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abstract

ASSET PRICING MODELS: STOCHASTIC

VOLATILITY AND INFORMATION-BASED

APPROACHES

Nilüfer Çalışkan

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

February 2007, 94 pages

We present two option pricing models, both different from the classical Black-

Scholes-Merton model. The first model, suggested by Heston, considers the case

where the asset price volatility is stochastic. For this model we study the asset

price process and give in detail the derivation of the European call option price

process. The second model, suggested by Brody-Hughston-Macrina, describes

the observation of certain information about the claim perturbed by a noise rep-

resented by a Brownian bridge. Here we also study in detail the properties of this

noisy information process and give the derivations of both asset price dynamics

and the European call option price process.

Keywords: Option Pricing, Stochastic Volatility, Characteristic Function Method,

Incomplete Information, Change of Measure.
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öz

FİNANSAL VARLIKLARIN FİYATLAMA MODELLERİ:

STOKASTİK VOLATİLİTE VE BİLGİYE DAYANAN

YAKLAŞIMLAR

Nilüfer Çalışkan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Azize Hayfavi

Şubat 2007, 94 sayfa

Bu çalışmada Black-Scholes-Merton modeline alternatif olarak düşünülebilecek

iki opsiyon fiyatlama modeli incelenmiştir. Heston tarafından önerilen ilk model

opsiyonun üzerine yazıldığı finansal varlığın volatilitesinin stokastik dinamiğe

sahip olduğu varsayımı altında opsiyonun fiyatı için analitik çözüm önermiştir.

Model ayrıntılı bir şekilde incelenerek, opsiyon fiyatlama modelinin çıkarılışı or-

jinal çalışmada verilmeyen gerekli ispatlar verilerek sunulmuştur. Literatürde

Brody-Hughston-Macrina modeli olarak anılan ikinci modelde ise, piyasalarda

yatırımcıların finansal varlığın gelecekteki getirilerine dair doğru bilgiye tam erişi-

mi olmadığı varsayılmıştır. Yatırımcıların erişebildiği bilgiyi, doğru bilginin bir

kısmının Brownian köprü ile gürültülenmiş bir yapıda olduğunu varsayarak varlık-

ların fiyat süreci dinamikleri çıkarılmıştır. Bu varsayım ve bulunan fiyat süreci

dinamikleri temel alınarak opsiyon fiyat formülasyonu verilmiştir. Bu modelde

de gerekli teoremlerin ve çıkarımların ispatları orjinal çalışmada verilmeyenlerle

birlikte ayrıntılı bir şekilde verilerek hem spot piyasadaki varlıklar hem de türev

ürün için fiyat dinamikleri sunulmuştur.

Anahtar Kelimeler: Opsiyon fiyatlama, Stokastik Volatilite, Karakteristik Fonksi-

yon Metodu, Ölçü Değişimi, Arbitraj.
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hardest times, for her endless support and for patiently motivating and listening

to me.
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chapter 1

INTRODUCTION

The Black-Scholes-Merton model has been discussed in terms of its advantages

and disadvantages in theory and in applications. Obviously, the model is a pio-

neering work in the area. However, it is a known and experienced fact that the

assumptions, that enable the model to have a closed-form solution, cause the

model not to fit the real data obtained from the market (cf, e.g., [10]). Among

these assumptions, the one on constant volatility has been the most discussed and

criticized one. Over the years, there have been many alternative models offered

to solve this and other drawbacks of the model.

In this work, we mainly concentrate on two different strong approaches conducted

by Heston [11] and Brody-Hughston-Macrina [4]. In the former one, the model

is assumed to have stochastic volatility and obtains a “so-called” closed-form

solution for the price of the European call option. Moreover, by assuming that

the volatility and the underlying price have a non-zero correlation, it captures

many properties of the financial data, which the Black-Scholes-Merton model

does not. Although the model can be considered as the most popular alternative

to the Black-Scholes-Merton pricing model, its reliability is questionable since the

assumptions on the underlying asset price and the volatility dynamics display an
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“ad-hoc” nature. The dynamics of the asset price and volatility seem to remain

as assumptions without a convincing intuition behind them.

In the latter approach suggested by Brody-Hughston-Macrina (BHM), instead of

pre-specified dynamics of the price and volatility, the asset price dynamics is de-

rived by adopting a more realistic approach towards market structure. The model

is established under the assumption of incomplete information in the market. By

specifying a model for the structure of the information circulating in the market,

the model is motivated by the fact that asset prices are specified by expectations

on the future cash flows given the information circulating in the market. Without

assuming any dynamic model for asset prices, it is seen that the derived asset

price dynamics under the assumption of this information structure naturally has

stochastic volatility, which gives a different explanation to the nature of volatility.

In fact, according to the model, volatility of volatility is found to be stochastic.

The aim of this study is to review these two pricing models in detail. The second

chapter presents the derivation of the option pricing formula suggested in Heston’s

study [11] step-by-step. The way of how the characteristic function method is used

for derivation of option pricing formula is presented. Moreover, the derivation

and the solution of the partial differential equation satisfied by the probabilities

in the option pricing formula is given explicitly. In the third chapter, we start by

giving the motivation of the incomplete information model suggested by Brody-

Hughston-Macrina. The dynamics of the asset price process for a single-dividend

paying risky asset given in the study [4] is derived explicitly. Furthermore, the

change of measure technique used to derive the conditional probability density

is presented in detail by giving the derivation of the dynamics of the Radon-

2



Nikodym Process. In [4], the option pricing formulae were given by not taking

the filtration into consideration, meaning that the formulae were obtained for time

0. The fourth chapter gives the derivations and the proofs of the theorems used in

derivations of option pricing formulae in the study of the BHM [4]. Additionally,

we give the complete derivation for the option price formulae for an arbitrary time

t where we use an approach inspired by the work of Rutkowski-Yu [21]. Finally,

the conclusion follows.
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chapter 2

HESTON’S APPROACH

The main drawback of the Black-Scholes-Merton model is that it assumes that

the underlying asset price volatility remains constant over time. However, var-

ious econometric and numerical studies show that asset prices do not exhibit

constant volatility. Therefore, at first, the main object may be to extend this

model to capture this qualitative feature of the financial data. The Heston’s sto-

chastic volatility model [11] can be seen as one of the most popular models in

the literature. In this chapter, Heston’s asset pricing model is presented. The

technique to derive a closed form solution to the option pricing problem under

the assumption of stochastic volatility is given in detail. The model also captures

the correlation between spot asset price and its volatility. The solution technique

suggested in [11] is based on characteristic functions and, thus, it has a wide

range of applicability.

2.1 Asset Price Dynamics

Let (Ω,F , P) be our probability space and W 1
t and W 2

t be correlated Brownian

motions on this probability space. It is assumed that the underlying risky asset

4



price at time t satisfies the following stochastic differential equation

dSt = µStdt +
√

vtStdW 1
t (2.1.1)

and its volatility follows an Ornstein-Uhlenbeck process given by

d
√

vt = −β
√

vtdt + δdW 2
t , (2.1.2)

where W 1
t and W 2

t are standard Brownian motions having instantaneous corre-

lation ρ. With the help of the Ito Lemma, it can be shown that the variance

process follows the Cox-Ingersoll-Ross (CIR) process [7]

dvt = (δ2 − 2βvt)dt + 2δ
√

vtdW 2
t ,

which can be expressed as a standard CIR process as follows:

dvt = κ[θ − vt]dt + σ
√

vtdW 2
t . (2.1.3)

Then the stochastic volatility model is

dSt = µStdt +
√

vtStdW 1
t , (2.1.4)

dvt = κ[θ − vt]dt + σ
√

vtdW 2
t , (2.1.5)

where

d
〈
W 1,W 2

〉
t

= ρdt. (2.1.6)

5



For simplicity, it is assumed that the interest rate r is constant and the price at

time t of a discount bond that matures at time t + τ is

P (t, t + τ) = e−rτ . (2.1.7)

The possible no-arbitrage price of a derivative at time t with a final payoff K and

maturity date T can be written as

Ut = EQ
[
e−r(T−t)(ST − K)+|Ft

]
, (2.1.8)

where Q stands for the risk neutral martingale measure. Since the value of the

option at time T is expected to be equal to the final payoff of the derivative,

discounted asset prices are martingales under the measure Q:

e−rtUt = EQ
[
e−rT UT |Ft

]
, (2.1.9)

Ũt = EQ
[
ŨT |Ft

]
. (2.1.10)

Here, Ũ represents the discounted value of the option at time t.

In the model, there are two random sources, so the underlying probability space

is represented by (Ω,F , P), where Ω = C(R+; R2) is the space of all continuous

functions from R+ into R2. Furthermore, the coordinate process is (W 1
t ,W 2

t ) =

wt ∈ R2; the measure on Ω is such that the two Brownian motions W 1
t and W 2

t

have the correlation defined by (2.1.6). The filtration {Ft} represents the infor-

mation on the two correlated Brownian motions W 1
t and W 2

t . Thus, to transform

the measure into the risk neutral martingale measure, the two-dimensional Gir-

6



sanov theorem is applied.

In the two-dimensional case, the crucial point is on the choice of the market risk

premium through which the discounted asset price processes become martingales.

For the spot asset, the standard market risk premium satisfying the arbitrage-free

condition can be used; however, for the volatility risk premium the specification is

not always that simple. Nevertheless, any allowable choice of the price of volatil-

ity risk leads to an equivalent martingale measure Q (see [10]). Here, we note

that Q depends on the choice of the price of volatility risk. As there can be many

market volatility risk premiums, there can be many equivalent measures Q, which

is an indication of the market incompleteness. Moreover, according to the model,

the number of risk sources in the market is greater than the number of the risky

assets traded in the market. This also shows that the market model is incomplete

(see [1]). However, in [10], it is emphasized that a unique equivalent martingale

measure under which derivative contracts are priced is selected by the market.

This point of view may be called as “selecting an approximating complete mar-

ket”. However, the term can be misperceived because although the discounted

asset prices are martingales under this measure, they cannot be replicated by the

spot asset and the risk-free bond alone. That is to say, the risk caused by the

underlying volatility cannot be hedged with this spot replicating strategy.

In this model, the market price of the volatility risk denoted as λ(S, v, t) is given

by

λ(S, v, t)dt = γCov[dv, dCt/Ct], (2.1.11)

where Ct is the consumption rate and γ is the relative risk aversion of an investor

7



[2]. The consumption process that emerges in the CIR model [7] is considered,

where consumption growth has constant correlation with the spot asset return of

the form

dCt = µcvtCtdt + σc

√
vtCtdW 3

t . (2.1.12)

This makes the market price of volatility risk proportional to vt; thus, after some

arrangements, λ(S, v, t) can be expressed as

λ(S, v, t) = λv, (2.1.13)

where λ represents a constant parameter.

By the two-dimensional Ito formula [18], U(t, S, v) satisfies the following partial

differential equation:

dUt =
∂U

∂t
dt+

∂U

∂S
dSt +

∂U

∂v
dvt +

1

2

∂2U

∂S2
d 〈S, S〉t +

1

2

∂2U

∂v2
d 〈v, v〉t +

∂2U

∂S∂v
d 〈S, v〉t .

(2.1.14)

By the Girsanov Theorem [18], the asset price dynamics can be expressed under

the equivalent martingale measure as follows:

dSt = rStdt +
√

vtStdW̃ 1
t , (2.1.15)

dvt = [κ[θ − vt] − λvt] dt + σ
√

vtdW̃ 2
t , (2.1.16)

8



where W̃ 1 and W̃ 2 are Brownian motions under the equivalent risk-neutral mar-

tingale measure. The dynamics of the discounted option price is

d(e−rtUt) = e−rt (−rUdt + dUt) . (2.1.17)

Substituting the equations (2.1.15), (2.1.16) and (2.1.14) into (2.1.17) gives

d(e−rtUt) = e−rt

(
−rUdt +

∂U

∂t
dt +

∂U

∂S
rStdt +

∂U

∂S

√
vtStdW̃ 1

t

)
+

+e−rt

(
∂U

∂v
σ
√

vtdW̃ 2
t

1

2

∂2U

∂S2
vtS

2
t dt +

1

2

∂2U

∂v2
σ2vtdt

)
.

As the discounted asset prices are martingales under the equivalent measure Q,

we have the following PDE for the option price:

1

2
vS2

t

∂2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+ ρσvS

∂2U

∂S∂v
+ rS

∂U

∂S
+ {κ[θ − v]λv}∂U

∂v
+

+
∂U

∂t
− rUt = 0. (2.1.18)

A European call option price with strike price K and maturity T satisfies the

PDE (2.1.18) subject to the following boundary conditions:

U(S, v, T ) = max(0, ST − K),

U(0, v, t) = 0,

∂U

∂S
(∞, c, t) = 1,

rS
∂U

∂S
(S, 0, t) + κθ

∂U

∂v
(S, 0, t) − rU(S, 0, t) +

∂U

∂t
(S, 0, t) = 0,

U(S,∞, t) = S. (2.1.19)

9



As in the Black-Scholes formula, the form of the solution is expected to be in the

following form

C(S, v, t) = U(S, v, t) = StP1 − KP (t, T )P2, (2.1.20)

where P (t, T ) = e−r(T−t), the first term of the expression stands for the present

value of the spot asset, the second term expresses the present value of the strike

price payment and P1 and P2 are probabilities. Here, the main task is to find these

probabilities explicitly. Since (2.1.20) is the solution of (2.1.18), partial differen-

tial equations satisfied by these probabilities can be derived by using (2.1.18).

By taking x = ln S, the PDE (2.1.18) is rewritten in terms of probabilities P1

and P2 as follows:

∂U

∂S
= P1 +

∂P1

∂x
+

1

S
Ke−r(T−t)∂P2

∂x
, (2.1.21)

∂U

∂v
= S

∂P1

∂v
+ Ke−r(T−t)∂P2

∂v
, (2.1.22)

∂2U

∂S∂v
=

∂2U

∂v∂S
=

∂P1

∂v
+

∂2P1

∂x∂v
+

1

S
Ke−r(T−t) ∂2P2

∂x∂v
, (2.1.23)

∂U

∂t
= S

∂P1

∂t
+ rKP2 + Ke−r(T−t)∂P2

∂t
, (2.1.24)

∂2U

∂S2
=

1

S

∂P1

∂x
+

1

S

∂2P1

∂x2
− 1

S2
Ke−r(T−t)∂P2

∂x
+

1

S2
Ke−r(T−t)∂

2P2

∂x2
, (2.1.25)

10



∂2U

∂v2
= S

∂2P1

∂v2
+ Ke−r(T−t)∂

2P2

∂v2
. (2.1.26)

Substituting all the above partial derivatives into the PDE (2.1.18), we obtain

the PDE for P1:

∂P1

∂t
+

(
r +

1

2
v

)
∂P1

∂x
+ (κθ − κv + λv + ρσv)

∂P1

∂v
+

1

2
v
∂2P1

∂x2
+

+ρσv
∂2P1

∂v∂x
+

1

2
σ2v

∂2P1

∂v2
= 0 (2.1.27)

subject to the terminal condition

P1(x, v, T, ln K) = I{x≥ln K}. (2.1.28)

The PDE for P2 turns out to be

(
r − 1

2
v

)
∂P2

∂x
+

∂P2

∂t
+ (κθ − κv − λv)

∂P2

∂v
+

1

2
v
∂2P2

∂x2
+ ρσv

∂2P2

∂v∂x
+

+
1

2
σ2v

∂2P2

∂v2
= 0 (2.1.29)

subject to the terminal condition

P2(x, v, T, ln K) = I{x≥ln K}. (2.1.30)

The partial differential equations can be expressed as follows:

1

2
v
∂2Pj

∂x2
+ ρσv

∂2Pj

∂x∂v
+

1

2
σ2v

∂2Pj

∂v2
+ (r + ujv)

∂Pj

∂x
+ (aj − bjv)

∂Pj

∂v
+

∂Pj

∂t
= 0

(2.1.31)
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for j = 1, 2, where u1 = 1/2, u2 = −1/2, a1,2 = κθ, b1 = κ+λ−ρσ and b2 = κ+λ.

Thus, they can be interpreted as ”adjusted” or ”risk neutralized” probabilities,

and, according to this, the spot asset price and volatility process dynamics can

be written as

dxt = [r + ujvt]dt +
√

vtdW̃ 1
t ,

dvt = (aj − bjvt)dt + σ
√

vtdW̃ 2
t , (2.1.32)

for j = 1, 2.

Here, Pj is in fact the conditional risk neutral probability that the option expires

in-the-money, which can be expressed by

Pj(x, v, T ; ln K) = Q [x(T ) ≥ ln K|x(t) = x, v(t) = v] . (2.1.33)

2.2 Heston’s Characteristic Function Method

When x(t) and v(t) follow the risk neutral processes given by (2.1.32), any twice

differentiable function f(x, v, t) that is a conditional expectation of some function

of x and v at a later date T , g(x(T ), v(T )) can be expressed as follows:

f(x, v, t) := EQ [g(x(T ), v(T ))|x(t) = x, v(t) = v] (2.2.34)
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subject to the terminal condition

f(x, v, T ) = g(x, v). (2.2.35)

From this definition, f must be a martingale under the risk neutral probability

Q. The Markov property of the processes can be easily verified, thus, for every

s ≤ t ≤ T , it holds:

EQ[f(x, v, t)|Fs] = EQ[f(x, v, t)|x(s), v(s)].

By using the definition of the function f ,

EQ[f(x, v, t)|Fs] = EQ[EQ[g(x(T ), v(T ))|Ft]|Fs].

By the tower property of conditional expectation, the last term in (2.2) can be

written as

= EQ[g(x(T ), v(T ))|Fs] = EQ[g(x(T ), v(T ))|x(s) = x, v(s) = v] = f(x, v, s).

(2.2.36)

By the Ito formula, the partial differential equation that f satisfies can be derived

as follows:

df =
∂f

∂t
dt +

∂f

∂x
dxt +

∂f

∂v
dvt +

1

2

∂2f

∂x2
d 〈x, x〉t +

1

2

∂2f

∂v2
d 〈v, v〉t +

∂2f

∂x∂v
d 〈x, v〉t ,

(2.2.37)
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and, after some substitutions,

df =

(
∂f

∂t
+ [r + ujv]

∂f

∂x
+ (aj − bjv)

∂f

∂v
dt +

1

2
v
∂2f

∂x2

)
dt+

+

(
1

2
σ2v

∂2f

∂v2
+ ρσv

1

2
v

∂2f

∂x∂v

)
dt +

√
v
∂f

∂x
dW̃ 1

t + σ
√

v
∂f

∂v
dW̃ 2

t . (2.2.38)

By using of the martingale property of f , we have the following PDE:

1

2
v
∂2f

∂v2
+

1

2
vσ2∂2f

∂v2
+ ρσv

∂2f

∂x∂v
+ [r + ujv]

∂f

∂x
+ (aj − bjv)

∂f

∂v
+

∂f

∂t
= 0

(2.2.39)

subject to the terminal condition

f(x, v, T ) = g(x, v). (2.2.40)

This equation has many uses. With the proper specification of the function

g(x, v), the desired solution can be reached directly.

If g(x, v) := I{x(T )≥ln K}, then the function f can be expressed as

f(x, v, t) = EQ[I{x(T )≥ln K}|x(t) = x, v(t) = v], (2.2.41)

which gives the solution of the conditional probability of the fact that x(T ) is

greater than ln K at time t ≤ T .

For j = 1, 2, Pj represents the same probability, that is, the conditional proba-

bility of the fact that option expires in-the-money. Moreover, it is observed that

Pj satisfies the same partial differential equation (2.2.39) with f and has the
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terminal condition

Pj(x, v, T ; ln K) = I{x≥ln K}. (2.2.42)

Thus the conditional probability that the option expires in-the-money at time t

can be expressed as follows:

Pj(x, v, t; ln K) = EQ[I{x(T )≥ln K}|x(t) = x, v(t) = v] (2.2.43)

= Q (x(T ) ≥ ln K|x(t) = x, v(t) = v) . (2.2.44)

The probabilities may not be derivable in a closed form; however, to set the

function g properly can help to derive the probabilities. By specifying the function

g as

g(x, v) = eiφx, (2.2.45)

the function f can be expressed as follows:

f(x, v, t) = EQ[eiφx(T )|x(t) = x, v(t) = v]. (2.2.46)

It is clearly seen that the solution of (2.2.39) gives the characteristic function.

Remark 2.2.1. Here, the point why the characteristic function is chosen to

obtain the desired probabilities is the fact the characteristic functions alwasy

exist [14, 20]. Moreover, the desired probabilities can be derived immediately by
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using the inversion formula [20].

To solve the PDE given by (2.2.39) explicitly, the following solution form is sug-

gested

f(x, v, t) = exp[C(T − t) + D(T − t)v + iφx]. (2.2.47)

The partial differential equation that f satisfies is

df =

(
∂C

∂t
f + v

∂D

∂t
f + [r + ujv]iφf + (aj − bjv)fD − 1

2
vφ2f

)
dt+

+
1

2
σ2vD2fdt + ρσviφDfdt + (...)dW̃ 1

t + (...)dW̃ 2
t . (2.2.48)

Since f is martingale, the PDE that f satisfies is found as

∂C

∂t
f + v

∂D

∂t
f + [r + ujv]iφf + (aj − bjv)fD − 1

2
vφ2f+

+
1

2
σ2vD2f + ρσviφDf = 0. (2.2.49)

One particular solution for the functions C(T − t) and D(T − t) can be found as

follows:

v
∂D

∂t
f + ujviφf + bjvfD − 1

2
vφ2f +

1

2
σ2vD2f + ρσviφDf = 0, (2.2.50)

∂C

∂t
f + riφf + ajtDf = 0, (2.2.51)
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After some arrangements, we get two ordinary differential equations:

∂D

∂t
+ ujiφ − bjD − 1

2
φ2 +

1

2
σ2D2 + ρσiφD = 0 (2.2.52)

∂C

∂t
+ riφ + ajD = 0 (2.2.53)

subject to

C(0) = 0, (2.2.54)

D(0) = 0. (2.2.55)

Thus, by using the known techniques for ordinary differential equations [15], we

solve the ODE as follows:

∂D

∂t
+ ujiφ − bjD − 1

2
φ2 +

1

2
σ2D2 + ρσiφD = 0. (2.2.56)

For brevity, we denote the parameters as follows:

a =
1

2
σ2,

b = ρσiφ − bj,

c = ujiφ − 1

2
φ2. (2.2.57)

Thus, we can use the known technique [15] to solve Riccati differential equations

for (2.2.56):

c1 − t =

∫
dD

aD2 + bD + c
(2.2.58)
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where a, b and c are given in (2.2).

Thus,

1

aD2 + bD + c
=

1

a

(
A

D − D1

+
B

D − D2

)
. (2.2.59)

where D1 and D2 stands for the roots as given by

D1 =
−b +

√
b2 − 4ac

2a
, D2 =

−b −
√

b2 − 4ac

2a
, (2.2.60)

and, A and B are found as follows:

A =
1

D1 − D2

, B =
1

D2 − D1

. (2.2.61)

Hence, we have

c1 − t =
1

a(D1 − D2)

∫
1

D − D1

dD − 1

a(D1 − D2)

∫
1

D − D2

dD, (2.2.62)

c1 − t =
1

a(D1 − D2)

(
ln

( |D − D1|
|D − D2|

))
+ c (2.2.63)

for D(τ) = D(T − t), subject to

D(0) = 0, (2.2.64)
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which implies T − t = 0 and so T = t, such that by (2.2.63), we get

c1 − c =
ln(D1/D2)

a(D1 − D2)
+ T. (2.2.65)

Thus we obtain

τ =
1

a(D1 − D2)

[
ln

( |D − D1|
|D − D2|

)
− D1

D2

]
, (2.2.66)

D = D1

(
1 − eτa(D1−D2)

)
(
1 − D1

D2
eτa(D1−D2)

) . (2.2.67)

Let us denote

d =
√

b2 − 4ac =
√

(ρσφi − bj)2 − σ2(2ujφi − φ2), (2.2.68)

then the roots D1 and D2 can be expressed as follows:

D1 =
ρσiφ − bj + d

σ2
, D2 =

ρσiφ − bj − d

σ2
. (2.2.69)

Then, we obtain

a(D1 − D2) =
1

2
σ2(D1 − D2) = d. (2.2.70)

Let us denote g := D1/D2, then

g =
ρσiφ − bj + d

ρσiφ − bj − d
(2.2.71)
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D =
ρσiφ − bj + d

σ2

(
1 − eτd

1 − geτd

)
, (2.2.72)

and by substituting D into the equation (2.2.53), the solution of C is found as

follows:

−dC = riφdt +
aj(bj − ρσφ + d)

σ2

[
1 − ed(T−t)

1 − ged(T−t)

]
dt, (2.2.73)

−C + c1 = riφt +
aj(bj − ρσφ + d)

σ2

[∫
1 − ed(T−t)

1 − ged(T−t)
dt

]
, (2.2.74)

−C + c1 = riφt +

+
aj(bj − ρσφ + d)

σ2

[
ln |e−d(T−t) − g|

d
− 1

dg

(
ln |e−d(T−t) − g| − ln |e−d(T−t)|

)
+ c2

]

subject to

C(0) = 0. (2.2.75)

Then we obtain

C = riφτ − ajD1

gd

[
(g − 1) ln |e−d(T−t) − g| + g ln e−d(T−t) − (g − 1) ln |1 − g|

]

(2.2.76)
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= riφτ +
ajD1

gd

[
gdτ − (g − 1) ln

[
1 − gddτ

1 − g

]]
(2.2.77)

= riφτ +
aj

σ2

(
(bj − ρσiφ + d)τ − (bj − ρσiφ + d)(g − 1)

gd
ln

[
1 − gedτ

1 − g

])
.

(2.2.78)

Finally,

C = riφτ +
aj

σ2

{
(bj − ρσiφ + d)τ − 2 ln

[
1 − gedτ

1 − g

]}
. (2.2.79)

To find the desired probabilities, the inversion formula [14] can be used. We can

express the probabilities as follows

Pj(x, v, t, ln K) = Q (x(T ) ≥ ln K|x(t) = x, v(t) = v)

= 1 − Q (x(T ) ≤ ln K|x(t) = x, v(t) = v) (2.2.80)

Let us recall the inversion formula

Fx(b) − Fx(a) =
1

2π
lim

T→∞

∫ T

−T

e−ita − e−itb

it
Φx(u)du, (2.2.81)

where Φx(u) represents the characteristic function of the random variable x. Here,

we denote the characteristic function as fj(x, v, t) for j = 1, 2 as given by equation

(2.2.86). Then, we take a → −∞ and b = ln K so that the result yields the
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probability Q (x(T ) ≤ ln K|x(t) = x, v(t) = v):

Fx(b) − Fx(a) =
1

2π
lim

T→∞

∫ T

−T

e−iφa − e−iφb

iφ
fj(x, v, t; φ)dφ (2.2.82)

which can be written as follows (see [20, 11]):

Pj(x, v, t, ln K) =
1

2
+

1

π

∫ ∞

0

ℜ
[
e−iφ ln Kfj(x, v, t; φ)

iφ

]
dφ, (2.2.83)

where ℜ denotes the real part of a complex number.

The integrals above cannot be eliminated; however, by using approximations, the

probabilities can be evaluated. Thus, together with the equation (2.1.20), the

equation (2.2.83) gives the solution of the option pricing formula:

C(S, v, t) = StP1(x, v, t, ln K) − KP (t, T )P2(x, v, t, ln K) (2.2.84)

Pj(x, v, t, ln K) =
1

2
+

1

π

∫ ∞

0

ℜ
[
e−iφ ln Kfj(x, v, t; φ)

iφ

]
dφ, (2.2.85)

where

fj(x, v, t) = exp[C(T − t) + D(T − t)v + iφx]. (2.2.86)
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Here,

C = riφτ +
aj

σ2

{
(bj − ρσiφ + d)τ − 2 ln

[
1 − gedτ

1 − g

]}
(2.2.87)

and

D =
ρσiφ − bj + d

σ2

(
1 − eτd

1 − geτd

)
, (2.2.88)

where

g =
ρσiφ − bj + d

ρσiφ − bj − d
(2.2.89)

and

d =
√

(ρσφi − bj)2 − σ2(2ujφi − φ2). (2.2.90)
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chapter 3

BHM’S APPROACH

In this chapter, the new framework proposed by Brody-Huhgston-Macrina(BHM)

[4] is closely examined. Firstly, we try to explain the intuition behind the model

by following the path BHM used for the explanation of their motivation. Then,

we give the assumptions made in the study [4]. After giving the model setting,

we closely follow the structure of the paper in a more detailed form. We give the

proofs and derivations which are not given in the original paper. For this, we

benefit from the two other studies suggested by BHM [3] and Rutkowski-Yu [21],

respectively.

According to the BHM approach, asset price dynamics are modeled under the

assumption that market participants do not have access to the information about

the actual value of the relevant market variables. In other words, it is claimed

that market participants acknowledge only partial noisy information about the

associated market factors. For example, if an asset is defined by its cash flow

structure, then the associated market factor can be the upcoming cash flows. In

fact, the associated market factors corresponding to an asset can represent all the

market variables which may have an effect on the asset’s expected future cash

flows. The asset price dynamics are derived based on modeling the structure of
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the information about those market factors circulating in the market.

In a general setting, as seen in the previous chapters, the economy is generally

modeled by a probability space with a filtration generated by a multi-dimensional

Brownian motion. Moreover, asset prices are assumed to follow Ito processes

which are adapted to this filtration. However, these standard models suffer from

tending to show an “ad hoc” nature. Take the Black-Scholes-Merton model,

for instance. The underlying price processes are assumed to follow a geometric

Brownian motion or as in the Heston model, the variance process is assumed to

follow a CIR process. In such standard models, Brownian filtration is certainly

sensed to contain all the applicable information, and no inapplicable informa-

tion. More specifically, in a complete market, the relevant information about the

movements of the asset prices is contained in the Brownian filtration. The idea

behind this is that there can be a succession of events which can affect price

change, and these various effects can be abstractified in the form of this filtration

to which asset prices are adapted. The unsatisfactory side of this approach is that

it shows that the prices moves as if they were spontaneous. However, in reality,

price processes are expected to show more structure. The BHM model suggests

an alternative to improve this unsatisfactory side of the standard models and at

the same time to avoid their tendency to be of the ad hoc nature.

When assets are traded, prices are formed by the behaviors of investors. The

source that affects investor decision concerning future possible transactions can

be expressed by two different origins: i) investor attitudes toward risk and ii) the

subjective value of future cash flows. Thus, when a market participant decides

to buy or sell an asset, the price at which he is willing to make the transaction
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is formed according to the information about the possible future cash flows asso-

ciated with the asset. It can be said that the movements of asset prices contain

some information on market participants’ expectations about the future value of

the asset and so some information about the actual future value of the asset. This

elementary observation reveals that the asset price should be seen as the output

of the various decisions made concerning possible transactions instead of as an

input into such transactions.

To capture the outline described above, the incomplete-information approach is

adopted and the so-called market information process ξt is defined specifically.

The asset price dynamics is derived explicitly by assuming that the market fil-

tration is the one which is generated by this market information process.

3.1 The Model

3.1.1 Basic Definitions and the Assumptions

According to the model, the probability space (Ω,F , Q) is specified and the mar-

ket filtration {Ft}0≤t<∞ will be stated explicitly. Here, Q stands for the risk

neutral probability measure. All asset price processes and information processes

accessible to market participants will be adapted to {Ft}.

More specifically,

• The absence of arbitrage and the existence of an established pricing kernel

(see, e.g., [6] and references cited therein) is assumed. The existence of a

unique risk neutral measure Q is ensured with these conditions, although
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the markets considered may be incomplete.

• The short term interest rate rt is assumed to be deterministic so the default-

free discount bond can be expressed as follows:

PtT = exp

{
−

∫ T

t

r(u)du

}
. (3.1.1)

• By the absence of arbitrage, the discount bond functions {PtT}0≤t≤T<∞ can

be written in the form

PtT = P0T /P0t, ∀t ≤ T. (3.1.2)

• The function {P0t}0≤t<∞ is assumed to be strictly decreasing, differentiable

and satisfying 0 < P0t ≤ 1 and

lim
t→∞

P0t = 0. (3.1.3)

• All cash flows occur at pre-determined dates, i.e., its timing is definite, only

the amount of the cash flow is random.

3.1.2 Modeling Cash Flows and Asset Prices

Let DT be a random variable on the probability space (Ω,F , Q) having a cumu-

lative distribution function

Q(DT ≤ x) =

∫ x

−∞

p(y)dy (x ∈ R). (3.1.4)
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The random variable DT represents a random cash flow occurring at time T .

Thus, it is postulated that DT takes values only in [0,∞). Hence, it can be

depicted as the single cash flow of an asset paying a single dividend at a prede-

termined date T .

Let St be the value of the cash flow at time t for 0 ≤ t < T given by

St = I{t<T}PtT EQ[DT |Ft]. (3.1.5)

The process {St}0≤t<T is in fact the price process of a limited-liability asset paying

the single dividend DT at time T . The convention that when the dividend is paid,

the asset price goes “ex-dividend”, is adopted; therefore,

lim
t→T

St = DT , ST = 0. (3.1.6)

For a sequence of dividends DTk
(k = 1, 2, ..., n) on the dates Tk, the price is then

St =
n∑

k=1

I{t<Tk}PtTk
EQ[DTk

|Ft]. (3.1.7)

More generally, when the ex-dividend behavior is taken into account, the price

process is described as

St =
n∑

k=1

I{t<Tk}PtTk
EQ[DTk

|Ft]. (3.1.8)

Furthermore, it is assumed that the discount bond also goes ex-dividend at its

maturity date. The price of the bond is given before maturity by the product

of the discount factor and the principal. However, at maturity the value of the

28



bond drops to zero. For a coupon bond, when a coupon is paid, the price has

a downward jump. Thus, all price processes have the property that they are

right-continuous with left limits (cadlaq processes).

The Brownian bridge process (see [18]) {βtT}0≤t≤T is defined on the probability

space (Ω,F , Q) such that β0T = 0 and βTT = 0 (see [12]). It is known that the

mean and the covariance of the Brownian bridge are:

EQ(βtT ) = 0 ∀ 0 ≤ t ≤ T, (3.1.9)

EQ(βsT βtT ) =
s(T − t)

T
∀ 0 ≤ s ≤ t ≤ T. (3.1.10)

The Brownian bridge process satisfies the following relations [18, 13]:

βtT = (T − t)

∫ t

0

1

T − s
dWs, (3.1.11)

where W = {Wt}0≤t≤T is a standard Brownian motion on (Ω,F , Q) adapted to

its natural filtration F̃t := FW
t . Additionally, it can be seen easily that filtrations

generated by Wt and βtT coincide:

βtT

T − t
=

∫ t

0

1

T − s
dWs. (3.1.12)

By differentiating (3.1.12), it is seen that

βtT

(T − t)2
dt +

dβtT

(T − t)
=

1

T − t
dWt, (3.1.13)

βtT

(T − t)
dt + dβtT = dWt. (3.1.14)
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Integrating both sides of (3.1.14), the following relations are found:

βtT = −
∫ t

0

βsT

(T − s)
ds + Wt, (3.1.15)

βuT − βtT = −
∫ u

t

βsT

(T − s)
ds + Wu − Wt. (3.1.16)

Furthermore, the Brownian bridge βtT is assumed to be independent of the ran-

dom variable DT , and thus the Brownian motion Wt and DT are independent

random variables as well. Then the enlarged filtration as given in the study of

Rutkowski-Yu [21] is G = F̃t ∨ DT for every t ∈ [0, T ], where DT stands for the

sigma-algebra generated by the random variable DT ; i.e.,

Gt = F̃t ∨ DT = σ{Wu; u ∈ [0, t], DT} = σ{βuT ; u ∈ [0, t], DT}.

According to this, it is seen that the filtration F̃t is a sub-filtration of the filtration

Gt. The processes βtT and Wt are Brownian bridge and Brownian motion with

respect to the filtration Gt, respectively. Lastly, the random variable DT is Gt-

measurable for any t ∈ [0, T ].

3.1.3 Modeling the Information Flow

Each market information process is in fact the sum of two terms

• one stands for the partially true information about the value of the associ-

ated market variable,

• the other one represents the “noise”.
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The price of an asset is given by the conditional expectation of the future cash

flows under the risk neutral measure. Differently, the market filtration in the con-

ditional expectation is taken as the filtration generated by the market information

processes {ξt}0≤t≤T which is modeled as follows:

ξt = σtDT + βtT . (3.1.17)

Here σ stands for the emerging rate of the true information, DT is the random

variable representing the associated market variable, and the Brownian bridge

process βtT models the noisy information such as rumors, speculations and gen-

eral disinformation about the relevant market variables in the market.

For the sake of simplicity, here we only give the case of one single cash flow oc-

curring at time T . The process {ξt} as seen in equation (3.1.17) is the sum of two

terms. The term σtDT stands for the “true information” about the approaching

cash flow. The process {βtT}0≤t≤T is a standard Brownian bridge over the time

interval [0, T ], so it takes zero values at time 0 and T . It holds β0T = 0 and

βTT = 0 and it is in fact a Gaussian process having zero mean, t(T − t)/T vari-

ance and s(T − t)/T is the covariance between βsT and βtT for s ≤ t. Thus, the

information contained in the bridge process actually represents the pure noise.

The market filtration is assumed to be equal to the filtration generated by {ξt},

i.e., {Ft} = {F ξ
t }, where {F ξ

t } = σ{ξu; u ∈ [0, t]} for t ∈ [0, T ]. Hence, the

dividend DT is FT -measurable, but not Ft-measurable. The Brownian bridge is

not adapted to the market filtration {Ft}. Thus it is not accessible to market

participants which reflects the fact that market participants cannot perceive the

true information without the noise in the market until the dividend is paid. This
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models the fact that market perceptions play an important role in determining

asset prices.

3.1.4 Markov Property of the Information Process

According to the following lemma, to compute the conditional expectation in

the equation (3.1.5), it will be enough to take the conditional expectation with

respect to the sigma-sub algebra generated by ξt since the process {ξt} satisfies

the Markov property:

Q(ξt ≤ x|F ξ
s ) = Q(ξt ≤ x|ξs) (3.1.18)

for all x ∈ R and all s, t such that 0 ≤ s ≤ t ≤ T .

Lemma 3.1.1. The process ξ satisfies the Markov property with respect to its

natural filtration F ξ.

Proof. Here we follow the exact path suggested in the study of [21, 3]. It suffices

to show that

Q(ξt ≤ x|ξs, ξs1 , ξs2 , ..., ξsk
) = Q(ξt ≤ x|ξs)

for any times T ≥ t > s > s1 > s2 > ... > sk > 0. It holds

ξs/s − ξs1/s1 = βsT /s − βs1T /s1, ∀T > t > s > s1 > 0.

Note that for any t > s > s1, βtT and βsT

s
− βs1T

s1
are Gaussian random variables
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having zero covariance which can be easily verified as follows:

Cov(βtT ,
βsT

s
− βs1T

s1

) = E(βtT

(
βsT

s
− βs1T

s1

)
)

=
1

s
E(βtT βsT ) − 1

s1

E(βtT βs1T )

=
1

s
Cov(βtT , βsT ) − 1

s1

Cov(βtT , βs1T )

=
1

s

(
s ∧ t − st

T

)
− 1

s1

(
s1 ∧ t − s1t

T

)
.

Since t > s > s1,

=
1

s

(
s − st

T

)
− 1

s1

(
s1 −

s1t

T

)
= 0.

More generally, βsT

s
− βs1T

s1
,

βs2T

s2
− βs3T

s3
, for any s > s1 > s2 > s3 are all

independent Gaussian random variables.

Furthermore, since ξt and ξs are independent of βsT

s
− βs1T

s1
,

βs1T

s1
− βs2T

s2
, ...,

βsk−1T

sk−1
−

βskT

sk
, the result is as follows:

Q(ξt ≤ x|ξs, ξs1 , ξs2 , ..., ξsk
) = Q(ξt ≤ x|ξs,

ξs

s
− ξs1

s1

,
ξs1

s1

− ξs2

s2

, ...,
ξsk−1

sk−1

− ξsk

sk

)

= Q(ξt ≤ x|ξs,
βsT

s
− βs1T

s1

,
βs1T

s1

− βs2T

s2

, ...,
βsk−1T

sk−1

− βskT

sk

)

33



=
Q(ξt ≤ x, ξs ≤ ys,

βsT

s
− βs1T

s1
≤ ys1 ,

βs1T

s1
− βs2T

s2
≤ ys2 , ...,

βsk−1T

sk−1
− βskT

sk
≤ ysk

)

Q(ξs ≤ ys,
βsT

s
− βs1T

s1
≤ ys1 ,

βs1T

s1
− βs2T

s2
≤ ys2 , ...,

βsk−1T

sk−1
− βskT

sk
≤ ysk

)

=
Q(ξt ≤ x, ξs ≤ ys)Q(βsT

s
− βs1T

s1
≤ ys1)...Q(

βsk−1T

sk−1
− βskT

sk
≤ ysk

)

Q(ξs ≤ ys)Q(βsT

s
− βs1T

s1
≤ ys1)...Q(

βsk−1T

sk−1
− βskT

sk
≤ ysk

)

=
Q(ξt ≤ x, ξs ≤ ys)

Q(ξs ≤ ys)
= Q(ξt ≤ x|ξs).

This completes the proof.

3.1.5 The Derivation of the Conditional Density

By using the Markov property and the fact that DT is FT -measurable, the asset

price process is expressed as follows:

St = I{t<T}PtT EQ[DT |Ft] = I{t<T}PtT EQ[DT |ξt]. (3.1.19)

As DT stands for the dividend payoff of the risky asset, it can have a continuous

distribution and then the conditional expectation in (4.1.6) can be written in the

following form

EQ[DT |ξt] =

∫ ∞

0

xπt(x)dx, (3.1.20)
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where πt(x) represents the conditional probability density function for the random

variable DT :

πt(x) =
d

dx
Q(DT ≤ x|ξt). (3.1.21)

By the Bayes formula, the conditional probability density can be expressed in the

form

πt(x) =
ρ(ξt|DT = x)p(x)

ρ(ξt)
, (3.1.22)

where p(x) represents the priori probability density function for DT which will

be assumed as an initial condition, and ρ(ξt) and ρ(ξt|DT = x) denotes the

probability density function and the conditional probability density function for

the random variable ξt given DT = x, respectively.

As the probability density function of the random variable ξt can be written as

follows:

ρ(ξt) =

∫ ∞

−∞

ρ(ξt|DT = x)p(x)dx =

∫ ∞

0

ρ(ξt|DT = x)p(x)dx, (3.1.23)

the conditional probability density function πt(x):

πt(x) =
ρ(ξt|DT = x)p(x)∫ ∞

0
ρ(ξt|DT = x)p(x)dx

. (3.1.24)

Since βtT is a Gaussian random variable for every 0 ≤ t ≤ T , the conditional
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probability density function for the random variable ξt given DT = x is a Gaussian

density with mean σtx and variance t(T − t)/T :

ρ(ξt|DT = x) =
1

√
2π

√
t(T−t)

T

exp

(
−1

2

(ξt − σtx)2

t(T−t)
T

)

=

√
T

2πt(T − t)
exp

(
−(ξt − σtx)2T

2t(T − t)

)
.

Substituting the expression into the Bayes formula gives

πt(x) =
p(x)

√
T

2πt(T−t)
exp

(
− (ξt−σtx)2T

2t(T−t)

)

∫ ∞

0
p(x)

√
T

2πt(T−t)
exp

(
− (ξt−σtx)2T

2t(T−t)

)
dx

(3.1.25)

=
p(x) exp

(
− ξ2

t

2t(T−t)

)
exp

(
2σxξttT−σ2x2t2T

2t(T−t)

)

exp
(
− ξ2

t

2t(T−t)

) ∫ ∞

0
p(x) exp

(
2σxξttT−σ2x2t2T

2t(T−t)

)
dx

=
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

. (3.1.26)

Proposition 3.1.2. The information-based price process {St}0≤t≤T of a limited-
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liability asset that pays a single dividend DT at time T with a priori distribution

Q(DT ≤ y) =

∫ y

0

p(x)dx

is given by

St = I{t<T}PtT

∫ ∞

0
xp(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

, (3.1.27)

where ξt = σtDT + βtT is the market information process.

Proof.

We know that the price process satisfies (3.1.19):

St = I{t<T}PtT EQ[DT |ξt]

= I{t<T}PtT

∫ ∞

0

xπt(x)dx

= I{t<T}PtT

∫ ∞

0

x

(
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

)
dx

= I{t<T}PtT

∫ ∞

0
xp(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

.
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3.2 Asset Price Dynamics in the Case of a Single

Cash Flow

The stochastic differential equation of which the price process {St} is the solution

is derived so that it can be possible to analyze the properties of the price process

and to compare it with other models. In order to obtain the dynamics of the

price process {St}, the conditional expectation of DT with respect to the market

information ξt is denoted as follows:

DtT = D(ξt, t) = EQ[DT |ξt], (3.2.28)

where

D(ξt, t) =

∫ ∞

0
xp(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

. (3.2.29)

Lemma 3.2.1. Let DtT be the process given by the equation (3.2.28). Then the

dynamics of DtT under Q are

dDtT =
σT

T − t
Vt

[
1

T − t
(ξt − σTDtT ) dt + dξt

]
, (3.2.30)

where Vt stands for the conditional variance of the dividend:

Vt =

∫ ∞

0

x2πt(x)dx −
(∫ ∞

0

xπt(x)dx

)2

. (3.2.31)

Then the spot asset price dynamics is:

dSt = rtStdt + ΓtT dDtT , (3.2.32)
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where

ΓtT = PtT

σT

T − t
Vt.

Proof. To find the differential equation for the conditional expectation {DtT},

the Ito rules are used as follows:

dD(ξ, t) =
∂D(ξ, t)

∂t
dt +

∂D(ξ, t)

∂ξ
dξ +

1

2

∂2D(ξ, t)

∂ξ2
d 〈ξ, ξ〉t

∂D(ξ, t)

∂t
=

∂

∂t

(∫ ∞

0
xp(x) exp( T

T−t
(σxξt − 1

2
σ2x2t))dx

∫ ∞

0
p(x) exp( T

T−t
(σxξt − 1

2
σ2x2t))dx

)

and by denoting

A(ξ, x, t) =
T

T − t

(
σxξ − 1

2
σ2x2t

)
,

we get

∂D(ξ, t)

∂t
=

∂
∂t

(∫ ∞

0
xp(x)exp {A(ξ, x, t)} dx

) (∫ ∞

0
p(x) exp {A(ξ, x, t)} dx

)
(∫ ∞

0
p(x) exp(A(ξ, x, t))dx

)2

−
(∫ ∞

0
xp(x)exp {A(ξ, x, t)} dx

)
∂
∂t

(∫ ∞

0
p(x) exp {A(ξ, x, t)} dx

)
(∫ ∞

0
p(x) exp(A(ξ, x, t))dx

)2

=

(∫ ∞

0
xp(x)∂A(ξ,x,t)

∂t
exp {A(ξ, x, t)} dx

) (∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

)

(∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

)2 −

−
(∫ ∞

0
xp(x)exp {A(ξ, x, t)} dx

) (∫ ∞

0
p(x)∂A(ξ,x,t)

∂t
exp {A(ξ, x, t)} dx

)

(∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

)2
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=

∫ ∞

0
xp(x)∂A(ξ,x,t)

∂t
exp {A(ξ, x, t)} dx − DtT

∫ ∞

0
p(x)∂A(ξ,x,t)

∂t
exp {A(ξ, x, t)} dx∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

.

Because of

∂A(ξ, x, t)

∂t
=

σxT

T − t

(
1

T − t
(ξ − σxT )

)
, (3.2.33)

we conclude

∂D(ξ, t)

∂t
=

σTξ

(T − t)2

∫ ∞

0

x2πt(x)dx − DtT

σTξ

(T − t)2

∫ ∞

0

x2πt(x)dx+

+DtT

σ2T 2

2(T − t)2

∫ ∞

0

x2πt(x)dx − σ2T 2

2(T − t)2

∫ ∞

0

x3πt(x)dx

=
σTξ

(T − t)2

(∫ ∞

0

x2πt(x)dx −
(∫ ∞

0

xπt(x)dx

)2
)

+

+
σ2T 2

2(T − t)2
DtT

(∫ ∞

0

x2πt(x)dx −
∫ ∞

0

x3πt(x)dx

)

=
σTξ

(T − t)2
Vt +

σ2T 2

2(T − t)2

(
DtT Vt + D3

tT −
∫ ∞

0

x3πt(x)dx

)
.

Similarly,

∂D(ξ, t)

∂ξ
=

∂

∂ξ

(∫ ∞

0
xp(x) exp(A(ξ, x, t))dx∫ ∞

0
p(x) exp(A(ξ, x, t))dx

)

=

∫ ∞

0
xp(x)∂A(ξ,x,t)

∂ξ
exp {A(ξ, x, t)} dx − DtT

∫ ∞

0
p(x)∂A(ξ,x,t)

∂ξ
exp {A(ξ, x, t)} dx

∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

,

where

∂A(ξ, x, t)

∂ξ
=

Tσx

T − t
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=
σT

T − t

(∫ ∞

0
x2p(x)exp {A(ξ, x, t)} dx − DtT

∫ ∞

0
xp(x)exp {A(ξ, x, t)} dx∫ ∞

0
p(x)exp {A(ξ, x, t)} dx

)

=
σT

T − t
Vt. (3.2.34)

Furthermore,

∂2D(ξ, t)

∂ξ2
=

∂2

∂ξ2

(∫ ∞

0
xp(x) exp( T

T−t
(σxξt − 1

2
σ2x2t))dx

∫ ∞

0
p(x) exp( T

T−t
(σxξt − 1

2
σ2x2t))dx

)

=
∂

∂ξ

(∫ ∞

0
xp(x)∂A(ξ,x,t)

∂ξ
eA(ξ,x,t)dx

∫ ∞

0
p(x)eA(ξ,x,t)dx

)
− ∂

∂ξ

(
DtT

∫ ∞

0
xp(x)eA(ξ,x,t)dx∫ ∞

0
p(x)eA(ξ,x,t)dx

)

=

(
σT

T − t

)2
∫ ∞

0
x3p(x)exp(A(ξ, x, t))dx∫ ∞

0
p(x)exp(A(ξ, x, t))dx

−

−
(

σT

T − t

)2 (∫ ∞

0
x2p(x)exp(A(ξ, x, t))dx∫ ∞

0
p(x)exp(A(ξ, x, t))dx

)(∫ ∞

0
xp(x)exp(A(ξ, x, t))dx∫ ∞

0
p(x)exp(A(ξ, x, t))dx

)
+

+

(
σT

T − t

)2

VtDtT +

(
σT

T − t

)2

DtT

∫ ∞

0
x2p(x)exp(A(ξ, x, t))dx∫ ∞

0
p(x)exp(A(ξ, x, t))dx

−

−
(

σT

T − t

)2 (∫ ∞

0
xp(x)exp(A(ξ, x, t))dx∫ ∞

0
p(x)exp(A(ξ, x, t))dx

)2

=

(
σT

T − t

)2 ∫ ∞

0

x3πt(x)dx −
(

σT

T − t

)2

DtT

∫ ∞

0

x2πt(x)dx+

+

(
σT

T − t

)2

VtDtT +

(
σT

T − t

)2

DtT

(∫ ∞

0

x2πt(x)dx − D2
tT

)
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=

(
σT

T − t

)2 (∫ ∞

0

x3πt(x)dx − DtT Vt − D3
tT − 2VtDtT

)
. (3.2.35)

Substituting the expressions of ∂D(ξ, t)/∂t, ∂D(ξ, t)/∂ξ and ∂2D(ξ, t)/∂ξ2 given

above, the dynamic equation of D(ξ, t) is obtained as follows:

dD(ξ, t) =
σT

(T − t)2
ξtVtdt +

(σT )2

2(T − t)2

(
DtT Vt + D3

tT −
∫ ∞

0

x3πt(x)dx

)
dt+

+
σT

T − t
Vtdξ +

1

2

(σT )2

(T − t)2

(∫ ∞

0

x3πt(x)dx − DtT Vt − D3
tT − 2VtDtT

)
dt

=
σT

T − t
Vt

(
1

T − t
(ξt − σTDtT )dt + dξt

)
,

dDtT =
σT

T − t
Vt

[
1

T − t
(ξt − σTDtT ) dt + dξt

]
,

where Vt stands for the conditional variance of the dividend

Vt =

∫ ∞

0

x2πt(x)dx −
(∫ ∞

0

xπt(x)dx

)2

. (3.2.36)

Then, we obtain the asset price dynamics as given by

dSt = rtStdt +
σT

T − t
Vt

[
1

T − t
(ξt − σTDtT ) dt + dξt

]
. (3.2.37)

This ends the proof of the lemma.
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3.2.1 Dynamics of the Information Process

It is known that the Brownian bridge satisfies the following dynamics (see [13])

dβtT = − βtT

(T − t)
dt + dWt, (3.2.38)

β0T = 0,

and the information process

ξt = σtDT + βtT ,

dξt = σDT dt + dβtT

= σDT dt − βtT

(T − t)
+ dWt

= σDT dt − ξt − σtDT

(T − t)
dt + dWt

=
σDT (T − t) − ξt + σtDT

T − t
dt + dWt

=
1

T − t
(σDT T − ξt)dt + dWt.

Thus, the information process ξt is a continuous semimartingale, and its quadratic

variation is 〈ξ, ξ〉t = t for every t ∈ [0, T ].

Information-driven Brownian Motion

A new process {Wt}0≤t<T is defined as follows

Wt = ξt −
∫ t

0

1

T − s
(σTDsT − ξs) ds (3.2.39)
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After some rearrangement of terms, it is found that DtT satisfies the following

stochastic differential equation

dDtT =
σT

T − t
VtdWt.

The asset price process {St}0≤t<T satisfies the following stochastic differential

equation

dSt = rtStdt + ΓtT dWt,

where rt represents the short rate that is given by rt = −d ln P0t/dt, and the

absolute price volatility ΓtT is as expressed in this way:

ΓtT = PtT

σT

T − t
Vt.

When the expected dividend process {DtT} is examined, it is seen that it is an

{Ft}-martingale which can be easily seen as follows: for t ≤ s < T

DtT = EQ [DT |Ft]

and

EQ [DsT |Ft] = EQ
[
EQ [DT |Fs] |Ft

]
= EQ [DT |Ft] = DtT .

Thus, {Wt} must be an {Ft}-martingale.

Proposition 3.2.2. [4] The process {Wt} defined by equation (3.2.39) is a stan-
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dard {Ft}-Brownian motion under the risk neutral measure Q.

Proof. For the proof, we follow the original proof of the BHM [4]. Therefore, it

is sufficient to show the following two axioms

(i) {Wt} is an {Ft}-martingale.

(ii) (dWt)
2 = dt.

The conditional expectation can be expressed as follows: for t ≤ u < T

EQ
[
Wu|F ξ

t

]
= EQ [Wu|ξt] = EQ [ξu|ξt] + EQ

[∫ u

0

1

T − s
ξsds|ξt

]

−EQ

[∫ u

0

σT

T − s
DsT ds|ξt

]

= EQ [ξu|ξt] +

∫ t

0

1

T − s
ξsds −

∫ t

0

σT

T − s
DsT ds + EQ

[∫ u

t

1

T − s
ξsds|ξt

]

−EQ

[∫ u

t

σT

T − s
DsT ds|ξt

]

= EQ [ξu|ξt] +

∫ t

0

1

T − s
ξsds −

∫ t

0

σT

T − s
DsT ds +

∫ u

t

1

T − s
EQ [ξs|ξt] ds

−
∫ u

t

σT

T − s
DtT ds

for t ≤ s

EQ
[
βsT |F ξ

t

]
= EQ

[
EQ [βsT |σ(βkT ; k ≤ t,DT )] |F ξ

t

]
.

As ξt is a Markov process,

EQ [βsT |ξt] = EQ
[
EQ [βsT |σ(βtT , DT )] |ξt

]
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= EQ
[
EQ [βsT |DT , βtT ] |ξt

]
= E

Q
t

[
EQ [βsT |βtT ]

]
.

By making use of the fact that the random variable βsT /(T − s) − βtT /(T − t)

is independent of βtT , the inner conditional expectation EQ [βsT |βtT ] is found as

follows:

EQ

[
βsT

T − s
− βtT

T − t
|βtT

]
= EQ

[
βsT

T − s
− βtT

T − t

]
= 0,

EQ [βsT |βtT ] =
T − s

T − t
βtT ,

EQ
t [βsT ] = EQ

t

[
T − s

T − t
βtT

]
=

T − s

T − t
EQ

t [βtT ] ,

EQ
t [ξs] = EQ

t [σsDT + βsT ] = σsDtT +
T − s

T − t
EQ

t [βtT ] .

From this, it follows:

EQ
t [Wu] = EQ

t [ξu] +

∫ t

0

(ξs − σTDsT )

T − s
ds −

∫ u

t

σDtT ds +

∫ u

t

E
Q
t [βtT ]

T − t
ds.

Let us recall that the definition of the process {Wt}

Wt − ξt =

∫ t

0

1

T − s
ξsds −

∫ t

0

σT

T − s
DsT ds

After some arrangements,

EQ
t [Wu] = EQ

t [ξu] + Wt − ξt − σDtT (u − t) +
1

T − t
E

Q
t [βtT ] (u − t)

= σuDtT +
T − u

T − t
E

Q
t [βtT ] + Wt − ξt +

u − t

T − t
EQt [βtT ] − σDtT (u − t)
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= Wt − ξt + EQt [βtT ] + σtDtT .

Finally, using the fact that ξt = E
Q
t [ξt], it is found that the process {Wt} satisfies

the martingale property:

E
Q
t [Wu] = Wt. (3.2.40)

Furthermore, the second axiom can be seen easily:

(dWt)
2 =

(
dξt −

1

T − t
(σTDtT − ξt) dt

)2

= (dξt)
2 = dt.

Thus, it is concluded that the process {Wt} is an {Ft}-Brownian motion.

3.2.2 The Derivation of the Dynamics of the Conditional

Density Process

A slightly different way of finding the dynamics of the price process {St} can be

as follows.

Firstly, the dynamics of the conditional probability process πt(x) is found by

pursuing the same path as above:

πt(x) =
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

. (3.2.41)
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An application of the Ito rules to (3.2.41) gives the dynamics of the conditional

density process as follows:

dπt(x) =
∂πt(x)

∂t
dt +

∂πt(x)

∂ξ
dξ +

1

2

∂2πt(x)

∂ξ2
d 〈ξ, ξ〉t .

By using the same notation used above, we have

A(ξ, x, t) =
T

T − t

(
σxξt −

1

2
σ2x2t

)
.

Thus,

∂πt(x)

∂t
=

∂

∂t

(
p(x)exp (A(ξ, x, t))∫ ∞

0
p(x)exp (A(ξ, x, t)) dx

)

=
σTξt

(T − t)2
πt(x)

(
x −

∫ ∞

0

xπt(x)dx

)
− (σT )2

2(T − t)2
πt(x)

(
x2 −

∫ ∞

0

x2πt(x)dx

)

=
σTξt

(T − t)2
πt(x) (x − DtT ) − (σT )2

2(T − t)2
πt(x)

(
x2 − Vt − D2

tT

)
,

∂πt(x)

∂ξ
=

∂

∂ξ

(
p(x)exp (A(ξ, x, t))∫ ∞

0
p(x)exp (A(ξ, x, t)) dx

)

=
σT

T − t
xπt(x) − σT

T − t
πt(x)

∫ ∞

0

xπt(x)dx =
σT

T − t
πt(x)(x − DtT ),

∂2πt(x)

∂ξ2
=

∂

∂ξ

(
∂

∂ξ

(
p(x)exp (A(ξ, x, t))∫ ∞

0
p(x)exp (A(ξ, x, t)) dx

))

=
(σT )2

(T − t)2
x2πt(x) − (σT )2

(T − t)2
xπt(x)DtT +

(σT )2

(T − t)2
πt(x)(x − DtT )DtT +

+
(σT )2

(T − t)2
πt(x)Vt

=
σT

T − t
πt(x)(x − DtT ) +

(
σT

T − t

)2

πt(x)
(
xDtT − D2

tT + Vt

)
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=

(
σT

T − t

)2

πt(x)
(
x2 − 2xDtT + D2

tT − Vt

)
.

Substituting the expressions of ∂πt(x)/∂t, ∂πt(x)/∂ξ and ∂2πt(x)/∂ξ2 calculated

above, the dynamic equation for the conditional probability process πt(x) is found

as follows:

dπt(x) =
σTξt

(T − t)2
πt(x) (x − DtT ) − (σT )2

2(T − t)2
πt(x)

(
x2 − Vt − D2

tT

)
dt+

+
σT

T − t
πt(x)(x − DtT )dξt +

1

2

(
σT

T − t

)2

πt(x)
(
x2 − 2xDtT + D2

tT − Vt

)
dt

=
σT

T − t
πt(x)

(
(x − DtT )

(
dξt −

1

T − t
(σTDtT − ξt)dt

))
.

Finally, the dynamics of the conditional probability process is

dπt(x) =
σT

T − t
πt(x)(x − DtT )dWt. (3.2.42)

As the asset price process is given by

St = I{t<T}PtT

∫ ∞

0

xπt(x)dx.

Therefore, the same result for the dynamics of the asset price process can easily

be verified as follows:

dSt = rtStdt + PtT

∫ ∞

0

xdπt(x)dx
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= rtStdt + PtT

∫ ∞

0

x

(
σT

T − t
(x − DtT )πt(x)dWt

)
dx

= rtStdt + PtT

σT

T − t

(∫ ∞

0

x2πt(x)dx − DtT

∫ ∞

0

xπt(x)dx

)
dWt,

Hence,

dSt = rtStdt + PtT

σT

T − t
VtdWt.

3.3 Time-Dependent Information Emerging Rate

In this section, a generalization of the model to the case where the emerging rate

of the true information depends on time is considered as given in the original

study [4]. When the parameter σ in the definition of the market information

process is taken as being time-dependent, the expected dividend process and

the asset price dynamics are examined. Without deviating from the path they

follow, we present the proofs and the derivations, which are not given detailed in

the study [4].

According to this case, the market information process is defined as follows

ξt = DT

∫ t

0

σsds + βtT , (3.3.43)

where the function {σs}0≤s≤T is taken to be a nonnegative deterministic function

of time. Furthermore, the following condition is assumed:

0 <

∫ T

0

σ2
sds < ∞. (3.3.44)
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The risky asset price process is given by

St = I{t<T}PtT EQ[DT |Ft], (3.3.45)

where the market filtration is assumed to be generated by the information process

{ξt} defined by equation (3.3.43). Here, a change of measure technique is used

to find out the conditional expectation given in the equation (3.3.45). The con-

ditional density process {πt(x)} is defined as

πt(x) =
d

dx
Q(DT ≤ x|Ft). (3.3.46)

Proposition 3.3.1. [4] Let the information process {ξt} be defined by equation

(3.3.43). Then, the conditional probability density process {πt(x)} for the random

variable DT is given by

πt(x) =
p(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

∫ ∞

0
p(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx
(3.3.47)

and the conditional expectation looks as follows:

DtT =

∫ ∞

0
xp(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

∫ ∞

0
p(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx
. (3.3.48)

Thus, the asset price process {St} is given by

St = I{t<T}PtT DtT . (3.3.49)

Proof. The probability space (Ω,F , Q) with a filtration {Gt}0≤t<∞ and Wt is a
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standard {Gt}-Brownian motion. Moreover, βtT and DT are assumed to be inde-

pendent; DT is assumed to be G0-measurable and bounded. Then the Brownian

bridge process {βtT} can be expressed as a stochastic integral:

βtT = (T − t)

∫ t

0

1

T − s
dWs. (3.3.50)

Here, βtT is adapted to {Gt}. The deterministic nonnegative process {νt}0≤t≤T is

defined as follows:

νt = σt +
1

T − t

∫ t

0

σsds, (3.3.51)

satisfying the following relation

∫ t

0

1

T − s
νsds =

1

T − t

∫ t

0

σsds, (3.3.52)

which can easily be verified by differentiation. The process {Λt}0≤t<T is defined

by the relation

1

Λt

:= exp

(
−DT

∫ t

0

νsdWs −
1

2
D2

T

∫ t

0

ν2
sds

)
, (3.3.53)

which can be used as a change of measure density from Q to BT on GU for a fixed

time horizon U ∈ (0, T ):

dBT = Λ−1
U dQ. (3.3.54)

Then, the process {W ∗
t }0≤t<U defined by

W ∗
t = DT

∫ t

0

νsds + Wt, (3.3.55)
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that is a BT -Brownian motion. Note that DT has the same probability law with

respect to BT and Q. Moreover, the process {ξt} defined by (3.3.43) is a BT -

Brownian bridge:

ξt = DT

∫ t

0

σsds + βtT

= DT

∫ t

0

σsds + (T − t)

∫ t

0

1

T − s
dWs

= DT

∫ t

0

σsds + (T − t)

∫ t

0

1

T − s
(dW ∗

s − DT νsds)

= DT

(∫ t

0

σsds − (T − t)

∫ t

0

1

T − s
νsds

)
+ (T − t)

∫ t

0

1

T − s
dW ∗

s .

By using the relation given by (3.3.52), we obtain

ξt = (T − t)

∫ t

0

1

T − s
dW ∗

s , (3.3.56)

which is in fact the stochastic integral representation of a Brownian bridge process.

Hence, the conditional probability density process can be derived by using a varia-

tion of the Kallianpur-Striebel formula (see [9, 5]) for the conditional expectation

EQ[f(DT )|F ξ
t ] =

EBT [f(DT )Λt|F ξ
t ]

EBT [Λt|F ξ
t ]

. (3.3.57)

The process {Λt} can be expressed in terms of {ξt}

Λt = exp

(
DT

∫ t

0

νsdWs +
1

2
D2

T

∫ t

0

ν2
sds

)
. (3.3.58)
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By substituting (3.3.55), we get

Λt = exp

(
DT

∫ t

0

νs(dW ∗
s − DT νsds) +

1

2
D2

T

∫ t

0

ν2
sds

)

= exp

(
DT

∫ t

0

νsdW ∗
s − 1

2
D2

T

∫ t

0

ν2
sds

)
. (3.3.59)

Differentiating the equation (3.3.56) gives

dξt = − ξt

T − t
dt + dW ∗

s . (3.3.60)

Substituting (3.3.60) into (3.3.59) yields

Λt = exp

(
DT

∫ t

0

νsdξs + DT

∫ t

0

νs

ξs

T − s
ds − 1

2
D2

T

∫ t

0

ν2
sds

)
,

d

(∫ t

0

νsdξs +

∫ t

0

νs

ξs

T − s
ds

)
= νt

(
dξt +

1

T − t
ξtdt

)

=

(
σt +

1

T − t

∫ t

0

σsds

)(
dξt +

1

T − t
ξtdt

)

= d

(
1

T − t
ξt

∫ t

0

σsds +

∫ t

0

σsdξs

)
. (3.3.61)

Integrating both sides of (3.3.61) gives

∫ t

0

νsdξs +

∫ t

0

νs

ξs

T − s
ds =

1

T − t
ξt

∫ t

0

σsds +

∫ t

0

σsdξs. (3.3.62)

Similarly,

ν2
t dt =

(
σ2

t +
2

T − t
σt

∫ t

0

σsds +
1

(T − t)2

(∫ t

0

σsds

)2
)

dt (3.3.63)
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= d

(
1

T − t

(∫ t

0

σsds

)2

+

∫ t

0

σ2
sds

)
. (3.3.64)

Thus, {Λt} can be expressed as follows:

Λt = exp
[
DT ( ξt

T−t

∫ t

0
σsds +

∫ t

0
σsdξs) − 1

2
D2

T ( 1
(T−t)

(
∫ t

0
σsds)2 +

∫ t

0
σ2

sds)
]
,

(3.3.65)

Q

(
DT ≤ x|F ξ

t

)
= EQ

[
I{DT≤x}|F ξ

t

]
=

EBT

[
I{DT≤x}Λt|F ξ

t

]

EBT

[
Λt|F ξ

t

] , (3.3.66)

Q

(
DT ≤ x|F ξ

t

)
=

∫ x

0
p(y)ey(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
y2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

∫ ∞

0
p(y)ey(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
y2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

.

(3.3.67)

An alternative expression for the conditional expectation process {πt(x)}, written

in terms of {W ∗
t }, is given by

πt(x) =
p(x) exp

(
x

∫ t

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

∫ t

0
p(x) exp

(
x

∫ t

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

dx
. (3.3.68)

Similarly, the conditional expectation of the random variable DT is represented

as

DtT =

∫ t

0
xp(x) exp

(
x

∫ t

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

dx

∫ t

0
p(x) exp

(
x

∫ t

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

dx
(3.3.69)
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=

∫ ∞

0
xp(x)ex(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
x2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

∫ ∞

0
p(x)ex(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
x2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

. (3.3.70)

Lemma 3.3.2. Let DtT be the process given by the equation (3.3.74). Then the

dynamics of DtT under Q are

dDtT = νtVt

(
1

T − t
ξt − νtDtT

)
dt + νtVtdξt (3.3.71)

where {Vt} represents the conditional variance of the random variable DT :

Vt =

∫ ∞

0

x2πt(x)dx −
(∫ ∞

0

xπt(x)dx

)2

. (3.3.72)

Then the spot asset price dynamics are:

dSt = rtStdt + ΓtT dDtT , (3.3.73)

where

ΓtT = PtT νtVt.

Proof. By using the Ito formula, the dynamics of the expected dividend process

is found as follows:

DtT = D(ξt, t) =

∫ ∞

0
xp(x)ex(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
x2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

∫ ∞

0
p(x)ex(

ξt
T−t

∫ t

0 σsds+
∫ t

0 σsdξs)−
1
2
x2( 1

(T−t)
(
∫ t

0 σsds)2+
∫ t

0 σ2
sds)

.

(3.3.74)
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We denote

A(ξt, t) =
ξt

T − t

∫ t

0

σsds +

∫ t

0

σsdξs,

B(t) =
1

(T − t)
(

∫ t

0

σsds)2 +

∫ t

0

σ2
sds

and

D(ξt, t) =
∆1

∆2

.

Thus, we can express DtT in terms of A(ξt, t) and B(t):

D(ξt, t) =

∫ ∞

0
xp(x)exA(ξt,t)−

1
2
x2B(t)

∫ ∞

0
p(x)exA(ξt,t)−

1
2
x2B(t)

.

The Ito formula:

dD(ξ, t) =
∂D(ξ, t)

∂t
dt +

∂D(ξ, t)

∂ξ
dξ +

1

2

∂2D(ξ, t)

∂ξ2
d 〈ξ, ξ〉t . (3.3.75)

The first term of the formula:

∂D(ξ, t)

∂t
=

1

∆2
2

(
∂∆1

∂t
∆2 −

∂∆2

∂t
∆1

)

=
1

∆2

(
∂∆1

∂t
− ∂∆2

∂t
D(ξt, t)

)
,

∂∆1

∂t
=

∫ ∞

0

xp(x)

(
x
∂A(ξt, t)

∂t
− 1

2
x2∂B(t)

∂t

)
exp

{
xA(ξt, t) −

1

2
x2B(t)

}
dx,

where

∂A(ξt, t)

∂t
=

ξt

T − t

(
1

T − t

∫ t

0

σsds + σt

)
=

ξt

T − t
νt,
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∂B(t)

∂t
=

(
1

T − t

∫ t

0

σsds + σt

)2

= ν2
t .

Thus,

∂∆1

∂t
=

ξt

T − t
νt

∫ ∞

0

x2p(x)exA(ξt,t)−
1
2
x2B(t)dx − 1

2
ν2

t

∫ ∞

0

x3p(x)exA(ξt,t)−
1
2
x2B(t)dx,

∂∆2

∂t
=

ξt

T − t
νt

∫ ∞

0

xp(x)xexA(ξt,t)−
1
2
x2B(t)dx − 1

2
ν2

t

∫ ∞

0

x2p(x)exA(ξt,t)−
1
2
x2B(t)dx,

∂D(ξ, t)

∂t
=

ξt

T − t
νtVt +

1

2
ν2

t

(
DtT

∫ ∞

0

x2πt(x)dx −
∫ ∞

0

x3πt(x)dx

)
,

where Vt is as defined in (3.3.72).

The second term of (3.3.75) is

∂D(ξ, t)

∂ξ
=

1

∆2
2

(
∂∆1

∂ξ
∆2 −

∂∆2

∂ξ
D(ξ, t)

)
,

where

∂∆1

∂ξ
= νt

∫ ∞

0

x2p(x)exp

{
xA(ξ, t) − 1

2
x2B(t)

}
dx,

∂∆2

∂ξ
= νt

∫ ∞

0

xp(x)exp

{
xA(ξ, t) − 1

2
x2B(t)

}
dx.

Thus,

∂D(ξ, t)

∂t
= νt

∫ ∞

0

x2πt(x)dx − D2
tT νt = νtVt.

The third term of (3.3.75) is
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∂2D(ξ, t)

∂ξ2
=

1

∆2

∂2∆1

∂ξ2
− 1

∆2
2

∂∆1

∂ξ

∂∆2

∂ξ
− D(ξ, t)

∆2

∂2∆2

∂ξ2
+

D(ξ, t)

∆2
2

(
∂∆2

∂ξ

)2

−

− 1

∆2

∂∆2

∂ξ

∂D(ξ, t)

∂ξ
,

∂2∆1

∂ξ2
= ν2

t

∫ ∞

0

x3p(x)exp

{
xA(ξt, t) −

1

2
x2B(t)

}
dx,

∂2∆2

∂ξ2
= ν2

t

∫ ∞

0

x2p(x)exp

{
xA(ξt, t) −

1

2
x2B(t)

}
dx,

∂2D(ξ, t)

∂ξ2
= ν2

t

∫ ∞

0

x3πt(x)dx − ν2
t DtT

∫ ∞

0

x2πt(x)dx − ν2
t DtT

∫ ∞

0

x2πt(x)dx+

+ν2
t DtT

(∫ ∞

0

xπt(x)dx

)2

− ν2
t DtT Vt

= ν2
t

∫ ∞

0

x3πt(x)dx − νtD
2
tT

∫ ∞

0

x2πt(x)dx − 2ν2
t DtT Vt.

Substituting the expressions of ∂D(ξ, t)/∂t, ∂D(ξ, t)/∂ξ and ∂2D(ξ, t)/∂ξ2 given

above into (3.3.75):

dDtT =
ξt

T − t
νtVtdt +

1

2
ν2

t

(
DtT

∫ ∞

0

x2πt(x)dx −
∫ ∞

0

x3πt(x)dx

)
dt + νtVtdξt+

+
1

2
ν2

t

∫ ∞

0

x3πt(x)dxdt − 1

2
ν2

t DtT

∫ ∞

0

x2πt(x)dxdt − ν2
t DtT Vtdt

=
ξt

T − t
νtVtdt + νtVtdξt + ν2

t DtT Vtdt
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= νtVt

(
1

T − t
ξt − νtDtT

)
dt + νtVtdξt.

This completes the proof.

A new process {Wt} is defined so as to be an {Ft}-Brownian motion:

Wt = ξt +

∫ t

0

1

T − s
ξsds −

∫ t

0

νsDsT ds. (3.3.76)

Proposition 3.3.3. The process {Wt} defined by equation (3.3.71) is a standard

{Ft}-Brownian motion under the risk neutral measure Q.

Proof. For the proof, a close analogy with the proof of the proposition (3.2.2) as

given in [4] is following.

Firstly, it will be shown that {Wt} is an {F ξ
t }-martingale and, then, (dWt)

2 = dt

will be verified. For u ≥ t,

EQ[Wu|Ft] = EQ[ξu|Ft] + EQ

[∫ u

0

1

T − s
ξsds|Ft

]
− EQ

[∫ u

0

νsDsT ds|Ft

]
.

(3.3.77)

Since the two terms
∫ t

0
1

T−s
ξsds and

∫ t

0
νsDsT ds are {Ft}-measurable, the expres-

sion given by equation (3.3.77) can be written as follows:

EQ[Wu|Ft] = EQ[ξu|Ft] +

∫ t

0

1

T − s
ξsds −

∫ t

0

νsDsT ds+

+EQ

[∫ u

t

1

T − s
ξsds|Ft

]
− EQ

[∫ u

t

νsDsT ds|Ft

]
. (3.3.78)
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By the martingale property of DtT ,

EQ[DsT |Ft] = DtT , (3.3.79)

for t ≤ s, and of the conditional expectation EQ[ξs|Ft], we get

EQ[βsT |Ft] = EQ[EQ[βsT |Gt]|Ft] = EQ[EQ[βsT |σ{βvT ; v ≤, DT}]|Ft] =

= EQ[EQ[βsT |βtT , DT ]|Ft] = EQ[EQ[βsT |βtT ]|Ft], (3.3.80)

for t ≤ s. It is already known from (3.2.1) that

EQ[βsT |βtT ] =
T − s

T − t
βtT .

Then, it follows

EQ[βsT |Ft] =
T − s

T − t
EQ[βtT |Ft]. (3.3.81)

Thus, the conditional expectation EQ[ξs|Ft] can be expressed as follows:

EQ[ξs|Ft] = DtT

∫ s

0

σvdv +
T − s

T − t
EQ[βtT |Ft] (3.3.82)

and, by the definition of the process {Wt} given by (3.3.76),

∫ t

0

1

T − s
ξsds −

∫ t

0

νsDsT ds = Wt − ξt. (3.3.83)
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Finally, substituting (3.3.82), (3.3.83) into (3.3.78) yields

EQ[Wu|Ft] = DtT

∫ u

t

σvdv +
T − u

T − t
EQ[βtT |Ft] + EQ[βtT |Ft]

∫ u

t

1

T − t
ds

−DtT

∫ u

t

νsds + DtT

∫ u

t

1

T − s

(∫ s

0

σvdv

)
ds + Wt − ξt

= Wt − ξt + EQ[βtT |Ft] − DtT

∫ u

t

νsds + DtT

∫ u

0

σvdv + DtT

∫ u

t

νs − σsds

= Wt − ξt + EQ[βtT |Ft] + DtT

∫ t

0

σvdv = Wt.

Moreover, it is obvious from the definition of the process {Wt} that the quadratic

variation is (dWt)
2 = dt. Thus, it is concluded that {Wt} is an {Ft}-Brownian

motion.

Hence, the dynamics of the expected dividend process DtT can be written in

terms of Brownian motion

dDtT = νtVtdWt, (3.3.84)

and the dynamics of the asset price dynamics is given by

dSt = rtStdt + ΓtT dWt, (3.3.85)

where the asset price volatility process {ΓtT} is given by

ΓtT = νtPtT Vt. (3.3.86)
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Here, Vt stands for the conditional variance of the random variable DT and it is

given by

Vt = EQ
[
(DT − EQ[DT |Ft])

2|Ft

]
. (3.3.87)

The dynamics of {Vt} is obtained [4] as follows:

dVt = −ν2
t V

2
t dt + νtκtdWt, (3.3.88)

where κt denotes the third conditional moment of DT given by

κt = EQ
[
(DT − EQ[DT |Ft])

3|Ft

]
. (3.3.89)
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chapter 4

OPTION VALUATION UNDER

INCOMPLETE INFORMATION

In this chapter, the pricing of a European-style call option having an underlying

asset price dynamics presented in the previous chapter is closely examined.

4.1 Valuation Formula

A call option on such an asset, with strike price K and maturity date t, is con-

sidered for the derivative valuation problem. The underlying asset pays a single

dividend DT at time T > t. The risk neutral value of the option under incomplete

information is given as follows: For s = 0 it holds

C0 = P0tE
Q

[
(St − K)+

]
, (4.1.1)

and for any time s ≤ t < T we have

Cs = PstE
Q

[
(St − K)+|F ξ

t

]
. (4.1.2)
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Firstly, the derivation of the valuation formula of C0 is given.

It is known that the asset price process as given in Proposition (3.1.2) have the

following form:

St = I{t<T}PtT

∫ ∞

0

xπt(x)dx. (4.1.3)

Substituting the equation (4.1.3) into the option valuation formula given by equa-

tion (4.1.1), it is found that

C0 = P0tE
Q

[
(PtT

∫ ∞

0

xπt(x)dx − K)+

]
(4.1.4)

= P0tE
Q

[
(

∫ ∞

0

(PtT x − K)πt(x)dx)+

]
, (4.1.5)

where πt(x) is as given by equation (3.1.26):

πt(x) =
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
∫ ∞

0
p(x) exp

(
T

T−t
(σxξt − 1

2
σ2x2t)

)
dx

. (4.1.6)

For convenience, a density process is defined as expressed in this way:

pt(x) := p(x) exp

(
T

T − t
(σxξt −

1

2
σ2x2t)

)
; (4.1.7)

thus, the conditional density process can be written as

πt(x) =
pt(x)∫ ∞

0
pt(x)dx

. (4.1.8)

Substituting the equation (4.1.8) into the option valuation formula given in (4.1.5)
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yields

C0 = P0tE
Q

[
1∫ ∞

0
pt(x)dx

(

∫ ∞

0

(PtT x − K)pt(x)dx)+

]
(4.1.9)

= P0tE
Q

[
1

Λt

(

∫ ∞

0

(PtT x − K)pt(x)dx)+

]
, (4.1.10)

where Λt is denoted as

Λt =

∫ ∞

0

pt(x)dx =

∫ ∞

0

p(x) exp

(
T

T − t
(σxξt −

1

2
σ2x2t)

)
dx. (4.1.11)

Here, the process Λt is used to introduce an equivalent probability measure on

(Ω,F ξ
t ) for every t < T .

Lemma 4.1.1. [21] The dynamics of the process Λt given by equation (4.1.11)

is given by

dΛt = Λt

[
T

T − t
σξtDtT dt +

T

T − t
σξtDtT dξt

]
(4.1.12)

for any t ∈ [0, T )

Proof. We follow the path given in the original proof.

By using Ito’s rule, we get

dΛt =
∂Λt

∂t
dt +

∂Λt

∂ξ
dξ +

1

2

∂2Λt

∂ξ2
d 〈ξ, ξ〉t , (4.1.13)
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dΛt =
Tσ

(T − t)2
ξt

(∫ ∞

0

xpt(x)dx

)
dt +

Tσ2

2(T − t)2

(∫ ∞

0

x2pt(x)dx

)
dt

+
Tσ

(T − t)

(∫ ∞

0

xpt(x)dx

)
dξt +

(Tσ)2

2(T − t)2

(∫ ∞

0

x2pt(x)dx

)
dt (4.1.14)

=
Tσ

(T − t)2
ξt

(∫ ∞

0

xpt(x)dx

)
dt +

Tσ

(T − t)

(∫ ∞

0

xpt(x)dx

)
dξt (4.1.15)

= Λt

[
Tσξt

(T − t)2

(∫ ∞

0

x
pt(x)∫ ∞

0
pt(x)dx

dx

)
dt +

Tσ

(T − t)

(∫ ∞

0

x
pt(x)∫ ∞

0
pt(x)dx

dx

)
dξt

]

(4.1.16)

= Λt

[
Tσ

(T − t)2
ξtDtT dt +

Tσ

T − t
DtT dξt

]
. (4.1.17)

Lemma 4.1.2. [21] The dynamics of the process Ψt := Λ−1
t = 1

Λt
is given by

dΨt = Ψt

[
− Tσ

T − t
DtT

] [
dξt +

ξt

T − t
dt − Tσ

T − t
DtT dt

]
(4.1.18)

which is in fact

dΨt = Ψt

[
− Tσ

T − t
DtT

]
dWt. (4.1.19)

Proof. By the same path given in [21], the Ito application and to (4.1.17) gives

dΨt = d

(
1

Λt

)
= − 1

Λ2
t

dΛt +
1

Λ3
t

d 〈Λ, Λ〉t (4.1.20)
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= − 1

Λt

[
Tσ

(T − t)2
ξtDtT dt +

Tσ

T − t
DtT dξt

]
+

1

Λt

(
Tσ

T − t

)2

D2
tT d 〈ξ, ξ〉t (4.1.21)

= −Ψt

[
Tσ

(T − t)2
ξtDtT dt +

Tσ

T − t
DtT dξt

]
+ Ψt

(
Tσ

T − t

)2

D2
tT dt (4.1.22)

= Ψt

[
− Tσ

(T − t)
DtT

] [
ξt

T − t
dt + dξt −

Tσ

T − t
DtT dt

]
. (4.1.23)

Recall that

dWt = dξt +
ξt

T − t
dt − Tσ

T − t
DtT dt, (4.1.24)

where Wt is a standard Brownian motion defined as the information driven Brown-

ian motion by equation (3.2.39). Thus,

dΨt = Ψt

[
− Tσ

(T − t)
DtT

]
dWt. (4.1.25)

Corollary 4.1.3. The process Ψt, t ∈ [0, T ), is a Radon-Nikodym density process

with respect to Q, and so it is a strictly positive Q-martingale with Ψ0 = 1

dBT

dQ
|Ft = Ψt =

1

Λt

(4.1.26)

for t ∈ [0, T ).

Proof. It is clearly seen from the definition of Ψt = 1
Λt

that it is a strictly positive

process and Ψ0 = 1
Λ0

= 1.

Furthermore, Ψt is a Q-martingale which can be verified easily by making use of
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(4.1.25):

dΨt = Ψt

[
− Tσ

(T − t)
DtT

]
dWt,

where Wt is a Q-Brownian motion and for any t ∈ [0, u], for any 0 ≤ u < T , and

DtT is a bounded process. Thus, the R-N density process Ψ is

dBT

dQ
|Ft = Ψt =

1

Λt

(4.1.27)

for t ∈ [0, T ).

Thus, for every u ∈ [0, t], Ψu, for 0 ≤ t < T is the Radon-Nikodym density with

Ψ0 = 1 and it follows that EQ[Ψt] = 1 where t is given as the option maturity

date. The R-N density can be expressed as follows:

1

Λt

= Ψt = exp

[∫ t

0

(
− Tσ

(T − u)
DuT

)
dWu −

1

2

∫ t

0

(
− T 2σ2

(T − u)2
D2

uT

)
du

]
.

(4.1.28)

Hence, the process W ∗
t can be defined so as to be a Brownian motion under

the equivalent measure BT , which will be called “Bridge measure”. Hence, the

BT -Brownian motion can be expressed as follows:

W ∗
u = Wu +

∫ u

0

(
Tσ

(T − s)
DsT

)
ds (4.1.29)

for every u ∈ [0, t]. Then, W ∗ is a standard Brownian motion on the space

(Ω,Ft, BT ). For the measure change back form BT to Q on (Ω,Ft), the suitable

density Λt with respect to BT is given by

Λt =
1

Ψt

= exp

[∫ t

0

(
Tσ

(T − u)
DuT

)
dWu +

1

2

∫ t

0

(
T 2σ2

(T − u)2
D2

uT

)
du

]
(4.1.30)
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= exp

[∫ t

0

(
Tσ

(T − u)
DuT

)
dW ∗

u − 1

2

∫ t

0

(
T 2σ2

(T − u)2
D2

uT

)
du

]
. (4.1.31)

Proposition 4.1.4. For any fixed t ∈ [0, T ), the information process ξu, u ∈ [0, t],

follows a Brownian bridge process on the equivalent probability space (Ω,Ft, BT ).

Proof. Firstly, the Brownian motion driven by information process may be re-

called:

dWt = dξt +
ξt

T − t
dt − Tσ

T − t
DtT dt

and

W ∗
u = Wu +

∫ u

0

(
Tσ

(T − s)
DsT

)
ds. (4.1.32)

Thus, the following result is obvious

dW ∗
u = dξu +

ξu

T − u
dt − Tσ

T − u
DuT du +

(
Tσ

(T − u)
DuT

)
du (4.1.33)

= dξu +
ξu

T − u
dt, (4.1.34)

which gives the standard Brownian bridge definition

ξu = −
∫ u

0

ξs

T − s
ds + W ∗

u (4.1.35)

for u ∈ [0, t] on the probability space (Ω,Ft, BT ).
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Hence, the option pricing formula given in equation (4.1.10) can be expressed as

C0 = P0tE
Q

[
1

Λt

(∫ ∞

0

(PtT x − K)pt(x)dx

)+
]

= P0tE
BT

[(∫ ∞

0

(PtT x − K)pt(x)dx

)+
]

= P0tE
BT

[(∫ ∞

0

(PtT x − K)p(x) exp

(
T

T − t
(σxξt −

1

2
σ2x2t)

)
dx

)+
]

. (4.1.36)

To give the option valuation formula more explicitly, a constant ξ∗ is defined as

a critical value satisfying the following condition:

∫ ∞

0

(PtT x − K)p(x) exp

(
T

T − t
(σxξ∗ − 1

2
σ2x2t)

)
dx = 0. (4.1.37)

Then, the option price formula given by equation (4.1.36) can be written as

C0 = P0t

∫ ∞

ξ∗

∫ ∞

0

(PtT x − K)p(x) exp

(
T

T − t
(σxξt −

1

2
σ2x2t)

)
dx dB

ξ
T .

(4.1.38)

By the Fubini Theorem,

C0 = P0t

∫ ∞

0

(PtT x − K)p(x)

∫ ∞

ξ∗
exp

(
T

T − t
(σxξt −

1

2
σ2x2t)

)
dB

ξ
T dx.

(4.1.39)

Here, it is already known that ξt is a standard Brownian bridge under BT , then
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it is a Gaussian random variable with zero mean and t(T − t)/T variance under

this probability measure:

ξt ∼ N

(
0,

t(T − t)

T

)
.

Then, for any t ∈ [0, T ), the inner integral term can be reformulated as follows:

∫ ∞

ξ∗
exp

(
T

T − t
(σxy − 1

2
σ2x2t)

) √
T√

2πt(T − t)
exp

(
− y2T

2t(T − t)

)
dy

=

∫ ∞

ξ∗

√
T√

2πt(T − t)
exp

(
−1

2

(
y2T

t(T − t)
− 2T

T − t
σxy +

T

T − t
σ2x2t

))
dy

=

∫ ∞

ξ∗

√
T√

2πt(T − t)
exp


−1

2

(
y

√
T

t(T − t)
− σx

√
tT

T − t

)2

 dy

=

∫ ∞

ξ∗

√
T√

2πt(T − t)
exp


−1

2


(y − σxt)√

t(T−t)
T




2
 dy.

In fact, this integral gives the probability that Y is greater than ξ∗ for a fixed

time t:

Pr(Y ≥ ξ∗) =

∫ ∞

ξ∗

√
T√

2πt(T − t)
exp


−1

2


(y − σxt)√

t(T−t)
T




2
 dy (4.1.40)
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with the random variable Y distributed as follows:

Y ∼ N

(
σxt,

√
t(T − t)

T

)
. (4.1.41)

Thus, the standard normal distribution can be used to express this probability:

Pr(Y ≥ ξ∗) = Pr

(
Z ≥ ξ∗

√
T

t(T − t)
− σx

√
tT

(T − t)

)
, (4.1.42)

where Z is a standard normal random variable.

Since Z is a standard normal distribution having symmetric probability density

function, the probability given by (4.1.42) can be written as follows:

Pr
(
Z ≥ z∗ − σx

√
τ
)

= Pr
(
Z ≤ −z∗ + σx

√
τ
)
, (4.1.43)

where

z∗ = ξ∗

√
T

t(T − t)
, (4.1.44)

τ =
tT

(T − t)
. (4.1.45)

This gives the following result for the option valuation formula:

C0 = P0t

∫ ∞

0

(PtT x − K)p(x)N(−z∗ + σx
√

τ)dx, (4.1.46)

where N(x) denotes the standard normal distribution function. Hence, the valu-
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ation formula for the option price at t = 0 takes the following form:

C0 = P0t

∫ ∞

0

PtT xp(x)N(−z∗ + σx
√

τ)dx − P0tK

∫ ∞

0

p(x)N(−z∗ + σx
√

τ)dx.

(4.1.47)

The price of a European call option at time s ∈ [0, t) with maturity date t can

be expressed in this way:

Cs = PstE
Q[(St − K)+|Fs]. (4.1.48)

After a change of the measure and by the help of the Radon-Nikodym density

given by equation (4.1.28), the option price can be represented by

Cs =
Pst

Λs

EBT [Λt(St − K)+|Fs] (4.1.49)

=
Pst

Λs

EBT

[(∫ ∞

0

(PtT x − K)pt(x)dx

)+

|Fs

]
. (4.1.50)

Here, pt(x) given by equation (4.1.6) is a function of ξt. Then, the calculation

can be simplified by the fact that ξt is a BT -Brownian bridge. Furthermore, a

BT -Gaussian process Zst which will be independent of {ξu}0≤u≤s is defined as

follows:

Zst :=
ξt

T − t
− ξs

T − s
. (4.1.51)

Their independence property can be verified easily by examining its covariance

structure since they are all BT -Gaussian processes. The covariance between the
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variables Zst and ξu for any u ∈ [0, s] and for t ≥ s can be computed in this way:

Cov(Zst, ξu) = Cov(
ξt

T − t
− ξs

T − s
, ξu)

=
1

T − t
EBT [ξtξu] −

1

T − s
EBT [ξsξu]

=
1

T − t

(
u ∧ t − ut

T

)
− 1

T − s

(
u ∧ s − us

T

)
= 0.

Thus, the fact that the process ξt can be written as a function of Zst and ξs can

make the conditional expectation a more standard one. According to this, pt(x)

can be expressed as follows:

pt(x) = p(x) exp

(
T

T − s
σxξs + TσxZst −

T

2(T − t)
σ2x2t

)
, (4.1.52)

where Zst is a BT -Gaussian process with a distribution

Zst ∼ N

(
0,

t − s

(T − s)(T − t)

)
. (4.1.53)

By substituting the equation (4.1.52), the option price can be expressed as follows:

Cs =
Pst

Λs

EBT

[(∫ ∞

0

(PtT x − K)p(x)e
Tσxξs
T−s

+TσxZst−
Tσ2x2t
2(T−t) dx

)+

|Fs

]
. (4.1.54)

Proposition 4.1.5. The price Cs admits the following representation under the

measure BT :

Cs =
Pst

Λs

[
EBT (PtT ζtIA|Fs) − EBT (KΛtIA|Fs)

]
, (4.1.55)
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where A = {PtT ζt > KΛt} and

ζt =

∫ ∞

0

xp(x) exp

(
T

T − s
σxξs + TσxZst −

T

2(T − t)
σ2x2t

)
dx, (4.1.56)

Λt =

∫ ∞

0

p(x) exp

(
T

T − s
σxξs + TσxZst −

T

2(T − t)
σ2x2t

)
dx. (4.1.57)

Proof. We follow closely the original proof of Rutkowski-Yu [21]

Cs =
Pst

Λs

EBT
[
(PtT ζt − KΛt)

+ |Fs

]
. (4.1.58)

Set A is defined as A := {PtT ζt > KΛt}, and thus Cs can be represented by

using the indicator function IA:

Cs =
Pst

Λs

EBT [(PtT ζt − KΛt) IA|Fs] (4.1.59)

=
Pst

Λs

[
EBT [PtT ζtIA|Fs] − EBT [KΛtIA|Fs]

]
. (4.1.60)

Proposition 4.1.6. The price of a call option on a single dividend paying risky

stock with a maturity date t and strike price K has the following form:

Cu = SuM1(u, t, T ) − KPutM2(u, t, T ), (4.1.61)
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where A = {PtT ζt > KΛt} and

M1(u, t, T ) = EBT

(
ζt

ζu

IA|Fu

)
, M2(u, t, T ) = EBT

(
Λt

Λu

IA|Fu

)
.

(4.1.62)

Proof. Here, we again follow closely the proof of Rutkowski-Yu [21]. By recalling

the underlying stock price representation for any u ∈ [0, t)

Su = PuT DuT , (4.1.63)

where DuT represents the expected dividend process which can be expressed as

follows:

DuT =
ζu

Λu

, (4.1.64)

and so the single dividend paying risky asset price is:

Su = PuT

ζu

Λu

. (4.1.65)

From the previous Proposition, the option price

Cu =
Put

Λu

EBT [PtT ζtIA|Fu] −
Put

Λu

EBT [KΛtIA|Fu] . (4.1.66)

Since the interest rates are assumed to be deterministic:

Cu =
PuT

Λu

EBT [ζtIA|Fu] − KPutE
BT

[
Λt

Λu

IA|Fu

]
. (4.1.67)
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Substituting the stock price representation into the equation (4.2.116), we get

Cu = SuEBT

[
ζt

ζu

IA|Fu

]
− KPutE

BT

[
Λt

Λu

IA|Fu

]
(4.1.68)

= SuM1(u, t, T ) − KPutM2(u, t, T ). (4.1.69)

This completes the proof.

Hence, it is seen that the price of a European call option can be expressed in a

form similar to the Black-Scholes-Merton model.

4.2 Option Pricing with Time-Dependent Infor-

mation Flux Rate

The dynamics of a single dividend paying risky asset price when the market

information process has a time dependent information flux rate are as found in

equation (3.3.85):

dSt = rtStdt + ΓtT dWt, (4.2.70)

where the asset price volatility process {ΓtT} is given by

ΓtT = νtPtT Vt. (4.2.71)
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Here Vt stands for the conditional variance of the random variable DT . The

market information process

ξt = DT

∫ t

0

σsds + βtT (4.2.72)

and the conditional probability density is found as follows:

πt(x) =
p(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

∫ ∞

0
p(x)e

x( 1
T−t

ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx
(4.2.73)

or, alternatively, in terms of the BT -Brownian motion:

πt(x) =
p(x) exp

(
x

∫ t

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

∫ t

0
p(x) exp

(
x

∫ ∞

0
νsdW ∗

s − 1
2
x2

∫ t

0
ν2

sds
)

dx
. (4.2.74)

A European style call option on such an asset, with strike price K and maturity

date t, is considered. The underlying asset pays a single dividend DT at time

T > t. The risk neutral value of the option conditioned on this market information

process is given as follows: For time 0 it holds

C0 = P0tE
Q

[
(St − K)+

]
, (4.2.75)

and for any time s ≤ t < T we have

Cs = PstE
Q

[
(St − K)+|F ξ

t

]
. (4.2.76)

Firstly, the derivation of the valuation formula of C0 is presented. As in the
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equation (4.1.5), the option price at t = 0 can be written as:

C0 = P0tE
Q

[
(

∫ ∞

0

(PtT x − K)πt(x)dx)+

]
, (4.2.77)

where the conditional density process is given by the equation (4.2.73). By the

same analogy used above, the change of measure density process is defined by

Λt =

∫ ∞

0

p(x)e
x( 1

T−t
ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx. (4.2.78)

Lemma 4.2.1. The dynamics of the process Λt given by equation (4.2.78) are

dΛt = Λt

(
ξtνt

T − t
DtT dt + νtDtT dξt

)
. (4.2.79)

Proof. As given in [21], by applying Ito’s formula to (4.2.78):

dΛt =
∂Λt

∂t
dt +

∂Λt

∂ξ
dξt +

1

2

∂2Λt

∂ξ2
d 〈ξ, ξ〉t

∂Λt

∂t
=

ξtνt

T − t

∫ ∞

0

xpt(x)dx − 1

2
ν2

t

∫ ∞

0

x2pt(x)dx

∂Λt

∂ξ
= νt

∫ ∞

0

xpt(x)dx

∂2Λt

∂ξ2
= ν2

t

∫ ∞

0

x2pt(x)dx

dΛt = Λt

(
ξtνt

T − t

1

Λt

∫ ∞

0

xpt(x)dxdt + νt

∫ ∞

0

xpt(x)dxdξt

)

= Λt

ξtνt

T − t

∫ ∞

0

xπt(x)dxdt + Λtνt

∫ ∞

0

xπt(x)dxdξt
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= Λt

ξtνt

T − t
DtT dt + ΛtνtDtT dξt

= Λt

(
ξtνt

T − t
DtT dt + νtDtT dξt

)
.

This completes the proof.

Lemma 4.2.2. The dynamics of the process Φt := Λ−1
t = 1/Λt are

dΦt = Φt [−νtDtT ]

[
dξt +

ξt

T − t
dt − νtDtT dt

]
, (4.2.80)

which is in fact

dΦt = Φt [−νtDtT ] dWt. (4.2.81)

Proof. As we know the dynamics of the process Λt, an application of the Ito

formula gives the result as follows:

dΦt = d

(
1

Λt

)
= − 1

Λt

dΛt −
1

2

2

Λ3
t

Λ2
t ν

2
t D

2
tT dt

=
−1

Λt

(
ξtνt

T − t
DtT dt + νtDtT dξt

)
− 1

Λt

ν2
t DtT dt

= −Φt

ξtνt

T − t
DtT dt − ΦtνtDtT dξt − Φtν

2
t D

2
tT dt

= −ΦtDtT νt

(
ξt

T − t
dt + dξt + νtDtT dt

)
.

We know from the Proposition (3.3.3) that {Ft}-Brownian motion {Wt} can be

expressed as follows:

Wt = ξt +

∫ t

0

1

T − s
ξsds −

∫ t

0

νsDsT ds.
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Thus,

dΦt = Φt [−νtDtT ] dWt.

Corollary 4.2.3. The process Φt, t ∈ [0, T ), is a Radon-Nikodym density process

with respect to Q, and so it is a strictly positive Q-martingale with Φ0 = 1.

Proof. It is clearly seen from the definition of Φt = 1/Λt that it is a strictly

positive process and Φ0 = 1/Λ0 = 1.

Furthermore, Φt is a Q-martingale which is obvious by equation (4.2.81)

dΦt = Φt

[
− Tσ

(T − t)
DtT

]
dWt,

where Wt is a Q-Brownian motion and for any t ∈ [0, u] for any 0 ≤ u < T , DtT

is a bounded process:

dBT

dQ
|Ft = Φt =

1

Λt

(4.2.82)

for t ∈ [0, T ).

For every u ∈ [0, t], Φu is the Radon − Nikodym density for 0 ≤ t < T with

Φ0 = 1, and it follows that EQ[Φt] = 1, where t is given as the option maturity

date. Thus, the R − N density can be expressed as follows:

1

Λt

= Φt = exp

[∫ t

0

(−νuDuT ) dWu −
1

2

∫ t

0

(
ν2

uD
2
uT

)
du

]
. (4.2.83)

Hence, the process W ∗
t can be defined so as to be a Brownian motion under the
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equivalent measure BT :

W ∗
u = Wu +

∫ u

0

(νsDsT ) ds (4.2.84)

for every u ∈ [0, t].

Proposition 4.2.4. For any fixed t ∈ [0, T ), the information process ξu given by

(3.3.43), u ∈ [0, t], follows a Brownian bridge on the equivalent probability space

(Ω,Ft, BT ).

Proof. Firstly, the Brownian motion driven by information process is recalled

dWt = dξt +
ξt

T − t
dt − Tσ

T − t
DtT dt

and

W ∗
u = Wu +

∫ u

0

(νsDsT ) ds. (4.2.85)

Thus, the result is obvious

dW ∗
u = dξu +

ξu

T − u
dt − νuDuT du + (νuDuT ) du (4.2.86)

= dξu +
ξu

T − u
dt, (4.2.87)

which gives the standard Brownian bridge definition

ξu = −
∫ u

0

ξs

T − s
ds + W ∗

u (4.2.88)
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for u ∈ [0, t], on the probability space (Ω,Ft, BT ), for t < T .

Therefore, the option pricing formula when the market information process has

a time-dependent information flux rate can be written as

C0 = EQ

[
1

Λt

(∫ ∞

0

(PtT x − K)p(x) exp

(
x

∫ t

0

νsdW ∗
s − 1

2
x2

∫ t

0

ν2
sds

)
dx

)+
]

.

(4.2.89)

Here, one term is distributed as follows:

∫ t

0

νsdW ∗
s ∼ N

(
0,

∫ t

0

ν2
sds

)
, (4.2.90)

under the Bridge measure BT . Thus,

w−1
t

∫ t

0

νsdW ∗
s ∼ N(0, 1), (4.2.91)

where

w2
t =

∫ t

0

ν2
sds. (4.2.92)

Hence, the option price

C0 = P0tE
BT

[(∫ ∞

0

(PtT x − K)p(x) exp{xwtY − 1

2
x2w2

t }dx

)+
]

, (4.2.93)

C0 = P0t

1√
2π

∫ ∞

y=−∞

e−
y2

2

(∫ ∞

x=0

(PtT x − K)p(x) exp{xwty − 1

2
x2w2

t }dx

)+

dy.

(4.2.94)
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It is observed that there exists a critical value y∗ for y, such that

∫ ∞

0

(PtT x − K)p(x) exp{xwty
∗ − 1

2
x2w2

t }dx = 0. (4.2.95)

As a result, the option price can be expressed as

C0 = P0t

1√
2π

∫ ∞

y=y∗

e−
1
2
y2

(∫ ∞

x=0

(PtT x − K)p(x) exp{xwty − 1

2
x2w2

t }dx

)
dy

(4.2.96)

= P0t

∫ ∞

x=0

(PtT x − K)p(x)

∫ ∞

y=y∗

1√
2π

e−
1
2
y2

exp{xwty − 1

2
x2w2

t }dydx

= P0t

∫ ∞

x=0

(PtT x − K)p(x)

∫ ∞

y=y∗

1√
2π

exp{−1

2
(y − wtx)2}dydx

= P0t

∫ ∞

x=0

(PtT x − K)p(x)N(wtx − y∗)dx

= P0T

∫ ∞

0

xp(x)N(wtx − y∗)dx − P0tK

∫ ∞

0

p(x)N(wtx − y∗)dx. (4.2.97)

Hence, we conclude that for the option price process, s ≤ t < T , a very similar

form to the one offered in the case of a constant information flux rate can be used

in that case, as well.
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The price of a European call option at time s ∈ [0, t) with maturity date t can

be expressed as follows:

Cs = PstE
Q[(St − K)+|Fs]. (4.2.98)

After a change of the measure by the help of the Radon-Nikodym density given

by equation (4.1.28), the option price takes the following form:

Cs =
Pst

Λs

EBT [Λt(St − K)+|Fs] (4.2.99)

=
Pst

Λs

EBT

[(∫ ∞

0

(PtT x − K)pt(x)dx

)+

|Fs

]
, (4.2.100)

where

pt(x) = e
x( 1

T−t
ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

. (4.2.101)

Proposition 4.2.5. When the market information process has a time dependent

information flux rate, the price Cs admits the following representation under BT :

Cs =
Pst

Λs

[
EBT (PtT ζtIA|Fs) − EBT (KΛtIA|Fs)

]
, (4.2.102)

where A = {PtT ζt > KΛt},

ζt =

∫ ∞

0

xp(x)e
x( 1

T−t
ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx (4.2.103)
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and

Λt =

∫ ∞

0

p(x)e
x( 1

T−t
ξt

∫ t

0 σsds+
∫ t

0 σsdξs)− 1
2
x2

(
1

T−t(
∫ t

0 σsds)
2
+

∫ t

0 σ2
sds

)

dx, (4.2.104)

or alternatively

Λt =

∫ t

0

p(x) exp

(
x

∫ ∞

0

νsdW ∗
s − 1

2
x2

∫ t

0

ν2
sds

)
dx (4.2.105)

and

ζt =

∫ t

0

xp(x) exp

(
x

∫ ∞

0

νsdW ∗
s − 1

2
x2

∫ t

0

ν2
sds

)
dx. (4.2.106)

Proof. The proof is very straightforward along the same way as for Proposition

4.1.5. Indeed,

Cs =
Pst

Λs

EBT
[
(PtT ζt − KΛt)

+ |Fs

]
; (4.2.107)

here, the set A is defined as A := {PtT ζt > KΛt}, and so Cs can be represented

by using the indicator function IA

Cs =
Pst

Λs

EBT [(PtT ζt − KΛt) IA|Fs] (4.2.108)

=
Pst

Λs

[
EBT [PtT ζtIA|Fs] − EBT [KΛtIA|Fs]

]
. (4.2.109)

Proposition 4.2.6. The price of a call option on a single dividend paying risky
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stock with a maturity date t and strike price K has the following form:

Cu = SuM1(u, t, T ) − KPutM2(u, t, T ), (4.2.110)

where A = {PtT ζt > KΛt} and

M1(u, t, T ) = EBT

(
ζt

ζu

IA|Fu

)
, M2(u, t, T ) = EBT

(
Λt

Λu

IA|Fu

)
.

(4.2.111)

Proof. The proof of the above Proposition is given by applying the same procedure

as in Proposition 4.1.6. The underlying stock price representation for any u ∈

[0, t):

Su = PuT DuT , (4.2.112)

where DuT represents the expected dividend process which can be expressed as

follows

DuT =
ζu

Λu

. (4.2.113)

So, the single dividend paying risky asset price equals

Su = PuT

ζu

Λu

. (4.2.114)

From the previous Proposition, the option price can be represented as

Cu =
Put

Λu

EBT [PtT ζtIA|Fu] −
Put

Λu

EBT [KΛtIA|Fu] . (4.2.115)

Since the interest rates are assumed to be deterministic, we can express the option
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price in this way:

Cu =
PuT

Λu

EBT [ζtIA|Fu] − KPutE
BT

[
Λt

Λu

IA|Fu

]
. (4.2.116)

Now, substituting the stock price representation into the equation (4.2.116) yields

Cu = SuEBT

[
ζt

ζu

IA|Fu

]
− KPutE

BT

[
Λt

Λu

IA|Fu

]
(4.2.117)

= SuM1(u, t, T ) − KPutM2(u, t, T ). (4.2.118)

This completes the proof.

89



chapter 5

CONCLUSION

In this study, we have presented two strong option pricing models which have

two totally different intuitions and approaches to the derivative pricing problem.

They differ from the Black-Scholes-Merton model in that, one of them treats the

case of a stochastic volatility, and the other one is based on a noise process rep-

resented by a Brownian bridge. In the stochastic volatility case, suggested by

Heston [11], the option pricing formula is obtained via the characteristic func-

tion method. The other model proposed by Brody-Hughston-Macrina [4] gives

the option pricing formula and the spot asset price dynamics by modeling the

structure of the information accessible in the market.

We have proved the results for the risky asset and option price processes under the

assumption of deterministic interest rate, these results were stated in the papers

[11, 4]. Furthermore, by adopting the same analogy used for defaultable bond

option prices introduced by the work of Rutkowski-Yu [21], we have presented

the option price process which was not given in the original paper [4].

In this thesis, the author looked for a bridging some gaps existing in original works

[11, 4], and for understandable arrangements which could serve the interested

reader for his futher use of it and his studies.
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Because of the time constraint of this study, we have left the calibration of the

models for the Turkish market for future works. In fact, the information-based

asset pricing model suggested by Brody-Hughston-Macrina [4, 3] has not been

calibrated yet. Its validity in the market is still unknown. Moreover, since it is

an observed and experienced fact that asset prices have jumps, the information-

based approach can be extended to capture this empirical property of the data

to further research.
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