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Abstract

SOME EXTENSIONS TO CREDITRISK+: FFT,

FFT-PANJER AND POISSON-INAR PROCESS

NAZLIBEN, Kamil Korhan

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri KÖREZLİOĞLU

February 2007, 68 pages

The various versions of CreditRisk+ have widely been used in the financial in-

dustry. We compute the loss distribution under CreditRisk+ model by fast fourier

transform technique in order to have faster and more stable results. Moreover,

we link the parameters of the model to the exogenously observed variables which

could be obtained from the financial markets by the use of Poisson INAR process.

It is shown that the estimation of the parameters become available under this set-

up. This enables us to build a system that allows users to monitor and predict

the banks loss characteristics without having specific and current information on

banks.

Keywords: Credit risk, CreditRisk+, FFT, INAR Process.
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Öz

CREDITRISK+ ÜZERİNE YENİ YAKLAŞIMLAR : FFT,

FFT-PANJER VE POISSON-INAR SÜREÇLERİ

NAZLIBEN, Kamil Korhan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri KÖREZLİOĞLU

Şubat 2007, 68 sayfa

Bir kredi riski ölçüm yöntemi olan CreditRisk+’ın finans endüstrisinde kul-

lanılmakta olan çeşitli versiyonları bulunmaktadır. Bu çalışmada, daha hızlı ve

istikrarlı sonuçlar elde edebilmek için, kredi portföyü kayıp dağılımı ”fast fourier

transform” (FFT) tekniği ile elde edilmiştir. Bununla beraber, gözlemlenebilen

finansal market verileri de modele dahil edilerek, temerrüt riskinin hesabında

Poisson INAR prosesinden faydalanılmış ve söz konusu modelin parametreleri

hesaplanabilmiştir. Bu model bize kredi riskinin ölçülmesi ve muhtemel risklerin

öngörülmesinde önemli kolaylıklar sağlamış, portföy kayıp dağılımının karakter-

istiğini belirlemede bankalar hakkında spesifik ve güncel bilgiye gerek kalmamak-

tadır.

Anahtar kelimeler: Kredi riski, CreditRisk+, FFT, INAR Proses.
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Chapter 1

INTRODUCTION

1.1 Introduction

Since the beginning of the 1980’s, there has been a dramatic development in

credit markets. Considering high amounts of credits in their trading books, quan-

tifying and controlling credit risk has become crucial to all financial institutions.

Moreover, the recent developments of new credit products, such as credit deriva-

tives and asset basket credit securities, have made credit markets more complex.

Accordingly, some new regulations are required to organize and control these

markets. According to Basel II Capital Accord, all financial institutions must

measure and manage their own risks by using some quantitative risk measure-

ment techniques[7],[8]. Banks can either develop their internal models or utilize

some models from industry. Academic and industrial models are mainly divided

into three broad categories: Merton’s Asset Value Models, Intensity-Actuarial

Based Models, and Macro Economic Approaches.

The most well known Merton based credit risk approach is JP Morgan’s Cred-

itMetrics, first published in 1995[18]. The theocratical framework of this model

is based on Merton’s work on the theory of option pricing[60]. It includes the

credit migration analysis event and obligors’ credit migrations within a given

time horizon. It models the full-forward distribution of any bond or loan port-
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folio. Moreover, KMV Corporation has developed another model which relies

upon ”the Expected Default Frequency (EDF)”. McKinsey proposes its macro-

economic approach, CreditPortfolioView, which is a discrete-time multi-period

model using macro-economic variables such as unemployment, the level of inter-

est rates, growth rates in economy, government expenses, foreign exchange rates,

etc.

Credit Suisse Financial Products (CSFP) released CreditRisk+ in October

1997 [22]. Unlike Merton’s based credit risk models, CreditRisk+ is an analytical

portfolio approach, so it does not require high computational effort. The main

advantage of this model stems from its simplicity and computational efficiency.

Moreover it does not require too many input arguments. Exposure amounts,

expected default frequencies and standard deviations of obligors are sufficient in-

formation to perform this model. Mainly, it is assumed that the default event

is a Poisson process, and the behavior of sectors are independent. This model

mainly concentrates on achieving the loss distribution of a whole credit portfolio.

In the literature, there are some alternative techniques used to compute the loss

function of the portfolio. Although the standard model uses the Panjer recursion

technique[63], it has been shown that this technique is numerically unstable in

some cases, especially for a large number of sector dependencies. Some techniques

show faster, more accurate and more effective computational performance with

respect to the standard model. Whereas the original model only uses a probability

generating function, it is also possible to incorporate other auxiliary generating

functions such as characteristic functions, and cumulative or moment generat-

ing functions into the model. In the Enhanced CreditRisk+ Approach, proposed

by Giese, the moment generating function of the factors are incorporated into

2



the model [39]. Giese demonstrated a new recursion scheme which represents a

faster and more accurate computation performance than the standard approach.

In addition to this, Saddle Point Approximation uses a cumulative generating

function which offers a robust and extremely fast alternative to the Panjer recur-

sion technique[58]. Finally, the Fourier Inversion Technique, which describes loss

in terms of a characteristic function, is easy to implement, and has numerically

stable algorithms [62],[55].

In this study, we mainly focus on the implementation of the Fast Fourier

Transform (FFT) technique in view of CreditRisk+ framework.

1.2 Literature Review

Among all credit risk models, main challenge is the determination of default

probabilities. In the historical method, default probabilities are determined from

actual historical data. Rating agencies generally use this approach and construct

a Markovian transition probability matrix. If we know the history of credit move-

ments, it is possible to estimate future default probabilities for a given time hori-

zon. In migration analysis, a transition matrix should be developed by using

all historical information. However, the main problem is generally lack of data.

Today, mainly three fundamental approaches are used to estimating default like-

lihood. These are the qualitative dependent variable model, discriminant analysis

and neural networks.

Generally, the transition matrix and default probabilities of obligors are es-

sential input data for any credit portfolio risk model. In the literature, the first

transition matrix was published in 1991 by both Edward Altman and Lucas and
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Lonski of Moody’s Investors Service[53]. At the beginning of the nineties, there

have been several studies of their predictive power and stationarity [1]. In addi-

tion to academics, several practitioners have used migration analysis to a have

better accounting-based allowance for loan and least-loss estimation [61], [67].

Moreover, these tools have been used to estimate holding period returns [17].

Finally, arbitrage free credit pricing models have been developed by Ginzburg,

Maloney and Willner [37], Jarrow, Lando and Turnbull [42] and Das and Tufano

[24].

Besides historical models, many rating agencies incorporate their model through

accounting, analytical, statistical and option theoretical approaches. They use

some financial ratios in order to estimate a firm specific quality, focusing on lever-

age and coverage ratios and a firms cash flows. One of the best approach is the

Debt Rating Criteria proposed by Standard and Poor’s. It gives us an alphabetic

rating for the firm’s credit quality. On the other hand, from a macro-economic

perspective, it is stated that default likelihood is correlated with measures of

business and credit cycle [34], [45].

Portfolio credit risk models can generally be classified in three groups: The

Asset-Based Models, Intensity-Actuarian Models and Macro-economic approaches.

The asset based method, which sometimes called as the structural approach, is

based on the valuation of the underlying assets of a firm. Merton’s main as-

sumption is that a default event can only occur when the value of a firm’s asset

is below the value of the debt at expiry [60]. Asset based credit risk models,

such as CreditMetrics and KMV’s models, are the extensions of Merton’s first

proposal. This method is sometimes referred to the option theoretical approach,

because it is inspired from the Black-Scholes-Merton methodology of option pric-
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ing, Black and Cox (1976)[10], Brannan and Schwartz (1977) [12], Longstaff and

Schwartz (1995)[52], Briys and de Varenne(1997) [14] and Cathcart and El-Jahel

(1998)[16]. In addition, these models are developed by other researches such

as Geske (1977)[36], Ho and Singer (1982)[40], Schimko, Tejimo and Deventer

(1993) [64] , Zhou(1997) [70], Vasicek(1997)[68], Schimid (2004) [20], Mason and

Bhattacharya (1981) [56] and Zhou (1996)[69].

Besides default probabilities, the other important driving factor is the recovery

rate. Altman and Kishore(1996) [2] and Carty and Lieberman (1996)[15] focused

on econometric studies of recovery rates. Furthermore, the structural approach

allows for a study of the optimal capital structure of the firm. The studies were

originated by Black and Cox (1976)[10], Anderson, Pan and Sunderesan(1992)[4],

Leland (1994)[50], Anderson, Sunderesan and Tychon (1996)[3], Lealand and Toft

(1996) [51], Mella-Barral and Tychon (1996) [59], Fon and Sunderesan (1997),

[33], Ericsson (2000) [31].

The intensity based method, sometimes called as reduced form model, is based

on the default time to the stopping time of some specified hazard rate process.

It allows for the modeling of the unpredictable random time of defaults. There

are various mathematical results underlying the reduced form approach. Here,

research focuses on the characterization of random times in terms of hazard func-

tions, hazard process, as well as the evaluation of conditional probabilities and

conditional expectations in terms of these functions and processes. The most

cited studies are Dellacherie and Meyer (1978) [26], Davis (1976) [25] , Elliott

(1977) [30], Jeulin and Yor (1978) [44], Mazitto and Szpirglas (1979) [57], Bre-

maud (1981) [13], Artzner and Delbean (1992) [5], Dufie et al (1996) [27], Lando

(1998) [49], Kusuoka(1999) [48], Jeanblack and Rutkowski (2000) [9].
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Academic work show that there may be some contradictions between these

models and real world observations. Therefore, new hybrid term structure models

are developed in order to have better estimation of default probabilities, pricing

defaultable bonds and other securities [20],[21]. It is thought that these hybrid

models are more powerful than the classical models. New studies show that a

combination of asset and intensity based models give us more realistic results

than classical approaches. For example, Madan and Unal(1998) assume that the

stochastic hazard rate is a linear function of the default free short rate and the

logarithm of the value of the firm’s asset[54].

In the 1990’s, the most complicated financial product was introduced. Credit

derivatives, which transfer credit risk exposure and behave as if insurance of

the credits. Although the structure of the credit derivatives depends on the

counterparties, the main forms are Collateral Debt Obligations (CDO), Collater-

alised Bond Obligations (CBO), Collateralised Loan Obligations (CLO), Collat-

eral Mortgage Obligations (CMO). In spite of a great amount of trading of credit

derivatives in financial markets, there are few articles on the direct pricing of

credit derivatives. The most cited articles are Longstaff and Schwartz [52], Das

and Tufano [24], Duffie [28], Hull and White [41] and Schonbucher [66].

1.3 Industrial Credit Risk Models

The most famous industrial internal credit risk models are PortfolioManagerTM

of Moody’s KMV, the RiskMetrics Group’s CreditMetricsTM [18], Credit Su-

isse Financial Products’ CreditRisk+, and McKinsey’s CreditPortfolioV iewTM

. All these models are the well known model to measure and quantify credit risk.
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Moody’s KMV model is a Merton based approach [60]. According to this model,

equities behave as a call option on the value of the companies business. Here,

default event occurs if the value of the company drops below a critical level. The

other Merton based approach CreditMetrics, similar to KMV, concentrates on

probabilistic behavior of individual asset returns considering mutual correlations.

It uses transition matrix which shows the probabilities of credit ratings at the end

of a specified time period. CreditRisk+, which is an actuarial based approach,

only uses mean default probabilities and standard deviations. The CreditPortfo-

lioView which uses macroeconomic variables in modeling has completely different

principles than others.

CreditMetrics, first published by JP Morgan, mainly generates possible out-

comes of market values of companies depending on ratings. This is Credit Mi-

gration approach which on the probability of moving from one credit quality to

another within a specified time horizon. In this model, the Monte Carlo simula-

tion technique is applied to obtain whole portfolio loss distribution. Therefore,

it takes too much computational effort [18].

KMV’s model is an option pricing approach which is also based on the asset

valuation model. In this model the default process relating to the capital structure

of the firm is endogenous. Default can only occur below a critical level of the

firm’s value.

On the other hand, CreditRisk+, which is an actuarial approach, concentrates

on the default event. It considers the average default rates of obligors, and corre-

lations are implied from the model. This is an analytical model which constructs

a continuous distribution of default probabilities. CreditRisk+ yields associated

risk capital estimates. In contrast with all other credit models, it does not use the
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Monte Carlo simulation technique. Therefore, the calculation procedure becomes

very fast [22].

McKinsey’s CreditPortfolioView, which is an discrete-time multi period model,

focuses on the impact of macroeconomic variables on credit portfolio. The main

advantage of this product is that the CreditPortfolioView can be easily applied

to all market instruments.

To summarize, CreditMetrics and KMV’s models are microeconomic casual

models of individual default. On the other hand, CreditRisk+ has no assump-

tions about causality, it only takes default rates into account. Moreover, it has

been shown that in spite of all these differences, CreditRisk+ and CreditMetrics

fundamentally have similar underlying mathematical structures [38]. In addition,

Koyluoglu and Hickman (1998) showed that these four credit risk models have few

differences in theory and results produced [47]. Crouhy, Galai and Mark(2000)

examined the current credit risk models in a comparative perspective [23].
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Chapter 2

PRELIMINARIES

2.1 THE BASICS OF CREDIT RISK

In general, Credit risk models illustrate how much they will loose and what

would be the shape of loss, and expected and unexpected loss in a certain period

of time. For a credit portfolio, there is a high uncertainty around the expected

value and the distribution of outcomes which are heavily skewed. Unlike the

market returns, credit return displays non-Gaussian behavior. Unlike Market re-

turns are relatively symmetrical and well approximated by normal distributions,

while credit returns are highly skewed and fat tailed. Therefore simple summary

statistics of credit portfolio are not helpful to understand the level of riskiness of

the portfolio. So the full distribution of a credit portfolio should be illustrated.

Generally, industrial credit risk models use analytical or simulation techniques.

Percentile levels of the full distributions give us good information about the be-

havior of tail and possible losses. By applying these techniques, we can evaluate

Value at Risk (VaR), Conditional Value at Risk (C-VaR) or Expected Short Fall

exposures of the portfolio.

Credit risk models, together with its components, include some important pa-

rameters : Default Probabilities (DP), Loss Given Default (LGD) and Exposure

at Default (EAD) and maturity. The first and the most significant and diffi-
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cult step is the determination of the obligors’ default probabilities. There are

mainly two commonly used approaches to asses default probabilities. The first

is estimation of default probabilities from market data. KMV uses this tech-

nique relying by upon the concept of Expected Default Frequency (EDF). The

other approach is estimating default probabilities from ratings. The rating of

a loan gives us the creditworthiness of that company attributed and its future

expectation of credit migration. Leading rating agencies use several techniques

in order to determine obligors’ credit quality. There are several rating systems

and each agency use its own rating scale. For instance, Standard and Poor’s scale

is AAA,AA, A,BBB,BB, B, C, while Moody’s uses Aaa, Aa,A, Baa, Ba, B,C.

Obviously, Aaa is the highest and C is the poorest credit quality. The main dif-

ficulty in the determination of credit quality is lack of data, so it is very difficult

to develop a pure mathematical credit rating model. Today we only have 20-

25’s years rating data which is insufficient for a historical perspective. Therefore,

despite the existence of advanced statistical and mathematical tools and tech-

niques, qualitative methods such as experience and judgement have still premier

importance.

The second driving factor is Loss Given Default (LGD) which describes the

fraction of the loan’s exposure expected to be lost in the case of default. Loss

given default is the amount of loss in the case of a default. In other words,

Loss Given Default = 1−Recovery Rate, (2.1.1)

where recovery rate is the amount of the promised cash flows recovered in case

of default. The estimation of LGD depends on a firm’s specific features such as

10



collateral and severity of the bank’s claim on the borrowers’ assets, etc. Mathe-

matically LGD can be written as the expectation of the severity (SEV).

E[Severity] = LGD = 1−Recovery Rate. (2.1.2)

The other driving factor is the Exposure at Default (EAD). Although sev-

eral models assume the Exposure at Default (EAD) as a constant, one can also

model by considering two major parts: Outstanding and Commitments parts.

Outstanding refers to the portion of the exposure already drawn by the obligor.

If default event occurs, the bank is exposed to the total amount of outstanding.

Thus, one can also model exposure at default by considering these parts of the

exposures [11].

Here, we give the mathematical definition of loss a variable[11].

Definition 2.1. Let (Ω,F,P) be the probability space, with sample space Ω, σ

algebra, F and probability measure P.Let L be a loss variable and EAD, LGD

and L such that

L = EAD × LGD × L (2.1.3)

L = ID,P(D) = DP, (2.1.4)

where D denotes the default indicator, P(D) is the default probability.

Here we can define the expected and unexpected loss of any obligor.

Definition 2.2. Let (Ω,F,P) be the probability space, with sample space Ω, σ

algebra, F measurable, probability measure P. Let EL denote expected loss such

that

EL = E[L] = EAD × LGD ×DP. (2.1.5)
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[11].

Proposition 2.1. Let the severity and the default event be independent, then,

the unexpected loss is

UL = EADx
√

V ar[SEV ]×DP + LGD2 ×DP (1−DP )

[11].

2.2 THE POISSON MODEL FOR CREDIT RISK

This section and following sections are mainly inspired from Uwe Schmock

lecture notes [65] . Let m denote the number of obligors, and let (N1, N2, ...Nm) be

a vector of Poisson distributed random Variables with parameters λ1, ....λm > 0.

This means that the default event of any obligor has a Poisson distribution. Our

convention is 00:=1.

For all niεNi and iε1, 2...m

P[Ni = ni] =
λi

nie−λi

ni!
(2.2.6)

Ni ∼ Poisson(λi). (2.2.7)

2.2.1 Properties of a Poisson Distribution

Suppose that N ∼ Poisson(λ), then

E[N ] =
∞∑

n=1

λne−λi

n!
, (2.2.8)
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by power series expansion, expectation is

E[N ] = λ, (2.2.9)

for the variance

V ar[N ] = λ. (2.2.10)

Lemma 2.1. If N1, ...Nm are independent with Ni ∼ Poisson(λi) for all iε1, ...m

then

Ni :=
m∑

i=1

Ni ∼ Poisson(λ) (2.2.11)

with λ = λ1 + ...λm

In addition the probability generating function is given by the formula

ψN = E[sN ] =
∞∑

n=0

sn λn

n!
e−λ = eλse−λ = eλ(s−1). (2.2.12)

Practically, we are interested in Ni = 0 and Ni 6= 0 values which denote non-

default and default events respectively. Parameter λi should be calibrated. There

are two calibration methods:

(a) If piε[0, 1)

pi = P[Ni ≥ 1] = 1− e−λi (2.2.13)

(b)

λi = E[Ni] = pi.

The second equation is the approximation of the first with the λi is neglected for
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small λi and n ≥ 2.

2.3 THE GENERAL POISSON MIXTURE MODEL

Let us introduce [0,∞)-valued random variables Λ1, Λ2, ...Λm with joint dis-

tribution F, i.e., Λ1, Λ2, ...Λm ∼ F . The assumption is

P[Ni = ni|Λ1, ...Λm] = P[Ni = ni|Λi] = e−Λi
Λni

i

ni!
(a.s.) (2.3.14)

i.e., Ni ∼ Poisson(λ) given Λ1, Λ2, ...Λm

Therefore N1, N2, ..., Nm are independent random variables given Λ1, ...Λm for

all niεN0 and the conditional independence of (N1, ...Nm) given (Λ1, ...Λm) i.e.,

P[N1 = n1, ..., Nm = nm|Λ1, ...Λm] =
m∏

i=1

P[Ni = ni|Λ1, ..., Λm] =
m∏

i=1

e−Λi
Λni

i

ni!
.

Then, we have

P[N1 = n1, ..., Nm = nm] = E[
m∏

i=1

e−Λi
Λni

i

ni!
] =

∫

[0,∞)

e(λ1+...+λm)

m∏
i=1

λni
i

ni!
F (dλ1, ..., dλm).

From these relations ,the expectation and variance are

E[Ni|Λi] = Λi (a.s) (2.3.15)

V ar(Ni|Λi) = Λi (2.3.16)

N =
∑m

i=1 Ni is the random variable which represents the total number of default,
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with the expectation

E[N ] =
m∑

i=1

E[Ni] =
∑

E[E[Ni|Λi]] =
m∑

i=1

E[Λi], (2.3.17)

the variance,

V ar(N) =
m∑

i=1

V ar(Ni) +
∑

i,j=1;i6=j

Cov(Ni, Nj), (2.3.18)

where

V ar(Ni) = E[(Ni − E[Ni])
2]

= E[E(Ni−E[Ni|Λi]]+E[Ni|Λi]−E[Ni])
2|Λi]+E[E[(Ni−E[Ni|Λi])

2|Λi]+E[(E(Ni|Λi))−E[Ni]]
2

V ar(Ni) = E[V ar(Ni|Λi)] + V ar[E[Ni|Λi]] = E[Λi] + V ar[Λi] (2.3.19)

and, for i 6= j

Cov(Ni, Nj) = E[Ni, Nj]− E[Ni]E[Nj] = E[Λi, Λj]− E[Λi]E[Λj] = Cov(Λi, Λj)

(2.3.20)

by using the conditional independence of Ni and Nj

E[Ni, Nj] = E[E[NiNj|Λ1, ..., Λm]] = E[E[Ni|Λi]E[Nj|Λj]] = E[Λi, Λj]. (2.3.21)
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2.4 PROBABILITY GENERATING FUNCTIONS

Definition 2.3. For an integer valued random Variable L : Ω → N0, the proba-

bility generating function is

G
(n)
L = E[sL] =

∞∑
n=0

snP[L = n].

2.4.1 Some Basic Properties of Probability Generating

Functions

• GL(0) = P[L = 0]

• GL(1) =
∑∞

n=0 snP[L = n] = 1

• Gn
L(0) = n!P[L = n] nεN0

• G′
L(s) = E[LsL−1] and G′′

L(s) = E[L(L− 1)sL−2]

• G′
L(1−) = E[L] and G′′

L = E[L(L− 1)].

Therefore,

G′
Y = E[Y ] and

σ2
Y = E[Y 2]− E[Y ]2 = G′′

Y (1) + G′
Y (1)−G′

Y (1)2

G′
L = GL(lnGL)′ and G′′

L(lnGL)′′(1) + (lnGL)′(1)

Theorem 2.1. (Multiplication Theorem) Suppose that X,Y : Ω → N0 are inde-

pendent, then

GX+Y (s) = E[sX+Y ] = E[sX ]E[sY ] = GX(s).GY (s).
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2.4.2 The General Mixture Model in Terms of A Proba-

bility Generating Function

Let N be the total number of defaults, at least for all sεC with |s| ≤ 1,

GN(s) = E[sN1+...+Nm ] = E[E[sN1+...+Nm|Λ1, ..., Λm]] = E[
m∏

i=1

E[sNi|Λi]] = E[e(Λ1+...+Λm)(s−1)].

If Λi’s are independent then,

GN(s) =
m∏

i=1

E[eΛi(s−1)].

2.4.3 The Gamma Mixed Poisson Distribution

Suppose that intensity Λ has is a Gamma distribution with parameters α, β >

0, and we note Λ ∼ (α, β), the density

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ,

where

Γ(α) =

∫ ∞

0

xα−1e−xdx.

We note that αΓ(α) = Γ(α + 1), Γ(1) = 1 and Γ(n) = (n− 1)! for nεN.

The expectation and the variance of Gamma Distribution is

E[Λ] =
Γ(α + 1)

βΓ(α)
=

α

β

E[Λ2] =
Γ(α + 2)

β2Γ(α)
=

α(α + 1)

β2
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V ar[Λ] = E[Λ2]− E[Λ]2 =
α

β2

2.5 THE DISCRETE FOURIER TRANSFORM

This part is actually inspired from the book ”‘Fourier Analysis and Its Appli-

cations”’ written by Gerald B. Folland.

The discrete Fourier transform is a linear mapping that operates on complex

N-dimensional vectors in much the same way that the Fourier transform operates

on functions on R. This method is actually a numerical approximation of Fourier

transform. The continuous Fourier transform is

f̂(z) =

∫ ∞

−∞
e−ixzf(x)dx. (2.5.22)

We need to apply the Fourier transform to a finite number of algebraic calcu-

lations performed on a finite set of data. Therefore, we can replace the integral

over (-∞,∞) by the interval of the finite interval. If we take the finite interval as

[0,Ω]. f̂ values can be constricted from its value at point 2πm/Ω where m is an

integer. Hence, the equations can be written as

f̂(
2πm

Ω
) =

∫ Ω

0

e−2πimx/Ωf(x)dx .. (2.5.23)

Notice that the choice of the bounded interval can be determined considering

the behavior of f̂(z).

Replacing the above integral by Riemann Sum,

f̂(
2πm

Ω
) ≈

N−1∑
n=0

e(−2πimn/N)f(
nΩ

N
)
Ω

N
. (2.5.24)
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We can write that

if f(
nΩ

N
) = an . (2.5.25)

Then

f̂(
2πm

Ω
) ≈ Ω

N
am (2.5.26)

for |m| << N , where

âm =
N−1∑
n=0

e−2πimn/Nan. (2.5.27)

Since e−2πim=1, the sequence âm is periodic with period N such that âM+N =

ân. So, the information is completely continuous in the finite sequence â0...âN−1.

Finally, the vector a ∈ CN can be transformed into another vector â ∈ CN

Formally, the N-point discrete Fourier Transform is a linear mapping such that

FN : CN → CN (2.5.28)

FNa = â . (2.5.29)

âm =
N−1∑
n=0

e−2πimn/Nan (0 ≤ m < N). (2.5.30)

In addition, the convolution property of the discrete Fourier transform can be

written as

FN(a ∗ b) = (â0b̂0, ..., âN−1b̂N−1), (2.5.31)
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where the discrete convolution a ∗ b is defined by

(a ∗ b)n =
N−1∑

k=0

akb[n− k]. (2.5.32)

In summary, this technique transforms the real sequence of numbers into a

sequence of complex numbers having the same dimensions. Therefore, the discrete

Fourier transform does not yield completely real sequence.
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Chapter 3

CREDITRISK+

3.1 THE STANDARD MODEL

CreditRisk+ was introduced by Credit Suisse Financial Products(CSFP) in

October 1997, and created by Tom Wilde of CSFP. Essentially, the success of

this actuarian based model comes from its simplicity, since it only focuses on

the default event of an obligor. The standard model is an analytical portfolio

approach, so the calculation of loss distribution does not require much computa-

tional effort. Moreover, it demonstrates tails of distribution more explicitly than

any other simulation based approach. On the other hand, the main disadvan-

tage is that the Poisson approximation in CreditRisk+ requires expected default

probabilities to be small. Thus, the loss calculation and the risk contributions

may have some error for riskier markets.

3.1.1 The Mathematical Foundations

Before illustrating the mathematical details of the model, we should note that

this section is based on the technical document of the original model [22].

Consider a portfolio consisting of N obligor. It is assumed that each obligor

has a default probability for a specified time horizon, generally one year. Let
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pA denote the default probability of obligor A, and the probability generating

function can be written in terms of an auxiliary variable z by

F (z) =
∞∑

n=0

P(n default)zn. (3.1.1)

The main assumption of CreditRisk+ was the Poissonian default event, thus

we know that

P(n default) =
e−µµn

n!
. (3.1.2)

As it is seen from the equation, the distribution has only one parameter µ that

represents the expected number of default. The generating function is

F (z) =
∞∑

n=0

e−µµn

n!
zn. (3.1.3)

In order to reduce computational burden CreditRisk+ uses exposure bands in-

stead of real exposures. In other words, there are certain levels of integer valued

amounts which are called as bands are taken into the model. According to the

model, each exposure is rounded to the nearest integer number and the near-

est band. More explicitly, each obligor credit amount is sent to the nearest

state(band). Then it evaluates the loss distribution from these exposure bands.

This procedure dramatically reduce computational burden, although the output

is less accurate. The portfolio can be divided into m exposure bands represented

by the index j where 1 ≤ j ≤ m. According to the original model, νj, εj, µj are

common exposure, expected loss and expected number of defaults in exposure

band j respectively. Then, the expected loss in terms of the probability default

events can be written as
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εj = νj × µj, (3.1.4)

µj =
εj

νj

=
∑

A:νA=νj

εa

νA

. (3.1.5)

In addition, let µ be the total expected number of default events in one year, then

µ =
m∑

j=1

µj =
m∑

j=1

εj

νj

(3.1.6)

The model does not use fixed default rates. But for the simplest case, we can

assume that default rate is fixed. Let G(z) denote the probability generating

function of losses depending on a certain default rate. It can be expressed as in

the multiplies of unit L of exposure

G(z) =
∞∑

n=0

P(AggregateLosses = n× L)zn (3.1.7)

Since the exposures are assumed to be independent, the exposure bands are

also independent. Therefore,

G(z) =
m∏

i=1

Gi(z). (3.1.8)

The following formula represents the probability generating function for the jth

band, i.e.

Gj =
∑
n=0

P(n defaults)znνj =
∞∑

n=0

e−µjµn
j

n!
= e−µj+µjzνj

. (3.1.9)

In other words, in case an n default occur in jth band of the portfolio, the char-
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acteristic function of loss can be expressed by this formula.

Thus,

G(z) =
m∏

j=1

e−µj+µjzνj
= e−

Pm
j=1 +

Pm
j=1 µjzνj

. (3.1.10)

Above formula is the probability generating function for losses of the portfolio

for default losses with fixed default rate.

From this initial point of view, it is possible to develop an actual generating

function of loss by incorporating default rate uncertainty and sector analysis.

The model assumes that the default rate is random variable, and it depends on

sector characteristics. CreditRisk+ divides the portfolio into sectors represented

as Sk : 1 ≤ k ≤ n. Further notations can be illustrated below.

χk: Random variable representing the mean number of defaults

µk: The long term average number of defaults

σk: The standard deviation of χk

Therefore,

µk =

m(k)∑
j=1

ε
(k)
j

ν
(k)
j

. (3.1.11)

One can estimate the standard deviation of sectors σk from the set σA of obligor

standard deviations by an averaging process. The model states that

χA =
εA

νA

χk

µk

. (3.1.12)

In particular, we have

∑
A

σA =
∑

A

εAσk

νAµk

=
σk

µk

∑
A

εA

νA

= σk. (3.1.13)
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The key assumption of CreditRisk+ is that χk is a Gamma distributed ran-

dom variable with mean µk and standard deviation σk. In the previous chapter

we emphasized some features of Gamma distribution.

For the kth sector, the conditional probability generating function given χk is

Fk(z) =
∞∑

n=0

P(n defaults)zn =
∞∑

n=0

zn

∫ ∞

x=0

P(ndefault|χk)f(x)dx. (3.1.14)

where F is the probability density of k.

Fk =

∫ ∞

x=0

ex(z−1)f(x)dx. (3.1.15)

Replacing f by the Gamma distribution density we get

Fk =

∫ ∞

x=0

ex(z−1) e
−−x

β xα−1

βαΓ(α)
dx. (3.1.16)

Fk(z) =
1

βαΓ(α)

∫ ∞

y=0

(
y

β−1 + 1− z
)α−1e−y dy

β−1 + 1− z

Γ(α)

βαΓ(α)(1 + β−1 − z)α
=

1

βα(1 + β−1 − z)α
, (3.1.17)

where αk =
µ2

k

σ2
k

and βk = σ2
k/µk

According to the technical document, the probability generating function of

the distribution of default event is

Fk(z) =
1

βα(1 + β−1 − z)α
.
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Equally,

Fk = (
1− pk

1− pkz
)αk ,

where

pk =
βk

1 + βk

.

This result states that the distribution of default events can be identified as

the probability density of the negative binomial distribution.

By analogy, the portfolio loss distribution is simply

G(z) =
∞∑

n=0

P(AggregateLosses = n× L)zn.

Since the sectors are independent,

G(z) =
n∏

k=1

Gk(z)bosluk1 ≤ k ≤ n,

Let’s define Pk(z) as

Pk(z) =

∑m(k)
j=1 (

ε
(k)
j

ν
(k)
j

)zν
(k)
j

∑m(k)
j=1 (

ε
(k)
j

ν
(k)
j

)
=

1

µk

m(k)∑
j=1

(
ε
(k)
j

ν
(k)
j

)zν
(k)
j .

Notice that it is possible to write the following equation, i.e.,

e
P

A χA+
P

A χAzvA = e
P

A(zv
A−1) = e

χk
µk

P
A

εA
νA

(zν
A−1)

= eχk(Pk(z)−1).

(3.1.18)
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Using this equation we can write that

Gk(z) =
∞∑

n=0

zn

∫ ∞

χk=0

P(Loss of nL|χk)fk(x)dxk (3.1.19)

Gk(z) =

∫ ∞

xk=0

e
P

A xA(zvA−1)fk(xk)dxk =

∫ ∞

xk=0

exk(Pk(z)−1)fk(xk)dxk. (3.1.20)

Then replacing Pk(z) into the equation we get

Gk(z) = Fk(Pk(z)). (3.1.21)

Thus, final result becomes

G(z) =
n∏

k=1

Gk(z) =
n∏

k=1

(
1− pk

1− pk

µk

∑m(k)
j=1

ε
(k)
j

ν
(k)
j

zν
(k)
j

)αk . (3.1.22)

This formula is the final result of probability generating function of the Cred-

itRisk+ which gives us complete information on the portfolio loss distribution.

The original model uses the Panjer Recursion technique to demonstrate the actual

loss distribution.
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3.1.2 The Panjer Recursion Technique

Although we obtain the analytical formula, it is not easy to compute the

probability generating function of an entire credit portfolio in practice. The

standard model uses the Panjer recursion technique which is briefly explained

below.

In general, the power series

G(z) =
∞∑

n=0

Anzn

by taking the differentials of both sides,

d(logG(z))

dz
=

1

G(z)

dG(z)

dz
=

A(z)

B(z)
=

a0 + a1z
1 + ... + arz

r

b0 + b1z1 + ... + bszs
.

The recursion relation is

An+1 =
1

b0(n + 1)
[

min(r,n)∑
i=0

aiAn−i −
min(s−1,n−1)∑

j=0

bj+1(n− j)An−j].

Combining with previous equations

A(z)

B(z)
=

n∑

k=1

pkαk

µk

∑m(k)
j=1 ε

(k)
j zv

(k)
j −1

1− pk

µk

∑m(k)
j=1

ε
(k)
j

ν
(k)
j

zν
(k)
j

.

3.1.3 General Sector Analysis

CreditRisk+ assumes that a portfolio is divided into sectors which are mu-

tually independent. The model incorporates systematic factors for each obligor.

An obligor may be influenced from several sectors instead of only one. Let θAk
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denote the weighted sector influence of the obligor A for sector k, such that

θAk :
n∑

k=1

θAk = 1. (3.1.23)

In other words, it states how much sector k influences obligor A. According to

the model
n∑

k=1

χk(Pk(z)− 1) =
∑

A,k

θAk
χk

µk

εA

νA

(zνA − 1), (3.1.24)

where

χA =
εA

νA

n∑

k=1

θAk
χk

µk

(3.1.25)

µk =
∑

A

θAk
εA

νA

. (3.1.26)

From this perspective, one can evaluate sector mean and standard deviations

from obligors. The mean of sector k is the sum of the contribution of each obligor,

such that

µk =
∑

A

θAkµA. (3.1.27)

It is possible to write

σk

µk

=

∑
A θAkµA

σA

µA∑
A θAkµA

, (3.1.28)

thus

σk =
∑

A

θAkσA. (3.1.29)

The specific factor is itself a portfolio composed of a large number of sub-sectors.

For the specific factor, the standard deviation can be set at zero.
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3.1.4 Risk Contributions and Pairwise Correlation

The risk contribution of an obligor can be expressed as the marginal effect of

its exposure on the standard deviation of the distribution of credit losses. In other

words, it gives us obligors’ degree of riskiness in the portfolio. Mathematically,

it is the sensitivity of the standard deviation of the portfolio with respect to the

obligors exposures.

RCA = EA
∂σ

∂EA

(3.1.30)

equally

RCA =
EA

2σ

∂σ2

∂EA

. (3.1.31)

Our assumption is that the sum of the risk contributions gives us the standard

deviation of the portfolio, i.e.

∑
A

RCA =
1

2σ

∑
A

EA
∂σ2

∂EA

=
2σ2

2σ
= σ (3.1.32)

∑
A

RCA = σ. (3.1.33)

The original document states the final result as

RCA =
EAµA

σ
[EA +

∑

k

(
σk

µk

)2εkθAk], (3.1.34)

where

σ2 =
n∑

k=1

ε2
k(

σk

µk

)2 +
∑

A

εAνA (3.1.35)
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These are the formula required to calculate an obligor’s risk contributions. The

derivation of this formula is illustrated below according to the original technical

document [22].

Remember that

G(z) = F (P (z)).

Let us denote E(z,x) as the default event probability generating function con-

ditional on mean x, and let µE and σ2 denote the mean and the variance of

function E. In addition, the pairs (µf , σ
2
f ), (µF , σ2

F ) and (µG, σ2
G) also represent

the mean and the variance of functions f(x), F(Z) and G(z). We note that µF = µk

and µG = εk. We can write the default event probability generating function F(z)

as follows:

F (z) =

∫

x

E(z, x)f(x)dx. (3.1.36)

Since E(z,x) is the generating function for the Poisson distribution, by definition

µE(x) = x σ2
E = µE. (3.1.37)

We can also represent mean (µ) for other generating functions such that

µE =
dE

dz
(1), µF =

dF

dz
(1), µG =

dG

dz
(1) (3.1.38)

σ2
E + µ2

E =
d2E

dz2
(1) +

dE

dz
(1) (3.1.39)

σ2
F + µ2

F =
d2F

dz2
(1) +

dF

dz
(1) (3.1.40)

σ2
G + µ2

G =
d2G

dz2
(1) +

dG

dz
(1), (3.1.41)
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from the definition,

µE(x) = x (3.1.42)

Since E(z,x) is the generating function of a Poisson distribution,

σ2
E = µE (3.1.43)

using these equations,

µF =

∫

x

µE(x)f(x)dx =

∫

x

xf(x)dx = µf (3.1.44)

and,

σ2
F + µ2

F =

∫

x

(σ2
E + µ2

E)f(x)dx =

∫

x

(µE + µ2
E)f(x)dx = µf + σ2

f + µ2
f . (3.1.45)

Thus,

σ2
F = µf + σ2

f . (3.1.46)

Here, we have evaluated mean and variance formula of the distribution of default

events. By using these equations, we can derive the equations for an entire

distribution of portfolio.

Let us take the first and second derivative of G(z) w.r.t. z.

dG

dz
(z) =

dF

dz
(P (z))

dP

dz
(3.1.47)

d2G

dz2
(z) =

d2F

dz2
(z)(P (z))[

dP

dz
]2 +

dF

dz
(P (z))

d2P (z)

dz2
. (3.1.48)
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So

σ2
G =

d2

dz2
(1) +

dG

dz
(1)− µ2

G. (3.1.49)

Then,

σ2
G =

d2F

dz2
P (1)

dP

dz
(1)2 +

dF

dz
(P (1))

d2P

dz2
(1) (3.1.50)

+
dF

dz
(P (1))

dP

dz
(1)− [

dF

dz
P (1)

dP

dz
(1)]2 (3.1.51)

Where, P(1)=1,

dP

dz
(1) =

1

µk

∑
A

θAkεA =
εk

µk

(3.1.52)

d2P

dz2
(1) =

1

µk

∑
A

θAkεA(νA − 1). (3.1.53)

Substituting these equations, we can get the variance formula of G(z), i.e.,

σ2
G = (σ2

k + µ2
k)(

εk

µk

)2 +
∑

A

θAkεAνA − ε2
k (3.1.54)

= σ2
k[

εk

µk

]2 +
∑

A

θAkεAνA (3.1.55)

More explicitly, the standard deviation of the actual loss distribution of the port-

folio is

σ2 =
n∑

k=1

ε2
k(

σk

µk

)2 +
∑

A

εAνA. (3.1.56)

In addition, the CreditRisk+ model illustrates the pairwise correlation be-

tween default events. The correlation ρ between default of two obligors A and B

can be written as

ρA,B = ρ(IA, IB), (3.1.57)
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where IA, IB are the default indicators. The standard expression of the pairwise

correlation is

ρA,B =
µAB − µAµB

(µA − µ2
A)1/2(µB − µ2

B)1/2
. (3.1.58)

The final result is

ρAB = (µAµB)1/2

n∑

k=1

θAkθBk(
σk

µk

)2. (3.1.59)

Accordingly, as it is seen from the equation, the correlations can be calculated

from sector statistics. This is an implied method which does not require direct

calculation of pairwise correlation.

3.2 RISK MEASURES AND CAPITAL

ALLOCATION IN CREDITRISK+

3.2.1 Value at Risk (VaR) and Expected Shortfall (ES)

In credit industry, value at risk framework is one of the most commonly used

risk measurement framework. However there are many publications illustrating

deficiencies of the VaR approach. The main reason for this is that VaR is not a

coherent risk measure. In order to be a coherent risk measure, four conditions

should be satisfied: subadditivity, monotonicity, positive homogeneity, translation

invariance [32]. VaR is a risk measure which does not have the subadditivity

property.

Formally VaR can be defined for a P probability measure and some confidence

interval α.

V aRα(X) = inf{x ≥ 0|P[X ≤ x] ≥ α}, (3.2.60)
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where X is a α-quantile of a loss random variable.

On the other hand, the expected short fall (ES) (or tail conditional expectation)

is a coherent risk measure which focuses on the behavior of the tails of the dis-

tribution. Formally, expected shortfall with respect to α confidence level can be

defined as

ESα(X) = E[X|X ≥ V aRα(X)]. (3.2.61)

In other words, the expected shortfall mainly focuses on expected loss beyond

a critical point c in the tail. This is the c = V aRα(X) critical loss threshold with

respect to α confidence level.

In the context of an expected shortfall, the economic capital is

ECES(c) = E[X|X ≥ c]− E[X], (3.2.62)

where

c = V aRα(X). (3.2.63)
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Chapter 4

FAST FOURIER TRANSORM

TECHNIQUE IN CREDITRISK+

In the FFT approach, in order to compute loss distribution, we use a charac-

teristic function instead of a probability generating function. The main advantage

of this technique stems from its computational efficiency for larger portfolios hav-

ing several sectoral dependencies. Moreover, this algorithm is numerically more

stable and faster than the standard model which is based on the Panjer recursion

technique.

4.1 The Algorithhm of FFT in CreditRisk+

In general, this technique transforms a purely real sequence into a complex

plane. In CreditRisk+, we deal with a discrete probability generating function,

so it is possible to apply the FFT technique in order to obtain the characteristic

function of distribution. Generally, a simple form of the characteristic function

can be written as

ϕx(z) = E[eizx].

Let us denote the probability generating function as G(z), and the relation
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can be expressed as follows.

ϕx(z) = FGx(z).

Therefore,

ϕx(z) = Gx(e
−iz).

The coefficient vector of the probability generating function, in other words

the probability vector, gives us sufficient information about the shape of the

loss. If we know the probability generating functions of the obligors or their

exposure bands, it is possible to construct a portfolio loss distribution by the

FFT technique. Assuming that we have N independent sectors, by incorporat-

ing the systematic risks of the obligors, the portfolio can be divided into N+1

sub-portfolios considering corresponding sector weights. For each sub-portfolio,

discrete characteristic functions can be evaluated from the obligors’ probability

vector. The convolution property helps us to achieve portfolio loss distribution

combining the characteristic functions of each obligor and the sub-portfolios.

As mentioned, the original model uses exposure bands and a basic loss unit

in order to have a faster and more powerful computational algorithm. But, the

higher computational speed decreases the accuracy of the model. On the other

hand, in order to obtain higher accuracy, one should not take into account large

exposure bands and basic loss unit. In addition, this approach needs powerful

computers and may take too much time. In this study, we prefer using exposure

bands and basic loss unit. The basic steps of the algorithm is briefly explained

below.

• Data calibration
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As a first step, one should determine a unit of exposure L and group the

exposures in the portfolio into bands. After dividing the portfolio into m

exposure bands, the total exposures and expected loss of each band should

be evaluated. Denoting νj and εj to be exposures and expected loss for jth

band and µj denotes the number of expected loss, where 1 ≤ j ≤ m, the

following relation should be satisfied:

εj = νj × µj.

Then, assuming that the default event is a poissonian process, the proba-

bility vector of each band should be obtained from the following relation.

P(n defaults) =
µje

−µj

n!

for n = 1, 2, ...2r, j = 1, 2, ..., m where r is an integer.

• Dividing the portfolio into N+1 sub-portfolios:

Assuming that we have N independent sectors, and considering correspond-

ing sector weights, the portfolio should be divided into N+1 sub-sectors by

incorporating the systematic risks. The algorithm should be applied to

each generated sub-portfolio which are assumed to be independent from

each other. It is possible to obtain probability generating functions and the

probability vector (coefficients of the PGF’s) for each exposure band of that

sub-sectors. Note that r is an integer which should be sufficiently large to

have a better and more accurate result.

• Obtaining Probability Generating Functions of Sub-portfolios
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Let f s
j denote a probability vector of jth band for the sector s. By using

the FFT technique, its characteristic function can be written as

ϕs
j = FFT (f s

j ).

By using a convolution property, the characteristic function of the sector s

becomes

ϕs =
m∏

j=1

[ϕs
j ].

Then the inverse fast fourier transform gives us the probability generating

function of the sector s,

Gs = IFFT (ϕs).

• Calculating Portfolio Loss Distribution

At the final step, we can evaluate the probability generating function of

the entire portfolio. Combining all generating functions, the characteristic

function of the portfolio is written as

ϕ =
N∏

s=0

(ϕs).

Then, the inverse fast fourier transform gives us the final probability vector

G = IFFT (ϕ).

The probability vector G contains sufficient information about loss distribu-

tion of our credit portfolio. Since we are dealing with the complex numbers

in the Fourier space, the final generating function also have imaginary coef-
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ficients. Therefore, one should only take the real part of the final probability

vector.

4.2 The Mixed Model:

The Combination of Fast Fourier(FFT) and

Panjer Recursion Technique

Alternatively, we can also combine the FFT technique and Panjer’s algorithm

in a single model. We propose that the fast fourier transform can be applied

to the sector’s probability generating functions which are obtained from Panjer’s

algorithm. In other words, the distribution of sub-portfolios can be obtained

by Panjer recursion technique, and it is thought that the FFT algorithm can

be applied to these marginal probability generating functions. In the standard

model, the computational effort increases exponentially as the number of sectors

increases. Therefore, in order to build faster algorithm, FFT technique can be

applied to the sub-portfolios. We think that this technique have faster compu-

tational power, and yields more accurate distribution functions than the original

version of the CreditRisk+.

Similar to the previous algorithm, the portfolio should be divided into sub-

portfolios corresponding to the sector dependencies. We should apply Panjer

Recursion algorithm for each sub-portfolio as stated in the original document.

Thus, in this case, we would have several marginal portfolios having single sector.
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According to the original technical study, the recursion relation is

An+1 =
1

b0(n + 1)




min(r,n)∑
i=0

aiAn−i −
min(s−1,n−1)∑

j=0

bj+1(n− j)An−j


 ,

where An denotes the probability of amount of losses (n x unit loss) and, a and

b are the coefficients of the polynomials A and B respectively.

A(z)

B(z)
=

pα
µ

∑m
j=1 εjz

vj−1

1− p
µ

∑m
j=1

εj

νj
zνj

where εj and νj are expected loss and total exposure respectively at jth band,

and p,α , µ are distribution parameters. In order to find coefficients a and b, we

need to develop an algorithm which evaluates the coefficients of the polynomials

accurately and fast. Although building the algorithm is easy for one sector port-

folio, it is very hard to compute it in the multi-dimensional case. Accordingly,

the FFT technique will give us a significant advantage in the computation for

large sector dependencies portfolios. Similar to the previous algorithm, the dis-

crete probability generating functions of the sub-portfolios are transformed into

Fourier space to obtain their characteristic functions. We should apply same

procedure as explained in the previous algorithm, so the loss distribution of the

whole portfolio can be obtained. The MATLAB software can be preferred to

perform this algorithm to for easy and fast computation.
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4.3 Applications

The purpose of this section is to demonstrate the application of Fourier Cred-

itRisk+ approach to an hypothetical portfolio. Moreover, we also illustrate and

compare pure FFT, Panjer-FFT based approaches and standard CreditRisk+

model. The portfolio consisting of international treasury bonds varying credit

quality and size of exposures. The sovereign bond portfolio consists of t-bonds

of Argentina, Belgium, Belie, Brazil, Bulgaria, Canada, Czech Republic, Chile,

Dominican, Ecuador, Estonia, France, India, Israel, Indonesia, Italy, Japan, Ko-

rea, Kuwait, Pakistan, Paraguay, Russia, Romania, Spain, Turkey, Ukraine, UK,

USA, Mexico and Venezuelan. Notice that the exposure amounts are net recov-

eries. The details of the portfolio is illustrated at the table-1.

It should be noted that the credit rating data and corresponding default rates’

and default rates volatilities are obtained from Standard and Poor’s data source.

In this application, we assume that each obligor are allocated to three different

sectors with specific weights. during the application countries can be considered

as sectors. Moreover obligors depend on only one systematic factor.

The essential goal is to obtain some specific information about riskiness of

the credit portfolio. Specifically, we need to know percentiles of loss, full loss

distribution and risk contributions of each obligors. In this part, we also demon-

strate Value-at-Risk and Expected-Shortfall exposures of the portfolio. The sector

weights are chart 4.2.
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Countries Exposures Ratings Default Rate Std. Deviation
Argentina 9.560.000 B 15,00 7,50
Belgium 16.570.000 AA 3,00 1,50
Brazil 7.430.000 BB 10,00 5,00

Bulgaria 13.450.000 BBB 7,50 3,75
Czech Rep. 3.480.000 A 5,00 2,50

Chile 17.870.000 AA 3,00 1,50
Dominican 600.000 B 15,00 7,50
Ecuador 7.190.000 CCC 30,00 15,00
Estonia 19.590.000 A 5,00 2,50
France 15.700.000 AAA 1,50 0,75
India 14.170.000 BB 10,00 5,00

Indonesia 4.500.000 BB 10,00 5,00
Italy 8.700.000 A 5,00 2,50
Japan 13.920.000 AA 3,00 1,50
Korea 12.530.000 A 5,00 2,50
Mexico 18.640.000 A 5,00 2,50

Pakistan 7.430.000 BB 10,00 5,00
Paraguay 6.510.000 B 15,00 7,50
Russia 9.400.000 A 5,00 2,50

Romania 8.330.000 BBB 7,50 3,75
Spain 14.700.000 AAA 1,50 0,75
Turkey 6.300.000 BB 10,00 5,00
Ukraine 1.590.000 BB 10,00 5,00

UK 15.430.000 AAA 1,50 0,75
Venezuelan 8.560.000 BB 10,00 5,00

Table 4.1: Sovereign Bond Portfolio Example, Standard and Poor’s
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Country Specific Sector A Sector B Sector C
Argentina 50 30 10 10
Belgium 25 25 25 25
Brazil 75 5 10 10

Bulgaria 50 10 10 30
Czech Rep. 25 10 10 55

Chile 25 25 20 30
Dominican 25 25 25 25
Ecuador 75 10 5 10
Estonia 50 10 10 30
France 50 20 10 20
India 25 25 25 25

Indonesia 25 25 30 20
Italy 75 10 5 10
Japan 50 20 10 20
Korea 50 10 10 30
Mexico 75 5 10 10

Pakistan 25 10 10 55
Paraguay 25 25 20 30
Russia 75 10 5 10

Romania 25 25 20 30
Spain 50 20 10 20
Turkey 75 10 10 5
Ukraine 50 30 10 10

UK 25 25 20 30
Venezuelan 50 10 10 30

Table 4.2: Sector Weights

As it is emphasized previously that the loss distribution any credit portfolio

is expected to be highly skewed. Therefore, summary statistics are not helpful to

better understand the risk. So we need to know possible losses of each percentile

level. In addition, for some spcific percentile levels, we also demonstrate Value

at Risk (VaR) and Expected Shortfall (ES) exposures and risk contributions of

the obligors.
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In this application, we apply three different algorithm: The Standard Cred-

itRisk+ model, the Pure-FFT and FFT-Panjer Technique. For each model, sta-

tistical characteristics are demonstrated.

The key point of these models is the calibration of the data set. For each

algorithm, we apply some common techniques reduce the computational burden.

The most significant point is that the real exposures are divided by a unit exposure

L0 and they are rounded to the nearest integer numbers. Notice that each integer

valued new exposures are denoted as exposure bands and their corresponding

default rates and default rates volatilities. This procedure is required to have

faster algorithm. In this application, we choose L0 unit money as a unit exposure.

If we reduce this value, the accuracy of the model increase but the computational

procedure takes much longer time. In order to have quick and dirty result, one

can choose a higher unit exposure.

As it is explained in previous part, the standard model use Panjer recur-

sive algorithm to produce generating function of the portfolio loss. The input

parameters of the recursive scheme are evaluated from the characteristics of ex-

posure bands and sector influence (weights) on obligors. On the other hand,

the pure-FFT technique, we have primitive but very fast algorithm. Unlike the

standard model, he behavior of sectors are not included into the model. Here,

we apply FFT technique for each sub-portfolio which represents corresponding

sectors. The another approach, FFT-Panjer, mixes the standard model and fast

Fourier transform technique. This new approach allow us to incorporate several

sectors into the model. It should be noted that in standard CreditRisk+ increas-

ing number of sectors increase computational burden exponentially. However,

in FFT-Panjer model, we apply FFT technique for each sub-portfolios’ generat-
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ing functions which are evaluated from Panjer’s algorithm. As we demonstrated

below, the statistics are very close the standard model.

For each model, we develop the computer programs in MATLAB software

package. The output is illustrated in the charts

Aggregate Exposure 252.150.000 unit currency
Expected Loss 16.044.250 unit currency

The Standard Model FFT-Panjer Pure FFT
Standard Deviation 13.309.316 13.230.806 13.023.691

Table 4.3: Standard Deviations
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Figure 4.1: Loss Distribution (The Standard CreditRisk+ Approach)

Percentile VaR Standard Model FFT-Panjer Pure-FFT
50 14100000 14100000 14100000
75 23700000 23700000 23600000
95 41200000 41200000 40700000

97.50 47600000 47600000 47000000
99 55600000 55600000 54700000

99.50 61400000 61400000 60200000
99.75 66900000 66800000 65600000
99.90 74000000 73800000 72200000

Table 4.4: Value at Risk Exposures

47



50 100 150 200 250 300 350 400 450 500

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Unit Loss (x 100000)

D
ef

au
lt 

P
ro

ba
bi

lit
ie

s

FFT−Panjer

Figure 4.2: Loss Distribution (The FFT-Panjer Model)
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Figure 4.3: Loss Distribution (The Pure FFT)
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Percentile ESF Standard Model FFT-Panjer Pure-FFT
50 26398114 26398077 26184465
75 34444481 34444468 34103238
95 50717375 50717372 49735752

97.50 57480790 57480788 56184366
99 67711707 67711706 65330267

99.50 78090063 78090061 73879915
99.75 93674455 93273618 86388871
99.90 135271683 133482269 115765681

Table 4.5: Expected Shortfall Risk Exposures

According tho the results obtained, we can say that the outcomes are very

close to each other for each model. Especially, the standard model and FFT-

Panjer technique produce very similar results. The distribution outcome is less

riskier in pure FFT model than other models. On the other hand, the standard

CreditRisk+ algorithm represent the riskiest model. In addition, it is observed

that depending on the numbers of sectors, FFT-Panjer algorithm is faster than the

standard model in CPU time. But both these two models produce negligibly close

outcomes. Therefore, one can rather choose FFT-Panjer algorithm especially for

the large number of sectoral dependent portfolios.
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Country Unit Amount Risk Percentiles
Argentina 4663355 0.0839
Belgium 2418294 0.0435
Brazil 2046989 0.0368

Bulgaria 4180300 0.0752
Czech Rep. 336254 0.0060

Chile 2767414 0.0498
Dominican 112209 0.0020
Ecuador 5752578 0.1035
Estonia 5394618 0.0971
France 1087942 0.0195
India 864718 0.0155

Indonesia 955043 0.0171
Italy 1305694 0.0235
Japan 1779216 0.0320
Korea 2473173 0.0445
Mexico 2117820 0.0381

Pakistan 2578404 0.0464
Paraguay 1484965 0.0267
Russia 1896607 0.0341

Romania 968906 0.0174
Spain 1547281 0.0278
Turkey 229411 0.0041
Ukraine 1071331 0.0192

UK 4914158 0.0884
Venezuelan 2600092 0.0468

Table 4.6: Risk Contributions at 99th percentile (The Standard Model)
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Country Unit Amount Risk Percentiles
Argentina 4663416 0.0839
Belgium 2418330 0.0435
Brazil 2047014 0.0368

Bulgaria 4180359 0.0752
Czech Rep. 336257 0.0060

Chile 2767456 0.0498
Dominican 112210 0.0020
Ecuador 5752646 0.1035
Estonia 5394701 0.0971
France 1087958 0.0195
India 864727 0.0155

Indonesia 955052 0.0171
Italy 1305710 0.0235
Japan 1779242 0.0320
Korea 2473208 0.0445
Mexico 2117846 0.0381

Pakistan 2578434 0.0464
Paraguay 1484984 0.0267
Russia 1896631 0.0341

Romania 968920 0.0174
Spain 1547298 0.0278
Turkey 229413 0.0041
Ukraine 171347 0.0192

UK 4914233 0.0884
Venezuelan 2600125 0.0468

Table 4.7: Risk Contributions at 99th percentile (FFT-Panjer)
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Country Unit Amount Risk Percentiles
Argentina 1755019 0.0713
Belgium 971700 0.0394
Brazil 878703 0.0356

Bulgaria 1952245 0.0793
Czech Rep. 255149 0.010

Chile 1197844 0.0486
Dominican Rep. 93705 0.0038

Ecuador 2515974 0.1022
Estonia 2297592 0.0933
France 404674 0.0164
India 523292 0.0212

Indonesia 544544 0.0221
Italy 521534 0.0211
Japan 689225 0.028
Korea 1176031 0.0477
Mexico 1468882 0.0596

Pakistan 1444779 0.0586
Paraguay 570981 0.0231
Russia 996803 0.0404

Romania 368866 0.0149
Spain 675416 0.0274
Turkey 166103 0.0067
Ukraine 439109 0.0178

UK 1333695 0.0541
Venezuelan 1370588 0.0556

Table 4.8: Risk Contributions at 99th percentile (The Pure FFT Model)
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Chapter 5

INTEGER AUTOREGRESSIVE

APPROACH TO CREDITRISK+

The original CreditRisk+ model does not consider how to estimate expected

default frequencies. As input data, it only takes obligors’ exposures, expected

default probabilities and their standard deviations from corresponding rating ma-

trices. Moreover, the default events in the past are not included in the model.

In this work, we propose a dynamic credit risk modeling including the past de-

fault observations together with some specific macro economic variables such as

inflation, interest rates etc. Our new econometric approach is simply based on

an integer-valued autoregressive process(INAR). We give below the definition of

the INAR process.

5.0.1 Integer Autoregressive(INAR) Process

Before giving the formal definition of INAR process, we should define what a

thinning operator is. According to [46], the definition and properties are stated

below.

Definition 5.0.1. (Thinning Operator)Let X be a non-negative integer random
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variable and α ∈ [0, 1]. Then, the thinning, denoted by ◦, can be defined as

α ◦X =
X∑

i=1

Yi, (5.0.1)

where Yi is a sequence of independent and identically distributed Bernoulli ran-

dom variables which is independent of X with success probability α.

The properties of thinning operator,

• β ◦ (α ◦X) = (βα) ◦X

• E[α ◦X|X] = αX

• E[α ◦X] = αE[X]]

• V AR[α ◦X|X] = α(1− α)X

• V AR[α ◦X] = α2V AR[X] + α(1− α)E[X].

The moving average representation,

Xt = α ◦Xt−1 + εt = α ◦ (α ◦Xt−2 + εt−1) + εt (5.0.2)

Finally,

Xt =
∞∑

j=0

αj ◦ εt−j (5.0.3)

The expectation and the variance of the process can be written as

E[Xt] = αE[Xt−1] + µ = αtE[X0] + µ

t−1∑
j=0

αj (5.0.4)

V AR[Xt] = α2V AR[Xt−1] + α(1− α)E[Xt−1] + σ2 (5.0.5)
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V AR[Xt] = α2V AR[X0] + (1− α)
t∑

j=1

α2j−1EXt−j + σ2

t∑
j=1

α2(j − 1) (5.0.6)

5.0.2 Parameter Estimation of Poisson INAR(1)

It can be assumed that εt is a sequence of independent and identically distrib-

uted poisson random variable with mean µ. The INAR(1) process was

Xt = α ◦Xt−1 + εt , (5.0.7)

and the conditional expectation and the variance of the INAR(1) process is

E[Xt|Xt−1] = αXt−1 + µ (5.0.8)

V AR[Xt|Xt−1] = α(1− α)Xt−1 + µ (5.0.9)

Mainly, there are two methods to estimate the parameters α and µ. The first

approach is based on method of moments which yields

α̂ =
N−1∑
t=0

(Xt −X)(Xt+1 −X)∑N
t=0(Xt −X)2

(5.0.10)

µ̂ =

∑N
t=1 εt

N
(5.0.11)

where ε̂t = X̂t− α̂Xt−1 for t=1,2,...,N. On the other hand, an alternative estima-

tion method is conditional least square estimation.

min
α,µ

N∑
t=1

(Xt − αXt−1 − µ)2 (5.0.12)
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5.0.3 Regression Analysis of Integer Autoregressive

Models

In this model, we can express the parameters α and µ by using some explana-

tory variables. Suppose Y1,t and Y2,t are the observations at time t that may have

impact on banks’ systematic and idiosyncratic behaviors. The information flow

from institutions to the authorities are usually lagged. This causes the author-

ities could not take immediate action on the unwilling cases. Linking the bank

specific information to the information available to authorities on time, thus, is

very important. It is possible to define α such that

α =
1

1 + exp(−Γ′Y1,t−1)
(5.0.13)

where Γ is the vector of coefficients. Let ε be a sequence of Poisson random

variables such that

E[εt] = exp(β′Y2,t−1), (5.0.14)

where β is the vector of coefficients. where Yt is a covariate process. The condi-

tional expectation is

E[Xt|Yt−1, Xt−1] =
1

1 + exp(−Γ′Y1,t−1)
Xt−1 + exp(β′Y2,t−1). (5.0.15)

The variance,

V AR[Xt|Yt−1, Xt−1] =
exp(−Γ′Y1,t−1)

(1 + exp(−Γ′Y1,t−1))2
Xt−1 + exp(β′Y2,t−1). (5.0.16)

56



Accordingly, we may estimate α and β by taking

min
α,β

{
Xt − 1

1 + exp(−Γ′Y1,t−1)
Xt−1 − exp(β′Y2,t−1)

}2

. (5.0.17)

5.0.4 A Simple Application of Poisson INAR Process

In this part, we illustrate an hypothetical example of Integer Auto Regressive

Process. It is assumed that we have sufficient information about past default

events for 10-years horizon. Then for each category we can illustrate approximate

default rates for each year. The key point is that how can we estimate today’s

default rates for each rating category by using INAR model. The hypothetical

observations are shown below.

Year AAA AA A BBB BB B CCC
1 0.148 0.0128 0.0283 0.0416 0.0750 0.1474 0.3126
2 0.0143 0.0171 0.0301 0.0548 0.0802 0.1739 0.2756
3 0.0080 0.0165 0.0317 0.0455 0.0761 0.1445 0.2401
4 0.0161 0.0161 0.0333 0.0541 0.0805 0.1159 0.3483
5 0.0183 0.0145 0.0395 0.0418 0.0740 0.1502 0.2680
6 0.0150 0.0150 0.0400 0.0506 0.0750 0.1516 0.2995
7 0.0130 0.0173 0.0380 0.490 0.1202 0.1571 0.3002
8 0.0144 0.0155 0.0347 0.0463 0.0851 0.1612 0.2888
9 0.0120 0.0180 0.0302 0.0535 0.0950 0.1788 0.3178
10 0.0010 0.020 0.0291 0.0610 0.2110 0.1377 0.4021

Table 5.1: Observations of Default Events in 10-year period of time

For a large number of data set, it is possible to apply poisson INAR process.

According to the data set we can estimate the alpha parameters of correspond-

ing rating categories by using conditional least square technique or method of

moments. Here, we would rather to apply least square techniques to INAR(1)
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process. In order to estimate this parameters and corresponding default rates,

we develop a MATLAB code. The output of parameters are given below

Ratings α
AAA 0.3819
AA 0.0435
A 0.1269

BBB 0.0080
BB 0.0134
B 0.0148

CCC 0.01231

Table 5.2: The Estimations of α parameters for rating categories

Ratings Default Rates
AAA 0.0153
AA 0.0168
A 0.0336

BBB 0.0505
BB 0.1028
B 0.1520

CCC 0.3049

Table 5.3: The Estimated Default Probabilities

Accordingly, new default probabilities can be calculated for each rating cate-

gory. In addition, it is possible to incorporate some explanatory observations into

these models. Using some specific information, one can calculate new parameters

and so new expected default rates. For instance, a bank authority can incorpo-

rate some macroeconomic observations into the model. Hence, the instantaneous

riskiness of the portfolio can be obtained by these new default rates. Our sugges-
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tion is that together with historical observations, instantaneous macroeconomic

events can also be incorporated into CreditRisk+ model. Because the default fre-

quencies are the most significant input parameters of the CreditRisk+ model, it is

believed that this approach increase the accuracy of the credit risk measurement,

especially for understanding daily riskiness of a credit portfolio.
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Chapter 6

CONCLUSION

In this study, we mainly focus on developing CreditRisk+ model consider-

ing past observations and current macro economic, financial and bank specific

conditions by Poisson-INAR model. Before explaining our econometric Cred-

itRisk+ approach, we introduce fast fourier transformation(FFT) technique as

an alternative to the standard model. In addition, we represent a new alter-

native computational technique which incorporates Panjer Recursion and FFT.

We show that under FFT and mixed approaches CreditRisk+ performs better in

terms of CPU time and numerical stability. Moreover, it is easier to implement.

Furthermore, it is observed that FFT-Panjer and the standard model yield nearly

same results, however FFT-Panjer model is very fast in terms of CPU time while

number of sectors increases. Moreover, we also show that one can calibrate the

parameters of the Poisson-INAR model to fit the observations.
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