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Abstract

HOW TO INVERT ONE-WAY FUNCTIONS:

TIME-MEMORY TRADE-OFF METHOD

ÇALIK, Çağdaş

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ali DOĞANAKSOY

January 2007, 48 pages

Security of various encryption schemes, authentication mechanisms and other

cryptographic protocols depend on the hardness of inverting one-way functions

which they are based on. Time-Memory Trade-off (TMTO) method, proposed

by Hellman [11], is a generic method to invert one-way functions, by enabling

a trade-off to be made between the memory and the time required to find an

inverse, at the expense of a precomputation effort. In this thesis, an analysis of

the TMTO method is made and the application of the method to symmetric-key

cryptosystems and hash functions is presented. A new asymptotic expression for

the coverage of a single Hellman table which helps to approximate the success

probability of the method is introduced. As an application, the method is

applied to SHA-1 hash algorithm and the results are presented.

Keywords: Cryptography, One-Way Functions, Time-Memory Trade-off, Crypt-

analysis
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Öz

TEK-YÖNLÜ FONKSİYONLAR NASIL ÇEVRİLİR:

ZAMAN-HAFIZA ÖDÜNLEŞİMİ

ÇALIK, Çağdaş

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ali DOĞANAKSOY

Ocak 2007, 48 sayfa

Birçok şifreleme yönteminin, kimlik doğrulama algoritmalarının ve krip-

tografik protokollerin güvenliği tek yönlü fonksiyonların çevrilmesinin zorluğuna

dayanır. Hellman tarafından önerilen [11] zaman-hafıza ödünleşimi (TMTO) tek

yönlü fonksiyonların çevrimi için genel bir metotdur. Bu tezde, TMTO meto-

dunun analizi yapılmış ve metodun simetrik anahtarlı sistemler ve özetleme

fonksiyonlarına uygulanması gösterilmiştir. Metodun başarı oranını hesapla-

maya yardımcı olan, bir Hellman tablosunun kapsama oranını veren yeni bir

asimptotik ifade tanıtılmıştır. Bir uygulama olarak TMTO metodu SHA-1

özetleme algoritmasına uygulanmıştır.

Anahtar Kelimeler: Kriptografi, Tek yönlü fonksiyonlar, Zaman-Hafıza ödünle-

şimi, Kriptanaliz
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Chapter 1

Introduction

One-way functions exist in almost all areas of cryptography. Securities of en-

cryption schemes, authentication mechanisms and various other cryptographic

protocols depend on the hardness of inverting one-way functions which they are

based on. Roughly speaking, a one-way function is a function f : X → Y such

that for an x ∈ X it is ‘easy’ to compute the image y = f(x), but for any y ∈ Y

it is ‘hard’ to find a preimage x satisfying y = f(x). Here ‘easy’ and ‘hard’ are

considered in the context of complexity theory and they informally correspond

to being computationally feasible and infeasible, respectively.

By inversion of a one-way function, we mean a process which finds a preimage

of any point in Y , if there exists any. An obvious method to find a preimage

of a given point is trying all possible inputs and checking whether they yield

the given value. This method, which is known as exhaustive search, requires

expectedly |X|/2 operations to find a preimage. This may be acceptable if the

search operation is to be carried out only once. However, if the search operation

is expected to be carried out for different points in the future -a more likely case

to happen in real life, the time required by exhaustive search may turn out to

be excessive. To overcome this problem, one may first construct a lookup table

containing the preimages of all the points. This precomputation process requires

an effort equal to exhaustive search and is to be performed once. Afterwards,
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any preimage finding task can be accomplished via one table lookup operation

which requires a negligible amount of time. Although table lookup is quite fast,

it requires extreme amounts of memory for the functions acting on large sets.

A method to balance this huge gap between the solution time and the required

memory, in other words trading memory for time, would be particularly useful.

In 1980, Hellman proposed the Time-Memory Trade-off (TMTO) method

[11], in which the effort spent on the precomputation phase can be shared

between the memory to store the results and the time to perform a search.

Unlike the exhaustive search and table lookup methods, TMTO is a probabilistic

method, that is, the search operation may not find a preimage even if there exists

one. The inversion of a function by TMTO method can be stated as follows:

We are given a precomputation resource equivalent to the exhaustive search

effort. At the end of the precomputation phase we store M units of data and

each preimage finding operation takes T units time. The critical point here is

that we must balance M and T so that both of them are affordable.

In this thesis we study the inversion problem of one-way functions defined

over finite sets with TMTO method. Although this method has applications

only in cryptography, we present a general framework for the method.

In Chapter 2, we explain the notion of a one-way function and give examples

of some of the one-way functions used in cryptography and define the inversion

problem of one-way functions.

Chapter 3 is devoted to random mapping statistics where we derive some

of the important properties of random mappings which will help us in selecting

various TMTO parameters. The properties declared here are of great impor-

tance since we model our function to be inverted as a random function.
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Chapter 4 constitutes the main content of this study. We first explain ex-

haustive search and table lookup methods and show how the TMTO method

can be used as an alternative to these methods. After explaining the basic

method, we derive our calculations regarding the method and compare these

with the previous ones in the literature. We basically examine three variants of

the TMTO method, namely the original method by Hellman, the distinguished

points method and the rainbow tables method.

In Chapter 5 we show how the TMTO method can be applied to symmetric-

key cryptosystems and hash functions. As an example, we apply the method to

the SHA-1 algorithm with a key space of 240 inputs, with three different time

and memory settings. For each of the settings we present the results.

Chapter 6 concludes the thesis with a summary. We also mention future

work and open problems related to the TMTO method in this chapter.
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Chapter 2

One-Way Functions

This chapter deals with one-way functions and the problem of inverting

these functions. After introducing the concept of one-wayness, the importance

of these functions in cryptography is emphasized. It is made clear that invert-

ing these functions is equivalent to breaking the cryptosystem that depends

on them. Finally, the inversion problem is introduced. This problem can be

classified into two categories; then why we concentrate on one of these types is

explained .

2.1 One-Way Functions

We begin by defining a one-way function.

Definition 2.1.1. A function f : X → Y where X and Y are non-empty finite

sets is called one-way if for any x ∈ X, there exists a polynomial time algorithm

to compute y = f(x), but for an arbitrary y ∈ Y a polynomial time algorithm

to find x = f−1(y) does not exist.

It must be noted that the proof of the non-existence of a polynomial time

inversion algorithm for such a function may not be so easy to provide. In fact,

the existence of one-way functions is an open problem in complexity theory.
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Therefore, we treat the function as one-way unless a method for inversion is

known.

Some of the examples of one-way functions worth mentioning are:

• Integer factorization: It is easy to compute the product of two integers

but no efficient way to factorize an arbitrary integer is known.

• Discrete Logarithm Problem: In a finite field Fpk of order pk where p is a

prime, given g, a ∈ Fpk , computing y = ga (mod pk) requires polynomial

time. However given y, g ∈ Fpk there exists no such algorithm to find a,

such that y = ga (mod pk).

• Knapsack Problem: Given a nonempty set A of integers, it is quite easy

to calculate the sum of the elements of any subset of A. However, given

the set A and an integer y it is hard to find a subset whose elements sum

up to y.

There is a special class of one-way functions called trapdoor functions.

Definition 2.1.2. A function f : X → Y where X and Y are non-empty finite

sets is called a trapdoor function if it is a one-way function with the distinction

that it is possible to compute x = f−1(y) easily with some extra information.

As with the definition of one-way functions, the meanings of ‘easy’ and ‘hard’

also apply here. The difference between a one-way function and a trapdoor

function is that while it is always hard to invert a one-way function, trapdoor

functions enable the inversion if some additional data is known. Trapdoor

functions are mostly used in public key cryptosystems. Perhaps the most famous

trapdoor function is the RSA encryption function RSA(n, e, m) = me(mod n).

A sender A who wishes to send a message m to a receiver B having RSA
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public key parameters n and e, computes c = RSA(n, e, m) and sends c to B.

For anybody without the knowledge of secret parameter d, obtaining m from

c is considered to be a hard problem and equals the breaking of the system.

However the recipient of the message who possesses secret information d can

easily compute m = cd (mod n), and hence can invert the encryption function.

2.2 The Inversion Problem

By inversion of a one-way function, we mean a process which finds a preimage

of any point in the range set, if there exists any. Here we specifically work on

the functions defined on finite sets. Depending on the structure of the function,

whether it is 1-1 or not, for example, some of the points may have more than

one preimage, and some of them may not have a preimage at all. Therefore, we

analyze the problem of inversion in two categories.

Let f : A → B be a function defined over the finite sets A and B.

• Problem type 1. Given f(x0) = y, x0 ∈ A, y ∈ B, find x ∈ A such that

f(x) = y.

• Problem type 2. Given f(x0) = y, x0 ∈ A, y ∈ B, find x0.

While in some situations finding one out of many preimages may be suffi-

cient, finding a specific preimage may also be of interest.

It must be noted that the solution of the problem of type 2 is equivalent to

the solution of all the instances of type 1: that is, in order to find a specific

preimage, all the preimages should be searched.

6



Chapter 3

Random Mappings

In this chapter we study some properties of random mappings which will

provide us with a number of useful results to be used in the next chapter.

Functions we are particularly interested in are the ones which are defined

on large finite sets. In most cases they are defined by complicated mechanisms;

therefore, we may assume that for each input value, the output is selected among

possible outputs equally likely.

Some of the properties given in this chapter are well known and can be

obtained by elementary methods. For details and further properties of random

mappings, the reader may refer to article [8], where most of the basic properties

are given.

3.1 Random Mapping Statistics

Let X and Y be finite sets with |X| = N and |Y | = M . The following can

be found in any elementary text book.

• The number of all functions X → Y is MN .

• The number of one-to-one functions X → Y is M !
(M−N)!

, provided M > N .

7



• The number of onto functions X → Y is

m∑
i=0

(−1)i

(
m

i

)
(m− i)n

provided M < N .

• The number of bijective functions X → Y is M !, provided M = N .

Now, fix a positive integer k ≤ N and let Xk be a random subset of X.

By Ek(M), we denote the expected size of f(Xk). In other words, if we pick

(with replacement) k integers randomly, out of M integers, then Ek(M) is the

expected number of ‘distinct’ integers in our collection. If M is clear for the

given context, we just write Ek to mean Ek(M). Throughout the chapter,

X, Y, M, N, k, Ek, Ek(M) are as defined here.

Proposition 3.1.1. Ek = M −M(1− 1
M

)k.

Proof. Obviously E1 = 1 and E2 = 1 + (M−1
M

). Since Ek+1 = Ek + (1− Ek

M
), we

get Ek+2 = Ek+1(2− 1
M

)−Ek(1− 1
M

). Characteristic equation of this recursion

is (r − 1)(r − (1 − 1
M

) = 0, hence Ek is of the form Ek = A + B(1 − 1
M

)k, for

some A, B ∈ R. Initial conditions imply that A = −B = M and consequently

Ek = M −M(1− 1
M

)k

If a few number of integers are picked randomly out of the first 1000 integers,

it is quite likely to have all of them distinct. On the other hand, if we pick a large

number of integers, intuitively we may expect a large number of collisions, that

is to say, E2(1000) ≈ 2, E3(1000) ≈ 3, E900(1000) < 900. It is natural to ask for

the largest k for which we can expect (with high probability) a collection of all

distinct integers or the smallest k for which we expect (with high probability)

a collision.
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It is obvious that Ek ≤ k. More precisely, we have E1 = 1 and Ek < k for

k ≥ 2. In choosing k integers out of M integers, we can expect a collection

of distinct integers if k − Ek is small enough. If k − Ek < ε is required to

accept a collection to be distinct we have to pick at most k0 integers such that

Ek0 > k0 − ε. Now we solve Ek > k − ε for k.

M(1− (1− 1

M
)k) > k − ε

gives

1− k

M
+

ε

M
> 1− k

M
+

k(k − 1)

2M2
+ . . . >

k2

2M2

which yields 2Mε > k2. That is to say, if we choose k0 integers where

k0 <
√

2Mε, the expected value of distinct integers will be k − ε on the av-

erage. In fact, in this case the probability of having a distinct collection is

given by M !M−k

k0!
. Substituting k0 =

√
2Mε we get M !M−

√
2Mε

√
2Mε!

which, by Stirling’s

approximation can be written as

Probability(|f(Xk)| = k) =

(
M

M −
√

2Mε

)M−
√

2Mε+ 1
2

e−
√

2Mε (3.1.1)

As k gets larger, it is quite likely to have collisions and on the other extreme,

as k gets smaller, the choice will consist of distinct integers with high probability.

By choosing ε = 1/2, the above equation implies that k =
√

M is a critical point.

That is, for that choice of k, Ek ≈ k and a collection may or may not have

collisions with considerable probability values. For example, for M = 10000
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and k = 100, Ek ≈ 99.5 and the probability that all integers are distinct is 0.61,

the probability of having a collision is 0.39.

The following table shows the probabilities of having distinct collections for

the set size M and the selection size of various multiples of
√

M . From the

table it can be deduced that for in order to have a distinct collection with a

high probability, the selection size can be chosen as a little fraction of the square

root of the set size. For example, taking the selection size 1/8 square root of

the set size guarantees having a distinct collection with a probability over 99%.

M Pr(|f(X√M )| =
√

M) Pr(|f(X√M/2)| =
√

M/2) Pr(|f(X√M/8)| =
√

M/8)

1,000 61.31% 88.90% 99.42%
10,000 60.86% 88.45% 99.28%
100,000 60.72% 88.31% 99.24%
500,000 60.68% 88.28% 99.23%

Table 3.1: Probability of having a distinct collection for various multiples of√
M .

3.2 Graph Representation of Functions

In this section we consider the graph representation of functions. Because

the TMTO method which will be explained in the next chapter depends on

the iterative evaluation of the functions, this representation and its various

statistical properties will provide us with a very good understanding of the

method.

Definition 3.2.1. A function graph of a function f : X → X is a directed

graph whose nodes are the elements of X and whose edges are the ordered pairs

(x, f(x)), for all x ∈ X.

10



Let f and X be as given in the definition. If we start from a point x0 ∈ X

and iteratively apply f , we get the following sequence: {x0, x1 = f(x0), x2 =

f(x1), . . . , xn = f(xn−1)}. Since the set X is finite, after some iterations, we

will encounter a point which already appears, causing a cycle.

x0
xm

Figure 3.1: Graphical representation of an iteration operation

In Fig. 3.1 we can see the typical behaviour of an iteration operation.

Starting with a point x0, the iteration enters a loop after the point xm, forming a

cycle. The points in a function graph, therefore, can be categorized as belonging

to a cycle or belonging to a path that connects to a cycle.

A function graph consists of a set of connected components. A component

consists of a number of trees connected to a cycle. A tree is a connected sub-

graph with n nodes and n − 1 edges. Terminal points are the points that do

not have a preimage. Image points are the points having at least one preimage.

The length of the path is called the tail length. The length of the cycle is called

the cycle length. Rho-length is the sum of the tail length and the cycle length.

For the proofs of the following theorems, the reader may refer to [8].

Theorem 3.2.2. The expectations of parameters, the number of components,

the number of cyclic points, the number of terminal points, the number of image

points and the number of k-th iterate image points in a random mapping of size

n have the following asymptotic forms as n →∞.

1. The number of components in a function graph of size n is 1
2
logn.
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2. The expected number of cyclic nodes in a function graph of size n is
√

πn
2

.

3. The expected number of terminal points in a function graph of size n is

e−1n.

4. The expected number of image points in a function graph of size n is

n(1− e−1).

5. The expected number of k− th iterate image points in a function graph of

size n is (1− τk)n, where τk satisfies the recurrence τ0 = 0, τk+1 = e−1+τk .

The tree size of node µ is the size of the maximal tree (rooted on a cycle)

containing µ. The component size means the size of the connected component

that contains µ. The predecessors size of µ is the size of the tree rooted at µ or

equivalently, the number of iterated preimages of µ.

Theorem 3.2.3. The expectation of the parameters tail length, cycle length,

rho length, tree size, component size, and predecessors size have the following

asymptotic forms.

• The expected tail length λ of a function graph of size n is
√

πn
8

.

• The expected cycle length µ of a function graph of size n is
√

πn
8

.

• The expected rho length ρ = λ + µ of a function graph of size n is
√

πn
2

.

• The expected tree size of a function graph of size n is n
3
.

• The expected component size of a function graph of size n is 2n
3

.

• The expected predecessors size of a function graph of size n is
√

πn
8

.
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As an example, the functional graph of the giant component of the block ci-

pher DES is given in Figure 3.2. This figure, taken from [8], is due to Quisquater

and Delescaille. The graph is formed by iterating the DES cipher for its 256

key values for a fixed plaintext. In the graph, one point in every 106 points is

sampled.

Figure 3.2: A rendering of the giant component of DES due to Quisquater and
Delescaille.
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Chapter 4

Time-Memory Trade-off

Method

In this chapter, we give an analysis of the TMTO method introduced by

Hellman in [11]. Before presenting the method we briefly describe exhaustive

search and table lookup methods and mention the drawbacks that come about

whenever they are expected to be used multiple times to find a solution to a

problem. We describe the three variants of the TMTO method; namely the

original method by Hellman, distinguished points by Rivest [7] and rainbow

tables by Oechslin [14].

4.1 Exhaustive Search vs. Lookup Table

Whenever it is the case that there is a finite number of solutions to a prob-

lem, exhaustive search is the simplest way of finding the solution by checking

each possible solution one by one until the correct solution is found. The

method is a generic one, that is, the existence of a procedure that checks whether

a specific solution is valid or not is sufficient for the method to work.

In the context of this thesis, we are interested in the problem of finding

the preimages of one-way functions. More specifically, we are given a function
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f : X → Y with |Y | = N and an element y ∈ Y , and we try to find an element

x ∈ X such that f(x) = y. We consider f as a black box function, and hence

are not interested in how the computation is carried out in order to find the

output.

The expected number of operations to find a solution in exhaustive search

is |N |/2, which is considerably a large value depending on the size of the range

set. This becomes a handicap when the search operation is to be repeated over

and over. Memory usage is negligible.

A way of speeding-up the search operation is employing a lookup table.

Here, one stores the results of a precomputation in memory. After this, any

search operation can be done via one lookup operation. The drawback of this

method is that it requires too much memory when the size of the range set is

large.

A comparison of exhaustive search and table lookup methods is given in

Table 4.1. In exhaustive search, no precomputation is performed and the search

operation does not need any memory. However, each search operation requires

approximately |N |/2 operations. This is the major drawback of the method

if the search operation is to be carried out many times. For m searches, the

expected search time will be in the order of m |N |
2

.

On the other hand, the table lookup method needs a precomputation phase

which requires a computation effort equivalent to |N | operations, and the results

of this precomputation are stored in memory requiring a storage capacity in the

order of |N |. However once this step is completed, each search means a single

lookup operation which requires a negligible amount of time.

15



Exhaustive Search Table Lookup
Precomputation - N

Memory 1 N
Time N

2
1

Time (m) mN
2

m

Table 4.1: Comparison of exhaustive search and table lookup methods.

4.2 Hellman’s Method

The TMTO method consists of two phases, namely the online phase and

the offline phase. The offline phase consists of a precomputation process where

the results are stored. In the online phase we try to find a preimage of a given

point in the range.

Let f : {0, 1, . . . , N − 1} → {0, 1, . . . , N − 1} be a random function. We

assume that it is easy to compute y = f(x), but hard to compute x = f−1(y).

Our aim is to find a preimage of a given point in the range of f . In order to

achieve this, we generate chains by iteratively evaluating f starting at random

points. A chain of length t starting at point x is the sequence C0 = x, C1 =

f(x), C2 = f(f(x)) = f 2(x), . . . , Ct = f t(x). The first element of a chain is

called the starting point and the last element the end point.

A property of a chain is that once we compute it, we do not need to store

all the elements in it. By knowing the starting point, we can recalculate the

successive elements in the chain. Another property of a chain is that it acts like

a lookup table, holding the preimages of the function for the points C1, . . . , Ct,

that is Ci = f−1(Ci+1) for 0 ≤ i ≤ t − 1. In Fig 4.1. the chain construction

process is depicted.

The offline phase calculation in TMTO is carried as follows. We select m

distinct points in the domain of f and generate m chains, each of length t. In
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c1 c2
. . .

f f f f
ct = end pointstarting point = c0

Figure 4.1: Construction of a chain

this way, we generate a m × (t + 1) matrix which we call a Hellman Table or

Hellman Matrix as shown in Fig 4.2.

Figure 4.2: Hellman’s Matrix

We only store the first and last columns of this matrix, namely the starting

point and the end point tuples and sort these tuples with respect to the end

points.

The online phase calculation is a search for a preimage of a given point y in

this matrix and is carried out as follows. First, we check if y is equal to any of

the end points. This can be done efficiently with binary search, since data is

sorted with respect to end points. If y is equal to an end point EPi, then we

start with the corresponding starting point SPi and calculate f t−1(SPi) = xi,t−1,

which is the entry just before the end point. By making this calculation, we

check if y is in the last column of the matrix, and hence try to find the preimage

by computing the previous entry in the matrix. If y is not equal to any of the
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end points, we calculate f(y) and check for a match in the (t − 1)st column.

If a match is found again we start with the corresponding starting point and

calculate the (t− 2)nd entry in the table. Unlike the search for the last column,

in this case and for the searches from this point there may be two cases:

i) If the point in the (t−2)nd column is evaluated and the desired range point

is found, a preimage has been found, hence the search process is completed.

ii) If the point in the (t − 2)nd column is evaluated and the desired range

point is not found, then a situation called a false has occurred. If this is the case

then we continue the search operation since a preimage has not been found.

We repeat the search process until we check whether y exists in the second

column of the matrix.

Constructing a single table requires m × t evaluations of the function; the

storage requirement is of order m and the time to search for a preimage is of

order t.

The number of preimages we can find in a table is the number of distinct

entries in the first t columns which is called the coverage of the table. The

following theorem about the coverage of a single table is given in [11].

Theorem 4.2.1. The probability of success of a table of size (m, t) is bounded

by

P (S) ≥
m∑

i=1

t−1∑
j=0

[(N − it)/N ]j+1

Proof. Letting A denote the subset of points covered by the first t columns of

an Hellman matrix, (not including the end points). We have
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P (S) =
E|A|
N

,

where |A| denotes the number of elements in A. Letting I{X} denote the

indicator function of the event X,

P (S) = E
m∑

i=1

t−1∑
j=0

{I{Xij is new}} /N

=
m∑

i=1

t−1∑
j=0

{Pr(Xij is new)} /N

where a point being ’new’ means it has not occurred in a previous row or

thus far in its row. Using

Pr(Xij is new) ≥ Pr(Xi0, Xi1, . . . , Xij are all new)

= Pr(Xi0 is new)Pr(Xi1 is new|Xi0 is new) . . .

P r(Xij is new | Xi0, Xi1, . . . , Xi,j−1 are new)

=
N − |Ai0|

N

N − |Ai0| − 1

N
. . .

N − |Ai0| − j

N
,

when Aij denotes the set of elements covered so far. Clearly each factor in

Equation 4.2.1 is larger than (n−it)
N

since there are at most t different elements

in each row. Therefore

Pr(Xij is new) ≥ [(N − it)/N ]j + 1

19



and

P (S) ≥
m∑

i=1

t−1∑
j=0

[(N − it)/N ]j+1

completing the proof.

An important result Hellman deduced from Theorem 4.2.1. is that when

mt2 >> N , the ratio of distinct elements appearing in a table will start to

decrease significantly. Hence, Hellman suggested that m and t should be chosen

to satisfy mt2 = N to obtain maximum coverage rate. But if m and t are

chosen in this way, a single table of dimension m × t will cover only N
mt

of

the domain space. The solution is to construct k = N
mt

different tables, but

another problem with this setting is the collision of entries of different tables

which will result in generating the overlapping sequences and decreasing the

overall coverage. In order to avoid collisions, the notion of a reduction function

is defined. A reduction function r : {0, 1, . . . , N − 1} → {0, 1, . . . , N − 1} is

a bijective function such as a permutation or adding by an integer which we

compose with f . Thus, the iteration function in the chain generation becomes

r(f(x)) as depicted in Fig 4.3. We choose a different r for each table so if two

entries in two tables are the same, the usage of different reduction functions

will result in different elements in the next chain item. The chain construction

under a reduction function is depicted in Fig. 4.3.

k0

f

k1

f

k2

f

kt−1

f
rr r r

ktk3

Figure 4.3: Construction of a chain under the reduction function r

Assuming that each reduction function defines an independent random func-
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tion, the following theorem states the success probability of k tables.

Theorem 4.2.2. If the overall coverage of a single table of size m×t is C(m, t),

then the overall coverage of k independent tables of size m × t is (1 − (1 −

C(m, t)))k

Proof. The probability that a point is not in one table is 1−C(m, t). The proba-

bility that a point is not in k different tables is (1−C(m, t))(1−C(m, t)) . . . (1−

C(m, t)), which is equal to (1 − C(m, t))k. If we subtract this expression from

1 we obtain the probability that a point is in one of the k tables, which is:

(1− (1− C(m, t)))k.

Since the overall coverage of a single table is a small quantity, the above

formula can be approximated by 1− e−C(m,t)k.

To summarize the Hellman’s method, in the offline phase, we construct k

tables of dimension m× t and store the start point-end point tuples sorted with

respect to the end points. In the online phase we are given a point in the range

of f and we search the preimage of this point in the tables we have constructed

in the offline phase. We make mtk = N evaluations of the function f in the

offline phase and need memory of order mk to store the resulting data. In the

online phase kt calculations are required in the worst case for searching. The

memory complexity is directly proportional to the number of starting points m,

and the number of tables k and the time complexity is directly proportional to

the chain length t and the number of tables k.
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An Explicit Asymptotic Expression for the Coverage of a Single Table

Now we derive a closed formula for the number of distinct points covered by

a single Hellman table which first appeared in [6].

Definition 4.2.3. Coverage of a function f : {0, 1, . . . , N−1} → {0, 1, . . . , N−

1} is the number of distinct points appearing in the range of f .

We state a well-known property as the following theorem. The approach

used in the proof of this theorem will be used in obtaining a more general

result.

Theorem 4.2.4. The expected value of the coverage of a random function

f : {0, 1, . . . , N − 1} → {0, 1, . . . , N − 1} is

N(1− e−1).

Proof. At each step, we choose an integer between 1 and N . After kth step,

let Ak be the expected number of distinct integers we have collected so far.

Obviously A1 = 1, An+1 = An + 1− An

N
and

An+1 − An = 1− An

N
.

Let ∆ be the difference operator. Since ∆An = An+1 − An and ∆n = 1 we

have

∆An = (1− An

N
)∆n.

For large values of N , since ∆n = 1 is very small we may expect a “continuous-

like” behaviour of An. Thus, we consider the continuous function A(n) and
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replace the discrete difference operator ∆ with its continuous counterpart d,

namely the differential operator. Then the last equation can be rewritten as

dA = (1− A

N
)dn,

which gives the solution

N − A = Ke−n/N .

The initial conditions A(0) = 0 forces K = N . Thus we conclude

A(n) = N(1− e−n/N).

For n = N we have A(n) = N(1− e−1).

We now calculate the coverage of a single table. We choose m distinct

starting points. The complexity requirements indicate that the size of m should

be about N1/3 which is obviously quite smaller than N1/2. So there is no harm

in assuming that m << N1/2. Thus, we can safely assume that all elements in

a column are distinct. Let aj denote the number of distinct elements in column

j. Then

a1 = m,

aj =
N −

∑j−1
i=1 ai

N
· aj−1.
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Now let yj be the total number of distinct elements in the first j columns.

Then

yj − yj−1 =
N − yj−1

N
· (yj−1 − yj−2),

or employing the difference operator ∆,

∆yj =
N − yj−1

N
·∆yj−1,

and

N∆2yj + ∆yj−1yj−1 = 0.

As in the proof of the theorem we now replace ∆ with d,

Nd2y + dy.y = 0,

or

Ny
′′

+ y
′
y = 0.

Subtituting y
′
= z we get

dz

dy

dy

dt
= − y

N

dy

dt
,
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or

dz = − y

N
dy,

which gives the solution

y
′
= c1 −

y2

2N
,

where c1 is a constant. The initial conditions, y(0) = 0, y
′
(0) = m give c1 = m.

So

y
′

= m− y2

2N
,

and

dy

2Nm− y2
=

dt

2N
,

hence

1

2
√

2Nm
ln

(√
2Nm + y√
2Nm− y

)
=

t

2N
+ c2,

where c2 is a constant. From the initial conditions we find that c2 = 0. Putting

α =
√

2Nm, we have

1

α
ln(

α + y

α− y
) =

t

N
,
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or

y =
e

αt
N − 1

e
αt
N + 1

. α,

= α.tanh
( α

2N
t
)

,

=
√

2Nm.tanh

(√
m

2N
t

)
.

The following table compares the Hellman’s coverage formula with our new

asymptotic expression as well as with the empirical values. The rows of the table

are the height and the columns of the table are the width of a single Hellman

table. Here, the domain size is 224. The H, N and E columns correspond to

the Hellman’s coverage formula, the new coverage formula and the empirical

coverage values, respectively. The table shows how closely our new asymptotic

expression approximates the empirical values.

t 27 28 29

m H N E H N E H N E
25 0.9947 0.9948 0.9948 0.9790 0.9797 0.9799 0.9220 0.9242 0.9217
26 0.9896 0.9897 0.9898 0.9597 0.9603 0.9601 0.8595 0.8611 0.8612
27 0.9795 0.9797 0.9781 0.9237 0.9242 0.9219 0.7623 0.7616 0.7597
28 0.9602 0.9603 0.9593 0.8609 0.8611 0.8580 0.6353 0.6282 0.6254
29 0.9241 0.9242 0.9221 0.7633 0.7616 0.7601 0.5006 0.4820 0.4803
210 0.8612 0.8611 0.8596 0.6359 0.6282 0.6260 0.3798 0.3511 0.3500
211 0.7633 0.7616 0.7602 0.5008 0.4820 0.4803 0.2814 0.2498 0.2488
212 0.6356 0.6282 0.6242 0.3797 0.3511 0.3487 0.2054 0.1768 0.1756

Table 4.2: Comparison of the coverage formulas with empirical values for a
single table of size m× t on a domain of size 224.
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Results Emerging From the New Formula

The ratio of overall coverage to N of k tables is given by

Y (m, t, k) = 1−

(
1−

√
2m

N
.tanh

(√
m

2N
t

))k

.

Defining the total complexity as C = N2

mt
and imposing the natural condition

mtk = N , we obtain mt = N2

C
and k = C

N
. Substituting these values in the

expression for overall coverage we get

Y (m, C) = 1−

(
1−

√
2m

N
.tanh

(√
N

2m

N

C

))C
N

.

As an example, consider N = 264, C = 285.33. For various values of m, we

obtain the Table 4.3.

In the table, m, t and k correspond to the usual parameters of the classical

TMTO method. Coverage is the success rate of the method, C is the total

complexity which is also the product of time and memory complexities and M

and T are the memory and time complexities. The table shows us how to adjust

memory and time complexities to get the corresponding success rate for a fixed

total complexity value.
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m t k Coverage C T M.
1,321,123 5,284,491 2,642,247 0.5331 85.3333 43.6667 41.6667
2,642,246 2,642,245 2,642,247 0.5773 85.3333 42.6667 42.6667
3,963,369 1,761,497 2,642,246 0.5942 85.3333 42.0817 43.2516
5,284,492 1,321,122 2,642,247 0.6032 85.3333 41.6667 43.6667
6,605,615 1,056,898 2,642,246 0.6087 85.3333 41.3447 43.9886
7,926,738 880,748 2,642,247 0.6125 85.3333 41.0817 44.2516
9,247,861 754,927 2,642,247 0.6152 85.3333 40.8593 44.4740
10,568,984 660,561 2,642,247 0.6172 85.3333 40.6667 44.6667
11,890,107 587,165 2,642,249 0.6188 85.3333 40.4967 44.8366
13,211,230 528,449 2,642,246 0.6201 85.3333 40.3447 44.9886
14,532,353 480,408 2,642,247 0.6212 85.3333 40.2072 45.1261
15,853,476 440,374 2,642,247 0.6221 85.3333 40.0817 45.2516
17,174,599 406,499 2,642,248 0.6229 85.3333 39.9662 45.3671
18,495,722 377,463 2,642,250 0.6235 85.3333 39.8593 45.4740
19,816,845 352,299 2,642,249 0.6241 85.3333 39.7598 45.5736
21,137,968 330,280 2,642,251 0.6246 85.3333 39.6667 45.6667
22,459,091 310,852 2,642,249 0.6250 85.3333 39.5792 45.7541
23,780,214 293,582 2,642,253 0.6254 85.3333 39.4967 45.8366
25,101,337 278,131 2,642,247 0.6257 85.3333 39.4187 45.9146
26,422,460 264,224 2,642,251 0.6261 85.3333 39.3447 45.9886
27,743,583 251,642 2,642,250 0.6263 85.3333 39.2743 46.0590

Table 4.3: The relation between m, coverage, time and memory complexities
for a fixed total complexity value of C = 285.33

False Alarms

False alarms are an important factor that affect the online time complexity

of the TMTO method.

Hellman gives the following bound for the number of expected false alarms

in [11].

Theorem 4.2.5. The expected number of false alarms per table tries, E(F ), is

bounded by

E(F ) ≤ mt(t + 1)/2N
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Proof. Letting Fij denote the occurrence of a false alarm due to Yj = EPi,

E(F ) ≤
m∑

i=1

t∑
j=1

Pr(Fij).

Fij can occur in j different ways: due to f(k) merging immediately with

the ith row of the matrix, that is if f(K) = f t−j+1(SPi), or merging after one

iteration, that is if f(K) is not in the ith row of the matrix, but f 2(K) equals

f t−j+2(SPi); etc. Each of these j different ways of causing Fi,j to occur has prob-

ability at most 1/N because, up tp the merging, K, f(K), etc. are independent

random variables uniformly distributed over {1, 2, . . . , N}. Therefore

E(F ) ≤
m∑

i=1

t∑
j=1

j/N

= mt(t + 1)/2N,

completing the proof.

In [1], Avoine et al. study the false alarms in detail and propose a method

to detect them. In usual TMTO online search, once a match with an end point

is found, the chain is regenerated from the starting point to reach to the desired

position. However, if the situation is a false alarm, the performed computation

becomes useless.

The new method uses extra memory for each chain of a table. This memory

is used to store a hash value of some specific column position called ‘checkpoint’.

The hash value of the checkpoint is calculated in the precomputation process

and is stored with each start-end point pair.
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According to [1], a performance improvement of 10.99% is possible at the

expense of using 0.89% extra memory. As the authors of the article state, this

is a novel technique that needs to be examined.

4.3 Distinguished Points

One of the drawbacks of Hellman’s TMTO method is the amount of table

lookups. In the online phase, a table lookup operation is performed after each

invocation of the function f . To search a table having t columns, t many table

lookups have to be made. A method decreasing the number of lookups would

also decrease the total search time.

The distinguished points method was suggested by Rivest in [7]. The idea

was used in finding collisions in DES by Quisquater and Delescaille [18]. It was

analyzed by Borst [5] and applied to DES by Quisquater et. al. [16],[17].

The notion of a distinguished point is defined in [5] as follows;

Definition 4.3.1. Distinguished Point

Let K ∈ {0, 1}k and d ∈ {0, 1, . . . , k − 1}. Then K is a distinguished point

(DP) of order d if there is an easily checked property which holds for K and

which holds for 2k−d different elements of {0, 1}k.

Here, ‘easily checked’ means a property that can be checked with a lower

complexity than needed for a search in a table of about 2d elements. A easily

checked DP-property is for example having d bits with a fixed value on d specific

places.

In the distinguished points method, we perform the same calculations as in

classical TMTO except generating chains of fixed length t. Here, we generate

30



the chain until a DP is encountered. If a DP is not encountered in t+1 iterations,

the chain is discarded. Only chains that reach to a DP are stored, along with

the chain’s length. If two different starting points reach to the same DP, the

one with the maximum chain length is stored. Thus, no two chains overlap in

a table.

Because the end points consist of DP’s, in the online phase we only lookup

an entry for the DP’s. Since the probability to reach a DP is 2−d, the number

of lookups decrease significantly, improving the online search performance.

4.4 Rainbow Tables

A major improvement over Hellman’s original TMTO method was given by

Oechslin [14]. Oechslin suggested to use a single table of size mt× t satisfying

mt2 = N which he called a rainbow table. The main difference is the usage of

different reduction functions in each column as opposed to Hellman’s reduction

functions which are constant for each table. The advantage of rainbow tables

is that it decreases the online search computations by a factor of 2 compared

to classical TMTO.

In Fig 4.4 a comparison of both methods is shown. On the left side, the

classical TMTO method with t tables each of size m × t is shown. In each

table a different reduction function is used. On the right side, rainbow tables

calculation is shown where there exists one table of size mt × t, and at each

column a different reduction function is used.

In Hellman’s TMTO method online search complexity (worst case) is tk

where t is the iteration count for one table and k is the number of tables. If we

take m = t = k = N
1
3 which are the suggested parameters, the number of online
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Figure 4.4: Comparison of Hellman tables and Rainbow tables

computations turn out to be tk = tt = t2. However in rainbow tables method,

we perform (t−1)t
2

≈ t2

2
computations which is approximately half of those of

Hellman’s method. This difference arises from the fact that in a rainbow table,

in order to make a search for a preimage in column i, i− t computations need

to be done where t is the total column count of the table. Hence, the search

operation requires 0 + 1 + 2 + . . . + (t− 2) + (t− 1) = (t−1)t
2

computations.

The success probability of a single rainbow table can be calculated by count-

ing the total number of different elements in each column. Since the table has m

rows, the first column contains m1 = m different elements. The second column

contains m2 distinct elements which are also the images of first column’s ele-

ments. Because of the collisions, as the column index gets larger, each column

will contain less number of distinct elements.

The calculation has been done in [14] as follows.
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m2 = N(1−
(

1− 1

N

)m

1

) ≈ N
(
1− e−

m1
N

)
Each column i has mi distinct keys. The success rate of the table is thus:

P = 1−
t∏

i=1

(1− mi

N
)

where

m1 = m , mn+1 = N
(
1− e−

mn
N

)
.

Although the precomputation phase of rainbow method differs from that of

classical TMTO, the success rates of the two methods are very close.
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Chapter 5

Applications

This chapter is dedicated to the applications of the TMTO method on

symmetric-key cryptosystems and hash functions. We explain how to relate

one-way functions with these systems and also describe how the TMTO method

can be used as a cryptanalysis method on these systems. We finally present our

implementation of the TMTO method on SHA-1 hash algorithm with a key

space of size 240.

5.1 Block Ciphers

Block ciphers are the class of symmetric-key encryption algorithms that

transform n-bit plaintext blocks to n-bit ciphertext blocks with a user-provided

secret k-bit key K. Decryption is performed by applying the reverse transfor-

mation to the ciphertext block using the same secret key.

Each key identifies one permutation from the possible set of 2n!. To provide

a unique decryption, the encryption function must be a bijective mapping. For

each key K, since each plaintext block is mapped into different a ciphertext

block, EK is a permutation over the set of input blocks. However, when the

value of plaintext is fixed, the block cipher behaves like a random one-way

function that takes key as input.
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TMTO attacks for block ciphers is a chosen plaintext attack. Given a plain-

text and ciphertext pair (P0, C0), the aim is to find the secret k ∈ N . The

attack consists of two phases. In the offline phase, P0 is encrypted using various

key values and a table summarizing the calculations is stored in the memory.

Firstly, m random plaintext values are selected, and then they are encrypted

and reduced to create another key value. This is repeated t times and m chains

are produced. The first and last elements of each chain is stored. This process

is represented in the Figure 5.1.

Figure 5.1: Generation of a chain in block ciphers

In the online phase, the aim is to figure out if the key to generate C0 is one

of the keys used in the offline phase. Since only the first and last values of the

table is stored, a similar chain is produced by applying reduction to C0. After

each reduction and encryption, the obtained value is compared to the last values

in the table. If a match is obtained, then the whole chain is regenerated and

the key just before reduction of C0 is the secret key. The success probability of

the attack is closely related to the percentage of the keys that are covered in

the offline phase.

For block ciphers with large keys, this attack is not considered to be a

serious threat since the precomputation requirement is about exhaustive search

complexity. Another disadvantage is that the attack does not benefit whenever

more plaintext and ciphertext pairs are available.
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Apart from Hellman’s work on DES in 1980 [11], the first improvement

was Rivest’s distinguished points [7], which reduces the memory accesses. In

[13] Kusuda and Matsumoto optimize a relation among the breaking cost, time

and success probability and in [12] they show that the table parameters can be

adjusted to achieve higher success probability. Efficient mask functions in terms

of hardware cost and probability of success are proposed and experimentally

confirmed and used to build an FPGA design to perform realistic tradeoffs

against the block cipher DES. It is reported that the resulting online attack

recovered 40 bit of key in about 10 seconds. In 2003, Oechslin [14] proposed

a new way of precomputation called Rainbow tables which reduces the online

time complexity. To demonstrate this, he implemented an attack on Windows

password hashes as. In [10], it has been shown how to apply nontrivial multiple

data TMTO to both CBC and CFB modes of operations.

5.2 Stream Ciphers

Stream ciphers constitute the other important class of symmetric encryption

algorithms. The basic design philosophy of stream ciphers was inspired by the

perfectly secure One Time Pad cipher invented by Vernam in 1917. Stream

ciphers generate keystream independent of plaintext using following equations;

S0 = finit(K, IV ),

St+1 = f(St),

zt = g(St),

ct = h(zt, pt),
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where St is the internal state at time t, finit is the initialization function that

uses secret key K and public initialization vector (IV), f is the next state func-

tion that only depends on the current state, g is the filter function that produces

keystream zi and h is the encryption function that combines plaintext pt to pro-

duce ciphertext ct.

For a stream cipher with k bit key and v bit IV, keystream of length k + v

bit keystream is generated. This mapping is usually close to a bijection. Using

the data of D = 2
1
4
(k+v) frames, it is possible to recover a single key and IV pair

within time and memory complexity T = M = 2
1
2
(k+v). For ciphers with v < k,

the complexity is less than exhaustive key search. Therefore, if the size of IV is

less than key size, the cipher is vulnerable to TMTO [10]. Also, IVs should not

be predicted.

Stream ciphers behave like random one-way functions, whenever we try to

obtain key using the keystream. TMTO on stream ciphers was first proposed by

Babbage [2] and Golic [9] through independent works. In[2], Babbage suggested

as a design principle for stream cipher that a state size of 2i bits is desirable

for a secret key length of i bits. Golic applied attack on A5/1( an encryption

algorithm used in GSM standard). Biryukov Shamir and Wagner [4] improved

the attack in which key is computed in about one second during the first two

minutes of the conversation on a single PC. In [15], a tradeoff attack against

LILI-128 is proposed using 264 bits of keystream, a lookup table of 245 89-bit

words and 248 DES operations.
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5.3 Hash Functions

A hash function H maps an input of arbitrary length to an output H(x)

with fixed length.

For a hash function to be cryptographically secure, it should satisfy three

properties: (i) one-wayness, (ii) second preimage resistancy, and (iii) collision

resistancy. A hash function H is said to be one-way, if it is hard to find an input

x given H(x). For second preimage resistant, given x1, it should be hard to find

x2 with the same hash value. The strongest property is the collision resistance

which is satisfied if it is hard to find x1 and x2 with the same hash value.

Hash functions are typical one-way functions where the TMTO method can

be applied. Although input space of hash functions is unlimited, the attack

can be implemented so that the input space is restricted to some character set

with short lengths. Considering the practical usage of hash functions such as

password storage and digital signatures, it is often the case that input space

can be taken as human readable characters, which may render the attack more

successful than expected. The most common scenario of TMTO method usage

is the breaking of authentication mechanisms with passwords. In order to resist

TMTO attacks, the input of hash functions should be forced to comply with

some rules, such as the input length. Salting method can also be used to increase

the input space.

5.4 An Application of TMTO to SHA-1

Secure Hash Algorithm (SHA) was published by NIST (National Institute

of Standards and Technology) as a U.S. government standard. SHA is a hash
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m t k P M T
Setting 1 10, 321 10, 321 10, 322 ≈ 240 ≈ 226.66 ≈ 226.66

Setting 2 5, 160 20, 642 10, 322 ≈ 240 ≈ 225.66 ≈ 227.66

Setting 3 20, 642 5, 160 10, 322 ≈ 240 ≈ 227.66 ≈ 225.66

Table 5.1: TMTO parameters for the SHA-1 application.

function family consisting of five algorithms; SHA- 1, SHA-224, SHA-256, SHA-

384, and SHA-512. SHA-1 is widely used in various applications such as TLS

and SSL, PGP, SSH, S/MIME, and IPsec.

We have implemented our attack on SHA-1 as an example of the TMTO

application. Our input domain is chosen as 29 letters of Turkish alphabet

plus the characters q, w, x. The input length is 8 characters. In this case

the domain size becomes N = 328 = 240. The method is implemented with

classical Hellman tables. In order to show the effect of time-memory trade-off,

we applied the attack with three different set of parameters as shown in Table

5.1. In the table, m, t correspond to the width and height of a single Hellman

table, respectively. k is the number of tables. P is the product of these three

quantities which is also the offline complexity. M is the memory complexity

and T is the online time complexity of the attack.

The following figure describes a single iteration of the one-way function

chosen from SHA-1.

Domain Hash Input SHA-1

Reduction

Figure 5.2: SHA-1 application, one-way and reduction function.

Since there are 240 possible input values, we choose the domain as 40-bit
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vectors starting from 0 to 240 − 1. Afterwards we map each vector to a 8-

character input value. We do this by splitting 40-bit domain vector into eight

5-bit vectors. Each 5-bit vector represents a character from our character set of

size 32. Once the 8-character input is constructed, it is hashed with the SHA-1

algorithm. The reduction function takes the first 40-bits which enters the next

iteration as domain value.

There are 10, 322 tables for each setting, so we must choose this number

of different reduction functions. We just implemented the reduction function

of each table as the regular 40-bit reduction function XOR’ed with the table’s

index value. That is, the first table’s reduction function just truncates the SHA-

1 hash output to 40-bits and the second table’s reduction function XOR’s this

40-bit with the binary vector 0x0000000001, and so on.

The precomputation for each setting requires ≈ 240 evaluations of the SHA-1

algorithm. We performed the offline computations on multiple PC’s with cpu

speed of 3.00GHz and memory capacities ranging from 1.0GB to 2.0GB. The

precomputation for each setting took approximately 20 days of cpu time on one

computer.

The results of the precomputation are stored on files, each containing the

start-end point tuples of the associated table, and are sorted with respect to

the end points. The sorting is essential in order to make a fast binary search in

the online phase. The following table shows the storage amounts for the three

settings.

In the online phase we chose 100 random input values for each of the settings

from our domain set and calculated their SHA-1 hash values. The hash values

are given as input to the online search algorithm. The computations are carried
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m k Storage Per Table Total Storage
Setting 1 10, 321 10, 322 103, 210 bytes ≈1,016 MB
Setting 2 5, 160 10, 322 51, 600 bytes ≈508 MB
Setting 3 20, 642 10, 322 206, 420 bytes ≈2,032 MB

Table 5.2: Store requirements for the SHA-1 application.

m t Success Rate Search Time False Alarms
Setting 1 10, 321 10, 321 60% 229 sec 5, 171
Setting 2 5, 160 20, 642 55% 470 sec 10, 310
Setting 3 20, 642 5, 160 60% 105 sec 2, 251

Table 5.3: Online phase results for the SHA-1 application.

out on a PC with a cpu speed of 3.0GHz and a memory capacity of 2.0GB.

Interpretation of the Results

The results are presented in Table 5.3, where success rate is the ratio of

the found preimages among 100 random inputs, search time is the average time

in order to search all the tables (including false alarm calculations), in other

words, the average time passed when a preimage is not found, and false alarm

is the number of average false alarms occurred in a full table search.

From the Table 5.3., it can be clearly seen that how a trade-off between the

time and memory has been made. If an exhaustive search was to be carried out,

the search operation would last ≈ 20 days. If on the other hand, a lookup table

had been created, it would have cost 5.240 bytes = 5 Terabytes (TB) of storage.

Both of these time and memory complexities required by exhaustive search and

table lookup are not feasible if the search operation will be performed many

times.

In Table 5.4., a comparison of the implemented TMTO application with
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Memory Time
Ex. Search - ≈ 20 days
Table Lookup 5 TB -
Setting 1 ≈ 1.0 GB 229 sec
Setting 2 ≈ 0.5 GB 470 sec
Setting 3 ≈ 2.0 GB 105 sec

Table 5.4: Comparison of the application results with Exhaustive Search and
Table Lookup methods.

exhaustive search and table lookup methods is given. Compared to exhaustive

search, we can decrease the search time from 20 days to a couple of minutes

by using a memory around 1GB, and compared to table lookup method, we

can decrease the required memory from 5TB to the order of Gigabytes in the

expense of increasing the search time from a lookup operation to a few minutes.
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Chapter 6

Conclusion

One-way functions play an important role in the security of various en-

cryption schemes, authentication mechanisms and other cryptographic proto-

cols. For most of the cryptographic systems, inverting these functions results

in breaking the system.

TMTO is a generic method to find inverses of one-way functions. In this

thesis, we studied the TMTO method and showed how it can be applied to

symmetric-key cryptosystems and hash functions as examples.

Our contribution is an explicit asymptotic expression for the coverage of a

singe Hellman table, which has not been stated thus far. This expression not

only allows us to understand the behaviour of the success rate of the classical

method proposed by Hellman [11], but also helps us to choose appropriate time

and memory complexities for a fixed total complexity value and a fixed success

rate.

We believe that the method does not pose a threat for block ciphers with long

key sizes, since it requires a precomputation complexity equal to the exhaustive

search. However, it is possible to mount the attack for smaller key spaces

consisting of restricted character sets of shorter lengths. Another reason why

the TMTO method is less effective in block ciphers is that the precomputation

is done for only one chosen plaintext: hence multiple plaintext-ciphertext pairs
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do not improve the success rate of the method.

Stream ciphers are more vulnerable to the TMTO method, both because

there are more ways to choose the one-way function (input space can be key or

cipher state), and because the availability of more keystream data increases the

success rate.

Hash functions are typical one-way functions where the TMTO method can

be applied. Although input space of hash functions is unlimited, the attack can

be implemented so that the input space is a restricted character set with short

lengths. Considering the practical usage of hash functions such as password

storage and digital signatures, it is often the case that input space can be taken

as human readable characters, which may render the attack more successful than

expected. The most common scenario of TMTO method usage is the breaking

of authentication mechanisms with passwords. In order to resist TMTO attacks,

the input of hash functions should be forced to comply with some rules, such as

the input length. Salting method can also be used to increase the input space.

TMTO attacks must be taken into consideration by the designers of not the

systems mentioned above, but all the systems where it is applicable.

Some future studies and open problems about the TMTO can be listed as

follows:

• Improving available methods so that higher success rates are obtained.

Although there is a theoretical limit ≈ (1 − e−1) of success rate for a

precomputation complexity equivalent to exhaustive search, the online

complexity may be improved such as in Oecshlin’s rainbow tables method

[14].

• Another improvement we plan to work on, as a part of a future study, is
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the cases where higher success rates are needed. In such cases, one has to

make a precomputation of complexity equivalent to multiple times of an

exhaustive search. This naturally increases the time complexity and the

memory complexity in the order of precomputation effort. We believe that

an algorithm which provides a higher success rate with a precomputation

complexity higher than exhaustive search, while keeping the time and

memory complexities closer to the usual TMTO is worth investigating.

• There are also open problems related to the distinguished points method

suggested by Rivest [7]. These problems are stated in [5].
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