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Co-Supervisor

Prof. Dr. Ersan AKYILDIZ

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Azize HAYFAVİ
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ABSTRACT

CREDIT RISK MODELING

WITH STOCHASTIC VOLATILITY, JUMPS

AND STOCHASTIC INTEREST RATES

Yüksel, Ayhan

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Ersan AKYILDIZ

Co-Supervisor: Assoc. Prof. Dr. Azize HAYFAVİ

December 2007, 179 pages

This thesis presents the modeling of credit risk by using structural approach.

Three fundamental questions of credit risk literature are analyzed throughout

the research: modeling single firm credit risk, modeling portfolio credit risk and

credit risk pricing. First we analyze these questions under the assumptions that

firm value follows a geometric Brownian motion and the interest rates are con-

stant. We discuss the weaknesses of the geometric brownian motion assumption

in explaining empirical properties of real data. Then we propose a new extended

model in which asset value, volatility and interest rates follow affine jump dif-

fusion processes. In our extended model volatility is stochastic, asset value and

volatility has correlated jumps and interest rates are stochastic and have jumps.

Finally, we analyze the modeling of single firm credit risk and credit risk pricing

by using our extended model and show how our model can be used as a solution

for the problems we encounter with simple models.

Keywords: Credit risk, Affine jump diffusion models, Stochastic volatility, Jump
processes.
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ÖZ

KREDİ RİSKİNİN STOKASTİK VOLATİLİTE,

SIÇRAMA SÜREÇLERİ VE STOKASTİK FAİZ

ORANLARI İLE MODELLENMESİ

Yüksel, Ayhan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Ersan AKYILDIZ

Ortak Tez Yöneticisi: Doç. Dr. Azize HAYFAVİ

Aralık 2007, 179 sayfa

Bu çalışma, kredi riskinin yapısal yaklaşım aracılığıyla modellenmesini ortaya koy-

maktadır. Çalışmada kredi riskine ilişkin literatürde ele alınan üç temel problem

incelenmiştir: münferit bir firmanın kredi riskinin modellenmesi, portföy kredi

riskinin modellenmesi ve kredi riskinin fiyatlanması. İlk olarak, bahsi geçen üç

problem, firma değerinin geometrik Brownian hareketi izlediği ve faiz oranlarının

sabit olduğu varsayımları altında incelenmiştir. Geometrik brownian hareketi

varsayımının, gerçek verilerin ampirik özelliklerini açıklamadaki zayıflıkları tartı-

şılmıştır. Daha sonra, firma varlıklarının, volatilitenin ve faiz oranlarının afin

sıçrama-yayınma süreci izlediği yeni bir genişletilmiş model ortaya konulmuştur.

Genişletilmiş bu modelde volatilite stokastiktir, firma varlıkları ve volatilite ko-

rele sıçrama süreçlerine sahiptir ve faiz oranları stokastik ve sıçrama süreçlerine

sahiptir. Son olarak münferit bir firmanın kredi riskinin modellenmesi ve kredi

riskinin fiyatlanması problemleri genişletilmiş model aracılığıyla analiz edilmiş ve

yeni modelin, daha basit modellerde ortaya çıkan problemlerin çözümünde nasıl

kullanılabileceği gösterilmiştir.

Anahtar Kelimeler: Kredi riski, Afin sıçrama-yayınma modelleri, Stokastik volati-
lite, Sıçrama süreçleri.
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Chapter 1

INTRODUCTION

1.1 Definition of Credit Risk

Credit risk is one of the most prominent risks that financial institutions (es-

pecially a bank) are exposed to. Credit risk is defined as the risk of loss caused

by a credit-related event. Credit-related events, for instance, include default of a

counterparty or rating changes.

For classifying credit risk, we can use different classifications using different

criteria. For example, by looking at the party who creates credit risk, we can

classify credit risk into three broad categories. The first category includes unilat-

eral credit risk. This simplest type of credit risk arises if a financial institution has

a claim from a counterparty. The typical example is a bank loan. In the second

category, we have bilateral credit risk, which generally arises in derivative expo-

sures such as an interest rate swap. In this case, depending on the market factors

affecting derivative value, at any time, either party to the contract can have a

claim against each other. This is because some derivatives may have positive or

negative value to a counterparty depending on the level of market factors (e.g.

interest rates, exchange rates). In the third category we have a somewhat differ-

ent type of credit risk, which is called reference credit risk. This type of credit

risk may arise for exposures in securitisation or asset-backed securities. In these

cases, even if the creditwothiness of the counterparty dose not change, a price fall

1



occurs if the creditworthiness of reference obligors deteriorate. Another impor-

tant classification is made based on the definition of loss. If we define the credit

losses those caused only if a default occurs, we call this approach a default-mode

(DM) approach. Alternatively, beside defaults, we can include losses stemming

from rating downgrades and changes in credit spreads. The latter approach is

called mark-to-market (MtM) approach.

1.2 Sources of Credit Risk

In this section, sources of credit risk (i.e. credit risk factors) are introduced. In

order to determine the factors that affects credit risk, we first define credit loss.

As mentioned in the previous section, credit risk can be defined in a DM or a

MtM environment. First we will analyze credit risk factors in a DM environment.

Let assume a credit card exposure of a bank. In this contract, bank grants a

credit line or limit to its client (i.e. credit card holder). By using credit card,

the customer can borrow and repay any amount of money up to this limit. After

setting the limit by the bank, the exact amount of money borrowed is in the

discretion of the borrower. Assume that we want to asses the riskiness of a credit

card exposure at time t=0. Our risk horizon is 1 year. The credit card limit is $

100, and only $ 40 is used currently. Possible scenarios are given in Figure 1.1.

At the end of the risk horizon, i.e. at t=1, the drawn part can change. In our

example the drawn part increases to $ 70. The increase in the drawn amount

increases credit risk. Therefore the first risk factor we should consider is the

possible increase in the exposure amount. This is captured by exposure at default

(EAD). In our example, EAD amount is $ 70, not $ 40. Generally EAD is

expressed as a ratio which will be applied to the current exposure. For example

in our case EAD ratio is 70 / 40 = 1.75 .

At this time there are two possible events. In the first scenario we may have

no default and the bank collects all its money (i.e. $ 70). In this case there is no

2
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Figure 1.1: Default Mode Scenarios

credit loss. In the second scenario, our obligor defaults on his credit card claim.

The possibility of default is a source of risk for our claim. This risk is captured

by probability of default (PD). Our credit risk increases with PD.

In the default case, generally banks may not collect all their money back.

Rather a portion of the EAD amount can be recovered. In our example, the bank

can only recovers $ 50, and therefore incurs a credit loss of $ 20. The final loss

incurred on EAD amount is called loss given default (LDG). In our example LGD

amount is $ 20. In general LGD is expressed as a ratio which will be applied to

the EAD amount. In our case LGD ratio is 20 / 70 = 0.29 .

Therefore, in DM environment we have three different risk factors: PD, LGD

and EAD. If we model these risk factors appropriately, we can model credit risk.

There are two additional important issues in modeling credit risk. They are inter-

and intra- dependencies for risk factors. The first term refers to the dependencies

of PDs or LGDs or EADs for different obligors. For instance two firms may have

3



dependent PDs since they operate in the same sector. Or two loans may have

dependent LGDs because they have a same kind of collateral. Or two swaps

may have dependent EADs because they have the same underlying interest rate.

The intradependencies among risk factors is defined as the dependencies between

PD and LGD, or PD and EAD, or LGD and EAD. For instance if there exists

common factors that both affect PD and LGD of a firm, we should model the

dependence structure between these two risk factors.

In a MtM environment, we should have more risk factors, since credit loss is

caused not only by default, but also by other credit-related events. For example

assume a bank that has an investment in a corporate bond. The current value

for the bond is found, using arbitrage principles, by discounting all cash flows

by the corresponding discounting factor. The discounting factors should include

both risk-free rates for the corresponding maturities and credit spreads for the

corresponding maturities and credit quality (i.e. credit rating). The example is

schematized in Figure 1.2.

 

Figure 1.2: Mark-to-Market Scenarios

We can find the current value of the bond by using current term structure for

risk-free yields and credit spreads. At the end of our risk horizon, i.e. t=1, the

first thing that can happen is the change in the expected cash flows. For example

this is more pronounced for interest rate swaps. This risk is captured by EAD.
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Then we have two possible scenarios: default or no-default. Similar to the DM

environment, the risk of default is captured by PD. If we have a default case, we

may recover only a portion of the par value and may incur some loss. This risk

is also captured by LGD.

Otherwise, if we have a no-default case, we apply the same procedure for pricing

and discount all the expected cash flows by using market values of risk-free yields

and credit spreads available at time t=1. Therefore, even if we do not have

a default, the value of our credit-risky position may deteriorate if there is an

adverse movement in risk-free yields or credit spreads, or if the creditworthiness

of the obligor deteriorates (i.e. its rating is downgraded). Hence we have three

additional sources of risk. The first one is caused by the risk-free term structure.

However this source of risk is purely related to market interest rates and, rather

than credit risk, it is generally classified within the market risk. The second source

of risk is the credit spreads. This credit spread risk is an important element

of credit risk in a MtM environment. For instance, if the market participants

become more risk averse and credit spreads widens, the values of all credit-risky

securities will decrease. Indeed credit spread risk is at the intersection of market

and credit risks, and sometimes classified under market risk. The final risk factor

is the rating downgrade risk. Even if the credit spreads do not change, a rating

downgrade of an obligor will cause loss because the appropriate credit spreads

are now different (i.e. higher).

To sum up we have five types of credit risk factors in a MtM environment.

These are PD, LGD, EAD, credit spreads and rating downgrade probabilities.

Similar to the DM environment, in modeling credit risk, we should also consider

inter and intra- dependencies for these risk factors.
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1.3 Main Problems Dealt within Credit Risk

Literature

We have a huge literature on credit risk, in which different papers attempt

to answer different questions related to credit risk. However, we can classify the

main problems dealt within the whole credit risk literature into three main simple

questions:

1. What is the riskiness of a single claim?

2. What is the riskiness of a portfolio of claims?

3. How can we price a single claim or a portfolio of claims?

The first question is related to estimating individual credit risk factors for a

single claim (or firm). For example estimating PD of a single firm, or estimating

potential recoveries from a certain collateral type (e.g. residential mortgages),

or estimating EAD for an interest rate swap are all research fields related to the

first question. In this category we see a numerous research on credit scoring /

rating. Altman’s Z-score [Alt68] is a popular example in this category. There are

many papers that attempt to estimate PDs from bond prices. Although not as

popular as PD estimation, estimation of LGDs and EADs are also an active area

of research. For example Moody’s LossCalc methodology [GS02] and [GS05 ]

attempts to model LGDs using regression analysis.

The second main question is related to the credit risk of a portfolio. Even if

we estimate all the credit risk factors of each individual claims in the portfolio,

we should additionally model the dependencies to estimate a more realistic port-

folio risk. This is because of diversification effects. Although we generally have

positive correlation between credit risk factors for different obligors, there exists

diversification benefits for a portfolio of claims. The main additional gradient for

the portfolio modeling is the default correlations which are difficult to estimate.

There are many different models that attempt to capture the portfolio risk. For
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example popular commercial models include Credit Metrics [GFB97 ], Credit

Risk Plus [CS97] and Credit Portfolio View ( [Wil97a] and [Wil97b]). Also

the new Basel Accord, called Basel-II [BCBS06], which sets the regulatory rules

for bank capital, also assumes a portfolio model for its internal ratings-based

approaches. Estimating portfolio risk can help financial institutions to increase

efficiency in taking investment decisions and allocation capital among business

lines.

The final question is related to pricing. Pricing is somewhat a different problem

than assessing riskiness. Because in pricing problems we use different probability

spaces than we use in risk measurement. The first ground-breaking paper for

credit pricing is the famous paper of Merton [Mer74]. In this paper, Merton

treats credit-risky securities as contingent claims against firm’s assets and uses

option pricing theory to value these securities. This approach used by Merton is

called structural approach to credit risk. After Merton’s paper, many additional

papers were published, each attempt to generalize the simplistic assumptions used

by Merton. Beside structural approach, there are also papers that do not assume

a structural relation between default and firm fundamentals, and treat default as

a surprise event. This approach is called reduced-form approach. The literature

on credit pricing deals with pricing bonds (e.g. corporate bonds) and loans (e.g.

LIBOR market) as well as other more complex instruments such as asset-backed

securities (e.g. mortgage-backed bonds) and credit derivatives (e.g. credit default

swaps, credit linked notes, collateralized debt obligations).

1.4 Credit Risk Modeling Approaches

As mentioned in the previous section, there are two different approaches for

credit risk modeling: structural approach and reduced-form approach.

In structural modeling, the default of a firm is directly related to its market

value of assets. In order to understand this relation, first, let analyze the capital

structure of a simple firm. The firm holds assets (A) and the available funds are
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liabilities (L) and capital (C). Therefore we have,

A = L + C

This equation is true for two different cases. In the first case we measure

the assets, liabilities and capital by using accounting principles. Although these

principles do not always yield economically reasonable values for these items, the

equation always holds because the accounting principles are designed to do so.

Additionally this equation also holds if we measure each item by using market

values. Assume, for example, that the firm has issued only one traded zero coupon

bond as a liability, invests in a traded zero coupon bond and the shares of the

firm are also traded in the secondary market. Then the above equation holds

for the capital structure. However, in real life, we generally do not observe the

market values for all items. For example there are sometimes illiquid assets, or

non-traded debt. However the unobservability of these values do not breach the

equality.

Now assume that the market value of assets decreases to the level of liabilities,

i.e. A=L. Then the market value of capital is zero, which means that the firm

bankrupts, and hence defaults. Therefore we can simply define the default event

as the equivalence of assets to liabilities. If we are able to model the evolution of

assets and liabilities, then we can model the default event.

The structural approach uses this idea to model default events. The first struc-

tural model is the famous Merton’s model [Mer74]. In this model the firm value

is assumed to follow a geometric Brownian motion, and the value of liabilities are

fixed. Then we can easily find the probability of default by finding the probability

of the event that the asset value is below the liabilities at maturity.

Indeed the Merton model is simply an application of Black-Scholes option pric-

ing model [BS73] to the firm’s equity and debt. Because we can see firm’s equity

and debt as contingent claims written against firm’s assets. To understand this,
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let analyze the payoffs to equity and debt. These payoffs are illustrated in Fig-

ure 1.3.
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Figure 1.3: Payoffs for Debt and Equity

The equity holders have the potential to gain from extreme returns, but have

limited liability which is bounded by their investment. Therefore if the asset

values are below the liabilities, the payoff to the equity holders is always zero.

But they take all the upside returns if the asset value is over the liabilities. For

debt holders, the picture is the reverse. They take no upside gain if the firm has

extreme profits (i.e. A ≥ L). The only amount they can obtain is the interest

and principal amount they lent. However, they may incur loss if the asset values

can not meet liability requirements (i.e. A ≤ L).

The payoffs we analyze are actually similar to the option payoffs. Indeed, the

equity payoff is exactly the same with the payoff of a call option. And the payoff

for debt is the same with the payoff of a portfolio with a long position in a risk-free

bond and a short position in a put option. Therefore we can use standard option

pricing framework for pricing credit-related instruments. Actually the isolated
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credit risk component of a bond, which is the difference between a risk-free and

a risky bond, is equivalent to a put option on firm assets.

Although the structural approach has a well-grounded explanation for default

event, there are many weaknesses of the simple Merton model. And these yield

extensions to the original work. For example one of the important extensions

to the original model was about the timing of default. In the original Merton

model the default can only be happen at the maturity. But this is not a realis-

tic assumption. [BC76] introduces the first-passage time models, in which the

default occurs at the first hitting time of the asset value to the default barrier.

There are also extensions which deals with the default barrier. In the simple

model the default barrier is equal to the liabilities and it is constant. But we can

assume stochastic default barriers and barrier may be determined endogenously

or exogenously. Studies assuming different barrier specifications include [Le94],

[LT96] and [BV97].

In the Merton model, the firm’s asset value follows a geometric Brownian mo-

tion which produces gaussian returns and under this setting the default events

become predictable. In order to remove this unrealistic assumption, [Zhou97] in-

troduces jumps in the asset values which creates discontinuities. With the jumps,

the default event becomes unpredictable. Additionally [FSS06] and [FWZ06]

introduce stochastic volatility in the asset values which captures an important

phenomena observed in financial asset prices, that is volatility clustering.

In pricing credit-risky securities, we also use risk-free interest rates as an input

to the model. Merton model assumes constant interest rates. However, fur-

ther studies examine the effects of stochastic interest rates including [STD93],

[KRS93], [LS95], [BV97] and [Zhou97].

Contrary to the structural approach, the reduced-form approach do not assume

any explicit relation between the default event and the firm fundamentals. Rather

it takes the default event as an unpredictable (surprise) event. In reduced-form
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models, the default event is governed by an intensity-based or hazard-rate process.

In these models the default time is an inaccessible stopping time. In this approach

we model directly the distribution of the default time.

[JT95] assumes an exponentially distributed default time with constant haz-

ard rate. Under this specification the default arrival has a Poisson distribution.

[JLT97] extends the simple exponential default time model by assuming a contin-

uous time Markov chain for the default event. In their model, the default occurs

when the K-state Markov chain hits the absorbing state (which is default) with

Markov probabilities are understood to be rating transition probabilities. [DS98]

uses credit risk-adjusted short rates for valuing credit-risky bonds. In their model

the risky short rate includes both risk-free short rate and risk premiums associ-

ated with credit and liquidity risk.

For a well-structured review of different modeling approaches see [Bohn00] and

for a detailed mathematical text see [BR02].

1.5 Structure of the Thesis

This thesis aims at analyzing mathematical aspects of structural credit risk

modeling with two distinct assumptions. The thesis has three main parts. In the

first part, we will present the modeling approaches under the assumption that the

firm value follows a geometric Brownian motion. Models for the three important

credit risk-related questions are presented in chapters 2 to 4. Chapter 2 present

modeling of single firm credit risk. Chapter 3 deals with portfolio credit risk.

And chapter 4 is devoted to the credit pricing. We have chapter 5 in the second

part, which deals with the weaknesses of geometric Brownian motion assumption.

Also in this chapter, possible extensions for the geometric Brownian motion is

discussed. In the third part of the thesis, we introduce stochastic volatility and

jumps in the asset value process and make risk-free interest rates stochastic, and

again analyze the credit risk-related questions. Chapter 6 introduces models for
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single firm credit risk with our extended assumptions. Chapter 7 deals with credit

pricing with the same assumptions, and chapter 8 concludes.
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Chapter 2

MODELING SINGLE FIRM

CREDIT RISK

In this chapter, we analyze the modeling of single firm credit risk with a struc-

tural approach under the assumption of geometric Brownian motion. To serve

our purpose, we first analyze the asset values and its returns. There are dif-

ferent sections devoted to the analysis of pathwise and distributional properties

of returns, algorithms for simulation of returns as well as scaling and addition

properties of returns. Then we will introduce the credit risk factors, PD, LGD

and EAD, as well as correlation among them. And at the end we have the loss

distribution for a single claim and the common risk measures.

2.1 Asset Value Process and Returns

Assume that value of the firm’s assets follows a geometric Brownian motion.

Then we can express asset value by using the following stochastic differential

equation:
dVt

Vt

= µdt + σdWt (2.1)

where µ ∈ R , σ ≥ 0 and Wt is a standard Brownian motion.

Solution of asset value process can be found by using Ito Calculus. Let Yt =

f(Vt) with f(x) = ln(x). Then we have f ′(x) = 1/x and f ′′(x) = −1/x2. Then
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by using Ito Lemma:

dYt = f ′ (Vt) dVt +
1

2
f ′′ (Vt) d < Vt, Vt >︸ ︷︷ ︸

=Vt
2σ2dt

=
1

Vt

dVt +
1

2

(
−1

Vt
2

)
Vt

2σ2dt

=
1

Vt

(µVtdt+ σVtdWt)−
1

2
σ2dt

=

(
µ− 1

2
σ2

)
dt+ σdWt

Therefore:

Yt = Y0 +

∫ t

0

(
µ− 1

2
σ2

)
dt+

∫ t

0

σdWt

= Y0 +

(
µ− 1

2
σ2

)
t+ σWt

Since Yt = ln (Vt):

ln (Vt) = ln (V0) +

(
µ− 1

2
σ2

)
t+ σWt

Vt = V0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
(2.2)

Since the standard Brownian motion has a normal distribution, the asset value

therefore follows a log-normal distribution. Simulated examples for asset values

with different drift and volatility terms are given in Figure 2.1.

The continuously compounding (logarithmic) returns between time 0 and t is

defined as:

R0,t := ln (Vt/V0) = ln (Vt)− ln (V0)
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Figure 2.1: Simulated Asset Values

Therefore:

R0,t = ln (V0) +

(
µ− 1

2
σ2

)
t+ σWt − ln (V0)

=

(
µ− 1

2
σ2

)
t+ σWt (2.3)

And the return between time (t−∆t) and t is:

Rt−∆t,t := ln (Vt)− ln (Vt−∆t)

= ln (V0) +

(
µ− 1

2
σ2

)
t+ σWt − ln (V0)−

(
µ− 1

2

)
(t−∆t)− σWt−∆t

=

(
µ− 1

2
σ2

)
∆t+ σ (Wt −Wt−∆t)

For Rt, the corresponding stochastic differential equation is:

dRt =

(
µ− 1

2
σ2

)
dt+ σdWt (2.4)
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And the detrended returns are defined as:

RD
t := Rt −

(
µ− 1

2
σ2

)
t = σWt (2.5)

2.2 Pathwise Properties of Returns

In this section we analyze the pathwise properties of returns.

2.2.1 Continuity

Since Brownian motion is, by definition, continuous, the asset value process

and return process are continuous.

2.2.2 Independence

For time intervals (t− 2∆t, t−∆t) and (t−∆t, t), we have:

Rt−2∆t,t−∆t =

(
µ− 1

2
σ2

)
∆t+ σ (Wt−∆t −Wt−2∆t)

Rt−∆t,t =

(
µ− 1

2
σ2

)
∆t+ σ (Wt −Wt−∆t)

Since the two increments of Brownian motion, i.e. (Wt−∆t −Wt−2∆t) and

(Wt −Wt−∆t), are, by definition, independent, the two return Rt−2∆t,t−∆t and

Rt−∆t,t, are also independent.

2.2.3 Stationarity

Since (Wt−∆t −Wt−2∆t) has the same distribution as (Wt −Wt−∆t), Rt−2∆t,t−∆t

has the same distribution as Rt−∆t,t, which means that the returns are stationary.
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2.2.4 Martingale Property

The detrended or unanticipated part of returns has martingale property:

RD
t = Rt −

(
µ− 1

2
σ2

)
t = σWt

E
[
RD

t |Fs

]
= E [σWt|Fs] = E

σ (Wt −Ws) + σWs︸︷︷︸
∈Fs

|Fs


= E

 σ (Wt −Ws)︸ ︷︷ ︸
Independent of Fs

|Fs

+ σWs

= 0 + σWs

= σWs

= RD
s

2.2.5 Markov Property

The detrended part of returns has Markov property. To show this, we should

have, for each non-negative Borel-measurable function f, there is another Borel-

measurable function g such that:

E
[
f
(
RD

t

)
|Fs

]
= g

(
RD

t

)
= E [f (σWt) |Fs]

= E [f (σ (Wt −Ws) + σWs) |Fs]

Since (Wt −Ws) is independent of Fs andWs ∈ Fs, from Independence Lemma,

we have:

E [f (σ (Wt −Ws) + σWs) |Fs] = g (Ws)

where g (x) = E [f (σ (Wt −Ws) + σx)].
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Since σ (Wt −Ws) ∼ N (0, σ2 (t− s)),

g (x) =
1√

2πσ2 (t− s)

∫ ∞

−∞
f (ω + σx) e

−ω2

2σ2(t−s)dω

We may change the variable τ = t− s and y = ω + σx :

g (x) =
1√

2πσ2τ

∫ ∞

−∞
f (y) e

−(y−σx)2

2σ2τ dy

And define the transition density h (τ, x, y, σ) as:

h (τ, x, y, σ) :=
1√

2πσ2τ
e
−(y−σx)2

2σ2τ

Therefore:

g (x) =

∫ ∞

−∞
f (y)h (τ, x, y, σ) dy

At the end, we obtain:

E [f (σWt) |Fs] = g (Ws) =

∫ ∞

−∞
f (y)h (τ, ωs, y, σ) dy

Therefore the detrended part of returns has Markov property.

2.2.6 Quadratic Variation

We analyze the quadratic variation of detrended returns. For any partition

of time interval, [0, T ], π = {0 = to, t1, · · · , tn = T},with ‖π‖ = maxj (tj+1 − tj),

the sampled quadratic variation is defined as:

QVπ =
n−1∑
j=0

(
RD

tj+1
−RD

tj

)2

=
n−1∑
j=0

σ2
(
Wtj+1

−Wtj

)
= σ2

n−1∑
j=0

(
Wtj+1

−Wtj

)2
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We can find E [QVπ] as follows:

E
[(
Wtj+1

−Wtj

)2]
= V ar

[
Wtj+1

−Wtj

]
= tj+1 − tj

⇒ E [QVπ] =
n−1∑
j=0

σ2E
[(
Wtj+1

−Wtj

)2]
= σ2

n−1∑
j=0

(tj+1 − tj) = σ2τ

We can find Var [QVπ] as follows:

V ar
[(
Wtj+1

−Wtj

)2]
= E

[{(
Wtj+1

−Wtj

)2 − (tj+1 − tj)
}2
]

= E
[(
Wtj+1

−Wtj

)4 − 2 (tj+1 − tj)E
[(
Wtj+1

−Wtj

)2]
+(tj+1 − tj)

2]
= 3(tj+1 − tj)

2 − 2(tj+1 − tj)
2 + (tj+1 − tj)

2

= 2(tj+1 − tj)
2

⇒ V ar [QVπ] =
n−1∑
j=0

V ar
[(
Wtj+1

−Wtj

)2]
=

n−1∑
j=0

2(tj+1 − tj)
2

Additionally, we have:

V ar [QVπ] =
n−1∑
j=0

2(tj+1 − tj)
2 ≤

n−1∑
j=0

2‖π‖ (tj+1 − tj) = 2‖π‖τ

The quadratic variation for detrended returns is defined as:

QV = lim
‖π‖→0

n−1∑
j=0

(
RD

tj+1
−RD

tj

)2
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In the limit we have:

E [QV ] = lim
‖π‖→0

E

[
n−1∑
j=0

(
RD

tj+1
−RD

tj

)2
]

= σ2τ

Additionally since V ar [QVπ] =
∑n−1

j=0 2(tj+1 − tj)
2 is non-negative, V ar [QVπ] ≤

2‖π‖τ , and lim‖π‖→0 2‖π‖τ = 0, we have:

V ar [QV ] = lim
‖π‖→0

V ar

[
n−1∑
j=0

(
RD

tj+1
−RD

tj

)2
]

= lim
‖π‖→0

V ar [QVπ] = 0

Therefore:

QV = σ2τ

2.3 Distributional Properties of Returns

In this section we analyze the density, moment generating function and mo-

ments of returns.

2.3.1 Density

For Rt1,t2 , the cumulative distribution function is:

F (x) = Pr {Rt1,t2 < x}

= Pr

{(
µ− 1

2
σ2

)
(t2 − t1) + σ (Wt2 −Wt1) < x

}
= Pr

{
Wt2 −Wt1 <

x−
(
µ− 1

2
σ2
)
(t2 − t1)

σ

}
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Since (Wt2 −Wt1) ∼ N (0, t2 − t1), we have:

F (x) = Φ

[
x−

(
µ− 1

2
σ2
)
(t2 − t1)

σ
√
t2 − t1

]

where Φ is the cumulative density function for standardized normal distribution.

For τ = t2 − t1,

F (x) = Φ

[
x−

(
µ− 1

2
σ2
)
τ

σ
√
τ

]

And the density is:

f (x) =
dF (x)

dx
= φ

[
x−

(
µ− 1

2
σ2
)
τ

σ
√
τ

]

where φ is the density for standard normal distribution.

Therefore:

Rt1,t2 ∼ N

((
µ− 1

2
σ2

)
τ, σ2τ

)
(2.6)

Examples of return distributions are given in Figure 2.2.
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Figure 2.2: Examples of Return Distributions
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2.3.2 Moment Generating Function

The moment generating function (MGF) of a random variable X is defined as:

MGFX (u) = E
[
euX
]

Then we can define the MGF of returns as follows:

MGFRt1,t2
(u) = E

[
euRt1,t2

]
= E

[
eu(µ− 1

2
σ2)τ+uσ(Wt2−Wt1)

]
= eu(µ− 1

2
σ2)τE

[
euσ(Wt2−Wt1)

]
Since Wt2 −Wt1 has the same distribution with Wτ and using MGF of normal

distribution:

MGFRt1,t2
(u) = eu(µ− 1

2
σ2)τe

1
2
σ2u2τ

= exp

{
uµτ − 1

2
uσ2τ +

1

2
u2σ2τ

}

2.3.3 Moments

We can find the moments by using the moment generating function. For any

random variable X, the general relation with kth moment, mk, and moment

generating function is as follows:

mk := E
[
Xk
]

=
dk

duk
MX (0)

For the returns, mean, variance, skewness and excess kurtosis is given by:

Mean = E [Rt1,t2 ] =

(
µ− 1

2
σ2

)
τ

Variance = E
[
(Rt1,t2 − E [Rt1,t2 ])

2] = σ2τ
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Skewness =
E
[
(Rt1,t2 − E [Rt1,t2 ])

3](
E
[
(Rt1,t2 − E [Rt1,t2 ])

2]) 3
2

= 0

Excess Kurtosis =
E
[
(Rt1,t2 − E [Rt1,t2 ])

4]([
(Rt1,t2 − E [Rt1,t2 ])

2])2 − 3 = 0

Therefore the distribution of returns is symmetric and mesokurtic.

2.4 Simulation of Returns

The model for asset value returns is a continuous model. In order to simulate

it, we should use discretized version of the model. For this, we divide the time

interval [0, T ] into discrete intervals, {0 = t0, t1, t2 · · · , tN = T}. The discrete in-

tervals need not be equally spaced. Then, by using Euler Scheme, the discretized

model is given below.

Rt1,t2 =

(
µ− 1

2
σ2

)
∆t+ σ

√
∆tZ

where ∆t = t2 − t1 and Z ∼ N (0, 1).

There are many different techniques used for the simulation of normal variables

(see for example [Rub81] or [Ross97]). The most popular ones are:

• The inverse transform method

• The Box-Muller method

• The rejection method

In all these three methods, first we need to generate random variables from

uniform distribution. There are different algorithms for generating uniformly

distributed random numbers, called low discrepancy numbers. In the next section

we give one method for generating them.
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2.4.1 Generating Low Discrepancy Numbers

One method that can be used for generating low discrepancy numbers is the

Halton sequence. Haltons low discrepancy sequences are based on a simple idea

[Bre02]:

• Representing an integer number n in a base b, where b is a prime number:

n = (dm · · · d4d3d2d1d0)b =
m∑

k=0

dkb
k

• Reflecting the digits and adding a radix point to obtain a number, the nth

number in the Halton sequence, within the unit interval [0, 1]:

h (n, b) = (0.d0d1d2d3d4 · · · dm)b =
m∑

k=0

dkb
−(k+1)

2.4.2 The Inverse Transform Method

In this method, we use the following proposition.

Proposition: Let U be a uniform (0, 1) random variable. For any continuous

distribution function F, the random variable X defined by X = F−1 (U) has

distribution F [Ross97].

Then the algorithm for simulating random numbers from normal distribution

is:

• Step 1: Simulate U ∼Uniform(0, 1)

• Step 2: X = Φ−1 (U) where Φ is the distribution function for standard

normal distribution. Then X has a standard normal distribution.
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2.4.3 The Box-Muller Method

The method uses the fact that the coordinates of a point (x, y) can be expressed

as:

(x, y) =
(
cosθ

√
x2 + y2, sinθ

√
x2 + y2

)
where θ is the angle between x-axis and the line (0,0)-(x,y).

The algorithm is:

• Step 1: Generate two independent uniformly distributed random numbers:

U1 ∼Uniform(0, 1), U2 ∼Uniform(0, 1).

• Step 2: Set R2 = −2 ln (U1) and θ = 2πU2

• Step 3: Set Z1 = Rcosθ and Z2 = Rsinθ . Then, Z1 and Z2 are independent

and identically distributed (iid) standardised normal random variables.

2.4.4 The Rejection Method

The method uses the following theorem.

Theorem: Let X be a random variate distributed with the density function

fx (x), which is represented as:

fx (x) = C g (x) h (x)

where C ≥ 1, 0 ≤ g (x) ≤ 1 and h (x) is also a density. Let U and Y be distributed

uniformly (0, 1) and h (x) respectively. Then:

fy (x | U ≤ g (Y )) = fx (x)

For proof see [Rub81], theorem 3.4.1.

The algorithm is:

• Step 1: Generate U ∼ Uniform (0, 1)
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• Step 2: Generate Y from the density h(x)

• Step 3: If U ≤ g (Y ) deliver Y as the variate generated from fx (x)

2.5 Scaling and Addition Properties

In order to analyze the scaling and addition properties, we should determine

the characteristic function for returns.

Define µR =
(
µ− 1

2
σ2
)

and σR = σ such that:

R0,t =

(
µ− 1

2
σ2

)
t+ σWt = µRt+ σRWt

Then we can define the characteristic function.

ϕR0,t (u) = E [exp {iuR0,t}]

= E [exp {iuµRt+ iuσRWt}]

= exp {iuµRt}E [exp {iuσRWt}]

= exp {iuµRt}ϕ(σRWt) (u)

= exp {iuµRt} exp
{
−1

2
u2σ2

Rt

}
= exp

{
t

(
iuµR −

1

2
u2σ2

R

)}

2.5.1 Scaling Property

We analyze the properties of cR0,t where c ∈ R, by using the scaling property

of characteristic functions, i.e.:

ϕcR0,t (u) = ϕR0,t (cu) = exp

{
t

(
icuµR −

1

2
u2c2σ2

R

)}
As can be seen from the above equality, if R0,t follows a geometric Brownian

motion with drift µR and volatility σR, then cR0,t follows a Geometric Brownian

Motion with drift c.µR and volatility c.σR.
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2.5.2 Addition Property

We want to analyze the properties of sum of two independent returns, i.e.

R
(1)
0,t +R

(2)
0,t .

By using the addition property of characteristic functions, ifR
(1)
0,t ∼ GBM (µ1, σ1)

and R
(2)
0,t ∼ GBM (µ2, σ2), then we have:

ϕ
R

(1)
0,t+R

(2)
0,t

(u) = ϕ
R

(1)
0,t

(u)ϕ
R

(2)
0,t

(u)

= exp

{
t

(
iuµ1 −

1

2
u2σ2

1

)}
exp

{
t

(
iuµ2 −

1

2
u2σ2

2

)}
= exp

{
t

(
iu (µ1 + µ2)−

1

2
u2
(
σ2

1 + σ2
2

))}

Therefore, if R
(1)
0,t ∼ GBM (µ1, σ1) and R

(2)
0,t ∼ GBM (µ2, σ2) , then we have

R
(1)
0,t +R

(2)
0,t ∼ GBM

(
µ1 + µ2,

√
σ2

1 + σ2
2

)
.

2.6 Probability of Default

In this section, we determine the probability that the firm will go into default

within a time horizon. In structural models, the default is assumed to happen,

if the value of firm’s assets is below the firm’s liabilities. Let DP denote the

default point, which is assumed to be the face value of firm’s liabilities. Then the

probability of default is defined as:

PD = Pr {VT ≤ DP} = P {ln (Vt) ≤ ln (DP )}

= Pr {ln (Vt/V0) ≤ ln (DP/V0)}

= Pr {R0,T ≤ ln (DP/V0)}

= Pr

{(
µ− 1

2
σ2

)
T + σWT ≤ ln (DP/V0)

}
= Pr

{
WT ≤

ln (DP/V0)−
(
µ− 1

2
σ2
)
T

σ

}
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Since WT ∼ N (0, T ), we have:

PD = Φ

[
ln (DP/V0)−

(
µ− 1

2
σ2
)
T

σ
√
T

]
(2.7)

Therefore the PD depends on the level of leverage, i.e. DP/V0, parameters of

asset value process, i.e. µ and σ, and the time horizon, i.e. T . In Figure 2.3, we

see the PDs sketched with respect to leverage, µ and σ, assuming T = 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Leverage

PD

µ = 0.05, σ = 0.5
µ = 0.1, σ = 0.5
µ = 0.2, σ = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Leverage

PD

µ = 0.1, σ = 0.25
µ = 0.1, σ = 0.5
µ = 0.1, σ = 0.75

Figure 2.3: Probability of Default

As seen from the graphs, the PD increases with the volatility of asset values.

This is because the more volatility the more the chance of hitting DP. The op-

posite is true for the asset drift. Because a high drift increases the chance of an

upward sloping asset trajectory, which decreases the PD. And finally PD increases

with leverage since high leverage means that the initial asset value is already so

close to the default point.

Sometimes, a measure called distance-to-default (DD) is defined as:

DD :=
ln (V0/DP ) +

(
µ− 1

2
σ2
)
T

σ
√
T

(2.8)
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It measures the distance of the expected value of firm’s assets from the default

point in terms of its standard deviation. Then we have:

PD = Φ (−DD) ⇒ DD = −Φ−1 (PD)

There is also another approach called first-passage time approach to the defi-

nition of PD. Contrary to the classical approach where default can happen only

at maturity, in first-passage time approach, the default happens at the first time

asset value hits DP.

The default time, τ , and the PD in first-passage time approach are defined as

follows.

τ := inf {τ ∈ [0, T ] : Vτ ≤ DP}

PDFPT := P {τ ≤ T} = P

{
inf

0≤t≤T
Vt ≤ DP

}
= P

{
ln

(
inf

0≤t≤T
Vt

)
≤ ln (DP )

}
Since ln (.) is a monotonic function:

PDFPT = P

{
inf

0≤t≤T
ln (Vt) ≤ lnDP

}
= P

{
inf

0≤t≤T

[
ln (V0) +

(
µ− 1

2
σ2

)
t+ σWt

]
≤ lnDP

}
= P

{
inf

0≤t≤T

[
ln (V0/DP ) +

(
µ− 1

2
σ2

)
t+ σWt

]
≤ 0

}
If we define:

θ1 := ln (V0/DP )

θ2 :=

(
µ− 1

2
σ2

)
θ3 := σ
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then:

PDFPT = P

{
inf

0≤t≤T
θ1 + θ2t+ θ3Wt ≤ 0

}
To find this probability, we use the following Lemma.

Lemma: Let Y be given by Yt = y0 + ϑt + σWt,where ϑ ∈ R, σ > 0

and Wt is a standard Brownian motion under P. Then the random time τ :=

inf {t ≥ 0, Yt ≤ 0} has an inverse Gaussian probability distribution under P. More

specifically, for any 0 < t <∞, we have:

Pr {τ ≤ t} = Φ (h1 (t)) + e−2y0ϑ/σ2

Φ (h2 (t))

where:

h1 (t) =
−y0 − ϑt

σ
√
t

h2 (t) =
−y0 + ϑt

σ
√
t

For proof see [MR05].

When we apply this Lemma, we have:

PDFPT = Φ

(
− ln (V0/DP )−

(
µ− 1

2
σ2
)
T

σ
√
T

)

+e−2(µ− 1
2
σ2) ln(V0/DP )/σ2

Φ

(
− ln (V0/DP ) +

(
µ− 1

2
σ2
)
T

σ
√
T

)

= Φ

(
ln (DP/V0)−

(
µ− 1

2
σ2
)
T

σ
√
T

)

+

(
DP

V0

)2(µ− 1
2
σ2)/σ2

Φ

(
ln (DP/V0) +

(
µ− 1

2
σ2
)
T

σ
√
T

)
(2.9)
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Note that the first term is the PD under the classical approach. Since both DP

and V0 are non-negative and the last term is a probability (i.e. non-negative),

PDFPT is always greater than the PD in the classical approach. Throughout

the thesis, we use classical approach unless stated otherwise. The sensitivity of

PDFPT with respect to different parameters are shown in Figure 2.4.
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Figure 2.4: Probability of Default in First-Passage Approach

2.7 Loss Given Default

In Merton model, the recovery amount is equal to asset value in the event of

default, i.e. VT . Therefore in the model LGD is assumed to be stochastic. In

structural modeling, sometimes LGD is assumed to be deterministic. However,

there are substantial empirical findings showing that the LGD ratios are highly

volatile (for example [AK96], [MIS02]). Therefore modeling LGD as a random

variable is a reasonable assumption.

In Merton model, the recovery amount is VT and the recovery ratio, i.e. RR =

1 − LGD, is VT

F
where F is the face value of debt. We already know that VT

follows a lognormal distribution. Then we can express the distribution of LGD
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as a truncated lognormal distribution since we can only have a loss if a default

occurs. Therefore:

RR =
1

F
× VT given VT ≤ F (2.10)

Then the expected RR is given by:

E [RR] = E

[
VT

F
|VT ≤ F

]
=

1

F
× E [VT |VT ≤ F ]

The expectation of the truncated function is given by [ARS02 ] and for a

formal proof see [LLKM97]:

E [VT |VT ≤ F ] = eµ∗+
σ2
∗
2 ×

Φ
(

ln(F )−µ∗
σ∗

− σ∗

)
Φ
(

ln(F )−µ∗
σ∗

)
where µ∗ = ln (Vt) +

(
µ− σ2

2

)
τ and σ2

∗ = σ2τ are the mean and variance of

ln (Vt). When we put these into the equation:

E [VT |VT ≤ F ] = eln(Vt)+µτ

Φ

(
−

ln(Vt
F )+

�
µ+σ2

2

�
τ

σ
√

τ

)
Φ

(
−

ln(Vt
F )+

�
µ−σ2

2

�
τ

σ
√

τ

)
= Vte

µτ Φ (−d1)

Φ (−d2)

= E [VT ]
Φ (−d1)

Φ (−d2)

where:

d1 =
ln
(

Vt

F

)
+
(
µ+ σ2

2

)
τ

σ
√
τ

d2 =
ln
(

Vt

F

)
+
(
µ− σ2

2

)
τ

σ
√
τ
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Therefore the expected RR is:

E [RR] = E

[
VT

F
|VT ≤ F

]
=

1

F
Vte

µτ Φ (−d1)

Φ (−d2)

= E

[
VT

F

]
Φ (−d1)

Φ (−d2)

Therefore, for LGD ratio we have:

E [LGD] = 1− Vte
µτ

F

Φ (−d1)

Φ (−d2)
(2.11)

The sensitivity of expected LGD ratios to the leverage, drift and volatility is

given in Figure 2.5. The expected LGD increases with volatility and leverage,

and decreases with drift.
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Figure 2.5: Expected Loss Given Default

Modeling recovery rates is an active area of research today. Apart from the

initial setting of Merton model, there are different statistical specifications used

in the literature. For example a widely used specification for recovery rates is the
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beta distribution. The beta distribution has the nice property that its domain is

[0,1] and it has only two parameters. Therefore it is easy to calibrate the distri-

bution if we have data on mean and standard deviation of recovery rates. Beta

distribution is used in Credit Metrics [GFB97 ], Moody’s LossCalc Model [GS02]

and [GS05 ] and models of MoodysKMV [CB03]. Other specifications include

a normal distribution [Frye00a] and [Frye00b], lognormal distribution [Pyk03]

and a logit-normal specification such that:

RR =
eZ

1 + eZ

where Z is a standard normal distribution.

In the literature, there are three different definitions used for the measurement

of historical LGD ratios. These are:

1. Measuring recovery value as a percentage of face value of debt.

2. Measuring recovery value as a percentage of the debt value just before the

default.

3. Measuring recovery value as a percentage of the value of a risk-free debt

which has similar contract specifications (i.e. maturity, coupon, etc.).

In Merton model, both the occurance of default event and the LGD amount

depends on the final value of assets. Therefore PD and expected LGD have a

positive correlation. This can also be seen from Figure 2.6.

2.8 Exposure at Default

The last risk factor we analyze is the exposure at default (EAD). As mentioned

in the introduction, for some certain types of claims the exposure amounts just

before the default may be uncertain. For example in a revolving loan facility, the

EAD amount can not be known in advance. Or for an interest rate swap, the

swap value may change during the life of the contract, and therefore we can not

exactly know the amount just before the default.
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Figure 2.6: PD- LGD Correlation in Merton Model

For claims with stochastic exposures, EAD amount is defined as the amount

just before the default and EAD ratio is defined as the ratio of EAD amount to

the current exposure. In the simple Merton model, we assume a constant EAD

amount which is equal to the face value of debt. However we can model stochastic

exposures using the following generic model:

EADAmount = CE + PFE (2.12)

where CE is the non-negative current exposure and PFE is the potential future

exposure which represents the fact that our exposure may increase in the future.

For example, for a revolving line of credit, a generic model can be:

EAD = Dr0 + (1−Dr0)× δ (2.13)

where Dr0 is the initial draw-down rate and δ is the stochastic variable repre-

senting stochastic future draw-down rate.

For examples of modeling stochastic exposures, see [GFB97 ].
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2.9 Loss Distribution of a Single Claim

If we assume a constant LGD, the loss distribution for a single claim from the

firm has a discrete distribution with only two outcomes. If the firm is not in

default, the holder of the claim receives the promised payment, let say F . This

event has probability 1-PD. Otherwise, if the firm is in default, which means that

the asset value is less than the claim, the holder of the claim receives only the

remaining part of the asset, i.e. VT . And this event has probability PD.

Therefore the payoff and the loss distribution is given by:

Payoff =

{
F with 1-PD

VT with PD

Loss is defined as difference between promised payment and the actual payoff.

L =

{
0 with 1-PD

F − VT with PD

The loss distribution is given in Figure 2.7. The amount F − VT is the loss

given default in dollar terms. In general it is expressed as a percentage, i.e.

LGD =
F − VT

F

2.10 Risk Measures

We can define different risk measures for the loss distribution. The most com-

monly used ones are expected loss, standard deviation, value-at-risk (VaR) and

expected shortfall (ES).

For a single claim, the definitions for four risk measures are given below:
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1. Expected Loss

Expected loss is defined as the mean of loss distribution.

µL = E [L] =

∫ ∞

−∞
(L− E [L])2 dP (L < x) (2.14)

2. Standard Deviation

Standard deviation of loss is defined as the square root of the variance of loss

distribution.

σL =
√
V ar (L) =

∫ ∞

−∞
(L− E [L])2dP (L < x) (2.15)

3. Value-at-Risk (VaR)

One of the most common risk measures is the value-at-risk which is defined as

the α percentile of the loss distribution.

V aRα = inf {` : Pr {L ≤ `} ≥ α} = F−1
L (α) (2.16)
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4. Expected Shortfall (ES)

Although VaR is a widely used measure of risk, it has an important deficiency.

According to [ADEH99], an efficient measure of risk, ρ, should be a coherent

one. And coherent measures of risk must satisfy the following four properties:

1. Monotonicity: For all X and Y , if X ≤ Y , then ρ (X) ≤ ρ (Y ).

2. Translation Invariance: For all X and for all α ∈ R, ρ (X + α) = ρ (X)−α.

3. Positive Homogeneity: For all λ ≥ 0 and for all X, ρ (λX) = λρ (X).

4. Sub additivity: For all X and Y , ρ (X + Y ) ≤ ρ (X) + ρ (Y ).

Although VaR satisfies the first three properties, the fourth property is not

always satisfied. Therefore we need another risk measure which is coherent. A

candidate is the expected shortfall. For a random variable X, ES is defined as:

ESα (X) = − 1

α
×
{
E
[
X × 1(X≤qα(X))

]
− qα (X)× (P {X ≤ qα (X)− α})

}
(2.17)

where q represents the quantile.

Throughout the thesis we consider only expected loss, standard deviation and

VaR.

Now we turn to the explicit formulas for risk measures. We analyze two cases:

constant and stochastic LGDs.

(i) Constant LGD Case

Under the constant LGD case , we can take LGD out of expectation operator.

The risk measures formulated under this assumption is given below.
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µL = 0× (1− PD) + LGD × PD = PD × LGD (2.18)

σL =

√
(1− PD) (0− PD × LGD)2 + PD (LGD − PD × LGD)2

= LGD
√
PD × (1− PD) (2.19)

V aRα =

{
0 if α >PD

LGD if α ≤ PD
(2.20)

(ii) Stochastic LGD Case

Under the stochastic LGD case, we should also consider LGD volatility. We

assume zero correlation between PD and LGD. The risk measures formulated

under this assumption is given below, where ¯LGD represents the mean of LGD

distribution.

µL = E [1D × LGD] = E [1D]× E [LGD] = PD × ¯LGD (2.21)

σ2
L =

√
E
[(

1D × LGD − PD × ¯LGD
)2]

=

√
E
[
(1D × LGD)2]+ PD2 × ¯LGD

2 − 2× PD × ¯LGD × E [1D × LGD]

=

√
E [12

D]× E [LGD2] + PD2 × ¯LGD
2 − 2× PD2 × ¯LGD

2

=

√
(σ2

D + PD2)× (σ2
LGD + LGD2)− PD2 × ¯LGD

2

=

√
(PD × (1− PD) + PD2)× (σ2

LGD + LGD2)− PD2 × ¯LGD
2

=

√
¯LGD

2 × PD × (1− PD) + PD × σ2
LGD (2.22)

In the above formula for standard deviation of losses, the first part in the square

root is equal to the standard deviation in the constant LGD case. Therefore

stochastic LGD increases the standard deviation of loss distribution. For VaR,

since we do not know the distribution of LGD, we do not have explicit formulas.
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Chapter 3

MODELING PORTFOLIO

CREDIT RISK

In general, the financial firms (for example banks) that are exposed to credit

risk have many claims from different counterparties. Therefore, beside modeling

single firm credit risk, modeling of credit risk caused by a portfolio of claims is also

very important. Since, in a portfolio, there will be diversification effects caused

by correlations among claims, modeling portfolio credit risk requires additional

assumptions and techniques.

In a generic portfolio model, we do the following steps:

1. Define a factor model for the asset value process of the borrowers. This

model may be a one-factor or a multi-factor model. The following steps for

one and multi-factor models both rely on the same principles.

2. Determine the formula for unconditional default probability. For this we

link the default point to the default probability.

3. Determine the formula for default probability conditional on the realization

of factor(s) which are common to all obligors.

4. Determine the loss distribution conditional on the realization of common

factor(s).
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5. Using the distribution of common factor(s), determine the unconditional

loss distribution.

For banks, credit portfolio models are also important for regulatory purposes.

Because an asymptotic single risk factor model is used in Basel-II [BCBS06], the

new international regime for bank capital requirements, to determine regulatory

capital requirements against loans.

One factor structural modeling of portfolio credit risk is extensively analyzed

by [Vas87] and [Vas91] and [Gor03], which assume a single systematic factor

affecting all defaults. [Weh03] analyzed loss distributions for a heterogeneous

portfolio with a one-factor model. [Frye00a] and [Frye00b] extended this frame-

work to assume one-factor models for both PD and LGD. And finally, [Kup07]

extended the framework by assuming one factor models for PD, LGD and EAD.

3.1 One Factor Modeling

In one-factor models, the asset value process is assumed to be driven by one

systemic and one idiosyncratic (i.e. firm-specific) factor. The systemic factor

represents the global factor that affects all firms simultaneously. It can be thought

as an abstract factor that represents the general health of the economy or credit

cycle.

3.1.1 Asset Value Process and Returns

In one-factor models, asset value process for firm i follows the following sto-

chastic differential equation:

dV i
t

V i
t

= µidt+ σi
(√

widXt +
√

1− widZ i
t

)
(3.1)

where µi ∈ R, σi ≥ 0, 0 ≤ wi ≤ 1, Xt is a standard Brownian motion that

represents the systemic factor (same for all firms) and Zi
t is a standard Brownian
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motion that represents the idiosyncratic factor. We assume that Xt and Zi
t are

independent.

By applying Ito Lemma to Yt = f (Vt) with f (x) = ln (x), we have (we remove

superscript i from µ, σ, w to ease notation):

Vt = V0 exp

{(
µ− 1

2
σ2

)
t+ σ

(√
wXt +

√
1− wZi

t

)}
(3.2)

In general, the linear trend in log-prices, i.e
(
µ− 1

2
σ2
)
t, is assumed to be zero.

This does not effect the model in a critical manner, since it can be justified as

having a default point with a linear time trend. Under this assumption the model

becomes:

Vt = V0 exp
{
σ
(√

wXt +
√

1− wZi
t

)}
Throughout the thesis we do not ignore the drift term. This will give us a more

general formula. The continuously compounding returns and detrended returns

are:

R0,t = ln (Vt/V0) =

(
µ− 1

2
σ2

)
t+ σ

(√
wXt +

√
1− wZi

t

)
(3.3)

Rt−∆t,t =

(
µ− 1

2
σ2

)
∆t+ σ

√
w (Xt −Xt−∆t) + σ

√
1− w

(
Zi

t − Zi
t−∆t

)
RD

t = σ
(√

wXt +
√

1− wZi
t

)
And the corresponding stochastic differential equation for Rt is:

dRt =

(
µ− 1

2
σ2

)
dt+ σ

(√
wdXt +

√
1− wdZi

t

)
(3.4)

Indeed this one factor representation of asset returns is closely related to the one

factor equity modeling, i.e. well-known Capital Asset Pricing Model (CAPM).

The CAPM equation for the required return is:

ri − rf = α0
i + βi × (rm − rf ) + εi
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where ri is the required return for asset i, rf is the return of risk-free asset,

rm is the return of market index, α0
i and βi are constants and εi represents the

idiosyncratic risk. Then, by rearranging the equation, we can express the asset

return as follows:

ri =
[
α0

i + rf × (1− βi)
]︸ ︷︷ ︸

αi

+βi × rm + εi

= αi + βi × rm + εi

The errors of the expected values for the equation are:

Error = ri − αi − βi × E [rm]

= (αi + βi × rm + εi)− αi − βi × E [rm]

= βi × (rm − E [rm]) + εi

When we normalize the errors:

NormalizedError =
ri − αi − β × E [rm]

σi

= βi
rm − E [rm]

σi

+
εi
σi

=

(
βi
σm

σi

)
rm − E [rm]

σm

+

(
σεi

σi

)
εi
σεi

Note that y = ri−αi−β×E[rm]
σi

, x = rm−E[rm]
σm

and e = εi

σεi
are normalized random

variables, and hence have unit variances. Therefore:

1 =

(
βi
σm

σi

)2

+

(
σεi

σi

)2

(
σεi

σi

)2

= 1−
(
βi
σm

σi

)2

If we define ρV :=
(
βi

σm

σi

)2

then we have:

y =
√
ρV x+

√
1− ρV e
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and the unanticipated changes in returns becomes:

Error = σi

[√
ρV x+

√
1− ρV e

]
Therefore the sensitivity factor w in our one factor credit model, corresponds

to the sensitivity factor in a CAPM world:

w =

(
βi
σm

σi

)2

For a detailed discussion see [TW04].

Indeed factor models are widely used in equity modeling. For stock returns,

we may specify different factors. One alternative is using statistical factor mod-

els using principal component analysis. Or we may specify factor models using

macroeconomic variables such as growth rate, unemployment rate, etc. or using

stock indices like CAPM. We can also use firms’ financial ratios as factors. For a

discussion on the specification of factors, see [HLR03] .

3.1.2 Unconditional Probability of Default

The unconditional default probability, (PDuc) is given as:

PDuc = Pr {VT ≤ DP} = Pr {ln (VT ) ≤ ln(DP )}

= Pr

{
ln(V0) + (µ− 1

2
σ2)T + σ(

√
wXT +

√
1− wZi

T ) ≤ ln(DP )

}
= Pr

{√
wXT +

√
1− wZi

T ≤
ln(DP/V0)− (µ− 1

2
σ2)T

σ

}

Since XT ∼ N(0, T ) and Zi
T ∼ N(0, T ), we have:

(
√
wXT +

√
1− wZi

T ) ∼ N(0, T )
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Therefore:

PDuc = Φ

(
ln(DP/V0)−

(
µ− 1

2
σ2
)
T

σ
√
T

)
(3.5)

We can define the unconditional distance-to-default measure:

DD := −Φ−1(PDuc) =

(
ln(V0/DP ) + (µ− 1

2
σ2)T

σ
√
T

)
(3.6)

Note that the unconditional PD and the distance to default are equal to what

we obtain in the previous chapter. In general, we assume T=1 which represents

a one-year horizon.

3.1.3 Default Correlation

Before analyzing default correlation in a one-factor model, let us first derive

the general formula.

Let A and B represents to firms and 1A and 1B are indicator functions for firm

defaults defined as:

1A :=

{
1 if A defaults

0 if A does not default

1B :=

{
1 if B defaults

0 if B does not default

And let JPD represents the probability that both firms default. Then we have

the following probabilities for joint events:

Pr {1A = 1, 1B = 1} = JPD

Pr {1A = 1, 1B = 0} = PDA − JPD

Pr {1A = 0, 1B = 1} = PDB − JPD

Pr {1A = 0, 1B = 0} = 1− PDA − PDB + JPD
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where PDA and PDB represents the individual default probabilities of A and B.

The default correlation, ρA,B, is defined as the correlation of two default events:

ρA,B = Correl(1A, 1B) =
Cov(1A, 1B)√
V ar(1A)V ar(1B)

=


(1− PDA)(1− PDB)JPD

+(1− PDA)(0− PDB)(PDA − JPD)

+(0− PDA)(1− PDB)(PDB − JPD)

+(0− PDA)(0− PDB)(1− PDA − PDB + JPD)

√
PDA(1− PDA)PDB(1− PDB)

=
JPD − PDAPDB√

PDA(1− PDA)PDB(1− PDB)
(3.7)

Therefore:

JPD = PDAPDB + ρA,B

√
PDA(1− PDA)PDB(1− PDB) (3.8)

Additionally, we can define default probabilities for a firm conditional on the

default of the second firm.

PDA|B :=
JPD

PDB

= PDA + ρA,B

√
PDA

PDB

(1− PDA)(1− PDB)

PDB|A :=
JPD

PDA

= PDB + ρA,B

√
PDB

PDA

(1− PDA)(1− PDB)

where PDA|B and PDB|A are conditional PD’s.

Now, let us assume that the asset value processes of two firms follows a one-

factor model, with same w:

V A
t = V A

0 exp

{
(µA −

1

2
σ2

A)t+ σA

(√
wXt +

√
1− wZA

t

)}
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V B
t = V B

0 exp

{
(µB −

1

2
σ2

B)t+ σB

(√
wXt +

√
1− wZB

t

)}
Then JPD is given by:

JPD = Pr {1A = 1, 1B = 1} = Pr
{
V A

T ≤ DPA, V B
T ≤ DPB

}
= Pr

{√
wXT +

√
1− wZA

T√
T

≤
ln(DPA/V A

0 )− (µA − 1
2
σ2

A)T

σA

√
T

,

√
wXT +

√
1− wZB

T√
T

≤
ln(DPB/V B

0 )− (µB − 1
2
σ2

B)T

σB

√
T

}
= Pr

{√
wXT +

√
1− wZA

T√
T

≤ Φ−1(PDA) ,

√
wXT +

√
1− wZB

T√
T

≤ Φ−1(PDB)

}

Since (
√

wXT +
√

1−wZA
T√

T
) and (

√
wXT +

√
1−wZB

T√
T

) have a joint distribution which is a

standard bivariate normal distribution with correlation w, we have:

JPD = Φ2(Φ
−1(PDA),Φ−1(PDB);w) (3.9)

where Φ2 is the standard bivariate normal distribution. And default correlation

is:

ρA,B =
Φ2(Φ

−1(PDA),Φ−1(PDB);w)− PDAPDB√
PDA(1− PDA)PDB(1− PDB)

(3.10)

Therefore the default correlation depends on firms’ PDs and the dependence

of their asset values to systematic factor, i.e. w.

3.1.4 Conditional Probability of Default

Let us think a portfolio of n claims from different firms. For all firms, Xt is the

common factor effecting their asset value process. Also they each have their firm

specific factors, i.e. Zi
t , i = 1, · · · , n. Since Xt and (Zi

t)
n
i=1 are all independent,

conditional on the realization of Xt, the asset value processes of all firms become
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independent. And this will give us extremely important advantages in modeling.

This property of factor models is called conditional independence property.

Therefore, determining PD’s conditional on the realization of Xt is very im-

portant.

PDc
i (x) = Pr

{
V i

T ≤ DP i|XT = x
}

= Pr
{
ln(V i

T ) ≤ ln(DP i)|XT = x
}

= Pr

{
ln(V i

0 ) + (µi −
1

2
σ2

i )T + σi(
√
wix+

√
1− wiZ

i
T ) ≤ ln(DP i)

}

= Pr

Zi
T ≤

ln(DP i/V i
0 )−(µi− 1

2
σ2

i )T

σi
−√

wix√
1− wi


and for T=1,

PDc
i (x) = Pr

{
Zi

t ≤
Φ−1(PDuc

i )−√
wix√

1− wi

}
= Φ

(
Φ−1(PDuc

i )−√
wix√

1− wi

)
(3.11)

Sensitivity of PDc with respect to the realization of systematic factor X for

different values of PDuc and w is shown in Figure 3.1.

3.1.5 Loss Given Default

In one factor modeling of asset values, we model the unexpected movements in

asset value with systematic and idiosyncratic parts. A similar approach is used

in [Frye00a] and [Frye00b] for modeling recovery rates. In these papers, RR is

modeled as:

RRi = µi + σi

(√
qX +

√
1− qZi

)
(3.12)

where RRi is the recovery rate for the claim i, X is the systematic factor, Zi is

the idiosyncratic factor, q is the sensitivity factor and µ and σ are the mean and

standard deviation of RR.
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Figure 3.1: Conditional Probability of Default

Assuming that the systematic factor is common to all obligors and X and

(Zi)
N
i=1 are independent, the correlation between recovery rates of two obligors is:

Corr (RRi, RRj) = Corr
(
µi + σi

(√
qiX +

√
1− qiZi

)
,

µj + σj

(√
qjX +

√
1− qjZj

))
= Corr

(
σi
√
qiX, σj

√
qjX

)
= qiqj (3.13)

With this setting, we can express the distribution of unconditional and condi-

tional RR as follows:

FRR (r) = Pr {RRuc ≤ r}

= Pr
{
µi + σi

(√
qiX +

√
1− qiZi

)
≤ r
}

= Pr

{
√
qiX +

√
1− qiZi ≤

r − µi

σi

}
= Φ

(
r − µi

σi

)
(3.14)
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and

F c
RR (r) = Pr {RRc ≤ r}

= Pr
{
µi + σi

(√
qix+

√
1− qiZi

)
≤ r
}

= Pr

{
Zi ≤

r − µi − σi
√
qix

σi

√
1− qi

}
= Φ

[
r−µi

σi
−√

qx
√

1− qi

]

= Φ

[
Φ−1 (RRuc)−√

qx
√

1− qi

]
(3.15)

If both PD and RR are modeled using the same systematic factor, we will

implicitly assume a negative correlation between PD and RR (i.e. a positive

correlation between PD and LGD).

3.1.6 Exposure at Default

[Kup07] generalizes one factor modeling to include correlated stochastic expo-

sures. The new model can accommodate any distribution and correlation assump-

tion for the LGD and EAD rates and will produce a closed-form approximation

for an asymptotic portfolio’s loss rate.

In the model EAD for a revolving credit is modeled as follows. Assume that a

revolving credit account, i, has a maximum line amount Mi and the initial drawn

amount is equal to MiDri,0 where Dri,0 is the initial draw-down rate. Then we

can express the end of period account exposure, by using a random variable U

such that:

EAD = MiU = Mi (Dri,0 + (1−Dri,0) δi) (3.16)

where δi ∈ [0, 1] is a random variable representing the draw rate. The equation

means that the end of period account exposure has two parts: the initial drawn

amount and the amount that will be drawn within the period.
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[Kup07], using a grid approximation for distribution functions, proposes a one

factor model for the draw rate:

δ = F−1
δ

[
Φ
(√

qX +
√

1− qZi

)]
(3.17)

where F is the unconditional distribution function for δ. F can be found by

fitting a grid approximation to the empirical distribution of draw rates or can be

assumed to be a known distribution like beta distribution.

3.1.7 Conditional Loss Distribution

For each claim, if we assume a constant conditional LGD, LGDc, the condi-

tional loss distribution is a two-state discrete distribution:

Li(x) =

{
0 with probability 1− PDc(x)

LGDc(x) with probability PDc(x)

For determining conditional loss distribution, we may have different cases. For

example our portfolio may have finite or infinite number of claims, which may be

homogeneous or heterogeneous.

Case 1: Homogeneous Portfolio

Assume that we have a portfolio of n claims (loans). Each loan has a size

of $ 1/n , so the total portfolio value is 1 $. Also each borrower have same

LGDc, µ, σ, w,DP and V0. This means that each has the same PDc(x).

Since, conditional on the realization of X, the firm defaults are independent,

the number of defaults follows a binomial distribution:

Pr {k over n defaults} =

(
n

k

)
(PDc(x))k(1− PDc(x))n−k (3.18)
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Since all loans have the same exposure size and LGDc, we have the conditional

loss distribution given by:

Pr

{
Lc(x) = k

LGD

n

}
=

(
n

k

)
(PDc(x))k(1− PDc(x))n−k

where Lc is the total conditional loss of the portfolio and LGD is the common

LGDc.

By using the moments of binomial distribution, the mean and the variance of

the conditional loss distribution are:

E [Lc(x)] = PDc(x)LGD (3.19)

V ar [Lc(x)] =
1

n
LGD

2
PDc(x)(1− PDc(x)) (3.20)

Case 2: Large Homogeneous Portfolio (LHP)

Assume that we have a homogeneous portfolio with infinite number of loans,

i.e. n = ∞. We want to derive the conditional loss distribution of this portfolio.

By law of large numbers, conditional loss converges to its expectation, i.e.

PDc(x)LGD, as n → ∞. This can be seen from limiting mean and variance of

Lc(x).

lim
n→∞

E [Lc] = lim
n→∞

PDc(x)LGD = PDc(x)LGD (3.21)

lim
n→∞

V ar [Lc(x)] = lim
n→∞

1

n
LGD

2
PDc(x)(1− PDc(x)) = 0 (3.22)

Therefore for an infinitely granular portfolio, conditional on the realization of

X, there is no uncertainty for the loss.

Indeed, the LHP approximation, sometimes called as the Asymptotic Single

Risk Factor (ASRF) model, is used in Basel-II for deriving risk weights (see

[BCBS06], [BCBS05], [Vas87] and [Vas91] and [Gor03]).
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Case 3: Moderately Heterogeneous Portfolio (MHP)

A purely homogeneous portfolio is actually an unrealistic assumption. In prac-

tice we generally encounter heterogeneous portfolios with finite number of oblig-

ors. Therefore analyzing heterogeneous portfolio loss distributions are also im-

portant. Loss distribution of heterogeneous portfolios are analyzed in [Weh03].

In analyzing heterogeneous portfolios, we generally partition the portfolio into

homogeneous sub portfolios. A moderately heterogeneous portfolio H is defined

as the union of homogeneous sub-portfolios, Hj, j=1,...h:

H = Uh
j=1Hj

where each sub-portfolio Hj contains only identical clients with common con-

ditional loss given default LGDj, and parameters wj, σj, µj, DP
j, V j

o (therefore

common PDuc
j and PDc

j(x)).

Then for each portfolio, the conditional loss distribution is given by, ∀j, j =

1, ...h, :

Pr

{
Lc

j(x) = k
LGDj

nj

}
=

(
nj

k

)
(PDc

j(x))
k(1− PDc

j(x))
nj−k (3.23)

where nj is the number of exposures in sub-portfolio j. Since the conditional

defaults are independent:

p (k1, · · · , kn) := Pr

{
Lc

j(x) = k1
LGD1

n1

, ..., Lc
h(x) = kh

LGDh

nh

}
=

h∏
j=1

(
nj

kj

)
(PDc

j(x))
kj(1− PDc

j(x))
nj−kj (3.24)
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Case 4: Large Moderately Heterogeneous Portfolio (LMHP)

In a MHP, if we let, ∀j, j = 1, ...h, limnj→∞, we have infinitely granular sub-

portfolios. Since for each sub-portfolio:

lim
nj→∞

E
[
Lc

j(x)
]

= PDc
j(x)LGDj (3.25)

lim
nj→∞

V ar
[
Lc

j(x)
]

= 0 (3.26)

the conditional loss distribution of each infinitely granular sub-portfolio converges

to its mean. Therefore total conditional loss distribution becomes:

Lc(x) =
h∑

j=1

PDc
j(x)LGDj (3.27)

as nj →∞, j = 1, ...h.

3.1.8 Granularity Adjustment

There is another important concept in credit risk modeling called granularity

adjustment. This adjustment is used to allow one to use ASRF framework for

a portfolio which is not infinitely granular. The main idea is to adjust ASRF

loss distribution by using an adjustment factor which reflects the granularity (i.e.

concentration/diversification) of the portfolio.

There are different methodologies proposed in the literature for granularity

adjustment. The granularity adjustments are beyond the scope of this thesis.

Therefore interested readers are directed to [ET03], [Gor04], [MW02] and [Wil01].

3.1.9 Unconditional Loss Distribution

Now we want to determine the unconditional loss distribution. From elemen-

tary probability we know:

Pr(A) = E [1A] = E [E [1A|B]]
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Therefore, the unconditional loss probabilities are given as:

Pr(L = `) =

∫ ∞

−∞
Pr(Lc(x) = `) dPr(x) (3.28)

where x is the value of systematic factor X.

The unconditional loss distributions for different cases are analyzed below.

Case 1: Homogeneous Portfolio

Pr

{
L = k

LGD

n

}
=

∫ ∞

−∞
Pr

{
L(x)c = k

LGD

n

}
dΦ(x)

=

∫ ∞

−∞

(
n

k

)
(PDc(x))k(1− PDc(x))n−kdΦ(x)(3.29)

where:

PDc(x) = Φ

(
Φ−1(PDuc)−

√
wx√

1− w

)
Case 2: Large Homogeneous Portfolio

Since Lc(x) = PDc(x)LGD, we have:

FL(`× LGD) = Pr
{
L ≤ `× LGD

}
= Pr

{
PDc(x)× LGD ≤ `× LGD

}
= Pr {PDc(x) ≤ `}

= Pr
{
x ≥ (PDc)−1(`)

}
= Φ

(
−(PDc)−1(`)

)
= Φ

(√
1− wΦ−1(`)− Φ−1(PDuc)√

w

)
(3.30)

The last formula is used in Basel-II. Therefore it is important to analyze its

properties (we assume LGD = 1). For a more extended discussion see [Vas87]

and [Vas91].

1. E [L] = PDuc
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2. V ar [L] = Φ2(Φ
−1(PDuc),Φ−1(PDuc);w)− (PDuc)2

3. Lα := F−1
L (α;PDuc, w) = FL(α; 1− PDuc, 1− w)

4. (Symmetry Property) FL(`;PDuc, w) = 1− F (1− `; 1− PDuc, w)

5. The density is


unimodal if w ≤ 0, 5

monotone if w = 0, 5

U-shaped if w ≥ 0, 5
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Figure 3.2: Cumulative Loss Distribution in Asymptotic Single Risk Factor Model

Case 3: Moderately Heterogeneous Portfolio

For each sub portfolio j, we have:

Pr

{
Lj = k

LGDj

nj

}
=

∫ ∞

−∞

(
nj

k

)
(PDc

j(x))
k(1− PDc

j(x))
n−kdΦ(x)
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and

g(k1, · · · , kh) = Pr

{
L1 = k1

LGD1

n1

, · · · , Lh = kh
LGDh

nh

}
=

∫ ∞

−∞

h∏
j=1

(
nj

kj

)
(PDc

j(x))
kj(1− PDc

j(x))
nj−kjdΦ(x)

Case 4: Large Moderately Heterogeneous Portfolio

Since Lc
j(x) = PDc

j(x)LGDj and Lc(x) =
∑h

j=1 PD
c
j(x)LGDj, we have:

FLj
(`× LGDj) = Pr

{
Lj ≤ `× LGDj

}
= Pr

{
PDc

j(x)× LGDj ≤ `× LGDj

}
= Pr

{
PDc

j(x) ≤ `
}

= Pr
{
x ≤ (PDc

j)
−1(`)

}
= Φ((PDc

j)
−1(`))

= Φ

(√
1− wjΦ

−1(`)− Φ−1(PDuc
j )

√
wj

)
(3.31)

3.1.10 Risk Measures

In this section,we analyze the risk measures for different cases. We assume

LGD = 1

Case 1: Homogeneous Portfolio

We can find expected loss by using expected conditional loss.

µL = E [E [Lc(x)|X]] = E [PDc(x)] = PDuc (3.32)

For any random variable, we can express its unconditional variance as a sum

of two parts: variance of conditional mean and mean of conditional variance.

Therefore:

σ2
L = V ar(PDc(x)) + E

[
1

n
PDc(x)(1− PDc(x))

]
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= E
[
(PDc(x)− E [PDc(x)])2

]
+

1

n
E
[
PDc(x)− (PDc(x))2

]
= E

[
(PDc(x))2

]
− (E [PDc(x)])2 +

1

n

{
PDuc − E

[
(PDc(x))2

]}
=

∫ ∞

−∞

[
Φ

(
Φ−1(PDuc)−

√
wx√

1− w

)]2

dΦ(x)

−(PDuc)2 +
1

n

{
PDuc −

∫ ∞

−∞

[
Φ

(
Φ−1(PDuc)−

√
wx√

1− w

)]2

dΦ(x)

}
=

{
Φ2(Φ

−1(PDuc),Φ−1(PDuc);w)− (PDuc)2
}

+
1

n

{
PDuc − Φ2(Φ

−1(PDuc),Φ−1(PDuc);w)
}

(3.33)

The first term in the formula represents the variance caused by systemic factor,

i.e. systemic variance. And the second term is the idiosyncratic variance.

Since general conditional loss distribution is not monotone with respect to

systemic factor, we can not derive analytical formulas for V aRα.

Case 2: Large Homogeneous Portfolio

We have the same mean:

µL = E [E [Lc(x)|X]] = E [PDc(x)] = PDuc (3.34)

Since, in LHP, we have n→∞, we can derive the formula by using the variance

formula of homogeneous portfolio.

σ2
L = lim

n→∞
Φ2(Φ

−1(PDuc),Φ−1(PDuc);w)− (PDuc)2

+
1

n

{
PDuc − Φ2(Φ

−1(PDuc),Φ−1(PDuc);w)
}

= Φ2(Φ
−1(PDuc),Φ−1(PDuc);w)− (PDuc)2 (3.35)
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Therefore in the infinitely granular portfolio, the unsystematic variance is com-

pletely removed and we have only systematic variance. Since conditional loss is

a monotonically decreasing function of X, we have:

V aRα = F−1
L (α) = Lc(F−1

x (1− α))

= Lc(Φ−1(1− α)) = PDc(−Φ−1(α))

= Φ

(
Φ−1(PDuc) +

√
wΦ−1(α)√

1− w

)
(3.36)

This VaR figure is used in Basel-II to define the level of required capital for

banks.

Case 3: Moderately Heterogeneous Portfolio

The expected loss is:

µL = E [E [Lc(x)|X]] = E

[
h∑

j=1

njPD
c
j(x)|X

]
=

h∑
j=1

njPD
uc
j (3.37)

We can use the same variance decomposition that we use in previous section.

Since, conditional on X, the sub portfolios are independent:

σ2 = V ar

[
h∑

j=1

njPD
c
j(x)

]
+ E

[
h∑

j=1

1

nj

PDc
j(x)(1− PDc

j(x))

]
(3.38)

For V aRα, we can not derive analytical formulas.

Case 4:Large Moderately Heterogeneous Portfolio

The expected loss is same as the expected loss of the finite portfolio.

µL = E [E [Lc(x)|X]] = E

[
h∑

j=1

njPD
c
J(x)|X

]
=

h∑
j=1

njPD
uc
j (3.39)
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And we can find the variance by limiting the finite portfolio variance:

σ2 = lim
nj →∞

j = 1, 2, · · · , h

V ar

[
h∑

j=1

njPD
c
j(x)

]
+ E

[
h∑

j=1

1

nj

PDc
j(x)(1− PDc

j(x))

]

= V ar

[
h∑

j=1

njPD
c
j(x)

]
(3.40)

Since conditional loss distribution is monotonically decreasing with respect to

X, we have:

V aRα = F−1
L (α) = Lc(F−1

x (1− α)) = Lc(Φ−1(1− α))

= Lc(−Φ−1(α)) =
h∑

j=1

LGDjPD
c
j(−Φ−1(α))

=
h∑

j=1

LGDj Φ

(
Φ−1(PDuc

j ) +
√
wjΦ

−1(α)√
1− wj

)
(3.41)

3.1.11 Risk Decomposition

Because of diversification effects, the portfolio risk is generally less than the

sum of risk of each loan (also called stand-alone risk) in the portfolio. Therefore

we need a different metric (than stand-alone risk) for each firm’s contribution to

total risk. This process is called risk decomposition and the metric we obtain is

called the marginal risk.

Assume that we have a portfolio of n assets, Ai i = 1, 2, · · · , n with weights wi:

P =
∑

i

wiAi

Then we can find the risk contribution of each asset by using the homogeneity

property of our risk measure. We give the generic form for VaR below. Since

all the risk measures we analyze (expected loss, standard deviation, VaR, ES)
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satisfy the positive homogeneity property defined in page 38, the following steps

are also valid for other risk measures.

We have VaR for our portfolio:

V aR (P ) = V aR (w1A1, w2A2, · · · , wnAn)

From positive homogeneity, if we increase our investment by a factor of λ > 0,

we have:

V aR (λw1A1, λw2A2, · · · , λwnAn) = λV aR (w1A1, w2A2, · · · , wnAn)

When we take derivatives of each side with respect to λ, we have:

∂

∂λ
V aR (λw1A1, λw2A2, · · · , λwnAn) = V aR (w1A1, w2A2, · · · , wnAn)

By using the chain rule of differentiation:

∂

∂λ
V aR (λw1A1, · · · , λwnAn) =

∑
i

∂

∂λwi

∂λwi

∂λ
V aR (λw1A1, · · · , λwnAn)

=
∑

i

wi
∂

∂λwi

V aR (λw1A1, · · · , λwnAn)

Therefore:

∑
i

wi
∂

∂λwi

V aR (λw1A1, λw2A2, · · · , λwnAn) = V aR (w1A1, w2A2, · · · , wnAn)

Finally for λ = 1, we have:

∑
i

wi
∂

∂wi

V aR = V aR
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The derivative of VaR with respect to asset allocation, i.e. ∂V aR
∂wi

, is the marginal

risk of ith asset. An important property of marginal risks is that sum of all

marginal risks weighted by position weights is always equal to total VaR.

Marginal risk statistics are important metrics since they show the contribution

of each asset to the total portfolio risk and are used in economic capital allocation

and risk-adjusted performance measurement.

3.1.12 Estimation

In order to fit a model to portfolio credit loss, we should estimate the model

parameters from historical observations of portfolio losses. In general, we can use

two methods: maximum likelihood method (MLM) and moment matching method

(MMM).

Maximum Likelihood Method

We can use this method if we know the density function of portfolio losses

for a model. Let f(`|θ) be the density function for portfolio losses with a set of

parameters. Then assume that we historically observe n values of portfolio losses.

Additionally if the losses for each time point is iid, we can write their joint density

as:

f(`1, `2, · · · , `n|θ) =
n∏

i=1

f(`i|θ) (3.42)

In MLM, we search for best values of θ that maximizes this joint density.

Therefore, let L define the likelihood function as:

L(θ|`) :=
n∏

i=1

f(`i|θ)

and LL define the log-likelihood function as:

LL(θ|`) :=
n∑

i=1

ln(f(`i|θ))
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Then the best values that maximizes LL can be found by solving the following

system:

∂LL(θ|`)
∂θ

= 0

∂2LL(θ|`)
∂θ2

≤ 0

For example, for constant LGD, we know the loss distribution for a large ho-

mogeneous portfolio. Its distribution function is:

FL(`|PDuc, w) = Φ

(√
1− wΦ−1(`)− Φ−1(PDuc)√

w

)
and the density is:

fL(`|PDuc, w) = ϕ

(√
1− wΦ−1(`)− Φ−1(PDuc)√

w

)
Then, for n observations of portfolio loss, we can write log-likelihood function:

LL(PDuc, w|`) =
n∑

i=1

lnϕ

(√
1− wΦ−1(`i)− Φ−1(PDuc)√

w

)
(3.43)

The ˆPD
uc

and ŵ that maximizes this two-parameter LL function are the max-

imum likelihood estimators for the model.

( ˆPD
uc
, ŵ) = arg maxLL(PDuc, w|`) (3.44)

Moment Matching Method

In this method, we match the moments of true model with sample moments.

If we want to fit a model with k parameters to the data, we first determine the

first k moments of the true model:
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µ
′

r := E [Xr] , r = 1, 2, ..., k

Then we find the first k moments of the sample:

µ
′(Sample)
r :=

1

n

n∑
i=1

(`i)
r, r = 1, 2, ..., k

where n is the number of observations and {`i}n
i=1 are the historical observations

for portfolio losses.

Then we solve the following system with k equations, for k parameters:

µ
′

r = µ
′(Sample)
r , r = 1, 2, ..., k (3.45)

For example, for constant LGD, the mean and variance of portfolio loss for a

large homogeneous portfolio are:

E [L] = PDuc

V ar [L] = Φ2(Φ
−1(PDuc),Φ−1(PDuc);w)− (PDuc)2

Therefore the first two raw moments are:

µ
′

1 = E [L] = PDuc

µ
′

2 = E
[
L2
]

= V ar [L] + (E [L])2 = Φ2(Φ
−1(PDuc),Φ−1(PDuc);w)

Let assume that we have n observations for portfolio loss and calculate the

sample moments:

µ
′(Sample)
1 =

1

n

n∑
i=1

`i (3.46)

µ
′(Sample)
2 =

1

n

n∑
i=1

`2i (3.47)
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Then we can find the estimates ˆPD
uc

and ŵ by solving the following two

equations:

ˆPD
uc

= µ
′(Sample)
1 (3.48)

Φ2(Φ
−1( ˆPD

uc
),Φ−1( ˆPD

uc
); ŵ) = µ

′(Sample)
2 (3.49)

3.2 Multi-Factor Modeling

Although one factor modeling enables us parsimonious closed-form formulas,

generally it has less explanatory power when compared to a multi-factor model.

Representing all the systematic effects with a single random variable is a critical

simplification. Therefore, just like in equity modeling, multi factor models are

extremely used in credit risk modeling. The most popular examples of multi

factor credit modeling are Credit Metrics and KMV models.

In multi factor models, asset values are driven by more than one systematic

factors as well as a single systematic factor for each obligor. For a K-factor model,

the asset value dynamics are:

V i
t = V i

0 exp


(
µi −

1

2
σ2

i

)
t+ σi

 K∑
k=1

√
wikX

k
t +

√√√√1−
K∑

k=1

wikZ
i
t

 (3.50)

where
(
X1, · · ·XK

)
and (Zi)

N
i=1 are all independent and have standard normal

distribution, and wik represents the factor loading of claim i to the k-th factor.

Then the unconditional PD is:

PDuc = Pr
{
V i

t ≤ DPi

}
= Pr

{
ln
(
V i

t

)
≤ ln (DPi)

}
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= Pr

{
ln
(
V i

0

)
+

(
µi −

1

2
σ2

i

)
t

+σi

 K∑
k=1

√
wikX

k
t +

√√√√1−
K∑

k=1

wikZ
i
t

 ≤ ln (DPi)


= Pr


 K∑

k=1

√
wikX

k
t +

√√√√1−
K∑

k=1

wikZ
i
t

 ≤
ln
(

DPi

V i
0

)
−
(
µi − 1

2
σ2

i

)
t

σi


= Φ

[
ln (DPi/V

i
0 )−

(
µi − 1

2
σ2

i

)
t

σi

]
(3.51)

Given the realization of systematic factors,
(
X1, · · ·XK

)
=
(
x1, · · ·xK

)
, the

conditional PD of the obligor is:

PDc
(
x1, · · ·xK

)
= Pr

{
V i

t ≤ DPi|
(
X1, · · ·XK

)
=
(
x1, · · ·xK

)}
= Pr

{
ln
(
V i

t

)
≤ ln (DPi) |

(
X1, · · ·XK

)
=
(
x1, · · ·xK

)}
= Pr

{
ln
(
V i

0

)
+

(
µi −

1

2
σ2

i

)
t

+σi

 K∑
k=1

√
wikx

k
t +

√√√√1−
K∑

k=1

wikZ
i
t

 ≤ ln (DPi)


= Pr

Zi
t ≤

ln
(

DPi

V i
0

)
−
(
µi − 1

2
σ2

i

)
t− σi

(∑K
k=1

√
wikx

k
t

)
σi

√
1−

∑K
k=1wik


= Φ

Φ−1 (PDuc)−
(∑K

k=1

√
wikx

k
t

)
√

1−
∑K

k=1wik

 (3.52)

The conditional and unconditional loss distributions can be found by using

similar techniques with one factor modeling.
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Chapter 4

PRICING CREDIT RISK

In this chapter, we will analyze pricing approaches and derive pricing formulas

for different contingent claims. The instruments analyzed include bonds, stocks

and credit default swaps.

4.1 Pricing Methods

For pricing credit-related contingent claims, we use two different approaches:

equivalent martingale measure (EMM) approach and partial differential equations

(PDE) approach. The connection between two approaches is given by Feynman

Kac formula.

4.1.1 Equivalent Martingale Measure Approach

In EMM approach, we define a new probability measure, for which discounted

asset values are martingales. And then we price the contingent claims using

conditional expectations under this new probability measure.

Let the asset value of the firm satisfies:

dVt

Vt

= µdt+ σdWt,
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and the bank account (or discounting process), Bt, satisfies:

dBt = −rBtdt

where r is the constant interest rate.

Under actual probability measure, P, the discounted asset value process, defined

as Ṽt := VtDt satisfies:

dṼt = BtdVt + VtdBt + dBtdVt

= Bt(µVtdt + σVtdWt)− rtBtVtdt + 0

= Ṽt((µ− rt)dt + σdWt) (4.1)

which is not a martingale.

Now, define a new probability measure, P̃ , called the EMM such as:

P̃ (A) :=

∫
A

ZT (ω)dP (ω), ∀A ∈ F (4.2)

where Z is the Radon-Nikodym derivative defined as:

Zt = exp

{
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

}
(4.3)

with θt = µ−r
σ

. Then from Girsanov Theorem, we have (for proofs see [Shr04]):

1. W̃t = Wt +
∫ t

0
θsds is a standard Brownian motion under P̃

2. Ẽ [X] = E [XZT ] where the expectations are taken with respect to P̃ and

P , respectively. And equivalently, E [X] = Ẽ [X/ZT ].

3. The Radon-Nikodym derivate process is a martingale, i.e.

E [Zt|Fs] = Zs
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4. For 0 ≤ s ≤ t, Y ∈ Ft, we have

Ẽ [Y |Fs] =
1

Zs

E [Y Zt|Fs]

Additionally, under P̃ , the discounted asset values are martingale:

dṼt

Ṽt

= (µ− r)dt + σdWt

= (µ− r)dt + σ(dW̃t −
µ− r

σ
dt)

= σdW̃t

Since we have one source of randomness, W̃t, and one asset other than bank

account, the model is complete (See [Bjo04]).

Therefore, we can use P̃ to price contingent claims written on Vt. For example,

let Ct denote the price of a contingent claim written on Vt and have maturity T.

Since the market is complete and arbitrage-free, there is a unique self-financing

replicating portfolio, π, whose value is always equal to Ct.

Since, under P̃ , discounted Ct is martingale:

BtCt = Ẽ [BTCT |Ft] = Ẽ [BTπT |Ft] = Btπt

Therefore:

Ct =
1

Bt

Ẽ [BTπT |Ft] (4.4)

4.1.2 Partial Differential Equation Approach

The second approach we can use is the partial differential equation approach.

In this approach we form a hedged, i.e. riskless, portfolio and equate its return

to risk-free yield.
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Assume that the asset value of the firm satisfies:

dVt

Vt

= µdt+ σWt

And assume we have a contingent claim, Yt, written on Vt. This claim can be a

bond, a common stock, an option on common stock or a credit derivative.

Then we can apply Ito Lemma to Yt = f(Vt, t)

dY = fV dV +
1

2
fV V dV dV + ftdt

= fV (µV dt+ σV dW ) +
1

2
fV V σ

2V 2dt+ ftdt

=

[
µfV V +

1

2
fV V σ

2V 2 + ft

]
︸ ︷︷ ︸

:=µyY

dt+ σfV V︸ ︷︷ ︸
:=σyY

dW

= µyY dt+ σyY dWt

Assume that we form a portfolio from firm’s assets, Vt, contingent claim, Yt,

and riskless debt. The weights are w1, w2, w3 = −w1−w2, respectively. Then the

return on portfolio, π satisfies:

dπt = w1
dVt

Vt

+ w2
dYt

Yt

+ w3rdt

= w1(µdt+ σdWt) + w2(µydt+ σydWt) + (−w1 − w2)rdt

= [w1(µ− r) + w2(µy − r)] dt+ [w1σ + w2σy] dWt

Suppose that we apply a trading strategy such that (w1σ + w2σy) is always

zero. Since the market is complete, we can find such a strategy. Then our

portfolio becomes riskless since there is no uncertainty caused by Wt. And since

our portfolio requires zero net investment, i.e. w1 + w2 + w3 = 0, the return on

portfolio must be zero to avoid arbitrage.
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Therefore we have two equations.The first one guarantees a riskless portfolio:

w1σ + w2σy = 0

and the second one guarantees no arbitrage condition:

w1(µ− r) + w2(µy − r) = 0

Therefore we have:

w1

w2

=
−σy

σ
=
−(µy − r)

µ− r
⇒ µy − r

σy

=
µ− r

σ

When we substitute the equations for µy and σy:

µfV V + 1
2
fV V σ

2V 2 + ft − rf

σfV V
=

µ− r

σ

⇒ µfV V +
1

2
fV V σ

2V 2 + ft − rf = µfV V − rfV V

⇒ 1

2
fV V σ

2V 2 + rfV V − rf + ft = 0 (4.5)

This equation is the fundamental PDE for pricing contingent claims. Any

contingent claim should satisfy this equation. For each contingent claim, we have

boundary conditions and initial values. The boundary conditions distinguish

contingent claims from each other.

4.1.3 On the Equivalence of Two Methods

The link between PDE and EMM approaches can be developed by using Feyn-

mann Kac Theorem. The discounted version of the theorem is given below.

(Discounted Feynmann-Kac Theorem) Consider the following stochastic

differential equation.

dXt = α(t,Xt)dt+ γ(t,Xt)dWt
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Let h(y) be a Borel-measurable function and let r be constant. Fix T > 0, and

let t ∈ [0, T ] be given. Define the new function:

f(t, x) = Et,x
[
e−r(T−t)h(XT )

]
where Et,x [h(XT )] <∞ for all t and x. Then f(t, x) satisfies the following partial

differential equation:

ft(t, x) + α(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x) = rf(t, x)

and the terminal condition is f(T, x) = h(x) for all x. For proof see [LL96].

We can apply the theorem to our contingent claim pricing problem. In previous

sections, we show that the price of contingent claim satisfies:

BtCt = Ẽ [BTCT |Ft] ⇒ e−rtCt = Ẽ
[
e−rTCT |Ft

]
Let Ct := f(t, Vt) where Vt is the asset value process.

Note that e−rtf(t, Vt) is a martingale:

Ẽ
[
e−rtf(t, Vt)|Fs

]
= Ẽ

[
Ẽ
[
e−rTCT |Ft

]
|Fs

]
= Ẽ

[
e−rTCT |Fs

]
= e−rsf(s, Vs)

Since it is a martingale, we should not have a drift term in its differential. We

have, under P̃ :

dVt = rVtdt+ σVtdW̃t

Then:

d(e−rtf(t, Vt)) = −re−rtfdt+ e−rtftdt+ e−rtfV dV + e−rt 1

2
fV V dV dV
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= e−rt

[
−rf + ft + rV fV +

1

2
σ2V 2fV V

]
︸ ︷︷ ︸

must be zero

dt+ e−rtσfV dW

⇒ 0 =
1

2
σ2V 2fV V + rV fV − rf + ft

This is exactly the same equation we found in PDE approach.

4.2 Risk-neutral Probability of Default and Mar-

ket Price of Risk

In pricing applications we use risk-neutral PDs, rather than objective PDs.

The risk-neutral PDs includes risk premiums over actual PDs. Let assume that,

by using Girsanov Theorem, we define the risk-neutral probability measure P̃

with a new standard Brownian motion:

W̃t = Wt +
µ− r

σ
t

dW̃t = dWt +
µ− r

σ
dt

Then under P̃ , the asset value process is:

dVt

Vt

= µdt + σdWt

= µdt + σ

(
dW̃t −

µ− r

σ
dt

)
= rdt + σdW̃t

Therefore at any time t, we can express the asset value as:

Vt = V0e
{(r− 1

2
σ2)t+σW̃t} (4.6)
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We can express the risk-neutral PD, ˜PD, by using a similar approach with

objective PD:

˜PD = Pr {VT ≤ DP} = P {ln (Vt) ≤ ln (DP )}

= Pr

{(
r − 1

2
σ2

)
T + σW̃T ≤ ln (DP/V0)

}
= Pr

{
W̃T ≤

ln (DP/V0)−
(
r − 1

2
σ2
)
T

σ

}

Since W̃T ∼ N (0, T ), we have:

˜PD = Φ

[
ln (DP/V0)−

(
r − 1

2
σ2
)
T

σ
√
T

]
(4.7)

The formula for ˜PD is similar to the formula for PD, except that the µ is

replaced with r. More explicitly we have:

˜PD = Φ

[
Φ−1 (PD) +

µ− r

σ
√
T

]
(4.8)

We can define explicit relations between actual and risk-neutral PDs, if we use

an explicit pricing model for asset returns. For example assume a perfect CAPM

market, where the expected return on any asset is given by:

µi = r + βi (µM − r)

where βi = ρiM
σi

σM
. Then we have:

µi − r

σi

= ρiM
µM − r

σM

= ρiMλ

where λ = µM−r
σM

is the market price of risk. Now we can express risk-neutral PD

in terms of objective PD:

˜PD = Φ
[
Φ−1 (PD) + λ ρiM

√
T
]

(4.9)
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As seen from the formula, the objective probability of default is adjusted up-

wards to include a risk premium. The market price of risk is determined by the

entire market and represents the reward per unit of market risk taken (i.e., an

overall market Sharpe ratio). We use a one-factor model, i.e. CAPM, for asset

returns. However different factor models yields different explicit linkages between

PD and ˜PD [Bohn00].

4.3 Contingent Claims Pricing

In this section we derive pricing formulas for bonds and stocks using Gaussian

assumption. We use EMM approach to price these claims.

4.3.1 Bonds

We derive the formulas for zero-coupon bonds. Coupon bonds can be thought

as a portfolio of zero coupon bonds with different maturities.

The payoff for a zero coupon bond is:

Payoff =

{
L if no default

VT if default

where L is the par value of bond and VT is the firm’s asset value at maturity T.

Then, under EMM, the discounted bond value is a martingale. Therefore:

B(t)D(t, T ) = Ẽ
[
B(T )

(
L1{No Default} + VT 1{Default}

)
|Ft

]
where D(t,T) is the zero coupon bond price at t, which have maturity T and

B(t) = e−
R t
0 rsds is the bank account, where rt is the risk-free rate.

We derive pricing formulas for different cases below. See [BR02] for a more

detailed discussion.
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Case 1: Constant Interest Rate and Default Only at Maturity

Assume that r is constant. Then we can take B(T) outside the expectation

D(t, T ) =
B(T )

B(t)
Ẽ
[
L1{No Default} + VT 1{Default}|Ft

]
We know that, under EMM, Vt satisfies.

Vt = V0exp

{
(r − 1

2
σ2)t+ σW̃t

}
and default event is given by:

1{Default} = 1− 1{No Default} =

{
1 if VT < L

0 if VT ≥ L

Then:

D(t, T ) =
B(T )

B(t)
Ẽ
[
L1{VT≥L} + VT 1{VT <L}|Ft

]
=

B(T )

B(t)

{
L P̃ {VT ≥ L|Ft}+ Ẽ

[
VT 1{VT <L}|Ft

]}
For the first part:

P̃ {VT ≥ L|Ft} = P̃

{
Vt exp

{
(r − 1

2
σ2)(T − t) + σ(W̃T − W̃t)

}
≥ L|Ft

}
= P̃

{
W̃T − W̃t ≤

ln(Vt/L) + (r − 1
2
σ2)(T − t)

σ

}
Since, under P̃ , (W̃T − W̃t) ∼ N(0, T − t), we have:

P̃ {VT ≥ L|Ft} = Φ

[
ln(Vt/L) + (r − 1

2
σ2)(T − t)

σ
√
T − t

]
=: Φ(d2)

with d2 :=
ln(Vt/L) + (r − 1

2
σ2)(T − t)

σ
√
T − t
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For the second part, define an auxiliary probability measure P ∗ with Radon-

Nikodym density,
dP∗
dP̃

= exp

{
σW̃T −

1

2
σ2T

}
=: ηT

From Girsanov Theorem, W ∗
t = W̃t − σt is a standard Brownian motion under

P ∗. Therefore, under P ∗, Vt satisfies:

dVt = Vt(rdt+ σdW̃t)

= Vt((r + σ)dt+ σdW ∗
t )

⇒ Vt = V0 exp

{
(r +

1

2
σ2)t+ σW ∗

t

}
Therefore:

Ẽ
[
VT 1[VT <L]|Ft

]
= Ẽ

V0 e
rT︸ ︷︷ ︸

constant

e−
1
2
σ2T+σW̃T︸ ︷︷ ︸
=ηT

1{VT <L}|Ft


= V0 e

rT Ẽ
[
ηT 1{VT <L}|Ft

]
= V0 e

rTηtE
∗ [1{VT <L}|Ft

]
= V0 e

rTηtP
∗ {VT < L|Ft]

= er(T−t) V0 exp

{
(r − 1

2
σ2)t+ σW̃t

}
︸ ︷︷ ︸

Vt

P ∗ {VT < L|Ft}

= er(T−t)Vt P
∗ {VT < L|Ft}

We can express the last probability as follows.

P ∗ {VT < L|Ft} = P ∗
{
Vt exp

{
(r +

1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t )

}
< L|Ft

}
= P ∗

{
W ∗

T −W ∗
t < −

ln(Vt/L) + (r + 1
2
σ2)(T − t)

σ
|Ft

}
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Since, under P ∗, (W ∗
T −W ∗

t ) ∼ N(0, T − t), we have:

P ∗ {VT < L|Ft} = Φ

[
−

ln(Vt/L) + (r + 1
2
σ2)(T − t)

σ
√
T − t

]
=: Φ(−d1)

with d1 :=
ln(Vt/L) + (r + 1

2
σ2)(T − t)

σ
√
T − t

To sum up, the price is given by:

D(t, T ) = VtΦ(−d1) + LB(t, T )Φ(d2) (4.10)

where

d1 =
ln(Vt/L) + (r + 1

2
σ2)(T − t)

σ
√
T − t

d2 =
ln(Vt/L) + (r − 1

2
σ2)(T − t)

σ
√
T − t

and B(t,T) is the price of risk-free bond, defined as B(t,T):=B(T )
B(t)

In general, instead of price of a risky bond, we use its yield spread over risk-

free yield to define its riskiness. The credit spread is defined as follows. For

B(t, T ) = e−r(T−t) where r is the risk-free yield and D(t, T ) = e−y(T−t) where y is

the risky yield,

S(t, T ) := y − r = − ln(D(t, T )/B(t, T ))

T − t

Therefore, in our case:

S(t, T ) = − ln(D(t, T )/LB(t, T ))

T − t
= −

ln
(

Vt

L
Φ(−d1) + Φ(d2)

)
T − t

(4.11)

Sensitivity of credit spreads with respect to different parameters are shown in

Figure 4.1.
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Figure 4.1: Credit Spreads

Case 2: Constant Interest Rate and First-Passage Approach

Assume that the default time is defined as:

τ := inf {t ≥ 0 : Vt ≤ L}

Additionally, if default occurs before T, the bond holder receives a constant

fraction of L, δ. Then the price is:

DFPT (t, T ) = B(t, T )Ẽ
[
L1{τ>T} + Lδ1{τ≤T}|Ft

]
= B(t, T )L

[
P̃ {τ > T |Ft}+ δP̃ {τ ≤ T |Ft}

]
= B(t, T )L

[
1− (1− δ)P̃ {τ ≤ T |Ft}

]
From section 1.6, we know the formula for P {τ ≤ T |Ft}. But now we are

working under P̃ . Therefore let define Yt := ln(Vt/L) where dVt = rVtdt+σVtdW̃t
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under P̃ . Then:

dYt =
1

Vt

dVt −
1

2

1

V 2
t

dVtdVt = (rdt+ σdW̃t)−
1

2
σ2dt

= (r − 1

2
σ2)dt+ σdW̃t

⇒ Yt = ln(V0/L)exp

{
(r − 1

2
σ2)t+ σW̃t

}
⇒ P̃ {τ ≤ T |Ft} = P̃

{
inf

t≤s≤T
Ys ≤ 0|Ft

}
Using the same Lemma of section 1.6, we have:

P̃ {τ ≤ T |Ft} = Φ

(
ln(L/Vt)− (r − 1

2
σ2)(T − t)

σ
√
T − t

)

+

(
L

Vt

)2
r− 1

2 σ2

σ2

Φ

(
ln(L/Vt) + (r − 1

2
σ2)(T − t)

σ
√
T − t

)
Therefore, the pricing formula is:

DFPT (t, T ) = B(t, T )L

[
1− (1− δ)

{
Φ

(
ln(L/Vt)− (r − 1

2
σ2)(T − t)

σ
√
T − t

)

+

(
L

Vt

)2
r− 1

2 σ2

σ2

Φ

(
ln(L/Vt) + (r − 1

2
σ2)(T − t)

σ
√
T − t

)
 (4.12)

And the spread is:

S(t, T ) = − ln(DFPT (t, T )/LB(t, T ))

T − t
(4.13)

Case 3: Stochastic Interest Rates

In the final case we analyze bond pricing with stochastic interest rates. For

this we will use the technique called change of numeraire and define two new

probability measures. Let P , P̃ ,P̃ T and P̃ V denote objective probability measure,

risk-neutral probability measure, and newly defined T-forward and V-forward

80



probability measures respectively. The new measures are defined as:

P̃ T (A) :=

∫
A

ZT
T (ω)dP (ω), ∀A ∈ F

P̃ V (A) :=

∫
A

ZV
T (ω)dP (ω), ∀A ∈ F

where:

ZT (t) :=
D (t)B (t, T )

B (0, T )

ZV (t) :=
D (t)V (t)

V (0)

Under P̃ T , V (t)
B(t,T )

is martingale. Similarly under P̃ V , B(t,T )
V (t)

is martingale (For

proofs see [Shr04]). And we have the following relations:

ZT (0) =
D (0)B (0, T )

B (0, T )
= 1

ZT (T ) =
D (T )B (T, T )

B (0, T )
=

D (T )

B (0, T )

ZV (0) =
D (0)V (0)

V (0)
= 1

ZV (T ) =
D (T )V (T )

V (0)

ẼT [X|Ft] =
1

ZT (t)
Ẽ
[
XZT (T ) |Ft

]
ẼV [X|Ft] =

1

ZV (t)
Ẽ
[
XZV (T ) |Ft

]
We know that, under risk-neutral measure P̃ , discounted prices for both firm’s

asset value and the risk-free zero coupon bond are martingale:
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dV (t)

V (t)
= rdt+ σdW̃t

dD (t)V (t)

D (t)V (t)
= σdW̃t

dB (t, T )

B (t, T )
= rdt+ σBdW̃t

dD (t)B (t, T )

D (t)B (t, T )
= σBdW̃t

Additionally, by using martingale property, we have, for σ̄ = ‖σ − σB‖ =√
|σ2 − σ2

B|,

d
V (t)

B (t, T )
=

V (t)

B (t, T )
σ̄dW̃ T

t

⇒ V (T )

B (T, T )
=

V (0)

B (0, T )
exp

{
−1

2
σ̄2T + σ̄W̃ T

T

}
d
B (t, T )

V (t)
=

B (t, T )

V (t)
σ̄dW̃ V

t

⇒ B (T, T )

V (T )
=

B (0, T )

V (0)
exp

{
−1

2
σ̄2T + σ̄W̃ V

T

}
where W̃ T and W̃ V are standard Brownian motions under P̃ T and P̃ V respec-

tively (see [Shr04]).

After defining these new probability measures, we can know start formulating

our bond pricing formula. We know that the bond price is:

D (t, T ) =
1

D (t)
Ẽ
[
D (T )

{
L1{VT≥L} + V (T ) 1{VT <L}

}
|Ft

]
=

1

D (t)
Ẽ
[
D (T )L1{VT≥L}|Ft

]
+

1

D (t)
Ẽ
[
D (T )V (T ) 1{VT <L}|Ft

]
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=
B (t, T )

D (t)
Ẽ

[
D (T )

B (t, T )
L1{VT≥L}|Ft

]
+
V (0)

D (t)
Ẽ

[
D (T )V (T )

V (0)
1{VT <L}|Ft

]
=

B (t, T )

D (t)
L
D (t)B (t, T )

B (0, T )
ẼT
[
1{VT≥L}|Ft

]
+
V (0)

D (t)

D (t)V (t)

V (0)
ẼV
[
1{VT <L}|Ft

]
= LB (t, T ) P̃ T {VT ≥ L|Ft}+ V (t) P̃ V {VT < L|Ft}

= LB (t, T ) P̃ T

{
VT

B (T, T )
≥ L|Ft

}
+ V (t) P̃ V

{
VT

B (T, T )
>

1

L
|Ft

}
We can easily find the probabilities:

P̃ T

{
VT

B (T, T )
≥ L|Ft

}
= P̃ T

{
ln

(
V (t)

B (t, T )

)
− σ̄2τ

2

+σ̄
(
W̃ T

T − W̃ T
t

)
≤ ln (L) |Ft

}
= P̃ T

(W̃ T
T − W̃ T

t

)
≥
ln
(

V (t)
LB(t,T )

)
− 1

2
σ̄2τ

σ̄
|Ft


= Φ

 ln
(

V (t)
LB(t,T )

)
− 1

2
σ̄2τ

σ̄
√
τ


=: Φ (d1)

P̃ V

{
B (T, T )

VT

>
1

L
|Ft

}
= P̃ V

{
ln

(
B (t, T )

V (t)

)
− σ̄2τ

2

+σ̄
(
W̃ V

T − W̃ V
t

)
> ln

(
1

L

)
|Ft

}

= P̃ V

(W̃ V
T − W̃ V

t

)
<
ln
(

LB(t,T )
V (t)

)
− 1

2
σ̄2τ

σ̄
|Ft


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= P̃ V

(W̃ V
T − W̃ V

t

)
<
ln
(

V (t)
LB(t,T )

)
+ 1

2
σ̄2τ

σ̄
|Ft


= Φ

 ln
(

V (t)
LB(t,T )

)
+ 1

2
σ̄2τ

σ̄
√
τ


=: Φ (d2)

Therefore the price is:

D (t, T ) = LB (t, T ) Φ (d1) + V (t) Φ (d2) (4.14)

where:

d1 =
ln
(

V (t)
LB(t,T )

)
− 1

2
σ̄2τ

σ̄
√
τ

d2 =
ln
(

V (t)
LB(t,T )

)
+ 1

2
σ̄2τ

σ̄
√
τ

4.3.2 Stocks

In structural modeling, the common stocks are treated as call options on firms

assets, since their payoff is:

Payoff =

{
VT − L if no default

0 if default

Therefore, the corresponding pricing formula is:

Et = B (t, T ) Ẽ
[
(VT − L)× 1{No Default} + 0× 1{Default}|Ft

]
= B (t, T ) Ẽ

[
VT × 1{No Default}|Ft

]
−B (t, T )L× P̃ {No Default}
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To derive the pricing formula, we can use similar techniques that we used for

bonds. But there is also an easy way. Since at any time t, the firm’s assets are

equal to its liabilities, and if we assume that the firm’s liabilities are one zero

coupon bond and a common stock, we can derive the price of stock from the

following (put-call parity) equation:

Vt = D(t, T ) + Et ⇒ Et = Vt −D(t, T )

By using the formulas for D(t, T ) we obtained in previous section, we can find

Et.

Et = VtΦ(d1) + LB(t, T )Φ(d2) (4.15)

where

d1 =
ln(Vt/L) + (r + 1

2
σ2)(Tt)

σ
√
T − t

d2 =
ln(Vt/L) + (r − 1

2
σ2)(T − t)

σ
√
T − t

and B(t,T) is the price of risk-free bond.

4.3.3 Credit Default Swaps

Credit default swaps (CDS) are the simplest type of credit derivatives, but they

are also the basic building block for more complex credit derivatives. In order

to price a CDS, we use a reverse engineering and decompose the cash flows of it.

Under a simple CDS contract on a prespecified underlying such as a bond, the

protection buyer agrees to pay periodic cash flows to the protection seller until a

default occurs before the maturity of CDS. On the other side, the protection seller

agrees to pay a contingent payment if a default occurs before the CDS maturity.

The periodic payment done by the protection buyer is called CDS spread and

is generally a fixed percentage of the notional amount of the underlying. If a

default occurs before CDS maturity, the protection seller compensates the loss of

the protection buyer, i.e. the amount paid to the protection buyer is equal to the

loss given default (or 1 - recovery rate).
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Therefore the cash flows for the protection buyer is:

CF = −
n∑

i=1

s1{No default until ti} + (1−RR) 1{Default before tn}

where ti, i = 1, 2, · · · , tn are the times that corresponds to periodic payments and

tn is the maturity of CDS, s is the CDS spread, RR is the recovery rate. Note

that buyer pays spread at each ti but receives contingent payment at the time of

default, say τ .

The value of CDS is calculated as the risk-neutral expected discounted cash

flows. Assume that the interest rates are constant. Then:

V CDS = EQ

[
−

n∑
i=1

e−rtis1{No default until ti} + e−rτ (1−RR) 1{Default before tn}

]

= −s
n∑

i=1

e−rtiEQ
[
1{τ>ti}

]
+ (1−RR)EQ

[
e−rτ1{τ<tn}

]
= −s

n∑
i=1

B̄ (0, ti) + (1−RR)E (0, tn) (4.16)

where B̄ (0, ti) is the value of a zero coupon risky bond with zero recovery rate,

and E (0, ti) is the price of a unit contingent payment if a default occurs before

ti where the payment is made at the time of default. Formally:

B̄ (0, ti) = e−rtiEQ
[
1{τ>ti}

]
E (0, ti) = EQ

[
e−rτ1{τ<tn}

]
By using the first-passage default probabilities, we can define B̄ (0, ti) and

E (0, ti).

B̄ (0, ti) = e−rtiEQ
[
1{τ>ti}

]
= e−rti

[
1− PDFPT (0, ti)

]
= B (0, ti)

[
1− PDFPT (0, ti)

]
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where B (0, ti) is the risk-free zero coupon bond price.

E (0, ti) = EQ
[
e−rτ1{τ<tn}

]
= EQ

[
n∑

i=1

e−rti1{ti−1<τ<ti}

]

=
n∑

i=1

e−rti
[
1− PDFPT (0, ti−1)

]︸ ︷︷ ︸
SurvivalProbability

PDFPT (ti−1, ti)︸ ︷︷ ︸
DefaultProbability

=
n∑

i=1

B (0, ti)
[
1− PDFPT (0, ti−1)

]
PDFPT (ti−1, ti)

where the last conditional probability can be easily derived (by a recursive ap-

proach) from the term structure of PDs by using the following relation:

PDFPT (0, tn) = 1−
n∏

i=1

[
1− PDFPT (ti−1, ti)

]
Thus we can totally define the value of a CDS by using zero coupon risk-free

bond prices and first passage default probabilities:

V CDS = + (1−RR)
n∑

i=1

B (0, ti)
[
1− PDFPT (0, ti−1)

]
PDFPT (ti−1, ti)

−s
n∑

i=1

B (0, ti)
[
1− PDFPT (0, ti)

]
(4.17)

4.4 Model Calibration

Model calibration refers to the inverse problem in asset pricing. In calibration

problem, we have a model for an asset price, we observe prices of some assets

(e.g. liquid ones) and want to price other assets on the same underlying (e.g

illiquid, exotic or over-the-counter ones). Therefore we call the problem an inverse

problem. For instance, in structural models defined in this chapter, the debt price

is a function of five variables: the firm value, its volatility, time to maturity, risk-
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free rate and default point:

D (t, T ) = f (Vt, σ, τ,DP, r)

Therefore the generic problem is solved with a three step procedure:

• First obtain the known/observed values of input parameters. For example

we can easily obtain the risk-free rate from government bond or LIBOR

market. Or we can know in advance the time to maturity of a bond.

• Second, we determine some benchmark assets (bonds, CDSs, etc) which are

liquid. Then we find the unobserved parameters which leads to the observed

prices for these benchmark assets. Indeed this is an optimization problem.

For this step we generally perform a least-square minimization. For the

unknown (θu) and known (θk) parameter sets, we perform the following

minimization:

θ̂u = argmin
N∑

i=1

wi|Pi

(
θu; θk

)
− PMarket

i |2 (4.18)

where i = 1, 2 · · ·N are the benchmark assets, Pi

(
θu; θk

)
is the model price

for ith asset and DMarket
i is the market price of it and wi are the weights

used in the optimization. At the end we obtain market-implied parameters

for the model.

• Then we can price any other asset on the same underlying by using the

market-implied parameters.

Pj = Pj

(
θ̂u; θk

)
(4.19)

The above procedure is a generic one that can be used in any asset pricing

problem. However, for credit risk modeling we have an additional advantage that

we can obtain parameters from equity markets. Since for firms with traded debt

or CDS, we generally have more liquid markets for stocks, we can calibrate our
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model using the stock prices, and then by using stock market-implied parameters,

we can price bonds, CDSs, etc. Procedures for determining model inputs are

explained below.

4.4.1 Risk-free Rate

Theoretically the risk-free rates should be obtained from the Treasury bond

and bill markets. However, if available, LIBOR swap rates are generally used to

estimate risk-free term structures. Because Treasury securities are often assumed

to contain a convenience yield, because they can be posted as collateral and allow

to borrow at special repo rates ( [Eck07]).

4.4.2 Time to Maturity of Debt

In structural models, a single number for time to maturity of debt is used.

This is a consequence of the simplifying assumption that the firm has a single

(zero-coupon) debt. However, this is an unrealistic assumption. Therefore we

can use a weighted-average duration for all long-term liabilities ( [Eck07]).

4.4.3 Default Point

In the original Merton model, the default point is equal to the face value of

debt. This means that the firm will be in default if its assets are below the face

value of debt at maturity. However, we should distinct short-term (i.e. shorter

than the risk horizon) and long-term debt. Because if a firm’s assets can meet

firm’s short-term liabilities but below its long-term debt, there is no reason for

a default. The firm has the chance to increase its assets to meet longer-term

debt until when they become due. Thus, one approach is to choose a value for

default point between short-term debt and total debt ( [Sun 01], [Eli05]). For

example, MoodysKMV, by analyzing its empirical database for defaults, uses a

default point which is equal to the short-term debt plus one half of the long term

debt ( [CB03]).
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4.4.4 Market Value of Assets and Its Volatility

Asset value and its volatility are the most critical parameters in structural

credit pricing. However these are also the parameters that are not generally

observed. If all claims of a firm (i.e. bonds and stock) are traded publicly, we

can easily infer the asset value, by using the identity,

Market Value of Assets = Market Value of Debt + Market Value of Equity

But this is generally not the case. A practical solution, if not all the claims are

traded, is to apply a proxy of book-to-market value ratio obtained from traded

debt to the non-traded one. This gives us the total market value of firm’s assets.

If we can obtain asset values by using methods explained above, we calculate

it volatility using historical time series of asset values. But this method has an

implicit assumption. The asset volatility used in structural models is the volatility

that corresponds to the future time period up to the risk horizon. Therefore, even

if effectively estimate the asset value, the volatility calculated form historical

values represents only the historical (i.e. realized) volatility, which may not be a

good estimator for the future risk-neutral volatility.

There is a second approach used for estimating asset values and volatilities

which is a maximum likelihood procedure based on the relationship between the

standard deviation of the return to the firm and the equity (see for example

[RV86], [ER05]).

Let firm assets (V ) and equity (E) follow the following stochastic dynamics

under risk neutral probability measure:

dVt = rVtdt+ σVtdW̃t

dEt = rEtdt+ σEEtdW̃t
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Since the value of the equity is a function of time and of the value of the assets,

Et = f (Vt, t), we can apply Ito Lemma to get:

dEt =

[
∂f (Vt, t)

∂t
+
∂f (Vt, t)

∂Vt

rVt +
1

2

∂f 2 (Vt, t)

∂V 2
t

(Vtσ)2

]
dt+

∂f (Vt, t)

∂Vt

σVtdW̃t

Therefore:

σEEt =
∂f (Vt, t)

∂Vt

σVt

Since:

∂f (Vt, t)

∂Vt

= Φ

(
ln(Vt/L) + (r + 1

2
σ2)(T − t)

σ
√
T − t

)
= Φ(d1)

we have:

σE =
Vt

Et

Φ (d1)σ

Thus, in order to obtain the asset value and its volatility, we should solve the

following two-equation non-linear system in two unknowns (i.e. Vt and σ):

EObs
t = VtΦ(d1) + LB(t, T )Φ(d2) (4.20)

σObs
E =

Vt

Et

Φ (d1)σ (4.21)

where EObs
t and σObs

E observed stock value and its volatility respectively.
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Chapter 5

PROBLEMS WITH GAUSSIAN

MODEL AND POSSIBLE

EXTENSIONS

In this chapter, we discuss the problems that the Gaussian model creates and

potential extensions. Some of the problems caused by Gaussian model is directly

related to the credit risk and some of them are more general problems that are

common to all asset price modeling.

5.1 Problems with Gaussian Model

5.1.1 Pathwise and Distributional Properties of Asset Val-

ues and Returns

Finance literature is quite rich with regard to papers investigating the em-

pirical properties of financial asset prices and returns in different markets such

as stocks, commodities, exchange rates, interest rates and financial derivatives

derivatives. Different markets, time periods and asset classes may have differ-

ent empirical characteristics that are unique to that market. However, there is

a set of certain properties observed by different studies that are common across

many instruments, markets and time periods. These properties, called stylized
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facts show that seemingly random behavior of different asset prices do share quite

non-trivial statistical properties.

In structural modeling of credit risk, the asset value of the firm is the main

process that should be modeled. In general, the asset value can not be observed

directly. It is simply the sum of market values of all assets that the firm owns.

However, firms generally have some assets that are not traded in a liquid market.

Because of this unobservability, we do not have prior information about the qual-

itative or statistical properties of firms’ asset values. Since the firm’s asset value

is the sum of values of different assets, it seems reasonable to require that the

firm’s asset value should also satisfy the stylized statistical properties for different

financial asset values.

[Cont01] presents a set of stylized facts emerging from the statistical analysis

of price variations in various types of financial markets and lists the stylized

statistical properties of asset returns as follows.

1. Absence of autocorrelations: (linear) autocorrelations of asset returns

are often insignificant, except for very small intraday time scales (around

20 minutes) for which microstructure effects come into play.

2. Heavy tails: the (unconditional) distribution of returns seems to display

a power-law or Pareto-like tail, with a tail index which is finite, higher than

two and less than five for most data sets studied. In particular this excludes

stable laws with infinite variance and the normal distribution. However the

precise form of the tails is difficult to determine.

3. Gain/loss asymmetry: one observes large draw downs in stock prices and

stock index values but not equally large upward movements. This property

is not true for exchange rates where there is a higher symmetry in up/down

moves.

4. Aggregational Gaussianity: as one increases the time scale ∆t over

which returns are calculated, their distribution looks more and more like a
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normal distribution. In particular, the shape of the distribution is not the

same at different time scales.

5. Intermittency: returns display, at any time scale, a high degree of vari-

ability. This is quantified by the presence of irregular bursts in time series

of a wide variety of volatility estimators.

6. Volatility clustering: different measures of volatility display a positive

autocorrelation over several days, which quantifies the fact that high-volatility

events tend to cluster in time.

7. Conditional heavy tails: even after correcting returns for volatility clus-

tering (e.g. via GARCH-type models), the residual time series still exhibit

heavy tails. However, the tails are less heavy than in the unconditional

distribution of returns.

8. Slow decay of autocorrelation in absolute returns: the autocorrela-

tion function of absolute returns decays slowly as a function of the time lag,

roughly as a power law with an exponent β ∈ [[0.2, 0.4]]. This is sometimes

interpreted as a sign of long-range dependence.

9. Leverage effect: most measures of volatility of an asset are negatively

correlated with the returns of that asset.

10. Volume/volatility correlation: trading volume is correlated with all

measures of volatility.

11. Asymmetry in time scales: coarse-grained measures of volatility predict

fine-scale volatility better than the other way round.

In addition to these properties, different empirical studies found significance ev-

idence of discontinuities (i.e. jumps) in asset prices (e.g. [EJP02], [Lin06], [RS05],

[Bates96]). These jumps corresponds to the sudden events generally caused by

an important news or a crash in the market.

94



Therefore any successful model should satisfy the above mentioned properties

as much as it can.

5.1.2 Default Predictability and Short-term Default Prob-

ability

The Gaussian model is a continuous model with a stationary distribution. The

statistical properties of Gaussian distribution creates problems for default pre-

dictability and short-term default probabilities.

By definition of default, we know that the distance from asset value to default

threshold determines how probable the default event is. With Gaussian model,

if the asset value is far from the default threshold, it is very unlikely that the

firm go into default in a short time period. Because the asset value process needs

time to reach the default threshold. This makes default a predictable event, i.e.

default does not come as a surprise ([Eli05]).

The consequence of default predictability in Gaussian model is that short-term

default probabilities tend to go to zero. When we take the limit of PD for a short

time period, we have:

lim
τ→0

PD (t, t+ τ) = lim
τ→0

Φ

[
ln (DP/Vt)−

(
µ− 1

2
σ2
)
τ

σ
√
τ

]

=

{
0 if Vt > DP

1 if Vt < DP

However default predictability and very low short-term PDs are unrealistic

assumptions and we have many empirical counter examples. Sudden collapse of

seemingly healthy firms, such as Enron, LTCM, WorldCom, within a relatively

short period of time represents important counter-facts to prevailing approaches.

Therefore in a successful model, the default may include predictable and sur-

prise events and short-term PDs may have non-zero values.
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5.1.3 Credit Spreads and Implied Volatility Smiles

The empirical testing of Gaussian structural models in pricing credit risk in

general has not been very successful (see [AS00], [EHH03] and [ER05]). One

obvious reason for this poor performance is the unrealistic assumption of default

predictability. This makes short term spreads zero.

lim
τ→0

s (t, t+ τ) = lim
τ→0

−
ln
(

Vt

L
Φ (−d1) + Φ (d2)

)
τ

=

{
0 if Vt > DP

∞ if Vt < DP

The difference between market and model prices and marked difference in model

performance among different credit qualities suggest that we may encounter an

implied volatility smile when we use Gaussian model. Additionally, since the

Gaussian model has only two parameters, i.e. µ and σ, we do not have much

flexibility for fitting the model to different shapes of credit spread curves that

can be observed in the market. Therefore a successful model should have the

capability to capture non-zero short-term spreads, can create different shapes for

credit spread curves and can replicate implied volatility smiles with respect to

the Gaussian model.

5.2 Possible Extensions

5.2.1 Non-constant Volatility Models

In the Gaussian model, volatility is constant. However, as explained in the

previous section, observed volatility is not constant. Additionally it has clustering

property and incorporate leverage effects. Therefore one obvious extension to the

Gaussian model is making volatility non-constant.

The generic form for a non-constant volatility model is as follows:

dVt = µVtdt+ σtVtdWt
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where σt is non-constant. Different specifications for the function σt leads to

different classes of volatility models. We can classify volatility models into two

general classes: autoregressive conditional heteroskedasticity (ARCH) models and

stochastic volatility models.

ARCH Models

ARCH models, including their generalized version (i.e. generalized ARCH or

GARCH), models the conditional volatility. The generic form for a GARCH

model is:

rt = µt + εt

εt = ztσt , zt ∼ N (0, 1)

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

where rt is the return, µt is the conditional mean and σt is the conditional volatil-

ity. The above specification is for a GARCH(p,q) model where p and q determines

the degree of model.

Simple GARCH(p,q) models with Gaussian distribution can not account for

leverage effects. But with t-distribution or GED, GARCH models can properly

account for volatility clustering and heavy tails. In practice EGARCH and GJR-

GARCH models are heavily used due to their properties to allow for leverage

effect and asymmetries. There exist so many extensions to GARCH models.

For an excellent review of conditional volatility modeling, interested readers are

directed to [PG03].

Note that in GARCH models σt+1 ∈ Ft, i.e. tomorrow’s variance is a deter-

ministic function of price and variance history up to today. Therefore we have

V ar
[
σ2

t+1|Ft

]
= 0. This is a critical assumption which is the main difference

between GARCH and stochastic volatility models.
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Stochastic Volatility Models

Stochastic volatility models incorporate unpredictable conditional variances by

allowing a stochastic term in the variance equation. The generic form of a sto-

chastic volatility model is:

dVt = µdt+ σtdWt

σt = f (Yt)

dYt = µY (t, Yt) dt+ σY (t, Yt) dZt

where f is a positive function, Yt is an Ito process, Wt and Zt are standard

Brownian motions. Therefore volatility process has its own source of randomness

caused by Zt. The positivity of function f ensures that the volatility is non-zero.

Additionally the generic form includes models with correlated Brownian motions,

i.e. d 〈W,Z〉t = ρdt. The negative correlation captures the leverage effects.

For process, Y , the most common choices in the literature are:

• Lognormal (LN)

dYt = µY Ytdt+ σY YtdZt

• Ornstein-Uhlenbeck (OU)

dYt = β (α− Yt) dt+ σY dZt

• Cox-Ingersoll-Ross (CIR)

dYt = β (α− Yt) dt+ σY
√
YtdZt

Note that the OU and CIR processes have a mean reverting behavior but the

LN does not. The LN and CIR process remain positive.

The following table (from [Tay04 ]) summarizes different models used by dif-

ferent authors.
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Table 5.1: Stochastic Volatility Models

Authors ρ Yt Process f (y)
[HW88] ρ = 0 Lognormal f (y) =

√
y

[Sco87] ρ = 0 Mean Reverting OU f (y) = y, ey

[Wig87] ρ 6= 0 Mean Reverting f (y) = y
[SS91] ρ = 0 Mean Reverting OU f (y) = |y|
[Hes93] ρ 6= 0 CIR f (y) =

√
y

[BR94] ρ = 0 CIR f (y) =
√
y

5.2.2 Jump Models

A second class of models that can be used for modeling financial asset prices

are jump models. These models attempt to capture the discontinuities observed

in asset prices. Jump processes can be classified as finite activity and infinite

activity jump processes.

Finite Activity Jump Processes

These jump models have finite number of jumps for any finite time period.

The simplest case is the Poisson model. The Poisson process, Nt, is a piecewise

constant stochastic process which have finite jumps, and the inter arrival time

for jumps have exponential distribution. Poisson process has a constant intensity

which defines the average number of jumps expected within a unit period of time.

The second example of a finite activity jump model is the compound Poisson

model. In the compound Poisson process, Qt, we have a Poisson process that

determines the number and time of jumps, and a second process that drives the

jump size. Formally, we have:

Qt =
Nt∑
i=1

Yi

where Nt is a Poisson process with intensity λ and Yi is a (stochastic) process

that drives jump sizes. The jumps in Qt occur at the same times as the jumps

in Nt, but whereas the jumps in Nt are always of size 1, the jumps in Qt are of

random size. Therefore compound Poisson process is also a piecewise constant
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stochastic process.

The piecewise constant models, such as Poisson and compound Poisson mod-

els, are alone not good candidates for modeling financial asset values. Thus, in

general, jump models are combined with other stochastic processes. In a jump-

diffusion model, we have a deterministic time trend, a stochastic part governed

by a Brownian motion and a compound Poisson process. Formally,

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt +
Nt∑
i=1

Yi

where Wt is a standard Brownian motion, Nt is a Poisson process with intensity

λ and Y = (Yi)i≥1 is an i.i.d. sequence of random variables with probability

distribution F.

Infinite Activity Jump Processes

Second class of jump models are the infinite activity jump models in which we

may have infinite number of small jumps within a finite time period. Contrary

to the finite activity jump models, in infinite activity jump models, jumps are no

longer rare events, the process moves essentially by jumps. Although we require

diffusion parts to complement a finite activity jump process, we can directly model

financial asset values with pure (infinite activity) jump models. For a complete

resource for jump processes with financial applications refer to [CT04].

5.3 Approach Used in the Thesis

After searching for possible extensions, we opt to use a model with stochastic

volatility and finite jumps. We call the model a stocastic volatility correlated

jumps with stochastic interest rates with jumps (SVCJ-SIJ) model. The selected

model attempts to solve the problems encountered with Gaussian case.

100



The selected model is a generalization of different models proposed in the lit-

erature and therefore by setting certain model parameters to zero, we can have

different restricted models. The details of the model is explained in the next

chapter.
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Chapter 6

MODELING SINGLE FIRM

CREDIT RISK: SVCJ-SIJ

MODEL

6.1 Model

In this section we find the probability of default for a single firm which has an

asset value process with stochastic volatility and jumps. First assume that the

asset value follows the following stochastic differential equation.

dVt

Vt

= (µ− λ1k)dt+
√
htdW

1
t + (eY 1 − 1)dN1

t (6.1)

or equivalently, for νt := lnVt

dνt = (µ− λ1k −
1

2
ht)dt+

√
htdW

1
t + Y 1dN1

t (6.2)

Thus the asset value process is governed by a diffusion process as well as a

compensated jump process. The jumps are finite and jump sizes are normally

distributed.

Additionally the volatility is also assumed as stochastic and follows a square-

root (or Cox-Ingersoll-Ross - CIR) process with jumps. The jumps in the asset

value and the volatility are caused by the same Poisson process. This means that
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the asset value and the volatility jumps simultaneously, but with different jump

sizes. The jump size distribution for volatility process is exponential.

dht = β(α− ht)dt+ γ
√
htdW

2
t + Y 2dN1

t (6.3)

And finally, interest rate is also stochastic and follows a similar process, i.e.

square-root plus jump, with volatility. But the Brownian motion and jump that

drives interest rate is independent from asset value and volatility processes.

drt = η(θ − rt)dt+ δ
√
rtdW

3
t + Y 3dN3

t (6.4)

with the following additional assumptions:

• µ, β, α, η, θ ∈ R and γ, δ ∈ R+

• k = E
[
eY 1 − 1

]
• W 1,W 2,W 3 are standard Brownian Motions with the following variance-

covariance matrix: ∑
=


1 ρ 0

ρ 1 0

0 0 1


• N1

t and N2
t are Poisson processes with intensities λ1 and λ2

• Y 2 and Y 3 are exponentially distributed with parameters µ2 and µ3 respec-

tively. And the conditional distribution of Y 1 given Y 2 is normal.

(Y 1|Y 2 = y2) ∼ N(µ1 + ρjy2, σ
2
1)

Y 2 ∼ exp(µ2)

Y 3 ∼ exp(µ3)

• There is no interdependence between (W 1,W 2,W 3),(Y 1, Y 2, Y 3) and (N1, N2).

The model is called stochastic volatility correlated jumps with stochastic in-

terest rates with jumps (SVCJ-SIJ) model. By setting certain parameters of the

model, we can have restricted versions of the model such as jump diffusion (JD),

stochastic volatility (SV), stochastic volatility jump diffusion (SVJD), etc.
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6.2 Conditional Characteristic Function

Since under actual probability measure, the risk-free rate does not appear in

the drift term of asset value (or return) process and rt is independent of νt and

ht, we condition the characteristic function only to νt and ht.

Therefore, the conditional characteristic function (CCF) is defined as

ϕ(u1, u2; νT , hT |νt, ht) = ϕt(u1, u2; νT , hT )

:= E [exp {iu1νT + iu2hT} |νt, ht] (6.5)

ϕt is, by definition, a conditional expectation. And we also know that every

conditional expectation is a martingale, i.e. for a filtration F = {Ft : t ≥ 0} and

with Fs ⊂ Ft, we have:

E [E [X|Ft] |Fs] = E [X|Fs]

Thus ϕt satisfies all the properties of a martingale. Additionally we also know

that a martingale has always constant expectation:

E [Xt|Fs] = Xs

⇒ E [Xt −Xs|Fs] = 0

⇒ E [dXs] = 0

where dXs := Xt −Xs. When we apply this property to ϕt, we have:

E
[
dϕt
]

= 0 (6.6)

To find dϕt, we apply Ito to ϕt (we drop t to ease notation):

dϕ = ϕtdt+ ϕνdν + ϕhdh+
1

2
(ϕννdνdν + 2ϕνhdνdh+ ϕhhdhdh) (6.7)
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Since the jump parts are independent from the diffusion parts, we can express

the change in ϕ in two parts:

Total change = Change without jumps + Change because of jumps

Thus:

E [dϕ] = E

[
ϕtdt+ ϕν

{(
µ− λ1k −

1

2
h

)
dt+

√
hdW 1

}
+ϕh

{
β (α− h) dt+ γ

√
hdW 2

}
+

1

2
ϕννhdt+ ϕνhγhρdt+

1

2
ϕhhγ

2hdt

]
+λ1E

[
ϕ
(
u1, u2; νT , hT |νt + Y 1, ht + Y 2

)
− ϕ (u1, u2; νT , hT |νt, ht)

]
dt

Since W 1 and W 2 are martingale, we have E [dW 1] = 0 and E [dW 2] = 0.

Thus, in order to obtain E [dϕ] = 0, we should have:

0 = ϕt + ϕν

(
µ− λ1k −

1

2
h

)
+ ϕhβ (α− h)

1

2
ϕννh+ ϕνhγhρ+

1

2
ϕhhγ

2h

+λ1E
[
ϕ
(
u1, u2; νT , hT |νt + Y 1, ht + Y 2

)
− ϕ (u1, u2; νT , hT |νt, ht)

]
Following [DPS00] and [RS05], we guess the general form of characteristic func-

tion as follows:

ϕt(u1, u2; νT , hT ) = eiu1νt+A(τ ;u1,u2)+B(τ ;u1,u2)ht+J1(τ ;u1,u2) (6.8)

where τ = T − t
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Then the differentials of ϕ are:

ϕt = −
[
∂A

∂τ
+
∂B

∂τ
ht +

∂J1

∂τ

]
ϕ

ϕν = iu1ϕ

ϕh = Bϕ

ϕνν = i2u2
1ϕ

ϕhh = B2ϕ

ϕνh = iu1Bϕ

For the last term in E [dϕ], which is caused by jump events, define the jump

transform:

Θ1(c1, c2) := E
[
ec1Y 1+c2Y 2|νt, ht

]
where the transform is the joint conditional moment generating function of Y 1

and Y 2. Then, with A, B and J1 as defined above:

E
[
ϕ(u1, u2; νT , hT |νt + Y 1, ht + Y 2)− ϕ(u1, u2; νT , hT |νt, ht)

]
= Et

[
exp

{
iu1(νt + Y 1) + A+B(ht + Y 2) + J1

}]
−Et

[
exp

{
iu1νt + A+Bht + J1

}]
= exp

{
iu1νt + A+Bht + J1

}
Et

[
exp

{
iu1Y

1 +BY 2
}
− 1
]

= ϕt(u1, u2; νT , hT )
[
Θ1(iu1, B)− 1

]
(6.9)

When we input the differentials:
−∂A

∂τ
− ∂B

∂τ
h− ∂J1

∂τ
+ iu1(µ− λ1k − 1

2
h) +Bβ(α− h)

+1
2
i2u2

1h+ iu1Bγhρ+ 1
2
B2γ2h+ λ1 [Θ1(iu1, B)− 1]

ϕ = 0
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When we group the terms with h, terms related to diffusion and jump parts,

we have:

[
−∂A

∂τ
+ iu1µ+Bβα

]
+h
[
−∂B

∂τ
− 1

2
iu1 −Bβ + 1

2
i2u2

1 + 1
2
B2γ2 + iu1Bγρ

]
+
[
−∂J1

∂τ
− iu1λ1k + λ1 [Θ1(iu1, B)− 1]

]


ϕ = 0

When we equate each group in brackets to zero, we obtain a system of complex-

valued ordinary differential equations (ODE):

∂A

∂τ
= iu1µ+Bβα (6.10)

∂B

∂τ
=

1

2
iu1(iu1 − 1) +B(iu1γρ− β) +

1

2
B2γ2 (6.11)

∂J1

∂τ
= −iu1λ1k + λ1

[
Θ1(iu1, B)− 1

]
(6.12)

And the boundary conditions for the system are:

A(0;u1, u2) = 0 (6.13)

B(0;u1, u2) = iu2 (6.14)

J1(0;u1, u2) = 0 (6.15)

so that

ϕT (u1, u2; νT , hT ) = exp {iu1νT + iu2hT} (6.16)

In the next step, we derive the conditional characteristic function for returns.

First observe that:

ϕ(w; νT |νt, ht) = E
[
eiwνT |νt, ht

]
= ϕ(w, 0; νT , hT |νt, ht)

= exp
{
iwνt + A(τ ;w, 0) +B(τ ;w, 0)ht + J1(τ ;w, 0)

}
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And for logarithmic returns defined as Rt,T := νT − νt,

ϕ(w;Rt,T |νt, ht) = E
[
eiw(νT−νt)|νt, ht

]
= E

[
eiwνT |νt, ht

]
e−iwνt

= exp
{
iwνt + A(τ ;w, 0) +B(τ ;w, 0)ht + J1(τ ;w, 0)− iwνt

}
= exp

{
A(τ ;w, 0) +B(τ ;w, 0)ht + J1(τ ;w, 0)

}
Since the functional form does not depend on νt, there is no need for condi-

tioning on νt. Therefore we can express the conditional characteristic function of

returns as ϕ(w;Rt,T |ht).

ϕ(w;Rt,T |ht) = exp
{
A(τ ;w, 0) +B(τ ;w, 0)ht + J1(τ ;w, 0)

}
(6.17)

6.3 Unconditional Characteristic Function

In the next step, we will derive the unconditional characteristic function (UCF)

of returns, i.e. ϕ(w;Rt,T ).

The UCF is simply the expectation of CCF. Therefore:

ϕ(w;Rt,T ) = E
[
eiwRt,T

]
= E

[
E
[
eiwRt,T |ht

]]
= E [ϕ(w;Rt,T |ht)]

= E
[
exp

{
A(τ ;w, 0) +B(τ ;w, 0)ht + J1(τ ;w, 0)

}]
= exp

{
A(τ ;w, 0) + J1(τ ;w, 0)

}
E [exp {B(τ ;w, 0)ht}]

The expectation can be derived from the characteristic function of ht. Since,

for ht, the diffusion part which follows a square-root process (also called Cox-

Ingersoll-Ross (CIR) process) and the jump part are independent, the character-

istic function of ht is simply the product of characteristic functions of these two
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parts (see [RS05]).

ϕt (w;hT ) := E
[
eiwhT |ht

]
= ϕCIR

t (w)ϕJump
t (w) (6.18)

Since the distribution of the square-root process is gamma, the characteristic

function of the diffusion part is (see, for example, appendix in [Jia02]):

ϕCIR
t (u) =

(
1− iuγ2

2β

)−2αβ/γ2

Characteristic function of jump part is as follows. By using the independence

property of Poisson events:

Jump =

NT∑
k=Nt

Yk ∼
Nτ∑
k=1

Yk

ϕJump
t (u) = E

[
exp

{
iu

Nτ∑
k=1

Yk

}]

= E

[
E

[
exp

{
iu

n∑
k=1

Yk

}
|Nτ = n

]]

Since Nt is independent of {Yk},

ϕJump
t (u) =

∞∑
n=0

E

[
exp

{
iu

n∑
k=1

Yk

}]
P {Nτ = n}

= P {Nτ = 0}+
∞∑

n=1

E


n∏

k=1

exp {iuYk}︸ ︷︷ ︸
{Yk} are independent

 (λτ)n

n!
e−λτ
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= e−λτ +
∞∑

k=1

n∏
k=1

E [exp {iuYk}]︸ ︷︷ ︸
Char. fnc. of Yk

(λτ)n

n!
e−λτ

= e−λτ +
∞∑

n=1

(ϕY )n (λτ)n

n!
e−λτ

= e−λτ

∞∑
n=0

(ϕY λτ)
n

n!

= exp {λτ(ϕY (u)− 1)}

where ϕY (u) is the characteristic function of Y .

Since the jump size distribution is exponential, we have ϕY (u) = 1
1−iuµ

where

µ is the scale parameter, and thus:

ϕJump
t (u) = exp

{
λτ

(
1

1− iuµ
− 1

)}
= exp

{
λτiuµ

1− iuµ

}
Therefore, the characteristic function of ht is:

ϕt(u;hT ) = exp

{
λ1τiuµ2

1− iuµ2

}(
1− iuγ2

2β

)−2αβ/γ2

(6.19)

Note that in order to find the unconditional characteristic function for returns,

we should find unconditional characteristic function for ht. Therefore:

ϕ (w;ht) := E
[
eiwht

]
=

(
1− iuγ2

2β

)−2αβ/γ2

for τ = 0.

By using characteristic function of ht we can express the last term in ϕ (w,Rt,T ):

E [exp {B (τ ;w, 0)ht}] = ϕ

(
B (τ ;w, 0)

i
;ht

)
=

(
1− B (τ ;w, 0) γ2

2β

)−2αβ/γ2
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At the end, we can derive the formula for the UCF of returns:

ϕ(w;Rt,T ) = exp
{
A(τ ;w, 0) + J1(τ ;w, 0)

}
E [exp {B(τ ;w, 0)ht}]

= exp
{
A(τ ;w, 0) + J1(τ ;w, 0)

}(
1− B(τ ;w, 0)γ2

2β

)−2αβ/γ2

(6.20)

6.4 Solutions

First,note that the jump transform, Θ1(c1, c2), is:

Θ1(c1, c2) = E
[
ec1Y 1+c2Y 2|νt, ht

]
= E

[
E
[
ec1Y 1+c2Y 2|Y 2 = y

]]
= E

[
ec2Y 2

E
[
ec1Y 1|Y 2 = y

]]
Since (Y 1|Y 2 = y) ∼ N(µ1 +ρjy, σ

2
1), by using the moment generating function

of normal distribution we have:

Θ1(c1, c2) = E
[
ec2Y 2

e(µ1+ρjY 2)c1+ 1
2
c21σ2

1

]
= eµ1c1+ 1

2
c21σ2

1E
[
e(c2+ρjc1)Y 2

]
Since Y 2 ∼ exp(µ2), by using the moment generating function of exponential

distribution we have:

Θ1(c1, c2) = eµ1c1+ 1
2
c21σ2

1
1

1− (c2 + ρjc1)µ2

=
exp

{
µ1c1 + 1

2
c21σ

2
1

}
1− ρjc1µ2 − c2µ2

(6.21)
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And for the jump compensator:

k = E
[
eY 1 − 1

]
= E

[
E
[
eY 1|Y 2

]]
− 1

= E

[
exp

{
µ1 + ρjY

2 +
1

2
σ2

1

}]
− 1

= eµ1+ 1
2
σ2
1E
[
eρjY 2

]
− 1

=
exp

{
µ1 + 1

2
σ2

1

}
1− ρjµ2

− 1

=
exp

{
µ1 + 1

2
σ2

1

}
+ ρjµ2 − 1

1− ρjµ2

(6.22)

Now we can find the solution for the complex valued ODEs. The details of the

solutions are given in the Appendix A.

A (τ ;u1, u2) =

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2
ln

(
1 + g2

3

1 + g2
4

)
(6.23)

B (τ ;u1, u2) =
g2g3 − g1

γ2
(6.24)

J1 (τ ;u1, u2) =

(
g8 − λ1 +

g5g7

(g2
5 + g2

6)

)
τ

+
2g6g7

g2 (g2
5 + g2

6)
ln

(
(g6g4 − g5)

√
1 + g2

3

(g6g3 − g5)
√

1 + g2
4

)
(6.25)

where:

g1 (u1, u2) := iu1γρ− β (6.26)

g2 (u1, u2) :=
√
iu1 (iu1 − 1) γ2 − g2

1 (6.27)

g3 (u1, u2) := tan

[
1

2
g2τ + arctan (g4)

]
(6.28)

g4 (u1, u2) :=
g1 + iu2γ

2

g2

(6.29)
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g5 (u1, u2) := 1− ρjiu1µ2 +
µ2g1

γ2
(6.30)

g6 (u1, u2) :=
µ2g2

γ2
(6.31)

g7 (u1, u2) := λ1exp

(
µ1iu1 −

1

2
u2

1σ
2
1

)
(6.32)

g8 (u1, u2) := −iu1λ1

exp
(
µ1 + 1

2
σ2

1

)
+ ρjµ2 − 1

1− ρjµ2

(6.33)

Since we found solutions for A, B and J1, we can totally define the conditional

and unconditional characteristic function for returns.

6.5 Simulation of Returns

We can simulate returns with the following algorithm. Note that in the algo-

rithm we generate correlated Brownian motions, simultaneous jumps and condi-

tional jump size for the log asset value.

6.5.1 Simulation Algorithm

1. Fix the time horizon T , and initial values ν0 and h0.

2. Establish an equally spaced time grid with ∆t := T
M

where M is the number

of grid points and ti = i∆t, i = 0, 1, · · · ,M are the time points.

3. First discretize the process for ν and h by using the Euler scheme:

∆νt =

(
µ− λ1k −

1

2
ht

)
∆t+

√
ht∆W

1
t + Y 1∆N1

t

∆ht = β (α− ht) ∆t+ γ
√
ht∆W

2
t + Y 2∆N1

t

4. Simulate two dimensional Brownian increments

• First simulate 2×M dimensional matrix of independent standard nor-

113



mal random numbers. Call this matrix as Z(2).

Z(2) (i, j) ∼ N (0, 1) , i = 1, 2, j = 1, 2, · · · ,M

• Find Cholesky decomposition of the covariance matrix of Brownian

increments. Call this matrix as C:

Σ =

[
1 ρ

ρ 1

]
⇒ C =

[
1 0

ρ 1

]

• Then the simulated (correlated )Brownian increments is a 2×M ma-

trix, ∆W , given by:

∆W =
√

∆t C Z(2)

5. The number of jumps, N , can be simulated using the Poisson distribution:

N ∼ Poisson (λ1T )

6. Simulate N jump times. The inter arrival times of a Poisson distribution

is exponentially distributed. However in order to increase efficiency of sim-

ulation algorithm, given the number of jumps, we can simulate jump times

by using uniform distribution (see [CT04]). Therefore the jump times can

be generated on [0,M ] as follows:

tJump
j ∼ Uniform (0, T ) , forj = 1, 2, · · · , N

Call this 1×N vector as T Jump.

7. Simulate jump sizes

• First we simulate N jump sizes for volatility. Call this 1 × N vector

as Y 2.

Y 2
j ∼ Exp (µ2) , forj = 1, 2, · · · , N

• Then we simulate N jump sizes for log asset value, conditional on
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the jump size of volatility. For this, first we simulate N independent

standard normal random numbers and call this Z(1):

Z(1) (j) ∼ N (0, 1) , forj = 1, 2, · · · , N

Then the jump size vector Y 1 is found as:

Y 1 = µ1Ones (1, N) + ρjY
2 + σ1Z

(1)

where Ones (i, j) is a i × j dimensional unit matrix and ρj is the

correlation parameter for jump sizes.

8. Finally we can simulate variance and log asset value as follows:

For i = 1 to M

hi+1 = hi + β (α− hi) ∆t+ γ
√
hi∆W (2, i)

+
N∑

j=1

Y 2 (j) 1{i∆t<tJump
j ≤(i+1)∆t}

νi+1 = νi +

(
µ− λ1k −

1

2
hi

)
∆t+

√
hi∆W (1, i)

+
N∑

j=1

Y 1 (j) 1{i∆t<tJump
j ≤(i+1)∆t}

Loop

9. We can find log returns from log asset values:

Ri = νi+1 − νi

6.5.2 Algorithms for Exponential and Poisson Random

Numbers

In the above algorithm, we should generate random numbers from uniform,

standard normal, exponential and Poisson distributions. Random number gener-
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ation for uniform and standard normal distributions are given in Chapter 2. Now

we give two additional algorithms for exponential and Poisson distributions.

In order to simulate a random number from an exponential distribution with

parameter µ, we can use the following algorithm which depends on the inverse

transform method [Rub81]:

• Step 1: Generate a random number from uniform distribution.

U ∼ Uniform (0, 1)

• Step 2: Find X such that:

X = −µ ln (U)

• Step 3: X is a exponentially distributed random variable.

The following algorithm simulates random numbers from a Poisson distribution

with intensity λ [Rub81]:

• Step 1: Generate a random number from uniform distribution.

U ∼ Uniform (0, 1)

• Step 2: Set i = 0, p = e−λ and F = p

• Step 3: If U < F , set X = i and stop.

• Step 4: Set p = λp
i+1

, F = F + p and i = i+ 1.

• Step 5: Go to step 3.
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6.6 Statistical Properties of Asset Values and

Returns

In this section we analyze the pathwise and distributional properties of asset

values and returns and show that our extended model can capture stylized facts

of empirical data.

6.6.1 Pathwise Properties

The pathwise properties of the SVCJ-SIJ model is discussed in the following

paragraphs. We simulate a path for the volatility and log asset value processes

in Figure 6.1. In the figure both continuous and jump parts of the processes are

shown. However, note that since we have a recursive relation, the total parts are

not simply sum of continuous and jump parts.

 

Figure 6.1: Simulation of SVCJ-SIJ Model

Model Property 1: Non-constant volatility

In SVCJ-SIJ model, the volatility is no longer constant. This is in line with

the empirical findings since realized and implied volatilities are not constant in
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real life.

Model Property 2: Mean reversion in volatility

In SVCJ-SIJ model, the volatility has a mean reversion, i.e. it has a tendency

to go towards its long run (mean) value. The mean reversion is captured by the

drift term, β (α− ht), with the jump part, where β is the speed of mean reversion.

The long run mean of the volatility is process is α + λ1µ2

β
. This can be seen by

integrating the SDE for the variance process, and by using the zero expectation

property of integrals against Brownian motion and Fubini theorem:

E [ht] = E [h0] + E

[∫ t

0

β (α− hs) ds

]
+ E

[∫ t

0

γ
√
hsdW

2
s

]
+ E

 N1
t∑

i=0

Y 2


h̄ = h̄+ β

(
α− h̄

)
t+ E

 N1
t∑

i=0

Y 2


= h̄+ β

(
α− h̄

)
t+ λ1µ2t

= α+
λ1µ2

β
(6.34)

The volatility process has a reflecting barrier at zero so that we have non-

negative values for the volatility. If the volatility reaches zero, the Gaussian part

driven by the Brownian motion has zero volatility, and the drift part pulls volatil-

ity upwards and make it non-zero. The jumps in volatility makes it even more

probable to have non-zero (and non-negative) values. The γ is called the volatility

of volatility which captures the small symmetric movements in the volatility.

Model Property 3: Volatility clustering

In the model, we have volatility clustering, i.e. volatility process has positive

autocorrelation. This can be seen by a visual inspection of the Figure 6.1. Actu-

ally, the variance process is a continuous time first-order autoregressive process

with disturbances coming from normal and exponential distributions. To see this
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let us take the conditional expectation of the variance within a unit time period:

Et [ht+1] = ht + αβτ − β

∫ t+1

t

Et [hs] ds+ γEt

[∫ t+1

t

√
hsdW

2
s

]
︸ ︷︷ ︸

Martingale

+E

N1
t+1∑

N1
t

Y 2


= ht + β

[(
α+

λ1µ2

β

)
τ −

∫ t+1

t

Et [hs] ds

]
which can be solved by solving the following ODE:

f´ = αβ + λ1µ2 − βf

The solution is:

Et [ht+1] = hte
−βτ +

(
α+

λ1µ2

β

)(
1− e−βτ

)
Therefore we can express ht+1 as follows:

ht+1 =

(
α+

λ1µ2

β

)(
1− e−βτ

)
+ e−βτht + Error (6.35)

which is in the first-order autoregressive form.

Model Property 4: Leverage effects

The Brownian motions driving log asset value and volatility has correlation.

This captures an important empirical phenomena called leverage effects. For a

leveraged firm, when value of its assets decrease, the share of equity in total assets

also decreases. Since the equity bears the full risk of the firm, the percentage

volatility of equity rises. This dependence between asset returns and volatility is

captured by correlation among Brownian motions.

Model Property 5: Jumps in returns

The model has jumps in the returns which can capture effects of important

news. The jumps makes the asset value process discontinuous. The jump in-

tensity is constant. This means that we can expect on average same number of
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jumps for two different time periods with same length. This is indeed a simplistic

assumption since there may also be clustering in jump events, e.g. for times of

market stress. The jump sizes are conditionally normally distributed. The sym-

metry property of normal distribution allows both positive and negative jumps.

This means that the asset value may have a sudden decrease or increase. This

feature is very intuitive since in real life asset prices can be affected by good or

bad news and can have negative or positive jumps. Since the change in the log

asset value does not depend on previous values of itself, the jumps in asset value

has a non-persistent effect, i.e. it affects only the current period returns.

Model Property 6: Jumps in volatility

We have also jumps in volatility process which also captures a similar economic

reasoning. Again the intensity is constant. But the jump size is exponentially dis-

tributed. Therefore volatility can only have positive jumps. This is also intuitive,

since a sudden decrease in volatility is far less probable than a sudden increase

in it. Since the change in volatility depends on the current level of volatility, the

jumps in volatility has a persistent effect.

Model Property 7: Correlated jumps in asset value and volatility

The jump processes in asset value and volatility have a two-way dependence:

the jump times are same and jump sizes are correlated. Having identical jump

times captures characteristics of certain events, e.g. news can cause both a sudden

change in asset value and a sudden increase in volatility. As an alternative the

model can be changed by allowing independent jump times. But we opt not to

include such specifications in our model.

In the model, the jump sizes are also correlated. This is also intuitive: the

impact of news on asset values and volatility are correlated. This feature also

adds to the leverage effects caused by diffusive parts. Additionally, if µ1 and ρj

have same sign, having a jump in volatility increases the mean of jump size in

asset value in absolute value terms. As an example, if both µ1 and ρj are negative,

the jump component adds mass to the left tail of the return distribution.
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6.6.2 Distributional Properties

Model Property 8: Conditional non-symmetries and fat tails

In SVCJ-SIJ model, for a small time period dt, the conditional change in

log asset value ν, which is equal to the continuously compounded return, has 3

parts: a) a drift part, b) a Gaussian part caused by Brownian motion, which

has zero drift and htdt variance, c) a jump part which is a sum of conditional

normals, but the number of random numbers that are summed is random and the

means are different. Therefore, conditionally, we have a mixture of normals (not

a sum of normals) for the return distribution. Normal mixture distributions have

quite flexible structures that can accommodate skewness and kurtosis. The con-

ditional non-symmetries and fat tails are caused by the jumps in the asset values.

Stochastic volatility (with or without jumps) alone does not cause conditional

non-normalities.

We derive the instantaneous conditional moments for the changes in log asset

value and variance processes in the Appendix B. They are given below.

lim
dt→0

1

dt
Et [dht] = β(α− ht) + λ1µ2 (6.36)

lim
dt→0

1

dt
V art [dht] = γ2ht + 2µ2

2λ1 (6.37)

lim
dt→0

1

dt
Et [dν] = µ− 1

2
ht + λ1 (µ1 + ρjµ2 − k) (6.38)

lim
dt→0

1

dt
V art [dν] = ht +

(
µ2

1 + 2µ1µ2ρj + 2ρjµ
2
2 + σ2

1

)
λ1 (6.39)
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lim
dt→0

1

dt
Et

[
(dν − Et [dν])3] =

[
µ3

1 + 6µ1µ
2
2ρ

2
j + 2µ1µ2ρj

+3µ1σ
2
1 + µ2

1µ2ρj + 6µ2
2ρ

3
j

+3ρjµ2σ
2
1

]
λ1 (6.40)

lim
dt→0

1

dt
Et

[
(dν − Et [dν])4] =

[
6µ2

1σ
2
1 + 4µ3

1µ2ρj + 4µ2
1µ

2
2ρj

+4ρjµ
2
2σ

2
1 + 24µ1µ

3
2ρ

2
j + 8µ2

1µ
2
2ρ

2
j

+3σ4
1 + µ4

1 + 24µ4
2ρ

2
j + 8µ2

2ρ
2
jσ

2
1

+11µ1µ2ρjσ
2
1

]
λ1 (6.41)

Therefore, with suitable choice of parameters we can have conditional skew-

ness (i.e. non-symmetries) and conditional kurtosis (i.e. fat tails) in SVCJ-SIJ

model.

Model Property 9: Unconditional non-symmetries and fat tails

Since we know the unconditional characteristic function for returns, in prin-

ciple, we can find the density of returns by inverting the characteristic function:

fR (x) =
1

2π

∫ +∞

−∞
e−ixtϕdt (6.42)

Additionally, the moments can also be found by taking the derivatives of

characteristic function:

µm := E [Rm] = (−i)r dr

dwr
ϕ (w) |w=0 (6.43)

where µm denotes the m-th central moment.

We give three simulation examples for the unconditional density of returns

in Figure 6.2. Note that for small time periods the model can accommodate

skewness and kurtosis. However as the time period increases, by central limit
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theorem, the return distribution approaches to normal distribution.
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Figure 6.2: Examples for Unconditional Density of Returns

6.7 Probability of Default

The probability of default is defined as:

PD = Pr {VT ≤ DP} = Pr {Rt,T ≤ ln (DP )− νt}

Therefore PD can be found from the characteristic function by using the following

inversion formula:

FR (b)− FR (a) =
1

2π
lim

T→∞

∫ T

−T

e−iat − e−ibt

it
ϕ (t) dt (6.44)
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Model Property 10: Unpredictability of default events

The main problem with the Gaussian model was the predictability of default

because it has only drift and Gaussian parts. In SVCJ-SIJ model, the stochastic

changes in asset value is driven by two different processes: a Gaussian part and

a jump part. The Gaussian part evolves with small increments and captures

predicted default events. But the jump part is composed of sudden changes and

captures unpredictable default events. Because even if we have a high asset value

relative to the default point (which means a low leverage), we may have a sudden

default caused by the jump part.

Model Property 11: Non-zero short-term default probabilities

The natural result of default predictability in Gaussian model was very low

(if not zero) short term PDs. In SVCJ-SIJ model, the existence of jumps avoids

this problem. To gain an intuition, let us look at instantaneous conditional PD

for a small time period, dt.

PD (t, t+ dt) = Pr

{(
µ− λ1k −

1

2
ht

)
dt+

√
htdW

1
t

+Y 1dN1
t < ln (DP )− νt

}

As dt→ 0, the drift term as well as Gaussian part gets smaller. Additionally

for sufficiently small dt, having more than one jump has an ignorable probabil-

ity. Therefore we can write the probability of having jumps in the time interval

(t, t+ dt) as follows:

Pr {No jumps} = 1− λ1dt+O (dt)

Pr {One jump} = λ1dt+O (dt)

Pr {More than one jumps} = O (dt)

where O (dt) is the asymptotic order symbol which is defined by ψ (x) := O (x),

if limx→0 ψ (x) /x = 0.
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And if we a jump in the small time interval (t, t+ dt), the change in the log asset

value will be Y 1 which may take large values. Therefore, with suitable parameter

specifications, even for very small dt, we may have probability of defaults that

are not so small. This solves the zero short term PD problem that we encounter

in Gaussian model.
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Chapter 7

PRICING CREDIT RISK:

SVCJ-SIJ MODEL

In this chapter we derive the pricing formula for a credit risky bond under

our extended model. For this first we show that our model belongs to a wider

class of stochastic models called affine jump diffusion models, and then by using

the theorems on affine jump diffusion processes we derive pricing formula for the

risky bond. The chapter concludes with a discussion of calibration problem.

7.1 Model

Since we can not observe the firm’s asset value process, we can not simulta-

neously estimate/calibrate the model under actual and risk-neutral process. The

only thing we can do is assuming a model under risk-neutral process. But, for

justification only, we can assume certain functional forms for market prices of risk

such that the asset value, variance and interest rate follow similar process under

actual (P ) and risk-neutral (P̃ ) processes.

For example, for our model under P :

dνt = (µ− λ1k −
1

2
ht)dt+

√
htdW

1
t + Y 1dN1

t

dht = β(α− ht)dt+ γ
√
htdW

2
t + Y 2dN1

t

drt = η(θ − rt)dt+ δ
√
rtdW

3
t + Y 3dN2

t
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the risk-neutral counterpart is:

dνt = (µ− λ1k −
1

2
ht − πνht − πJ1)dt+

√
htdW̃ 1

t + Ỹ 1dÑ1
t

dht = [β(α− ht)− πh − πJ2 ] dt+ γ
√
htdW̃ 2

t + Ỹ 2dÑ2
t

drt = [η(θ − rt)− πr − πJ3 ] dt+ δ
√
rtdW̃ 3

t + Ỹ 3dÑ3
t

where π’s denote the market prices of risk:

πν : price premium

πJ1 : premium for jumps in log asset value

πh : volatility premium

πJ2 : premium for jumps in volatility

πr : interest rate premium

πJ3 : premium for jumps in interest rate

Now following [Bates96] and [Lin06], we assume certain functional forms for

the market prices of risk:

πν =
µ− r

h

πJ1 = λ̃1k̃ − λ1k

πh = π2h

πJ2 = λ1k
2 − λ̃1k̃2

πr = π3r

πJ3 = λ2k
3 − λ̃2k̃3

where π1, π2, π3 are constants, λ̃1, λ̃2 are risk neutral intensities and k̃, k̃2, k̃3

are risk neutral mean jump sizes. Then, under P̃ , the model can be expressed as:
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dνt = (µ− λ1k −
1

2
ht −

µ− rt

ht

ht + λ1k − λ̃1k̃)dt+
√
htdW̃ 1

t + Ỹ 1dÑ1
t

= (rt − λ̃1k̃ −
1

2
ht)dt+

√
htdW̃ 1

t + Ỹ 1dÑ1
t

dht = (αβ − βht − π2ht − λ1k
2 + λ̃1k̃2)dt+ γ

√
htdW̃ 2

t + Ỹ 2dÑ2
t

= β̃(α̃− ht)dt+ γ
√
htdW̃ 2

t + Ỹ 2dÑ2
t

drt = (ηθ − ηrt − π3rt − λ2k
3 + λ̃2k̃3)dt+ δ

√
rtdW̃ 3

t + Ỹ 3dÑ3
t

= η̃(θ̃ − rt)dt+ δ
√
rtdW̃ 3

t + Ỹ 3dÑ3
t

where α̃, β̃, η̃ and θ̃ are newly-defined coefficients:

α̃ :=
αβ − λ1k

2 + λ̃1k̃2

β̃ + π2

β̃ := β + π2

η̃ := η + π3

θ̃ :=
ηθ + λ̃2k̃3 − λ2k

3

η + π3

Therefore the models under P and P̃ have similar stochastic processes except

that the drift term under P , µ, is replaced with r under P̃ .

In order to ease notation, we drop (˜) in parameters. And under risk-neutral

probability measure, our model is:

dνt = (r − λ1k −
1

2
ht)dt+

√
htdW

1
t + Y 1dN1

t (7.1)

dht = β(α− ht)dt+ γ
√
htdW

2
t + Y 2dN1

t (7.2)

drt = η(θ − rt)dt+ δ
√
rtdW

3
t + Y 3dN2

t (7.3)

where:

• β, α, η, θ ∈ R and γ, δ ∈ R+

• k = E
[
eY 1 − 1

]
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• W 1,W 2,W 3 are standard Brownian Motions under P̃ with covariance ma-

trix: ∑
=


1 ρ 0

ρ 1 0

0 0 1


• N1

t and N2
t are Poisson processes under P̃ with intensities λ1 and λ2

• The jump size distributions are:

(Y 1|Y 2 = y2) ∼ N(µ1 + ρjy2, σ
2
1)

Y2 ∼ exp(µ2)

Y3 ∼ exp(µ3)

 all under P̃

• There is no interdependence between (W 1,W 2,W 3) and (Y 1, Y 2, Y 3) and

(N1, N2)

Since, in our extended model, the number of sources of randomness is greater

than the number of risky assets, the market is arbitrage free but not complete (see

[Bjo04]). Therefore there is more than one pricing probability measure. However,

in this chapter, we directly built our model under the risk-neutral probability

measure, and we do not interested in choosing a risk neutral probability measure

among others.

7.2 Affine Jump Diffusion Models

In this section we first define affine jump diffusion models (AJD) and show that

our SVCJ-SIC model is a special case of AJD processes. And then we give an

important theorem on Fourier-Stieltjes transforms of AJDs which we will use in

pricing credit risky bonds. For a general discussion on AJDs and their application

in finance see [DFS] and [DPS00].
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7.2.1 Definition

First we fix a probability space (Ω, F, P ) and an information filtration (Ft) =

{Ft : t ≥ 0}, suppose that Xt is a Markov process in some state space D ∈ Rn,

following the stochastic differential equation:

dXt = µ (Xt) dt+ σ (Xt) dWt + dZt

where Wt is an (Ft)-standard Brownian motion in Rn, µ (.) : D → Rn and

σ (.) : D → Rn are respectively the drift function and diffusion function, and Z is

a pure jump process whose jumps has a fixed probability distribution on Rn and

arrive with intensity {λ (Xt) : t ≥ 0} for some λ (.) : D → [0,∞) . Xt is called a

continuous jump diffusion (JD) process. JD processes are widely used in finance

literature to model the dynamics of asset prices, interest and exchange rates, etc.

Intuitively, the drift term µ (.) represents an instantaneous deterministic time

trend of the process, the diffusion term σ (.)σ (.)T represents an instantaneous

volatility of the process when no jumps occur, and the jump term Zt captures the

discontinuous change of the sampling path with both random arrival of jumps

and random jump sizes.

Now assume that drift and diffusion functions and the jump intensity have

affine structure, i.e.:

µ (Xt) = K0 +K1Xt[
σ (Xt)σ (Xt)

T
]

ij
= [H0]ij + [H1]ij Xt

λ (Xt) = `0 + `1Xt

where K = (K0, K1) ∈ Rn × Rn×n, H = (H0, H1) ∈ Rn×n × Rn×n×n and ` =

(`0, `1) ∈ R×Rn. Then the process Xt is called an affine jump diffusion process.

Note that our SVCJ-SIJ model is an example of AJD processes. In our model

the state vector is (ν, h, r). And we can express our model as an affine structure

on the state vector:
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
dν

dh

dr

 =



−λ1k

αβ

ηθ

+


0 −1

2
1

0 −β 0

0 0 −η



ν

h

r




dt

dt

dt



√
h 0 0

0 γ
√
h 0

0 0 δ
√
r



dW 1

t

dW 2
t

dW 3
t

+


Y 1dN1

t

Y 2dN1
t

Y 3dN2
t


7.2.2 Theorems

[DPS00] showed that for the function G (.; a, b,Xt, T ) : R → R+, defined as:

G (y; a, b,Xt, T ) := Ẽ

[
exp

{
−
∫ T

t

rudu

}
eaXT 1{bXt≤y}|Xt

]
(7.4)

where X is the state vector which follows an AJD, r is an affine function of X,

a, b ∈ Rn and y ∈ R; we can define the Fourier-Stieltjes transform of G as:

G(w; a, b,Xt, T ) =

∫
R
eiwydG(y; a, b,Xt, T ) (7.5)

= Ẽ

[
exp(−

∫ T

t

rudu)e
(a+iwb)XT |Xt

]
=: ψ(a+ iwb,Xt, t, T )

where:

ψ(a,Xt, t, T ) := Ẽ

[
exp

{
−
∫ T

t

rudu

}
eaXt|Xt

]
(7.6)

Additionally we can find G by inverting G:

G(y; a, b,Xt, T ) =
ψ(a,Xt, t, T )

2

− 1

π

∫ ∞

0

Im [ψ(a+ iwb,Xt, t, T )e−iwy]

w
dw (7.7)
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where Im(c) denotes the imaginary part of c ∈ C. For proof, see Appendix in

[DPS00].

Indeed the function G has a flexible form that can be used in many applications.

For instance,

• the function in its original form defines the price of a security that pays a

conditional payoff eaXT if the event {bXT ≤ y} occurs (e.g. options).

• with b = y = 0, the function defines the price of a security that pays an

unconditional payoff eaXT (e.g. futures).

• with a = b = y = 0, the function defines the risk-free bond price.

• with a = iw, b = y = r = 0, the function defines the characteristic function

of X.

• with a = w, b = y = r = 0, the function defines the moment generating

function of X.

7.3 Fourier-Stieltjes Transform

First note that, for state vector (ν, h, r)T , the functional forms for G and G are:

G((y1, y2, y3); (a1, a2, a3), (b1, b2, b3), (νt, ht, rt), (T, T, T ))

= Ẽ

[
exp(−

∫ T

t

rudu)exp {a1νT + a2hT + a3rT}

1{{b1νT≤y1}∩{b2hT≤y2}∩{b3rT≤y3}}|νt, ht, rt

]
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and

G((w1, w2, w3); (a1, a2, a3), (b1, b2, b3), (νt, ht, rt), (T, T, T ))

= ψ((a1 + iw1b1, a2 + iw2b2, a3 + iw3b3), (νt, ht, rt), (t, t, t), (T, T, T ))

= Ẽ

[
exp(−

∫ T

t

rudu)

exp {(a1 + iw1b1)νT + (a2 + iw2b2)hT + (a3 + iw3b3)rT} |νt, ht, rt]

Then, similar with the previous chapter, we guess the functional form of ψ as:

ψ



u1

u2

u3

 ,

ν

h

r

 ,

t

t

t

 ,

T

T

T


 = exp {iu1νt + A(τ ;u1, u2, u3)

+B(τ ;u1, u2, u3)ht + C(τ ;u1, u2, u3)rt

+J1(τ ;u1, u2, u3)

+J2(τ ;u1, u2, u3)
}

(7.8)

with τ = T − t.

Since ψ is a conditional expectation, by using the martingale property of con-

ditional expectations, we have E[dψ]=0. When we apply Ito to ψ:

dψ = ψtdt+ ψνdν + ψhdh+ ψrdr +
1

2
(ψννdνdν + ψhhdhdh+ ψrrdrdr)

+ψνhdνdh+ ψνrdνdr + ψhrdhdr
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First note that since rt is independent of νt and ht we have:

dνdr = dhdr = 0

Additionally, since the jump parts are independent from the diffusion parts, we

can express the change in ψ in two parts:

Total change = Change without jumps + Change because of jumps

When we input the differentials into the equation, we have:

E [dψ] = E

[
ψtdt+ ψν

{(
r − λ1k −

1

2
h

)
dt+

√
hdW 1

}
+ψh

{
β(α− h)dt+ γ

√
hdW 2

}
+ ψr

{
η(θ − r)dt+ δ

√
rdW 3

}
+

1

2
ψννhdt+

1

2
ψhhγ

2hdt+
1

2
ψrrδ

2rdt+ ψνhγhρdt

]
+λ1Et

[
ψ(ν + Y 1, h+ Y 2, r)− ψ(ν, h, r)

]
+λ2Et

[
ψ(ν, h, r + Y 3)− ψ(ν, h, r)

]
(7.9)

Since W 1 and W 2 are martingale, we have dW 1 = dW 2 = 0. Thus, in order

to obtain E [dψ] = 0, we should have:

0 = ψt + ψν

(
r − λ1k −

1

2
h

)
+ ψhβ(α− h) + ψrη(θ − r)

+
1

2
ψννh+

1

2
ψhhγ

2h+
1

2
ψrrδ

2r + ψνhγhρ

+λ1Et

[
ψ(ν + Y 1, h+ Y 2, r)− ψ(ν, h, r)

]
+λ2Et

[
ψ(ν, h, r + Y 3)− ψ(ν, h, r)

]
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Additionally, by using the functional form of ψ, we can find the differentials :

ψt = −
[
∂A

∂τ
+
∂B

∂τ
h+

∂C

∂τ
r +

∂J1

∂τ
+
∂J2

∂τ

]
ψ

ψν = iu1ψ

ψh = Bψ

ψr = Cψ

ψνν = i2u2
1ψ

ψhh = B2ψ

ψrr = C2ψ

ψνh = iu1Bψ

For the last two terms in E [dψ], define jump transforms Θ1 and Θ2 as:

Θ1(c1, c2) := E
[
ec1Y 1+c2Y 2|νt, ht, rt

]
(7.10)

Θ2(c) := E
[
ecY 3|νt, ht, rt

]
(7.11)

then:

Et

[
ψ(ν + Y 1, h+ Y 2, r)− ψ(ν, h, r)

]
= Et

[
exp

{
iu1(ν + Y 1) + A

+B(h+ Y 2) + Cr + J1 + J2
}

−exp {iu1ν + A+Bh+ Cr

+J1 + J2
}]

= exp
{
iu1ν + A+Bh+ Cr + J1 + J2

}
Et

[
exp

{
iu1Y

1 +BY 2
}
− 1
]

= ψ(ν, h, r)
[
Θ1(iu1, B)− 1

]
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and:

Et

[
ψ(ν, h, r + Y 3)− ψ(ν, h, r)

]
= Et

[
exp

{
iu1ν + A+Bh+ C(r + Y 3)

+J1 + J2
}

−exp
{
iu1ν + A+Bh+ Cr + J1 + J2

}]
= exp

{
iu1ν + A+Bh+ Cr + J1 + J2

}
Et

[
exp

{
CY 3

}
− 1
]

= ψ(ν, h, r)
[
Θ2(C)− 1

]
From the previous chapter, we already know that:

Θ1(c1, c2) = E
[
ec1Y 1+c2Y 2 |νt, ht, rt

]
= E

[
ec1Y 1+c2Y 2

]
=

exp
{
µ1c1 + 1

2
c21σ

2
1

}
1− ρjc1µ2 − c2µ2

Additionally, by using the moment generating function of exponential distrib-

ution.

Θ2(c) = E
[
ecY 3|νt, ht, rt

]
= E

[
ecY 3

]
=

1

1− cµ3

We put the differentials:

−∂A
∂τ
− ∂B

∂τ
h− ∂C

∂τ
r − ∂J1

∂τ
− ∂J2

∂τ
+ iu1(r − λ1k − 1

2
h)

+Bβ(α− h) + Cη(θ − r) + 1
2
i2u2

1h+ 1
2
B2γ2h+ 1

2
C2δ2r

+iu1Bγhρ+ λ1 [Θ1(iu1, B)− 1] + λ2 [Θ2(C)− 1]


ψ = 0
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Then when we group the terms with h, r, and terms related to diffusion and

jump parts, we have:

0 =

[
−∂A
∂τ

+ αβB + ηθC

]
+h

[
−∂B
∂τ

+
1

2
iu1(iu1 − 1) +B(iu1γρ− β) +

1

2
γ2B2

]
+r

[
−∂C
∂τ

+ iu1 − ηC +
1

2
δ2C2

]
+

[
−∂J

1

∂τ
− iu1λ1k + λ1

[
Θ1(iu1, B)− 1

]]
+

[
−∂J

2

∂τ
+ λ2

[
Θ2(C)− 1

]]
When we equate each group in brackets to zero, we obtain a system of complex-

valued ODEs:

∂A

∂τ
= αβB + ηθC (7.12)

∂B

∂τ
=

1

2
iu1(iu1 − 1) +B(iu1γρ− β) +

1

2
γ2B2 (7.13)

∂C

∂τ
= iu1 − ηC +

1

2
δ2C2 (7.14)

∂J1

∂τ
= −iu1λ1k + λ1

[
Θ1(iu1, B)− 1

]
(7.15)

∂J2

∂τ
= λ2

[
Θ2(C)− 1

]
(7.16)

The boundary conditions are:

A(0;u1, u2, u3) = 0 (7.17)

B(0;u1, u2, u3) = iu2 (7.18)

C(0;u1, u2, u3) = iu3 (7.19)

J1(0;u1, u2, u3) = 0 (7.20)

J2(0;u1, u2, u3) = 0 (7.21)
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so that:

ψ(u,X, T, T ) = Ẽ

[
exp(−

∫ T

T

rudu)e
uXT |FT

]
= euXT = exp {iu1νT + iu2hT + iu3rT} (7.22)

7.4 Solutions

The solutions for the complex valued ODEs are given below. The details of the

solutions are given in the Appendix C.

A (τ ;u1, u2, u3) =

[
−αβg1

γ2
− ηθh1

δ2

]
τ (7.23)

+
αβ

γ2
ln

(
1 + g2

3

1 + g2
4

)
+
ηθ

δ2
ln

(
1 + h2

3

1 + h2
4

)
(7.24)

B (τ ;u1, u2, u3) =
g2g3 − g1

γ2
(7.25)

C (τ ;u1, u2, u3) =
h2h3 − h1

δ2
(7.26)

J1 (τ ;u1, u2, u3) =

[
g8 − λ1 +

g5g7

g2
5 + g2

6

]
τ

+
2g6g7

g2 (g2
5 + g2

6)
ln

(
(g6g4 − g5)

√
1 + g2

3

(g6g3 − g5)
√

1 + g2
4

)
(7.27)

J2 (τ ;u1, u2, u3) =

[
h5h7

h2
5 + h2

6

− h7

]
τ

+
2h6h7

h2 (h2
5 + h2

6)
ln

(
(h4h6 − h5)

√
1 + h2

3

(h3h6 − h5)
√

1 + h2
4

)
(7.28)
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where:

g1 (u1, u2, u3) := iu1γρ− β (7.29)

g2 (u1, u2, u3) :=
√
iu1 (iu1 − 1) γ2 − g2

1 (7.30)

g3 (u1, u2, u3) := tan

[
1

2
g2τ + arctan (g4)

]
(7.31)

g4 (u1, u2, u3) :=
g1 + iu2γ

2

g2

(7.32)

g5 (u1, u2, u3) := 1− ρjiu1µ2 +
µ2g1

γ2
(7.33)

g6 (u1, u2, u3) :=
µ2g2

γ2
(7.34)

g7 (u1, u2, u3) := λ1exp

(
µ1iu1 −

1

2
u2

1σ
2
1

)
(7.35)

g8 (u1, u2, u3) := −iu1λ1

exp
(
µ1 + 1

2
σ2

1

)
+ ρjµ2 − 1

1− ρjµ2

(7.36)

h1 (u1, u2, u3) := −η (7.37)

h2 (u1, u2, u3) :=
√

2iu1δ2 − h2
1 (7.38)

h3 (u1, u2, u3) := tan

[
1

2
h2τ + arctan (h4)

]
(7.39)

h4 (u1, u2, u3) :=
h1 + iu3δ

2

h2

(7.40)

h5 (u1, u2, u3) := 1 +
h1µ3

δ2
(7.41)

h6 (u1, u2, u3) :=
µ3h2

δ2
(7.42)

h7 (u1, u2, u3) := λ2 (7.43)
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7.5 Bond Pricing

The risky bond price is simply the expected payoff under P̃ discounted by

stochastic risk-free rate process. Therefore:

D(t, T ) = Ẽ

[
exp(−

∫ T

t

rudu)(L1{NoDefault} + VT 1{Default})|Ft

]
= L Ẽ

[
exp(−

∫ T

t

rudu)1{νT≥ln DP}|Ft

]
+Ẽ

[
exp(−

∫ T

t

rudu)e
νT 1{νT <ln DP}|Ft

]
where D(t, T ) is the price of a zero-coupon risky bond, rt is the short rate and L

is the par value of risky bond.

We can express the bond price using function G:

D(t, T ) = L×G



− ln(DP )

0

0

 ;


0

0

0

 ,

−1

0

0

 ,

ν

h

r

 ,

T

T

T




+G




ln(DP )

0

0

 ;


1

0

0

 ,


1

0

0

 ,

ν

h

r

 ,

T

T

T




with Fourier-Stieltjes transforms:

G1 = ψ



−iu1

0

0

 ,

ν

h

r
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Price can be found by using the Fourier inversion methods explained in the

previous sections. In Figure 7.1 we give an example of a path for log asset value,

variance and interest rate.
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Figure 7.1: Simulation of SVCJ-SIJ Model under Risk Neutral Probability Mea-
sure

For SVCJ-SIJ model, we have two important property regarding bond prices.

Model Property 12: Non-zero short-term credit spreads

The unpredictability of default in SVCJ-SIJ model discussed in previous chap-

ter results in non-zero short term PDs. And this yields non-zero credit spreads

even for small maturities. This solves the problem of zero short term spreads in

Gaussian model.

Model Property 13: Implied volatility smiles

SVCJ-SIJ model, with its large set of parameters can create quite flexible

shapes for implied volatilities with respect to Gaussian model. This solves an
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important empirical problem. We give a simulation example. In the example, we

first calculate risky bond prices by using SVCJ-SIJ model. And then we find the

implied volatility that equates the price we found with the price calculated with

Gaussian model. Given fixed value of parameters, the volatility smile is shown in

Figure 7.2. The line in the figure represents a second-order polinomial fitted to

the smile.
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Figure 7.2: Implied Volatility Smile
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Chapter 8

CONCLUSION

In this work we analyze the three fundamental research questions related to

credit risk by using structural approach. These questions are modeling single

firm credit risk, modeling portfolio credit risk and credit risk pricing. First we

present the modeling framework for the three problem by using the assumption

that firm value follows a geometric Brownian motion and interest rates are con-

stant. Regarding the modeling of single firm credit risk, we present the asset

value and return processes and analyze their pathwise and distributional prop-

erties. Additionally we discuss and derive the formulas for firm probability of

default, expected loss given default, exposure at default, loss distribution and

risk measures. For modeling portfolio credit risk, we extensively discuss the one-

factor modeling and derive formulas for unconditional and conditional default

probabilities, default correlation, conditional and unconditional portfolio loss dis-

tributions and risk measures. We also discuss two methods for estimation. Then

we present approaches for pricing credit risky securities and discuss and derive

formulas for pricing stocks, risky bonds and credit default swaps. We also discuss

issues related to calibration.

Although the assumptions for Gaussian asset returns and constant interest

rates yield tractable models, the assumptions are unrealistic. We discuss the

potential problems caused by Gaussian model. The problems are classified as

problems related to pathwise and distributional properties of asset values and

returns, problems related to default predictability and short term default prob-
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abilities, and problems related to credit spreads and implied volatility smiles.

Additionally we discuss the two main possible extensions to the basic model,

namely non-constant volatility models and jump models.

After searching for an extended model, we conclude with a model called sto-

chastic volatility correlated jumps with stochastic interest rates with jumps (SVCJ-

SIJ) model. In the extended model, asset value, volatility and interest rates fol-

low affine jump diffusion processes. In the model volatility is stochastic, asset

value and volatility has correlated jumps and interest rates are stochastic and

have jumps. Our extended model is a generalization of many popular models

proposed in the literature, and by restricting certain parameters we may have

restricted simpler models.

After introducing extended model, we analyze the modeling of single firm credit

risk and credit risk pricing by using our extended model and show how our model

can be used as a solution for the problems we encounter with simple models.

We derive the conditional and unconditional characteristic function for returns

which can be used in deriving density for returns as well as default probabilities.

Additionally we derive formulas for instantaneous conditional moments for the

model and propose simulation algorithms. We also discuss the statistical proper-

ties of asset values and returns as well as default probabilities. Regarding credit

risk pricing, we derive the conditional Fourier-Stieltjes transforms for the bond

pricing function, which can be inverted to find bond prices. Additionally we give

a simulation example for the implied volatility smile created by the extended

model. We discuss 13 important properties of the extended model, and conclude

that our extended model can be a solution for the critical problems we encounter

with the Gaussian case.
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Appendix A

Solutions for Characteristic

Function

In this section we find the solution for the characteristic function for returns.

The ODE for B (τ ;u1, u2) is a Ricatti equation. First we solve this Ricatti

equation. Then by using the solution for B (τ ;u1, u2), we find A (τ ;u1, u2) and

J1 (τ ;u1, u2).

Before going into the solutions, first define the following transforms:

g1 (u1, u2) := iu1γρ− β

g2 (u1, u2) :=
√
iu1 (iu1 − 1) γ2 − g2

1

g3 (u1, u2) := tan

[
1

2
g2τ + arctan (g4)

]
g4 (u1, u2) :=

g1 + iu2γ
2

g2

g5 (u1, u2) := 1− ρjiu1µ2 +
µ2g1

γ2

g6 (u1, u2) :=
µ2g2

γ2

g7 (u1, u2) := λ1exp

(
µ1iu1 −

1

2
u2

1σ
2
1

)
g8 (u1, u2) := −iu1λ1

exp
(
µ1 + 1

2
σ2

1

)
+ ρjµ2 − 1

1− ρjµ2
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A.1 Solution for B (τ ;u1, u2)

The ODE for B is:

∂B

∂τ
= Q1 +BQ2 +B2Q3

where:

Q1 :=
1

2
iu1 (iu1 − 1)

Q2 := iu1γρ− β

Q3 :=
1

2
γ2

with the boundary condition:

B (0;u1, u2) = iu2

dB

dτ
= Q1 +BQ2 +B2Q3

dτ =
dB

Q1 +BQ2 +B2Q3∫
dτ = τ =

∫
dB

Q1 +BQ2 +B2Q3

Note that, since we have more than one integral, it does not matter where we

put a constant in the equality. Now define the following transforms:

K :=

√
4Q1Q3 −Q2

2

2
√
Q3

X :=
2Q3B +Q2

2
√
Q3
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Then we have:

K2 +X2 =
4Q1Q3 −Q2

2

4Q3

+
4Q2

3B
2 +Q2

2 + 4Q2Q3B

4Q3

= Q1 −
Q2

2

4Q3

+Q3B
2 +

Q2
2

4Q3

+Q2B

= Q1 +Q2B +Q3B
2

Additionally we have:

dX = d

(
2Q3B +Q2

2
√
Q3

)
=
√
Q3dB

dB =
dX√
Q3

Therefore we have:∫
dB

Q1 +BQ2 +B2Q3

=

∫
1√

Q3 (K2 +X2)
dX

=
1√
Q3

∫
1

K2 +X2
dX = τ∫

K

K2 +X2
dX = τ

√
Q3K

Since we know
∫

a
a2+x2dx = arctan

(
x
a

)
− c̄, we have:

arctan

(
X

K

)
− c̄ = τ

√
Q3K

When we solve for X:

X = K tan
(
Kτ
√
Q3 + c̄

)
Using the definition of X and K:
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2Q3B +Q2

2
√
Q3

=

√
4Q1Q3 −Q2

2

2
√
Q3

tan

(
1

2
τ
√

4Q1Q3 −Q2
2 + c̄

)

B =

√
4Q1Q3 −Q2

2 tan
(

1
2
τ
√

4Q1Q3 −Q2
2 + c̄

)
−Q2

2Q3

Now we can use the boundary condition, B (0;u1, u2) = iu2, to find c̄.

iu2 =

√
4Q1Q3 −Q2

2 tan (c̄)−Q2

2Q3

tan (c̄) =
2iu2Q3 +Q2√
4Q1Q3 −Q2

2

c̄ = arctan

(
2iu2Q3 +Q2√
4Q1Q3 −Q2

2

)

Now we can totally define B:

B =

√
4Q1Q3 −Q2

2 tan

(
1
2
τ
√

4Q1Q3 −Q2
2 + arctan

(
2iu2Q3+Q2√
4Q1Q3−Q2

2

))
−Q2

2Q3

By using previously defined g1, g2, g3,

B (τ ;u1, u2) =
g2g3 − g1

γ2
(A.1)

A.2 Solution for A (τ ;u1, u2)

We have:

∂A

∂τ
= iu1µ+ αβB = iu1µ+ αβ

g2g3 − g1

γ2

Note that g1 and g2 does not depend on τ .
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dA =

(
iu1µ−

αβ

γ2
g1

)
dτ +

αβ

γ2
g2g3dτ∫

dA =

∫ (
iu1µ−

αβ

γ2
g1

)
dτ +

∫
αβ

γ2
g2g3dτ

A =

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2
g2

∫
g3dτ

Therefore we should find
∫
g3dτ . For x := 1

2
g2 and y := arctan (g4), we have:∫

g3dτ =

∫
tan (xτ + y) dτ

We know that:

d

dτ

1

2x
ln
(
1 + tan2 (xτ + y)

)
=

1

2x

2 tan (xτ + y)x/ cos2 (xτ + y)

1 + tan2 (xτ + y)

=
tan (xτ + y) / cos2 (xτ + y)

1/ cos2 (xτ + y)

= tan (xτ + y)

Therefore: ∫
g3dτ =

∫
tan (xτ + y) dτ

=
1

2x

[
ln
(
1 + tan2 (xτ + y)

)
+ c̄
]

=
1

2

2

g2

[
ln
(
1 + g2

3

)
+ c̄
]

=
1

g2

[
ln
(
1 + g2

3

)
+ c̄
]

When we input:

A =

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2
g2

1

g2

[
ln
(
1 + g2

3

)
+ c̄
]

=

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2

[
ln
(
1 + g2

3

)
+ c̄
]
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Now by using the boundary condition, i.e. A (0;u1, u2) = 0, we will find c̄.

0 = 0 +
αβ

γ2
ln
[
1 + tan2 (arctan (g4))

]
+
αβ

γ2
c̄

=
αβ

γ2
ln
[
1 + g2

4

]
+
αβ

γ2
c̄

c̄ = −ln
[
1 + g2

4

]
Now we can totally define A (τ ;u1, u2).

A (τ ;u1, u2) =

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2

[
ln
(
1 + g2

3

)
− ln

(
1 + g2

4

)]
=

(
iu1µ−

αβ

γ2
g1

)
τ +

αβ

γ2
ln

(
1 + g2

3

1 + g2
4

)
(A.2)

A.3 Solution for J1 (τ ;u1, u2)

By using the solution for B and our previous transformations g1 to g8, we can

express the ODE for J1 as follows:

∂J1

∂τ
= g8 − λ1 +

g7

g5 − g6g3∫
dJ1 =

∫
(g8 − λ1) dτ + g7

∫
1

g5 − g6g3

dτ

J1 = (g8 − λ1) τ + g7

∫
1

g5 − g6g3

dτ

Since g3 = tan
(

1
2
g2τ + arctan (g4)

)
, we have:

dg3

dτ
=

1

2
g2

(
1 + g2

3

)
⇒ dτ =

2

g2 (1 + g2
3)
dg3

Therefore we should find:∫
1

g5 − g6g3

dτ =
2

g2

∫
1

(g5 − g6g3) (1 + g2
3)
dg3

= − 2

g6g2

∫
1(

g3 − g5

g6

)
(1 + g2

3)
dg3
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For the integrand, we have:

1(
g3 − g5

g6

)
(1 + g2

3)
=

g2
6

(g2
5 + g2

6)
(
g3 − g5

g6

) − g6 (g5 + g6g3)

(g2
5 + g2

6) (1 + g2
3)

Thus:∫
1

g5 − g6g3

dτ = − 2g6

g2 (g2
5 + g2

6)

∫
1

g3 − g5

g6

dg3 +
2

g2 (g2
5 + g2

6)

∫
g5 + g6g3

1 + g2
3

dg3

Additionally we have:∫
1

g3 − g5

g6

dg3 = ln

(
g3 −

g5

g6

)
∫
g5 + g6g3

1 + g2
3

dg3 = g5 arctan (g3) +
1

2
g6 ln

(
1 + g2

3

)
=

1

2
g5g2τ + g5 arctan (g4) +

1

2
g6 ln

(
1 + g2

3

)
We put a constant term at this stage.∫

1

g5 − g6g3

dτ = − 2g6

g2 (g2
5 + g2

6)
ln

(
g3 −

g5

g6

)
+

2

g2 (g2
5 + g2

6)

1

2
g5g2τ

+
2

g2 (g2
5 + g2

6)
g5 arctan (g4) +

2

g2 (g2
5 + g2

6)

g6

2
ln
(
1 + g2

3

)
2c̄

g2 (g2
5 + g2

6)

=
2

g2 (g2
5 + g2

6){
− g6 ln

(
g3 −

g5

g6

)
+
g5g2

2
τ + g5 arctan (g4)

+
g6

2
ln
(
1 + g2

3

)
+ c̄

}
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Note that:

1

2
ln
(
1 + g2

3

)
− ln

(
g3 −

g5

g6

)
= ln

(√
1 + g2

3

g3 − g5

g6

)

= ln


√

1 +
sin2( 1

2
g2+arctan(g4))

cos2( 1
2
g2+arctan(g4))

sin( 1
2
g2+arctan(g4))

cos( 1
2
g2+arctan(g4))

− g5

g6


= −ln

(
sin

(
1

2
g2 + arctan (g4)

)
−g5

g6

cos

(
1

2
g2 + arctan (g4)

))
By using the definition of g3:

sin

(
1

2
g2 + arctan (g4)

)
=

g3√
1 + g2

3

cos

(
1

2
g2 + arctan (g4)

)
=

1√
1 + g2

3

Therefore:

= −g6ln

(
g3 − g5

g6√
1 + g2

3

)

= −g6ln

(
g6g3 − g5

g6

√
1 + g2

3

)

Thus:∫
1

g5 − g6g3

dτ =
2

g2 (g2
5 + g2

6){
g5g2

2
τ + g5 arctan (g4)− g6 ln

(
g6g3 − g5

g6

√
1 + g2

3

)
+ c̄

}
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At the end we obtain the expression for J1:

J1 = (g8 − λ1) τ

+
2g7

g2 (g2
5 + g2

6)

{
g5g2

2
τ + g5 arctan (g4)− g6 ln

(
g6g3 − g5

g6

√
1 + g2

3

)
+ c̄

}

By using the boundary condition J1 (0;u1, u2) = 0 and noting that for τ = 0,

g3 = g4, we have:

0 =
2g5g7

g2 (g2
5 + g2

6)
arctan (g4)−

2g6g7

g2 (g2
5 + g2

6)
ln

(
g6g4 − g5

g6

√
1 + g2

4

)
+

2g7

g2 (g2
5 + g2

6)
c̄

c̄ = g6 ln

(
g6g4 − g5

g6

√
1 + g2

4

)
− g5 arctan (g4)

When we input c̄:

J1 (τ ;u1, u2) = (g8 − λ1) τ

+
2g7

g2 (g2
5 + g2

6)

{
g5g2

2
τ + g6 ln

(
g6g4 − g5

g6

√
1 + g2

4

g6

√
1 + g2

3

g6g3 − g5

)}

=

(
g8 − λ1 +

g5g7

(g2
5 + g2

6)

)
τ

+
2g6g7

g2 (g2
5 + g2

6)
ln

(
(g6g4 − g5)

√
1 + g2

3

(g6g3 − g5)
√

1 + g2
4

)
(A.3)
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Appendix B

Instantaneous Conditional

Moments

For a random variable, the first central moment, i.e. mean, and the moments

around the mean are given by:

µ := E [X]

σ2 := E
[
(X − µ)2] = E

[
X2
]
+ (E [X])2

s :=
E
[
(X − µ)3]
σ3

=
E [X3]− 3E [X2]E [X] + 2 (E [X])3

σ3

κ :=
E
[
(X − µ)4]
σ4

=
E [X4]− 4E [X3]E [X] + 6E [X2] (E [X])2 − 3 (E [X])4

σ4

Thus:

E [X] = µ

E
[
X2
]

= σ2 + µ2

E
[
X3
]

= sσ3 + 3µσ2 + µ3

E
[
X4
]

= κσ4 + 4sµσ3 + 6µ2σ2 − 5µ4

Additionally for two independent random variables X and Y , we have:
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E [X + Y ] = E [X] + E [Y ] := µ̄

E
[
(X + Y − µ̄)2] = E

[
X2
]
+ E

[
Y 2
]
− (E [X])2 − (E [X])2

E
[
(X + Y − µ̄)3] = E

[
X3
]
+ E

[
Y 3
]
− 3E

[
X2
]
E [X]− 3E

[
Y 2
]
E [Y ]

+2 (E [X])3 + 2 (E [Y ])3

E
[
(X + Y − µ̄)4] = E

[
X4
]
+ E

[
Y 4
]
− 3 (E [X])4 − 3 (E [Y ])4

+6E
[
X2
]
E
[
Y 2
]
− 6E

[
X2
]
(E [Y ])2 + 6E

[
X2
]
(E [X])2

−6E
[
Y 2
]
(E [X])2 + 6 (E [X])2 (E [Y ])2

+6E
[
Y 2
]
(E [Y ])2 − 4E

[
X3
]
E [X]− 4E

[
Y 3
]
E [Y ]

B.1 Instantaneous Conditional Moments for Vari-

ance Process

We want to find the first two conditional moments of the variance process which

are valid instantaneously. Formally we want to find:

Instantaneous Conditional Mean := lim
dt→0

1

dt
E [dht|Ft]

Instantaneous Conditional Variance := lim
dt→0

1

dt
V ar [dht|Ft]

The variance process ht satisfies the following SDE:

dht = β(α− ht)dt︸ ︷︷ ︸
=:P

+ γ
√
htdW

2
t︸ ︷︷ ︸

=:Q

+Y 2dN1
t︸ ︷︷ ︸

=:R

Note that we have:

dWt ∼ N (0, dt)

dN1
t ∼ Pois (λ1dt)
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Then:

Et [P ] = β(α− ht)dt

Et [Q] = 0

Et

[
Q2
]

= γ2htdt

Et [R] = E

[
E

[
N∑

i=0

Y 2
i |N1

dt = N

]]
= λ1µ2dt

Et

[
R2
]

= E

N1
dt∑

i=0

Y 2
i

2
= E

E
( N∑

i=0

Y 2
i

)2

|N1
dt = N


= E

[
NE

[(
Y 2
)2]

+N (N − 1)
(
E
[
Y 2
])2]

= µ2
2

[
2λ1dt+ (λ1dt)

2]
Therefore instantaneous conditional mean and variance of the variance process

are:

E [dht|Ft] = Et [P ] + Et [Q] + Et [R]

= β(α− ht)dt+ 0 + λ1µ2dt

lim
dt→0

1

dt
E [dht|Ft] = β(α− ht) + λ1µ2 (B.1)

V ar [dht|Ft] = 0 + γ2htdt+ µ2
2

[
2λ1dt+ (λ1dt)

2]− (λ1µ2dt)
2

= γ2htdt+ 2µ2
2λ1dt

lim
dt→0

1

dt
V ar [dht|Ft] = γ2ht + 2µ2

2λ1 (B.2)
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B.2 Instantaneous Conditional Moments for Log

Asset Value Process

Before going forward to the moments of log asset value process, note that the

conditional moments of the jump process as well as the jump sizes are given as

follows (W represents a standard normal random variable):

E
[
Y 2
]

= µ2

E
[(
Y 2
)2]

= 2µ2
2

E
[(
Y 2
)3]

= 6µ3
2

E
[(
Y 2
)4]

= 24µ4
2

E
[
N1

dt

]
= λ1dt

E
[(
N1

dt

)2]
= λ1dt+ (λ1dt)

2

E
[(
N1

dt

)3]
= (λ1dt)

3 + 3 (λ1dt)
2 + λ1dt

E
[(
N1

dt

)4]
= (λ1dt)

4 + 6 (λ1dt)
3 + 7 (λ1dt)

2 + λ1dt

E [W ] = 0

E
[
W 2
]

= 1

E
[
W 3
]

= 0

E
[
W 4
]

= 3

E
[
Y 1
]

= E
[
E
[
Y 1|Y 2 = y2

]]
= E

[
µ1 + ρjy

2 + σ1W
]

= µ1 + ρjµ2

E
[(
Y 1
)2]

= E
[
E
[(
µ1 + ρjy

2 + σ1W
)2 |Y 2 = y2

]]
= µ2

1 + 2ρjµ
2
2 + 2µ1µ2ρj + σ2

1
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E
[(
Y 1
)3]

= E
[
E
[(
µ1 + ρjy

2 + σ1W
)3 |Y 2 = y2

]]
= µ3

1 + 2µ1µ
2
2ρ

2
j + 2µ1µ2ρj + µ1σ

2
1

+µ2
1µ2ρj + 6ρ3

jµ
3
2 + 4µ1µ

2
2ρ

2
j

+ρjµ2σ
2
1 + 2µ1σ

2
1 + 2µ2ρjσ

2
1

E
[(
Y 1
)4]

= E
[
E
[(
µ1 + ρjy

2 + σ1W
)4 |Y 2 = y2

]]
= µ4

1 + 2µ2
1µ

2
2ρj + 2µ3

1µ2ρj + µ2
1σ

2
1

+2µ2
1µ

2
2ρj + 24µ4

2ρ
2
j + 12µ1µ

3
2ρ

2
j

+2ρjµ
2
2σ

2
1 + 2µ3

1µ2ρj + 12µ1µ
3
2ρ

2
j

+8µ2
1µ

2
2ρ

2
j + µ1µ2ρjσ

2
1

+µ2
1σ

2
1 + 2µ2

2ρjσ
2
1 + 2µ1µ2ρjσ

2
1

+3σ4
1 + 4µ2

1σ
2
1 + 4µ1µ2ρjσ

2
1

+4µ1µ2ρjσ
2
1 + 8µ2

2ρ
2
jσ

2
1

The SDE for the log asset value is:

dνt = (µ− λ1k −
1

2
ht)dt︸ ︷︷ ︸

=:P

+
√
htdW

1
t︸ ︷︷ ︸

=:Q

+Y 1dN1
t︸ ︷︷ ︸

=:R

The conditional moments for P , Q and R are:

Et [P ] = (µ− λ1k −
1

2
ht)dt

Et [Q] = 0

Et

[
Q2
]

= htdt

Et

[
Q3
]

= 0

Et

[
Q4
]

= 3h2
tdt

2

166



Et [R] = E

[
E

[
E

[
N∑

i=1

µ1 + ρjy
2 + σ1W |Y 2 = y2

]
|N1

dt = N

]]
= λ1 (µ1 + ρjµ2) dt

Et

[
R2
]

= E
[
E
[(
Y 1

1 + · · ·+ Y 1
N

)2 |N1
dt = N

]]
=

(
µ2

1 + 2µ1µ2ρj + ρ2
jµ

2
2

)
E
[(
N1
)2](

2µ2
2ρj − ρ2

jµ
2
2 + σ2

1

)
E
[
N1
]

=
(
µ2

1 + 2µ1µ2ρj + 2ρjµ
2
2 + σ2

1

)
λ1dt

+
(
µ2

1 + µ2
2ρ

2
j + 2µ1µ2ρj

)
(λ1dt)

2

Et

[
R3
]

= E
[
E
[(
Y 1

1 + · · ·+ Y 1
N

)3 |N1
dt = N

]]
= E

[
NE

[(
Y 1
)3]

+ 3N (N − 1)E
[(
Y 1
)2]

E
[
Y 1
]

N (N − 1) (N − 2)
(
E
[
Y 1
])3]

=
[
µ3

1 + 2µ1µ
2
2ρ

2
j + 2µ1µ2ρj + µ1σ

2
1

+µ2
1µ2ρj + 6µ2

2ρ
3
j + 4µ1µ

2
2ρ

2
j

+ ρjµ2σ
2
1 + 2µ1σ

2
1 + 2µ2ρjσ

2
1

]
λ1dt

+
[
9µ3

1 + 27µ2
1µ2ρj + 18µ1µ

2
2ρj

+18µ3
2ρ

2
j + 18µ1µ

2
2ρ

2
j + 9µ1σ

2
1

+9µ2σ
2
1ρj

]
(λ1dt)

2

+
[
4µ3

1 + 12µ2
1ρjµ2 + 6µ1ρjµ

2
2

+6ρ2
jµ

3
2 + 9µ1µ

2
2ρ

2
j + 3µ1σ

2
1

+3µ2ρjσ
2
1 + µ3

2ρ
3
j

]
(λ1dt)

3
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Et

[
R4
]

= E
[
E
[(
Y 1

1 + · · ·+ Y 1
N

)4 |N1
dt = N

]]
= E

{
NE

[(
Y 1
)4]

+ 4N (N − 1)E
[(
Y 1
)3]

E
[
Y 1
]

3N (N − 1)
(
E
[(
Y 1
)2])2

+6N (N − 1) (N − 2)E
[(
Y 1
)2] (

E
[
Y 1
])2

N (N − 1) (N − 2) (N − 3)
(
E
[
Y 1
])4}

=
[
4µ3

1µ2ρj + 4µ2
1µ

2
2ρj + 4ρjµ

2
2σ

2
1

+24µ1µ
3
2ρ

2
j + 8µ2

1µ
2
2ρ

2
j + 8ρ2

jµ
2
2σ

2
1

+6µ2
1σ

2
1 + 11µ1µ2ρjσ

2
1 + 3σ4

1

+24µ4
2ρ

2
j + µ4

1

]
λ1dt

+
[
8µ2

1ρjµ2 + 48µ1µ
3
2ρ

3
j + 40µ2

1µ
2
2ρ

2
j

+12ρjµ
2
2σ

2
1 + 24µ1µ

3
2ρ

2
j + 12µ2

1µ
2
2ρj

+12ρ2
jµ

2
2σ

2
1 + 8µ1µ

2
2ρ

2
j + 20µ3

1µ2ρj

+3σ4
1 + 12µ4

2ρ
2
j + 18µ2

1σ
2
1 + 24ρ4

jµ
4
2

+36µ1µ2ρjσ
2
1 + 7µ4

1

]
(λ1dt)

2

+
[
12µ1µ

3
2ρ

3
j + 24µ1µ

3
2ρ

2
j + 12µ2

1µ
2
2ρj

+30µ2
1µ

2
2ρ

2
j + 24µ3

1µ2ρj + 6ρ2
jµ

2
2σ

2
1

+12µ1µ2ρjσ
2
1 + 12ρ3

jµ
4
2 + 6µ2

1σ
2
1

+6µ4
1

]
(λ1dt)

3

+
[
4µ1µ

3
2ρ

3
j + 6µ2

1µ
2
2ρ

2
j + 4µ3

1µ2ρj

+µ4
1 + ρ4

jµ
4
2

]
(λ1dt)

4

Now we can find the conditional moments of the log asset value process. The

instantaneous conditional mean and variance are:

Et [dν] =

(
µ− λ1k −

1

2
ht

)
dt

+λ1 (µ1 + ρjµ2) dt

lim
dt→0

1

dt
Et [dν] = µ− 1

2
ht + λ1 (µ1 + ρjµ2 − k) (B.3)
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V art [dν] = htdt

+
(
µ2

1 + 2µ1µ2ρj + 2ρjµ
2
2 + σ2

1

)
λ1dt

+
(
µ2

1 + µ2
2ρ

2
j + 2µ1µ2ρj

)
(λ1dt)

2

−λ2
1 (µ1 + ρjµ2)

2 dt2

= htdt+
(
µ2

1 + 2µ1µ2ρj + 2ρjµ
2
2 + σ2

1

)
λ1dt

lim
dt→0

1

dt
V art [dν] = ht +

(
µ2

1 + 2µ1µ2ρj + 2ρjµ
2
2 + σ2

1

)
λ1 (B.4)

The third conditional moment around mean is:

Et

[
(dν − Et [dν])3] =

[
6µ1µ

2
2ρ

2
j + 3ρjµ2σ

2
1 + 9µ2

1µ2ρj

+6µ1µ
2
2ρj + 3µ1σ

2
1 + 6µ3

2ρ
2
j

+3µ3
1

]
λ3

1dt
3

+
[
6µ1σ

2
1 + 12µ3

2ρ
2
j + 18µ2

1µ2ρj

+12µ1µ
2
2ρj + 12µ1µ

2
2ρ

2
j + 6µ3

1

+6ρjµ2σ
2
1

]
λ2

1dt
2

+
[
µ3

1 + 6µ1µ
2
2ρ

2
j + 2µ1µ2ρj

+3µ1σ
2
1 + µ2

1µ2ρj + 6µ2
2ρ

3
j

+3ρjµ2σ
2
1

]
λ1dt

Therefore instantaneous conditional third moment around mean is:

lim
dt→0

1

dt
Et

[
(dν − Et [dν])3] =

[
µ3

1 + 6µ1µ
2
2ρ

2
j + 2µ1µ2ρj

+3µ1σ
2
1 + µ2

1µ2ρj + 6µ2
2ρ

3
j

+3ρjµ2σ
2
1

]
λ1 (B.5)
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The fourth conditional moment around mean is:

Et

[
(dν − Et [dν])4] =

[
6µ2

1σ
2
1 + 4µ3

1µ2ρj + 4µ2
1µ

2
2ρj

+4ρjµ
2
2σ

2
1 + 24µ1µ

3
2ρ

2
j + 8µ2

1µ
2
2ρ

2
j

+3σ4
1 + µ4

1 + 24µ4
2ρ

2
j + 8µ2

2ρ
2
jσ

2
1

+11µ1µ2ρjσ
2
1

]
λ1dt

+
[
12ρjµ

2
2 + 12µ1µ2ρj + 6µ2

1 + 6σ2
1

]
htλ1dt

2

+
[
12µ1µ2ρjσ

2
1 + 12ρjµ

2
2σ

2
1 + 24µ1µ

3
2ρ

2
j

+12µ2
1µ

2
2ρj + 6µ2

1σ
2
1 + 12µ2

1µ
2
2ρ

2
j

+12µ3
1µ2ρj + 24ρ4

jµ
4
2 + 24µ1µ

3
2ρ

3
j

+3σ4
1 + 3µ4

1 + 12µ4
2ρ

2
j − 24µ2

2ρ
3
jµ1

−24µ3
2ρ

4
j

]
λ2

1dt
2 + 3h2

tdt
2

+
[
−48µ1µ2ρjσ

2
1 − 24µ2

1σ
2
1

−24µ2
2ρ

2
jσ

2
1 − 24µ4

1 − 48µ1µ
3
2ρ

3
j

−96µ1µ
3
2ρ

2
j − 48µ2

1µ
2
2ρj − 120µ2

1µ
2
2ρ

2
j

−96µ3
1µ2ρj − 48ρ3

jµ
4
2

]
λ3

1dt
3

+
[
−24µ1µ

3
2ρ

3
j − 60µ2

1µ
2
2ρ

2
j

−48µ3
1µ2ρj − 12µ4

1 − 12µ2
1σ

2
1 − 48µ1µ

3
2ρ

2
j

−24µ2
1µ

2
2ρj − 24ρ3

jµ
4
2 − 24µ1µ2ρjσ

2
1

−12µ2
2ρ

2
jσ

2
1

]
λ4

1dt
4

Therefore instantaneous conditional fourth moment around mean is:

lim
dt→0

1

dt
Et

[
(dν − Et [dν])4] =

[
6µ2

1σ
2
1 + 4µ3

1µ2ρj + 4µ2
1µ

2
2ρj

+4ρjµ
2
2σ

2
1 + 24µ1µ

3
2ρ

2
j + 8µ2

1µ
2
2ρ

2
j

+3σ4
1 + µ4

1 + 24µ4
2ρ

2
j + 8µ2

2ρ
2
jσ

2
1

+11µ1µ2ρjσ
2
1

]
λ1 (B.6)

170



Appendix C

Solutions for Fourier

Transform

In this section we find the solution for the fourier transform that we used for

bond pricing. For this, first we solve the Ricatti equations for B (τ ;u1, u2, u3) and

C (τ ;u1, u2, u3), and then findA (τ ;u1, u2, u3) ,J1 (τ ;u1, u2, u3) and J2 (τ ;u1, u2, u3).

Before going into the solutions, in addition to the transforms g1 to g8 that we

define in the previous section, define the following additional transforms:

h1 (u1, u2, u3) := −η

h2 (u1, u2, u3) :=
√

2iu1δ2 − h2
1

h3 (u1, u2, u3) := tan

[
1

2
h2τ + arctan (h4)

]
h4 (u1, u2, u3) :=

h1 + iu3δ
2

h2

h5 (u1, u2, u3) := 1 +
h1µ3

δ2

h6 (u1, u2, u3) :=
µ3h2

δ2

h7 (u1, u2, u3) := λ2
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C.1 Solution for B (τ ;u1, u2, u3)

Since the ODE for B is same with the one we have in the previous section with

the same boundary condition, we have the same solution:

B (τ ;u1, u2, u3) =
g2g3 − g1

γ2
(C.1)

Note that g1, g2 and g3, and hence B do not involve any term with u3. This

is because of the assumption that interest rate process is independent from asset

value and variance processes.

C.2 Solution for C (τ ;u1, u2, u3)

The ODE for C is:

∂C

∂τ
= R1 + CR2 + C2R3

where:

R1 := iu1

R2 := −η

R3 :=
1

2
δ2

with the boundary condition:

C (0;u1, u2 − u3) = iu3

dC

dτ
= R1 + CR2 + C2R3

dτ =
dC

R1 + CR2 + C2R3∫
dτ = τ =

∫
dC

R1 + CR2 + C2R3
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Note that, since we have more than one integral, it does not matter where we

put a constant in the equality. Now define the following transforms:

K :=

√
4R1R3 −R2

2

2
√
R3

X :=
2R3C +R2

2
√
R3

Then we have:

K2 +X2 =
4R1R3 −R2

2

4R3

+
4R2

3C
2 +R2

2 + 4R2R3C

4R3

= R1 −
R2

2

4R3

+R3C
2 +

R2
2

4R3

+R2C

= R1 +R2B +R3C
2

Additionally we have:

dX = d

(
2R3C +R2

2
√
R3

)
=
√
R3dC

dC =
dX√
R3

Therefore we have:∫
dC

R1 + CR2 + C2R3

=

∫
1√

R3 (K2 +X2)
dX

=
1√
R3

∫
1

K2 +X2
dX = τ∫

K

K2 +X2
dX = τ

√
R3K

Since we know
∫

a
a2+x2dx = arctan

(
x
a

)
− c̄, we have:

arctan

(
X

K

)
− c̄ = τ

√
R3K
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When we solve for X:

X = K tan
(
Kτ
√
R3 + c̄

)
Using the definition of X and K:

2R3C +R2

2
√
R3

=

√
4R1R3 −R2

2

2
√
R3

tan

(
1

2
τ
√

4R1R3 −R2
2 + c̄

)

C =

√
4R1R3 −R2

2 tan
(

1
2
τ
√

4R1R3 −R2
2 + c̄

)
−R2

2R3

Now we can use the boundary condition, C (0;u1, u2, u3) = iu3, to find c̄.

iu3 =

√
4R1R3 −R2

2 tan (c̄)−R2

2R3

tan (c̄) =
2iu3R3 +R2√
4R1R3 −R2

2

c̄ = arctan

(
2iu3R3 +R2√
4R1R3 −R2

2

)

Now we can totally define C:

C =

√
4R1R3 −R2

2 tan

(
1
2
τ
√

4R1R3 −R2
2 + arctan

(
2iu3R3+R2√

4R1R3−R2
2

))
−R2

2R3

By using previously defined h1, h2, h3,

C (τ ;u1, u2, u3) =
h2h3 − h1

δ2
(C.2)
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C.3 Solution for A (τ ;u1, u2, u3)

We have:

∂A

∂τ
= αβB + ηθC

= αβ
g2g3 − g1

γ2
+ ηθ

h2h3 − h1

δ2

Note that g1, g2, h1 and h2 do not depend on τ . Therefore:

dA =

(
αβg2

γ2
g3 +

ηθh2

δ2
h3 −

αβg1

γ2
− ηθh1

δ2

)
dτ∫

dA =

[
−αβg1

γ2
− ηθh1

δ2

]
τ +

αβg2

γ2

∫
g3dτ +

ηθh2

δ2

∫
h3dτ

Therefore we should find
∫
g3dτ and

∫
h3dτ . In the previous section, we already

found
∫
g3dτ : ∫

g3dτ =
1

g2

[
ln
(
1 + g2

3

)
+ c̄
]

In a similar manner, we have:∫
h3dτ =

1

h2

[
ln
(
1 + h2

3

)
+ c̄
]

When we input these results, we have the following equality. Note that it is

unimportant where we put the constant term.∫
dA = A =

[
−αβg1

γ2
− ηθh1

δ2

]
τ

+
αβg2

γ2

1

g2

[
ln
(
1 + g2

3

)
+ c̄
]
+
ηθh2

δ2

1

h2

ln
(
1 + h2

3

)
=

[
−αβg1

γ2
− ηθh1

δ2

]
τ

+
αβ

γ2

[
ln
(
1 + g2

3

)
+ c̄
]
+
ηθ

δ2
ln
(
1 + h2

3

)
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Now, by using the boundary condition, A (0;u1, u2, u3) = 0, we will find c̄.

0 =
αβ

γ2

[
ln
(
1 + g2

4

)
+ c̄
]
+
ηθ

δ2
ln
(
1 + h2

4

)
c̄ = −ln

(
1 + g2

4

)
− ηθγ2

αβδ2
ln
(
1 + h2

4

)
When we input c̄ :

A (τ ;u1, u2, u3) =

[
−αβg1

γ2
− ηθh1

δ2

]
τ +

αβ

γ2
ln
(
1 + g2

3

)
+
ηθ

δ2
ln
(
1 + h2

3

)
−αβ
γ2

ln
(
1 + g2

4

)
− ηθ

δ2
ln
(
1 + h2

4

)
=

[
−αβg1

γ2
− ηθh1

δ2

]
τ

+
αβ

γ2
ln

(
1 + g2

3

1 + g2
4

)
+
ηθ

δ2
ln

(
1 + h2

3

1 + h2
4

)
(C.3)

C.4 Solution for J1 (τ ;u1, u2, u3)

Since the ODE for J1 is same with the one we have in the previous section

with the same boundary condition, we have the same solution:

J1 (τ ;u1, u2, u3) =

[
g8 − λ1 +

g5g7

g2
5 + g2

6

]
τ

+
2g6g7

g2 (g2
5 + g2

6)
ln

(
(g6g4 − g5)

√
1 + g2

3

(g6g3 − g5)
√

1 + g2
4

)
(C.4)

C.5 Solution for J2 (τ ;u1, u2, u3)

With the transforms h1 to h8, we can express the ODE for J2:
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∂J2

∂τ
=

h7

h5 − h6h3

− h7∫
dJ2 = h7

∫
1

h5 − h6h3

dτ −
∫
h7dτ

J2 = −h7τ + h7

∫
1

h5 − h6h3

dτ

= −h7τ +
h7

h6

∫
1

h3 − h5

h6

dτ

Since:

h3 = tan

(
1

2
h2τ + arctan (h4)

)
we have:

∂h3

∂τ
=

1

2
h2

(
1 + h2

3

)
⇒ dτ =

2

h2 (1 + h2
3)
dh3

Therefore we should find:∫
1

h3 − h5

h6

dτ =
2

h2

∫
1(

h3 − h5

h6

)
(1 + h2

3)
dh3

For the integrand we have:

1(
h3 − h5

h6

)
(1 + h2

3)
=

h2
6

(h2
5 + h2

6)
(
h3 − h5

h6

) − h6 (h5 + h6h3)

(h2
5 + h2

6) (1 + h2
3)

Thus:∫
1

h3 − h5

h6

dτ =
2h2

6

h2 (h2
5 + h2

6)

∫
1(

h3 − h5

h6

)dh3 −
2h6

h2 (h2
5 + h2

6)

∫
h5 + h6h3

1 + h2
3

dh3
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Additionally we have:∫
1

h3 − h5

h6

dh3 = ln

(
h3 −

h5

h6

)
∫
h5 + h6h3

1 + h2
3

dh3 = h5 arctan (h3) +
1

2
h6 ln

(
1 + h2

3

)
=

1

2
h2h5τ + h5 arctan (h4) +

1

2
h6 ln

(
1 + h2

3

)
We put a constant term at this stage.

1

h6

∫
1

h3 − h5

h6

dτ =
2h6

h2 (h2
5 + h2

6)
ln

(
h3 −

h5

h6

)
− 2

h2 (h2
5 + h2

6)

1

2
h2h5τ

− 2

h2 (h2
5 + h2

6)
h5 arctan (h4)−

2

h2 (h2
5 + h2

6)

1

2
h6 ln

(
1 + h2

3

)
− 2

h2 (h2
5 + h2

6)
c̄

=
2

h2 (h2
5 + h2

6)

{
h6 ln

(
h3 − h5

h6√
1 + h2

3

)
− h2h5

2
τ

−h5 arctan (h4)− c̄

}

=
2

h2 (h2
5 + h2

6)

{
h6 ln

(
h3h6 − h5

h6

√
1 + h2

3

)
− h2h5

2
τ

−h5 arctan (h4)− c̄

}

Now we can obtain J2:

J2 = −h7τ

+
2h7

h2 (h2
5 + h2

6)

{
h2h5

2
τ + h5 arctan (h4)− h6 ln

(
h3h6 − h5

h6

√
1 + h2

3

)
+ c̄

}
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By using the boundary condition, J2 (0;u1, u2, u3) = 0, and noting that the for

τ = 0 we have h3 = h4:

0 =
2h7

h2 (h2
5 + h2

6)

{
h5 arctan (h4)− h6 ln

(
h4h6 − h5

h6

√
1 + h2

4

)
+ c̄

}

c̄ = h6ln

(
h4h6 − h5

h6

√
1 + h2

4

)
− h5 arctan (h4)

When we input c̄:

J2 (τ ;u1, u2, u3) = −h7τ +
2h7

h2 (h2
5 + h2

6)

h2h5

2
τ

2h6h7

h2 (h2
5 + h2

6)

{
−ln

(
h3h6 − h5

h6

√
1 + h2

3

)
+ln

(
h4h6 − h5

h6

√
1 + h2

4

)}

=

[
h5h7

h2
5 + h2

6

− h7

]
τ

+
2h6h7

h2 (h2
5 + h2

6)
ln

(
(h4h6 − h5)

√
1 + h2

3

(h3h6 − h5)
√

1 + h2
4

)
(C.5)
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