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Abstract

Constructions of Authentication Codes

Saygı, Zülfükar

Ph.D., Department of Cryptography

Supervisor: Prof. Dr. Ferruh Özbudak

July 2007, 61 pages

Authentication codes are used in many cryptographic applications. They are divided into two

main classes: authentication codes with secrecy and the ones without secrecy. In this thesis,

authentication codes are constructed using three different methods. In the first method, by using

some codes over Galois rings and generalized Gray map, authentication codes without secrecy

over finite fields are obtained. In the second and third methods, by using additive polynomials

related to some curves over finite fields, authentication codes with secrecy and without secrecy

are constructed. It is observed that the parameters of these codes are better than the existing

ones in some cases.

Keywords: Additive Polynomials, Authentication Codes, Cryptography, Galois rings, Secrecy

Codes.
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Öz

Doğrulama Kodlarının Üretilmesi

Saygı, Zülfükar

Doktora, Kriptografi Bölümü

Tez Yöneticisi: Prof. Dr. Ferruh Özbudak

Temmuz 2007, 61 sayfa

Doğrulama kodları kriptografik birçok uygulamanın içerisinde kullanılmaktadır. Bu kodlar sırlı

ve sırsız doğrulama kodları olmak üzere iki ana sınıfa ayrılır. Bu tezde, üç farklı yöntem kul-

lanılarak doğrulama kodları üretildi. İlk yöntemde Galois halkaları üzerindeki bazı kodlar ve

genelleştirilmiş Gray dönüşümü kullanılarak sonlu cisimler üzerinde sırsız doğrulama kodları elde

edildi. İkinci ve üçüncü yöntemlerde sonlu cisimler üzerindeki bazı eğrilerle ilişkili toplamsal

polinomlar kullanılarak sırsız ve sırlı doğrulama kodları üretildi. Bu kodların parametrelerinin

bilinen kodların parametrelerinden bazı durumlarda daha iyi oldukları görüldü.

Anahtar Kelimeler: Toplamsal Polinomlar, Doğrulama Kodları, Kriptografi, Galois halkaları,

Sır Saklama Kodları.
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Preface

One of the important topic in the field of communication is the security of the messages.

In cryptography many applications are developed to guarantee the secrecy of the messages.

Moreover, the assurance about the origin and content of the messages are provided by using

authentication codes.

The idea of authentication was first introduced in 1974 by Gilbert, MacWilliams and Sloane

[27]. In 1984, Simmons proposed a new model [53], in which an opponent is involved in addition

to two trusting parties, a transmitter and a receiver. In this model, the idea of unconditional

authentication, an analogous of the idea of the unconditional secrecy proposed by Shannon [52],

is developed.

In general authentication codes are divided into two main classes: authentication codes with

secrecy and the ones without secrecy. In an authentication code without secrecy, a message

is obtained by encoding a source state and the corresponding tag. Transmitter sends this

message to the receiver. In this case, there is no encryption of the source state, that is, without

knowledge of the shared secret key one can recover the source state from the encoded message.

In authentication codes with secrecy, there is an encryption of the source state. Transmitter

obtains a message by encoding the encrypted version of a source state and the corresponding

tag. In this case, without knowledge of the shared secret key one cannot recover this source state

from the message. In these codes, a part of the secret key is used for encryption and another

part of the secret key is used for authentication.

In this thesis, authentication codes are constructed using three different methods. In the

first method, by using some codes over Galois rings and generalized Gray map, authentication

codes without secrecy over finite fields are obtained. In the second and third methods, by using

additive polynomials related to some curves over finite fields, authentication codes with secrecy

and without secrecy are constructed. It is observed that the parameters of these codes are better

than the existing ones in some cases.

This thesis is organized as follows.

In Chapter 1, a general introduction to authentication codes is presented. It includes an
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authentication model, some known bounds on the parameters of the authentication codes, some

characterizations and some well-known constructions.

In Chapter 2, some constructions of systematic authentication codes over finite field Fq using

Galois rings are presented.

In Chapter 3, two families of systematic authentication codes using additive polynomials

related to some curves over finite fields are constructed. It is observed that the parameters of

the codes are better than the existing ones in some cases.

In Chapter 4, three different constructions of authentication codes with secrecy using additive

polynomials related to some curves over finite fields are given.

In Chapter 5, conclusions and some future work topics are given.

The main parts of this thesis come from the following papers:

F. Özbudak and Z. Saygı, Some constructions of systematic authentication codes using Galois

rings, Designs, Codes and Cryptography, vol 41, no. 3, pp. 343-357, 2006.

F. Özbudak and Z. Saygı, Constructions of systematic authentication codes using additive

polynomials, Proceedings of International Workshop on Coding ad Cryptography 2007, Versailles,

France, pp. 405-414, 2007.

F. Özbudak and Z. Saygı, Systematic authentication codes using additive polynomials, De-

signs, Codes and Cryptography, submitted.

F. Özbudak and Z. Saygı, Authentication codes with secrecy using additive polynomials, in

preparation.

ix



Table of Contents

Plagiarism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Chapter 1

Introduction to Authentication

Codes

In this chapter, a general introduction to authentication codes is presented. First, the

authentication problem with a solution model is explained, then some known bounds on the

parameters of the authentication codes are given together with some characterizations and some

well-known constructions.

1.1 An Authentication Model

Starting from the ancient times, one of the main problems in the field of communication is the

security of the messages. In a general manner, cryptography deals with the alternative solutions

to this problem. It has been extensively being used in many diplomatic and military applications

in recent years. The topic of cryptography has been widely introduced into various areas of

everyday life as a result of the currently popular technology and internet evolvement. The

impact of cryptography can be easily detected and discussed in many aspects starting from ATM

cards, computer passwords, through internet banking and emails, file transfers and electronic

commerce. The crucial issue of the above stated areas is the monitoring of any interference

made by a potential opponent to the entire or partial data, which consequently makes it crucial

to validate the source and integrity of the original one. As a result, authentication codes are

being developed to produce solutions to that problems.

The idea of authentication was first introduced in 1974 by Gilbert, MacWilliams and Sloane

[27]. There are two trusting parties in the proposed authentication model, a transmitter and a

receiver who share a secret key. The transmitter wants to securely send a piece of information

using his/her secret key to the receiver over a public insecure channel. In 1984, Simmons

proposed a new model [53], in which an opponent is involved in addition to these two trusting
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parties. In such a situation, an opponent could observe or disturb the ordinary communication.

The possible transmission errors in the communication due to the noise in public channel are

not considered in this model. Those type of errors can be removed using error correcting codes.

Such applications are out of the scope of this thesis. Therefore we assume that the channel is

public and noiseless. In this thesis we deal with the authentication model proposed by Simmons.

Authentication codes are divided into two main classes: authentication codes with secrecy

and the ones without secrecy. In Section 1.1.1 and Section 1.1.2 these two classes are described

extensively. We note that using the secret key, a single message can be mapped onto more than

one message and this is called splitting. They are considered in [16, 25, 34, 36, 50, 54, 55, 56].

In this thesis, we consider only the authentication codes without splitting and throughout the

thesis authentication codes refer to those codes without splitting.

A formal definition for an authentication code is presented as follows:

Definition 1.1.1. An authentication code is a quadruple (S,K,M, E) where S is the set of

source states (plaintexts), K is the set of keys, M is the set of messages and E is the set of

authentication maps (encoding rules) from S × K to M.

Note that, for any fixed k ∈ K and E ∈ E the projection of the authentication map E, say

Ek, from S to M is one to one. Here it is assumed that the sets S, K and M are finite and

nonempty. Using the notations as in Definition 1.1.1 the general protocol can be described as

follows:

1. The transmitter sends the information s ∈ S as m = Ek(s) ∈ M where k is the shared

secret key.

2. The receiver receives the message m′ = Ek′(s′).

3. Checks the authenticity by checking whether m′ = Ek(s′) or not.

(a) If m′ = Ek(s′), the receiver assumes m′ as a valid message.

(b) If m′ 6= Ek(s′), the receiver will reject the message.

It is assumed that everything about the authentication model is publicly known due to the

Kerckhoff’s principle. That is, the opponent knows the whole parameters of the authentication

code except the secret key shared by the transmitter and the receiver. In this situation, we

consider two kinds of attacks. When the opponent generates a message m′ and inserts m′ into

the channel, this is called impersonation. When the opponent sees a message m and changes it to

a different message m′, this is called substitution. Let the success probabilities of these attacks

be PI and PS respectively. We assume that the keys and the source states are distributed
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equally likely. Then we get the following probabilities

PI = maxm∈M p(m is a valid message), (1.1.1)

PS = maxm,m′∈M,m′ 6=m p(m′ is a valid message|m is an observed message). (1.1.2)

Note that, p(·) denotes the probability and p(m′|m) denotes the conditional probability that m′

is a valid message, after observing m as a valid message.

At this point, it is seen that authentication codes have at least five parameters

|S|, |K|, |M|,PI and PS .

For any good authentication code the cardinality of the set of source states should be large

enough and the other parameters |K|, |M|,PI and PS should be as small as possible. There are

two main constrains for the constructions:

1. Given fixed |S|, |K|, |M| find authentication codes having PI and PS as small as possible,

2. Given fixed PI and PS find authentication codes having |S| as large as possible and |K|
and |M| as small as possible,

It is known that to compare two authentication codes, at least three of the five parameters of

the codes should be fixed to be the same respectively.

1.1.1 Authentication Codes without Secrecy

In an authentication code without secrecy, a message is obtained by encoding a source state

and the corresponding tag. Transmitter sends this message to the receiver. In this case, there

is no encryption of the source state, that is, without knowledge of the shared secret key one can

recover the source state from the encoded message. They are considered in [3, 4, 5, 7, 10, 17,

18, 21, 22, 23, 27, 31, 42, 43, 44, 53, 57, 71, 73]. In this thesis, we deal with some constructions

of a subclass of authentication codes without secrecy called systematic authentication codes (or

sometimes called cartesian authentication codes).

Definition 1.1.2. A systematic authentication code is a quadruple (S,K, T , E) where S is the

set of source states (plaintexts), K is the set of keys, T is the set of authenticators (tags) and E
is the authentication map from S × K to T .

Here it is assumed that M = S × T . Similar to the general protocol, the authentication

protocol for systematic authentication codes is defined as follows:

1. The transmitter sends the information s ∈ S as m = (s, t) ∈M by computing t = E(s, k) ∈
T where k ∈ K is the shared secret key.
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2. The receiver receives the message m′ = (s′, t′).

3. Checks the authenticity by checking whether t′ = E(s′, k) or not.

(a) If t′ = E(s′, k), the receiver assumes m′ as a valid message.

(b) If t′ 6= E(s′, k), the receiver will reject the message.

For the impersonation attack the opponent generates a message m1 = (s1, t1) and inserts

m1 into the channel and for the substitution attack the opponent sees a message m = (s, t) and

changes it to a different message m1 = (s1, t1) with s 6= s1. Therefore the attack probabilities

(1.1.1) and (1.1.2) become

PI = max(s,t)∈M
|{k ∈ K : t = E(s, k)}|

|{k ∈ K}|
, (1.1.3)

PS = max(s,t)∈Mmax(s′,t′)∈M,s′ 6=s
|{k ∈ K : t = E(s, k), t′ = E(s′, k)}|

|{k ∈ K : t = E(s, k)}|
. (1.1.4)

1.1.2 Authentication Codes with Secrecy

In authentication codes with secrecy, there is an encryption of the source state. Transmitter

obtains a message by encoding the encrypted version of a source state and the corresponding

tag. In this case, without knowledge of the shared secret key one cannot recover this source

state from the message. In these codes, a part of the secret key is used for encryption and

another part of the secret key is used for authentication. They are considered in [9, 15, 19, 20,

27, 41, 49, 45, 53, 63, 64, 65]. Since we have an encryption in authentication codes with secrecy,

the uncertainty of a source state becomes an important parameter. The idea of unconditional

secrecy is defined by Shannon in 1949 [52]. Using this definition, if for any given message m

we have p(s|m) = p(s) then we say that the authentication code with secrecy provides perfect

secrecy.

For the authentication codes with secrecy the general protocol can be described in details as

follows:

1. The transmitter sends the information s ∈ S as m = (fk(s), gk(s)) ∈ M by computing

fk(s) and gk(s) where k ∈ K is the shared secret key and the authentication map Ek =

(fk, gk) ∈ E . Here fk is used for the encryption of the source state and gk is used to

compute the tag.

2. The receiver receives the message m′ = (m1,m2) and computes s′ = f−1
k (m1).

3. Using s′ he/she checks the authenticity by checking whether m2 = gk(s′) or not.

(a) If m2 = gk(s′), the receiver assumes m′ as a valid message.
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(b) If m2 6= gk(s′), the receiver will reject the message.

For the impersonation attack the opponent picks an element m = (m1,m2) in some way

and sends it to the receiver and for substitution attack the opponent has observed one message

m = (m1,m2), and he/she wants to replace m with another message m′ = (m′
1,m

′
2), where

m′
1 6= m1.

1.2 Known bounds on the Parameters of the Authentication

Codes

In this section some known bounds are presented. In the literature there are many combi-

natorial and information theoretic bounds on the parameters of the authentication codes. They

can be found in [6, 9, 33, 40, 48, 58, 62, 49, 67, 46, 53, 51, 40, 47, 65]. Here only four of them are

given. First two theorems are obtained by combinatorial methods, and the last two theorems

are proved by using information theoretic techniques.

Theorem 1.2.1 ([40, 48]). In any authentication code (S,K,M, E),

PI ≥
|S|
|M|

and PS ≥
|S| − 1
|M| − 1

.

If both equalities are achieved, then |K| ≥ |M|.

For the systematic authentication code this theorem becomes

Theorem 1.2.2 ([58]). For any systematic authentication code (S,K, T , E) we have

PI ≥
1
|T |

and PS ≥
1
|T |

.

Here some basic information theoretic definitions are given. Details for information theory

can be found in [47, 58]. Suppose X is a random variable whose possible values are x1, x2, . . . , xn

with probability distribution {p(xi)}xi∈X > 0. The entropy of X, denoted by H(X), is defined

by

H(X) = −
∑

xi∈X

p(xi) log2 p(xi).

For any random variables X and Y the conditional entropy H(X|Y ) is then defined by

H(X|Y ) = −
∑
x∈X

∑
y∈Y

p(y)p(x|y) log2 p(x|y).

The generalization of following information theoretic bounds are first given by Rosenbaum

[49], and were first proved for the systematic authentication codes in [67]. The PI part of the

theorem were first proved by Simmons, Sgarro and Massey in [53, 51, 40].
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Theorem 1.2.3. For any authentication code (S,K,M, E) we have

PI ≥ 2H(K|M)−H(K) and PS ≥ 2H(K|M2)−H(K|M)

Note that H(K|M2) corresponds to the conditional entropy of K given that the first 2

messages have been observed.

Also the following bound on PS was proved by Brickell in [6].

Theorem 1.2.4. For any authentication code (S,K,M, E) we have

PS ≥ 2H(M)−H(K)−H(S)

1.3 Some Characterizations of Authentication Codes

In this section three important characterizations of authentication codes are presented. First

an equivalence of authentication codes with a subclass of universal hash functions is described,

then an equivalence with balanced incomplete block designs is given and at the end of this

section an equivalence with orthogonal arrays is presented.

Wegman and Carter introduced the concept of universal hashing in 1979 [8]. One of the

interesting part of the universal hashing is strongly universal hash functions that are closely

related to the systematic authentication codes. A hash family H is a set of |H| functions such

that for any h ∈ H we have a map from the set A to the set B. Consider a hash family

H = {h|h : A −→ B}.

Definition 1.3.1. A hash family H is called ε-almost strongly universal(ε−ASU) if

1. for any a ∈ A and any b ∈ B, there are exactly |H|/|B| functions h ∈ H such that h(a) = b.

2. for any two distinct elements a1, a2 ∈ A, for any two elements b1, b2 ∈ B there are at most

ε|H|/|B| functions h ∈ H such that h(a1) = b1 and h(a1) = b2.

The following lemma gives an equivalence between universal hash functions and systematic

authentication codes:

Lemma 1.3.2 ([4, 57]). If there exists a systematic authentication code (S,K, T , E) with pa-

rameters |S|, |K|, PI = 1/|T |, and PS , then there exists an ε-almost strongly universal family

of hash functions where ε = PS , |H| = |K|, |A| = |S|, and |B| = |T |. Conversely, if there

exists an ε-almost strongly universal family of hash functions, then there exists a systematic

authentication code with parameters as above.
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In literature, many authors used this lemma to construct universal hash functions and sys-

tematic authentication codes [1, 3, 4, 31, 33, 57, 61, 72, 73].

Now an equivalence of authentication codes and balanced incomplete block designs (BIBD)

is presented. First the definition of a BIBD is given. Details for BIBDs can be found in [11].

Definition 1.3.3. A (m, s, λ) balanced incomplete block design, (m, s, λ)-BIBD is a pair (X,A),

where X is a set of points with |X| = m and A is a family of k-subsets of X (called blocks) such

that every pair of points occurs in exactly λ blocks.

Since each encoding rule is a one-to-one function from S to M, the authentication code can

be represented by a |K| × |S| encoding matrix, whose (k, s)-th entry is Ek(s), where the rows

are indexed by encoding rules and the columns are indexed by source states. The following

equivalence between a BIDB and an authentication code is proved in [62].

Lemma 1.3.4. Suppose we have an authentication code (S,K,M, E) in which PI = |S|/|M|
and PS = (|S|− 1)/(|M|− 1). Then |K| ≥ (|M|2−|M|)/(|S|2−|S|), and equality occurs if and

only if the rows of the encoding matrix (taken as unordered sets) form a (|M|, |S|, 1)-BIBD, and

both the source states and encoding rules are equiprobable.

Here an equivalence of systematic authentication codes and orthogonal arrays is presented.

First the definition of an orthogonal array is given. Details for orthogonal arrays can be found

in [30].

Definition 1.3.5. An orthogonal array OA(t, s, λ) is a λt2 × s array of t symbols, such that in

any two columns of the array every one of the possible t2 pairs of symbol occurs in exactly λ

rows.

The following equivalence between orthogonal arrays and systematic authentication codes is

proved in [62, 60].

Lemma 1.3.6. Suppose there exists a systematic authentication code (S,K, T , E) with parame-

ters |S|, |K|, |T | and PI = PS = 1/|T |. Then |K| ≥ |S|(|T | − 1) + 1 and equality holds if and

only if there exists an orthogonal array OA(|T |, |S|, λ), where λ = (|S|(|T | − 1) + 1)/|T |2

1.4 Known Construction Methods of Authentication Codes

In this section some well-known construction methods in the literature are provided. There

are several approaches to construct authentication codes with or without secrecy. Main con-

struction methods can be classified as algebraic, combinatoric, geometric and coding theoretic

constructions.
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The authentication codes developed by Gilbert, MacWilliams and Sloane [27] may be given

as the first example of geometric construction methods. In this method, some specific subsets

of the points and the lines in projective spaces are used to represent encoding rules and mes-

sages. Some other geometric constructions can be found in [2, 23, 24, 69, 70, 74]. In [69, 70]

several constructions of systematic authentication codes based on symplectic spaces and unitary

geometry over finite fields are presented.

There are many combinatorial constructions of authentication codes, e.g. [25, 26, 41, 47,

48, 59, 60, 61, 62, 63, 64]. In [26] perpendicular arrays are used to construct authentication

codes. As explained in Section 1.3 Stinson present characterizations of authentication codes in

terms of balanced incomplete block designs in [59, 60, 62]. Also Stinson give a characterization

of systematic authentication codes in terms of orthogonal arrays in [62]. Note that these two

characterizations give optimal authentication codes, that is, PI and PS attains its minimum

values.

As it is noted in Section 1.3 many algebraic and coding theoretic constructions of universal

hash functions and authentication codes are presented in the literature using Lemma 1.3.2. In [4]

the concatenation of codes is used to construct authentication codes. Mainly the Reed-Solomon

codes and algebraic geometric codes are used in the constructions. Helleseth and Johansson

construct authentication codes using exponential sums over finite fields and Galois rings in

[31]. In recent years, highly nonlinear functions have been used to construct good and optimal

authentication codes in [7, 10, 18, 19]. Also some good authentication codes is constructed using

some coding theoretic techniques in [17, 21, 42].
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Chapter 2

Some Constructions of Systematic

Authentication Codes Using Galois

Rings

In this chapter, a coding theory oriented approach is used to construct systematic authenti-

cation codes over finite field Fq. Corrections of the construction of [5] are given. Corresponding

systematic authentication codes of [31] are generalized in various ways.

2.1 Introduction

Let p be a prime, m,n, l be positive integers and q = pm. Throughout this chapter R denotes

the Galois ring GR(pl,m) of characteristic pl and cardinality ql and S denotes GR(pl,mn) of the

same characteristic but cardinality qln. Our constructions use elements from a suitable space

of polynomials or rational functions over S as source states. We form codewords over R ⊆ S

by traces of evaluations of these functions on a “regular” subset of Teichmüller set of S. Our

constructions differ into two types at this point. In type I, we extend this set of codewords by

component wise addition of them with some constant codewords over R (cf. (2.3.1)). In type II,

we do not have such an addition. For both types, tags of our systematic authentication codes

over finite field Fq are obtained after generalized Gray map (cf. (2.3.2)).

Our constructions A and B of Section 2.3 are of type I. They corresponds to constructions

C and D, respectively, of type II given in Section 2.4. The difference of type I and type II

codes appears in estimating the probabilities PI and PS . In general the estimation of PS is

more difficult than the estimation of PI . For a type I code, component wise addition with some

constant codewords guarantees that PI = 1/q. For a type II code, the probability PI of it is

exactly the probability PS of the corresponding type I code. Estimation of the probability PS
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of a type II codes is much more difficult.

In [5], Bini gave a construction of type II codes (cf. (2.4.4)). However the estimates of the

probabilities PI and PS are incorrect in [5]. In particular, estimation of PS for such codes need

more involved machinery.

In this chapter, we give constructions A and B as type I codes in Section 2.3. Construction

A is a generalization of [31, Theorem 17] from p-ary to q-ary codes. This generalization would

be useful for example to have systematic authentication codes with large |S| in characteristic

2. Construction B is a generalization of Construction A, which would be considered as a

generalization from p-ary to q-ary case of a correction of [5]. We give their type II counterparts as

constructions C and D respectively in Section 2.4. The probabilities PI and PS of Construction

D correspond to the correct values of the estimates in [5]. Estimating the probability PS of

constructions C and D is much more involved and we use some tools from [39] and assume that

q = p for simplicity. We also give some generalizations to Galois ring of arbitrary characteristic

and a nonexistence result in Section 2.5.

2.2 Algebraic Background

In this section, we recall some definitions and basic results. For t ≥ 1, let GR(pl, t) the

Galois ring of characteristic pl and cardinality plt, which is a local ring having unique maximal

ideal pGR(pl, t). The group of units of the Galois ring GR(pl, t) contains a unique cyclic group

of order pt − 1. If ξ is a generator of this group, the set

τ(GR(pl, t)) = {0, 1, ξ, · · · , ξpt−2}

is called the Teichmüller set of GR(pl, t).

For any Galois ring GR(pl, t) the trace map can be defined as follows

Trt : GR(pl, t) −→ Zpl

l−1∑
i=0

piri 7−→
l−1∑
i=0

(ri + rp
i + · · ·+ rpt−1

i )pi.

Recall that R and S correspond to GR(pl,m) and GR(pl,mn) respectively. First we define

the generalized Gray map from R into (Fq)ql−1
and relate it to some exponential sums ([28]).

We begin with some simple but useful lemmas.

Lemma 2.2.1. For any u ∈ R we have

∑
x∈R

e
2πi

Trm(ux)

pl =

{
ql, if u = 0

0, otherwise.
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Proof. The case u = 0 is trivial. For u 6= 0, as the trace map is surjective ([68, Theorem 14.37]),

there exists y ∈ R s.t. Trm(uy) 6= 0. Then we have∑
x∈R

e
2πi

Trm(ux)

pl =
∑

x+y∈R

e
2πi

Trm(u(x+y))

pl = e
2πi

Trm(uy)

pl
∑
x∈R

e
2πi

Trm(ux)

pl .

As 1− e
2πi

Trm(uy)

pl 6= 0, we get
∑

x∈R e
2πi

Trm(ux)

pl = 0.

Lemma 2.2.2. For any u ∈ R we have

∑
x∈pR

e
2πi

Trm(ux)

pl =

{
ql−1, if u ∈ pl−1R

0, if u ∈ R\pl−1R.

Proof. Again the case u ∈ pl−1R is trivial. For u ∈ R\pl−1R, the surjectivity of the trace map

also implies the existence of y ∈ pl−1R s.t. Trm(uy) 6= 0. We complete the proof similarly as in

the proof of Lemma 2.2.1.

Combining Lemma 2.2.1 and Lemma 2.2.2 we get the following result.

Lemma 2.2.3. For any u ∈ R we have

∑
x∈R\pR

e
2πi

Trm(ux)

pl =


ql − ql−1, if u = 0

−ql−1, if u ∈ pl−1R\{0}
0, if u ∈ R\pl−1R.

We are ready to define the homogeneous weight on R, which extends [12].

Definition 2.2.4. For u ∈ R, let

s(u) :=
∑

x∈R\pR

e
2πi

Trm(ux)

pl and w(u) := −1
q
s(u) + (ql−1 − ql−2).

For any u ∈ R, using the above definition and Lemma 2.2.3, we have

w(u) =


0, if u = 0

ql−1, if u ∈ pl−1R\{0}
ql−1 − ql−2, if u ∈ R\pl−1R.

Let µ be the projection map onto the residue field of GR(p2,m) defined as

µ : GR(p2,m) −→ GR(p2,m)/pGR(p2,m) ∼= Fq

u 7−→ u := u+ pGR(p2,m).

Note that µ is a ring homomorphism. The following lemma is clear from the definition of the

projection map.
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Lemma 2.2.5. For any r, s ∈ τ(GR(p2,m)), if µ(r) = µ(s) then r = s.

Using the projection map µ we can define the generalized Gray map.

Definition 2.2.6 (Generalized Gray Map).

φ : GR(p2,m) −→ (Fq)q

(r0 + pr1) 7−→ (r1, r1 + ηr0, r1 + η2r0, · · · , r1 + ηq−1r0),

where < η >= τ(GR(p2,m))\{0}.

Lemma 2.2.7. The generalized Gray map φ is an injection.

Proof. For any r, s ∈ GR(p2,m) with r = r0 + pr1 and s = s0 + ps1, if φ(r0 + pr1) = φ(s0 + ps1)

then in particular r1 = s1. As µ is a ring homomorphism, using r1 + ηr0 = s1 + ηs0 we get

ηr0 = ηs0 and hence r0 = s0. We complete the proof using the fact that µ is one to one on

τ(GR(p2,m)).

Note in general that the Definition 2.2.6 is generalized in [28] for Galois rings of arbitrary

characteristics. From now on φ will denote the Gray map on GR(pl,m), which reduces to

Definition 2.2.6 when the characteristic is p2. For any r1, r2 ∈ GR(pl,m) we have φ(r1 + r2) =

φ(r1) + φ(r2).

To calculate the probability PS of our systematic authentication codes of type I we need the

distance between a codeword and any constant vector. For any k ≥ 1 and c, r ∈ Fq
k, let dH(c, r)

denote the number of different coordinates between c and r. Also it is clear from the definition

of φ that for any r = (t, t, . . . , t) ∈ (Fq)ql−1
we have a unique r ∈ pl−1R such that φ(r) = r.

Using Lemma 2.2.7 we obtain the following result.

Lemma 2.2.8. Let r = (t, t, . . . , t) ∈ (Fq)ql−1
s.t. φ(r) = r and u ∈ R. Then the following

holds:

dH(φ(u), r) =


0, if u− r = 0

ql−1, if u− r ∈ pl−1R\{0}
ql−1 − ql−2, if u− r ∈ R\pl−1R.

Corollary 2.2.9. For any u ∈ R and r ∈ pl−1R, we have w(u− r) = dH(φ(u), φ(r)).

The relative trace map TrS/R : S → R sends (a0 + pa1 + · · ·+ pl−1al−1) ∈ S to
∑l−1

i=0 p
i(aq

i +

aq2

i + · · ·+ aqn−1

i ) ∈ R.

We note that for any (a0 + pa1 + · · ·+ pl−1al−1) ∈ S,

Trnm(a0 + pa1 + · · ·+ pl−1al−1) = Trm(TrS/R(a0 + pa1 + · · ·+ pl−1al−1)). (2.2.1)
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The Frobenious automorphism σ : S → S sending (a0 + pa1 + · · · + pl−1al−1) to (a0
p +

pa1
p + · · · + pl−1al−1

p)) is a ring automorphism of S fixing Zpl . We will say that f(x) ∈ S[x]

is nondegenerate when it is not expressible of the form f(x) = σ(g(x))− g(x) + β (mod pl), for

any g(x) ∈ S[x], β ∈ S. Here σ(g(x)) = σ(
∑

i gix
i) =

∑
i σ(gi)xpi. Also the weighted degree

of the function f(x) ∈ S[x] is defined as D = max{d0p
l−1, d1p

l−2, . . . , dl−1} where f(x) =

f0(x) + pf1(x) + · · ·+ pl−1fl−1(x), f0, . . . , fl−1 ∈ τ(S)[x] and deg(fi) = di, i = 0, . . . , l − 1 [35].

Define FD to be the subset of nondegenerate polynomials of weighted degree D ≤
√
qn as

FD = {f(x) : f(x) = f0(x) + pf1(x) + · · ·+ pl−1fl−1(x) ∈ S[x], fi = 0 whenever p|i}.

We know that |FD| = qn(D−bD/plc). The following important results are very useful.

Proposition 2.2.10 ([35]). Let f(x) ∈ S[x] be non-degenerate, then we have∣∣∣∣∣∣
∑

α∈τ(S)

e
2πi

Trmn(f(α))

pl

∣∣∣∣∣∣ ≤ (D − 1)
√
qn

where D is the weighted degree of f .

Proposition 2.2.11 ([32]). Let f ∈ S(x)\{0} have expansion f = ax +
∑N

i=1
bi

x−pi
, where

a, bi ∈ S and P = {p1, . . . , pN} ⊂ τ(S), then we have∣∣∣∣∣∣
∑

α∈τ(S)\P

e
2πi

Trmn(f(α))

pl

∣∣∣∣∣∣ ≤ (pl−1(N + 1) +N − 1)
√
qn.

Define GN as the following set of rational functions in S(x)

{f ∈ S(x) : f = ax+
N∑

i=1

bi
x− pi

, where a, bi ∈ S and P = {p1, . . . , pN} ⊂ τ(S)}.

Also define τ(S)\P = {α1, . . . , αqn−N}.

Remark 2.2.12. Assume that qn −N > (pl−1(N + 1) +N − 1)
√
qn. Then |GN | = qln(N+1).

Proof. The proof is very similar to the proof in [5]. Define a linear map

Ψ : S(N+1) → Z(qn−N)

pl

(a, b1, . . . , bN ) 7→

(
Trmn(ax+

N∑
i=1

bi
x− pi

)x∈τ(S)\P

)
.

If Ψ(a, b1, . . . , bN ) = 0 and f = ax+
∑N

i=1
bi

x−pi
6= 0, then

qn −N =

∣∣∣∣∣∣
∑

α∈τ(S)\P

e
2πi

Trmn(f(α))

pl

∣∣∣∣∣∣ ≤ (pl−1(N + 1) +N − 1)
√
qn

which contradicts the assumption. Therefore Ψ is one to one, which completes the proof.
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2.3 Constructions of Type I

In this section, we give constructions A and B. Construction A is a generalization of [31,

Theorem 17] from p-ary to q-ary codes. Construction B is a correct generalization of construction

A to rational functions. Also we assume that l = 2 and hence R and S are of characteristic p2.

2.3.1 Construction A

For any f(x) ∈ S[x] and {β1, . . . , βq} = pR, a corresponding codeword cf ∈ R(qn+1) is

cf =
[
cf,β1 , cf,β2 , · · · , cf,βq

]
(2.3.1)

where cf,βi
=
[
βi + TrS/R(f(0)), βi + TrS/R(f(ξ)), · · · , βi + TrS/R(f(ξqn−1))

]
for i = 1, . . . , q

and < ξ >= τ(S)\{0}.

Applying the generalized Gray map to the above codeword cf , we obtain the following

codeword in Fq
(q·qn+1) = Fq

(qn+2)

uf =
[
uf,β1 , uf,β2 , · · · , uf,βq

]
(2.3.2)

where uf,βi
=
[
φ(βi) + φ(TrS/R(f(0))), · · · , φ(βi) + φ(TrS/R(f(ξqn−1)))

]
for i = 1, . . . , q.

Let pri be the projection map from Fq
(qn+2) to Fq sending uf to its i-th coordinate. Using

the codewords in (2.3.2) the systematic authentication code is defined by
S = FD
T = Fq

K = Zqn+2

E = {Ek : Ek(f) = prk(uf )}

(2.3.3)

where k ∈ K and f ∈ S.

The following lemma is useful to obtain an upper bound on the probability PS .

Lemma 2.3.1. Let f ∈ FD and r = (φ(r), . . . , φ(r)) ∈ Fq
(qn+1) such that r ∈ pR, then for any

β ∈ pR, we have

dH(uf,β, r) ≥ qn(q − 1)− (q − 1)(D − 1)
√
qn,

dH(uf,β, r) ≤ qn(q − 1) + (q − 1)(D − 1)
√
qn.
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Proof. Using Corollary 2.2.9, we get

dH(uf,β, r) =
∑

α∈τ(S)

w(β + TrS/R(f(α))− r)

=
∑

α∈τ(S)

{−1
q
s(TrS/R(f(α))− r) + (q − 1)}

= qn(q − 1)− 1
q

∑
α∈τ(S)

{s(TrS/R(f(α))− r)}

= qn(q − 1)− 1
q

∑
α∈τ(S)

∑
r′∈R\pR

e
2πi

Trm((TrS/R(f(α))−r)r′)

p2

= qn(q − 1)− 1
q

∑
α∈τ(S)

∑
r′∈R\pR

e
2πi

Trm(r′TrS/R(f(α)))−Trm(r′r)

p2

= qn(q − 1)− 1
q

∑
r′∈R\pR

∑
α∈τ(S)

e
2πi

Trm(r′TrS/R(f(α)))−Trm(r′r)

p2

= qn(q − 1)− 1
q

∑
r′∈R\pR

e
2πi

−Trm(r′r)

p2
∑

α∈τ(S)

e
2πi

Trmn(r′f(α))

p2 , by using (2.2.1).

Then using Proposition 2.2.10 we get

|qn(q − 1)− dH(uf,β, r)| ≤
1
q
(q2 − q)(D − 1)

√
qn.

The conclusion of the lemma then follows.

Proposition 2.3.2. The systematic authentication code in (2.3.3) has the following parameters:

|S| = qn(D−bD/p2c), |K| = qn+2, |T | = q, PI =
1
q
, and

PS ≤
1
q

+
(q − 1)
q

· (D − 1)√
qn

.

Proof. For any message f ∈ S = FD and key k ∈ Zqn+2 by (1.1.3) we have

PI = maxf,t

|{k ∈ K : t = prk(uf )}|
|{k ∈ K}|

=
1
q
,

since for each α ∈ τ(S), the k-th coordinate of φ(βi) + φ(TrS/R(f(α))) and the k-th coordinate

of φ(βj) + φ(TrS/R(f(α))) are different for βi 6= βj .

For any β ∈ pR and t = (t, t, . . . , t) ∈ Fq
(qn+1), using Lemma 2.3.1 we know that dH(uf,β, t) ≥

qn(q − 1)− (q − 1)(D − 1)
√
qn. Then using By (1.1.4) we get
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PS = maxf,tmaxf ′ 6=f,t′
|{k ∈ K : t = prk(uf ), t′ = prk(uf ′)}|

|{k ∈ K : t = prk(uf )}|

= maxf,tmaxf ′ 6=f,t′
|{k ∈ K : t = prk(uf ), t− t′ = prk(uf − uf ′)}|

qn+1

= maxf 6=0,t
|{α ∈ τ(S) : t = prk(uf,β)}|

qn+1

= maxf 6=0,t
qn+1 − dH(uf,β, t)

qn+1

≤ 1
q

+
(q − 1)
q

· (D − 1)√
qn

.

The remaining conclusions of this theorem are clear.

Remark 2.3.3. Proposition 2.3.2 is a generalization of [31, Theorem 17] from p-ary to q-ary

case. In the estimate of PS , (D−1)√
qn is multiplied by (q−1)

q . This does not appear in [31, Theorem

17], however this multiplication exists in the proof of [31, Lemma 15]. Moreover, our estimate

of PS , which uses Lemma 2.3.1, is better than that of [31, Theorem 17], since we do not have

the extra term min( 1
p2 ,

(D−1)√
pn ) that [31, Theorem 17] has.

2.3.2 Construction B

In this section, we use the same technique as in the previous construction, but instead of

nondegenerate polynomials we use rational functions in S(x).

For any f ∈ GN and {β1, . . . , βq} = pR, we have a corresponding codeword in Rq(qn−N)

cf =
[
cf,β1 , cf,β2 , · · · , cf,βq

]
where cf,βi

=
[
βi + TrS/R(f(α1)), βi + TrS/R(f(α2)), · · · , βi + TrS/R(f(αqn−N ))

]
for i = 1, . . . , q.

Applying the generalized Gray map to the above codeword cf , we obtain the following

codeword in Fq
(q2(qn−N))

uf =
[
uf,β1 , uf,β2 , · · · , uf,βq

]
(2.3.4)

where uf,βi
=
[
φ(βi) + φ(TrS/R(f(α1))), · · · , φ(βi) + φ(TrS/R(f(αqn−N )))

]
for i = 1, . . . , q.

Let pri be the projection map from Fq
(q2(qn−N)) to Fq sending uf to its i-th coordinate.

Using the codewords in (2.3.4) and assuming qn −N > (p(N + 1) +N − 1)
√
qn the systematic

authentication code is defined by
S = GN
T = Fq

K = Zq2(qn−N)

E = {Ek : Ek(f) = prk(uf )}

(2.3.5)
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where k ∈ K and f ∈ S.

The following lemma is useful to obtain an upper bound on the probability PS .

Lemma 2.3.4. Let f ∈ GN and r = (φ(r), . . . , φ(r)) ∈ Fq
(q(qn−N)) such that r ∈ pR, then for

any β ∈ pR, we have

dH(uf,β, r) ≥ (qn −N)(q − 1)− (q − 1)(p(N + 1) +N − 1)
√
qn,

dH(uf,β, r) ≤ (qn −N)(q − 1) + (q − 1)(p(N + 1) +N − 1)
√
qn.

Proof. Again using Corollary 2.2.9 and similar to the proof of Lemma 2.3.1 we get

dH(uf,β, r) =
∑

α∈τ(S)\P

w(β + TrS/R(f(α))− r)

= (qn −N)(q − 1)− 1
q

∑
r′∈R\pR

e
2πi

−Trm(r′r)

p2
∑

α∈τ(S)\P

e
2πi

Trmn(r′f(α))

p2 .

Then using Proposition 2.2.11 we get

|(qn −N)(q − 1)− dH(uf,β, r)| ≤
1
q
(q2 − q)(p(N + 1) +N − 1)

√
qn.

The conclusion of the lemma then follows.

Proposition 2.3.5. The systematic authentication code in (2.3.5) has the following parameters:

|S| = q2n(N+1), |K| = q2(qn −N), |T | = q, PI =
1
q
, and

PS ≤
1
q

+
(q − 1)
q

· (p(N + 1) +N − 1)
√
qn

qn −N
.

Proof. Similarly as in the proof of Proposition 2.3.2, it can be shown that PI = 1
q . Using Lemma

2.3.4 with t = (t, t, . . . , t) ∈ Fq
(q(qn−N)) and (1.1.4) one obtains

PS = maxf 6=0,t
q(qn −N)− dH(uf,β, t)

q(qn −N)

≤ 1
q

+
(q − 1)
q

· (p(N + 1) +N − 1)
√
qn

qn −N
.

The remaining conclusions of this theorem are clear.

2.4 Constructions of Type II

In this section, we give counterparts of the constructions A and B as constructions C and

D respectively. Again we assume that the characteristics of the Galois rings R and S are p2.
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2.4.1 Construction C

In this section we analyze the properties of the following code for the case q = p a prime.

For any f(x) ∈ S[x], a corresponding codeword cf ∈ Rpn
is

cf =
[
TrS/R(f(0)),TrS/R(f(ξ)), · · · ,TrS/R(f(ξpn−1))

]
where < ξ >= τ(S)\{0}.

Applying the generalized Gray map to the above codeword cf , we obtain the following

codeword in Fp
(p·pn) = Fp

(pn+1)

uf =
[
φ(TrS/R(f(0))), φ(TrS/R(f(ξ))), · · · , φ(TrS/R(f(ξpn−1)))

]
. (2.4.1)

Here we classify the functions in FD into |FD|/(p−1) equivalent classes, where two functions

are in the same class if and only if they are constant multiple of each other (i.e. f1 = λf2, for

some λ ∈ F ∗
p ). By taking only one function from each classes we define the set F ′

D. Let pri be

the projection map from Fp
(pn+1) to Fp sending uf to its i-th coordinate. Using the codewords

in (2.4.1) the systematic authentication code is defined by
S = F ′

D

T = Fp

K = Zpn+1

E = {Ek : Ek(f) = prk(uf )}

(2.4.2)

where k ∈ K and f ∈ S.

We need the following definition and lemmas to calculate an upper bound on the probability

PS of the code.

Definition 2.4.1 ([39]). For ω = e
2πi
p2 , θ = 1/ω and 0 ≤ l ≤ p − 1, let a1+lp be the complex

number given by

a1+lp =
1
p
{1 + θ1+lp + θ2(1+lp) + · · ·+ θ(p−1)(1+lp)}.

Lemma 2.4.2 ([39]). For x ∈ Zp2 we have

e
2πi
p

ρ1(x) =
p−1∑
l=0

a1+lp e
2πi
p2 (1+lp)x

,

where ρ1 : Zp2 → Fp is the map sending r0 + pr1 with 0 ≤ r0, r1 ≤ p− 1 to r1.

Lemma 2.4.3. Let f1 and f2 be two distinct elements of F ′
D and let t1, t2 ∈ Fp, i = 1, . . . , p.

Define N(f1, f2, t1, t2, i) = |{α ∈ τ(S) : pri(φ(TrS/R(f1(α)))) = t1, pri(φ(TrS/R(f2(α)))) = t2}|.
Then

N(f1, f2, t1, t2, i) ≤
1
p2

[pn + (p2 − 1)(D − 1)
√
pn]

∣∣∣∣∣
p−1∑
l=0

a1+lp

∣∣∣∣∣ .
18



Proof. Using the definition of the Gray map and the map ρ1, we have seen that

N(f1, f2, t1, t2, 1) = |{α ∈ τ(S) : ρ1(TrS/R(f1(α))) = t1, ρ1(TrS/R(f2(α))) = t2, }|

and for 1 < i ≤ p,

N(f1, f2, t1, t2, i) = |{α ∈ τ(S) : ρ1(TrS/R(f1(α))(1+pαi)) = t1, ρ1(TrS/R(f2(α))(1+pαi)) = t2}|.

Here we prove for the case i > 1 only and it is easy to prove the case i = 1 similarly.

We know that p2N(f1, f2, t1, t2, i)

=
∑

α∈τ(S)

∑
y1∈Fp

∑
y2∈Fp

e
2πi
p

[y1(ρ1(TrS/R(f1(α))(1+pαi))−t1)+y2(ρ1(TrS/R(f2(α))(1+pαi))−t2)]

=
∑

α∈τ(S)

∑
y1∈Fp

∑
y2∈Fp

e
2πi
p

[ρ1{(1+pαi)(y1TrS/R(f1(α))+y2TrS/R(f2(α)))−p(y1t1+y2t2)}]

=
∑

α∈τ(S)

∑
y1∈Fp

∑
y2∈Fp

p−1∑
l=0

a1+lp e
2πi
p2 [(1+lp){(1+pαi)(y1TrS/R(f1(α))+y2TrS/R(f2(α)))−p(y1t1+y2t2)}]

=
∑

y1∈Fp

∑
y2∈Fp

p−1∑
l=0

a1+lp

∑
α∈τ(S)

e
2πi
p2 [(1+lp){(1+pαi)(y1TrS/R(f1(α))+y2TrS/R(f2(α)))−p(y1t1+y2t2)}]

≤ [pn + (p2 − 1)(D − 1)
√
pn]

∣∣∣∣∣
p−1∑
l=0

a1+lp

∣∣∣∣∣ .
The conclusion of the lemma then follows.

Remark 2.4.4. Let p be a prime. Then we have
∣∣∣∑p−1

l=0 a1+lp

∣∣∣ = 1.

Proposition 2.4.5. The systematic authentication code in (2.4.2) has the following parameters

for a prime p,

|S| = pn(D−bD/p2c)

p− 1
, |K| = pn+1, |T | = p,

PI ≤
1
p

+
(p− 1)
p

· (D − 1)√
pn

, and PS ≤
1
p

+
(p2 + p− 2)(D − 1)

p(
√
pn − (p− 1)(D − 1))

.

Proof. For any message f ∈ S = F ′
D and key k ∈ Zpn+1 by using (1.1.3) and Lemma 2.3.1 we

get

PI = maxf,t

|{k ∈ K : t = prk(uf )}|
|{k ∈ K}|

≤ 1
p

+
(p− 1)
p

· (D − 1)√
pn

.
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By using (1.1.4), Lemma 2.3.1 and Lemma 2.4.3 we have

PS = maxf,tmaxf ′ 6=f,t′
|{k ∈ K : t = prk(uf ), t′ = prk(uf ′)}|

|{k ∈ K : t = prk(uf )}|

≤ 1
p

+
(p2 + p− 2)(D − 1)

p(
√
pn − (p− 1)(D − 1))

.

The remaining conclusions of this theorem are clear.

2.4.2 Construction D

In this section, we give the generalization of the authentication codes in [5] from p-ary to

q-ary codes and we calculate the correct parameters of the codes and also by restricting the

source space as in the previous construction we improve the parameters of the codes for q = p

a prime. Recall that τ(S)\P = {α1, . . . , αqn−N}.

For any f ∈ GN we have a corresponding codeword in R(qn−N)

cf =
[
TrS/R(f(α1)),TrS/R(f(α2)), · · · ,TrS/R(f(αqn−N ))

]
.

Applying the generalized Gray map to the above codeword cf , we obtain the following

codeword in Fq
(q(qn−N))

uf =
[
φ(TrS/R(f(α1))), · · · , φ(TrS/R(f(αqn−N )))

]
. (2.4.3)

Let pri be the projection map from Fq
(q(qn−N)) to Fq sending uf to its i-th coordinate.

Using the codewords in (2.4.3) and assuming qn −N > (p(N + 1) +N − 1)
√
qn the systematic

authentication code is defined by
S = GN
T = Fq

K = Zq(qn−N)

E = {Ek : Ek(f) = prk(uf )}

(2.4.4)

where k ∈ K and f ∈ S.

Proposition 2.4.6. The systematic authentication code in (2.4.4) has the following parameters:

|S| = q2n(N+1), |K| = q(qn −N), |T | = q,

PI ≤
1
q

+
(q − 1)
q

· (p(N + 1) +N − 1)
√
qn

qn −N
, and

PS ≤ 1 and the equality holds if q is power of an odd prime.
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Proof. For any message f ∈ S = GN and key k ∈ Zq(qn−N) by using (1.1.3) and Lemma 2.3.4

we get

PI = maxf,t

|{k ∈ K : t = prk(uf )}|
|{k ∈ K}|

≤ 1
q

+
(q − 1)
q

· (p(N + 1) +N − 1)
√
qn

qn −N
.

By (1.1.4) we have

PS = maxf,tmaxf ′ 6=f,t′
|{k ∈ K : t = prk(uf ), t′ = prk(uf ′)}|

|{k ∈ K : t = prk(uf )}|

If we choose f = x and f ′ = λx, λ ∈ Fp and λ 6= 1, then since the code is R-linear we have

uf = λuf ′ . Therefore PS = 1. The remaining conclusions are clear.

Here we remark that the probability PS of the authentication code in [5] is very bad. By

restricting the source space we get better probability PS .

Assume that q = p is a prime. Classify the functions in GN into |GN |/(p − 1) equivalent

classes, where two functions are in the same class if and only if they are constant multiple of each

other (i.e. f1 = λf2, for some λ ∈ F ∗
p ). By taking only one function from each classes we define

the set G′N . Then using the codewords in (2.4.4) and assuming pn−N > (p(N +1)+N −1)
√
pn

we can define the following systematic authentication code
S = G′N
T = Fp

K = Zp(pn−N)

E = {Ek : Ek(f) = prk(uf )}

(2.4.5)

where k ∈ K and f ∈ S.

We will calculate the probability PS using the following fact, which can be easily proved

similar to Lemma 2.4.3.

Lemma 2.4.7. Let f1 and f2 be two distinct elements of G′N and let t1, t2 ∈ Fp, i = 1, . . . , p.

Define N(f1, f2, t1, t2, i) = |{α ∈ τ(S)\P : pri(φ(TrS/R(f1(α)))) = t1, pri(φ(TrS/R(f2(α)))) =

t2}|. Then

N(f1, f2, t1, t2, i) ≤
1
p2

[(pn −N) + (p2 − 1)(p(N + 1) +N − 1)
√
pn].

Using Lemma 2.3.4 and Lemma 2.4.7 we have the following result,

Proposition 2.4.8. The systematic authentication code in (2.4.5) has the following parameters:

|S| = p2n(N+1)

p− 1
, |K| = p(pn −N), |T | = p,

PI ≤
1
p

+
(p− 1)
p

· (p(N + 1) +N − 1)
√
pn

pn −N
, and

PS ≤
1
p

+
(p2 + p− 2)(p(N + 1) +N − 1)

√
pn − pN

p(pn + (p− 1)N − (p− 1)(p(N + 1) +N − 1)
√
pn)

.
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2.5 Generalization to Arbitrary Characteristic

In this section, we extend the constructions given in Section 2.3 using Galois rings having

characteristic pl. We omit the proofs which are very similar to the proofs in Section 2.3.

For any f(x) ∈ FD and {β1, . . . , βq} = pl−1R, a corresponding codeword in Fq
(ql−1·qn+1) =

Fq
(qn+l)

uf =
[
uf,β1 , uf,β2 , · · · , uf,βq

]
(2.5.1)

where uf,βi
=
[
φ(βi) + φ(TrS/R(f(0))), · · · , φ(βi) + φ(TrS/R(f(ξqn−1)))

]
for i = 1, . . . , q.

Let pri be the projection map from Fq
(qn+l) to Fq sending uf to its i-th coordinate. Using

the codewords in (2.5.1) the systematic authentication code is defined by
S = FD

T = Fq

K = Zqn+l

E = {Ek : Ek(f) = prk(uf )}

(2.5.2)

where k ∈ K and f ∈ S.

Theorem 2.5.1. The systematic authentication code in (2.5.2) has the following parameters:

|S| = qn(D−bD/plc), |K| = qn+l, |T | = q, PI =
1
q
and

PS ≤
1
q

+
(q − 1)
q

· (D − 1)√
qn

.

For any f ∈ GN and {β1, . . . , βq} = pl−1R, we have a corresponding codeword in Fq
(ql(qn−N))

uf =
[
uf,β1 , uf,β2 , · · · , uf,βq

]
(2.5.3)

where uf,βi
=
[
φ(βi) + φ(TrS/R(f(α1))), · · · , φ(βi) + φ(TrS/R(f(αqn−N )))

]
for i = 1, . . . , q.

Let pri be the projection map from Fq
(ql(qn−N)) to Fq sending uf to its i-th coordinate.

Using the codewords in (2.5.3) and assuming qn−N > (pl−1(N +1)+N −1)
√
qn the systematic

authentication code is defined by
S = GN

T = Fq

K = Zql(qn−N)

E = {Ek : Ek(f) = prk(uf )}

(2.5.4)

where k ∈ K and f ∈ S.
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Theorem 2.5.2. The systematic authentication code in (2.5.4) has the following parameters:

|S| = qln(N+1), |K| = ql(qn −N), |T | = q, PI =
1
q
and

PS ≤
1
q

+
(q − 1)
q

· (pl−1(N + 1) +N − 1)
√
qn

qn −N
.

For each 1 ≤ t ≤ l − 1 and u ∈ R, let

st(u) :=
∑

x∈R\ptR

e
2πi

Trm(ux)

pl and wt(u) := −1
q
st(u) + (ql−1 − ql−t−1).

We note that

wt(u) =


0, if u = 0

ql−1, if u ∈ pl−tR\{0}
ql−1 − ql−t−1, if u /∈ pl−tR.

is a generalization of the weight w(·) in Definition 2.2.4 and is related to exponential sum in

analogous way [38].

Recall that the generalized Gray map gives an injection of R into (Fq)ql−1
preserving the

corresponding weights. Using the fact that PS ≥ 1/|T |, we prove the following nonexistence

result.

Proposition 2.5.3. For 1 ≤ t ≤ l − 1, there is an injection of R into (Fq)ql−1
preserving the

corresponding weights given wt and the Hamming weight respectively if and only if t = 1. In this

case the generalized Gray map is such an injection.

Proof. Assume t > 1, that is, l ≥ 3. Using the connection wt(u) to the exponential sum given

by st(u) and similar methods of Subsection 2.3.1 and Section 2.5 with D = 1 and |T | = q we

obtain that PS ≤ 1/qt, which contradicts with the fact PS ≥ 1/|T |.
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Chapter 3

Systematic Authentication Codes

Using Additive Polynomials

In this chapter two families of systematic authentication codes using additive polynomials

related to some curves over finite fields are constructed. Tight bounds for the number of rational

points of these curves are used in estimating the probabilities of the systematic authentication

codes. Their parameters are compared with some existing codes in the literature. It is observed

that the parameters are better than the existing ones in some cases.

3.1 Introduction

Let q be a power of a prime p and m be a positive integer. Throughout this chapter Fqm

denotes the finite field of cardinality qm. In our constructions, using the source space, we obtain

some additive polynomials over Fqm . Our tag space is always Fq. For the authentication map,

we first apply a suitable operation to the additive polynomials obtained from the source space.

Then we evaluate the resulting polynomials in Fqm and take traces to Fq, which is the tag space.

We have two types of authentication maps. In type I, we further use a part of the key for

an addition in Fq. This final operation guarantees that the probability PI is 1/q. In type II, we

use smaller key space but we may have slightly larger values for the probabilities PI and PS .

Our Construction (3.4.1) is of type I and the Construction (3.4.2) is of type II given in Section

3.4. The difference of type I and type II codes appears in estimating the probabilities PI and

PS .

For estimating the probabilities in some constructions of systematic authentication codes, it

is useful to have nontrivial bounds on certain exponential sums. In this chapter we use some

tight bounds on certain exponential sums for a large class of polynomials over finite fields, which

are related to additive polynomials. These bounds on exponential sums follow from the bounds
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on the number of rational points of a class of curves determined in [13] and [14]. Also we prove

the analogous results in Theorems 3.2.1 and 3.2.2. The results in Theorems 3.2.1 and 3.2.2 were

not considered in [13] or [14] and they are useful for the constructions in this chapter.

This chapter is organized as follows. We give some preliminaries in Section 3.2. In this

section, using results from [13] and their analogues, we obtain tight bounds for the number of

elements of Fqm satisfying certain equations. In Section 3.3 we use these bounds to obtain some

useful results for estimating the probabilities of our constructions and we give our constructions

in Section 3.4. We present some examples in Section 3.5. We compare our codes with some

existing ones in the literature in Section 3.6. We show by examples that the parameters of our

codes are better than the existing ones in some cases.

3.2 Preliminaries

In this section we give some preliminaries which will be used in this chapter. Let m > 1 be

an integer and let Tr denote the trace map from Fqm to Fq, i.e. Tr(a) = a + aq + · · · + aqm−1

and Trq/p (resp. Trqm/p) denote the trace map from Fq (resp. Fqm) to Fp. Let h ≥ 0 and

L(x) = u0x+ u1x
q + · · ·+ uhx

qh ∈ Fqm [x] be an Fq additive polynomial. If q is even, we further

assume that h ≥ 1 throughout the chapter. Let BL be the symmetric bilinear form on Fqm

defined as

BL : Fqm × Fqm → Fq

(x, y) → Tr(xL(y) + yL(x)).

We remind that the radical WL of BL is

WL = {a ∈ Fqm : BL(a, b) = 0 for each b ∈ Fqm}

= {x ∈ Fqm : 0 =
h−1∑
i=0

uqi

h−ix
qi

+ 2uqh

0 x
qh

+
h∑

i=1

uqh

i x
qh+i}.

Let dL be the Fq-dimension of WL. If L 6= 0, then it follows from the definition of WL that

dL ≤ 2h.

For any L(x) = u0x + u1x
q + · · · + uhx

qh
, M(x) = v0x + v1x

q + · · · + vh′x
qh′

in Fqm [x],

let VL = {x ∈ Fqm : Tr(xL(x)) = 0} and ψM be the Fq-linear map from Fqm to Fq sending x

to Tr(M(x)). Let N (Tr(xL(x) +M(x)) = 0) denote the number of solutions of the equation

Tr(xL(x) + M(x)) = 0 with x ∈ Fqm . If m ≥ 2 is an even integer, then we will use results of

[13, Theorem 3.1] and [13, Theorem 4.1] in our estimates of some constructions. If m ≥ 3 is

an odd integer, then using similar methods as in [13], we prove the following theorems. These

analogous results, corresponding to an odd integer m ≥ 3, were not considered in [13] or [14].
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The following theorems will also be used later in this chapter for estimating the probabilities of

further constructions when m ≥ 3 is odd.

Theorem 3.2.1. Assume that q is even and m is odd. Under the notation as above, we have

1.) If WL ⊆ VL then

N (Tr(xL(x) +M(x)) = 0) =


qm−1 or

qm−1 ∓ (q − 1)q(m+dL−2)/2 or

qm−1 ∓ q(m+dL−2)/2.

2.) If WL 6⊆ VL then

N (Tr(xL(x) +M(x)) = 0) =

{
qm−1 or

qm−1 ∓ q(m+dL−2)/2.

Proof. Let QL be the map sending x ∈ Fqm to Tr(xL(x)) ∈ Fq. Let {f1, . . . , fdL
} be a basis

of WL over Fq. Let WL be an Fq-linear subspace of Fqm such that dimFq WL = m − dL and

WL ⊕WL = Fqm . As q is even and m is odd, we have dL is odd (cf. [29, Corollary 2.11]).

Moreover there exists a basis {e1, . . . , em−dL
} of WL such that for x1, . . . , xm−dL

∈ Fq we have

that QL (x1e1 + · · ·+ xm−dL
em−dL

) is equal to either

H1 (x1, . . . , xm−dL
) = x1x2 + x3x4 + · · ·+ xm−dL−1xm−dL

, or (3.2.1)

H2 (x1, . . . , xm−dL
) = x1x2 + x3x4 + · · ·+ xm−dL−1xm−dL

(3.2.2)

+x2
m−dL−1 + αx2

m−dL
,

where α ∈ Fq and TrFq/F2
(α) = α+ α2 + · · ·+ αq/2 = 1 (cf. [13] and [37, Theorem 6.30]).

Let ψM be the Fq-linear map sending x ∈ Fqm to Tr(M(x)) ∈ Fq. Let ai = ψM (ei) for

1 ≤ i ≤ dL and bi = ψM (fi) for 1 ≤ i ≤ dL. Finally, let Ψ be the map sending x ∈ Fqm to

QL(x) + ψM (x) ∈ Fq.

We first prove item 1.) in the statement of the theorem. As WL ⊆ VL we have QL(f1) =

· · · = QL(fdL
) = 0 and for x1, . . . , xm−dL

, y1, . . . , ydL
∈ Fq we obtain

Ψ (x1e1 + · · ·+ xm−dL
em−dL

+ y1f1 + · · ·+ ydL
fdL

)

= H(x1, . . . , xm−dL
) + a1x1 + · · ·+ am−dL

xm−dL
+ b1y1 + · · ·+ bdL

ydL
,

where H is either H1 or H2 given in (3.2.1) and (3.2.2).

IfWL 6⊆ KerψM , then there exists 1 ≤ i0 ≤ dL such that bi0 6= 0. Hence using [13, Lemma 2.1]

we obtain that N (Tr(xL(x) +M(x)) = 0) = qm−1. If WL ⊆ KerψM , then using [37, Theorem

6.32] we obtain that N (Tr(xL(x) +M(x)) = 0) is either

qm−1 ∓ (q − 1)q(m+dL−2)/2 or qm−1 ∓ q(m+dL−2)/2.
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Now we prove item 2.) in the statement of the theorem. For 1 ≤ i ≤ dL, let ci = QL(fi) ∈ Fq.

For x1, . . . , xm−dL
, y1, . . . , ydL

∈ Fq we obtain

Ψ (x1e1 + · · ·+ xm−dL
em−dL

+ y1f1 + · · ·+ ydL
fdL

)

= H(x1, . . . , xm−dL
) + a1x1 + · · ·+ am−dL

xm−dL
+ b1y1 + · · ·+ bdL

ydL

+c1y2
1 + · · ·+ cdL

y2
dL
,

where H is either H1 or H2 given in (3.2.1) and (3.2.2). If KerψM ∩WL 6⊆ VL ∩WL, then we

can choose the basis {f1, . . . , fdL
} of WL such that bdL

= 0 and cdL
6= 0. Hence, again using [13,

Lemma 2.1], we obtain that N (Tr(xL(x) +M(x)) = 0) = qm−1.

Finally, we assume that WL 6⊆ VL and KerψM ∩ WL = VL ∩ WL. In this case we have

dimFq KerψM = m−1, dimFq (KerψM ∩WL) = dL−1 and we can choose the basis {f1, . . . , fdL
}

of WL such that b2 = · · · = bdL
= c2 = · · · = cdL

= 0. Hence for x1, . . . , xm−dL
, y1, · · · , ydL

∈ Fq

we obtain

Ψ (x1e1 + · · ·+ xm−dL
em−dL

+ y1f1 + · · ·+ ydL
fdL

)

= H(x1, . . . , xm−dL
) + a1x1 + · · ·+ am−dL

xm−dL
+ b1y1 + c1y

2
1,

where H is either H1 or H2 given in (3.2.1) and (3.2.2). Using similar methods as in the proof

of [13, Theorem 3.1] we complete the proof.

Theorem 3.2.2. Assume that q is odd and m is odd. Under the notation as above, we have

1.) If WL 6⊆ KerψM then N (Tr(xL(x) +M(x)) = 0) = qm−1.

2.) If WL ⊆ KerψM and dL is even then

N (Tr(xL(x) +M(x)) = 0) =

{
qm−1 or

qm−1 ∓ q(m+dL−1)/2.

3.) If WL ⊆ KerψM and dL is odd then

N (Tr(xL(x) +M(x)) = 0) =

{
qm−1 ∓ (q − 1)q(m+dL−2)/2 or

qm−1 ∓ q(m+dL−2)/2.

Proof. Let ψM be the Fq-linear map sending x ∈ Fqm to Tr(M(x)) ∈ Fq. Let Ψ be the map

sending x ∈ Fqm to Tr (xL(x) +M(x)) ∈ Fq. Let {f1, . . . , fdL
} be a basis of WL over Fq.

We note that, as q is odd, we always have WL ⊆ VL and moreover dL can be either even or

odd. As in the proof of [13, Theorem 4.1], we obtain {e1, . . . , em−dL
} ∈ Fqm \WL such that

{e1, . . . , em−dL
, f1, . . . , fdL

} is a basis of Fqm over Fq, and for x1, . . . , xm−dL
, y1, . . . , ydL

∈ Fq we

have

Ψ (x1e1 + · · ·+ xm−dL
em−dL

+ y1f1 + · · ·+ ydL
fdL

) (3.2.3)

= H(x1, . . . , xm−dL
) + a1x1 + · · ·+ am−dL

xm−dL
+ b1y1 + · · ·+ bdL

ydL
,
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where ai = ψM (ei) for 1 ≤ i ≤ m− dL, bi = ψM (fi) for 1 ≤ i ≤ dL and

H(x1, . . . , xm−dL
) =

1
2
(
x2

1 + x2
2 + · · ·+ x2

m−dL−1 + αx2
m−dL

)
, (3.2.4)

with α ∈ Fq \ {0}.

If WL 6⊆ KerψM , then there exists 1 ≤ i0 ≤ dL such that bi0 6= 0 in (3.2.3). Hence [13,

Lemma 2.1] implies that N (Tr(xL(x) +M(x)) = 0) = qm−1.

Let A = H
(
a1, a2, . . . , am−dL−1,

am−dL
α

)
, where H(x1, . . . , xm−dL

) and the parameters are

as given in (3.2.3) and (3.2.4). If WL ⊆ KerψM , then b1 = · · · = bdL
= 0 in (3.2.3) and for

x1, . . . , xm−dL
, y1, . . . , ydL

∈ Fq we obtain

Ψ (x1e1 + · · ·+ xm−dL
em−dL

+ y1f1 + · · ·+ ydL
fdL

)

= H
(
x1 + a1, x2 + a2, . . . , xm−dL−1 + am−dL−1 + xm−dL

+
am−dL

α

)
−A.

Hence we complete the proof using [37, Theorem 6.26] and [37, Theorem 6.27].

Remark 3.2.3. As in [13, Theorem 3.1] and [13, Theorem 4.1], when m ≥ 3 is an odd integer we

obtain the cases corresponding to the each number of solutions in where the number of solutions

in the statements of Theorems 3.2.1 and 3.2.2 hold. For example, assume that q is even and

m ≥ 3 is odd. Let QL be the map defined in the proof of Theorem 3.2.1. Let WL be an Fq-linear

subspace of Fqm as given in the proof of Theorem 3.2.1. Let {e1, . . . , em−dL
} be a basis of WL

such that for x1, . . . , xm−dL
∈ Fq we have that QL (x1e1 + · · ·+ xm−dL

em−dL
) is equal to either

H1 (x1, . . . , xm−dL
) or H2 (x1, . . . , xm−dL

) defined in (3.2.1) and (3.2.2). Let a1, . . . , am−dL
∈ Fq

be defined as in the proof of Theorem 3.2.1 and put

C1 = H1(a2, a1, a4, a3, . . . , am−dL
, am−dL−1).

We recall that, as q is even and m is odd, we have dL is odd and m − dL is even. In Theo-

rem 3.2.1, we have that N (Tr(xL(x) +M(x))) = qm−1 + (q − 1)q(m+dL−2)/2 if and only if for

x1, . . . , xm−dL
∈ Fq we have that QL (x1e1 + · · ·+ xm−dL

em−dL
) is equal to H1 (x1, . . . , xm−dL

),

and C1 = 0.

The following lemma will be useful in this chapter and it is directly obtained from [13,

Theorem 3.1], [13, Theorem 4.1], Theorem 3.2.1 and Theorem 3.2.2.

Lemma 3.2.4. For any u = (u0, u1, . . . , uh) ∈ Fh+1
qm , v ∈ Fqm with (u, v) 6= (0, 0), L(x) =

u0x+ u1x
q + · · ·+ uhx

qh
, M(x) = vx and for any nonzero y ∈ Fq, define

σ(y) =
∑

x∈Fqm

e
2πi
p

Trqm/p(xyL(x)+yM(x))
.

Then we have

|σ(y)| ≤

 q
m+dL

2 if q is even, or q is odd and dL ≡ m mod 2
1

q−1 · q
m+dL+1

2 if q is odd and dL ≡ m+ 1 mod 2.
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Proof. For any fixed x ∈ Fqm and t ∈ Fq we have

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xL(x)+M(x))−t)] =

{
q if Tr(xL(x) +M(x))− t = 0

0 if Tr(xL(x) +M(x))− t 6= 0.

Hence,

N(Tr(xL(x) +M(x)) = 0) =
1
q

∑
x∈Fqm

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xL(x)+M(x)))]

=
1
q

qm +
∑
y∈F∗q

∑
x∈Fqm

e
2πi
p

Trqm/p(xyL(x)+yM(x))

 .

Therefore we obtain that

|σ(y)| = 1
q − 1

· |qN(Tr(xL(x) +M(x)) = 0)− qm|.

Then the result follows from [13, Theorem 3.1], [13, Theorem 4.1], Theorem 3.2.1 and Theorem

3.2.2.

Remark 3.2.5. For some special choices of L(x) = u0x + u1x
q + · · · + uhx

qh ∈ Fqm [x], it is

possible to improve the bounds given in Lemma 3.2.4. Indeed, if the additive polynomials L are

chosen carefully, then using [13, Theorem 3.1], [13, Theorem 4.1], Theorem 3.2.1 and Theorem

3.2.2 (see also Remark 3.2.3), the corresponding inequalities in Lemma 3.2.4 become

|σ(y)| ≤

 1
q−1 · q

m+dL
2 if q is even, or q is odd and dL ≡ m mod 2

1
q−1 · q

m+dL+1

2 if q is odd and dL ≡ m+ 1 mod 2.

This improvement will be useful in some examples in Section 3.5.

3.3 Auxiliary Results

In this section we obtain some auxiliary results for estimating upper bounds for the proba-

bilities PI and PS in our constructions presented later in this chapter.

Lemma 3.3.1. For any u = (u0, u1, . . . , uh) ∈ Fh+1
qm , v ∈ Fqm with (u, v) 6= (0, 0), L(x) =

u0x+ u1x
q + · · ·+ uhx

qh
, M(x) = vx and for t ∈ Fq put

N(u, v; t) = |{x ∈ Fqm : Tr(xL(x) +M(x)) = t}|.

Then

N(u, v; t) ≤

 qm−1 + q−1
q · q

m+dL
2 if q is even, or q is odd and dL ≡ m mod 2

qm−1 + q
m+dL−1

2 if q is odd and dL ≡ m+ 1 mod 2
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and

N(u, v; t) ≥

 qm−1 − q−1
q · q

m+dL
2 if q is even, or q is odd and dL ≡ m mod 2

qm−1 − q
m+dL−1

2 if q is odd and dL ≡ m+ 1 mod 2.

Proof. If u = 0 and v 6= 0, we have

N(0, v; t) = |{x ∈ Fqm : Tr(M(x))− t = 0}|

= |{x ∈ Fqm : Tr(vx)− t = 0}|

= qm−1,

since Tr(vx) is linear and surjective. Thus, the inequalities hold.

Assume that u 6= 0.

N(u, v; t) = |{x ∈ Fqm : Tr(xL(x) +M(x))− t = 0}|

=
1
q

∑
x∈Fqm

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xL(x)+M(x))−t)]

=
1
q

qm +
∑
y∈F∗q

e
2πi
p

Trq/p(−yt)
∑

x∈Fqm

e
2πi
p

Trqm/p(xyL(x)+yM(x))

 .

Then using Lemma 3.2.4 we have |qN(u, v; t)− qm| ≤ (q− 1)|σ(y)|. Then the result follows.

Lemma 3.3.2. Let u1 = (u1,0, u1,1, . . . , u1,h), u2 = (u2,0, u2,1, . . . , u2,h) ∈ Fh+1
qm , v1, v2 ∈ Fqm

such that (u1, v1) 6= c(u2, v2), for all c ∈ F∗q, with Li(x) = ui,0x + ui,1x
q + · · · + ui,hx

qh
and

Mi(x) = vix, (i = 1, 2), and t1, t2 ∈ Fq. Define d = max{dimFq WL : L = y1L1 + y2L2, (0, 0) 6=
(y1, y2) ∈ Fq

2} and

N(u1,u2, v1, v2; t1, t2) = |{x ∈ Fqm : Tr(xLi(x) +Mi(x)) = ti, i = 1, 2}|.

Then

N(u1,u2, v1, v2; t1, t2) ≤


qm−2 + q2−1

q2 · q
m+d

2 if q is even, or

q is odd and d ≡ m mod 2

qm−2 + q+1
q · q

m+d−1
2 if q is odd and d ≡ m+ 1 mod 2

and

N(u1,u2, v1, v2; t1, t2) ≥


qm−2 − q2−1

q2 · q
m+d

2 if q is even, or

q is odd and d ≡ m mod 2

qm−2 − q+1
q · q

m+d−1
2 if q is odd and d ≡ m+ 1 mod 2.
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Proof.

N(u1,u2, v1, v2; t1, t2)

= |{x ∈ Fqm : Tr(xLi(x) +Mi(x))− ti = 0, i = 1, 2}|

=
1
q2

∑
x∈Fqm

∑
y1,y2∈Fq

e
2πi
p

Trq/p[
∑2

i=1 yi(Tr(xLi(x)+Mi(x))−ti)]

=
1
q2

qm +
∑

(0,0) 6=(y1,y2)∈F2
q

e
2πi
p

Trq/p(−y1t1−y2t2)
∑

x∈Fqm

e
2πi
p

Trqm/p(
∑2

i=1 yi(xLi(x)+Mi(x)))

 .

Since (u1, v1) 6= c(u2, v2), for all c ∈ F∗q , (u1, v1) and (u2, v2) are linearly independent over Fq.

If (y1, y2) 6= (0, 0), then y1u1 + y2u2 and y1v1 + y2v2 cannot be both zero at the same time, that

is, y1L1 + y2L2 and y1M1 + y2M2 cannot both be the zero polynomial at the same time. Then

using Lemma 3.2.4, we have |q2N(u1,u2, v1, v2; t1, t2)− qm| ≤ (q2 − 1)|σ(y)|. The conclusion of

the lemma then follows.

As a special case, if we have Li(x) = uix
qh

for some h ≥ 0, i = 1, 2, then the bounds in

Lemma 3.3.2 can be improved.

Corollary 3.3.3. Let u1, u2, v1, v2 ∈ Fqm such that (u1, v1) 6= c(u2, v2), for all c ∈ F∗q, with

Li(x) = uix
qh

for some h ≥ 0 and Mi(x) = vix, (i = 1, 2), and t1, t2 ∈ Fq. Define d =

max{dimFq WL : L = y1L1 + y2L2, (0, 0) 6= (y1, y2) ∈ Fq
2} and

N(u1, u2, v1, v2; t1, t2) = |{x ∈ Fqm : Tr(xLi(x) +Mi(x)) = ti, i = 1, 2}|.

Then

N(u1, u2, v1, v2; t1, t2) ≤


qm−2 + q−1

q · q
m+d

2 if q is even, or

q is odd and d ≡ m mod 2

qm−2 + q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2

and

N(u1, u2, v1, v2; t1, t2) ≥


qm−2 − q−1

q · q
m+d

2 if q is even, or

q is odd and d ≡ m mod 2

qm−2 − q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2.

Proof. Similar to the proof of Lemma 3.3.2, we have

N(u1, u2, v1, v2; t1, t2)

=
1
q2

qm +
∑

(0,0) 6=(y1,y2)∈F2
q

e
2πi
p

Trq/p(−y1t1−y2t2)
∑

x∈Fqm

e
2πi
p

Trqm/p(
∑2

i=1 yi(xLi(x)+Mi(x)))


=

1
q2

qm +
∑

y1u1+y2u2 6=0

e
2πi
p

Trq/p(−y1t1−y2t2)
∑

x∈Fqm

e
2πi
p

Trqm/p(
∑2

i=1 yi(xLi(x)+Mi(x)))

 .

The conclusion then follows.
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3.4 Constructions

In this section, we present our general constructions of type I and type II codes using ad-

ditive polynomials. Our source spaces S are specific subsets of Fh+1
qm × Fqm . For any (u, v) =

(u0, u1, . . . , uh, v) ∈ Fh+1
qm ×Fqm we have corresponding additive polynomials L(x) = u0x+u1x

q+

· · · + uhx
qh

and M(x) = vx. In our constructions the probabilities PI and PS depend on the

dimension of the radical WL. By the definition of WL, as L 6= 0, we know that dimFq WL ≤ 2h.

But in many cases it is possible to have dimFq WL < 2h. If dimFq WL < 2h, then our bounds

in Lemma 3.3.1 and Lemma 3.3.2 are better than the bounds of [31, Lemma 6 and Lemma 9]

in some cases. Remark 3.2.5 and Corollary 3.3.3 give further improvements for some choices of

L(x).

3.4.1 Construction of Type I

In this construction we choose our source spaces S ⊆ Fh+1
qm × Fqm such that for any two

different elements (u1, v1) = (u1,0, u1,1, . . . , u1,h, v1), (u2, v2) = (u2,0, u2,1, . . . , u2,h, v2) in the

source space S with corresponding additive polynomials Li(x) = ui,0x + ui,1x
q + · · · + ui,hx

qh

and Mi(x) = vix, (i = 1, 2), we have dimFq WL1−L2 is small enough when L1 6= L2. The

systematic authentication code is defined by
S ⊆ Fh+1

qm × Fqm

T = Fq

K = Fqm × Fq

E = {Ek : Ek(u, v) = Tr(k1L(k1) +M(k1)) + k2}

(3.4.1)

where k = (k1, k2) ∈ K, (u, v) ∈ S such that u = (u0, u1, . . . , uh) ∈ Fh+1
qm , v ∈ Fqm with

L(x) = u0x+ u1x
q + · · ·+ uhx

qh
and M(x) = vx.

Theorem 3.4.1. Let d be the maximum of dimFq WL̄ over the set of additive polynomials L̄ =

L1 − L2, where L1 6= L2, and L1 and L2 are defined by the coefficients of (h + 1)-tuples u1 =

(u1,0, u1,1, . . . , u1,h) and u2 = (u2,0, u2,1, . . . , u2,h) running through the first (h + 1)-tuples of S.

Then the systematic authentication code defined in (3.4.1) has the following parameters:

|S| ≤ qm(h+2), |T | = q, |K| = qm+1, PI =
1
q
,

PS ≤


1
q + q−1

q · q
d
2

q
m
2

if q is even, or q is odd and d ≡ m mod 2

1
q + q

d−1
2

q
m
2

if q is odd and d ≡ m+ 1 mod 2.

Proof. Assume we have any message (u, v) ∈ S with the corresponding polynomials L(x) and
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M(x) respectively and k = (k1, k2) ∈ K. By (1.1.3) we have

PI = max(u,v)∈S,t∈T
|{k ∈ K : t = Tr(k1L(k1) +M(k1)) + k2}|

|{k ∈ K}|
=

1
q
.

We now estimate an upper bound for PS . Let (ū, v̄) 6= (u, v) ∈ S with the corresponding

polynomials L̄(x) and M̄(x) respectively, then by (1.1.4) we have

PS = max(u,v)∈S,t∈Tmax(ū,v̄)∈S,(ū,v̄) 6=(u,v),t̄∈T

|{k ∈ K : t = Tr(k1L(k1) +M(k1)) + k2, t̄ = Tr(k1L̄(k1) + M̄(k1)) + k2}|
|{k ∈ K : t = Tr(k1L(k1) +M(k1)) + k2}|

= max(u,v)∈S,t∈Tmax(ū,v̄)∈S,(ū,v̄) 6=(u,v),t̄∈T

|{k1 ∈ Fqm : t− t̄ = Tr(k1(L(k1)− L̄(k1)) + (M(k1)− M̄(k1))}|
qm

≤ 1
qm

·

 qm−1 + q−1
q · q

m+dL
2 if q is even, or q is odd and dL ≡ m mod 2

qm−1 + q
m+dL−1

2 if q is odd and dL ≡ m+ 1 mod 2,

by Lemma 3.3.1.

The remaining conclusions of this theorem are clear.

3.4.2 Construction of Type II

Here we classify the elements in Fh+1
qm × Fqm \ {(0, 0)} into (qm(h+2) − 1)/(q − 1) equivalent

classes, where two elements are in the same class if and only if they are constant multiple of

each other (i.e. u1 = c · u2, for some c ∈ F∗q). By taking only one element from each classes we

define the set S ′. Similar to the previous construction we can construct type II code as follows:
S ⊆ S ′ ⊆ (Fh+1

qm × Fqm) \ {(0, 0)}
T = Fq

K = Fqm

E = {Ek : Ek(u, v) = Tr(kL(k) +M(k))}

(3.4.2)

where k ∈ K, (u, v) ∈ S such that u = (u0, u1, . . . , uh) ∈ Fh+1
qm , v ∈ Fqm with L(x) = u0x +

u1x
q + · · ·+ uhx

qh
and M(x) = vx.

Theorem 3.4.2. Let d be the maximum of dimFq WL̄ over the set of additive polynomials L̄ =

y1L1+y2L2, (0, 0) 6= (y1, y2) ∈ Fq
2 where L1 and L2 are defined by the coefficients of (h+1)-tuples

u1 = (u1,0, u1,1, . . . , u1,h) and u2 = (u2,0, u2,1, . . . , u2,h) running through the first (h + 1)-tuples

of S. Then the systematic authentication code defined in (3.4.2) has the following parameters:

|S| ≤ qm(h+2) − 1
q − 1

, |T | = q, |K| = qm,
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PI ≤


1
q + q−1

q · q
d
2

q
m
2

if q is even, or q is odd and d ≡ m mod 2

1
q + q

d−1
2

q
m
2

if q is odd and d ≡ m+ 1 mod 2.

PS ≤


1
q + (q2+q−2)q

d
2

q

(
q

m
2 −(q−1)q

d
2

) if q is even, or q is odd and d ≡ m mod 2

1
q + (q+2)q

d−1
2

q
m
2 −q

d+1
2

if q is odd and d ≡ m+ 1 mod 2.

Proof. We first estimate an upper bound for PI . Assume we have any message (u, v) ∈ S with

corresponding polynomials L and M respectively and k ∈ K. By (1.1.3) we have

PI = max(u,v)∈S,t∈T
|{k ∈ K : t = Tr(kL(k) +M(k))}|

|{k ∈ K}|

≤ 1
qm

·

{
qm−1 + q−1

q · q
m+d

2 if q is even, or q is odd and d ≡ m mod 2

qm−1 + q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2,

by Lemma 3.3.1.

We now prove the upper bound on PS . Let (ū, v̄) 6= (u, v) ∈ S with the corresponding

polynomials L̄(x) and M̄(x) respectively, then by (1.1.4) we have

PS = max(u,v)∈S,t∈Tmax(ū,v̄)∈S,(ū,v̄) 6=(u,v),t̄∈T

|{k ∈ K : t = Tr(kL(k) +M(k)), t̄ = Tr(kL̄(k) + M̄(k))}|
|{k ∈ K : t = Tr(kL(k) +M(k))}|

=
max(u,v),(ū,v̄)∈S,(ū,v̄) 6=(u,v),t,t̄∈TN(u, ū, v, v̄; t, t̄)

min(u,v)∈S,t∈TN(u, v; t)

≤


1
q + (q2+q−2)q

d
2

q

(
q

m
2 −(q−1)q

d
2

) if q is even, or q is odd and d ≡ m mod 2

1
q + (q+2)q

d−1
2

q
m
2 −q

d+1
2

if q is odd and d ≡ m+ 1 mod 2

by using Lemma 3.3.1 and Lemma 3.3.2.

The remaining conclusions of the theorem are clear.

3.5 Examples

In this section we present examples of systematic authentication codes having good param-

eters. In order to compare our examples with a larger class of existing codes, we have restricted

ourselves to the source spaces such that the parameter d of Theorem 3.4.1 and Theorem 3.4.2 are

bounded as d ≤ 1 or d ≤ 2. We note that further codes with good parameters can be obtained

by increasing the upper bound on d slightly.
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Example 3.5.1. Let q be a power of an odd prime and h ≥ 0. Let S be the subset of

Fh+1
qm ×Fqm such that the corresponding 2-tuples (L(x),M(x)) of additive polynomials form the

set {(axqh
, bx) : a, b ∈ Fqm}. Assume that m/gcd(h,m/2) is odd for h > 0, then for any nonzero

L(x) = axqh
below we prove that dimFq WL = 0. Then by Theorem 3.4.1 the parameters of the

type I code in (3.4.1) become

|S| = q2m, |T | = q, |K| = qm+1, PI =
1
q
, PS ≤


1
q + q−1

q · 1
qm/2 if m is even

1
q + 1

q(m+1)/2 if m is odd.

Similarly, using Corollary 3.3.3 and Theorem 3.4.2 the parameters of the type II code in (3.4.2)

become

|S| = q2m − 1
q − 1

, |T | = q, |K| = qm,

PI ≤


1
q + q−1

q · 1
qm/2 if m is even

1
q + 1

q(m+1)/2 if m is odd,
PS ≤


1
q + q2−1

q(qm/2−q+1)
if m is even

1
q + q+1

q(m+1)/2−q
if m is odd.

Now we prove that for any nonzero L(x) = axqh
dimFq WL = 0. By definition we have WL =

{z ∈ Fqm : az + aqh
zq2h

= 0}. Let w be a generator of the multiplicative group Fqm \ {0} and

a = ws for some integer s. Assume that wl ∈WS for an integer l ≥ 0. Then

wswl + wsqh
wlq2h

= 0 ⇒ 1 + ws(qh−1)+l(q2h−1) = 0

⇒ ws(qh−1)+l(q2h−1) = w
qm−1

2 , as q is odd.

Hence we obtain that

l(q2h − 1) + s(qh − 1) ≡ qm − 1
2

mod (qm − 1). (3.5.1)

Let k = gcd(m, 2h). Note that gcd(qm − 1, q2h − 1) = qk − 1. There exists a solution l of (3.5.1)

if and only if

s(qh − 1) ≡ qm − 1
2

mod qk − 1. (3.5.2)

As m/gcd(h,m/2) is odd, we have that qk − 1 divides qh − 1. So (3.5.2) holds if and only if

qk − 1 divides qm−1
2 which is not the case because

qm − 1
2

= (qk − 1)
1 + qk + q2k + · · ·+ q(

m
k
−1)k

2

where m/k is odd and so 1 + qk + q2k + · · ·+ q(
m
k
−1)k is odd. Therefore dimFq WL = 0.

In the following examples using Trachtenberg Lemma 4 [66] we obtain upper bounds on

dimFq WL.
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Example 3.5.2. Assume that q is even, m is odd, h ≥ 1 and gcd(m,h) = 1. Let S be the subset

of Fh+1
qm × Fqm such that the corresponding 2-tuples (L(x),M(x)) of additive polynomials form

the set {(axqh
, bx) : a, b ∈ Fqm}. In this example for any nonzero additive polynomial L below

we prove that dimFq WL ≤ 1 and if dimFq WL = 1 then WL 6⊆ VL. Therefore using Theorem

3.2.1, Remark 3.2.5 and Theorem 3.4.1 the parameters of the type I code in (3.4.1) become

|S| = q2m, |T | = q, |K| = qm+1, PI =
1
q
, PS ≤

1
q

+
1

q(m+1)/2
.

Similarly, using Theorem 3.2.1, Remark 3.2.5, Corollary 3.3.3 and Theorem 3.4.2 the parameters

of the type II code in (3.4.2) become

|S| = q2m − 1
q − 1

, |T | = q, |K| = qm,

PI ≤
1
q

+
1

q(m+1)/2
, PS ≤

1
q

+
q + 2

q(m+1)/2 − q
.

Now we prove our assertions that dimFq WL ≤ 1 and WL 6⊆ VL. By definition we have WL =

{z ∈ Fqm : az + aqh
zq2h

= 0}. For a 6= 0 the equation az + aqh
zq2h

= 0 has at most q2h solution

in the algebraic closure of Fq and therefore, WL has dimension at most 1 over Fq2h . Since

gcd(m, 2h) = 1, using [66, Lemma 4] we have WL has dimension at most 1 over Fqm . Recall that

VL = {x ∈ Fqm : Tr(xL(x)) = Tr(axqh+1) = 0}. But if z ∈ WL \ {0} we have az + aqh
zq2h

= 0,

that is, (azqh+1)qh−1 = 1. Since azqh+1 ∈ Fqm \ {0} and gcd(qh − 1, qm − 1) = q − 1, we have

azqh+1 ∈ Fq. Therefore, Tr(azqh+1) = mazqh+1 6= 0 as m is odd and q is even.

In the following example we obtain larger source spaces than the previous examples.

Example 3.5.3. Let q be a power of a prime, m ≥ 1. Let {i1, i2, . . . , it} be the set of integers

between 1 and bm/2c that are relatively prime to m such that ij1 < ij2 if j1 < j2. Define

L(x) = ui1x
qi1 + ui2x

qi2 + · · · + uitx
qit and M(x) = vx where (ui1 , ui2 , . . . , uit) ∈ Ft

qm and

v ∈ Fqm . In this example for any L 6= 0, using [66, Lemma 4] we get

dimFq WL ≤

{
2 if m is even

1 if m is odd.

Below we prove this assertion similar to the proof in Example 3.5.2. Then using Theorem 3.4.1

the parameters of the type I code in (3.4.1) become

|S| = qm(t+1), |T | = q, |K| = qm+1, PI =
1
q
, PS ≤


1
q + q−1

qm/2 if m is even
1
q + q−1

q(m+1)/2 if m is odd.

Similarly, using Theorem 3.4.2 the parameters of the type II code in (3.4.2) become

|S| = qm(t+1) − 1
q − 1

, |T | = q, |K| = qm,
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PI ≤


1
q + q−1

qm/2 if m is even
1
q + q−1

q(m+1)/2 if m is odd,
PS ≤


1
q + q2+q−2

qm/2−q2+q
if m is even

1
q + q2+q−2

q(m+1)/2−q2+q
if m is odd.

Now we prove our assertion that dimFq WL ≤

{
2 if m is even

1 if m is odd.
By definition we know that

the elements of WL are the roots of some specific linearized polynomial, say gL(z). We have

deg(gL(z)) = q2it over Fqm . Then for any L 6= 0 the polynomial gL(z) has at most q2it roots in

the algebraic closure of Fq and therefore, WL has dimension at most 1 over Fq2it and at most 2

over Fqit . We know that gcd(m, it) = 1 and so gcd(m, 2it) = 1 if m is odd. Therefore, using [66,

Lemma 4] we obtain the desired result.

3.6 Comparisons With Some Known Authentication Codes

In this section we will compare our results with some known codes [18, 31, 7] and the codes

given in Proposition 2.3.2. It is known that the systematic authentication codes have at least

five parameters |S|, |T |, |K|, PI , and PS . To compare two systematic authentication codes we

need to fix at least three of the five parameters to be the same respectively.

3.6.1 Comparisons With the Authentication Codes of [18]

In [18] authentication codes with parameters

|S| = q2n, |T | = q, |K| = qn+1, PI =
1
q
, PS ≤

1
q

+
(q − 1)
q

· 1
qn/2

are constructed using highly nonlinear functions where q is a power of an odd prime [18, Theorem

2].

If we set n = m is odd, our type I codes in Example 3.5.1 have exactly the same parameters

with this subclass of codes in [18, Theorem 2] except PS , which is smaller than that of the codes

in [18, Theorem 2].

Also in [18] authentication codes with parameters

|S| = qn + 1, |T | = q, |K| = qn, PI =
1
q

+
(q − 1)
q

· 1
qn/2

, PS ≤
1
q

+
(q2 − 1)

q(qn/2 − q + 1)

are constructed using highly nonlinear functions where q is a power of an odd prime [18, Theorem

4].

If we set n = m is even, our type II codes in Example 3.5.1 have exactly the same parameters

with this subclass of codes in [18, Theorem 4] except |S|. It is clear that our type II codes in

Example 3.5.1 have larger source space. Furthermore, if we set n = m is odd, PI and PS of
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our type II codes in Example 3.5.1 are smaller and |S| of our type II codes in Example 3.5.1 is

larger than that of the codes in [18, Theorem 2]. For this case the other parameters |T | and |K|
are the same respectively.

3.6.2 Comparisons With the Authentication Codes of [31]

In [31] authentication codes with parameters

|S| = qn(D−bD/pc), |T | = q, |K| = qn+1, PI =
1
q
, PS ≤

1
q

+
D − 1
qn/2

are constructed using exponential sums over finite fields, where D is an integer 1 ≤ D ≤ qn/2

and p is the characteristic of the finite field Fq [31, Corollary 8].

In the case q is odd (that is p > 2) these codes are comparable with our type I codes in

Example 3.5.1 for D = 2. If we set n = m, the parameters of the subclass of codes in [31,

Corollary 8] become

|S| = q2m, |T | = q, |K| = qm+1, PI =
1
q
, PS ≤

1
q

+
1

qm/2
.

It can be easily seen that our type I codes in Example 3.5.1 have exactly the same parameters

with this subclass of codes in [31, Corollary 8], except the probability PS , which is smaller than

that of the codes in [31, Corollary 8].

In the case q is even (that is p = 2) and m is odd these codes are comparable with our type

I codes in Example 3.5.2 for D = 3. If we set n = m, the parameters of the subclass of codes in

[31, Corollary 8] become

|S| = q2m, |T | = q, |K| = qm+1, PI =
1
q
, PS ≤

1
q

+
2

qm/2
.

For this case our type I codes in Example 3.5.2 have exactly the same parameters with this

subclass of codes in [31, Corollary 8], except the probability PS , which is smaller than that of

the codes in [31, Corollary 8].

3.6.3 Comparisons With the Authentication Codes in Section 2.3

In Proposition 2.3.2 systematic authentication codes with parameters

|S| = qn(D−bD/p2c), |T | = q, |K| = qn+2, PI =
1
q
, PS ≤

1
q

+
(q − 1)
q

· D − 1
qn/2

are constructed using exponential sums over Galois rings and generalized Gray map, where D is

an integer 1 ≤ D ≤ qn/2 and p2 is the characteristic of the Galois ring GR(p2,m).
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In order to compare the codes in Proposition 2.3.2 with our codes in Example 3.5.1 and

in Example 3.5.2 we set D = 2 and n = m. Then the parameters of the subclass of codes in

Proposition 2.3.2 become

|S| = q2m, |T | = q, |K| = qm+2, PI =
1
q
, PS ≤

1
q

+
(q − 1)
q

· 1
qm/2

.

If q is odd and m is even, it can be easily seen that our type I codes in Example 3.5.1 has exactly

the same parameters with this subclass of codes in Proposition 2.3.2, except the size of the key

space |K|, which is smaller than that of the codes in Proposition 2.3.2. Furthermore, if m is

odd for any q, the size of the key space |K| and PS of our type I codes in Example 3.5.1 and

Example 3.5.2 are smaller than those of the codes in Proposition 2.3.2 respectively. For this

case the other parameters are the same respectively.

3.6.4 Comparisons With the Authentication Codes of [7]

In [7] authentication codes with parameters

|S| = 22n, |T | = 2r, |K| = 2n+r, PI =
1
2r
, PS ≤

1
2r

+
(1− 2−r)
2(n−1)/2

are constructed using almost bent functions f from F2n to F2n [7, Example 1].

In order to compare the codes in [7, Example 1] with our type I codes in Example 3.5.2 we

set m,n are odd, n = rm and 2r = q. Then the parameters of the codes in [7, Example 1]

become

|S| = q2m, |T | = q, |K| = qm+1, PI =
1
q
, PS ≤

1
q

+
q − 1
q

·
√

2
qm/2

.

So the PS of our type I codes in Example 3.5.2 is smaller than that of [7, Example 1].

Also in [7] authentication codes with parameters

|S| = 2n + 1, |T | = 2r, |K| = 2n,

PI ≤
1
2r

+
(1− 2−r)
2(n−1)/2

, PS ≤
1
2r

+
(2r − 2−r)

2(n−1)/2 − 2r + 1
are constructed using almost bent functions f from F2n to F2n [7, Example 2].

In order to compare the codes in [7, Example 2] with our type II codes in Example 3.5.2

we set m,n are odd, n = rm and 2r = q. Then the parameters of the codes in [7, Example 1]

become

|S| = qm + 1, |T | = q, |K| = qm,

PI ≤
1
q

+
q − 1
q

·
√

2
qm/2

, PS ≤
1
q

+
√

2(q2 − 1)
qm/2 −

√
2(q − 1)

.

It can be easily seen that PI and PS of our type II codes in Example 3.5.2 are smaller and |S|
of our type II codes in Example 3.5.2 is larger than that of the codes in [7, Example 2]. For this

case the other parameters |T | and |K| are the same respectively.
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Chapter 4

Authentication Codes With

Secrecy Using Additive

Polynomials

In this chapter three different constructions of authentication codes with secrecy using addi-

tive polynomials related to some curves over finite fields are given. Tight bounds for the number

of rational points of these curves are used in estimating the probabilities of the codes. First

two constructions are generalizations of the corresponding constructions in [20] and [19] using

additive polynomials. The last specific construction answers the open problem given in [19,

Section 6.3.1] for some cases.

4.1 Introduction

Let q be a power of a prime p and m > 1 be an integer. Throughout this chapter Fqm denotes

the finite field of cardinality qm and we use the same notations given in Section 3.2.

In our constructions, the first part of the message (encrypted part) is obtained by addition

of the source state and a part of the key. This addition guarantees that the encryption is done

in a secure way. We propose three different methods to get the second part of the message (tag

part). In Construction (4.2.1) and Construction (4.2.2), first we evaluate the source state by

an additive polynomial, and we multiply the result by a part of the key in Fqm . Then we take

traces to Fq, which is the tag space. In Construction (4.2.1) we further use a part of the key

for an addition in Fq. In Construction (4.3.1) first we evaluate the key and the source state by

a specific function Π, and the results are added in Fq. This general method proposed in [19].

But the parameters of the authentication codes are estimated only for two specific functions,

and it is stated that the construction gives good authentication codes for different choices of the
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specific function Π. In Section 4.3.2, we take Π = Tr(xqh+1) and we estimate the parameters

of the codes obtained by this general method, which answers the open problem given in [19,

Section 6.3.1] for some cases.

This chapter is organized as follows. In Section 4.2 we present two types of authentication

codes and estimate their parameters. In Section 4.3 we give the general construction proposed

in [19]. We estimate the parameters of the authentication codes obtained by this general con-

struction using a specific additive polynomial.

4.2 Construction I

In this section, we present two types of authentication codes with secrecy. In type I codes

the number of keys and the number of messages are the same. In type II codes, the cardinality

of the key spaces is smaller than the cardinality of the message spaces.

4.2.1 Construction of Type I

Let q be a power of a prime and m > 1 be an integer. Let L(x) = u0x+u1x
q + · · ·+uhx

qh ∈
Fqm [x] be a nonzero additive polynomial and Tr denotes the trace map from Fqm to Fq. Then

the authentication code is defined by
S = Fqm

K = Fqm × Fq

M = Fqm × Fq

E = {Ek : Ek(s) = (s+ k1,Tr(k1L(s)) + k2)}

(4.2.1)

where k = (k1, k2) ∈ K, s ∈ S.

Theorem 4.2.1. The authentication codes defined in (4.2.1) have the following parameters.

|S| = qm, |K| = qm+1, |M| = qm+1, PI =
1
q
, PS =

1
q
.

Proof. For the impersonation attack the opponent picks an element m = (m1,m2) and sends it

to the receiver. The receiver will compute s = m1− k1 and Tr(k1L(s)) + k2. Then he will check

whether Tr(k1L(m1 − k1)) + k2 = m2 or not. Hence

PI = maxm1,m2 Pr[Tr(k1L(m1 − k1)) + k2 = m2]

= maxm1,m2

|{k ∈ K : Tr(k1L(m1 − k1)) + k2 = m2}|
|{k ∈ K}|

=
1
q
,
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since for each k1 ∈ Fqm , there is exactly one k2 ∈ Fq satisfying Tr(k1L(m1 − k1)) + k2 = m2.

We now prove the upper bound on PS . For the substitution attack the opponent has observed

one message m = (m1,m2) s.t m1 = s+ k1 and m2 = Tr(k1L(s)) + k2, and he wants to replace

m with another message m′ = (m′
1,m

′
2), where m′

1 6= m1. Set d1 = m′
1−m1 and d2 = m′

2−m2.

Hence substituting m with m′ is equivalent to adding d1 6= 0 to m1 and d2 to m2. This is

successful if and only if Tr(k1L(s)) + k2 + d2 = Tr(k1L(s + d1)) + k2, which is equivalent to

Tr(k1L(d1)) = d2. Let d = (d1, d2) with d1 6= 0. Therefore,

PS = maxm,d Pr[Tr(k1L(d1)) = d2 | m2 = Tr(k1L(m1 − k1)) + k2]

= maxm,d
|{k ∈ K : Tr(k1L(m1 − k1)) + k2 = m2,Tr(k1L(d1)) = d2}|

|{k ∈ K : m2 = Tr(k1L(m1 − k1)) + k2}

=
qm−1

qm
=

1
q
,

since Tr(k1L(d1)) is a linear mapping, it has exactly qm−1 solutions and for each solution k1 ∈
Fqm , there is exactly one k2 ∈ Fq satisfying Tr(k1L(m1 − k1)) + k2 = m2. The remaining

conclusions of the theorem are clear.

Theorem 4.2.2. The authentication codes defined in (4.2.1) provides perfect secrecy.

Proof. Given a message m = (m1,m2) = (s+ k1,Tr(k1L(s))+ k2), we have that the uncertainty

of the source state is |{s ∈ S : Tr((m1 − s)L(s)) + k2 = m2}|. In this case, for each s ∈ S, there

is exactly one k2 satisfying Tr((m1 − s)L(s)) + k2 = m2. Therefore, we have no information

about s.

Remark 4.2.3. The authentication codes in (4.2.1) are generalizations of the codes in [20,

Section 4]. If we take L(x) = x, then we obtain exactly the same codes with the codes in [20,

Section 4].

4.2.2 Construction of Type II

Let q be a power of a prime and m > 1 be an integer. Let L(x) = u0x+u1x
q + · · ·+uhx

qh ∈
Fqm [x] be a nonzero additive polynomial, d be the dimension of the radical WL and Tr denotes

the trace map from Fqm to Fq. Then the authentication code is defined by
S = Fqm

K = Fqm

M = Fqm × Fq

E = {Ek : Ek(s) = (s+ k,Tr(kL(s)))}

(4.2.2)

where k ∈ K, s ∈ S.
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Theorem 4.2.4. Let L(x) = u0x+ u1x
q + · · ·+ uhx

qh ∈ Fqm be a nonzero additive polynomial

and d = dimWL. Then the authentication codes defined in (4.2.2) have the following parameters.

|S| = qm, |K| = qm, |M| = qm+1,

PI ≤


1
q + q−1

q · q
d
2

q
m
2

if q is even, or q is odd and d ≡ m mod 2

1
q + q

d−1
2

q
m
2

if q is odd and d ≡ m+ 1 mod 2.

PS ≤


1
q + (q2+q−2)q

d
2

q

(
q

m
2 −(q−1)q

d
2

) if q is even, or q is odd and d ≡ m mod 2

1
q + (q+2)q

d−1
2

q
m
2 −q

d+1
2

if q is odd and d ≡ m+ 1 mod 2.

Proof. For the impersonation attack the opponent picks an element m = (m1,m2) and sends

it to the receiver. The receiver will compute s = m1 − k and Tr(kL(s)). Then he will check

whether Tr(kL(m1 − k)) = m2 or not. Hence

PI = maxm1,m2 Pr[Tr(kL(m1 − k)) = m2]

= maxm1,m2

|{k ∈ K : Tr(kL(m1 − k)) = m2}|
|{k ∈ K}|

= maxm1,m2

|{k ∈ K : Tr(−kL(k) + L(m1)k)) = m2}|
qm

≤ 1
qm

·

{
qm−1 + q−1

q · q
m+d

2 if q is even, or q is odd and d ≡ m mod 2

qm−1 + q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2,

by Lemma 3.3.1.

We now prove the upper bound on PS . For the substitution attack the opponent has observed

one message m = (m1,m2) s.t m1 = s+ k and m2 = Tr(kL(s)), and he wants to replace m with

another message m′ = (m′
1,m

′
2), where m′

1 6= m1. Set d1 = m′
1 −m1 and d2 = m′

2 −m2. Hence

substituting m with m′ is equivalent to adding d1 6= 0 to m1 and d2 to m2. This is successful

if and only if Tr(kL(s)) + d2 = Tr(kL(s + d1)), which is equivalent to Tr(kL(d1)) = d2. Let

d = (d1, d2) with d1 6= 0. Therefore,

PS = maxm,d Pr[Tr(kL(d1)) = d2 | m2 = Tr(kL(m1 − k))]

= maxm,d
|{k ∈ K : Tr(kL(m1 − k)) = m2,Tr(kL(d1)) = d2}|

|{k ∈ K : m2 = Tr(kL(m1 − k))}

≤


1
q + (q2+q−2)q

d
2

q

(
q

m
2 −(q−1)q

d
2

) if q is even, or q is odd and d ≡ m mod 2

1
q + (q+2)q

d−1
2

q
m
2 −q

d+1
2

if q is odd and d ≡ m+ 1 mod 2

by using Lemma 3.3.1 and Lemma 3.3.2.

The remaining conclusions of the theorem are clear.
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To estimate the secrecy level of the authentication codes defined in (4.2.2) we need the

following lemma.

Lemma 4.2.5. Let L(x) = u0x + u1x
q + · · · + uhx

qh ∈ Fqm be a nonzero additive polynomial

and d = dimWL. For v ∈ Fqm and for t ∈ Fq put

N(L, v; t) = |{x ∈ Fqm : Tr(xL(x) + vL(x)) = t}|.

Then

N(L, v; t) ≤

{
qm−1 + q−1

q · q
m+d

2 if q is even, or q is odd and d ≡ m mod 2

qm−1 + q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2

and

N(L, v; t) ≥

{
qm−1 − q−1

q · q
m+d

2 if q is even, or q is odd and d ≡ m mod 2

qm−1 − q
m+d−1

2 if q is odd and d ≡ m+ 1 mod 2.

Proof. The proof is similar to the proof of Lemma 3.3.1.

Theorem 4.2.6. The authentication codes defined in (4.2.2) provides at least

log2

(
qm−1 − q−1

q · q
m+d

2

)
bits of secrecy protection if q is even, or q is odd and d ≡ m mod 2,

and log2
(
qm−1 − q

m+d−1
2

)
bits of secrecy protection if q is odd and d ≡ m+ 1 mod 2.

Proof. Given a message m = (m1,m2) = (s+ k,Tr(kL(s))), we have that the uncertainty of the

source state is |{s ∈ S : Tr((m1 − s)L(s)) = m2}| = |{s ∈ S : Tr(−sL(s) + m1L(s)) = m2}|.
Then the results follow from Lemma 4.2.5.

Remark 4.2.7. The authentication codes in (4.2.2) are generalizations of the codes in [19,

Section 4]. If we take L(x) = x, then we obtain exactly the same codes with the codes in [19,

Section 4]. Our codes are defined for any prime power q, but the codes in [19, Section 4] are

defined only if q is a power of an odd prime.

4.3 Construction II

In this section first we give the construction given in [19, Section 6]. It is shown that the

parameters of the codes totaly depend on the properties of a specific map Π and it is noted

that the estimation of the parameters PI and PS is not easy for different choices of Π. Now

we define the map Π(x) = Tr(xqh+1) and compute the parameters of the codes. It answers the

open problem given in [19, Section 6.3.1] for some cases.
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4.3.1 The General Construction [19]

Let (A,+) and (B,+) be two finite abelian groups and let Π be a mapping from A to B.

Then the authentication code with secrecy is defined as

(S,K,M, E) = (A,A,A×B, {Ek : k ∈ K}) (4.3.1)

where for any k ∈ K and s ∈ S, Ek(s) = (s+ k,Π(s) + Π(k)).

Impersonation Attack

The opponent picks an element m = (m1,m2) ∈ M in some way and sends it to the

receiver. The receiver will compute s = m1 − k and Π(s) + Π(k). Then he will check whether

Π(m1 − k) + Π(k) = m2. Hence

PI = maxm1,m2 Pr[Π(m1 − k) + Π(k) = m2] (4.3.2)

=
|{k ∈ K : Π(m1 − k) + Π(k) = m2}|

|{k ∈ K}|
.

Substitution Attack

The opponent has observed one message m = (m1,m2) s.t m1 = s+k and m2 = Π(s)+Π(k),

and he wants to replace m with another message m′ = (m′
1,m

′
2), where m′

1 6= m1. Set d1 =

m′
1 −m1 and d2 = m′

2 −m2. Hence substituting m with m′ is equivalent to adding d1 6= 0 to

m1 and d2 to m2. This is successful if and only if Π(s) + Π(k) + d2 = Π(s+ d1) + Π(k), which

is equivalent to Π(s+ d1)−Π(s) = d2. Let d = (d1, d2) with d1 6= 0. Therefore,

PS = maxm,d Pr[Π(s+ d1)−Π(s) = d2 | m2 = Π(s) + Π(m1 − s)] (4.3.3)

= maxm,d
|{s ∈ S : Π(s) + Π(m1 − s) = m2,Π(s+ d1)−Π(s) = d2}|

|{s ∈ S : m2 = Π(s) + Π(m1 − s)}
.

4.3.2 Specific Construction of Type II

Let q be a power of a prime, m > 1 be an integer and Tr denotes the trace map from Fqm to

Fq.

Theorem 4.3.1. Let (A,+) = (Fqm ,+), (B,+) = (Fq,+) and Π(x) = Tr(xqh+1) for some

nonnegative integer h. Define h := gcd(2h,m). Then the authentication code defined in (4.3.1)

has parameters

|S| = qm, |K| = qm, |M| = qm+1,

PI ≤


1
q + q−1

q · 1
qm/2 if m is even and m/h is odd

1
q + 1

q(m+1)/2 if m is odd.
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PS ≤


1
q + q2−1

q(qm/2−(q−1))
if m is even and m/h is odd

1
q + q+1

q(m+1)/2−q
if m is odd.

To prove the above theorem we need the following lemmas.

Lemma 4.3.2. Assume that q is odd, A(x) = 2xqh ∈ Fqm [x], h ≥ 1 and m > 1 are integers.

Define h := gcd(2h,m). If m/h is odd then WA = {0}. If m/h is even then WA = {x ∈ Fqm :

x+ xqh
= 0}.

Proof. As h ≥ 1 and for any x ∈ Fqm we have xqm
= x, we can assume that h < m. We know

that

WA = {x ∈ Fqm : x+ xq2h
= 0}.

Let w be a generator of the multiplicative group Fqm \ {0}. Assume that x = wl ∈ WA for an

integer l ≥ 0. Then

wl + wlq2h
= 0 ⇒ 1 + wl(q2h−1) = 0

⇒ wl(q2h−1) = w
qm−1

2 , as q is odd

⇒ wl(q2h−1)− qm−1
2 = 1.

Hence we obtain that

l(q2h − 1)− qm − 1
2

≡ 0 mod (qm − 1). (4.3.4)

Note that gcd(qm−1, q2h−1) = qh−1 where h = gcd(2h,m). There exists a solution l of (4.3.4)

if and only if

qm − 1
2

≡ 0 mod qh − 1. (4.3.5)

So (4.3.5) holds if and only if qh − 1 divides qm−1
2 . We know that

qm − 1
2

= (qh − 1)
1 + qh + q2h + · · ·+ q(

m
h
−1)h

2
.

If m/h is odd then 1 + qh + q2h + · · · + q(
m
h
−1)h is odd, that is, (qh − 1) - ( qm−1

2 ). Therefore

WA = {0}.

Next we assume that m/h is even. It can be easily seen that (qm − 1) - (q2h − 1). Then

l
(q2h − 1)

qh − 1
− qm − 1

2(qh − 1)
≡ 0 mod

qm − 1

qh − 1
. (4.3.6)

As gcd
(

q2h−1

qh−1
, qm−1

qh−1

)
= 1, there exists a uniquely determined solution, modulo (qm−1)

qh−1
, of (4.3.6).

Let l be such a solution. All other solutions of (4.3.4) are

l + c
qm − 1

qh − 1
, 0 ≤ c < qh − 1.
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Note that
[
w

c qm−1

qh−1

]qh−1

= 1. Now we show that all the solutions of (4.3.4) satisfies the equation

x+ xqh
= 0.

Let b be the uniquely determined integer with 0 ≤ b < (qm−1)

qh−1
such that

b
q2h − 1

qh − 1
≡ 1 mod

qm − 1

qh − 1
. (4.3.7)

We can assume, without loss of generality, that

l = b · qm − 1

2(qh − 1)
.

Then [
wl
](qh−1)

= wb qm−1
2 = (−1)b = −1,

since b is the uniquely determined integer satisfying the equation (4.3.7), that is, b is odd. This

completes the proof.

We have the Fq-linear map from Fqm to Fq defined by

Ψb : Fqm → Fq

x 7→ Tr(Lb(x)) = Tr(bxqh
+ bq

h
x).

Lemma 4.3.3. Assume that q is odd, h ≥ 1, m > 1 are integers and h = gcd(2h,m). Then for

any b ∈ Fqm the Fq-linear map Ψb = Tr(bxqh
+ bq

h
x) from Fqm to Fq is either the zero map or

an onto map. Furthermore, if m/h is odd then Ψb is an onto map.

Proof. We know that for all x ∈ Fqm , we have Tr(x) = Tr(xqh
). Then

Tr(bxqh
+ bq

h
x) = Tr(bxqh

+ bq
2h
xqh

)

= Tr((b+ bq
2h

)xqh
).

Therefore, Ψb is the zero map if b+ bq
2h

= 0. Otherwise, Ψb is an onto map since x 7→ xqh
is an

automorphism.

Lemma 4.3.4. Assume that q is odd, A(x) = 2xqh ∈ Fqm [x], m > 1, h ≥ 1 are integers and

h = gcd(2h,m). Let Ψb(x) = Tr(bxqh
+ bq

h
x) for any b ∈ Fqm. Then we have WA ⊆ KerΨb.

Proof. If m/h is odd, then WA = {0} ⊆ KerΨb trivially.

Assume that m/h is even. If h|h then m = 2sh and h = rh for some integers r and s. But

it gives a contradiction, since h = gcd(2h,m) = gcd(2rh, 2sh) > h. So we have

h = 2h1, h1 = gcd(h,m), m = 4sh1 and h = rh1,
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for some integer s and odd integer r.

Note that for all y ∈ Fqm , we have Tr(yqh
) = Tr(yqh1 ). Recall that WA = {x ∈ Fqm :

x+ xqh
= 0} = {x ∈ Fqm : xq2h1 = −x} in this case. Hence for all x ∈WA we have

Tr(bq
h
x) = Tr((bxq−h

)qh
)

= Tr((bxq−h
)qh1 )

= Tr((bxqm−2h+h
)qh1 )

= Tr((bxq(2s−r)2h1+h
)qh1 )

= Tr




b




((

xq2h1
)q2h1

) 2s−r
times︷︸︸︷
· · ·


q2h1


qh

qh1


= Tr
[(
b
(
(−1)2s−rx

)qh)qh1
]

= Tr(−(bxqh
)qh1 ), as (2s− r) is odd.

Therefore, for all x ∈WA we have

Tr(bxqh
+ bq

h
x) = Tr(bxqh − (bxqh

)qh1 )

= TrF
qh1

/Fq

(
TrFqm/F

qh1

[
bxqh − (bxqh

)qh1
])

= 0, using [37, Theorem 2.25],

which completes the proof.

Lemma 4.3.5. Assume that q is odd, m > 1 and h ≥ 1 are integers such that m/gcd(2h,m) is

odd and L(x) = bxqh
+ bq

h
x for some nonzero b ∈ Fqm. For any nonzero y ∈ Fq, we have∑

x∈Fqm

e
2πi
p

Trqm/p(yL(x)) = 0.

Proof. We know that Tr(L(x)) is an onto map by Lemma 4.3.3. So there exists x0 ∈ Fqm such

that Trqm/p(yL(x0)) 6= 0. Then∑
x∈Fqm

e
2πi
p

Trqm/p(yL(x)) =
∑

x∈Fqm

e
2πi
p

Trqm/p(yL(x+x0)) using Fqm = {x+ x0 : x ∈ Fqm} ,

=
∑

x∈Fqm

e
2πi
p

Trqm/p(yL(x)+yL(x0))

since L is linear, i.e. L(x+ x0) = L(x) + L(x0).

After a simple algebraic operation, we get

(1− e
2πi
p

Trqm/p(yL(x0)))
∑

x∈Fqm

e
2πi
p

Trqm/p(yL(x)) = 0.
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As e
2πi
p

Tr(yL(x0)) 6= 1, since we have x0 ∈ Fqm such that Tr(yL(x0)) 6= 0, we obtain that∑
x∈Fqm

e
2πi
p

Trqm/p(yL(x)) = 0.

Lemma 4.3.6. Assume that q is odd, A(x) = 2xqh ∈ Fqm [x], m > 1 and h ≥ 1 are integers,

h = gcd(2h,m) and L(x) = bxqh
+ bq

h
x for some b ∈ Fqm. For any nonzero y ∈ Fq, define

σ(y) =
∑

x∈Fqm

e
2πi
p

Trqm/p(xyA(x)+yL(x))
.

Then we have

|σ(y)| ≤


q

m+h
2 if m/h is even

q
m
2 if m is even and m/h is odd
1

q−1 · q
m+1

2 if m is odd.

Proof. For any fixed x ∈ Fqm and t ∈ Fq we have

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xA(x)+L(x))−t)] =

{
q if Tr(xA(x) + L(x))− t = 0

0 if Tr(xA(x) + L(x))− t 6= 0.

Hence,

N(Tr(xA(x) + L(x)) = 0) =
1
q

∑
x∈Fqm

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xA(x)+L(x)))]

=
1
q

qm +
∑
y∈F∗q

∑
x∈Fqm

e
2πi
p

Trqm/p(xyA(x)+yL(x))

 .

Therefore we obtain that

|σ(y)| = 1
q − 1

· |qN(Tr(xA(x) + L(x)) = 0)− qm|.

Then the result follows from [13, Theorem 4.1], Theorem 3.2.2, Lemma 4.3.2 and Lemma 4.3.4.

Lemma 4.3.7. Assume that q is odd, A(x) = 2xqh ∈ Fqm [x], m > 1 and h ≥ 1 are integers,

h = gcd(2h,m). Let L(x) = bxqh
+ bq

h
x for some b ∈ Fqm and for any v ∈ Fq put

N(2, b; v) = |{x ∈ Fqm : Tr(xA(x) + L(x)) = v}|.

Then

N(2, b; v) ≤

{
qm−1 + (q − 1)q

m−2
2 if m is even and m/h is odd

qm−1 + q
m−1

2 if m is odd.

and

N(2, b; v) ≥

{
qm−1 − (q − 1)q

m−2
2 if m is even and m/h is odd

qm−1 − q
m−1

2 if m is odd.
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Proof. Let Trq/p (resp. Trqm/p) denote the trace map from Fq (resp. Fqm) to Fp.

N(2, b; v) = |{x ∈ Fqm : Tr(xA(x) + L(x))− v = 0}|

=
1
q

∑
x∈Fqm

∑
y∈Fq

e
2πi
p

Trq/p[y(Tr(xA(x)+L(x))−v)]

=
1
q

qm +
∑
y∈F ∗

q

e
2πi
p

Trq/p(−yv)
∑

x∈Fqm

e
2πi
p

Trqm/p(xyA(x)+yL(x))

 .

Then using Lemma 4.3.6 we have |qN(2, b; v)− qm| ≤ (q− 1)|σ(y)|. Then the result follows.

Lemma 4.3.8. Assume that q is odd, A(x) = 2xqh ∈ Fqm [x], m > 1 and h ≥ 1 are integers,

h = gcd(2h,m). Let L1(x) = bxqh
+ bq

h
x and L2(x) = cxqh

+ cq
h
x for some b, c ∈ Fqm. For any

v1, v2 ∈ Fq define

N(2, b, c; v1, v2) = |{x ∈ Fqm : Tr(xA(x) + L1(x)) = v1, T r(L2(x)) = v2}|.

Then

N(2, b; v) ≤

{
qm−2 + (q − 1)q

m−2
2 if m is even and m/h is odd

qm−2 + q
m−1

2 if m is odd.

and

N(2, b; v) ≥

{
qm−2 − (q − 1)q

m−2
2 if m is even and m/h is odd

qm−2 − q
m−1

2 if m is odd.

Proof. Let Trq/p (resp. Trqm/p) denote the trace map from Fq (resp. Fqm) to Fp.

N(2, b, c; v1, v2)

= |{x ∈ Fqm : Tr(xA(x) + L1(x))− v1 = 0, T r(L2(x))− v2 = 0}|

=
1
q2

∑
x∈Fqm

∑
y1,y2∈Fq

e
2πi
p

Trq/p[y1(Tr(xA(x)+L1(x))−v1)+y2(Tr(L2(x))−v2)]

=
1
q2

qm +
∑

(0,0) 6=(y1,y2)∈F 2
q

e
2πi
p

Trq/p(−y1v1−y2v2)
∑

x∈Fqm

e
2πi
p

Trqm/p(y1(xA(x)+L1(x))+y2(L2(x)))


=

1
q2

qm +
∑

y1∈Fq
∗,y2∈Fq

e
2πi
p

Trq/p(−y1v1−y2v2)
∑

x∈Fqm

e
2πi
p

Trqm/p(y1(xA(x)+L1(x))+y2(L2(x)))


by Lemma 4.3.5.

Then using Lemma 4.3.6 we get |q2N(2, b, c; v1, v2)− qm| ≤ (q2− q)|σ(y)|. The conclusion of the

lemma then follows.

Now using the Lemma 4.3.7 and Lemma 4.3.8 we are ready to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. We first compute PI . By (4.3.2) we know that

PI = maxm1,m2 Pr[Π(m1 − k) + Π(k) = m2]

= maxm1,m2

|{k ∈ K : Π(m1 − k) + Π(k) = m2}|
|{k ∈ K}|

= maxm1,m2

|{k ∈ K : Π(m1 − k) + Π(k) = m2}|
qm

= maxm1,m2

|{k ∈ K : Tr(2kqh+1 −m1k
qh −m1

qh
k +m1

qh+1) = m2}|
qm

≤


1
q + q−1

q · 1
qm/2 if m is even and m/h is odd

1
q + 1

q(m+1)/2 if m is odd.

by Lemma 4.3.7.

We now estimate the upper bound on PS . By (4.3.3),

PS = maxm,d2,d1 6=0
|{s ∈ S : Π(s) + Π(m1 − s) = m2,Π(s+ d1)−Π(s) = d2}|

|{s ∈ S : Π(s) + Π(m1 − s) = m2}

=

maxm,d2,d1 6=0

∣∣∣∣∣
{
s ∈ S :

Tr(d1s
qh

+ d1
qh
s+ d1

qh+1) = d2

Tr(2sqh+1 −m1s
qh −m1

qh
s+m1

qh+1) = m2

}∣∣∣∣∣
maxm1,m2 |{s ∈ S : Tr(2sqh+1 −m1sqh −m1

qhs+m1
qh+1) = m2}

≤


1
q + q2−1

q(qm/2−(q−1))
if m is even and m/h is odd

1
q + q+1

q(m+1)/2−q
if m is odd.

by Lemma 4.3.7 and Lemma 4.3.8.

The remaining conclusions of the theorem are clear.

Theorem 4.3.9. Let (A,+) = (Fqm ,+), (B,+) = (Fq,+), Π(x) = Tr(xqh+1) for some nonneg-

ative integer h and h = gcd(2h,m). Then the authentication code defined in (4.3.1) provides

at least log2
(
qm−1 − (q − 1)q

m−2
2

)
bits of secrecy protection if m is even and m/h is odd, and

log2

(
qm−1 − q

m−1
2

)
bits of secrecy protection if m is odd.

Proof. Given a message m = (m1,m2) = (s+ k,Tr(kL(s))), we have that the uncertainty of the

source state is

|{s ∈ S : Π(s) + Π(m1 − s) = m2}| = |{s ∈ S : Tr(2sqh+1 −m1s
qh −m1

qh
s+m1

qh+1) = m2}|.

Then we complete the proof using Lemma 4.3.7.
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Chapter 5

Conclusions and Future Works

In this thesis different constructions of authentication codes with and without secrecy are

presented. Their parameters are better than the existing ones in some cases.

There are two types of authentication maps in our constructions. In type I maps, further a

part of the key is used as an addition. This final operation guarantees that PI =
|S|
|M|

=
1
|T
|.

In type II maps, there is no extra addition. Furthermore, the difference of type I and type II

codes appears in estimating the probabilities PI and PS . It is seen that, the estimation of the

probability PS of type II codes is much more difficult.

Some future works can be summarized as follows:

• The constructions given in Section 2.4 are defined over Fp, where p is a prime. This

constructions can be extended to the codes over Fpn for some integer n ≥ 2. But the

estimation of the probability PS seems to be much more difficult.

• For the constructions given in Section 3.4 can be used to obtain good systematic authen-

tication codes having some fixed parameters. It can be done by putting some conditions

on dimension of the radical of polynomials obtained by the elements of the source states.

Here the following two different strategies can be observed.

1. Fixing the parameters |K|, |T |,PI and PS one can search for larger special set of

source states S.

2. Fixing the parameters |K|, |T | one can search for larger special set of source states S
to obtain better codes having PI and PS as small as possible.

• Using additive polynomials as in Chapter 3 and Chapter 4 many different authentication

codes with/without secrecy having good parameters can be obtained.

• Using specific maps Π, the general construction proposed in [19] may give different authen-

tication codes having good parameters. We estimate the parameters by taking Π(x) =
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Tr(xqh+1). One can construct authentication codes taking Π(x) = Tr(xL(x)) for some

specific additive polynomial L(x).
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[39] S. Ling and F. Özbudak, Aperiodic and odd correlations of some p-ary sequences, IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Science, vol.

E89-A, no. 9, pp. 2258-2263, 2006.

56



[40] J. L. Massey, Cryptographya selective survey, in: E. Biglieri, G. Pratti (Eds.), Digital

Communications, Elsevier Science, North-Holland, pp. 325, 1986.

[41] C. Mitchell, M. Walker and P. Wild, The combinatorics of perfect authentication schemes,

SIAM Journal of Discrete Mathematics, vol. 7, pp. 102-107, 1994.
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• A. Doğanaksoy, E. Saygı, Z. Saygı, Quadratic Feedback Shift Registers Generating Maximum

Length Sequences, BFCA 2007, Third International Workshop on Boolean Functions :

Cryptography and Applications, May 2-3, 2007, Paris, France.
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