is

a path and k ≥ 3, then the graph C = P + xk−1x0 is a cycle [15]). It will useful

in later of this work to introduce the Proposition 2.6 [15].

Proposition 2.6: Every graph G conforming δ(G) ≥ 2 contains a path of
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length δ(G) and a cycle of length at least δ(G) + 1.

Proof: Let x0...xk be a longest path in G. Then, all the neighbors of xk lie

on this path. Hence, k ≥ d(xk) ≥ δ(G). If i < k is minimal with xixk ∈ E(G),

then xi...xkxi is a cycle of length at least δ(G) + 1.

A directed graph is a graph G = (V, E) consists of a set of vertices V and

a set of edges E that are ordered pairs of elements of V [58]. Additionally, a

directed multigraph is a graph G = (V, E) consists of a set of vertices V and a

set of edges E, and a function f from {(u, v)|u, v ∈ V } to E. The edge e1 and

e2 are multiple edges if f(e1) = f(e2). Figure 2.9 gives examples, to a directed

graph and to a directed multigraph.

Figure 2.9: Directed graph (left) and directed multigraph (right).

2.2.2 Discrete Event Systems (Automata)

Discrete event systems (DES) are important to manage modern world, most

of which are man-made systems such as multicomputer systems, communication

networks, traffic systems and manufacturing systems. In this section, regular
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languages and regular expressions, graph representation of regular expressions,

finite automaton, and hybrid automaton are presented.

Regular Languages and Regular Expressions

A string which is a finite set of finite sequence of symbols is the basic object

in automata and language theory [16]. The length of a string is denoted by |x|,

and means the number of symbols contained in string. For example, |abcd| = 4.

The empty string is denoted by ε and |ε| = 0. The basic operation on strings is

concatenation (”.”) which means joining two strings. To illustrate, x.y = xy, x

string and y string are concatenated to form the xy string. Additionally, since

languages are sets, usual set operations like union, intersection, difference and

complement are applicable to languages. Limited set of symbols used to form

strings is called an alphabet. If Σ represents an alphabet Σ∗ denotes the set of

all possible strings over Σ. A language is a set of strings and a language L over

Σ is just a subset of Σ∗.

The concept of regular languages (or, regular sets) over an alphabet Σ is

defined recursively as follows [16]:

(1) The empty set is a regular language.

(2) For every symbol a ∈ Σ, {a} is a regular language.

(3) If A and B are regular languages, then A, AB, and A∗ are all regular lan-

guages.

(4) Nothing else is a regular language.
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For example, the set {10, 01} is a regular language over the binary alphabet:

{10, 01} = ({1}{0}) ∪ ({0}{1}).

To simplify the representations for regular languages, the notion of regular

expressions over alphabet C is defined [16] as follows:

(1) ∅ is a regular expression which represents the empty set.

(2) ε is a regular expression which represents language {ε}.

(3) For a ∈ Σ, a is a regular expression which represents language {a}.

(4) If rA and rB are regular expressions representing languages A and B, respec-

tively, then (rA) + (rB), (rA)(rB), and (rA)∗ are regular expressions representing

A, AB, and A∗, respectively.

(5) Nothing else is a regular expression over Σ.

Graph Representation for Regular Expressions

There is an interesting way to represent regular expressions by labelled di-

graphs with labels from Σ ∪{ε} . For any regular expression r, its labelled digraph

representation can be obtained [16] as follows:

1. Initially, we start with two special vertices, the initial vertex and the final

vertex, and draw an edge between them with label r (see Figure 2.10(l)). (In

Figure 2.10(l), an arrow with no starting point to the initial vertex is drawn and

double circles are used to denote the final vertex.)

2. Repeat the following until every edge has a label that does not contain oper-
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ation symbols +, ., or ∗:

Replace each edge with label f + g by two edges with labels f and g, as

shown in Figure 2.10(2).

Replace each edge with label fg by an additional vertex and two edges with

labels f and g, as shown in Figure 2.10(3).

Replace each edge with label f ∗ (f.g) by an additional vertex and three edges

with labels ε, f , and ε, as shown in Figure 2.10(4).

3. Delete all edges with label ∅.

Figure 2.10: Graph G(r) for regular expression r.

For a regular expression r, let G(r) be its graph representation constructed

as above. Clearly, each edge in G(r) has a label in Σ ∪{ε}. Every path in G(r) is

associated with a string which is obtained by concatenating all symbols labelling

the edges in the path. This representation has the following property [16]:
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Theorem 2.4: Let r be a regular expression. A string x belongs to the

language L(r) if and only if there is a path in G(r) from the initial vertex to the

final vertex whose associated string is x.

Proof: Let v1 be the initial vertex and q be the final vertex in G(r). Consider

the following statement:

S: x ∈ L(r) if and only if there is a path (v1, v2, ...., vk = vf ) in digraph G such

that x ∈ L(r1)L(r2)...L(rk−1), where ri is the label of the edge (vi, vi+1), i =

1, ..., k − 1.

It is claimed that statement S holds with respect to the graph G at any stage

of the above construction of G(r). First, it is clear that S holds with respect to

the graph G at the beginning of the step 2. Next, we observe that, because of

the way the edges are replaced, if S holds with respect to a graph G, then it

still holds after an edge replacement performed at step 2. Thus, the statement S

holds with respect to the graph G at the end of step 2. At step 3, we delete edges

with the label 0, and this does not affect statement S, since L(∅) = ∅. Therefore,

at the end of step 3, each edge of G(r) is labelled by exactly one symbol from

Σ ∪{ε}, and statement S implies that x ∈ L(r) if and only if there is a path in

G(r) from v1 to vf whose associated string is exactly x.

Finite Automaton

Automata theory is important for implementing systems with a fixed set of

resources. If we use finite number of states for a system, the entire history of the

system could not be remembered but it will be designed carefully to represent
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the important states of the system. Therefore, systems could be implemented

as circuits or as a program. For example, the simplest system on/off switch is

nontrivial finite automaton [16].

A finite automaton (or FA) can be formally defined as a 5-tuple (Q, Σ, T, q0, T )

[16], where

• Q is a finite set of states,

• Σ is the alphabet (defining what set of input strings the automaton operates

on),

• T : Q× Σ → P (Q) is the transition function,

• q0 ∈ Q is the starting state,

• F ⊂ Q and is a set of final (or accepting) states.

Operation of the FA begins at q0 , and movement from state to state is

governed by the transition function T .

FAs represent regular languages and a FA can be represented visually by

using directed graphs.

Hybrid Automaton

One of the most common forms of representing a hybrid system is the hybrid

automaton [9, 41, 56]:

Definition 2.6: (Hybrid Automaton) A hybrid automaton H is a collection

H = (Q, X, f, Init, D,E, G, R) where,
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• Q is a finite set of discrete variables.

• X ⊆ Rn.

• X is a finite dimensional set of continuous variables.

• f : Q×X → TX is a vector field.

• Init⊂Q×X is a set of initial states.

• D : Q → P (X) is a domain.

• E⊂Q×Q subset of set of edges over Q.

• G : E → P (X) is the guard condition.

• R : E ×X → P (X) is the reset map.

Here, Q denotes the set of al possible valuations of q ∈ Q, X denotes a

smooth manifold for X, TX denotes the tangent bundle of X and P (X) is the

power set of X.

(q, xq) ∈ Q×X is referred to as the state h of the hybrid automaton H.

2.2.3 Piecewise Linear Systems

In this section, piecewise linearity is introduced and switching differential

equations are presented.
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Piecewise Linearity

Let the state space U⊂ Rp of a dynamical system is formed by z disjoint

subspaces such that [52]

U = U1 ∪ U2 ∪ ... ∪ Uz and

Ui ∩ Uj = ∅ if i 6= j.

Consider three different initial states which are elements of the same subspace

Ui. This means

y0 ∈ Ui, y1 ∈ Ui, y2 ∈ Ui,

which satisfies the following equality:

y2 − y0 = r(y1 − y0) (r ∈ R).

Let y0, y1, y2 yield y0(t), y1(t), y2(t), respectively. This means: If the system

started with the initial state y(t0) = y0 then the function representing its temporal

evolution for t > t0 is denoted by y0(t).

The system is piecewise linear in Ui if

y2[t0, ti]− y0[t0, ti] = r(y1[t0, ti]− y0[t0, ti]) (r ∈ R),

and y0(t), y1(t), y2(t) ∈ Ui for all t0 < t < ti where [t0, ti] stands for the time

interval that is spent in subspace Ui. Herewith, the system itself is said to be

piecewise linear if it is piecewise linear in all subspaces of its state space [52].
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Switching Differential Equations

A piecewise linear system can be represented by the switching differential

equations as follows [52]:

dy
dt

= Ms(t)y(t) + Ns(t)xe(t) + ks(t)

s(t) = si if y(t) ∈ Ui,

where

y(t) ∈ Rn is a column vector representing the continuous variables,

xe ∈ Rn is a column vector representing the external inputs,

s(t) ∈ (1, 2, ..., p) is a symbolic variable representing the state of the

system,

M : s → Rn×n is a switching matrix whose elements are determined by

the state of the system,

N : s → Rn×n is a switching matrix whose elements are determined by

the state of the system

k : s → Rn is a switching vector whose elements are determined by the

state of the system and

Ui ⊂ Rn is a subspace of the systems state space.

Subscript i denotes ith element of the corresponding vector [52].

The following simplified switching structure is mostly considered in this work:
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dy
dt

= Ms(t)y(t) + ks(t),

si(t) = F (Q([y1(t), y2(t), ..., yn(t)])),

Qi(y(t)) = {
1 if yi(t) > hi

0 if yi(t) ≤ hi

,

where

s(t) ∈ (0, 1)n is a column vector representing the states of the variables,

M : sn → Rn×n is a switching matrix,

k : sn → Rn is a switching vector whose elements are determined by the

states of the variables,

F : (0, 1)n → (0, 1)n is a Boolean function [52].

2.2.4 Example

For illustration, following example is presented:

dy
dt

= Ms(t)x(t) + ks(t),

si(t) = F (Q([y1(t), y2(t)])),

Qi(y(t)) = {
1 if xi(t) > hi

0 if xi(t) ≤ hi

,

M0,0 = M0,1 = M1,0 = M1,1 =

 −1 0

0 −1

,
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k0,0 =

 0

2

, k0,1 =

 2

2

, k1,0 =

 0

0

, k1,1 =

 2

0

,

h1 = h2 = 1.

The threshold divide the system into 4 different regions as seen in Figure

2.11.

Figure 2.11: State space, thresholds of the example.

If the initial state is in the region IV (x1(t) > 1, x2(t) ≤ 1), the governing

differential equation is:

dy
dt

= M1,0y(t) + k1,0, dx1

dt

dx2

dt

 =

 −1 0

0 −1


 x1

x2

 +

 0

0

,
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whose solution is x1

x2

 =

 x1(0)e−t

x2(0)e−t

.

All points in region IV will exponentially converge to (0, 0).

If the initial state is in the region II (x1(t) > 1, x2(t) > 1) the governing

differential equation is:

dx
dt

= M1,1x(t) + k1,1, dx1

dt

dx2

dt

 =

 −1 0

0 −1


 x1

x2

 +

 2

0

,

whose solution is x1

x2

 =

 2− (2− x1(0))e−t

x2(0)e
−t

.

All points in region II will exponentially converge to (2, 0).

If the initial state is in the region I (x1(t) ≤ 1, x2(t) > 1) the governing

differential equation is:

dx
dt

= M0,1x(t) + k0,1, dx1

dt

dx2

dt

 =

 −1 0

0 −1


 x1

x2

 +

 2

2

,

whose solution is x1

x2

 =

 2− (2− x1(0))e−t

2− (2− x2(0))e
−t

.
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All points in region I will exponentially converge to (2, 2).

If the initial state is in the region III (x1(t) ≤ 1, x2(t) ≤ 1) the governing

differential equation is:

Figure 2.12: The behavior of the system for initial point y0 = [1.1 0.2]′.

dx
dt

= M0,0x(t) + k0,0, dx1

dt

dx2

dt

 =

 −1 0

0 −1


 x1

x2

 +

 0

2

,

whose solution is  x1

x2

 =

 x1(0)e−t

2− (2− x2(0))e−t

.

All points in region III will exponentially converge to (0, 2).

The system is numerically simulated. Here, the dynamics of the system for
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two initial points is presented. If the initial point is y0 =

 1.1

0.2

. The behavior

of the system is as seen in Figure 2.12 and Figure 2.13.

Figure 2.13: A closer look of the Figure 2.12.

However, if the y0 =

 1.002

0.9999


is chosen for initial point the behavior observed is as in Figure 2.14.

2.2.5 Graph Representation of HDS

As discussed in ”Hybrid Automaton” section directed graphs can be used

for representation of HDS.

At the beginning it will be useful to give the definitions of hybrid time

trajectory, execution, and zeno hybrid automata based on [34, 40].
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Figure 2.14: The behavior of the system for y0 = [1.002 0.9999]′.

A hybrid system will involve continuous evolution as well as instantaneous

transitions. To distinguish the times at which discrete transitions take place the

notion of a hybrid time trajectory is introduced.

Definition 2.7: (Hybrid time trajectory). A hybrid time trajectory τ =

{Ii}N
i=0 is a finite or infinite sequence of intervals of the real line, such that

for all 0 ≤ i < N , Ii = [τi, τ
′
i ] with τi ≤ τ ′i = τi+1;

if N < ∞, either IN = [τN , τ ′N ] with τN ≤ τ ′N < ∞, or IN = [τN , τ ′N) with

τN ≤ τ ′N ≤ ∞.

The interpretation is that τi are the times at which discrete transitions take

place; notice that multiple transitions may take place at the same time (if τi =

τ ′i = τi+1). Hybrid time trajectories can extend to infinity either if τ is an infinite
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sequence, or if it is a finite sequence ending with an interval of the form [τN ,∞).

Υ denotes the set of all hybrid time trajectories.

Definition 2.8: (Execution). An execution χ of a hybrid automaton H is a

collection χ = (τ, q, x) with τ ∈ Υ, q : τ → Q, and x : τ → X, satisfying

(q(τ0), x(τ0)) ∈ Init (set of possible initial conditions);

for all i such that τi < τ ′i , x(t)is continuously differentiable and q(t) is constant

for t ∈ [τi, τ
′
i ], and x(t) ∈ I(q(t)) and dx(t)

dt
= f(q(t), x(t)) for all t ∈ [τi, τ

′
i)

(continuous evolution); and

for all i, e = (q(τ ′i), q(τi+1)) ∈ E, x(τ ′i) ∈ G(e), and x(τi+1) ∈ R(e; x(τ ′i)) (discrete

evolution).

Here, Q and X are defined with ”Hybrid Automaton” Section 2.2.2.

For an execution χ = (τ, q, x), (q0, x0) = (q(τ0), x(τ0)) is used to denote the

initial state of χ.

Unlike conventional continuous dynamical systems, the interpretation is that

an automaton H accepts an execution χ = (τ, q, x) (as opposed to generates).

This conceptual difference allows one to consider hybrid automata that accept

no executions for some initial states, accept multiple executions for the same

initial states, or do not accept executions over arbitrarily long time horizons.

An execution χ = (τ, q, x) is called finite if τ is a finite sequence ending with a

closed interval, infinite if τ is an infinite sequence or if
∑

i(τ
′
i − τi) = ∞, Zeno

if it is infinite but
∑

i(τ
′
i − τi) < ∞, and maximal if it is not a strict prefix of

any other execution of H. For an infinite execution we denote the Zeno time as
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τ∞ =
∑

i(τ
′
i−τi). Clearly, τ∞ < ∞ if the execution is Zeno and τ∞ = ∞ otherwise.

Ĥ(q0, x0) is used to denote the set of all executions of H with initial condition

(q0, x0) ∈ Init, ĤM(q0, x0) to denote the corresponding maximal executions, and

Ĥ∞(q0, x0) to denote the infinite executions.

Definition 2.9: (Zeno hybrid automaton). A hybrid automaton H is called

Zeno if there exists (q0, x0) ∈ Init such that all executions in Ĥ∞(q0, x0) are Zeno

executions.

In graph representation of hybrid systems, each partition of state space can

be represented by a node and possible transitions between them can be repre-

sented by edges. Nodes generally represent discrete variables Q = {q1, q2, ..., qn}

in a hybrid dynamical system. Transitions between states are represented by

directed edges. The guard conditions G(edgei) which cause state transition are

generally placed on directed edges. Additionally, reset relations R(edgei, x) are

represented on directed edges. In a node, which represent the state qi in a hybrid

dynamical systems, the governing vector field f(qi, x) for the state and evolution

set I(qi) are given.

To illustrate the concept water tank system of Alur and Henzinger [34, 6] is

presented here. The system and graph representation of the system is given in

Figure 2.15 and Figure 2.16.

For i = 1, 2, let xi denote the volume of water in Tank i, and vi > 0 denote

the (constant) flow of water out of Tank i. Let the constant flow of water into

the system is denoted by w, directed exclusively to either Tank 1 or Tank 2 at

each point in time. The objective is to keep the water volumes above r1 and r2,
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Figure 2.15: The water tank system.

respectively (assuming that x1(0) > r1 and x2(0) > r2). This is to be achieved by

a switched control strategy that switches the inflow to Tank 1, whenever x1 ≤ r1,

and to Tank 2, whenever x2 ≤ r2. More formally, the water tank automaton is a

hybrid automaton, denoted by WT, with

Q = {q1, q2} and X = R2,

Init = Q× {x ∈ X : (x1 ≥ r1)Λ(x2 ≥ r2), r1, r2 > 0},

f(q1, x) = (w − v1,−v2) and f(q2, x) = (−v1, w − v2), v1, v2w > 0,

I(q1) = {x ∈ X : x2 ≥ r2} and I(q2) = {x ∈ X : x1 ≥ r1},

E = {(q1, q2), (q2, q1)},

G(q1, q2) = {x ∈ X : x2 ≤ r2} and G(q2, q1) = {x ∈ X : x1 ≤ r1} and

R((q1, q2), x) = R((q2, q1), x) = {x}.
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Figure 2.16: Graphical representation of the water tank hybrid system.

It is straightforward to show that WT accepts a unique infinite execution for

each initial state [72]. Moreover, if max{v1, v2} < w < v1 + v2, then WT is Zeno

with Zeno time τ∞ = (x1(0) + x2(0)− r1− r2)/(v1 + v2−w), where (x1(0), x2(0))

is the continuous part of the initial state.

2.3 Hybrid Dynamical Systems with Delay on

Piecewise Constant Part

Hybrid dynamical systems with delay can be defined as

dy
dt

= Ms(t)y(t) + Ns(t)xe(t) + ks(t),

si(t) = Fi(Q([y1(t− τ1i), y2(t− τ2i), ..., yn(t− τni)])),

Qj(y(t)) = {
1 if yj(t) ≥ hj

0 if yj(t) < hj

,

where, fs : Y × Xe → Rn is a switching function, s(t) ∈ (0, 1)n is a column
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vector representing the state of the system, Fi : (0, 1)k → (0, 1)k is a set of

Boolean functions for the state variable and τji ∈ R is the time necessary for

the threshold crossing of the continuous variable j to affect the state of the

Boolean variable i. Here we consider 2n states and each variable’s crossing of

its threshold causes a guard condition. In fact, neither all variables need to

cause a guard condition nor a variable need to have a single threshold for using

a hybrid system to approximate a dynamical system involving delays. However,

this can be adjusted by increasing the number of thresholds and assigning same

parameters Ms,Ns and ks to different states. The system forms a mapping from

the combination of initial function space of its states and state space to its future

function space, i.e., Hd : Ss,t0−<t<t0 × Y ×X → Sy,t>t0 . If the system is Zeno free

(verifiable), the piecewise constant structure of s(t) allows representing it with

finite number of variables. Thus, hybrid systems in the form of Hd offer tractable

abstractions of dynamical systems involving delay [52].
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chapter 3

ANALYSIS OF PERIODIC

SOLUTIONS OF PIECEWISE

LINEAR SYSTEMS WITH

DELAY ON PIECEWISE

CONSTANT PART

In this section periodic solutions of piecewise linear systems with delay on

piecewise constant part is presented first. Then, the stability analysis of an

example system is studied.
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3.1 Periodic Solutions of Piecewise Linear Sys-

tems with Delay on Piecewise Constant Part

The problem of the asymptotic representation of solutions of differential

equations with impulse action on surfaces, and of systems of differential equa-

tions with discontinuous right hand side is investigated in [1]. This is possible

by piecewise continuous vector-valued functions as stated in [1]. These results

can be applied to piecewise linear systems with delay on piecewise constant part.

The problem of the existence of periodic solutions of differential equations with

pulse effect on the surfaces and to differential equations with discontinuous right

hand sides close to arbitrary nonlinear ones is studied in [2]. In [2] it is seen

that, under some certain conditions differential equations with pulse effect on the

surfaces and differential equations with discontinuous right hand sides close to

arbitrary nonlinear ones admit ω - periodic solutions. Benefitting from this work,

the existence of periodic solutions of PLS with delay on piecewise linear part can

be studied. Additionally, [24] presents differential equations with discontinuous

righthand sides.

In this part of the study, the state transition conditions are studied. Let us

consider the following PLS with delay on piecewise constant part,

dy
dt

= Ms(t)y(t) + ks(t),

s(t) = si if y(t− τ) ∈ Ui,

where

y(t) ∈ Rn is a column vector representing the continuous variables,
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s(t) ∈ (1, 2, ..., p) is a symbolic variable representing the state of the

system,

M : s → Rn×n is a switching matrix whose elements are determined by

the state of the system,

k : s → Rn is a switching vector whose elements are determined by the

state of the system and

Ui ⊂ Rn is a subspace of the systems state space,

τ is the constant delay in state transitions.

At a particular state Qj the system evolves according to:

y(t) = −M−1
j kj + (y0 + M−1

j kj)e
Mj(t−t0) for t0 < t < te

where -M−1
j kj is the focal point of the system at the state Qj, y0 is the state of

the system when it entered into the state Qj, t0 time at y0, te is the exit time

from Qj if it exists.

We can say that the system at the state Qj converges to or diverges from

the coordinates of the corresponding focal point along eigenvectors. Where, con-

vergence happens along eigenvectors with negative eigenvalues and divergence

happens along eigenvectors with positive eigenvalues.

A linear system x′(t) = Ax(t) + k, where A matrix is not in diagonal form

but is diagonalizable, can be converted in diagonal form as

T−1AT = Λ = diag(λ1, λ2, ..., λn),
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z(t) = T−1x(t) ⇐⇒ x(t) = Tz(t),

x′(t) = T−1x′(t) = T−1Ax(t) + T−1k = T−1ATz(t) + T−1k,

z′(t) = Λz(t) + T−1k.

For simplicity we considered only diagonal M matrices.

M =



λ1 0 0 0

0 λ2 0 0

0 0 ... 0

0 0 0 λn


.

A hybrid system can be represented as an n-dimensional hypercube. Each

axis represents a variable yi and each node on an axis represents a state Qj of this

variable. A state transition due to the threshold crossing of a particular variable

yi can be represented by a directed edge from an initial node to the target node

along yi axis. Figure 3.1 is a graphical representation of a system consisting of 3

variables.

From each state Qj a transition (an edge) to a neighboring state Qk separated

by yi = hi hyperplane can happen if for λji (ith diagonal element of λj, where λj

is λ matrix belonging to state Qj) following is satisfied:

• for Re(λji) < 0:

−λ−1
ji kji < hi < ye,

or −λ−1
ji kji > hi > ye,

• for Re(λji) > 0:
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Figure 3.1: An example to network representation of state space of piecewise
linear systems.

−λ−1
ji kji < ye < hi,

or −λ−1
ji kji > ye > hi.

where ye ∈ Uj, Uj is the subspace (invariant set) of Qj, and if y(t− τ) ∈ Uj, then

dy
dt

= λjy(t) + kj is the governing differential equation.

If none of the transition conditions described above occur, then the system

will not leave Qj.

Assume each state Q (the corners of the hypercube) is represented as a

vertex and possible transition as an edge. Then the system can be represented

as a graph. An edge exists on this graph if one of the transition conditions is

satisfied. Any circuit of the graph represents a cycle. And a cycle is a possible

periodic solution of piecewise linear system.
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Let ye ∈ Uj and possible transitions, satisfying transition conditions, from

Uj are {(Uj, Uk1), (Uj, Uk2), ..., (Uj, Ukm)} (m ≤ n) and assume the reaching times

to corresponding thresholds be (Tk1, Tk2, ..., Tkm) then ye evolves into the state

Uki, where ki = arg min(Tk1, Tk2, ..., Tkm) (i < m).

3.2 Stability Analysis of Piecewise Linear Sys-

tems with Delay on Piecewise Constant Part

The stable states of dynamical systems are either fixed points or periodic

ones. From the graph of the described system in previous section we can derive

the following results:

• Any state Qj which has a convergent (all λij less than zero) focal point

within its invariant set has a fixed point stable state which is the focal point of

the state. The verification of this statement is trivial. Any locally linear system

with a convergent focal point will converge to the focal point in infinite time. If

the focal point is within the initial state, the system will not leave the state and

converges to focal point. The basin of attraction of such a fixed point stable state

include the invariant set of Qj and the set of points of other states which make a

transition into Qj.

• Any circuit on the graph of the system represents a cycle. Whether the

corresponding cycle has a periodic attractor (stable state) or not is not so trivial.

A widely used method for analyzing the stability of such system is selecting a

convex manifold in the state space and checking whether the consequent crossings
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of the trajectory with the manifold form a contraction map. In the following parts

of this section, we will continue the stability analysis applied on an example.

• Since a graph might have multiple number of circuits and a multiple number

of subspaces might have a convergent focal point within its invariant set this class

of systems can exhibit multistationary behavior.

The analysis is focused on a piecewise linear system on the plane with a

constant delay. In this study the example introduced previously is revisited with

a constant delay in state transition. The system includes a cyclic trajectory and

the stability of this trajectory is investigated.

The system used for stability analysis is as seen in Figure 3.2.

Exemplary systems can be described as:

dx
dt

= Ms(t)x(t) + ks(t),

si(t) = F (Q([x1(t− τ), x2(t− τ)])),

Qi(x(t)) = {
1 if xi(t) > hi

0 if xi(t) ≤ hi

for i = 1, 2,

M0,0 = λI =

 λ11 0

0 λ12

, M0,1 = λII =

 λ21 0

0 λ22

,

M1,0 = λIII =

 λ31 0

0 λ32

, M1,1 = λIV =

 λ41 0

0 λ42

 , λij ∈R,

k0,0 = kI =

 k11

k12

, k0,1 = kII =

 k21

k22

,
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Figure 3.2: Trajectory of the system.

k1,0 = kIII =

 k31

k32

, k1,1 = kIV =

 k41

k42

 , kij ∈R,

h1 is the threshold for x1 and h2 is the threshold for x2.

taking Re(λij) < 0 and assuming that the focal point of state I is in state II,

the focal point of state II is in state IV , the focal point of state IV is in state

III, and the focal point of state III is in state I.

57



If the system is in state I (QI):

dx
dt

= λIx(t)+kI is the governing differential equation for which it holds:

if xe = [xe
1 xe

2]
′ ∈ UI , where UI is a subspace (invariant set) of QI ,

the following transition condition is satisfied:

−λ−1
I1 kI1 > h1 > xe

1.

Therefore, there will be a state transition I → II

If the system is in state II (QII):

dx
dt

= λIIx(t) + kII ,is the governing differential equation for which,

if xe = [xe
1 xe

2]
′ ∈ UII where UII is a subspace (invariant set) of QII

the following transition condition is fulfilled:

−λ−1
II2kII2 < h2 < xe

2.

Therefore, there will be a state transition II → IV

If the system is in state IV (QIV ):

dx
dt

= λIV x(t) + kIV ,is the governing differential equation for which,

if xe = [xe
1 xe

2]
′ ∈ UIV where UIV is a subspace (invariant set) of QIV

the following transition condition is satisfied:

−λ−1
IV 1kIV 1 < h1 < xe

1.

For this reason, there will be a state transition IV → III.
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If the system is in state III (QIII), then

dx
dt

= λIIIx(t) + kIII , is the governing differential equation for which,

if xe = [xe
1 xe

2]
′ ∈ UIII where UIII is a subspace (invariant set) of QIII

the coming transition condition is satisfied:

−λ−1
III2kIII2 > h2 > xe

1.

Therefore, there will be a state transition from IV → I

For this reason, at the end, a cycle will be completed for such a system. This

section will be concluded by an exemplary system with values as seen below will

be considered.

dx
dt

= Ms(t)x(t) + ks(t),

si(t) = F (Q([x1(t− τ), x2(t− τ)])),

Qi(x(t)) = {
1 if xi(t) > hi

0 if xi(t) ≤ hi

for i = 1, 2,

M0,0 = M0,1 = M1,0 = M1,1 =

 −1 0

0 −1

,

k0,0 =

 0

2

, k0,1 =

 2

2

, k1,0 =

 0

0

, k1,1 =

 2

0

, and

h1 = h2 = 1 and τ = 0.5.

The aim is to construct a Poincare map on the threshold h2. The map will be

n−1 dimensional. The system is 2-dimensional so the map will be 1-dimensional
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with variable x1. Then, the fixed point of this map is found and the stability is

investigated as described previously in Section 2.1.3.

Here τ represents the constant delay in state transitions. In the Figure 3.2

xij are the points where state transition or threshold crossing occurs. In the

analysis work one complete cycle is investigated. Furthermore, T01 is the time

required to reach to x02 from x01, T02 is the time required to reach to x04 from

x03, T03 is the time required to reach to x06 from x05, T04 is the time required to

reach to x10(on h2) from x07. The time required to reach to x01 from x00, to x03

from x02, to x05 from x04, to x07 from x06 is τ .

Let us take a point x00 =

 x1
00

x2
00

 on h2 (the line [0 1] on h2 is taken as

a cross section) as seen in Figure 3.1 and try to construct the map in terms of

system defining constants and the initial point x00.

Firstly, let us define the times T01, T02, T03, T04 in terms of system parameters

and the initial point x00 =

 x1
00

x2
00

 .

We want to define T01, in terms of system parameters and initial point. In

the work on T01, consider the evolution of x1 as seen in the Figure 3.3.

Here, the equation

x1
02 = h1 = eT01λ11(x1

01 + λ−1
11 k11)− λ−1

11 k11

is obtained and from this equation,

eT01λ11 =
h1+λ−1

11 k11

x1
01+λ−1

11 k11
, and
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Figure 3.3: the evolution of x1 during T01.

T01 = ln(
h1+λ−1

11 k11

x1
01+λ−1

11 k11
)/λ11 (1)

are found. Additionally,

x1
01 = eτλ31(x1

00 + λ−1
31 k31)− λ−1

31 k31 (2)

By substituting (2) in (1) we obtain

T01 = ln((h1 + λ−1
11 k11)/(exp(rλ31)(x

1
00+

λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11))/λ11,
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where exp(a) means ea.

Then, we try to obtain a function consisting of system parameters and initial

point defining T02 so in the work on T02 consider the evolution of x2 component

as seen in the Figure 3.4.

Figure 3.4: the evolution of x2 during T02.

Here, the equation

x2
04 = h2 = eT02λ22(x2

03 + λ−1
22 k22)− λ−1

22 k22

is obtained, and from this equation we get
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eT02λ22 =
h2+λ−1

22 k22

x2
03+λ−1

22 k22
, and

T02 = ln(
h2+λ−1

22 k22

x2
03+λ−1

22 k22
)/λ22. (3)

Additionally, we find

x2
03 = eτλ12(x2

02 + λ−1
12 k12)− λ−1

12 k12 (4.1)

x2
02 = eT01λ12(x2

01 + λ−1
12 k12)− λ−1

12 k12 (4.2)

x2
01 = eτλ32(x2

00 + λ−1
32 k32)− λ−1

32 k32

x2
01 = eτλ32(h2 + λ−1

32 k32)− λ−1
32 k32. (4.3)

By substituting (4.3) in (4.2), (4.2) in (4.1), and finally (4.1) in (3), we obtain

T02 = ln((h2 + λ−1
22 k22)/(exp(rλ12)exp(log((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)−

λ−1
31 k31 + λ−1

11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)−

λ−1
12 k12 + λ−1

22 k22))/λ22.

Then, in the work on T03 consider the evolution of x1 component as seen in

the Figure 3.5.

Here, the equation

x1
06 = h1 = eT03λ41(x1

05 + λ−1
41 k41)− λ−1

41 k41

is obtained and from this equation, we get

eT03λ41 =
h1+λ−1

41 k41

x1
05+λ−1

41 k41
,
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Figure 3.5: the evolution of x1 during T03.

T03 = ln(
h1+λ−1

41 k41

x1
05+λ−1

41 k41
)/λ41. (5)

Additionally,

x1
05 = eτλ21(x1

04 + λ−1
21 k21)− λ−1

21 k21. (6.1)

x1
04 = eT02λ21(x1

03 + λ−1
21 k21)− λ−1

21 k21. (6.2)

x1
03 = eτλ11(x1

02 + λ−1
11 k11)− λ−1

11 k11

x1
03 = eτλ11(h1 + λ−1

11 k11)− λ−1
11 k11. (6.3)
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By substituting (6.3) in (6.2), (6.2) in (6.1), and finally (6.1) in (5), we receive

T03 = ln((h1 + λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)−

λ−1
31 k31 + λ−1

11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1+

λ−1
11 k11)− λ−1

11 k11 + λ−1
21 k21)− λ−1

21 k21+

λ−1
41 k41))/λ41

Finally, in the work on T04 consider the evolution of x2 component of x2
06,

x2
07,and x2

10 as seen in the Figure 3.6.

Here, the equation

x2
10 = h2 = eT04λ32(x2

07 + λ−1
32 k32)− λ−1

32 k32

is obtained, and from this equation we gets

eT04λ32 =
h2+λ−1

32 k32

x2
07+λ−1

32 k32
,

T04 = ln(
h2+λ−1

32 k32

x2
07+λ−1

32 k32
)/λ32. (7)

Additionally,

x2
07 = eτλ42(x2

06 + λ−1
42 k42)− λ−1

42 k42, (8.1)

x2
06 = eT03λ42(x2

05 + λ−1
42 k42)− λ−1

42 k42, (8.2)
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Figure 3.6: the evolution of x2 during T04.

x2
05 = eτλ22(x2

04 + λ−1
22 k22)− λ−1

22 k22

x2
05 = eτλ22(h2 + λ−1

22 k22)− λ−1
22 k22. (8.3)

By substituting (8.3) in (8.2), (8.2) in (8.1), and finally (8.1) in (7) we obtain

T04 = ln((h2 + λ−1
32 k32)/(exp(rλ42)exp(ln((h1+

λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1+
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λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)−

λ−1
31 k31+ λ−1

11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1+

λ−1
11 k11)− λ−1

11 k11 + λ−1
21 k21)− λ−1

21 k21+

λ−1
41 k41))/λ41λ42)(exp(rλ22)(h2+

λ−1
22 k22)− λ−1

22 k22 + λ−1
42 k42)− λ−1

42 k42+

λ−1
32 k32))/λ32

Now, consider the map by x1 - component. The starting point is x1
00 and

after the cycle I → II → IV → III as seen in Figure 3.2, the trajectory returns

to the point x1
11. This point will be represented by the map f such that

f(x1
00) = x1

10.

It is obvious that

x1
10 = eT04λ31(x1

07 + λ−1
31 k31)− λ−1

31 k31

x1
07 = eτλ41(x1

06 + λ−1
41 k31)− λ−1

41 k41

x1
07 = eτλ41(h1 + λ−1

41 k31)− λ−1
41 k41,

so

x1
10 = eT04λ31(eτλ41(h1 + λ−1

41 k41)− λ−1
41 k41 + λ−1

31 k31)− λ−1
31 k31,

and substituting T04 which is found in (7), we get
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x1
10 = f(x1

00) = exp(ln((h2+

λ−1
32 k32)/(exp(rλ42)exp(ln((h1+

λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)−

λ−1
31 k31 + λ−1

11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1 + λ−1

11 k11)−

λ−1
11 k11 + λ−1

21 k21)− λ−1
21 k21+

λ−1
41 k41))/λ41λ42)(exp(rλ22)(h2+

λ−1
22 k22)− λ−1

22 k22 + λ−1
42 k42)− λ−1

42 k42+

λ−1
32 k32))/λ32l31)(eτλ41(h1 + λ−1

41 k41)−

λ−1
41 k41 + λ−1

31 k31)− λ−1
31 k31.

Using numerical simulation the value 0.3379 is found to be the fixed point

of this map for numeric exemplary system given at the beginning of this section.

The derivative of the map f(x1
00) is found by the help of MatLab as

f ′(x1
00) =

df(x1
00)

dx1
00

= 1/(exp(rλ42)exp(ln((h1+

λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1 + λ−1

11 k11)/(exp(rλ31)(x
1
00+
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λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1 + λ−1

11 k11)−

λ−1
11 k11 + λ−1

21 k21)− λ−1
21 k21+

λ−1
41 k41))/λ41λ42)(exp(rλ22)(h2 + λ−1

22 k22)−

λ−1
22 k22 + λ−1

42 k42)− λ−1
42 k42+

λ−1
32 k32)exp(rλ42)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1 + λ−1

11 k11)/(exp(rλ31)(x
1
00+

λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1 + λ−1

11 k11)−

λ−1
11 k11 + λ−1

21 k21)− λ−1
21 k21+

λ−1
41 k41)exp(rλ21)/(exp(rλ12)exp(ln((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)− λ−1
31 k31+

λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2 + λ−1

32 k32)− λ−1
32 k32+

λ−1
12 k12)− λ−1

12 k12 + λ−1
22 k22)exp(rλ12)/(exp(rλ31)(x

1
00+

λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11)exp(rλ31)/λ11λ12exp(ln((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)− λ−1
31 k31+
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λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2 + λ−1

32 k32)− λ−1
32 k32+

λ−1
12 k12)/λ22λ21exp(ln((h2 + λ−1

22 k22)/(exp(rλ12)exp(ln((h1+

λ−1
11 k11)/(exp(rλ31)(x

1
00 + λ−1

31 k31)− λ−1
31 k31+

λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2 + λ−1

32 k32)− λ−1
32 k32+

λ−1
12 k12)− λ−1

12 k12 + λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1+

λ−1
11 k11)− λ−1

11 k11 + λ−1
21 k21)/λ41λ42exp(ln((h1+

λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1 + λ−1

11 k11)/(exp(rλ31)(x
1
00+

λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+

λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1 + λ−1

11 k11)− λ−1
11 k11+

λ−1
21 k21)− λ−1

21 k21 + λ−1
41 k41))/λ41λ42)(exp(rλ22)(h2+

λ−1
22 k22)− λ−1

22 k22 + λ−1
42 k42)/λ32λ31exp(ln((h2+

λ−1
32 k32)/(exp(rλ42)exp(ln((h1+

λ−1
41 k41)/(exp(rλ21)exp(ln((h2+

λ−1
22 k22)/(exp(rλ12)exp(ln((h1 + λ−1

11 k11)/(exp(rλ31)(x
1
00+

λ−1
31 k31)− λ−1

31 k31 + λ−1
11 k11))/λ11λ12)(exp(rλ32)(h2+

λ−1
32 k32)− λ−1

32 k32 + λ−1
12 k12)− λ−1

12 k12+
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λ−1
22 k22))/λ22λ21)(exp(rλ11)(h1 + λ−1

11 k11)− λ−1
11 k11+

λ−1
21 k21)− λ−1

21 k21 + λ−1
41 k41))/λ41λ42)(exp(rλ22)(h2+

λ−1
22 k22)− λ−1

22 k22 + λ−1
42 k42)− λ−1

42 k42+

λ−1
32 k32))/λ32λ31)(exp(rλ41)(h1 + λ−1

41 k41)− λ−1
41 k41 + λ−1

31 k31).

For numeric exemplary system given on page 58, |f ′(x)| < 1 where x ∈

[0, 1], is found according to numerical simulations. Here, the interval [0, 1] is

considered because the function f(x) will evolve in this interval for the given

numeric exemplary system. Therefore, f(x) is a contraction on this interval and

by contraction principle f(x) has a unique fixed point on this interval. This fixed

point is x = 0.3379 as found. |f′(0.3379)| = 0.0001699 and this point is stable

according to Theorem 2.3.

For n-dimensional systems the stability analysis can be done by obtaining

an n-1 dimensional map on hyperplane threshold and investigating the stability

of fixed point of this map.

The sample system has an stable periodic attractor. The stability analysis

on periodic attractors of piecewise linear systems with delay can be done in this

way, and stable periodic attractors can be obtained.
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chapter 4

FISSION YEAST CELL CYCLE

MODEL

In this chapter, we present a piecewise linear systems with delay on piece-

wise constant part for modelling the cell cycle regulation of fission yeast. In first

section, background for fission yeast cell cycle is presented. In the second sec-

tion, the well-known ODE model and our piecewise linear model with delay are

included. Finally, a brief discussion about the advantages of our model is given.

4.1 Background for Fission Yeast Cell Cycle

The regulatory mechanism that order and coordinate the progress of the

eukaryotic cell cycle have been intensively studied in recent years. Yeast have

proved invaluable in unravelling the major control elements of the eukaryotic cell

cycle and research with two species, in particular, has significantly advanced the

understanding of cell cycle regulation: the budding yeast, Saccharomyces cere-

visiae and the fission yeast, Schizosaccharomyces pombe. Such an understanding

is important in the field of human cancer, which is fundamentally a disease of the
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cell cycle [71].

4.1.1 Cell Cycle of Fission Yeast

Cells reproduce and duplicate their contents and then divide in two. This

cell-division cycle is the fundamental means by which all living things are prop-

agated. In unicellular species, such as bacteria and yeast, each cell division pro-

duces an additional organism. In multicellular species, many rounds of cell di-

vision are required to make a new individual, and cell division is needed in the

adult body, too, to replace cells that are lost by wear and tear or by programmed

cell death [3].

The details of the cell cycle may vary, but certain requirement are univer-

sal. First and foremost, to produce a pair of genetically identical daughter cells,

the DNA must be faithfully replicate, and the replicated chromosomes must be

segregated into two separate cells as seen in Figure 4.1. Additionally, recent

experiments have provided a new and simpler perspective, revealing a cell-cycle

control system that coordinates the cycle as a whole. The proteins of this control

system first appeared over a billion years ago and have been so well conserved in

evolution that many of them function perfectly when transferred from a human

cell to a yeast cell [3].

Genetic studies of the cell cycle in the yeasts Saccharomyces cerevisiae and

Schizosaccharomyces pombe illuminated important principles underlying the logic

of cell cycle control and identified many of its key players. Screens were performed

for conditional temperature-sensitive mutations, causing cells to arrest quickly
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Figure 4.1: Summary of major events in the eukaryotic cell cycle [38].

with uniform morphologies, indicative of defects in executing individual cell cycle

steps. Analysis of a large collection of such cdc (cell division cycle) mutants from

S. cerevisiae placed them into series of dependent and independent pathways [13].

The most important components of the eukaryotic cell cycle engine are cyclin-

dependent protein kinases, heterodimers consisting of a catalytic subunit (a Cdk)

and a regulatory subunit (a cyclin). Cdks, which are active only in complex with a

cyclin partner, exert their action by phosphorylating other proteins [47, 50]. Their
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protein-kinase activity is required to start both DNA replication and mitosis.

Lower eukaryots use only one essential Cdk subunit (generally called Cdk1), while

higher eukaryotes use many. Cdk1 is often called Cdc2, in recognition of the

gene (cdc2) that encodes this protein in fission yeast [50, 51]. In fission yeast,

complexes between Cdk1 and B-type cyclins play the major roles in cell cycle

regulation [25, 50]. Cdc13 is the only essential B-type cyclin [25, 50]. Cdc2/Cdc13

activity is called M-phase promoting factor (MPF).

Figure 4.2 illustrates the functions of four proteins that regulate the protein

kinase activity of the fission yeast CDK. First is Cdc13, the mitotic cyclin of

fission yeast, which associates with the CDK to form MPF with extremely low

activity. Second is the Wee1 protein-tyrosine kinase, which phosphorylates an

inhibitory tyrosine residue (Y15) in the CDK subunit. Third is another kinase,

designated CDK-activating kinase (CAK), which phosphorylates an activating

threonine residue (T161). When both residues are phosphorylated, MPF is inac-

tive. Finally, the Cdc25 phosphates removes the phosphate from Y15, yielding

highly active MPF [38].

The destruction of mitotic CDK activity at anaphase allows cells to divide

and enter G1 phase of the next cell cycle [10, 69]. Exit from mitosis is controlled

by the anaphase promoting complex (APC), which initiates the degradation of

cohesions and mitotic cyclins [69, 76]. Hence, to understand the molecular control

of cell reproduction is to understand the regulation of CDK and APC activities

[66, 69, 76].

MPF is controlled by antagonistic interactions with its enemies [49, 50]. The

enemies have negative effects on MPF, but MPF can down-regulate all of its
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Figure 4.2: Regulation of the kinase activity of fission yeast mitosis-promoting
factor (MPF) [38].

enemies [50] as visualized in Figure 4.3 [69].

Two of these enemies these enemies are active in G1 phase, while a different

group regulates the G2/M transition [50].

The first G1 enemy, Ste9 (also called Srw1), targets Cdc13 to the APC core

and promotes its degradation in G1 [50, 74]. On the other hand, phosphorylation

of Ste9 by MPF inhibits its association with the APC core, rendering it inactive

[50, 75].

The other G1 enemy of MPF is a stoichiometric inhibitor, called Rum1 [46,

50], which can bind to Cdc2/Cdc13 complexes and inhibit their activity [12, 50].

However, phosphorylation of Rum1 by MPF promotes its ubiquitination (by a
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Figure 4.3: The cell cycle engine in fission yeast [69].

different complex than APC) and repair degradiation [8, 50]. Hence, there is

antagonism between MPF and Rum1, as well as between MPF and Ste9 [50].

Because of these antagonistic relationships, MPF and its G1 enemies con

not coexist. Either the enemies win and the cell is in G1 phase (with low MPF

activity), or MPF wins and the cell is in S/G2/M phase of the cell [49, 50]. The

fight between MPF and its enemies is modulated by helper molecules, which shift

the balance in one direction or the other [50].
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The helper molecule for the start transition (G1→S) is a ”starter” kinase, a

group of Cdk/cyclin complexes (Cdc2 with Cig1, Cig2, and Puc1 cyclins), which

help MPF to get the upper hand by phosphorylating Rum1 [43, 50] and Ste9. The

starter kinases can help MPF because they are less sensitive to Rum1 inhibition

and Ste9-dependent ubiquitination. The helper molecule for the finish transition

(M→G1) is the Slp1/APC complex, which promotes the degradation of Cdc13

and activates Ste9 (possibly by activating the phosphates that activates Ste9).

Slp1 can help the enemies because it is not inactivated by MPF phosphorylation,

as is Ste9. In fact, Slp1 seems to be activated in an MPF-dependent manner.

The duration of G2 phase is regulated by a different mechanism, namely

enzymatic inhibition of MPF activity. The active site of Cdc2 contains a phos-

phorylatable tyrosine residue, and its tyrosine-phosphorylated form is inactive

[50, 51]. Two tyrosine kinases can inactivate Cdc2 in this way, Wee1 and Mik1

[36, 50, 61]. In returns, MPF can also phosphorylate and inactivate them [4, 50].

So there is another case of mutual antagonism and alternative steady states: an

S/G2 state (plenty of tyrosine-phosphorylated Cdc2/Cdc13, with enough activity

to support DNA synthesis but not mitosis) and an M state (inactive Wee1 and

Mik1, lots of highly active Cdc2/Cdc13 cell in mitosis).

The G2/M transition is accelerated by a direct positive feedback loop. The

inhibitory phosphate group of Cdc2 is removed by a specific phosphates, called

Cdc25 [45, 50]. Cdc25 is also phosphorylated by MPF, but the phosphorylated

form of Cdc25 is more active [45, 50]. In this case, MPF helps its friend, Cdc25

[50]. The activation - inactivation relationship between MPF, Wee1 and Cdc25

is visualized as discussed before in Figure 4.2.
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The proteins that modulate Cdc2 activity are themselves modulated by

Cdc2:Cdc13, through a set of feedback loops [68, 69].

- Rum1 inhibits Cdc2:Cdc13, but Cdc2:Cdc13 phosphorylates Rum1, thereby

targeting Rum1 for degradation.

- Ste9:APC labels Cdc13 for degradation, but Cdc2:Cdc13 can phosphorylate

Ste9, thereby downregulating its activity and targeting it for degradation.

- Wee1 phosphorylates and inactivates Cdc2:Cdc13, but, at the same time, Cdc2:

Cdc13 is trying to phosphorylate and inactivate Wee1.

- Cdc25 takes the inactivating phosphate group off PCdc2: Cdc13, and Cdc2:

Cdc13 returns the favor by phosphorylating and thereby activating Cdc25.

- Slp1:APC, which also labels Cdc13 for degradation, is itself activated by Cdc2:

Cdc13 by an indirect pathway.

The first three feedback loops are examples of mutual antagonism. Under

appropriate conditions, the antagonists cannot coexist, i.e., the feedback loop

works like a toggle switch. Either Cdc2:Cdc13 has the upper hand and its antag-

onist (Rum1 or Ste9 or Wee1) is suppressed, or vice versa. The fourth interaction

is a positive feedback loop: Cdc2 and Cdc25 activate each other in a mutually

amplifying fashion. The last interaction is a time-delayed negative feedback loop,

which, under appropriate conditions, can generate oscillations (as Cdc2:Cdc13

concentration rises, it turns on Slp1, which targets Cdc13 for degradation, caus-

ing Cdc2:Cdc13 concentration to fall, and Slp1 to turn off).

The state of these feedback loops responds to cell size. Small cells tend to
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be in G1 phase (with little Cdc2 activity); medium-sized cells tend to be in S–G2

phase; large cells tend to be in M phase, with Cdc25 active and Wee1 inactive

[60, 62, 69]. It is this responsiveness of the Cdc2 control system to cell size that

coordinates the chromosome cycle to cell growth. To model these effects, John J.

Tyson, Attila Csikasz-Nagy, and Bela Novak assumed that Cdc13 is synthesized at

a rate proportional to cell mass (i.e., number of ribosomes), and then it combines

with Cdc2 and moves into the nucleus, where its effective nuclear concentration

increases steadily as the cell grows. Hence, an important determinant of the state

of the Cdc2 control system is the mass/nucleus ratio [68, 69].

4.2 Modeling Cell Cycle Regulation of Fission

Yeast

4.2.1 ODE Model

The molecular mechanism described in previous section can be summarized

in a schematic wiring diagram Figure 4.4 according to Olivia Eriksson, Yishao

Zhou and Jesper Tagner [50].

To keep the model simple, a number of dynamic variables are assumed to be

in pseudosteady state: (1) the TF for synthesis of the starter kinase (SK), (2) the

trimeric complexes of Rum1 and Cdc13/Cdc2, and (3) the tyrosine modifying

enzymes (Wee1 and Cdc25). It is assumed that Rum1 binds to both types of

Cdc2/Cdc13 dimers: unphosphorylated (MPF) and phosphorylated (preMPF)

(see Figure 4.5).
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Figure 4.4: The wiring diagram of the fission-yeast cell-cycle engine. In the
middle of the diagram is Cdc2/Cdc13 ˜MPF!, which is regulated by proteolysis
of the Cdc13 component, phosphorylation of Cdc2 subunit, and stoichiometric
inhibition of the complex. These processes are arranged according to the cell
cycle transitions in which they are involved [50].

The cell cycle mechanism of fission yeast is converted to algebraic and dif-

ferential equations [50]. These algebraic and differential equations are presented

in Table 4.1.

The parameter values of Table 4.1 for a wild type cell is as presented in Table

4.2.

The cell mass increases exponentially from one to two between birth and

cell division. The cell mass is divided by two at the end of mitosis, when MPF

decreases through 0.01, although daughter cells do not physically separate from
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Table 4.1: The differential and algebraic equations describing the cell cycle mech-
anism of fission yeast [50].

d[Cdc13T ]
dt

= k1M − (k
′
2 + k

′′
2 [Ste9] + k

′′′
2 [Slp1])[Cdc13T ],

d[preMPF ]
dt

= kwee([Cdc13T ]− [preMPF ])− k25[preMPF ]− (k
′
2+k

′′
2 [Ste9]+

k
′′′
2 [Slp1])[preMPF ],

d[Ste9]
dt

= (k
′
3 + k

′′
3 [Slp1]) 1−[Ste9]

J3+1−[Ste9]
− (k

′
4[SK]+k4[MPF ]) [Ste9]

J4+[Ste9]
,

d[Slp1T ]
dt

= k
′
5 + k

′′
5

[MPF ]4

J4
5+[MPF ]4

− k6[Slp1T ],

d[Slp1]
dt

= k7[IEP ] [Slp1T ]−[Slp1]
J7+[Slp1T ]−[Slp1]

−k8
[Slp1]

J8+[Slp1]
− k6[Slp1],

d[IEP ]
dt

= k9[MPF ] 1−[IEP ]
J9+1−[IEP ]

− k10
[IEP ]

J10+[IEP ]
,

d[Rum1T ]
dt

= k11 − (k12 + k
′
12[SK] + k

′′
12[MPF ])[Rum1T ],

d[SK]
dt

= k13[TF ]− k14[SK],

dM
dt

= µM,

[Trimer] = 2[Cdc13T ][Rum1T ]

Σ+
√

Σ2−4[Cdc13T ][Rum1T ]
,

[MPF ] = ([Cdc13T ]−[preMPF ])([Cdc13T ]−[Trimer])
[Cdc13T ]

,

[TF ] = G(k15M, k
′
16 + k

′′
16[MPF ], J15, J16),

where
kwee = k

′
wee + (k

′′
wee − k

′
wee)G(Vawee, Viwee[MPF ], Jawee, Jiwee),

k25 = k
′
25 + (k

′′
25 − k

′
25)G(Va25[MPF ], Vi25, Ja25, Ji25),

Σ = [Cdc13T ] + [Rum1T ] + Kdiss,
G(a, b, c, d) = 2ad

b−a+bc+ad+
√

(b−a+bc+ad)2−4ad(b−a)
.
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Table 4.2: Parameter values for wild-type cells [50].

Cdc13 synthesis and degradation:
k1 = 0.03, k

′
2 = 0.03, k

′′
2 = 1, k

′′′
2 = 0.1.

Ste9 activation and inactivation:
k
′
3 = 1, k

′′
3 = 10, J3 = 0.01, k

′
4 = 2, k4 = 35, J4 = 0.01.

Slp1 synthesis, degradation, activation and inactivation:
k
′
5 = 0.005, k

′′
5 = 0.3, k6 = 0.1, J5 = 0.3, k7 = 1, k8 = 0.25, J7 = 0.001,

J8 = 0.001.
IE activation and inactivation:

k9 = 0.1, k10 = 0.04, J9 = 0.01, J10 = 0.01.
Rum1 synthesis, degradation and inhibition:

k11 = 0.1, k12 = 0.01, k
′
12 = 1, k

′ ′
12 = 3, Kdiss0 = .001.

SK synthesis and degradation:
k13 = 0.1, k14 = 0.1.

TF activation and inactivation:
k15 = 1.5, k

′
16 = 1, k

′′
16 = 2, J15 = 0.01, J16 = 0.01.

Wee1 activation and inactivation:
Vawee = 0.25, Viwee = 1, Jawee = 0.01, Jiwee = 0.01.

Cdc25 activation and inactivation:
Va25 = 1, Vi25 = 0.25, Ja25 = 0.01, Ji25 = 0.01.

Rate of tyr-phosphorylation and dephosphorylation:
k
′
wee = 0.15, k

′′
wee = 1.3, k

′
25 = 0.05, k

′′
25 = 5.

Growth rate:
µ = 0.005.
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Figure 4.5: Rum1 binding to Cdc2/Cdc13 dimers. It is assumed that Rum1
binds to both active (MPF) and tyrosine-phosphorylated Cdc2/Cdc13 dimers. If
association and dissociation of trimeric species is rapid, then (Eq.10 in orijinal)
describes the equilibrium concentration of the total pool of trimers in terms of the
total pools of Cdc13 and Rum1. The sum of the dimeric and trimeric tyrosine-
phosphorylated forms is called preMPF [50].

one another until 15–20 minutes after exit from mitosis.

The MPF level fluctuates during the cycle among three different levels. Cells

enter mitosis with high MPF activity. After a time delay, Slp1/APC is activated

by the high MPF activity, initiating the degradation of Cdc13. As a consequence,

MPF activity drops, Ste9/APC activates, and Cdc13 degradation accelerates.

Loss of MPF relieves the inhibition on the TF responsible for the synthesis of

the cyclin subunit of the SK. Because newborn wild-type cells are already large

enough to pass Start, they activate the TF for SK after a very short G1 phase.

Consequently, the level of SK increases abruptly and the G1 enemies of MPF
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(Ste9/APC and Rum1) cannot stay. Actually, G1 is so short that Rum1 does

not have time to come up, which is consistent with experimental observations

[12, 50]. As soon as Ste9 gets inactivated, the Cdc13 level rises and the cell

passes the G1/S transition. However, SK does not inactivate the third enemy,

Wee1, which phosphorylates Cdc2/Cdc13. The phosphorylated form has reduced

protein-kinase activity, which seems to be enough to initiate S phase but not

mitosis. When the cell reaches a critical size, the positive feedbacks for G2/M

transition turn on. Abrupt activation of MPF by Cdc25 drives the cell into

mitosis [50].

To achieve the coordination, the cell-cycle control system has specific size

checkpoints where the control system halts and waits until the cell has reached a

critical size [3].

The cell cycle control of fission yeast is accomplished by the change of concen-

tration of some molecules as discussed. The concentration and activation of these

molecules will change in different ways as the cell gets bigger. If, for example,

Wee1 protein were to become diluted relative to Cdc25 protein as a result of cell

growth, growth would swing the regulatory balance in favour of MPF activation,

and growth beyond a critical size would trigger an autocatalytic MPF explosion.

[3, 17, 21, 23, 35, 48]. The differential equations seen in Table I are numerically

simulated. The code of this work is presented in Appendix. In Figures 4.6, 4.7,

4.8, 4.9, and 4.10 figures obtained by numerical simulation of this ODE model

can be seen.
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Figure 4.6: Numerical simulation of M, Slp1, and MPF in ODE model.

Figure 4.7: Numerical simulation of M, Ste9, and Wee1 (kwee) in ODE model.
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Figure 4.8: Numerical simulation of M, Cdc25 (k25), and SK in ODE model.

Figure 4.9: Numerical simulation of M, Cdc13T , and preMPF in ODE model.
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Figure 4.10: Numerical simulation of M and Rum1T in ODE model.

4.2.2 Piecewise Linear Model with Delay

In this work, a piecewise linear system with delay on piecewise constant

part model is used to model the fission yeast cell cycle control. The evolution

of concentrations of molecules governing cell cycle of wild-type fission yeast is

approximated by piecewise linear system with delay modules. Each module ap-

proximates the change of concentration of a molecule. The external input of each

module is coming from an other module or modules. The state transitions occurs

when external variables exceeds a threshold. The piecewise linear model is ob-

tained according to the assumption: the subsystems can be approximated by an

action (”when x goes down y goes up”, etc.), and possibly a time delay for this

action as Olivia Eriksson, Yishao Zhuo and Jesper Tegner assumed in their model

[20]. Delays in the system can be approximated by delays in state transitions.
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For illustration, if A, B, and C are variables and the evolution of variable A is

dependent on the states of B and C a module for A could be constructed as

d[A]
dt

= µA
s(t)[A] + 0[B] + 0[C] + kA

s(t)

s(t) = F (QB([B](t)), QC([C](t)))

QB([B](t)) = i if hB
i < [B](t) ≤ hB

i+1

QC([C](t)) = i if hC
i < [B](t) ≤ hC

i+1 for i = 1, 2, ..., n

If variable B has n discrete states and variable C has n discrete states then

module A will have n2 states. In general, number of states = 2(n2)3(n3)...m(nm)

where ni is the number of variables having i states (i = 2, 3, ...,m). In this

work µs(t) for all modules is take to be −1 at each state. Therefore, only ks(t) is

changing. By using such a modular system the cell cycle of fission yeast could be

approximated. The values k and h are obtained according to numerical simula-

tions of ODE model presented.

Firstly, cell mass (M) is approximated. In this approximation an external

variable named [EC] is included, denoting Environmental Conditions. A cell’s

growth rate is a mercy of the environment varying according to the supply of

nutrients and other factors [3, 35]. Therefore, a cell’s growth rate is proportional

to its environment. This, information is used in this approximation and [EC] is

included as an external input to the system M . In this work, [EC] is assumed to

be a real variable between 0 and 2. Additionally, a threshold for [EC] is assumed

to be 1. If [EC] is below its threshold 1, the environmental conditions are assumed

to be in scarcity, and if [EC] is above its threshold 1, the environmental conditions

are assumed to be well enough for cell to grow with a normal growth rate. If
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more thresholds are included for [EC] the approximation will be more realistic.

However, in this work only one threshold is included to keep simplicity. The

graph of the evolution of M in time is presented in Figure 4.12. For each discrete

state q1 and q2 parameters µ1,µ2,n1, and n2 are used as seen in Figure 4.11. The

parameters n1 and n2 are taken to be zero in this model. It means, the variable

[EC] does not have an effect on the evolution of the cell mass but this variable is

used to determine the state of the system. According to state of the variable [EC]

the state of the system is determined. If [EC] ≥ 1, the system is in the state q1

and if [EC] < 1, the system is in the state q2. The parameter µ1 is the multiplier

of state q1 in which the evolution is in a nutrient rich environment so µ1 = 0.005

and the parameter µ2 is the multiplier of state q2 in which the evolution is in a

nutrient scarce environment so µ2 = 0.0025. These values are assumed according

to the work of Bela Novak, Zsuzsa Pataki, Andrea Ciliberto, and John J. Tyson

on wild-type fission yeast cell division cycle model [50]. In the state q2 the cell’s

growth rate decreases due to environmental conditions. Additionally, [M ] ≥ 1 is

necessary for beginning of the cell division. The system could be approximated

with:

Q = {q1, q2} and [M] = R, [EC] ∈ [0,2];

Init = Q× {[M ] ∈ [M] : [M] ≥ 1} × {[EC] ∈ [EC] : ([EC] ≥ 0)

∧([EC] ≤ 2)};

f(q1, [M ]) = (µ1[M ] + n1[EC]) and

f(q2, [M ]) = (µ2[M ] + n2[EC]), µ1, n1, µ2, n2 ≥ 0;

I(q1) = {[M ] ∈ [M],[EC] ∈ [EC] : ([M] < 2) ∧ ([EC] ≥ 1)} and
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I(q2) = {[M ] ∈ [M],[EC] ∈ [EC] : ([M] < 2) ∧ ([EC] < 1)};

E = {(q1, q2), (q2, q1), (q1, q1), (q2, q2)}, G(q1, q1) = {[M ] ∈ [M] : [M] ≥ 2},

G(q2, q2) = {[M ] ∈ [M] : [M] ≥ 2}, G(q1, q2) = {[EC] ∈ [EC] : [EC] ≥ 1},

G(q2, q1) = {[EC] ∈ [EC] : [EC] < 1}

R((q1, q1), [M ]) = R((q2, q2), [M ]) = {1} and

R((q1, q2), [M ]) = R((q2, q1), [M ]) = {[M ]} .

Figure 4.11: Network representaton of M.

The model M is numerically simulated and the graph obtained by this simu-
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lation is as seen in Figure 4.12. As seen in Figure 4.12, after the external variable

[EC] drops to 0.5 at t = 200, the cell’s growt rate decreases.

Figure 4.12: The M-model simulation.

The [Cdc25] depends on the state of [MPF ]. Here, [Cdc25] is represented

as k25 in the ODE model. According to numerical simulations, the dynamics of

[k25] could be approximated as

d[k25]
dt

= µk25
s(t)[k25] + 0[MPF ] + kk25

s(t),

s(t) = {
s1 if [MPF ] < 0.25

s2 if [MPF ] ≥ 0.25
, and
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kk25
s1

= 0, kk25
s2

= 5, and µk25
s1,s2

= −1.

Figure 4.13 is the simulation of the k25-module.

Figure 4.13: Numerical simulation of k25-module.

Additionally, [Slp1] also depends only on the state of [MPF ]. However, there

is a delay in this module as mentioned before. The delay is found by numerical

simulations. The Figure 4.14 represents the step response of [Slp1] to [MPF ]. It

is obvious in this figure [Slp1] changes depending on [MPF ] after a time delay.

According to the Figure 4.14. the delay approximated to be 15. According

to numerical simulations the dynamics of [Slp1] could be approximated as

d[Slp1]
dt

= µSlp1
s(t) [Slp1] + 0[MPF ] + kSlp1

s(t) ,

s(t) = {
s1 if [MPF ](t− 15) < 0.25

s2 if [MPF ](t− 15) ≥ 0.25
, and

kSlp1
s1

= 0, kSlp1
s2

= 2.5, and µSlp1
s1,s2

= −1.
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Figure 4.14: The step response of the [Slp1] to [MPF ].

Figure 4.15 is obtained after the numerical simulation of Slp1-module.

[Wee1] which is represented by kwee in ODE module only depends on [MPF ].

Therefore, it can be approximated as

d[kwee]
dt

= µkwee
s(t) [kwee] + 0[MPF ] + kkwee

s(t) ,

s(t) = {
s1 if [MPF ] < 0.25

s2 if [MPF ] ≥ 0.25
, and

kkwee
s1

= 1.3, kkwee
s2

= 0.2, and µkwee
s1,s2

= −1.

Figure 4.16 is obtained after the numerical simulation of kwee-module.

The variable [SK] depends on the state of [M ] and [MPF ]. An approx-

imation to evolution of this variable can be constructed as
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Figure 4.15: Numerical simulation of Slp1-module.

d[SK]
dt

= µSK
s(t)[SK] + 0[MPF ] + 0[M ] + kSK

s(t),

s(t) = {

s1 if [MPF ] < 0.25 ∧ [M ] < 1.1

s2 if [MPF ] < 0.25 ∧ [M ] ≥ 1.1

s3 if [MPF ] ≥ 0.25 ∧ [M ] < 1.1

s4 if [MPF ] ≥ 0.25 ∧ [M ] ≥ 1.1

, and

kSK
s1

= 0.4, kSK
s2

= 0.4, kSK
s3

= 1.1, kSK
s3

= 0.4, and µSK
s1,s2,s3,s4

= −1.

Figure 4.17 is the numerical simulation of SK-module.

Here, [Ste9] depends on [Slp1], [SK], and [MPF ]. As mentioned before,

[Slp1] has positive effect on [Ste9] while [SK] and [MPF ] has negative effect on

[Ste9]. The dynamics of [Ste9] can be described as

d[Ste9]
dt

= µSte9
s(t) [Ste9] + 0[MPF ] + 0[SK] + 0[Slp1] + kSte9

s(t) ,
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Figure 4.16: Numerical simulation of kwee-module.

s(t) = {

s1 if [Slp1] ≥ 0.1 ∧ [MPF ] ≥ 0.3 ∧ [SK] ≥ 0.7

s2 if [Slp1] ≥ 0.1 ∧ [MPF ] ≥ 0.3 ∧ [SK] < 0.7

s3 if [Slp1] ≥ 0.1 ∧ [MPF ] < 0.3 ∧ [SK] ≥ 0.7

s4 if [Slp1] ≥ 0.1 ∧ [MPF ] < 0.3 ∧ [SK] < 0.7

s5 if [Slp1] < 0.1 ∧ [MPF ] ≥ 0.3 ∧ [SK] ≥ 0.7

s6 if [Slp1] < 0.1 ∧ [MPF ] ≥ 0.3 ∧ [SK] < 0.7

s7 if [Slp1] < 0.1 ∧ [MPF ] < 0.3 ∧ [SK] ≥ 0.7

s8 if [Slp1] < 0.1 ∧ [MPF ] < 0.3 ∧ [SK] < 0.7

, and

kSte9
s1

= 0, kSte9
s2

= 1, kSte9
s3

= 1, kSte9
s4

= 1, kSte9
s5

= 0, kSte9
s6

= 1,

kSte9
s7

= 0, kSte9
s8

= 1, and µSte9
s1,s2,s3,s4,s5,s6,s7,s8

= −1.

Figure 4.18 is obtained after the numerical simulation of Ste9-module.

The variable [Rum1T ] depends on [SK] and [MPF ]. Evolution of [Rum1T ]
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Figure 4.17: Numerical simulation of SK-module.

can be approximated as

d[Rum1T ]
dt

= µRum1T

s(t) [Rum1T ] + 0[MPF ] + 0[SK] + kRum1T

s(t) ,

s(t) = {

s1 if [MPF ] ≥ 0.3 ∧ [SK] ≥ 0.8

s2 if [MPF ] ≥ 0.3 ∧ [SK] < 0.8

s3 if [MPF ] < 0.3 ∧ [SK] ≥ 0.8

s4 if [MPF ] < 0.3 ∧ [SK] < 0.8

,

kRum1T
s1

= 0.02, kRum1T
s2

= 0.02, kRum1T
s3

= 0.11, kRum1T
s4

= 0.3, and

µRum1T
s1,s2,s3,s4

= −1.

Figure 4.19 is the numerical simulation of Rum1T -module.

The variable [Cdc13T ] depends on [M ], [Ste9], and [Slp1]. The evolution

can be approximated as
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Figure 4.18: Numerical simulation of Ste9-module.

d[Cdc13T ]
dt

= µCdc13T

s(t) [Cdc13T ] + 0[M ] + 0[Ste9] + 0[Slp1] + kCdc13T

s(t) ,

s(t) = {

s1 if [M ] ≥ 1.75 ∧ [Ste9] ≥ 0.5 ∧ [Slp1] ≥ 1

s2 if [M ] ≥ 1.75 ∧ [Ste9] ≥ 0.5 ∧ [Slp1] < 1

s3 if [M ] ≥ 1.75 ∧ [Ste9] < 0.5 ∧ [Slp1] ≥ 1

s4 if [M ] ≥ 1.75 ∧ [Ste9] < 0.5 ∧ [Slp1] < 1

s5 if [M ] < 1.75 ∧ [Ste9] ≥ 0.5 ∧ [Slp1] ≥ 1

s6 if [M ] < 1.75 ∧ [Ste9] ≥ 0.5 ∧ [Slp1] < 1

s7 if [M ] < 1.75 ∧ [Ste9] < 0.5 ∧ [Slp1] ≥ 1

s8 if [M ] < 1.75 ∧ [Ste9] < 0.5 ∧ [Slp1] < 1

,

kCdc13T
s1

= 0.1, kCdc13T
s2

= 0.3, kCdc13T
s3

= 0.6, kCdc13T
s4

= 0.5,

kCdc13T
s5

= 1.5, kCdc13T
s6

= 1.5, kCdc13T
s7

= 1.5, kCdc13T
s8

= 1.5, and

µCdc13T
s1,s2,s3,s4,s5,s6,s7,s8

= −1.
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Figure 4.19: Numerical simulation of Rum1T-module.

Figure 4.20 is the numerical simulation of Cdc13T -module.

The variable [preMPF ] depends on [Cdc13T ], [kwee], [k25], [Ste9], and

[Slp1]. The evolution can be approximated as

d[preMPF ]
dt

= µpreMPF
s(t) [preMPF ]+0[Cdc13T ]+0[kwee]+0[k25]+0[Ste9]+

0[Slp1] + kpreMPF
s(t)
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Figure 4.20: Numerical simulation of Cdc13T-module.

s(t) = {

s1 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s2 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s3 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s4 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s5 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s6 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s7 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s8 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s9 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s10 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s11 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s12 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s13 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s14 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s15 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s16 if [Cdc13T ] ≥ 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s17 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s18 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s19 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s20 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s21 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s22 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s23 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s24 if [Cdc13T ] < 0.5 ∧ [Ste9] ≥ 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s25 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s26 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s27 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s28 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] ≥ 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4

s29 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] ≥ 4

s30 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] ≥ 0.8 ∧ [k25] < 4

s31 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] ≥ 4

s32 if [Cdc13T ] < 0.5 ∧ [Ste9] < 0.5 ∧ [kwee] < 1 ∧ [Slp1] < 0.8 ∧ [k25] < 4
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Additionally, we have

kpreMPF
s1

= 1.5, kpreMPF
s2

= 1.4, kpreMPF
s3

= 1.5, kpreMPF
s4

= 1.4,

kpreMPF
s5

= 1.5, kpreMPF
s6

= 1.4, kpreMPF
s7

= 1.5, kpreMPF
s8

= 1.4,

kpreMPF
s9

= 1.5, kpreMPF
s10

= 1.4, kpreMPF
s11

= 1.5, kpreMPF
s12

= 1.4,

kpreMPF
s13

= 1.5, kpreMPF
s14

= 1.4, kpreMPF
s15

= 1.5, kpreMPF
s16

= 1.4,

kpreMPF
s17

= 0.3, kpreMPF
s18

= 0.3, kpreMPF
s19

= 0.3, kpreMPF
s20

= 0.3,

kpreMPF
s21

= 0.5, kpreMPF
s22

= 0.5, kpreMPF
s23

= 0.6, kpreMPF
s24

= 0.6,

kpreMPF
s25

= 0.3, kpreMPF
s26

= 0.3, kpreMPF
s27

= 0.3, kpreMPF
s28

= 0.3,

kpreMPF
s29

= 0.6, kpreMPF
s30

= 0.6, kpreMPF
s31

= 0.8, kpreMPF
s32

= 0.8, and µpreMPF
s1−32

= −1.

Figure 4.21 is the numerical simulation of preMPF-module.

Figure 4.21: Numerical simulation of preMPF-module.

The variable [MPF ] depends on [Cdc13T ], [preMPF ], and [Rum1T ]. The

evolution can be approximated as
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d[MPF ]
dt

= µMPF
s(t) [MPF ] + 0[Cdc13T ] + 0[preMPF ] + 0[Rum1T ] + kMPF

s(t) ,

s(t) = {

s1 if [Cdc13T ] ≥ 0.7 ∧ [preMPF ] ≥ 0.5 ∧ [Rum1T ] ≥ 0.15

s2 if [Cdc13T ] ≥ 0.7 ∧ [preMPF ] ≥ 0.5 ∧ [Rum1T ] < 0.15

s3 if [Cdc13T ] ≥ 0.7 ∧ [preMPF ] < 0.5 ∧ [Rum1T ] ≥ 0.15

s4 if [Cdc13T ] ≥ 0.7 ∧ [preMPF ] < 0.5 ∧ [Rum1T ] < 0.15

s5 if [Cdc13T ] < 0.7 ∧ [preMPF ] ≥ 0.5 ∧ [Rum1T ] ≥ 0.15

s6 if [Cdc13T ] < 0.7 ∧ [preMPF ] ≥ 0.5 ∧ [Rum1T ] < 0.15

s7 if [Cdc13T ] < 0.7 ∧ [preMPF ] < 0.5 ∧ [Rum1T ] ≥ 0.15

s8 if [Cdc13T ] < 0.7 ∧ [preMPF ] < 0.5 ∧ [Rum1T ] < 0.15

,

kMPF
s1

= 0.01, kMPF
s2

= 0.2, kMPF
s3

= 0.01, kMPF
s4

= 0.2, kMPF
s5

= 0.01, and

kMPF
s6

= 1.5, kMPF
s7

= 0.01, kMPF
s8

= 0.01,, and µMPF
s1−8

= −1.

Figure 4.22 is the numerical simulation of MPF-module.

Figure 4.22: Numerical simulation of MPF-module.

Finally, all modules describe the dynamics of the cell cycle of fission yeast.
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And the whole system could be written as

d[M ]
dt

= µM
s(t)[M ] + 0[EC],

d[y]
dt

= Ms(t)y + Xs(t)y + ks(t) where

S = {sk25(t) ∪ sSlp1(t) ∪ skwee(t) ∪ sSK(t) ∪ sSte9(t) ∪ sRum1T(t)∪

sCdc13T (t) ∪ spreMPF (t) ∪ sMPF (t)},

s(t) ∈ S,

y = [k25 Slp1 kwee SK Ste9 Rum1T Cdc13T preMPF MPF ]′,

X =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,
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M =



−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1



.

4.3 Advantages of Piecewise Linear Model with

Delay

In this section, a nonlinear system is approximated by a piecewise linear

system by subdividing system and by looking at the steady state dynamics. The

relations between variables can be used directly to construct the model. The

model will be an approximation to the process. By such approximations the sys-

tem behavior can be observed more easily. Additionally, the number of variables

affecting the system can be reduced. Basic relations can be considered and the

internal processes can be omitted. Systems described by delay differential equa-

tions can also be approximated by this way. The stability of the piecewise linear

system model with delays can be analyzed as described in previous section.
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chapter 5

APPROXIMATING DDE BY

PIECEWISE LINEAR SYSTEMS

WITH DELAY

Delay-differential equations (DDEs) are a large and important class of dy-

namical systems. They often arise in either natural or technological control prob-

lems. In these systems, a controller monitors the state of the system, and makes

adjustments to the system based on its observations. Since these adjustments

can never be made instantaneously, a delay arises between the observation and

the control action.

When we give initial conditions for finite-dimensional dynamical systems, we

only need to specify a small set of numbers, namely, the initial values of the state

variables, and perhaps the initial time in nonautonomous systems. In order to

solve a delay equation, we need more: At every time step, we have to look back

to earlier values of x. We therefore need to specify an initial function which gives

the behavior of the system prior to time 0 (assuming that we start at t =0). This

function has to cover a period at least as long as the longest delay since we will
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be looking back in time that far [59].

Piecewise linear systems could be used in the approximation of delay differ-

ential equations. In this section general idea is presented with a simple example.

Consider the delay differential equation:

dx
dt

= f(x(t), x(t− τ)),

The initial function is the function x(t) defined on interval M [−τ, 0]. This

delay differential equation could be approximated by

dx
dt

= f(x(t), ks),

where x0 = x(0) is the initial value (value of the initial function x(t) at t=0)

and

ks = ahi+1+bhi

a+b
,

s(t) = i if hi+1 ≥ x(t− τ) > hi,

where hi is the threshold for ith state. Here, ks is a linear combination of ith

state’s thresholds hi and hi+1, and it is an approximation of the value of x(t− τ).

Actually, the simple linear combination

ks = hi+1+hi

2
,

s(t) = i if hi+1 ≥ x(t− τ) > hi.

could be used (i = 1, 2, ..., n), where n is the number of thresholds. The number

of discrete states will be n − 1. And, the dynamical system described by delay

differential equation will evolve in (h1, hn]. Therefore, delay differential equations

with arbitrary initial function could be approximated by using such a piecewise
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Table 5.1: Data for initial function.

t x t x t x
-1.00 0.6 -0.65 1.4 -0.30 2.8
-0.95 2.2 -0.60 0.1 -0.25 0.8
-0.90 1.2 -0.55 1.6 -0.20 1.5
-0.85 2.6 -0.50 2.5 -0.15 2.5
-0.80 0.8 -0.45 1.2 -0.10 0.8
-0.75 1.5 -0.40 2.2 -0.05 1.3
-0.70 2.6 -0.35 1.3 0.00 2.0

linear system.

In this work, a simple example is presented to make the idea clear. Consider

the following delay differential equation:

dx
dt

= −x(t− 1)

with an arbitrary initial function x(t) on [−1, 0].To construct an arbitrary

initial function, arbitrary data seen in Table 5.1 are used.

The method of linear least squares [31] is used for curve fitting and the

function

f(t) = 1.8947 + 5.6899t + 44.9378t2 + 119.1792t3

+131.0523t4 + 52.1560t5

is obtained at the end.

This function is taken as an arbitrary initial function for [−1, 0]. The graph

of the function is presented in Figure 5.1.

Therefore, consider
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Figure 5.1: The initial function used in the example.
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dx
dt

= −x(t− 1) on (0.5]

with x(t) = 1.8947 + 5.6899t + 44.9378t2 + 119.1792t3

+131.0523t4 + 52.1560t5 on [−1, 0].

Firstly, the MatLab function dde23 is used for solution. The code is presented

at Appendix. The graph obtained after using dde23 is seen in Figure 5.2.

Figure 5.2: Solution obtained using dde23.

Then, the piecewise linear system approximation is used for the same prob-

lem. The code of piecewise linear system approximation is presented in the Ap-

pendix.

The thresholds are taken as:

h1 = −2 and hn = 2.5 where n = 10.

109



Therefore, 9 discrete states are obtained and ki = hi+1+hi

2
for i = 1, 2, ..., 9.

The equation dx
dt

= −x(t − 1) is approximated by dx
dt

= −ks(t), where s(t) = i

if hi+1 ≥ x(t − 1) > hi for i = 1, 2, ..., 9. Here, the interval (−2, 2.5] is decided

for discrete state space by considering the real solution obtained by dde23 on

interval (0, 5]. The interval for discrete states will change depending on the delay

differential equation, initial function, and the time interval of the solution.

The graph obtained by piecewise linear system approximation is as seen in

Figure 5.3.

Figure 5.3: Solution obtained by piecewise linear system approximation.

This example illustrates the usage of piecewise linear system for the approx-

imation of delay differential equations. It provides a simple numerical method

for approximating delay differential equations. By this way, complex delay dif-
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ferential equations could be approximated. Additionally, adaptive sampling is an

advantage for this numerical method.

111



chapter 6

PROMISES AND CHALLENGES

Hybrid dynamical systems with delay can have different application areas and

can provide advantages in terms of including the time delays. In this chapter,

some possible applications are discussed briefly.

Firstly, using hybrid dynamical systems with delay in modelling traffic flow

will bring some advantages. Microscopic vehicular traffic flow model can be de-

scribed for continuous time change of kinematic variables of car i as

dvi(t+T )
dt

= ai(j ≥ i, t) + ξi(t),
dxi(t+T )

dt
= vi(t + T ),

where ai is a given acceleration function depending on kinematic variables of all

leading cars j > i and car i at t, ξi is a normal distributed random part of ai , T

reaction time [70]. The flow of each car depends to flow of leading cars. Therefore,

a car’s flow can be modelled as evolving in discrete states and continuously in

each state. Governing differential equations are different in each state and the

switching between these states is determined by an external input which is the

states of leading cars in this case. Additionally, a time delay can be introduced to

this systems for mechanical properties of cars. For example, a car needs time to

change its velocity and acceleration. By this mean the efficiency of roads can be

estimated and the problems in traffic can be determined. By using such a model,
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traffic can be simulated more realistically. Traffic simulation will bring us some

advantages. It will help in improving the traffic systems. Which will improve

capacity and the level-of-service, road safety, and the environmental impact of

traffic. Traffic simulation softwares can use such a hybrid dynamical system with

delay model. Figure 6.1 is a representation from a traffic simulation software [11].

Figure 6.1: A 3D view from a traffic simulation software (Aimsun urban demo
[11]) .

Similarly, airspace systems can be modelled by the help of hybrid dynamical

systems with delay. At its full extent, such systems are systems of overwhelming

complexity. Thousands of aircrafts may be aloft at one time; hundreds of con-

trollers are monitoring and directing them with the assistance of many communi-

cation and surveillance technologies [57]. In such a system, there are lots of entity

affecting each other. It is a combination of continuous-time and discrete-event

systems, their interactions, and possibly delays in these interactions. Therefore,

modelling these systems by hybrid dynamical systems with delay will help to
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capture the whole system.

Another possible use of hybrid dynamical systems with delay is in modelling

computer networks. Computer networks play an increasingly important role in

our lives. These networks experience major problems due to traffic congestion. A

lot of effort is spent on trying to reduce the problems with congestion. Congestion

in computer networks is handled with various types of congestion control. The

objective with research on control of networks is often to improve traffic through-

put and to better accommodate different service demands. Today’s congestion

control is in most networks implemented as end-to-end protocols [22, 33, 55].

There is intensive research on modelling and simulation of the internet. It has

been pointed out that classical network models from telecommunication based on

Poisson modelling are not suitable for the internet [22, 54]. The general opinion in

the network area is still that Internet modelling and simulation are open research

problems [22, 26]. The standard modelling and simulation environment targeted

at network research is the discrete-event simulator ns-2 [22, 79]. ns-2, which was

originally developed at UC Berkeley, directly implements the Internet protocols

and simulates individual packets. Another approach to network modelling is to

use fluid models, i.e., to approximate packet transmission with a continuous flow

and basically neglect the network protocols. Fluid models capture average trans-

mission rates but ignore events such as packet drops. Fluid models are hence

suitable for the study of steady-state behavior but not for evaluating transient

phenomena. Therefore, hybrid models are preferred for better simulations. Ad-

ditionally, hybrid dynamical systems with delay can be used for same purpose

where delays in the system can be modelled in this case. Delays occurs because

of the physical media in computer networks.
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Sensor networks are another possible application area of hybrid dynamical

systems with delay. Sensor networks (SNs) are gaining a role of importance in

the research community. Embedded computers are well settled in our lives, in

our houses, in our cars, and in our work environments. Embedded systems, by

definition, interact with the physical world. They are sensors, actuators, and

controllers which are programmed to perform specified functions. As the range

of applications grows, the need arises to network several embedded systems to

perform incrementally complex tasks. The automotive domain is an excellent

example. Here, several embedded systems interact to provide a safe, comfort-

able driving experience [65]. PEGs can be seen as sensor networks. PEGs are a

mathematical abstraction arising from numerous situations which addresses the

problem of controlling a swarm of autonomous agents in the pursuit of one or

more evaders. Typical examples are search and rescue operations, surveillance,

localization and tracking of moving parts in a warehouse, and search and capture

missions. In some cases, the evaders are actively avoiding detection, as in cap-

ture missions, whereas in other cases their motion is approximately random, as

in rescue operations. Different versions of PEGs have been analyzed according

to different frameworks and assumptions. Deterministic PEGs on finite graphs

have been extensively studied [44, 53, 65]. In these games, the playing field is

abstracted to be a finite set of nodes, and the allowed motions for the pursuers

and evaders are represented by edges connecting nodes. An evader is captured if

both the evader and one of the pursuers occupy the same node. A representation

of usage of sensor networks is seen in Figure 6.2 and Figure 6.3 [65]. Sensor

networks increase visibility in PEGs. Each pursuer shares what it sees to other

pursuers. In these networks, communication delay is an important issue and so
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Figure 6.2: What pursuers really see [65].

hybrid dynamical systems with delay can be used to construct sensor network

systems.

In conclusion, piecewise linear systems with delay on piecewise constant part

can be used in a wide range of areas where continuous and discrete evolution

exists with time delays. Traffic simulations, airspace systems, modelling computer

protocols, and sensor network systems are some examples of application areas.
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Figure 6.3: SN increases visibility [65].
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chapter 7

CONCLUSION AND

DISCUSSION

In this study, piecewise linear systems with delay on the piecewise linear

constant part which is a subclass of hybrid dynamical systems is investigated

in terms of modelling functional dynamical systems. The stability analysis is

performed first. It is seen that, asymptotically stable periodic solution can be

obtained in these systems. Then, a model of cell cycle control of fission yeast

is constructed. Piecewise linear systems with delay can be used especially in

gene regulatory networks. Additionally, it is seen that piecewise linear systems

with delay can be used in approximating the delay differential equations. Traffic

simulations, airspace systems, modelling computer protocols, and sensor network

systems are some other examples to application areas of hybrid dynamical systems

with delay.

In this work, we showed that it is possible to analyze the stability of periodic

attractors of piecewise linear system by constructing Poincare map and analyz-

ing the stability of fixed point of this map. A simple 2-dimensional example is

presented for stability analysis. For n - dimensional systems a map on n − 1
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dimensional hyperplane can be constructed and the stability of fixed point of this

map can be investigated.

Complex dynamics of systems including delay can be observed in a sim-

pler way and first principles models of natural phenomena can be approximated

by piecewise linear systems. Being able to use such piecewise linear systems in

modelling of complex dynamics comes with some advantages like handling pertur-

bations and environmental factors as inputs. Complex systems can be analyzed

with reasonable computational resources. Additionally, all the internal processes

can be modelled which is not always possible with ODE models.

Constructing DDE models of gene regulatory networks and investigating the

dependence of future behavior to the initial function by using these models is a

promising challenge.
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Appendix A. MATLAB FUNCTIONS

A.1 dde23

dde23 Solve delay differential equations (DDEs) with constant delays [77, 63].

Syntax:

sol = dde23(ddefun,lags,history,tspan)

sol = dde23(ddefun,lags,history,tspan,options)

Arguments:

ddefun: Function that evaluates the right side of the differential equations y′(t) =

f(t, y(t), y(t− τ1), ..., y(t− τk)) . The function must have the form

dydt = ddefun(t, y, Z)

where t corresponds to the current t, y is a column vector that approximates y(t),

and Z(:,j) approximates y(t− τj) for delay τj = lags(j). The output is a column

vector corresponding to f(t, y(t), y(t− τ1), ..., y(t− τk)).

lags: Vector of constant, positive delays τ1, ..., τk.

history: Specify history in one of three ways:

A function of t such that y = history(t) returns the solution y(t) for t ≤ t0

as a column vector

A constant column vector, if y(t) is constant

The solution sol from a previous integration, if this call continues that inte-
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gration

tspan: Interval of integration as a vector [t0, tf ] with t0 < tf .

options: Optional integration argument. A structure you create using the ddeset

function.

p1,p2,... Optional parameters that dde23 passes to ddefun, if it is a function, and

any functions you specify in options.

Description

sol = dde23(ddefun, lags, history, tspan) integrates the system of DDEs

y′(t) = f(t, y(t), y(t− τ1), ..., y(t− τk))

on the interval [t0, tf ], where τ1, ..., τk are constant, positive delays and t0 < tf .

dde23 returns the solution as a structure sol. Use the auxiliary function ”deval”

and the output sol to evaluate the solution at specific points tint in the interval

tspan = [t0, tf ]. yint = deval(sol, tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23

sol.y Approximation to y(x) at the mesh points in sol.x.

sol.yp Approximation to y′(x) at the mesh points in sol.x

sol.solverSolver name, ’dde23’

sol = dde23(ddefun,lags,history,tspan,options) solves as above with default inte-

gration properties replaced by values in options, an argument created with ddeset.
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Commonly used options are scalar relative error tolerance ’RelTol’ (1e-3 by de-

fault) and vector of absolute error tolerances ’AbsTol’ (all components are 1e-6

by default). Use the ’Jumps’ option to solve problems with discontinuities in

the history or solution. Set this option to a vector that contains the locations

of discontinuities in the solution prior to t0 (the history) or in coefficients of

the equations at known values of after t0. Use the ’Events’ option to specify a

function that dde23 calls to find where functions g(t, y(t), y(t− τ1), ..., y(t− τk))

vanish. This function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth event

function in events:

value(k) is the value of the kth event function.

isterminal(k) = 1 if you want the integration to terminate at a zero of this

event function and 0 otherwise.

direction(k) = 0 if you want dde23 to compute all zeros of this event function,

+1 if only zeros where the event function increases, and -1 if only zeros where

the event function decreases.

If you specify the ’Events’ option and events are detected, the output structure

sol also includes fields:

sol.xe Row vector of locations of all events, i.e., times when an event function

vanished

sol.ye Matrix whose columns are the solution values corresponding to times
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in sol.xe

sol.ie Vector containing indices that specify which event occurred at the

corresponding time in sol.xe

Examples

This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The function

ddex1de computes the delay differential equations, and ddex1hist computes the

history for t <= 0.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval [0,5],

then plots the result.

tint = linspace(0,5);

yint = deval(sol,tint);

plot(tint,yint);

Algorithm

dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3)

pair and interpolant of ode23. It uses iteration to take steps longer than the lags.
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Appendix B. M FILES

B.1 MatLab Code of Piecewise Linear System Example

%*************************************

% (C) Mustafa KAHRAMAN (2007) *

%*************************************

function Simulate Cycle Without Delay

%System parameters

M=[-1 0;0 -1];

k=[0 2 0 2;0 0 2 2];

treshold = 1;

%Initial value 1

%init=[1.002;0.9999];

%Initial value 2

init=[1.1;0.2];

%States

state 1 = false;

state 2 = false;

state 3 = false;
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state 4 = false;

state = 1;

%Time Approximation

step = 0.001;

time = 0;

t n = 20;

%Data

y = init;

values = transpose(init);

for i = 0:step:t n

time = time + step;

% state 3 *********************

if(y(1)<1 & y(2)<1)

alues=[values;transpose(y)];

% state 2 *******************

elseif (y(1)>1 & y(2)>1)

diff eqn = @(y)M*y+k(:,3);

y = Euler Method(y,diff eqn,step);
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values=[values;transpose(y)];

% state 4 ********************

elseif (y(1)<=1 & y(2)>=1)

diff eqn = @(y)M*y+k(:,1);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

% state 1 **********************

elseif (y(1)>=1 & y(2)<=1)

diff eqn = @(y)M*y+k(:,4);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

end

end

hold on;

hold all;

%Plot y1 - y2

plot(values(:,2),values(:,1));

title(’Phase plane (y1-y2)’);
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xlabel(’y2’);

ylabel(’y1’);

%The lines for thresholds.

plot([1 1],[0 2],’r’,’LineWidth’,2);

plot([0 2],[1 1],’r’,’LineWidth’,2);

%Evaluates the y’n+1’ vlue according to previous point informaton

%using Euler’s method

%Inputs:

% y n –> previous y value

% fy –> differential equation (function input)

% h –> step size

%

%Output:

% y n 1 –> next y value

function y n 1 = Euler Method(y n,fy,h)

f tn yn =fy(y n);

y n 1 = y n + f tn yn*h;

end
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B.2 MatLab Code of Stability Analysis

%*************************************

% (C) Mustafa KAHRAMAN (2007) *

%*************************************

function Simulate cycle with delay

M=[-1 0;0 -1];

k=[0 2 0 2;0 0 2 2];

threshold = 1;

init=[1;0.1];

const delay = 0.5;

%State Transition Time

t12=0;

t24=0;

t43=0;

t31=0;

%Boolean variables for states

state 1 = false;

state 2 = false;
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state 3 = false;

state 4 = false;

state = 1;

%Time Approximation

step = 0.001;

time = 0;

t n = 10;

%Data

y = init;

values = transpose(init);

for i = 0:step:t n

time = time + step;

% state 3 *********************

if(y(1)<1 & y(2)<1)

if(state 3 == false)

state 1 = false;

state 2 = false;

state 3 = true;
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state 4 = false;

t43=time-step;

diff eqn = @(y)M*y+k(:,1);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

if time <= t43 + const delay

diff eqn = @(y)M*y+k(:,1);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

diff eqn = @(y)M*y+k(:,2);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

end

end

% state 2 *******************

elseif (y(1) >1 & y(2)>1)
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if(state 2 == false)

state 1 = false;

state 2 = true;

state 3 = false;

state 4 = false;

t12=time-step;

diff eqn = @(y)M*y+k(:,4);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

if time <= t12 + const delay

diff eqn = @(y)M*y+k(:,4);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

diff eqn = @(y)M*y+k(:,3);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];
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end

end

% state 4 ********************

elseif (y(1)<=1 & y(2)>=1)

if(state 4 == false)

state 1 = false;

state 2 = false;

state 3 = false;

state 4 = true;

t24=time-step;

diff eqn = @(y)M*y+k(:,3);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

if time <= t24 + const delay

diff eqn = @(y)M*y+k(:,3);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];
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else

diff eqn = @(y)M*y+k(:,1);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

end

end

% state 1 **********************

elseif (y(1)>=1 & y(2)<=1)

if(state 1 == false)

state 1 = true;

state 2 = false;

state 3 = false;

state 4 = false;

t31=time-step;

diff eqn = @(y)M*y+k(:,2);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else
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if time <= t31 + const delay

diff eqn = @(y)M*y+k(:,2);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

else

diff eqn = @(y)M*y+k(:,4);

y = Euler Method(y,diff eqn,step);

values=[values;transpose(y)];

end

end

end

end

%Plot y1 - y2

plot(values(:,2));

title(’y2-t’);

xlabel(’y2’);

ylabel(’y1’);

%Plot y1 - y2
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plot(values(:,2),values(:,1));

title(’Phase plane (y1-y2)’);

xlabel(’y2’);

ylabel(’y1’);

%Threshold lines

plot([0 2],[1 1],’r’);

plot([1 1],[0 2],’r’);

%Evaluates the y’n+1’ values according to previous point

%using Euler’s method

%Inputs:

% y n –> previous y value

% fy –> differential equation (function input)

% h –> step size

%

%Output:

% y n 1 –> next y value

function y n 1 = Euler Method(y n,fy,h)

f tn yn =fy(y n);
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y n 1 = y n + f tn yn*h;

end
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B.3 MatLab Code of HDS and ODE Models of Cell

Division Cycle of Fission Yeast

Matlab Code Of ODE Model

%*****************************************

%Simulation of Fission Yeast Cell Division

% (C) Mustafa KAHRAMAN

%*****************************************

function result = simulation fission yeast original

global Cdc13T;

global Ste9;

global Slp1;

global preMPF;

global kwee;

global k25;

global MPF;

global SK;

global IEP;

global Slp1T;
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global Rum1T;

global TF;

global trimer;

global M;

global mu;

%Initial values of global variables

Cdc13T=0.1;

preMPF=0;

Ste9=0;

Slp1=0.01;

%Slp1=2.2;

Slp1T=1;

IEP=0.1;

Rum1T=0.1;

SK=0.1;

M=1;

mu=0.005;

MPF=0.0095;
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kwee=1.2996;

k25=0.519;

TF=0.0098;

trimer=0.0905;

%Initial values of iteration variables

Cdc13T i=Cdc13T;

preMPF i=preMPF;

%Slp1=0;

Slp1 i=Slp1;

Slp1T i=Slp1T;

IEP i=IEP;

Rum1T i=Rum1T;

SK i=SK;

M i=M;

Ste9 i=Ste9;

kwee i=kwee;

k25 i=k25;

MPF i=MPF;
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TF i=TF;

trimer i=trimer;

%time

t initial=0;

t=t initial;

t step=0.005;

t final=150;

%Data arrays

Cdc13T array=[0 Cdc13T];

preMPF array=[0 preMPF];

Ste9 array=[0 Ste9];

Slp1 array=[0 Slp1];

Slp1T array=[0 Slp1T];

IEP array=[0 IEP];

Rum1T array=[0 Rum1T];

SK array=[0 SK];

MPF array=[0 MPF];

t array=t initial;
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M array=[0 M];

kwee array=[0 kwee];

k25 array=[0 k25];

for t=t initial:t step:t final

if(M<=2)

%Cdc13T******************************************************

a = ode23t(@dCdc13T dt,[t t+t step],Cdc13T);

Cdc13T i=a.y(11); Cdc13T array=[Cdc13T array;[t Cdc13T i]];

%preMPF******************************************************

a = ode23t(@dpreMPF dt,[t t+t step],preMPF);

preMPF i=a.y(11); preMPF array=[preMPF array;[t preMPF i]];

%Ste9********************************************************

a = ode23t(@dSte9 dt,[t t+t step],Ste9);

Ste9 i=a.y(11); Ste9 array=[Ste9 array;[t Ste9]];

%Slp1T******************************************************

a = ode23t(@dSlp1T dt,[t t+t step],Slp1T);

Slp1T i=a.y(11); Slp1T array=[Slp1T array;[t Slp1T i]];

%Slp1******************************************************

152



a = ode23t(@dSlp1 dt,[t t+t step],Slp1);

Slp1 i=a.y(11); Slp1 array=[Slp1 array;[t Slp1 i]];

%IEP********************************************************

a = ode23t(@dIEP dt,[t t+t step],IEP);

IEP i=a.y(11); IEP array=[IEP array;[t IEP i]];

%Rum1T*****************************************************

a = ode23t(@dRum1T dt,[t t+t step],Rum1T);

Rum1T i=a.y(11); Rum1T array=[Rum1T array;[t Rum1T i]];

%SK********************************************************

a = ode23t(@dSK dt,[t t+t step],SK);

SK i=a.y(11); SK array=[SK array;[t SK i]];

%M*********************************************************

M i=Euler Method(M,@dM dt,t step);

M array=[M array;[t M i]];

%trimer****************************************************

trimer i=Trimer equation(Cdc13T,Rum1T);

%MPF******************************************************

MPF i=MPF equation(Cdc13T,preMPF,trimer);
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MPF array=[MPF array;[t MPF i]];

TF i=G(1.5*M,1+2*MPF,0.01,0.01);

%kwee******************************************************

kwee i=Kwee equation(MPF);

kwee array=[kwee array;[t kwee i]];

%k25*******************************************************

k25 i=K25 equation(MPF);

k25 array=[k25 array;[t k25 i]];

%Change global variables

Cdc13T=Cdc13T i;

preMPF=preMPF i;

Slp1=Slp1 i;

Slp1T=Slp1T i;

IEP=IEP i;

Rum1T=Rum1T i;

SK=SK i;

M=M i;

Ste9=Ste9 i;
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kwee=kwee i;

k25=k25 i;

MPF=MPF i;

TF=TF i;

trimer=trimer i;

end

end

figure;

hold all

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Slp1 array(:,1),Slp1 array(:,2),’LineWidth’,2);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,3);

figure;

hold all

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Ste9 array(:,1),Ste9 array(:,2),’LineWidth’,2);

plot(kwee array(:,1),kwee array(:,2),’LineWidth’,3);

figure;
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hold all

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(k25 array(:,1),k25 array(:,2),’LineWidth’,2);

plot(SK array(:,1),SK array(:,2),’LineWidth’,3);

figure;

hold all

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Cdc13T array(:,1),Cdc13T array(:,2),’LineWidth’,2);

plot(preMPF array(:,1),preMPF array(:,2),’LineWidth’,3);

figure;

hold all

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Rum1T array(:,1),Rum1T array(:,2),’LineWidth’,2);

end

%Evaluates the y’n+1’ vlue according to previous point information

%using Euler’s method

%Inputs:

% y n –> previous y value
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% fy –> differential equation (function input)

% h –> step size

%

%Output:

% y n 1 –> next y value

function y n 1 = Euler Method(y n,fy,h)

f tn yn =fy(y n);

y n 1 = y n + f tn yn*h;

end

%Differential equation of Cdc13T

function result = dCdc13T dt(param Cdc13T)

global M;

global Ste9;

global Slp1;

k1=0.03;

kb2=0.03;

kbb2=1;

kbbb2=0.1;
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result=k1*M-(kb2+kbb2*Ste9+kbbb2*Slp1)*param Cdc13T;

end

%Differential equation of preMPF

function result = dpreMPF dt(param preMPF)

global kwee;

global Cdc13T;

global Slp1;

global Ste9;

global k25;

kb2=0.03;

kbb2=1;

kbbb2=0.1;

result=kwee*(Cdc13T-param preMPF)-k25*param preMPF-

(kb2+kbb2*Ste9+kbbb2*Slp1)*param preMPF;

end

%Differential equation of Ste9

function result = dSte9 dt(param Ste9)

global Slp1;
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global MPF;

global SK;

kb3=1;

kbb3=10;

J3=0.01;

kb4=2;

k4=35;

J4=0.01;

result = (kb3+kbb3*Slp1)*((1-param Ste9)/(J3+1-param Ste9))-

(kb4*SK+k4*MPF)*(param Ste9/(J4+param Ste9));

end

%Differential equation of Slp1

function result = dSlp1 dt(param Slp1)

global IEP;

global Slp1T;

k7=1;

J7=0.001;

k8=0.25;
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k6=0.1;

J8=0.001;

result=k7*IEP*((Slp1T-param Slp1)/(J7+Slp1T-param Slp1))-

k8*(param Slp1/(J8+param Slp1))-k6*param Slp1;

end

%Differential equation of Slp1T

function result = dSlp1T dt(param Slp1T)

global MPF;

kb5=0.005;

kbb5=0.3;

J5=0.3;

k6=0.1;

result = kb5+kbb5*((MPFˆ4)/(J5ˆ4+MPFˆ4))-k6*param Slp1T;

end

%Differential equation of IEP

function result = dIEP dt(param IEP)

global MPF;

k9=0.1;
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J9=0.01;

k10=0.04;

J10=0.01;

result=k9*MPF*((1-param IEP)/(J9+1-param IEP))-

k10*(param IEP/(J10+param IEP));

end

%Differential equation of Rum1T

function result=dRum1T dt(param Rum1T)

global MPF;

global SK;

k11=0.1;

k12=0.01;

kb12=1;

kbb12=3;

result=k11-(k12+kb12*SK+kbb12*MPF)*param Rum1T;

end

%Differential equation of SK

function result=dSK dt(param SK)

global TF;
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k13=0.1;

k14=0.1;

result=k13*TF-k14*param SK;

end

%Differential equation of M

function result=dM dt(param M)

global mu;

result=mu*param M;

end

%Algebraic equation of kwee

function result=Kwee equation(param MPF)

kbwee=0.15;

kbbwee=1.3;

Vawee=0.25;

Viwee=1;

Jawee=0.01;

Jiwee=0.01;

result=kbwee+(kbbwee-kbwee)*G(Vawee,Viwee*param MPF,Jawee,Jiwee);
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end

%Algebraic equation of k25

function result=K25 equation(param MPF)

kb25=0.05;

kbb25=5;

Va25=1;

Vi25=0.25;

Ja25=0.01;

Ji25=0.01;

result=kb25+(kbb25-kb25)*G(Va25*param MPF,Vi25,Ja25,Ji25);

end

%Algebraic equation of TF

function result=TF equation(param M,param MPF)

k15=1.5;

kb16=1;

kbb16=2;

J15=0.01;

J16=0.01;
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result=G(k15*param M,kb16+kbb16*param MPF,J15,J16);

end

%Algebraic equation of Trimer

function result = Trimer equation(param Cdc13T,param Rum1T)

Kdiss=0.001;

result=(2*param Cdc13T*param Rum1T)/

(Sigma(param Cdc13T,param Rum1T)+

sqrt(Sigma(param Cdc13T,param Rum1T)ˆ2-

4*param Cdc13T*param Rum1T));

end

%Algebraic equation of MPF

function result=MPF equation(param Cdc13T,param preMPF,param trimer)

result=((param Cdc13T-param preMPF)*(param Cdc13T-param trimer))/

param Cdc13T;

end

%Sigma

function result=Sigma(param Cdc13T,param Rum1T)

Kdiss=0.001;

result=param Cdc13T+param Rum1T+Kdiss;

end
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%G

function result = G(a,b,c,d)

result=(2*a*d)/(b-a+b*c+a*d+sqrt((b-a+b*c+a*d)ˆ2-4*a*d*(b-a)));

end

MatLab Code of HDS Model

%******************************

% (C) Mustafa KAHRAMAN (2007)

%******************************

function Simulate Fission Yeast HDS ALL new3

%M

M=1;

EC=2;%Environmental Conditions

global M array;

M array=[0 M];

global CS G1;

CS G1=1.1;%Critical Size for G2 size checkpoint

global CS G2;

CS G2=1.9;%Critical Size for G2 size checkpoint
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%Cdc25

Cdc25=0.01;

global Cdc25 array;

Cdc25 array=[0 Cdc25];

%SK

SK=0.45;

global SK array;

SK array=[0 SK];

%Rum1T

Rum1T=0.01;

global Rum1T array;

Rum1T array=[0 Rum1T];

%Slp1

Slp1=0.01;

global Slp1 array;

Slp1 array=[0 Slp1];

%Wee1

Wee1=0;
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global CS G1;

global Wee1 array;

Wee1 array=[0 Wee1];

%Ste9

Ste9=0;

global Ste9 array;

Ste9 array=[0 Ste9];

%Cdc13T

Cdc13T=0.01;

global Cdc13T array;

Cdc13T array=[0 Cdc13T];

%preMPF

preMPF=0.01;

global preMPF array;

preMPF array=[0 preMPF];

%MPF

MPF=0.01;

global MPF array;
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MPF array=[0 MPF];

%time

t step=0.005;

t initial=0;

t final=200;

global t;

for t=t initial:t step:t final

M = M module(M,EC,t step);

M array=[M array;[t M]];

SK = SK module(SK,M,MPF,t step);

SK array=[SK array;[t SK]];

Rum1T = Rum1T module(Rum1T,SK,MPF,t step);

Rum1T array=[Rum1T array;[t Rum1T]];

Ste9 = Ste9 module(Ste9,MPF,Slp1,SK,t step);

Ste9 array=[Ste9 array;[t Ste9]];

Wee1 = Wee1 module(Wee1,MPF,t step);

Wee1 array=[Wee1 array;[t Wee1]];

Cdc25 = Cdc25 module(Cdc25,MPF,t step);
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Cdc25 array=[Cdc25 array;[t Cdc25]];

Cdc13T = Cdc13T module(Cdc13T,M,Ste9,Slp1,t step);

Cdc13T array=[Cdc13T array;[t Cdc13T]];

preMPF = preMPF module(preMPF,Cdc13T,Wee1,Cdc25,Ste9,Slp1,t step);

preMPF array=[preMPF array;[t preMPF]];

Slp1 = Slp1 module(Slp1,MPF,SK,t step);

Slp1 array=[Slp1 array;[t Slp1]];

MPF array=[MPF array;[t MPF]];

MPF = MPF module(MPF,Cdc13T,preMPF,Rum1T,t step);

end

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Cdc25 array(:,1),Cdc25 array(:,2),’LineWidth’,2);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,3);

figure;

hold on;
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hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Slp1 array(:,1),Slp1 array(:,2),’LineWidth’,2);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,3);

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Wee1 array(:,1),Wee1 array(:,2),’LineWidth’,2);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,3);

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(SK array(:,1),SK array(:,2),’LineWidth’,2);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,3);

figure;

hold on;
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hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Ste9 array(:,1),Ste9 array(:,2),’LineWidth’,2);

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Rum1T array(:,1),Rum1T array(:,2),’LineWidth’,2);

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(Cdc13T array(:,1),Cdc13T array(:,2),’LineWidth’,2);

figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(preMPF array(:,1),preMPF array(:,2),’LineWidth’,2);
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figure;

hold on;

hold all;

plot(M array(:,1),M array(:,2),’LineWidth’,1);

plot(MPF array(:,1),MPF array(:,2),’LineWidth’,2);

end

% Cell Mass Module*******

function result M = M module(M,EC,t step)

if M>=2

result M=1;

elseif M<2 & EC>=1

f=@(x)0.005*x;

result M=Euler Method(M,f,t step);

elseif M<2 & EC$¡1

f=@(x)0.0025*x;

result M=Euler Method(M,f,t step);

end

end
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% SK Module**********

function result SK = SK module(SK,M,MPF,t step)

global CS G1;

if M>=CS G1 & MPF<1

f=@(x)(-1)*x+1.1;

result SK=Euler Method(SK,f,t step);

elseif M>=CS G1 & MPF>=1

f=@(x)(-1)*x+0.4;

result SK=Euler Method(SK,f,t step);

elseif M<CS G1 & MPF<1

f=@(x)(0-1)*x+0.4;

result SK=Euler Method(SK,f,t step);

elseif M<CS G1 & MPF>=1

SK=0.01;

f=@(x)(0-1)*x+0.4;

result SK=Euler Method(SK,f,t step);

end

end
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% MPF Module**********

function result MPF = MPF module(MPF,Cdc13T,preMPF,Rum1T,t step)

if Cdc13T>=0.7 & preMPF>=0.5 & Rum1T>=0.15

f=@(x)(-1)*x+0.01;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T>=0.7 & preMPF>=0.5 & Rum1T <0.15

f=@(x)(-1)*x+0.2;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T>=0.7 & preMPF<0.5 & Rum1T >=0.15

f=@(x)(-1)*x+0.01;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T>=0.7 & preMPF<0.5 & Rum1T <0.15

f=@(x)(-1)*x+0.2;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T<0.7 & preMPF>=0.5 & Rum1T >=0.15

f=@(x)(-1)*x+0.01;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T<0.7 & preMPF>=0.5 & Rum1T <0.15
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f=@(x)(-1)*x+1.5;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T<0.7 & preMPF<0.5 & Rum1T >=0.15

f=@(x)(-1)*x+0.01;

result MPF=Euler Method(MPF,f,t step);

elseif Cdc13T<0.7 & preMPF<0.5 & Rum1T <0.15

f=@(x)(-1)*x+0.01;

result MPF=Euler Method(MPF,f,t step);

end

end

% Cdc13T Module**********

function result Cdc13T = Cdc13T module(Cdc13T,M,Ste9,Slp1,t step)

if M>=1.75 & Ste9>=0.5 & Slp1>=1

f=@(x)(-1)*x+0.1;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M>=1.75 & Ste9>=0.5 & Slp1<1

f=@(x)(-1)*x+0.3;

result Cdc13T=Euler Method(Cdc13T,f,t step);
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elseif M>=1.75 & Ste9<0.5 & Slp1>=1

f=@(x)(-1)*x+0.6;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M>=1.75 & Ste9<0.5 & Slp1<1

f=@(x)(-1)*x+0.5;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M<1.75 & Ste9>=0.5 & Slp1>=1

f=@(x)(-1)*x+1.5;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M<1.75 & Ste9>=0.5 & Slp1<1

f=@(x)(-1)*x+1.5;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M<1.75 & Ste9<0.5 & Slp1>=1

f=@(x)(-1)*x+1.5;

result Cdc13T=Euler Method(Cdc13T,f,t step);

elseif M<1.75 & Ste9<0.5 & Slp1<1

f=@(x)(-1)*x+1.5;

result Cdc13T=Euler Method(Cdc13T,f,t step);
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end

end

%preMPF module

function result preMPF =

preMPF module(preMPF,Cdc13T,Wee1,Cdc25,Ste9,Slp1,t step)

if Cdc13T>=0.5 & Ste9>=0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1>=1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1>=1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1<1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;
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result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1<1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1<1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9>=0.5 & Wee1<1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1>=1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;
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result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1>=1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1<1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1<1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1<1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+1.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T>=0.5 & Ste9<0.5 & Wee1<1 & Slp1<0.8 & Cdc25<=4

f=@(x)(-1)*x+1.4;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+0.3;
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result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1>=1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1>=1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1<1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+0.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1<1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+0.5;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1<1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+0.6;

180



result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9>=0.5 & Wee1<1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+0.6;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1>=1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1>=1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1>=1 & Slp1<0.8 & Cdc25<4

f=@(x)(-1)*x+0.3;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1<1 & Slp1>=0.8 & Cdc25>=4

f=@(x)(-1)*x+0.6;
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result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1<1 & Slp1>=0.8 & Cdc25<4

f=@(x)(-1)*x+0.6;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1<1 & Slp1<0.8 & Cdc25>=4

f=@(x)(-1)*x+0.8;

result preMPF=Euler Method(preMPF,f,t step);

elseif Cdc13T<0.5 & Ste9<0.5 & Wee1<1 & Slp1<0.8 & Cdc25<=4

f=@(x)(-1)*x+0.8;

result preMPF=Euler Method(preMPF,f,t step);

end

end

% Rum1T Module**********

function result Rum1T = Rum1T module(Rum1T,SK,MPF,t step)

if MPF>=0.3 & SK>=0.8

f=@(x)(-1)*x+0.02;

result Rum1T=Euler Method(Rum1T,f,t step);

elseif MPF>=0.3 & SK<0.8
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f=@(x)(-1)*x+0.02;

result Rum1T=Euler Method(Rum1T,f,t step);

elseif MPF<0.3 & SK>=0.8

f=@(x)(-1)*x+0.11;

result Rum1T=Euler Method(Rum1T,f,t step);

elseif MPF<0.3 & SK<0.8

f=@(x)(-1)*x+0.3;

result Rum1T=Euler Method(Rum1T,f,t step);

end

end

% Ste9 Module**********

function result Ste9 = Ste9 module(Ste9,MPF,Slp1,SK,t step)

if Slp1>=0.1 & MPF>=0.3 & SK>=0.7

f=@(x)(-1)*x+0;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1>=0.1 & MPF>=0.3 & SK<0.7

f=@(x)(-1)*x+1;

result Ste9=Euler Method(Ste9,f,t step);
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elseif Slp1>=0.1 & MPF<0.3 & SK>=0.7

f=@(x)(-1)*x+1;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1>=0.1 & MPF<0.3 & SK<0.7

f=@(x)(-1)*x+1;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1<0.1 & MPF>=0.3 & SK>=0.7

f=@(x)(-1)*x+0;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1<0.1 & MPF>=0.3 & SK<0.7

f=@(x)(-1)*x+1;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1<0.1 & MPF<0.3 & SK>=0.7

f=@(x)(-1)*x+0;

result Ste9=Euler Method(Ste9,f,t step);

elseif Slp1<0.1 & MPF<0.3 & SK<0.7

f=@(x)(-1)*x+1;

result Ste9=Euler Method(Ste9,f,t step);
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end

end

% Wee1 Module*************

function result Wee1 = Wee1 module(Wee1,MPF,t step)

if MPF>=0.25

f=@(x)(-1)*x+0.2;

result Wee1=Euler Method(Wee1,f,t step);

else

f=@(x)(-1)*x+1.3;

result Wee1=Euler Method(Wee1,f,t step);

end

end

% Cdc25 Module**********

function result Cdc25 = Cdc25 module(Cdc25,MPF,t step)

if MPF>=0.25

f=@(x)(-1)*x+5;

result Cdc25=Euler Method(Cdc25,f,t step);

else
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f=@(x)(-1)*x+0;

result Cdc25=Euler Method(Cdc25,f,t step);

end

end

% Slp1 Module*************

function result Slp1 = Slp1 module(Slp1,MPF,SK,t step)

global MPF array;

global t;

if t>15

if MPF array(int32(t*200-3000),2)>=0.25

f=@(x)(-1)*x+2.5;

result Slp1=Euler Method(Slp1,f,t step);

else

f=@(x)(-1)*x+0;

result Slp1=Euler Method(Slp1,f,t step);

end

else

result Slp1=0;
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end

end
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B.4 MatLab Code for Approximating DDE by ode23 and

HDS with Delay

Matlab Code for Approximating DDE by ode23

%*****************************************

%Simulation of x’(t)=-x(t-1) by dde23

% (C) Mustafa KAHRAMAN

%*****************************************

function result = Simulation DDE dde23

sol = dde23(@ddex1dee,[1],@ddex1history,[0, 5]);

figure;

hold on;

hold all;

yy=ddex1history(-1);

for t=-0.99:0.01:0

yy=[yy;ddex1history(t)];

end

plot(transpose(-1:0.01:0),yy);

plot(sol.x,sol.y)
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plot([0 0],[-1,2.5]);

title(’dy/dt=-y(t-1)’);

xlabel(’time t’);

ylabel(’solution y’);

end

function dydt = ddex1dee(t,y,Z)

ylag1 = Z(:,1);

dydt = [ -1*ylag1(1)];

end

function s = ddex1history(t)

x =[1.8947;5.6899;44.9378; 119.1792;131.0523;52.1560];

s = x(1)+x(2)*t+x(3)*tˆ2+x(4)*tˆ3+x(5)*tˆ4+x(6)*tˆ5;

end

MatLab Code for Approximating DDE by HDS with Delay

%*****************************************

% Simulation of x’(t)=-x(t-1) by

% Hybrid Dynamical Systems with Delay

% (C) Mustafa KAHRAMAN
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%*****************************************

function result = Simulation DDE HDS

%time**********************

delay=1;

t step=0.001;

t initial=0;

t final=5;

%**************************

%initial function*********

y=ddex1history(t initial-delay)

for t i=(t initial-delay+t step):t step:t initial

y=[y;ddex1history(t i)];

end

%**************************

index=int32(1/t step)*delay+1;

s=y(index);

for t=t initial+t step:t step:t final

index=int32(t*(1/t step));
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y delay = y(index);

k=0;

%Thresholds

if y delay>=-2 & y delay<-1.5

k=-1.75;

elseif y delay>=-1.5 & y delay<-1

k=-1.25;

elseif y delay>=-1 & y delay<-0.5

k=-0.75;

elseif y delay>=-0.5 & y delay<0

k=-0.25;

elseif y delay>=0 & y delay<0.5

k=0.25;

elseif y delay>=0.5 & y delay<1

k=0.75;

elseif y delay>=1 & y delay<1.5

k=1.25;

elseif y delay>=1.5 & y delay<2
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k=1.75;

elseif y delay>=2 & y delay<2.5

k=2.25;

end

f=@(x)-1*k;

y new=Euler Method(s,f,t step);

s=y new;

y=[y;y new];

end

figure;

hold on;

hold all;

plot(transpose(t initial-delay:t step:t final),y);

plot([0 0],[-1,2.5]);

title(’dy/dt=-y(t-1)’);

xlabel(’time t’);

ylabel(’solution y’);

end
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%Evaluates the y’n+1’ value according to previous point information

%using Euler’s method

%Inputs:

% y n –> previous y value

% fy –> differential equation (function input)

% h –> step size

%

%Output:

% y n 1 –> next y value

function y n 1 = Euler Method(y n,fy,h)

f tn yn =fy(y n);

y n 1 = y n + f tn yn*h;

end

function s = ddex1history(t)

x =[1.8947;5.6899;44.9378; 119.1792;131.0523;52.1560];

s = x(1)+x(2)*t+x(3)*tˆ2+x(4)*tˆ3+x(5)*tˆ4+x(6)*tˆ5;

end
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