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Abstract

INFERENCE OF PIECEWISE LINEAR SYSTEMS WITH AN

IMPROVED METHOD EMPLOYING JUMP DETECTION

Selçuk, Ahmet Melih

M.S., Department of Scientific Computing

Supervisor: Assist. Prof. Dr. Hakan ÖKTEM

September 2007, 60 pages

Inference of regulatory relations in dynamical systems is a promising active research

area. Recently, most of the investigations in this field have been stimulated by the

researches in functional genomics. In this thesis, the inferential modeling problem for

switching hybrid systems is studied. The hybrid systems refers to dynamical systems

in which discrete and continuous variables regulate each other, in other words the

jumps and flows are interrelated. In this study, piecewise linear approximations are

used for modeling purposes and it is shown that piecewise linear models are capable

of displaying the evolutionary characteristics of switching hybrid systems approxi-

mately. For the mentioned systems, detection of switching instances and inference of

locally linear parameters from empirical data provides a solid understanding about

the system dynamics. Thus, the inference methodology is based on these issues. The

primary difference of the inference algorithm is the idea of transforming the switch-

ing detection problem into a jump detection problem by derivative estimation from

discrete data. The jump detection problem has been studied extensively in signal

processing literature. So, related techniques in the literature has been analyzed care-

fully and suitable ones adopted in this thesis. The primary advantage of proposed

method would be its robustness in switching detection and derivative estimation. The

theoretical background of this robustness claim and the importance of robustness for

real world applications are explained in detail.
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Öz

PARÇALI DOĞRUSAL SİSTEMLERİN SIÇRAMA TESBİTİ

KULLANAN GELİŞTİRİLMİŞ BİR METOT İLE ÇIKARIMI

Selçuk, Ahmet Melih

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Hakan ÖKTEM

Eylül 2007, 60 sayfa

Dinamik sistemlerdeki yönetici ilişkilerin çıkarımı, gelişme vaat eden aktif bir

inceleme alanıdır. Son zamanlarda, bu alanda yapılan çoğu araştırma fonksiyonel

genomik çalışmaları tarafından teşvik edilmiştir. Bu tezde, değişmeli hibrit sis-

temlerin çıkarımsal modellenmesi üzerine çalışılmıştır. Hibrit sistemler, kesikli ve

sürekli değişkenlerin birbiriyle etkileştiği, yani akış ve sıçrama hareketlerinin bir-

biriyle ilişkili olduğu dinamik sistemlerdir. Bu çalışmada, modelleme için parçalı

doğrusal yaklaştırma kullanılmış ve parçalı doğrusal modellerin değişmeli hibrit sis-

temlerin evrilme karakteristiğini yaklaşık olarak ifade edebilieceği gösterilmiştir. Sözü

edilen sistemlerde, değişme anlarının tesbiti ve lokal doğrusal parametrelerin ampirik

verilerden çıkarımı sistem dinamiği hakkında sağlam bilgiler sağlar. Dolayısıyla,

çıkarım metodolojisi bu hususlar üzerine oturtulmuştur. Çıkarım algoritmasının

başlıca farklılığı, değişme anı tesbiti probleminin, kesikli veriler üzerinden türev tah-

mini metoduyla sıçrama tesbiti problemine dönüştürülmesi fikridir. Sıçrama tesbiti

problemi, sinyal işleme literatüründe geniş ölçüde çalışılmıştır. Bu tez kapsamında,

bu literatürdeki ilgili teknikler dikkatlice incelenmiş ve uygun olanlar kullanılmıştır.

Sunulan metodun temel avantajı, değişme anı tesbiti ve türev tahmininin gürbüz (ro-

bust) olarak yapılabilmesidir. Metodun gürbüzlüğünün teorik temeli ve gürbüzlüğün
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gerçek uygulamalardaki önemi detaylı olarak açıklanmıştır.

Anahtar Kelimeler: Parçalı doğrusal modeller, hibrit sistemler, çıkarımsal modelleme,

değişmeli ağlar, gen ağları, lokal polinom yakınlaştırması, sıçrama tesbiti
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Chapter 1

Introduction

1.1 Mathematical Modeling of Dynamical Systems

A dynamical system describes the evolution of the variables interacting with each

other and the ‘environment’ over time. Here, the term evolution implies position

and velocity. To explain the underlying laws governing the system dynamics, math-

ematical models have been proposed. For example, a system of first order ordinary

differential equation (ODE), dx/dt=F(x,t), is a model that explains the velocity in

space(dx/dt) as a function(F ) of the position(x ) and the time(t). This type of ab-

straction -well defined mathematical relations- allows;

• studying the dynamical system’s behavior under different conditions

• predicting the dynamical system’s future evolution for given initial conditions

• planning the necessary interventions to bring the dynamical system to a desired

state

Therefore, mathematical modeling of dynamical systems is a fundamental prob-

lem in understanding and/or controlling the physical, chemical and biological phe-

nomena. In this study, the focus will be on the switched hybrid systems at which

the regulatory relations are defined by mimicking the switch in a circuit that can

determine the state of a variable in the system, either ON or OFF. The intervariable

regulations occur subject to the threshold phenomena and we are after finding a re-

liable, robust and computationally efficient algorithm to infer the rules of switching;

in other words for any given variable xj , we try to find

1



• the variable xi that regulates the switching in xj

• the type of effect xi has on xj (repression or activation)

• the value of each threshold and the corresponding state space partition

The aspects mentioned up to here will be explained in the succeeding sections of

this study. The objectives explained above represents that the method is applicable

only for a particular problem; the efforts explained in detail throughout this work are

concentrated for solving the problem of inferring a particular sub-class of nonlinear

dynamical systems. It is reasonable to specify the domain of the proposed method

since every problem should be undertaken according to its own considerations and

necessary modifications should be adopted considering the nature of the problem.

1.2 Problem Statement and Scope

Every mathematical model is in fact an abstraction which is incapable of representing

the original problem with complete accuracy; however it captures the essential fea-

tures of the original problem [2]. Inferring the dynamics of a system from empirical

findings is an important problem that have grabbed the attention of many researchers

from different fields. A few exemplary fields include -but not limited to- gene network

modeling [28, 4], climate change investigation [3] and population dynamics studies

[10]. The steps succeeding the inference of model parameters is different depending on

the goal to be accomplished. Intervention planning focuses on planning the required

interventions to bring the system to a desired state whereas inverse theory aims to

reconstruct the history. The common point in these studies is the requirement of a

mathematical model for describing the observed features of the system in a quanti-

tative manner. In this aspect, the first critical step of building a model is the model

class selection. Choice of the appropriate model class based on a priori knowledge

or empirical evidence requires close attention since poor model selection would lead

to incapable models even the model parameters are selected optimally. A criterion

that can be useful at this stage is the qualitative behavior matching. According to

this criteria, “a model class C is considered only if it is capable of exhibiting the

qualitative behavior of primary interest” [26].

In this study, the focus is on a particular type of nonlinearity in the evolution, in

which the variables regulate each other via threshold phenomena and display piece-

wise linear evolution where the linearity is violated by switching occurrences only.
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Thus, as qualitative behavior matching criterion suggests, we restricted our atten-

tion to a model class which is capable of representing switching behavior regulated by

threshold phenomena. For that reason, the piecewise linear hybrid system formalism

with single threshold state space partitioning is adopted in this work. Hence, the

dynamical systems whose regulatory relations can be explained by threshold phe-

nomena -according to analytical or empirical evidence-, can be considered as the

domain of the modeling approach that is proposed here. Detailed discussion on the

importance of this model class and the particular systems that can be modeled by

this formulation is given in next sections. Moreover, basic ideas in related works on

classification of nonlinear systems depending on the way they violate linearity is also

provided.

With the predetermined model class for the particular type of phenomena, the

efforts are concentrated on the inference of model parameters in this work. These

parameters can be grouped in two parts referred here as the switching parameters and

the continuous evolution parameters. The so-called switching parameters include the

parameters defining the regulation on ordered variable tuples (effect of vari on varj

in terms of activation, repression or none) and the corresponding threshold values.

The continuous evolution parameters govern the in-state movement of system and

they are defined separately for each state.

This thesis studies a modified parameter inference method based on using deriva-

tive estimation in switching detection which we consider as the original contribution

of the study. The piecewise linearity of evolution refers to the linearity of evolution

in a state between two consecutive switchings and correspondingly, the switchings

are the instances between two different linear parts where the smoothness and linear-

ity fails. After detecting the switchings, the best fit values of continuous evolution

parameters are found by L2 error minimization individually for each state. On the

other hand, the inference of regulatory relations among the variables in the system

requires some further work and certain assumptions to be satisfied. This process is

explained in detail as well.

In the second chapter, preliminaries of the referred topics are mentioned. Firstly,

the hybrid system formalism is introduced. The fundamental concepts in the theory of

hybrid systems is briefly explained and the important points relevant to the problem

in consideration are outlined. Then, theoretical background of inference problem is

given and key points of inferential modeling are discussed. This chapter also contain

preliminary information on networks.

3



The piecewise linear models are discussed in the third chapter. Switching behavior

and threshold phenomena are explained in detail and the specifications of suggested

piecewise linear models are given. Having stated the specifications of the problem, the

fourth chapter is reserved for the solution; the inference algorithm is introduced. The

critical steps of the method are explained together with the computer codes developed

for each task. The demonstrations on hypothetical examples are also given to clarify

the rationale and implementation of each step.

In the fifth chapter, the implementation of the method is performed on simulated

data generated for an exemplary dynamical system. Advantages and shortcomings

of the method are discussed and possible improvements are mentioned. The final

remarks and conclusions on the entire work are made in the final chapter.

4



Chapter 2

Background

2.1 Hybrid Systems

Hybrid systems stand for the class of dynamical systems in which continuous and

discrete variables regulate each other. In general, we can consider two types of

occurrences in hybrid systems; the flow, that describes the change of continuous

variables in time and the jump, which refers to any change in the discrete variables.

Coexistence of continuous and discrete variables in hybrid systems allows modeling

flows incorporated with jumps. After this general introduction, the formal definition

of a hybrid system can be made as follows:

A hybrid system H is a collection H = (Q, X, Init, f, Inv, E, G, R), where

• Q = {q1, q2...} is a set of discrete states

• X = R
N is a space of continuous variables

• Init ⊆ Q × X is a set of initial states

• f : Q × X → R
N is a vector field

• Inv : Q → P (X) is an invariant set

• E ⊆ Q × Q is a set of edges

• G : E → P (X) is a guard condition

• R : E × X → P (X) is a reset map

5



In this formalism, the vector field f is the function governing the continuous

dynamics in a given invariant set. Accordingly, invariant sets, Inv, can be considered

as a partitioning of the state space with respect to different continuous evolution

characteristics. The edges, E, correspond to crossings between invariant sets; they

represent the transitions among discrete states, Q. A guard condition, G, is defined

for every edge in terms of well defined mathematical relations on the discrete and

continuous variables in the system. The state transition represented by each edge

occurs when the corresponding guard conditions are satisfied.

Many systems we encounter in everyday life can be considered as hybrid systems.

In electrical control circuits, continuous phenomena are interrupted by switches open-

ing and closing, or diodes going on or off. Likewise, in chemical process control the

continuous evolution of chemical reactions is controlled by valves and pumps[22]. In

general, almost every continuous time feedback control systems operating with dis-

crete feedback signals are simple and widely used examples of hybrid systems. In

these systems, the observations on system in continuous time are used and when

certain conditions are satisfied, the discrete feedback signal initiates the application

of the necessary action. The application of this principle can be observed in diverse

fields, a fuse protecting the circuit from fluctuations in voltage, a thermostat keeping

the temperature in the specification limits or an industrial quality control system em-

ploying continuous time measurements for ensuring the manufacturing specifications

are all developed on this idea.

Thermostats used in almost every sort of heaters and coolers are simple hybrid

systems where the change of temperature in continuous time, -the flow-, determines

the switching of system on or off, -the jump-, according to certain conditions. The dis-

crete events, the edges, are the ON/OFF and OFF/ON switchings of the heat source

in the system. No switching occurs while the temperature is within the specification

limits. When the lower or upper limit is exceeded, the system switches the operation

mode to take the temperature to the desired level. The operation mode of the system

controls the inflow/outflow of heat to the system and in turn the temperature level

determines turning the heat source ON or OFF.

The thermostat system is explained here since it is useful in exemplifying the

basic concepts in hybrid systems. The temperature is the continuous variable that is

desired to be kept in a certain interval. The operation mode of the heat source (can

be a heater or cooler) is the discrete variable in the system. Hence the operation state

can be represented as a binary value -0 or 1- and the value of this variable at any time

6



can be determined by observing the system temperature. Thus, the temperature has

a direct regulatory effect on the operation state. This effect of continuous variables

on the system state is described by guard conditions in the hybrid system formalism.

In this control problem, the guard conditions are introduced via certain threshold

values which discretize the continuous variables into Boolean variables representing

whether the continuous variables value is above or below the threshold. This type of

thresholds can be the design specifications of the man-made control systems or they

can arise from the inherent characteristics of other dynamical systems in nature.

Threshold phenomena is discussed in further detail in Section 3.2.

On the other hand, the change of temperature in time displays a continuous evo-

lution that can be explained by a system of differential equations. As long as the

operation mode is not changed, the instantaneous temperature change can be rep-

resented by the same system of differential equation(s). The state space partition

in which the evolution of continuous variable remains unchanged is called the in-

variant space. As the operation state controls the heat inflow/outflow provided by

the heat source to the system, the binary variable representing the operation state

regulates the temperature change in continuous time by changing the coefficients of

the differential equation.

The hybrid system formalism is also applicable to dynamical systems in na-

ture. Although the regulatory relations among the variables may not be defined

that straightforward, certain qualitative features of the dynamical system can make

hybrid system formalism favorable. For example, threshold phenomena appearing

in different biological and physical systems (action potential threshold in cells [6],

switching behavior in gene networks) can be that sort of motivation for employing

hybrid systems. In the simplest scheme, threshold phenomena refers to the type of

regulatory relation at which a variable attaining a certain value -the threshold- results

in a change in the evolution of one or more variables in the system. In the hybrid

system formalism, the value of the variable relative to the threshold can be defined

as a discrete variable and these discrete variables would define the guard conditions

determining the state transitions. In this way, invariant spaces would be defined as

a state space partition in the classical hybrid system formalism. Each threshold can

be considered as a hyperplane in the separating the state space into subspaces, e.g.

if there are n variables in the system and one threshold for each variable, there will

appear 2n invariant subspaces. In this particular case, the state of the system can

be represented as a binary string of length n consisting of zeros and ones denoting

7



whether the corresponding variable is above or below the threshold.

2.2 Inference Problem

The problem of understanding the nature of a dynamical system has a broad per-

spective. We can consider different subclasses for this problem based on the approach

of learning the governing dynamics. A predictive learning approach aims to predict

future states of the system from observations of the present and past states of the

system whereas a diagnostic learning approach aims to infer the probable past states

of the system that might have led to the present state of the system. On the other

hand, the objective may not be to predict the future or explain the past, but to

provide a theoretical basis for any specific physical phenomena and this can be con-

sidered as an application based learning approach [8]. The possible ways of learning

mentioned here are built on learning from observations and building a mathematical

model would be useful for understanding the physical phenomena in all three aspects.

In this type of empirical approach, inferential modeling would be a suitable approach

to construct the mathematical model.

The complexity of the inference problem is mostly determined by the qualitative

dynamical features of the system in consideration. For example, linear behavior is

easily tractable and predictable. On the other hand, when the nonlinearity appears,

it becomes much harder to extract useful information from empirical findings. It can

even become impossible to infer system dynamics depending on the type of nonlinear

behavior; inference for a chaotic nonlinear system can be an example. It can be possi-

ble to build up mathematical models for chaotic systems through analytical findings

using the laws governing the system and a priori knowledge on probable variable

interrelations. On the other hand, inference is the method of using empirical findings

and in chaotic systems it is hard to interpret the underlying dynamics displaying the

observed qualitative features.

As it is a challenging problem, inferential modeling of nonlinear dynamical sys-

tems has received growing interest. Development of instrumentation technologies

providing high throughput data, increased computational power and more efficient

inference algorithms have enabled inference of dynamical features of those systems

from empirical observations. Some exemplary challenges where the inference method-

ology can suggest promising results in the inference of nonlinear dynamics can be

given as:

8



• Inference of gene expression dynamics: After development of expression mi-

croarray technology, the availability and quality of data on gene expression

measurements made it possible to study the dynamics of genes controlling bi-

ological phenomena. As a results, the problem of gene network inference has

grabbed the intention of researchers [28, 4, 9]. Gene network inference suggests

potential use in intervention planning and drug discovery [31].

• Calibration of ecosystem models: Accurate predictions on ecosystems are im-

portant to predict the future of the species in the ecosystems. information on

population. For marine ecology, satellite ocean color data [18] can be utilized

for longer term forecasts.

• Parameter estimation in flux balance models: Fermentation is a biochemical

process used in manufacturing of different goods. Understanding the dynamics

of batch fermentation could be utilized for finding the optimal parameters for

fermentation processes [29].

Some of the challenging nonlinear dynamical system inference problems, including

but not limited with the gene regulatory networks exhibit a switching nature due to

the threshold phenomenon. In other words they are typical hybrid systems and

governed by switching differential equations. Dynamical properties of those types of

networks and their simplified versions were already studied as abstract gene network

models [11]. Besides, some dynamical systems which do not fit to global models

expressed by elementary mathematical expressions can be approximated by fitting

each portion of the model locally to a simple expression.

2.2.1 Key Concepts on Inference

Inference is the method of estimating the system dynamics from empirical observa-

tions. The continuous evolution can be represented perfectly only with a continuous

trajectory, i.e. with infinitely many observations. Naturally, storing the observations

in continuous time is not possible with finite bits of storage. Hence the empirical data

are available as a finite sample. With sufficient measurement accuracy and sampling

frequency, it is still possible to extract the underlying dynamics from discrete sam-

ple. In other words, we can mimic the continuous system with a finite sample and

employ the inference method of discrete systems on that sample. In the following

equations, X denotes the set of values of independent variables over time. yk denotes

9



the vector containing the values of dependent variables at time k and ŷk denotes

the corresponding estimates. The inference problem can be interpreted as a discrete

optimization problem as follows:

ŷk = fp(X),

p̂ = arg min
p

(
n∑

k=1

C(yk, ŷk)

)
. (2.1)

In this equation, the function f represents the mathematical relation used to es-

timate the values of dependent variables. C is a cost (or penalty) function, which

would typically be as a distance function in this case and the objective of the opti-

mization problem is to find the set of parameters p that minimizes the total penalty.

Hence, to define an inference problem as an optimization problem, a well defined

mathematical relation f should be defined in its parametric form first. Once we have

this type of function relating the independent variables to dependent variables, the

problem turns into curve (or in higher dimensions surface) fitting, i.e. finding the

optimal parameters that provide the best fit among observations and estimations.

In the mathematical sense, once the appropriate model class is determined, infer-

ence becomes finding the ‘best’ model parameters. The inferential modeling strategy

followed in this work proceeds in this manner; first the appropriate model class is

introduced and then the parameters of the system are found. The goodness of model

parameters is their ability to bring results that are similar to observations the system

yields under the same conditions. The maximum similarity can be expressed as the

minimum error between estimates and observations, in this aspect the best parame-

ters would be the ones minimizing the total error. Different error measures can be

used, but the most popular one is L2 error minimization and this method is adopted

in this study as well.

Having transformed the problem into a minimization problem, the most critical

aspects are the complexity of the selected model and the amount of empirical data to

be used in optimization. If we consider the model building problem as a curve fitting

problem, the model class determines the specifications on the shape of the curve.

More flexibility in the choice of curve allows higher approximation accuracy, however

increased flexibility would correspond to a broader class of possible models and this

would increase the complexity of the problem. The amount of data is another factor

regarding the complexity of the optimization problem in consideration. Therefore,
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at the model class selection stage, the amount of data should be taken into account.

If the data set is large, the model complexity should be kept low to compensate the

complexity arising from the data amount.

2.3 Networks - An Overview

In the classical theory of dynamical systems, the interactions between the variables

and system environment is analyzed. In this aspect, networks can be considered as

a subclass in which the primary emphasis is on the intervariable effects only. The

theoretical background of network theory coincides with the graph theory in math-

ematics and it has application in a varied range of natural sciences and engineering

disciplines including computer science, electronical engineering, physics, biology etc.

Furthermore, it has applications in social sciences like economics, and sociology as

well.

A network (or a graph) is a set of arcs and nodes. Considering the analogy with

dynamical systems, the nodes represent the variables or entities in the system and

the arcs represent the interaction between two nodes. In a communication problem

the nodes will be the servers and customers in the system and server-customer inter-

actions will be represented by arcs. In a logistics problem, the nodes may represent

the demand and supply points of certain goods and the arcs will denote the possible

routes of transportation among them; in this case arcs can be attributed with certain

capacities restricting the interaction at a certain level. In general, a network can be

considered as a map of interactions among entities. Directions should be attributed

to relations describing cause-effect relations or inflow-outflows. Further specifications

can be displayed on a network as well; the particular type of cause-effect relation can

be shown (a plus sign on the arc denoting activation and a minus sign denoting

repression) or in the case of flows, capacities of arcs (possibly due to physical lim-

itations) can be introduced. Hence, the networks can be considered as alternative

representation schemes for dynamical systems.

With the recent technological developments, various models have been employed

in mathematical biology and bioinformatics to describe gene regulatory systems. The

gene networks are of particular importance for this study since the results found here

about inference of piecewise linear models would be used in a project with priority

on functional genomics. The gene network modeling is a promising field offering long

term targets of innovations in intervention planning for genetic diseases and drug
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discovery.

The metabolic functions inside an organism are regulated by genes via protein

synthesis mechanism. The regulatory relations in a gene network, which is often de-

scribed symbolically by interaction graphs, can give idea about the processes occur-

ring within a cellular system. Gene networks are finite oriented graphs where nodes

represent the genes involved in the biological system of interest and arrows describe

their interactions: a positive (resp. negative) arrow from a gene to another represents

an activation (resp. inhibition) of the expression of the latter gene by some product

of the former [32]. Thus, estimating the underlying dynamical relations among genes

is crucial in understanding the biological phenomena. However, gene networks are

large and complex network structures and our knowledge on the interactions within

these networks is limited [15]. With the recent advances in microarray technology,

huge amounts of gene expression data can be obtained for analysis. The availabil-

ity of data stimulated the interest in modeling cellular networks and understanding

the gene interactions. This provides a strong motivation for deriving new methods

or improving current methods used for inferring the regulatory dynamics of gene

networks.

One of the widely accepted ideas in gene network modeling is the Boolean defin-

ition of state of a gene. Many researchers defines two states for each gene as active

or inactive (1 or 0 respectively). This approach is parallel to biochemical facts con-

cerning the metabolic reactions. Moreover, this definition also allows use of logical

Boolean functions, such as “AND” or “OR” that control the response of a component

to a set of inputs. Further specifications on the characteristics of the network is the

basis of difference between gene network models. For example, Kauffman used NK

models to model genetic regulation. An NK model defines a system considering of

N components with K interactions between them and each component can have any

number of states. Weber [41] emphasizes that these models are in themselves neither

biological, nor restrictively physical, but essentially mathematical. Considering the

dynamical system as a network, K can be interpreted the connectivity and N as the

number of nodes. Hence, an advantage of using NK models is the ability of making

estimation on the complexity related issues for the problem in consideration. In their

work, Perkins et al. [28] reached at an upper bound for the amount of data required

to infer the regulatory relations in a randomly generated NK network under certain

assumptions.

In the literature, there are different approaches proposed for inferring the regula-
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tory dynamics in gene networks. The Boolean networks, difference equation models

and piecewise linear equation models are among the popular frameworks for infer-

ential modeling. For the available models, finding a reliable and efficient inference

methodology is a commonly studied problem. [28] presents a method for inferring

models of gene expression dynamics by transforming the time derivatives of gene

expression values into Boolean states, ON and OFF and deriving logical rules for

activation and inhibition relations. [4, 23] suggest methods that employ gene pertur-

bations for understanding causal relationships between genes, [20, 19] use Bayesian

networks which model causal relationships between variables based on probabilistic

measure. The gene networks can be abstracted by complex system equations. Re-

cently, the approach of approximating the complex system equations with a piecewise

linear model has been studied [12, 26]. The piecewise linear formulation is preferred

due to existence of inherent switchings in the gene network.
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Chapter 3

Piecewise Linear Models

3.1 Properties of Piecewise Linear Models

A general deterministic system can be described by a functional F that maps the

input x(t) as a function of t to an output y(t). According to this definition, the system

defined by F is linear if and only if the following condition is satisfied for any two

given inputs x1(t), x2(t) and respective outputs y1(t) = F (x1(t)), y2(t) = F (x2(t)):

α1y1(t) + α2y2(t) = F (α1x1(t) + α2x2(t)). (3.1)

In the aspect of mathematical modeling, linear systems have favorable properties

[25]. For instance, a typical linear dynamical system is given in the equation 3.2

with a linear ordinary differential equation. Unlike most of the nonlinear dynamical

systems, this class of systems has analytical closed form solution, which is given in

the equation 3.3,

dy

dt
= My, (3.2)

y(t) = y0 exp (t − t0)M, ∀ y0, t0. (3.3)

Linearity offers advantages in input-output analysis as well. The behavior of the

response for a complex input can be analyzed by reducing the input as a linear com-

bination of simpler known ones. This representation of input would provide better

understanding for the output in the linear case since the output would also be a

linear combination of responses to known inputs. Due to their analytical advan-
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tages, the linear models are commonly used for approximating nonlinear systems by

linearization.

Nonlinearity is a widely observed behavior in various real world dynamical sys-

tems and it appears in many different ways. Without using any approximations or

simplifications, a very limited range of nonlinear dynamics can be modeled due to im-

mense complexity. The utilization of these simplificatory methods or approximations

is a critical issue since upon application of these methods, the abstraction may fail

to represent the phenomena with the desired level of similarity. The suitability of an

approximation method would depend mostly on the nature of the phenomena. Thus,

a characterization of nonlinearity based on the way of violation of linear intuition

can provide guidance for the selection of certain model features, possible approxima-

tions etc. Note that, the concept of linearity (or linear evolution) refers to any sort

of continuous evolution displaying the characteristics of linear ordinary differential

equations, i.e. the relation between derivatives and observed values of variables at a

given instance being linear.

Pearson identifies certain qualitative features for the system in terms of input

responses and considers the occurrence of these features as an implication of non-

linearity. He suggested a characterization for system’s nonlinear behavior based on

the level of nonlinearity [27]. The nonlinear behavior is classified into three classes,

namely mildly nonlinear behavior, strongly nonlinear behavior and inter-

mediate nonlinearity. In this way, not only the nonlinearity in the system nature

is detected empirically but also the feasibility of a probable approximation or sim-

plification method can be measured. Pearson’s study is focused on control problem.

According to him, the four important measures of model utility are, approximation

accuracy, physical interpretation, suitability for control and ease of development.

The first two are the common objectives of any modeling problem, thus the idea of

understanding the level of nonlinearity can be useful in the existence of nonlinearity

for other modeling problems. The suggested method of classification is utilized for

modeling issues in control applications; certain modeling features -e.g. special feed-

back, feedforward structures- and model subclasses are assigned to different levels

of nonlinear behavior. In a more general aspect, the level of nonlinearity can give

idea about the adequacy of replacing the nonlinear system with a substitute which

is sufficiently simplificatory to work on.

It is mentioned that the linearization is used for modeling nonlinear systems to

preserve the analytical advantages offered by linearity in the model. However, it
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might be improper to approximate a nonlinear system with a linear model if the level

of nonlinearity in the observed behavior is high, i.e. the accuracy of a linear model

built for strongly nonlinear behavior would be less than the case of a mildly nonlinear

model.

Piecewise linear models have been proposed for modeling nonlinear systems that

cannot be approximated accurately by linear models. A system is piecewise linear if

its state space P can be partitioned into disjoint subspaces (P = P1 ∪ P2 ∪ ... ∪ Pn)

such that linearity holds within each subspace. A piecewise linear dynamical system

can be represented by the switching differential equations as shown in equation 3.4:

dy

dt
= Ms(t)y + bs(t), where

s(t) = si if y(t) ∈ Pi. (3.4)

In the literature, the idea of using piecewise linearity have been considered for

different problems involving nonlinear dynamical systems [30]. Rewienski studied

trajectory piecewise linear approach to model order reduction problem of nonlinear

dynamical systems. In that study, he points out that the largest group of model order

reduction algorithms applies to linear systems, or more precisely linear time-invariant

(LTI) systems. The advantage of linearity can partially be preserved in nonlinear

dynamical systems with a piecewise-linear approach and this fact is introduced in

the explanation of the motivation of using trajectory piecewise linearity for model

order reduction problem in nonlinear systems.

The rationale of using piecewise linear approximations for representing the nonlin-

ear dynamics of regulatory systems exhibiting threshold phenomena is the suitability

of piecewise linear approximations for this particular nonlinear behavior. Considering

the mentioned critical measures, approximation accuracy and physical interpretation,

the piecewise linear approximations are satisfactory. The approximation accuracy of

piecewise linear models can be adjusted depending on the desired level of accuracy and

the parallelity of switching points in piecewise linear models and threshold regulated

switching in discussed dynamical systems provides a basis for physical interpreta-

tion. Piecewise linear models are also favorable in the aspect of qualitative behavior

matching. A satisfactory model should be capable of exhibiting the essential fea-

tures of the real world system. In that context, piecewise linear models with single

threshold per variable were investigated and many features supported by them was

demonstrated [26, 11]. Thus, we know that they can model systems exhibiting fixed
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point stable, periodic, quasiperiodic, chaotic, multistationary behavior, computation

etc. Secondly, piecewise linear models were studied and in the literature there exist

known methodologies for analysis and synthesis of them [36]. Therefore, piecewise

linear approximations of switching networks can be used for applications like long

term forecasting, intervention planning and control wherever possible.

3.2 Threshold Phenomena

The regulatory relations in dynamical systems can be interpreted as cause-effect or

action-reaction relationships among the system elements. The evolution of the affect-

ing element(s) in time would be a factor determining the evolution of the responding

element. A classification of the type of relation between affecting and responding

elements in the system can be useful at this point. The first type of relation will

be referred in this work as homogeneous, referring to the existence of response from

the responding element to every change in the affecting element at every level. For

example, in a predator-prey system, any increase or decrease in the population of one

of the species would affect the rate of change of both species no matter how small the

change is. In general, systems of differential equations are appropriate for modeling

homogeneous relations.

On the other hand, in certain cases, the response to the change in the affecting

element is observed just when a certain threshold value is attained. Thus the response

is not homogeneously observed at every level, it takes place after the certain value

is reached. The formation of action potential on the membrane of a nerve is an

example for the case that the response requires a certain level of electrical charge

difference. Prior to any stimuli, the nerve membrane is at resting potential. When

the excitatory stimulus is received, the sodium and potassium ions are carried by

the active transport, this continuous process is named as depolarization. As the

depolarization carries on, no response is given until the threshold for action potential

is attained. When the depolarization reaches this level, the action potential is formed

and carried through the nerve cell. If the excitatory stimulus is not powerful enough

to reach to the depolarization threshold, no message will be carried through the nerve

cell. In this example, the occurrence of the response at the threshold level is similar

to an ON-OFF switch in an electrical circuit which allows or blocks the current. The

nerve cell example demonstrates a particular class of threshold phenomena where the

threshold decides between response and no response. In a different case, the threshold
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of affecting variable can be considered as a switch that changes the characteristic of

the response of responding variable.

Threshold phenomenon is observed in various dynamical systems and its relation

with switching systems has been studied in the literature [6, 39]. There are different

dynamical systems in nature that the physical, chemical or biological occurrences

display this characteristic. The switching hybrid systems -hybrid systems governed

via switching differential equations- are appropriate for modeling those phenomena.

3.3 Suggested Piecewise Linear Model

In section 2.2, the possible objectives in the studies about understanding the nature

of dynamical systems were introduced; the aim should be providing a theoretical

basis for the observations or creating a model and infer its parameters or predicting

the future states of the system for the given conditions. The focus of this study is

the inference problem. Some of the challenging nonlinear dynamical system infer-

ence problems, including but not limited with the gene regulatory networks, exhibit

a switching nature due to the threshold phenomenon. In other words they are typical

hybrid systems and governed by switching differential equations. Dynamical proper-

ties of exemplary networks and their simplified versions are studied as abstract gene

network models [11]. The idea of piecewise linear models and inference of locally

linear system parameters has been studied in gene network literature [15, 1] and

these ideas are adopted in formulation of suggested model. Besides, some dynamical

systems which do not fit to global models expressed by elementary mathematical ex-

pressions can be approximated by fitting each portion of the model locally to a simple

expression. Taking all these into consideration, this work aims to propose an infer-

ence method nonlinear dynamical systems displaying switching property regulated

by threshold phenomena by using piecewise linear approximations.

Nonlinear behavior is observed in many systems in different ways. While using

more complex models that would capture the nonlinear behavior of these systems,

there is always a trade off between complexity and model fit quality. Piecewise linear

formulation can approximate complex systems with an adjustable approximation

accuracy. Moreover, the advantages of linear systems can be preserved with this

formulation [26]. Hence, the piecewise linear models have favorable properties in the

aspect of this trade off. In this study, we focused on inferring regulatory relations in

linear switched hybrid systems which are governed by threshold phenomenon. The
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specifications of these systems can be abstracted as follows:

ẋt = Ms(xt)(xt) + bs(xt). (3.5)

Here, the parameters M and b are determined by the system state at time t

and x denotes the continuous variable(s). Having introduced the state dependence

of piecewise linear model, we should explain what the states are. As mentioned

previously, we focused on systems in which the regulatory relations are explained by

a single threshold per variable. The state of the system s(xt) in the suggested model

is a vector formed by 0 or 1 values where each 0 means that the corresponding variable

is below its threshold and 1 means the corresponding variable is above its threshold

at that instant. It is obvious that, there are 2n states for a system composed of n

variables. With this definition, a state transition can be interpreted as the change

in a single element of the Boolean sequence that represents the state. Let s(t) be

the state of the system at time t and Bi(t) be the Boolean state of the ith variable

(vari) in the network. If vari exceeds or falls below the threshold in the time interval

[t − 1, t), the state transition can be written explicitly as follows:

s(t) = (B1(t), B2(t), .., Bi(t), .., Bn(t)), where

Bj(t) = Bj(t − 1), ∀ j 6= i

Bj(t) = 1 − Bj(t − 1), ∀ j = i. (3.6)

In this formulation, a state transition triggered by the threshold crossing of a

variable in the system would be observed as a switching in the activity of other

variable(s) in the system. So it is assumed that, every switching occurrence in the

evolution of a variable is due to another one crossing the threshold, which we call

activator or repressor depending on the type of effect. Furthermore, it is assumed

that this regulation relation is always the same for the same transition occurred

at different times. The repeatitivity of the identical regulatory relation with same

outcome enables characterization and identification of switching occurrences from

empirical data. In the empirical approach, it is a commonly used way to group likely

occurrences together based on some measure of similarity and compare the condi-

tions at these instances to find some clue about the possible reasons of the observed

phenomena. That is, for a repeated event, certain parameters are recorded to keep

track of the conditions and the existence of the same condition at every occurrence

19



of the event in consideration is a statistical evidence supporting a causal relationship

between the event and the observed condition. This is quite similar to accepting that

smoking is one of the factors leading to cancer based on the observations on smoking

habits of cancer patients. At this point, it should be noted that likelihood based

statistical evaluations are necessary to differentiate between causal relationships and

accidental generalizations.

The state space partitioning defined by the thresholds is discussed in section 3.2.

Geometrically, we assume that state transitions are allowed between neighboring

subspaces, i.e. no more than one threshold crossing is possible in the time interval [t-

1,t). The possibility of two variables to attain the threshold value of each at exactly

the same time is very close to 0 and we can avoid contradictory observations by

increasing the sampling frequency in the experiment design. Hence this assumption

is also reasonable. Following remarks can be made for these assumptions:

1. No variables regulate itself by a threshold mechanism; when a variable crosses

the threshold, a switching occurs in another.

2. The same threshold crossing always causes the same switching.

3. A direct transition is not allowed between two states if there are more than one

different elements in the sequences. See Figure 1 for the possible transitions in

a 3 variable network.

001

100

101

011

110

000 010 111

Figure 3.1: Possible state transitions for 3 variable network

In the figure, all possible state transitions are shown for a 3-variables single thresh-

old system. Double-sided arrows represent the transitions could occur in both direc-

tions. A transition between states (000) and (110) is not depicted because for such
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a transition to occur, var1 and var2 should exceed the threshold at the same instant

and this contradicts with the third assumption. However, that kind of a state change

may occur indirectly in two steps.

The self regulation of variables is not allowed because it would result in zeno

effect, infinitely many transitions in a finite time with the current formulation which

suggests single threshold for each variable. However, this problem can be prevented by

introducing refractory periods, the minimum time delays between consecutive state

transitions. (See [25] for further information on zeno effect and refractory periods).
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Chapter 4

Inference Algorithm

4.1 Outline of the Algorithm

Up to this point, the model selection process and the parameter inference problem has

been explained in detail. Regarding the specifications of the systems in consideration,

the method we propose can be summarized in the following steps:

1. Detection of state transition instances: The observed dynamics is ap-

proximated by a piecewise linear model. Once we detect the state transition

instances, we can break observations from the piecewise linear model into phases

in which linearity is preserved.

2. Inferring regulatory relations: By observing the similarities at state tran-

sition instances, the regulatory relations (in terms of activation and repression)

can be inferred according to the assumptions on system nature.

3. Inferring system parameters: With the assumption of piecewise linearity,

we interpret the system behavior as consecutive linear behaviors with different

parameters. Once we know the regulation mechanism of state transitions, the

parameters of the observed states can be inferred easily.

Detection of the state transition instances is the first step in the inference method

that is proposed here. In section 3.3, the rationale of tracking the occurrence of same

-or at least similar- events to predict the underlying factor triggering this particular

occasion is explained. In the suggested framework, only the interactions among the

variables are taken into consideration. To sum up, the triggering mechanism for a

switching is assumed to be a state transition or in other words a threshold crossing.
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Table 4.1: Values of All Variables in the System at Switching Times First Variable

Switch Time Var1 Var2 Var3 Var4

t=t1 0.612 0.388 0.498 0.232

t=t2 0.471 0.212 0.501 0.272

t=t3 0.154 0.746 0.5 0.621

t=t4 0.522 0.343 0.506 0.506

t=t5 0.312 0.156 0.503 0.850

t=t6 0.014 0.545 0.498 0.214

Thus, if the same type switchings observed in the evolution of the a given variable

can be identified, then there will be the chance of doing a comparative analysis

for investigating the regulatory variable(s) controlling the evolution of that given

variable. Therefore, after the same type of switching instances are located on the

trajectory of a given variable, the values of the other variables should be compared at

these instances. For the sake of consistency, the same switching observed in different

times should be initiated by the same factor. Hence, if the values of a variable

measured in two distinct switching instances are significantly different, then this

variable cannot have a regulatory effect on this variable. If any variable takes very

close values at all occurrences of the same type of transition for a given variable, then

it is reasonable to assume that it is a regulator variable.

Consider the case demonstrated in the following table. The tabular data denotes

the values of all four variables in the hypothetical system recorded at the switching

instances of variable1. If one of the given variables initiate the switching in first vari-

able by a threshold crossing, its value should be almost the same in all six switching

instances. When the values in the columns are checked, variables 1,2 and 4 takes

quite dissimilar values at state transition instances whereas variable3 takes values

very close to 0.5. Under the assumptions given in section 3.3, we can conclude that

the third variable triggers the switching in the first variable. Moreover, as the regu-

latory relations are defined in terms of threshold crossings, we can conclude that the

threshold of variable 3 triggering the switching in variable1 is 0.5.

Having found the regulatory variable, it is quite easy to determine the type of

effect, whether it is activation or repression. In the hypothetical example introduced

above, the switching times are the instances when the third variable exceeds or falls

below its threshold. When the derivative estimates at those instances is available for
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third variable, it can be stated that the third variable exceeded (corr. fell below)

the threshold if the derivative of the third variable around the switching instance is

positive (corr. negative). Then, we conclude that the third variable activates (corr.

represses) the first one if the first variable undergoes an upwards (corr. downwards)

trend when the third variable exceeds the threshold and a downwards (corr. upwards)

trend when the third variable fells below the threshold.

The operations carried out for detection of the regulatory relation affecting variable1

can be repeated for all variables in the network and when all the regulatory relations

are identified in this way, the behavior of the system at any given time can be de-

termined by the thresholds. Hence, the observations of the system over time which

could be approximated by a piecewise linear model can be split into separate phases

in which the evolution can be approximated by a linear relation. This is the third

step in the algorithm outlined above. Once the linear parts of the piecewise linear

model are distinguished, it is easy to infer the parameters of the linear evolution by

regression.

The main frame of the inference algorithm is explained up to here but there

are still remaining challenges in the achievement of these steps. In the first step,

the detection of state transitions from empirical data is required. In the second

step, the comparisons will be carried out for all variables and there is still ambiguity

in the notion of values at certain time points to be very close to each other. In

the remaining parts of this section, the techniques employed for overcoming these

problems will be introduced and the adequacy of these techniques for the inference

problem in consideration will be discussed. The programs used for each task and the

links among them are explained. The validity of the techniques employed in these

programs to achieve certain tasks is also discussed to validate the conformity of the

programs with the tasks they are involved.

4.2 Estimating Continuous Dynamics from Discrete Ob-

servations

Inferential modeling is based on building up a model that would display desired

characteristics of a system. It is possible to track and store all information in discrete

event systems over a finite time period since there are finitely many events (jumps)

to observe. Once the type of relation governing the dynamics of the discrete event

system is known, the parameters of the discrete system can be inferred. On the other
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hand, the continuous events (flows) can partially be observed since the observations

on the desired measures of the system can be done on a discrete time basis and there

is limited storage for the data gathered from the measurements. The continuous

evolution should be approximated by interpolation through discrete observations.

0 1 2 3 4 5 6 7
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3

4

Y(t)=(Y(t−1)+Y(t−2))/2

−10 −5 0 5 10
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0

1
X(t)=sin(t)

Figure 4.1: Discrete vs. Continuous Events

The information content of the discrete event shown in the figure 4.1 is the data

containing the sizes of the equally-spaced jumps. Using these information, the model

parameters explaining these jumps can be inferred if it is known that the value of

the discrete variable at a given time t depends on the values at time t− 1 and t− 2.

On the other hand, the continuous event in the figure cannot be stored as a series of

discrete observations with full accuracy; it could be discretized and then stored as a

discrete series.

The empirical data obtained from experiments and observations on the system

would be used to measure the concordance of the abstraction with the observed

system dynamics. Since the procedure is data-driven, the quality and reliability of

data plays a critical role in the success of the procedure. In other words, even if

an appropriate inference methodology is successfully implemented, if the data is not

good enough the abstraction will not be capable of representing system’s behavior.

The reliability of data is related to the accuracy of the measurements. The mea-

surements should be unbiased and the noise arising from experiment setup should be

kept at a reasonable level. The term quality refers to capability of the discrete data
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in representing the continuous evolution. The continuous evolution in the system is

approximated with an interpolation through the discrete data. The discrete data is

generally recorded with successive measurements repeated with a fixed frequency. At

this stage, attention should be paid in the selection of the measurement frequency. A

continuous signal could become distorted due to poor sampling, that is the interpo-

lation of the discrete data gives a signal displaying different characteristics from the

original one.This problem is known as aliasing in the signal processing terminology.

In the section 3.3, it is mentioned that the continuous evolution within an in-

variant subspace (i.e. a given system state) is determined by a linear first order

differential equation (See equation 3.5). To infer the unknown parameters of the

ODE governing the evolution in an invariant subspace, linear regression can be em-

ployed on the discrete data that belongs to the given subspace since there is a linear

relation between the observed values(xt) and time derivatives(ẋt) of the variables in

the system. Although the observed values are known, the time derivatives for the

sampling instances should be estimated from the observed values prior to the infer-

ence of the parameters. When these estimates are found, the system of ODEs would

be transferred into an overdetermined system of linear equations and the best-fit

parameters of this system could be found by regression.

The importance of estimating the switching times accurately has been discussed

in the previous sections. First of all, the derivative estimates are required for both

discretizing the linear ODE system. Moreover, derivative estimates can also be em-

ployed for detecting the switchings from the empirical observations. The details of

the method used in switching detection is explained hereafter.

4.3 Derivative Estimation

Up to here, the importance of estimating time derivatives for system discretization

have been discussed. After the system is converted into an overdetermined linear

system, if the boundaries between different linear behaviors can be detected efficiently,

the piecewise linear data set can be split into linear pieces and then the parameter

inference problem can be reduced into a simple linear regression problem.

As its name suggests, the piecewise linear behavior can be recognized by the

existence of different linear behaviors in different phases of the evolution. If two

consecutive phases are governed by two systems ODEs with different parameters,

this would be observed as a change in the pattern on the trajectory. The different
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patterns are expected to result in the occurrence of non-smoothness at the transition

instance between two consecutive phases. Thus, for a piecewise linear model, detect-

ing the nonsmoothness on the trajectory is equivalent to detecting the switching in

the evolution of one of the variables.

From calculus, we know that a function is smooth at a point if the left- and

right-hand derivatives are equal for the function at that point. Thus, the points

of nonsmoothness on the trajectory of function values would be transformed into

jumps after differentiation. Jump detection problem has been studied deeply in

signal processing [21, 42, 40]. By transforming the problem from nonsmoothness

identification on observed values to jump detection on derivatives, we take advantage

of the possibility to adopt the methodology used for similar problems in a different

field. The details about jump detection will be discussed further in the next section.

Up to now, the point of estimating the time derivatives from empirical obser-

vations has been discussed. At the first level, the derivative estimates are used in

reducing the complexity of inferring the piecewise linear model by providing us a tool

for splitting the system into linear parts. Afterwards, the derivatives are used in the

discretization of ODEs. Apparently, the derivative estimates play a critical role in

the inference method proposed in this work and that is a strong motivation to discuss

the key concepts about numerical differentiation in this part.

4.3.1 Numerical Differentiation

For a given smooth function, integral of the function over an interval is found by

the limit of a sum of infinitesimal quantities and the derivative at a given point is

obtained by the limit of a ratio of infinitesimal quantities. The elementary methods

of numerical differentiation and integration are based on these definitions and they

are quite alike. Let f be a continuous function whose values are known only at n + 1

time points in the interval [a, b]. Then, for the function f , the integral and derivative

estimates can be numerically approximated as follows:

∫ b

a

f(t)dt ≈

n∑

i=1

(f(ti) ∗ (ti − ti−1)), (4.1)

df

dt
(ti) ≈

f(ti) − f(ti−1)

ti − ti−1
.

These definitions are not unique but any estimate derived from the limit defi-
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nitions would have a similar form. Here, numerical differentiation is analyzed on

a comparative basis with numerical integration to explain the noise sensitivity of

derivative estimation. In the integral approximation in equation 4.2, the empirical

values are summed up which means the possible error is the term found by the noise

factors multiplied with the differences. Adding noise terms allows cancellation and it

suppresses the effect of noise automatically. On the other hand, in the derivative esti-

mation with difference equations, the noise term changes the nominator of a quotient

whose denominator can be small as well. So, if the differences are small, the effect

of noise would be amplified and this will harm the reliability of derivative estimates.

Even if the noise is not amplified by the division, the advantage of cancellation oc-

curred in integration does not work for difference equations in general. This drawback

of difference equations motivated use of other techniques for derivative estimation.

The notion of noise is frequently emphasized throughout this work since existence

of noise is inevitable in almost all empirical data and to generate a robust algorithm,

the effects of noise should be suppressed. For example, gene networks are widely

studied systems which display the switching behavior and [20] points out that in re-

alistic situations, gene expression measurements are noisy. This particular example

points out the importance of robustness for an inference method. A similar approach

employing piecewise linear model formulation for inference of gene networks sug-

gested difference equations for discretizing the system of ODEs [1]. Unlike numerical

integration, estimating the derivative of a function at a discrete set of points with

the formula given in equation 4.2 is a sensitive problem as small perturbations can

cause large changes. Thus, the inherent noise in gene expression data makes finite

difference approximation unfavorable in the aspect of robustness. Instead of using

difference equations, fitting some continuous function to the given discrete data and

then differentiate this function to estimate the derivative is expected to yield more

robust results.

At this point, the performance of two derivative estimation methods, difference

equations and curve fitting will be compared on examplary discrete data. The first

graph in the figure 4.2 depicts a continuous spline defined over the time interval

[−Π, 2] with continuous first order derivatives (it composed of sine function on [−Π, 0],

identity function on [0, 1] and exponential function ex−1 on [0, 1]). The discrete data

obtained from observations on this system are simulated by sampling the continuous

function every 0.01 seconds and adding random noise on it. The second graph depicts

that empirical data.
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Figure 4.2: The Actual Continuous Pattern and Simulated Empirical Discrete Data

The derivative of the original spline can be found by differentiating the continuous

functions composing the spline analytically. The difference equation estimates are

obtained by the equation 4.2. The Matlab code used for the evaluation of derivative

estimates of local curve fitting method can be seen in Appendix 1. The graphs in

the figure 4.3 belong to actual derivatives, local curve fitting estimates and difference

equation estimates respectively. It is clearly seen that local curve fitting method

significantly outperform difference equations in terms of approximating accuracy.

For numerical derivative estimation, curve fitting to the discrete data is recom-

mended in the literature also [17]. The theoretical frame of this method is simple, the

unknown continuous evolution function is approximated by a function whose deriva-

tives can be found analytically. Finding the best fit parameters of the approximating

function is an optimization problem whose complexity is determined by the type of

approximating function and the number of discrete data along which the curve fit-

ting will be done. After evaluating the approximating function, the derivatives of this

function at given time points can be used as estimates of the derivative of the un-

known evolution function. The strongest motivation of using curve fitting is finding

robust derivative estimates. The perturbations arising from noise in empirical data

are smoothened by curve fitting and this yields more robust derivative estimates.

Although the derivative estimation with curve fitting method gives more robust
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results, it has the drawback of increased computational complexity in comparison

with difference equations, which means an increase in the cost of computation. To

have a robust inference algorithm with a reasonable computational cost, efficient ways

of using curve fitting should be found to keep this complexity at a reasonable level.

The complexity of curve fitting process heavily depends on the complexity of

the function to be fitted and the number of discrete points along which the curve

fitting will be done. In many cases, thousands of discrete time observations are

made to understand the continuous phenomena. Fitting a single function to all the

data and trying to find the optimal parameters for this function would be inefficient.

Instead, the curve fitting procedure could be done repeatedly on smaller intervals

including reasonable number of data points. For example, consider a case where

the number of observations, m = 1000, and the derivative estimates at these 1000

data points are required. In this case, local curve fitting could be applied by fitting

approximating functions to small data sets, e.g. consisting of 20 observations each.

In this case, 50 different curves would be fitted to 50 different groups of data and

the derivative estimates of the points in each group can be approximated with the

derivatives of corresponding approximating function. This idea is closely related with

the notion of windowing in signal processing. A window function is a function that

vanishes outside of some chosen interval. If the value of windowing function is taken

1 inside the interval, the multiplication of the window function with any discrete or

continuous function would be equivalent to restricting the domain of the function on

the windowing interval. The small groups for local fits can be obtained with this type

of multiplication by choosing the size of the windowing interval (window-size) such

that desired number of observations would stay inside. By shifting the interval of

local fit along the entire discrete empirical data set, a family of windowing functions

would be obtained and the data can be partitioned into small groups with these

functions.

The rationale of using local curve fitting for robust derivative estimation has

been discussed up to this point. Proper attention should be paid on the further

specifications on the choice of approximating function and the window-size. From

this point on, the focus of discussion is shifted to the derivative estimation in piecewise

linear models or switching dynamical systems. The issues that should be taken into

consideration for choice of approximating function and determination of window-size

for this particular problems is explained thoroughly.

1. Appropriate function type for curve fitting: As mentioned above, the
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motive for fitting a function to discrete data is to estimate derivatives by differ-

entiating the approximating function. Finding the parameters of the approxi-

mating function is an optimization problem and efficiency of the algorithm in

finding these parameters is very important since this problem would be solved

over and over for each window. After finding the approximating function, its

derivatives should be calculated. Taking these aspects into consideration, the

approximating function should be chosen so that the computation cost of eval-

uating the function values and its derivatives should be low. Due to analyti-

cal advantages in differentiation and low cost of computation, polynomials are

commonly suggested as the function family to be fitted [17, 7, 33, 13]. For a

polynomial of degree n, finding the coefficients of the derivative function, which

is again a polynomial of degree n − 1 at most, requires n multiplications. For

the same polynomial, the computation of function values at a given point re-

quires n additions and n multiplications. Polynomials outperform the function

families containing exponential and/or sinusoidal terms with respect to these

measures.

The family of polynomials are considered to be appropriate for curve fitting.

The final specification of approximating function is the degree of the polyno-

mial. For better interpretation of the importance of polynomial’s degree, some

particular choices should better be discussed. As an extreme case, if a first de-

gree polynomial is selected as fitting function, the problem turns into best line

approximation. Since the resulting approximation will be a line, it will yield

constant derivatives on the chosen window. Since the continuous evolution is

assumed to be governed by switching differential equations, the linear approx-

imation to this function is too simplistic; especially in the windows containing

a switching point. This kind of oversimplification may result in inability in

finding the jump occurrences in time derivatives which indicate the switching

instances.

On the other hand, if we choose the maximum degree, which is the number of

data points in the window, the problem would be transformed into interpola-

tion. Full degree polynomial interpolation is not favorable in the interpolation

methodology since it is likely to yield undesired oscillatory behavior in the

interpolant. Moreover, the first order derivatives would be sensitive to pertur-

bations in that case [17]. Hence polynomial interpolation is not suitable for

numerical derivative estimation with noisy data. Thus, depending on the num-

ber of points to which the polynomial would be fitted, an appropriate degree
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should be selected in between. When the degree increases, the noise sensitivity

would increase as well. On the other hand, when the degree is too low, the

best fit polynomial would be a loose approximation. This trade off between

approximation accuracy and robustness should be taken into consideration in

the determination of degree.

2. The window of curve fitting: The amount of empirical data required for

a realistic and accurate model inference is quite high. Fitting a polynomial

to huge amounts of data points would be very inefficient computationally or

maybe impossible. Thus, instead of fitting a single curve to the entire data

set, local polynomial fitting should be employed. This approach is quite similar

to use of splines in the polynomial interpolation through large number of data

points. Whether the problem is interpolation or curve fitting, use of piecewise

polynomials offers lower degree polynomials which decrease the oscillations and

increase the accuracy significantly.

The most important parameter of the windowing function is the window-size.

In our formulation, the window-size refers to the number of discrete data points

to which a local polynomial would be fitted. In the next chapter, a hypothetical

switching hybrid system example is simulated and the inference methodology

is implemented. In that part, the degree of the polynomial and window-size are

determined experimentally. Both parameters are manipulated and the resulting

plots for derivative estimates and curves fitted to discrete data are analyzed in

the aspects of fitting quality to discrete data and the noise sensitivity.

The shifting of window along the discrete data ensures estimating the deriv-

atives at all data points. If the shift is chosen to be equal to window size,

one derivative estimate for each point would be obtained. However, if only at

each step, more than one derivative estimates would be found. Assume the

window size w = 5. If the window is shifted by five data points at each step,

the first polynomial would be fitted to data points 1 to 5 and the derivative

estimate for data point 5 would be found by the approximating polynomial in

this window. On the other hand, if the window is shifted by one data point,

the first five windows would include the data points 1 to 5, 2 to 6, 3 to 7, 4

to 8 and 5 to 9 respectively. All first five windows would include the fifth data

point, hence five different derivative estimates from each approximating poly-

nomial can be obtained for that point. Averaging the derivative estimates from

different windows containing the same point is expected to yield more robust
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results, therefore this type of window shifting is implemented in the computer

algorithms codes written for the proposed inference method.

The cost of computation is an important criteria for the choice between different

methods. The cost of derivative estimation can roughly be interpreted in terms of

the parameters determining the computational complexity. Let D denote the size of

discrete data set, m denote the window-size of local fitting and n denote the degree

of locally approximating polynomial. The shifting by one data point in each step

requires solving D−m+1 polynomial fitting problem. Fitting a polynomial of degree

n to m data points requires solving an overdetermined linear system of dimension

m ∗ (n + 1). For each window, the derivative of the fitting polynomial should be

found analytically and the derivative function, which is another polynomial of degree

(n− 1), should be evaluated at all data points in the window. For a given time point

t, m-many derivative estimates would be found from different windows intersecting at

t and a weighted average of these estimates would be used as the derivative estimate

at ẋt. Using these information on the iterations, the computational cost of finding

the derivatives in terms of elementary operations (additions, multiplications etc.)can

be estimated.

There are studies in the literature where local polynomial fitting is employed

in estimation problems. Recently, the polynomial fitting approach in nonparamet-

ric regression estimation has become popular and this approach is studied by many

researchers [7, 33, 13]. Masry points out that local polynomial fitting approach is su-

perior to the Nadaraya Watson estimator in the context of estimating the derivatives

of the regression function [24].

4.4 Jump Detection

Finding the boundaries between different linear behaviors is the most critical part

of the inference algorithm since it is the fundamental tool used for finding intervari-

able regulatory relations and the thresholds governing these relations. It has been

explained that the switchings in the continuous evolution appear as jumps in the

estimated time derivatives. Thus, detecting the jumps is used for finding the switch-

ings. A very similar technique is used in data mining for event detection from time

series data. The aim of employing event detection is to divide the continuous time

observations into different episodes separated from each other by certain events. Af-

terwards, the function to be used in curve fitting in the interval between successive

34



change points is decided and model parameters are inferred [16]. In this frame, the

switching instances can be considered as the events to be detected and the piece-

wise linearity can be interpreted as the linearity within the episodes violated with

switching events at the boundaries.

Pictorial explanation of jump detection in time derivatives can provide better

understanding. Figure 4.4 depicts the synthetic data generated according to the

piecewise linear evolution in which each component has repressilatory effect on an-

other (var1 inactivates var2, var2 inactivates var3 and var3 inactivates var1). The

repression designated here can be interpreted as the decay of the affected variable

after the repressor variable exceeds its threshold; the threshold for all variables is

taken as 1 in the simulation. The particular choice of regulatory relations among the

variables resulted in successive growth and decay phases in the evolution of all three

variables. Figure 4.5 depicts the time derivatives estimated from discrete data via

local polynomial fitting.
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Figure 4.4: Synthetic data for 3-variable network

Finding the switching instances of variables is the key point for inference based on

piecewise linear approximation. However, there is no straightforward way of detecting

the instances when the evolution is nonsmooth since the empirical observations are

available as a discrete time series. At the switching instances of affecting variables,
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Figure 4.5: Estimated time derivatives of data in Figure 2

the simulated continuous evolution trajectory of the responding variables fail to be

smooth as expected. For the time derivatives, those instances corresponds to jumps.

From calculus, we know that nonsmoothness of function at a point p corresponds

to jump in the first derivative at the same point. Thus, each jump occurrence in

the estimated time derivatives indicates a switching provided that the estimates are

reliable.

To detect the jumps in the time series, the jump detection techniques studied

in signal processing are adopted. Wavelet analysis has been implemented to various

problems in the literature including detection of image edges[35] and extraction of ob-

jects from complex backgrounds [34] in image processing, tracking-based estimation

of support boundaries[5] and sharp cusp detection [40]. In the method implemented

here, discrete high pass filters are employed to convert jumps into impulses. The con-

volution of time derivatives with the appropriate high pass filter yields another time

series that have values close to zero at points where the approximation is smooth.

At the points of switching instances, the convolution yields a positive or negative

impulse depending on the direction of jump. The first graph in 4.6 depicts an ex-

emplary discrete high pass filter that can be used for this type of problem. The

second graph belongs to the estimated time derivatives of a variable in a simulated 3
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variable repressilatory piecewise linear model. In the last graph, the convolution of

derivatives with the suggested filter is given.
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Figure 4.6: Jump detection using convolution with high pass filter

The method of switching detection for a given discrete time-series data can be

interpreted as a series of transformations. Replacing the derivatives with observed

values ensures the transformation from a piecewise smooth approximation function

disturbed by sharp edges to another piecewise smooth function separated with jumps.

At the latter step, convolution with a high pass filter allows representation of the

series of jumps as an impulse train. The positive (correspondingly negative) impulses

appearing in the convolution of derivative estimates and high pass filter, correspond

to a down-jump (corr. up-jump) in the derivatives. For the bi-state (ON or OFF)

switchings, this up-jump(corr. down-jump) indicates to an OFF-to-ON(corr. ON-

to-OFF) switching. Impulse detection from discrete data is an easier problem, the

significantly large values (in the absolute sense) can be tracked via comparison with

a benchmark. This reference level is depicted as the straight lines in the last graph

in figure 4.6.
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The importance of robustness of derivative estimates can also be understood

better with the interpretation of switching detection along these steps depicted in

figure 4.6. If there is noise in the data, this will cause perturbations in the first

graph. If these perturbations could not be suppressed in the second step, artificial

jumps generated by random noise would occur in the second graph which would make

the identification of original jumps corresponding to switching detection harder. At

the last step, the clearly interpretable impulse train structure would be replaced by

frequent oscillations and the method would possibly fail to detect the switchings in

the designated way.

4.5 Summary of the Inference Method

The problem studied in this work is inferential modeling of hybrid system evolving

according to switching differential equations governed by threshold phenomena. The

rationale of piecewise linear approximations has been discussed in chapter 3 and the

steps to be followed after the detection of switchings has been discussed.

• Step 1.Estimate the derivatives of the responding variable from discrete empiri-

cal data. A Matlab code is developed for estimating derivatives from time series

discrete evolution data (See derest.m in Appendix 1). The function has two

more input parameters other than discrete data, the window-size and degree

of the local approximating polynomial. These two parameters should be set

carefully since they determine the approximation accuracy of the locally fitting

polynomials and the computational complexity of derivative estimation proce-

dure. In the hypothetical example discussed in this work, these parameters

are found experimentally taking these issues into consideration. The function

returns the denoised data obtained by fitted polynomials with the derivative

estimates and these can be used in the inference of the parameters governing

the continuous evolution.

• Step 2.Convert the jumps in estimated derivatives into impulses. A Matlab

code is developed for detecting the jumps in time derivatives [See jump-time.m

in Appendix 2]. This function evaluates the derivative estimates by calling

the function derest.m and used a gaussian high pass filter. This filter can

be interpreted as the complement of gaussian function and it is derived from

gaussian low pass filter by multiplying the second half of the gaussian filter
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with −1 (this filter is depicted in first graph of figure 4.6). The gaussian filter

has two input parameters. These values are found experimentally as well. The

critical issue about the filter is that the first parameter determining the size

of filter should be even for the sake of symmetry of the high pass filter. The

convolution of derivative estimates with the high pass filter yield the desired

impulse structure.

• Step 3.Detect the switching instances. The impulses correspond to switching

occurence. Detection of an impulse from a discrete time series can be achieved

by using comparison with a benchmark level (the benchmark is determined

experimentally). The benchmark level for the hypothetical example is depicted

as the straight lines in last graph of figure 4.6). In this part of the algorithm,

the instances at which the values exceed the benchmark level are recorded. In

this way, finding the peak of the impulse is not possible in general; an interval

around each impulse would be found. Since the impulses are expected to be

symmetrical, the midpoint of each interval is taken as the switching instance.

• Step 4.Infer the affecting variable and the threshold. It is explained in section

4.1 that the function values of the affecting variable should be very close to

each other at all switching occurences in the responding variable. Having de-

tected the switching instances, the values of all variables can easily be tabulated

and the mentioned comperative analysis can be carried to infer the regulatory

relation.

• Step 5.Infer the all regulatory relations in the system.The first four steps should

be repeated for all variables so that the all the regulatory relations would be

inferred and the corresponding thresholds would be found.

• Step 6.Infer the parameters of continuous evolution. When all the thresholds

are known, the invariant subspace partition in the hybrid system formalism

can be determined. Within each invariant subspace, the continuous evolution

is governed by a system of linear ordinary differential eqeuations. The pa-

rameters of the discretization of ODEs in each subspace can be inferred from

empirical data and these parameters can be used as estimates of the parameters

of continuous evolution.
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Chapter 5

Application of the Method

5.1 Application on Simulated Example

The proposed inference method is explained in detail in the previous chapter. Demon-

stration of the method on exemplary data can be useful to make implementation

procedure more clearly understood. In this part of the thesis, the method would

be implemented on the discrete data generated by a simulation. The main Matlab

functions employed in every step will be explained. For the sub-functions called by

main functions in the iterations, the Matlab files in the Appendices should be viewed.

The simulated discrete data belongs to 1000 observations from a 3 variable switch-

ing dynamical system evaluated by equally-seperated sampling with a sampling rate

100 samples per unit time. The desired qualitative behavior is created by introduc-

ing and the possible state transitions, initial states, initial values and the threshold

levels for each variable. It has been discussed that the empirical observations on

the dynamical systems are subject to noise; therefore gaussian noise is added to the

simulated data to have a more realistic demonstration. The results are depicted in

the Figure 5.1.

The detection of switching instances for each variable is the first task. The M-file

jump-time.m is developed for switching time estimation for a given variable. The

first input is the discrete observations for the chosen variable as a row vector. The

following input parameters are the window size of averaging and degree of approxi-

mating polynomial mentioned in derivative estimation and these parameters belong

to the sub-function derest.m. The length of the high pass filter that will used for

transforming jumps into impulses is the third input to be determined by the user

accompanied with window size and polynomial degree. The last input parameter for
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Figure 5.1: Simulated Discrete Data for Switching Dynamical System

jump-time.m is the time interval between consecutive observations, which is 0.01

for this problem.

As mentioned previously, the determination of window size, polynomial degree

and filter length has been done experimentally. The important point that should be

taken into consideration at this step is that window size should be an odd number

and filter length should be an even number for the purposes of symmetry. The code

jump-time.m is designated so that the impulse structure is represented graphically

with a figure after each run (an example is given in Figure 5.2). After a few trials with

different parameters, these figures should guide the user about how to manipulate

each parameter.
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Figure 5.2: The Graph of Impulse Structure for First Variable

The output of the Matlab function does not directly provide the switching oc-

curence times. Each switching occurence is detected in an interval instead (See table

of outputs). Consider the values found for the first variable. The first switching is

detected in the interval [1.22,1.31]. For locating the exact switching instance, the

midpoint of each interval can be used since the impulse structures are expected to

be symmetrical around the peak. Using this idea, the switching instances for each

variable are obtained.

From this data, the switching instances can be classified as shown in the following

table:

Having found the switchings, the regulatory variables and corresponding thresh-

olds can be inferred. This step requires the comparison of values of each variable at

the switching instances of the variable whose regulator is to be found. For instance,

the values of each variable at the switchings of the first variable, the values of all

variables are tabulated in table 5.3. It is previously stated that, the variable which

takes close values in all switching times is the regulator. At the switching instances

of the first variable, the second variable takes values in a narrow range around 1,

hence the second variable is taken as the regulator for the first. The mean of values

of second variable is taken as the threshold value. For estimating the type of the

regulatory relation, whether it is regression or activation, the derivative estimates of

variables should be analyzed around the switching instances. For example, the first

switch of variable 1 occured at t = 0.93. Right after the switching, the first vari-

able has negative derivatives, indicating the start of a downward trend. In the same
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Table 5.1: Output of jump-time function applied to all three variables

up1 up2 up3 down1 down2 down3

0,90 0,36 2,99 2,53 1,99 1,47

0,91 0,37 3,00 2,54 2,00 1,48

0,92 0,38 3,01 2,55 2,01 1,49

0,93 0,39 3,02 2,56 2,02 1,50

0,94 0,40 3,03 2,57 2,03 1,51

0,95 0,41 3,04 2,58 2,04 1,52

0,96 0,42 3,05 2,59 2,05 1,53

4,02 0,43 3,06 5,50 2,06 1,54

4,03 0,44 3,07 5,51 2,07 1,55

4,04 0,45 3,08 5,52 2,08 1,56

4,05 3,50 3,09 5,53 2,09 4,49

4,06 3,51 5,96 5,54 4,99 4,50

4,07 3,52 5,97 5,55 5,00 4,51

4,08 3,53 5,98 5,56 5,01 4,52

6,97 3,54 5,99 8,43 5,02 4,53

6,98 3,55 6,00 8,44 5,03 4,54

6,99 3,56 6,01 8,45 5,04 4,55

7,00 3,57 6,02 8,46 5,05 4,56

7,01 3,58 6,03 8,47 5,06 4,57

7,02 3,59 6,04 8,48 5,07 4,58

7,03 3,60 6,05 8,49 5,08 4,59

9,91 6,45 6,06 8,50 7,94 7,44

9,92 6,46 8,91 - 7,95 7,45

9,93 6,47 8,92 - 7,96 7,46

9,94 6,48 8,93 - 7,97 7,47

9,95 6,49 8,94 - 7,98 7,48

9,96 6,50 8,95 - 7,99 7,49

9,97 6,51 8,96 - 8,00 7,50

- 6,52 8,97 - 8,01 7,51

- 6,53 8,98 - 8,02 7,52

- 9,42 8,99 - 8,03 7,53

- 9,43 9,00 - - -

- 9,44 - - - -
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Table 5.2: Output of jump-time function applied to all three variables

Switch Type 1(Up-jump var.1) 0.93 4.05 7.00 9.94

Switch Type 2(Up-jump var.2) 0.40 3.54 6.49 9.43

Switch Type 3(Up-jump var.3) 3.04 6.01 8.95 -

Switch Type 4(Down-jump var.4) 2.56 5.53 8.47 -

Switch Type 5(Down-jump var.5) 2.04 5.03 7.98 -

Switch Type 6(Down-jump var.6) 1.51 4.54 7.49 -

Table 5.3: Values at Switching Instances

Var.1 (0,18-1,02-1,39) (1,65-0,99-0,59) (0,38-1,01-1,38) (1,61-0,98-0,59)

(0,36-1,01-1,38) (0,38-0,99-1,38) (1,62-0,98-0,61)

Var.2 (0,34-0,32-0,98) (1,42-1,68-0,99) (0,61-0,38- 0,98) (1,38-1,63-1,02)

(0,61-0,39-0,99) (1,39-1,63-1,00) (0,62-0,38-0,98)

Var.3 (1,03-0,61- 0,37) (0,99-1,45- 1,66) (1,00-0,63- 0,37) (0,99-1,40- 1,62)

(1,02-0,62-0,37) (1,02-1,39-1,64)

time interval, the second variable has positive derivatives, indicating that the sec-

ond variable exceeded the threshold at the switching instance. The opposite signs of

derivatives at the switching instances imply the relation is repressilatory; the affector

exceeding the threshold starts a negative trend in the responder. Correspondingly, if

the signs are the same, the relation would be activatory.

Using the rules explained up to here, the regulatory relations can be inferred

as follows. The so called close values, suggests that variable 2 regulates variable 1,

variable 3 regulates variable 2 and variable 1 regulates variable 3. Using the charac-

terization of jumps given in table 5.1 and the derivative estimates at the switching

points, it is concluded that second and third variable has activatory effect on the

corresponding responders whereas the first variable has repressilatory effect on the

third one. The threshold values are inferred as 1, 0.99, 1, 01.

The estimation of thresholds gives the state space partition into invariant spaces.

The observations can be grouped according to the value of each variable with respect

to its threshold. Each group would correspond to empirical observations from a

different invariant subspace. The evolution in an invariant subspace Pi is defined by

linear differential equation dy/dt = Miy + bi and the parameters M and b can be
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Table 5.4: Estimated Values for Ms(t) and bs(t) in Switching Differential Equations

M̂s(t) b̂s(t) Ms(t) bs(t)

Q=(0,0,0) diag[0.99 1.00 0.99] [-0.03 0.01 1.98]T diag [1 1 1] [0 0 2]T

Q=(0,0,1) diag[1.01 1.03 0.98] [0.01 1.94 2.05]T diag [1 1 1] [0 2 2]T

Q=(0,1,1) diag[1.00 1.02 1.04] [1.91 2.01 2.00]T diag [1 1 1] [2 2 2]T

Q=(1,0,0) diag[1.03 0.94 1.00] [-0.04 0.07 0.02]T diag [1 1 1] [0 0 0]T

Q=(1,1,0) diag[1.04 1.01 0.99] [2.02 -0.01 -0.03]T diag [1 1 1] [2 0 0]T

Q=(1,1,1) diag[0.97 0.97 1.01] [2.00 2.08 -0.05]T diag [1 1 1] [2 2 0]T

estimated using linear regression. At all instances ti when the observations fall into

Pi, the differential equation can be approximated by ẏ(ti) = Miy(ti) + bi where ẏ(ti)

denotes the derivative estimate at time ti. In the solution, the matrix M is assumed

to be diagonal and the parameters M and b are found accordingly for each state using

L2 regression.

Having inferred all the parameters for the suggested switching hybrid system, the

system parameters inferred by the algorithm are compared with the actual parameters

introduced to the simulation in Table 5.4. The results are satisfactory; the regulatory

relations are inferred correctly and the threshold values and differential equation

parameters are quite accurately obtained.

5.2 Capabilities of the Proposed Method

The inference method studied here is designated for inferring the locally linear sys-

tem parameters with the piecewise linear approximations. General form of piecewise

linear approximations are applicable to nonlinear dynamical systems in general; the

approximation accuracy can be adjusted with respect to the desired level of accu-

racy. However, the suggested piecewise linear model is developed for approximating

nonlinear dynamical systems displaying switchings triggered by threshold crossings.

The switching detection part contains the innovative ideas of the inference method

and that is why this part is examined most intensively in this thesis. In this aspect,

local polynomial fitting method is considered satisfactory, especially in comparison

with difference equations. However, the signal processing related applications could

be studied at an introductory level and basic ideas in the literature are adopted.
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The method performed well in switching detection for the simulation example but

the robustness could still be improved. Deeper knowledge and expertise in signal

processing could yield better results. Adaptive window size selection and use of

different high pass filters are exemplary ideas promising significant improvements.

For single threshold partitioning with three variables system, there are 23 = 8

possible invariant subspaces. In the example studied here, 6 of these are observed

and parameters governing the vector fields in each invariant subspace were inferred.

In case of a simulation, in order to infer the vector fields governing the evolution

in invariant subspaces corresponding to discrete states of system Q = (0, 1, 0) and

Q = (1, 0, 1), the same dynamics should be simulated with different initial conditions.

Accordingly, if the experiment, from which the empirical data from a real event is

gathered, can be repeated with different initial or if interventions are possible in the

experiment setup, all possible states of the system can be observed and inferred as

well.

In the simulation example, a single affecting variable was defined for each variable

and these relations were inferred with the proposed algorithm. Comparing the values

of candidates at the switching instances of responding variable is employed in finding

the regulating variable. This approach in finding the regulator variable is valid only if

the system dynamics can be explained by single affector for each variable. Conversely,

if none of the variables were found sufficiently close at the switching instances of the

responding variable, then more complex regulatory dynamics involving two affecting

variables would be considered and more complicated logical rules should be developed

accordingly. So, it would be reasonable to start the procedure with the assumption

of one regulator variable for a given responding variable and increasing this number

until the switching dynamics of that variable can be fully explained.

5.3 Discussion

The problems where the suggested inference methodology is expected to yield satis-

factory results are briefly mentioned in the previous parts. Among other problems,

gene network inference is recently a very popular area since the recent technological

improvements increased data availability and quality for this problem. As a result,

the previous studies in this field have been investigated carefully to extract useful

ideas for development of an the inference method for piecewise linear systems. More-

over, the limitations and shortcomings of those approaches are studied to provide
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guidance for possible improvement strategies.

In their research, Perkins et al. [28] defined logical rules to infer gene-gene regula-

tory relations in a gene network abstracted by NK model. They derived the Boolean

state of each variable by using the known threshold values. Hence, this type of

method demands a priori knowledge of thresholds for all variables. Having defined

the logical states, they investigated the switching occurrences of variables to find the

regulator variables. With the method proposed here, the fundamental improvement

in this aspect is the ability of finding the unknown threshold values directly from

empirical data. The method we propose here suggests going backwards; finding the

switching occurrences from jumps in time derivatives and then using similar logical

reasoning to infer the regulatory relations and the corresponding thresholds.

The absence of complete information on threshold levels is one of the primary

concerns of this work because if the threshold values for the variables are not given,

identification of switchings cannot be straightforward anymore. The steps of inference

followed after finding the thresholds have a quite similar basis to previous works. For

example, NK models can be useful for obtaining the network structure only after the

switchings are found correctly. However their use is restricted to known thresholds

case.

The inference of switching dynamics and model parameters provides limited

knowledge on the observed system. For obtaining further information on the sys-

tem, there are also certain alternatives. Thomas et al. [37, 38] defined the notions of

multistationarity, memory and stable temporal periodicity in terms of positive and

negative feedback circuits in a network. Having identified the regulatory relations in

the system, this and similar approaches can be considered as a complementary poste-

rior study for our method to yield detailed results about certain qualitative features

of the entire dynamical system. This type of effort will provide better understanding

of system dynamics.

One of the primary concerns in the development of inference method is the ro-

bustness. In the relevant works cited in this thesis, piecewise linear models are

equipped with difference equations and inference methodologies are developed ac-

cordingly. However, although this type of approach can be promising in terms of

computational efficiency, the difference equations are not robust for estimating the

derivatives from discrete empirical data and the results would not be reliable in the

existence of noise. Use of local polynomial fitting improves inference algorithm pro-

posed herein in terms of robustness. Another important application that contributes
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to reliability of the algorithm is in switching detection. Comparison of the values

of all variables at every occasion of the same switching reduces the possibility of

accidental generalizations at this step.

The original contribution of this work is actually synthesizing the ideas used for

different problems. Detecting the jumps in a time series is an idea used in event

detection [14] and jump detection techniques are studied for various reasons in signal

processing. Nonsmoothness in the evolution of a variable can be a sign of disorder

if it arises too frequently. On the other hand, it would indicate a sudden change of

behavior, a switching, if it occurs between two dissimilar steady patterns. Hence, once

the switchings in the continuous evolution are interpreted as events to be detected,

the remaining ideas of the proposed method follows accordingly.

It is mentioned that use of derivative estimation by local polynomial fitting im-

proves the robustness of the algorithm. For many dynamical systems, existence of

noticeable noise in discrete empirical observations is inevitable; the inherent noise in

gene networks can be given as an example. The proposed method offers increased

robustness by using local polynomial fitting for derivative estimation instead of dif-

ference equations. The trial runs of the algorithm on the synthetic data with different

noise levels are also quite promising in estimating switchings accurately in the exis-

tence of noise.

Another advantage of using switching detection is the possibility of making feed-

back on the experiment setup. For example, for the repressilatory 3-variable network

-introduced in Chapter 4- for certain initial conditions on the variables, it may not

be able to distinguish the activator or repressor variable even if the switchings can be

detected successfully. Even in this case, the implementation of method would yield

useful suggestions about the candidate regulatory relations. Moreover, appropriate

strategies for adding perturbations to experiment setup or restarting the experiment

with different initial values would be possible.
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Chapter 6

Conclusion

In this work, an improved algorithm for inferring piecewise linear models whose

switching is governed by threshold phenomena is proposed. The motivation of work-

ing on this particular model family is their capability of modeling different quantita-

tive behaviors including chaotic and multistationary behaviors, fixed point, periodic

and quasiperiodic attractors. A brief outline of main ideas used in the method is

given and the conformity of techniques used in critical steps of the algorithm is ques-

tioned in the validation of every step. Afterwards, advantages and limitations of the

method are discussed.

Since gene networks are adequate for the application of this methodology dis-

cussed here, the gene network inference in the literature is examined to verify the

adequacy of inference method for genetic regulation examples. The biological back-

ground supports our assumptions on threshold phenomenon and switching property

related to piecewise linear models. Considering the specifications of gene networks,

the inference method explained in this work is considered applicable for inferring

regulatory relations in gene networks from empirical records of gene transcription ac-

tivity. Considering its strengths summarized in the Discussion section, it is expected

to yield promising results for gene regulatory network inference problem.

There are possible extensions that are considered as future work. In the section

3.3, the inference rules based on switching point comparison are derived under the

assumption of single activator and single repressor for each variable. However, these

rules can be extended for more complex regulatory relations. For example, if we

assume that the activity of a variable in the model can be regulated by more than

one variable, improved logical mappings should be included in the model and other

efforts can be made to infer the structure of these logical rules in the model.
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In this study, the ideas about jump detection are studied most intensively since

implementation of jump detection is a new idea for piecewise linear model infer-

ence. Accordingly, many ideas about jump detection methods in signal processing

are adopted. Deeper understanding of these issues can allow modifications and im-

provements of the inference methodology suggested here and more reliable inference

algorithms can be developed on the same fundamental ideas.

The robustness of the inference algorithm is very important. Further improve-

ments on the algorithm should be considered in this aspect also. In the literature,

there are examples in which the window mentioned in the local polynomial fitting

for derivative estimation can be selected adaptively depending on the structure of

empirical data. This sort of known methods should be applied to make more robust

derivative estimation. Likewise, in the jump detection procedure, use of different

wavelets can improve the reliability of the method as well.

To sum up, the methodology studied in this work can be considered innovative

since it combines the ideas from different fields for the solution of inferential modeling

problem. Hopefully, the ideas presented here will provide guidance for the further

work and lead to development of useful methodologies for inference problem.
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APPENDIX 1. derest.m

% (C) Ahmet Melih Selcuk

function [out1,out2] = derest (row data,derest winsize,derest polydeg,stepsize);

%INPUTS

%row data: Discrete time data of selected continuous variable in the PWL system

%derest winsize: window size of local polynomials in derivative estimation

%derest polydeg: degree of fitted polynomial in derivative estimation

%stepsize is the time interval between consecutive samples

datalength = length(row data);

%weig keeps accumulation of weights, Bufff1 keeps polynomial coefficient

%estimates and Bufff2 keeps local derivartive estimates

weig=zeros(size(row data));

Bufff1=zeros(size(row data));

Bufff2=zeros(size(row data));

%iteration would contain accumulation, therefore we initialize the arrays

%by zeros of same length

iter=datalength-derest winsize+1;

winweig=(kaiser(derest winsize, (derest winsize-2)))’;

%second parameter of kaiser kernel is chosen EXPERIMENTALLY

for i=1:iter

data=row data(i:i+derest winsize-1);

[estims,derests]=loc fit(data,derest polydeg);

%derivative estimation function would be determined up to necessity

%of out1 which contains polynomial coefficients

Bufff1(i:i+derest winsize-1)=Bufff1(i:i+derest winsize-1)+estims.*winweig;

Bufff2(i:i+derest winsize-1)=Bufff2(i:i+derest winsize-1)+derests.*winweig;

weig(i:i+derest winsize-1)=weig(i:i+derest winsize-1)+winweig;
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%at each iteration, ’winsize’ many entries are updated. In fact, almost

%every parameter is updated ’winsize’ times and averaging is achieved

%by entry-wise division of Bufff1 and Bufff2 by weig

end

out1=Bufff1./weig;

out2=(Bufff2./weig)/stepsize;
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APPENDIX 2. jump time.m

% (C) Ahmet Melih Selcuk

%This function is called in the function jump time

function [out]=fillter(derests,filter winsize)

%INPUTS

%derests: approximate derivative values by obtained function derest

%filter winsize: the width of high pass filter used

Bufff=zeros(size(derests));

%winsize should be EVEN!!!

winweig = FSPECIAL(’gaussian’,[1 filter winsize],1.4);

for i=((filter winsize/2)+1):filter winsize

winweig(i)=winweig(i)*-1;

end

for i=1:length(derests)-filter winsize+1;

Bufff(i)= derests(i:i+filter winsize-1)*winweig’;

%at each iteration, ’winsize’ many entries are updated. In fact, almost

%every parameter is updated ’winsize’ times and averaging is achieved

%by entry-wise division of Bufff1 and Bufff2 by weig

end

out=Bufff;

%OUTPUT

%out: out is an array of length ’winsize’ that is obtained by convolution of deriv-

ative estimates with high pass filter
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APPENDIX 3. fillter.m

% (C) Ahmet Melih Selcuk

%This function is called in the function jump time

function [out]=fillter(derests,filter winsize)

%INPUTS

%derests: approximate derivative values by obtained function derest

%filter winsize: the width of high pass filter used

Bufff=zeros(size(derests));

%winsize should be EVEN!!!

winweig = FSPECIAL(’gaussian’,[1 filter winsize],1.4);

for i=((filter winsize/2)+1):filter winsize

winweig(i)=winweig(i)*-1;

end

for i=1:length(derests)-filter winsize+1;

Bufff(i)= derests(i:i+filter winsize-1)*winweig’;

end

out=Bufff;

%out: out is an array of length ’winsize’ that is obtained by convolution of deriv-

ative estimates with high pass filter
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APPENDIX 4. fillter.m

% (C) Ahmet Melih Selcuk

%FUNCTION CALL

%This function is called by function derest

function [loc estims, loc der]=loc fit (data,polydeg)

%INPUTS

%loc data: part of discrete data within the selected window

%polydeg: degree of polynomial to be fitted to loc data

N=length(data);

loc der=zeros(1,N);

x=[1:N];

poly coef=polyfit(x,data,polydeg);

loc estims=polyval(poly coef,x);

for i=1:N

for j=1:polydeg

loc der(i)=loc der(i)+(polydeg-j+1)*poly coef(j)*iˆ(polydeg-j);

end

end

end

%OUTPUTS

%loc estims: approximate values obtained from fitted polynomial

%loc der: approximate derivatives obtained from fitted polynomial
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APPENDIX 5. pickobs.m

% (C) Ahmet Melih Selcuk

function [times]=pick obs(num vars,thr,data,dstate)

%This function returns the time instances corresponding to a given discrete state

of hybrid system

out=[];

for i=1:length(data)

a=0;

for j=1:num vars

a=a+power(2,j-1)*(data(j,i)>thr(j));

end

if a==dstate

out=[out i];

end

end

times=out;
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