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ABSTRACT

ASSET PRICING MODELS: STOCHASTIC
VOLATILITY AND INFORMATION-BASED
APPROACHES

Niliifer Caligkan
M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

February 2007, 94 pages

We present two option pricing models, both different from the classical Black-
Scholes-Merton model. The first model, suggested by Heston, considers the case
where the asset price volatility is stochastic. For this model we study the asset
price process and give in detail the derivation of the European call option price
process. The second model, suggested by Brody-Hughston-Macrina, describes
the observation of certain information about the claim perturbed by a noise rep-
resented by a Brownian bridge. Here we also study in detail the properties of this
noisy information process and give the derivations of both asset price dynamics

and the European call option price process.

Keywords: Option Pricing, Stochastic Volatility, Characteristic Function Method,

Incomplete Information, Change of Measure.
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OZ

FINANSAL VARLIKLARIN FIYATLAMA MODELLERI:
STOKASTIK VOLATILITE VE BILGIYE DAYANAN
YAKLASIMLAR

Niliifer Caligkan
Yiiksek Lisans, Finansal Matematik Boliimii

Tez Yoneticisi: Dog. Dr. Azize Hayfavi

Subat 2007, 94 sayfa

Bu ¢alismada Black-Scholes-Merton modeline alternatif olarak diisiiniilebilecek
iki opsiyon fiyatlama modeli incelenmistir. Heston tarafindan onerilen ilk model
opsiyonun iizerine yazildigi finansal varligin volatilitesinin stokastik dinamige
sahip oldugu varsayimi altinda opsiyonun fiyat1 i¢in analitik ¢oziim Onermistir.
Model ayrintili bir gekilde incelenerek, opsiyon fiyatlama modelinin ¢ikariligi or-
jinal caligmada verilmeyen gerekli ispatlar verilerek sunulmustur. Literatiirde
Brody-Hughston-Macrina modeli olarak anilan ikinci modelde ise, piyasalarda
yatirimcilarin finansal varhigin gelecekteki getirilerine dair dogru bilgiye tam erigi-
mi olmadig1 varsayilmisgtir. Yatirimcilarin erisebildigi bilgiyi, dogru bilginin bir
kisminin Brownian koprii ile giirtiltiillenmis bir yapida oldugunu varsayarak varlik-
larin fiyat stireci dinamikleri ¢ikarilmigtir. Bu varsayim ve bulunan fiyat stireci
dinamikleri temel alinarak opsiyon fiyat formiilasyonu verilmistir. Bu modelde
de gerekli teoremlerin ve ¢ikarimlarin ispatlar: orjinal caligmada verilmeyenlerle
birlikte ayrintili bir sekilde verilerek hem spot piyasadaki varliklar hem de tiirev

tiriin icin fiyat dinamikleri sunulmustur.

Anahtar Kelimeler: Opsiyon fiyatlama, Stokastik Volatilite, Karakteristik Fonksi-
yon Metodu, Ol¢ii Degisimi, Arbitraj.
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CHAPTER 1

INTRODUCTION

The Black-Scholes-Merton model has been discussed in terms of its advantages
and disadvantages in theory and in applications. Obviously, the model is a pio-
neering work in the area. However, it is a known and experienced fact that the
assumptions, that enable the model to have a closed-form solution, cause the
model not to fit the real data obtained from the market (cf, e.g., [10]). Among
these assumptions, the one on constant volatility has been the most discussed and
criticized one. Over the years, there have been many alternative models offered

to solve this and other drawbacks of the model.

In this work, we mainly concentrate on two different strong approaches conducted
by Heston [11] and Brody-Hughston-Macrina [4]. In the former one, the model
is assumed to have stochastic volatility and obtains a “so-called” closed-form
solution for the price of the European call option. Moreover, by assuming that
the volatility and the underlying price have a non-zero correlation, it captures
many properties of the financial data, which the Black-Scholes-Merton model
does not. Although the model can be considered as the most popular alternative
to the Black-Scholes-Merton pricing model, its reliability is questionable since the

assumptions on the underlying asset price and the volatility dynamics display an



“ad-hoc” nature. The dynamics of the asset price and volatility seem to remain

as assumptions without a convincing intuition behind them.

In the latter approach suggested by Brody-Hughston-Macrina (BHM), instead of
pre-specified dynamics of the price and volatility, the asset price dynamics is de-
rived by adopting a more realistic approach towards market structure. The model
is established under the assumption of incomplete information in the market. By
specifying a model for the structure of the information circulating in the market,
the model is motivated by the fact that asset prices are specified by expectations
on the future cash flows given the information circulating in the market. Without
assuming any dynamic model for asset prices, it is seen that the derived asset
price dynamics under the assumption of this information structure naturally has
stochastic volatility, which gives a different explanation to the nature of volatility.

In fact, according to the model, volatility of volatility is found to be stochastic.

The aim of this study is to review these two pricing models in detail. The second
chapter presents the derivation of the option pricing formula suggested in Heston’s
study [11] step-by-step. The way of how the characteristic function method is used
for derivation of option pricing formula is presented. Moreover, the derivation
and the solution of the partial differential equation satisfied by the probabilities
in the option pricing formula is given explicitly. In the third chapter, we start by
giving the motivation of the incomplete information model suggested by Brody-
Hughston-Macrina. The dynamics of the asset price process for a single-dividend
paying risky asset given in the study [4] is derived explicitly. Furthermore, the
change of measure technique used to derive the conditional probability density

is presented in detail by giving the derivation of the dynamics of the Radon-



Nikodym Process. In [4], the option pricing formulae were given by not taking
the filtration into consideration, meaning that the formulae were obtained for time
0. The fourth chapter gives the derivations and the proofs of the theorems used in
derivations of option pricing formulae in the study of the BHM [4]. Additionally,
we give the complete derivation for the option price formulae for an arbitrary time
t where we use an approach inspired by the work of Rutkowski-Yu [21]. Finally,

the conclusion follows.



CHAPTER 2

HESTON’S APPROACH

The main drawback of the Black-Scholes-Merton model is that it assumes that
the underlying asset price volatility remains constant over time. However, var-
ious econometric and numerical studies show that asset prices do not exhibit
constant volatility. Therefore, at first, the main object may be to extend this
model to capture this qualitative feature of the financial data. The Heston’s sto-
chastic volatility model [11] can be seen as one of the most popular models in
the literature. In this chapter, Heston’s asset pricing model is presented. The
technique to derive a closed form solution to the option pricing problem under
the assumption of stochastic volatility is given in detail. The model also captures
the correlation between spot asset price and its volatility. The solution technique
suggested in [11] is based on characteristic functions and, thus, it has a wide

range of applicability.

2.1 Asset Price Dynamics

Let (2, F,P) be our probability space and W} and W7 be correlated Brownian

motions on this probability space. It is assumed that the underlying risky asset



price at time t satisfies the following stochastic differential equation

dSt = MStdt + \/’thStthl

and its volatility follows an Ornstein-Uhlenbeck process given by

dy/; = —(/Oedt + 6AWE,

(2.1.1)

(2.1.2)

where W} and W7 are standard Brownian motions having instantaneous corre-

lation p. With the help of the Ito Lemma, it can be shown that the variance

process follows the Cox-Ingersoll-Ross (CIR) process [7]
dvy = (6% — 2Bv;)dt + 25\ /v dW}2,
which can be expressed as a standard CIR process as follows:
dvy = k[0 — vy]dt + o\ o, dW 2.
Then the stochastic volatility model is

dSt = ILLStdt + \/v_tStthl7

dvy = K[ — v]dt + o\/vi dW2,

where

d(WHW?), = pdt.

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)



For simplicity, it is assumed that the interest rate r is constant and the price at

time ¢ of a discount bond that matures at time ¢ + 7 is
Ptit+71)=e". (2.1.7)

The possible no-arbitrage price of a derivative at time ¢ with a final payoff K and

maturity date T can be written as
U =E? [e" T (Sy — K)T|F], (2.1.8)

where QQ stands for the risk neutral martingale measure. Since the value of the
option at time T is expected to be equal to the final payoff of the derivative,

discounted asset prices are martingales under the measure Q:
e "', = E° [eUr|F] (2.1.9)

U, = E° [U}m]. (2.1.10)

Here, U represents the discounted value of the option at time ¢.

In the model, there are two random sources, so the underlying probability space
is represented by (2, F,P), where Q = C(R,;R?) is the space of all continuous
functions from R, into R?. Furthermore, the coordinate process is (W}, W?) =
w; € R?; the measure on ( is such that the two Brownian motions W} and W2
have the correlation defined by (2.1.6). The filtration {F;} represents the infor-
mation on the two correlated Brownian motions W;}! and W72. Thus, to transform

the measure into the risk neutral martingale measure, the two-dimensional Gir-



sanov theorem is applied.

In the two-dimensional case, the crucial point is on the choice of the market risk
premium through which the discounted asset price processes become martingales.
For the spot asset, the standard market risk premium satisfying the arbitrage-free
condition can be used; however, for the volatility risk premium the specification is
not always that simple. Nevertheless, any allowable choice of the price of volatil-
ity risk leads to an equivalent martingale measure Q (see [10]). Here, we note
that Q depends on the choice of the price of volatility risk. As there can be many
market volatility risk premiums, there can be many equivalent measures Q, which
is an indication of the market incompleteness. Moreover, according to the model,
the number of risk sources in the market is greater than the number of the risky
assets traded in the market. This also shows that the market model is incomplete
(see [1]). However, in [10], it is emphasized that a unique equivalent martingale
measure under which derivative contracts are priced is selected by the market.
This point of view may be called as “selecting an approximating complete mar-
ket”. However, the term can be misperceived because although the discounted
asset prices are martingales under this measure, they cannot be replicated by the
spot asset and the risk-free bond alone. That is to say, the risk caused by the

underlying volatility cannot be hedged with this spot replicating strategy.

In this model, the market price of the volatility risk denoted as (S, v, t) is given
by

A(S v, t)dt = yCovldv,dCy/Cy, (2.1.11)

where C; is the consumption rate and + is the relative risk aversion of an investor



[2]. The consumption process that emerges in the CIR model [7] is considered,
where consumption growth has constant correlation with the spot asset return of

the form
dOt = ucvtctdt—i—ac\/v_totdW;’. (2112)

This makes the market price of volatility risk proportional to v;; thus, after some

arrangements, A(S,v,t) can be expressed as

A(S,v,t) = v, (2.1.13)

where A\ represents a constant parameter.
By the two-dimensional Ito formula [18], U(t, S,v) satisfies the following partial

differential equation:

ou oUu 8U 82 190°U 82U

ot " T as UGS

(2.1.14)
By the Girsanov Theorem [18], the asset price dynamics can be expressed under

the equivalent martingale measure as follows:

dS; = rSydt + /0, S, dW ., (2.1.15)
dv, = [K[0 — vi] — \v] dt + o/, dWE, (2.1.16)



where W' and W? are Brownian motions under the equivalent risk-neutral mar-

tingale measure. The dynamics of the discounted option price is
d(e ""'U;) = e (—rUdt + dUy) . (2.1.17)

Substituting the equations (2.1.15), (2.1.16) and (2.1.14) into (2.1.17) gives

. . oU U oU )
d(e tUt> =€ t <—7’Udt + Edt + $T5}dt + %\/U_tstdW;) +

4 [(OU - ,10°U 10%*U
+e t <%a\/v_tth2§wvtSfdt + 5@0’%&(%) .
As the discounted asset prices are martingales under the equivalent measure Q,

we have the following PDE for the option price:

1 ,0°U 1, 0*U 9*U oU oU
5“515 552 + ot v—an + pavS—asav + 7’5% + {k[0 — v])\v}%+
oU

A European call option price with strike price K and maturity 7T satisfies the

PDE (2.1.18) subject to the following boundary conditions:

U(S,v, T) = maz(0,Sr — K),

U(0,v,t) = 0,
oU
%(OO,C,t) = 1,
oUu oUu oU
TS%(S,O,t) + KJ&%(S,O,IS) — TU(S,O,t) + W(S,O,t) = O,
U(S,00,t) = 8. (2.1.19)



As in the Black-Scholes formula, the form of the solution is expected to be in the

following form

C(S,/U,t) = U(S,U,t) = Stpl — KP(t,T)PQ, (2120)

where P(t,T) = e ""=% the first term of the expression stands for the present
value of the spot asset, the second term expresses the present value of the strike
price payment and P; and P, are probabilities. Here, the main task is to find these
probabilities explicitly. Since (2.1.20) is the solution of (2.1.18), partial differen-

tial equations satisfied by these probabilities can be derived by using (2.1.18).

By taking + = In S, the PDE (2.1.18) is rewritten in terms of probabilities P

and P» as follows:

%_Z _ % + KeﬂTt)%, (2.1.22)
%_(Z = 5% +rK P+ Ke—“T—t)%, (2.1.24)

10



2 2 2
o°U = 53 h +K6_T(T_t)—a PZ.

o 592 902 (2.1.26)

Substituting all the above partial derivatives into the PDE (2.1.18), we obtain

the PDE for P;:

8P1+ +1 8P1+(9 ot >(9P1+1 0P,
— r+-v | —+ (kb — kv v+ pov —v
ot 2" ) Oz P70 T 2" o
o*P 1, 9*°P
— = 2.1.2
+p0U8v8x * 27 902 0 ( 7)
subject to the terminal condition
Pl(ZL‘, v, T, In K) = H{lenK}' (2128)
The PDE for P, turns out to be
1\ oP 0P oP, 1 0*P, 0% P,
Ty 2222 0 — kv — \ - Z°2
(T 2”) R GO e L ol T s
1, 0°P
+§0 V52 =0 (2.1.29)
subject to the terminal condition
Py(z,v,T\InK) = Ip>mky- (2.1.30)
The partial differential equations can be expressed as follows:
1 0*P; *P; 1 , O*P; OP; oP; OP;
il z ) —2L b)) —L 4 =1 —
5 57 +pm}8x8v + 50 V50 + (r + u,v) o + (a; — bv) 5 + BT
(2.1.31)

11



for j = 1,2, where uy = 1/2, us = —1/2, a1 9 = k0, by = k+A—po and by = K+ .

Thus, they can be interpreted as "adjusted” or "risk neutralized” probabilities,
and, according to this, the spot asset price and volatility process dynamics can

be written as

dry = [r+ ujv]dt + \/v_tthl,

dv, = (a; — bjvy)dt + o\ /v, dW?, (2.1.32)

for y =1,2.

Here, P; is in fact the conditional risk neutral probability that the option expires

in-the-money, which can be expressed by

Pi(z,v,T;InK) =Q[z(T) > In K|z(t) = z,v(t) = ]. (2.1.33)

2.2 Heston’s Characteristic Function Method

When z(t) and v(t) follow the risk neutral processes given by (2.1.32), any twice
differentiable function f(z,v,t) that is a conditional expectation of some function

of z and v at a later date T', g(x(T),v(T)) can be expressed as follows:

fz,v,t) == E2 [g(x(T),v(T))|z(t) = z,v(t) = v] (2.2.34)

12



subject to the terminal condition

flz,0,T) = g(x,v). (2.2.35)

From this definition, f must be a martingale under the risk neutral probability
Q. The Markov property of the processes can be easily verified, thus, for every

s <t <T, it holds:

EQ[f(z, v, t)|F] = BV (x,v,t)]a(s), v(s)].

By using the definition of the function f,

E[f(w,v0,0)|F] = E¥[E%[g(«(T), v(T))| 7| 7).

By the tower property of conditional expectation, the last term in (2.2) can be

written as

= ECg(x(T),v(T))|F,] = E®[g(z(T),v(T))|z(s) = z,v(s) = v] = fla,v,5).
(2.2.36)

By the Ito formula, the partial differential equation that f satisfies can be derived

as follows:

_of of of 10%f
df = Edt—i‘ %dl’t + %dvt + E@d <l’,l’>t -+

10°f
2 0v?

o0 f
Ox0v

d(v,v), + d{(x,v),,

(2.2.37)

13



and, after some substitutions,

P ) 0 1
df = ( / [r+uju]—a‘£+(aj b )afdt+§ a—f> dt+
2 2
+<1 g];*PU lvgaf)d“”/_ AW} + \/’ dW2 (2.2.38)

By using of the martingale property of f, we have the following PDE:

I of of of _
2"507 © 2”" gur TP gy Tty Tl ) E gy = 0
(2.2.39)
subject to the terminal condition
f(@,0,T) = g(z,v). (2.2.40)

This equation has many uses. With the proper specification of the function

g(x,v), the desired solution can be reached directly.

If g(x,v) := Liz(r)>m k3, then the function f can be expressed as

f(a:? U, t) = ]EQ[]I{w(T)Zan}’$<t) =, U(t) = U]’ (2'2'41)

which gives the solution of the conditional probability of the fact that xz(T) is

greater than In K at time t < T

For j = 1,2, P, represents the same probability, that is, the conditional proba-
bility of the fact that option expires in-the-money. Moreover, it is observed that

P; satisfies the same partial differential equation (2.2.39) with f and has the

14



terminal condition

F)j(]f,’U,T; an) - H{J;Zan}- (2242)

Thus the conditional probability that the option expires in-the-money at time ¢

can be expressed as follows:

Pi(z,v,t;In K) = E¥ L rysmry |2(t) = z,0(t) = 0] (2.2.43)

=Q(z(T) > InK|z(t) = z,v(t) =v). (2.2.44)

The probabilities may not be derivable in a closed form; however, to set the
function g properly can help to derive the probabilities. By specifying the function

g as

g(x,v) = e"*, (2.2.45)

the function f can be expressed as follows:

f(z,v,t) = EYe*D|z(t) = z,v(t) = v]. (2.2.46)

It is clearly seen that the solution of (2.2.39) gives the characteristic function.

Remark 2.2.1. Here, the point why the characteristic function is chosen to
obtain the desired probabilities is the fact the characteristic functions alwasy

exist [14, 20]. Moreover, the desired probabilities can be derived immediately by

15



using the inversion formula [20].

To solve the PDE given by (2.2.39) explicitly, the following solution form is sug-

gested
f(x,v,t) = exp|C(T —1t)+ D(T — t)v + igx].

The partial differential equation that f satisfies is

df = (%f + v%—?f +[r +ujliof + (a; — bjo)fD - %U¢2f> di+

1 - -
+§a2vD2fdt + povigD fdt + (..)dW} + (...)dW2.

Since f is martingale, the PDE that f satisfies is found as

oC oD

Ef + vaf + [r +uvliof + (a; — bjv)fD — %v¢2f+

1
+§0'2UD2f + povigDf = 0.

(2.2.47)

(2.2.48)

(2.2.49)

One particular solution for the functions C(7' —t) and D(T —t) can be found as

follows:

oD

1 1
vaf +uvipf + bjufD — §v¢2f + 5020D2f + povigDf = 0,

%—ff—km’gzﬁvaathf = 0,

16

(2.2.50)

(2.2.51)



After some arrangements, we get two ordinary differential equations:

D 1 1
oC
- +rig+a;D = 0 (2.2.53)
ot
subject to
c(0) = 0, (2.2.54)
D(0) = 0. (2.2.55)

Thus, by using the known techniques for ordinary differential equations [15], we

solve the ODE as follows:

oD _ 1 1 _
o e = b;D §¢2 + 5021)2 + poi¢D = 0. (2.2.56)

For brevity, we denote the parameters as follows:

1
a = 502,
b= poigp — b,
1
¢ =uji¢ — 5(;52. (2.2.57)

Thus, we can use the known technique [15] to solve Riccati differential equations

for (2.2.56):

dD
—t = _ 2.2.
“ / aD? +bD + ¢ (2:2.58)

17



where a,b and ¢ are given in (2.2).

Thus,

1 1 A N B
aD?+bD+¢ a\D—-D;, D-—D,

where Dy and D, stands for the roots as given by

D —b+ Vb? — 4dac D —b—Vb? — 4dac
1= 5 2 = )
2a 2a

and, A and B are found as follows:

1 1
B

/[ — SR —
Dl—DQ D2_D1

Hence, we have

dD dD,

Cl—t =

1 / 1 1 / 1
a(D1 — Dg) D — D1 G(Dl — Dg) D — D2

=y (" (p=py)) *
Cc1 — — n C
! a(Dy — Dy) 1D — D,

for D(1) = D(T —t), subject to

18

(2.2.59)

(2.2.60)

(2.2.61)

(2.2.62)

(2.2.63)

(2.2.64)



which implies T'— ¢ = 0 and so T = t, such that by (2.2.63), we get

ln(Dl/Dg)

— =+ T
G(Dl — Dg)

Ci —C=

Thus we obtain

1 { (|D—D1|) Dl]
T= In - —1,
CL(Dl — DQ) |D — D2| D2

(1 o eTCL(Dl—DQ))

<1 _ ID)_éeTa(Dl—DQ)> ’

D =D

Let us denote

d = Vb2 — 4dac = \/(pmbi —b;)% — 0%(2u;pi — ¢?),

then the roots D; and Dy can be expressed as follows:

_ poip—b;+d D_pm'gb—bj—d

2 ’ 2 2

Dy

o o

Then, we obtain
L,
G,(Dl — DQ) = 50’ (Dl — Dg) =d.

Let us denote g := D;/Ds, then

_ poigp—b;+d
= poio—b, —d
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(2.2.66)

(2.2.67)

(2.2.68)

(2.2.69)

(2.2.70)

(2.2.71)



poigp —b; +d [ 1—e
D = 02] (1_g€Td , (2.2.72)

and by substituting D into the equation (2.2.53), the solution of C' is found as

follows:

_dC = rigdt + 4

b; —pop+d) [ 1—elTD
- | (2.2.73)
o aj(bj — pod + d) 1 — edT=t)
—C + ¢ = rigt + = | = gedTD dt|, (2.2.74)

—C‘l'Cl = Ti¢t+

+aj(bj —pop+d) [In \e_d(T_t) — 9]
o? d dg

subject to
C(0) = 0. (2.2.75)

Then we obtain

ale
gd

C =rigpr — [(g —1)In |e_d(T_t) —gl+gln e~ dT—t) _ (g—1)In|1 — g”

(2.2.76)
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CL]‘D

= rigr + L1 [ng —(g—1n [MH (2.2.77)

1—yg

= ripT + % ((bj — poip + d)T — (bj — poip+d)(g — 1) . [1 _ gedT]) |

gd l1—yg
(2.2.78)

Finally,

dr

Czriqﬁ—i—%{(bj—pai¢+d)7—21n{ll_jz ]} (2.2.79)

To find the desired probabilities, the inversion formula [14] can be used. We can

express the probabilities as follows

Pi(z,v,t,InK) = Q (z(T) > In K|z(t) = z,v(t) = v)

=1-Q(z(T) <InK|x(t) = z,v(t) =v) (2.2.80)

Let us recall the inversion formula

1 T _—ita _ ,—ith

F(b) — Fy(a) = — lim | S5, (u)du, (2.2.81)

27T T—o00 -T Zt

where @, (u) represents the characteristic function of the random variable x. Here,
we denote the characteristic function as f;(x,v,t) for j = 1,2 as given by equation

(2.2.86). Then, we take a — —oo and b = In K so that the result yields the
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probability Q (z(7T) < In K|z(t) = x,v(t) = v):

1 T _—ida _ —iph
Fob) — Fo(a) = — lim | & —¢
21 T—oo |_p (10)

iz, v, t; d)do

which can be written as follows (see [20, 11]):

1 1 [
Pj(x,v,t,an):§+—/ %[
0

T

eii(banfj(xavvt; ¢) d
i

¢,

where R denotes the real part of a complex number.

(2.2.82)

(2.2.83)

The integrals above cannot be eliminated; however, by using approximations, the

probabilities can be evaluated. Thus, together with the equation (2.1.20), the

equation (2.2.83) gives the solution of the option pricing formula:

C(S,v,t) = SiPi(x,v,t,In K) — KP(t,T)Py(x,v,t,In K)

e O fi(x,v,t; ¢)

» o,

1 1 [
Pj(:v,v,t,an):§+—/ ?R[
0

7

where

fi(z,v,t) = exp[C(T —t) + D(T — t)v +ipx].
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(2.2.84)

(2.2.85)

(2.2.86)



Here,

and

where

and

1— ged‘r

. a; .
C:TZ¢T+O_—]2{(bj—pdlgb—Fd)T—Zhl[ -

D :pU'éQb—bj“—d(l_er)

o2 1 — ge'rd

_p0i¢—bj+d
g_paz’gb—bj—d

d= \/(pagbz’ —bj)? — 02(2u;¢i — ¢?).
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CHAPTER 3

BHM’'S APPROACH

In this chapter, the new framework proposed by Brody-Huhgston-Macrina(BHM)
[4] is closely examined. Firstly, we try to explain the intuition behind the model
by following the path BHM used for the explanation of their motivation. Then,
we give the assumptions made in the study [4]. After giving the model setting,
we closely follow the structure of the paper in a more detailed form. We give the
proofs and derivations which are not given in the original paper. For this, we
benefit from the two other studies suggested by BHM [3] and Rutkowski-Yu [21],

respectively.

According to the BHM approach, asset price dynamics are modeled under the
assumption that market participants do not have access to the information about
the actual value of the relevant market variables. In other words, it is claimed
that market participants acknowledge only partial noisy information about the
associated market factors. For example, if an asset is defined by its cash flow
structure, then the associated market factor can be the upcoming cash flows. In
fact, the associated market factors corresponding to an asset can represent all the
market variables which may have an effect on the asset’s expected future cash

flows. The asset price dynamics are derived based on modeling the structure of
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the information about those market factors circulating in the market.

In a general setting, as seen in the previous chapters, the economy is generally
modeled by a probability space with a filtration generated by a multi-dimensional
Brownian motion. Moreover, asset prices are assumed to follow Ito processes
which are adapted to this filtration. However, these standard models suffer from
tending to show an “ad hoc” nature. Take the Black-Scholes-Merton model,
for instance. The underlying price processes are assumed to follow a geometric
Brownian motion or as in the Heston model, the variance process is assumed to
follow a CIR process. In such standard models, Brownian filtration is certainly
sensed to contain all the applicable information, and no inapplicable informa-
tion. More specifically, in a complete market, the relevant information about the
movements of the asset prices is contained in the Brownian filtration. The idea
behind this is that there can be a succession of events which can affect price
change, and these various effects can be abstractified in the form of this filtration
to which asset prices are adapted. The unsatisfactory side of this approach is that
it shows that the prices moves as if they were spontaneous. However, in reality,
price processes are expected to show more structure. The BHM model suggests
an alternative to improve this unsatisfactory side of the standard models and at

the same time to avoid their tendency to be of the ad hoc nature.

When assets are traded, prices are formed by the behaviors of investors. The
source that affects investor decision concerning future possible transactions can
be expressed by two different origins: i) investor attitudes toward risk and i) the
subjective value of future cash flows. Thus, when a market participant decides

to buy or sell an asset, the price at which he is willing to make the transaction
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is formed according to the information about the possible future cash flows asso-
ciated with the asset. It can be said that the movements of asset prices contain
some information on market participants’ expectations about the future value of
the asset and so some information about the actual future value of the asset. This
elementary observation reveals that the asset price should be seen as the output
of the various decisions made concerning possible transactions instead of as an

input into such transactions.

To capture the outline described above, the incomplete-information approach is
adopted and the so-called market information process &; is defined specifically.
The asset price dynamics is derived explicitly by assuming that the market fil-

tration is the one which is generated by this market information process.

3.1 The Model

3.1.1 Basic Definitions and the Assumptions

According to the model, the probability space (2, F, Q) is specified and the mar-
ket filtration {F;}o<i<co Will be stated explicitly. Here, @ stands for the risk
neutral probability measure. All asset price processes and information processes
accessible to market participants will be adapted to {F;}.

More specifically,

e The absence of arbitrage and the existence of an established pricing kernel
(see, e.g., [6] and references cited therein) is assumed. The existence of a

unique risk neutral measure Q is ensured with these conditions, although
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the markets considered may be incomplete.

e The short term interest rate r; is assumed to be deterministic so the default-

free discount bond can be expressed as follows:
T
Py = exp {—/ r(u)du} . (3.1.1)
t

e By the absence of arbitrage, the discount bond functions { Pir }<,<p_o, can

be written in the form

Pir = Pyp /Py, V¢t < T. (3.1.2)

e The function {Fy} ;.. is assumed to be strictly decreasing, differentiable

and satisfying 0 < Py, < 1 and

lim Py, = 0. (3.1.3)

e All cash flows occur at pre-determined dates, i.e., its timing is definite, only

the amount of the cash flow is random.

3.1.2 Modeling Cash Flows and Asset Prices

Let Dr be a random variable on the probability space (2, F,Q) having a cumu-

lative distribution function

T

QDr <) = / p(y)dy (z € R). (3.1.4)

— 00
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The random variable D7 represents a random cash flow occurring at time 7.
Thus, it is postulated that Dr takes values only in [0,00). Hence, it can be
depicted as the single cash flow of an asset paying a single dividend at a prede-

termined date T

Let S; be the value of the cash flow at time ¢ for 0 <t < T given by
Sy = Lipery PrEC[Dr|F). (3.1.5)

The process {S;}, <t 18 in fact the price process of a limited-liability asset paying
the single dividend D at time T'. The convention that when the dividend is paid,

the asset price goes “ex-dividend”, is adopted; therefore,

lim St = DT, ST =0. (316)

t—T

For a sequence of dividends Dr, (k =1,2,...,n) on the dates T}, the price is then
S, = Z]I{KTk}BTk]EQ[DTkU-}]. (3.1.7)
k=1

More generally, when the ex-dividend behavior is taken into account, the price

process is described as

Sy = Tyery P, E% Dz, | 7. (3.1.8)
k=1

Furthermore, it is assumed that the discount bond also goes ex-dividend at its
maturity date. The price of the bond is given before maturity by the product

of the discount factor and the principal. However, at maturity the value of the
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bond drops to zero. For a coupon bond, when a coupon is paid, the price has
a downward jump. Thus, all price processes have the property that they are

right-continuous with left limits (cadlaq processes).

The Brownian bridge process (see [18]) {fir}o<t<r is defined on the probability
space (2, F,Q) such that Syr = 0 and Orr = 0 (see [12]). It is known that the

mean and the covariance of the Brownian bridge are:

E®(Byr) =0 VO<t<T, (3.1.9)

_ s(T —t)

]E@ (ﬂsTﬁtT) T

VO<s<t<T. (3.1.10)

The Brownian bridge process satisfies the following relations [18, 13]:

6tT:<T—t)/O T—SdWS7 (3.1.11)

where W = {W, }o<t<r is a standard Brownian motion on (€2, F,Q) adapted to
its natural filtration F, := FV. Additionally, it can be seen easily that filtrations

generated by W; and Sy coincide:

Bir /t 1
— dW.. 3.1.12
T—1 o I'—s ( )
By differentiating (3.1.12), it is seen that
Brr dByr 1
dt = aw, 3.1.13
T2 Ty T T (3.1.13)
ber gy o dBr = dW;. (3.1.14)
(T —1)
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Integrating both sides of (3.1.14), the following relations are found:

_ ! /BST
Gir = —/0 (T_S)ds + W, (3.1.15)
_ “ ﬁsT
Bur — Bir = —/t (T—s)ds + W, — Wi (3.1.16)

Furthermore, the Brownian bridge ;1 is assumed to be independent of the ran-
dom variable D7, and thus the Brownian motion W, and D are independent
random variables as well. Then the enlarged filtration as given in the study of
Rutkowski-Yu [21] is G = F, V Dy for every t € [0,T], where Dy stands for the

sigma-algebra generated by the random variable D7; i.e.,
G = F,NDr= o{W,; u €[0,t], Dr} = o{Bur; u €[0,1], Dr}.

According to this, it is seen that the filtration F, is a sub-filtration of the filtration
G;. The processes By and W, are Brownian bridge and Brownian motion with
respect to the filtration G, respectively. Lastly, the random variable Dy is G;-

measurable for any ¢ € [0, 7.

3.1.3 Modeling the Information Flow

Each market information process is in fact the sum of two terms

e one stands for the partially true information about the value of the associ-

ated market variable,

e the other one represents the “noise”.
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The price of an asset is given by the conditional expectation of the future cash
flows under the risk neutral measure. Differently, the market filtration in the con-
ditional expectation is taken as the filtration generated by the market information

processes {&;}o< < Which is modeled as follows:

ft = O'tDT + ﬁtT- (3117)

Here o stands for the emerging rate of the true information, Dy is the random
variable representing the associated market variable, and the Brownian bridge
process Gy models the noisy information such as rumors, speculations and gen-
eral disinformation about the relevant market variables in the market.

For the sake of simplicity, here we only give the case of one single cash flow oc-
curring at time 7'. The process {& } as seen in equation (3.1.17) is the sum of two
terms. The term otDr stands for the “true information” about the approaching
cash flow. The process {Sir},<,<r is a standard Brownian bridge over the time
interval [0, 7], so it takes zero values at time 0 and 7. It holds fyr = 0 and
Brr = 0 and it is in fact a Gaussian process having zero mean, t(7" —t)/7T vari-
ance and s(T — t)/T is the covariance between [, and [y for s < t. Thus, the

information contained in the bridge process actually represents the pure noise.

The market filtration is assumed to be equal to the filtration generated by {&},
ie., {F} = {FF}, where {Ff} = o{&; u €[0,t]} for t € [0,T]. Hence, the
dividend D7 is Fpr-measurable, but not F;-measurable. The Brownian bridge is
not adapted to the market filtration {F;}. Thus it is not accessible to market
participants which reflects the fact that market participants cannot perceive the

true information without the noise in the market until the dividend is paid. This
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models the fact that market perceptions play an important role in determining

asset, prices.

3.1.4 Markov Property of the Information Process

According to the following lemma, to compute the conditional expectation in
the equation (3.1.5), it will be enough to take the conditional expectation with
respect to the sigma-sub algebra generated by & since the process {&;} satisfies

the Markov property:

Q& < 2lF7) = Q& < 2l&) (3.1.18)
for all x € R and all s,¢ such that 0 < s <t <T.
Lemma 3.1.1. The process & satisfies the Markov property with respect to its

natural filtration F¢.

Proof. Here we follow the exact path suggested in the study of [21, 3]. It suffices

to show that

Q(gt < l’|fs,§sl7£sz, --~7£sk> = Q(gt < l"fs)

for any times T'>t > s > §1 > s9 > ... > s, > 0. It holds

&)s — & /1= Ber)s — Bor/s1, VT >t>s5> 5 >0.

ﬁslT
51

Note that for any ¢ > s > s1, By and ’@TT — are Gaussian random variables
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having zero covariance which can be easily verified as follows:

ﬁsT_@

S S1

COU(BIST?

ﬂsT . ﬁs_lT))

S S1

) = E(Grr (

= %E(ﬁtTﬁsT) - %E(ﬁtTﬂmT)
1

— lCov(ﬁtT, Ber) — iCov(ﬁmﬁsm)
S S1

1 At st 1 At sit
=—1s —— ) ——1s —— .
S T S1 ! T

Since t > s > sy,

_ leT /BS2T _ 5S3T
s1 7 82 s3 )

More generally, BTT

independent Gaussian random variables.

forany s > s1 > s

Furthermore, since & and & are independent of ﬁ%

ﬁskT

=, the result is as follows:

6 G b b fu_fn

Sk—1

Q(gt < xlgméslaész; ~-~7€sk> = Q(ft < xlfsa ; - s =

51

b
1 59

BST _ ﬂslT /BS1T _ ﬂSQT /BSk_lT . /BskT)
, g eeey

= Q(ft S .’L’|€s,

S S1 S1 52 Sk—1
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> g3 are all
o ﬂslT ﬁslT o 552T IgskflT _
s1 ) s1 s2 7Y sk
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- B Bor B, By it B
Q& < w6 <y, BE - P <y 2l — 22l <y eI Dy

. s1 — I8 g b Sp_1
Q(& BsT BsyT < BsyT . ﬁszT fBSk_1T . ﬂskT )
s = y87 s s1 — S19 s1 — 9327 RS Sk—1 = ysk

Q& < 7,6, < y)Q(2r — 21T <y ) Q(Pu=T _Pur <y

Sk—1

Q& < y)Q(EL — Pat <y ) (Pt Bt oy

Sk—1

_ Q(ft < z,& <y8)

Q(gs < ys> (& < .13‘53)

This completes the proof.

3.1.5 The Derivation of the Conditional Density

By using the Markov property and the fact that Dr is Fp-measurable, the asset

price process is expressed as follows:

S = Liery PrE®[Dr| 7] = Lyyery PrEQ[Dr|&). (3.1.19)

As D7 stands for the dividend payoff of the risky asset, it can have a continuous
distribution and then the conditional expectation in (4.1.6) can be written in the

following form

EQ[Dr|&] = /Ooo oy (x)dr, (3.1.20)
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where () represents the conditional probability density function for the random

variable Dyp:

m(a) = ~Q(Dr < 7). (3.1.21)

By the Bayes formula, the conditional probability density can be expressed in the

form

_ p(&|Dr = z)p(x)

) : (3.1.22)

()

where p(z) represents the priori probability density function for Dp which will
be assumed as an initial condition, and p(&) and p(&|Dr = z) denotes the
probability density function and the conditional probability density function for

the random variable & given Dy = x, respectively.

As the probability density function of the random variable & can be written as

follows:

p(&) = / " p@Dr = 2)pla)de = / pElDr = Opla)de, (31.23)

[e.9]

the conditional probability density function m;(z):

mo(x) = p(&| Dr = x)p(x) '
IS p(&| Dy = 2)p(x)da

(3.1.24)

Since (i1 is a Gaussian random variable for every 0 < ¢t < T, the conditional
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probability density function for the random variable & given Dy = x is a Gaussian

density with mean otz and variance (7' —t)/T"

(& — otx)
p(&|Dr = x) ( T)
\/_\/ T
T (& — otx)*T
ont(T —1) P (_ 2T — 1) ) '

Substituting the expression into the Bayes formula gives

(§e—otz)’T otz)?T
\/ 27rt exp( Tt )
(3.1.25)

5,5 Utib)QT
27rt(T D) eXp( Tou(T—ty )dx

£2 2oxlitT —o2x?t?T
p(@) exp( BT t))exp (—’at(T_t) )

exp (— ) I p(z) exp (%> v

_ plz)exp (75 (o2& — 50%2°))
I p() exp (75 (0xé, — 30222t)) da

(3.1.26)

Proposition 3.1.2. The information-based price process { St }o<i<r of a limited-
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liability asset that pays a single dividend Dy at time T with a prior: distribution

QDr < y) = / ()

15 given by

I xp( )exp (75 (o2& — $0°2%t)) da

S, = Liyop P ,
(<3 ir fo T) exp (Tl_t(axﬁ't — 50 .75215)) dz

(3.1.27)

where & = otDr + BT is the market information process.

Proof.

We know that the price process satisfies (3.1.19):

S = Lipery PrE®[Dr|,]

:H{t<T}PtT/ xﬂt(x)dx
0

& xp (7= (o t——a
:H{KT}BT/O N (foop(x)e p (7 (o€ 2%t)) )da:

p(z) exp (75 (0x& — $02221)) da

— I P fo -Tp( )exp (TL(U-T& —U 2 )) dx
t=my i I p(@) exp (75 (0xg, — 3022°t)) d
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3.2 Asset Price Dynamics in the Case of a Single

Cash Flow

The stochastic differential equation of which the price process {S;} is the solution
is derived so that it can be possible to analyze the properties of the price process
and to compare it with other models. In order to obtain the dynamics of the
price process {S;}, the conditional expectation of Dy with respect to the market

information &; is denoted as follows:
Dy = D(&,t) = E%Dr|é, (3.2.28)

where
Jo zp(z)exp (75 (028 — 50°2%)) da
- Iy p(x) exp (75 (o2& — S02a?t)) do

—t

D(&:.1)

(3.2.29)

Lemma 3.2.1. Let D;r be the process given by the equation (3.2.28). Then the

dynamics of Dyr under Q are

ol
Dy —
D = Ve [T

1
-t

(& — oTDyr) dt + dgt} : (3.2.30)

where V; stands for the conditional variance of the dividend:

Vi = /Ooo 2my(2)dw — (/OOO xﬂt(x)dx>2. (3.2.31)

Then the spot asset price dynamics 1s:

dSt = TtStdt + FtTthTa (3232)

38



where
ol

Iy =P, Vi.
tT gVt

Proof. To find the differential equation for the conditional expectation {D,r},

the Ito rules are used as follows:

oD 1) .o 1D )

oD
(&, t)dt + dé + 3 o

dD(&,1) = —5; o€

d (&, 8),

dD(E,t) ( 2 wp(a) exp(75; (oag, — §a2x2t))dx>
B d

ot 15 (@) exp(75 (0xéy — So2a2t))dx

and by denoting
Al z,t) =

T 1
T3 (0:1:'5 — 50237215) ,

OD(E,t) _ 2 (J57 xp(x)exp {A(f z,t)}dx) (77 p(z) exp {A(, z,t)} dz)
ot (fo x) exp( (§ x t))dx)
(Jo~ wp(x)exp {A(, t)}df'f) & (Jo~ p(x) exp {A(¢, z, 1)} du)
(J5* pla) exp( (f,x,t))dx)

we get

<f000.75p 8A(£“)exp{A(f,a:t}da:> (5 plw)eap (A€, 2. 1)} dr)

- (5~ plx)eap {A(E, 2,1} dz)”

(Ji~ xp(x)exp {A(€, 2. 1) }dx) (5~ pl) 22 ep (A€, 2, )} do)
(J7° pla)exp {A(E, 2, )} d)’
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[ ap(a) 222D erp [A(¢, x, t)}d:c — Dyp [ p(a) 228D e LA(E, t)}d:c
Jo p(x)exp {A, t)}dx

Because of
0A(¢, z,t)  oaT 1
5 =7 \7— (& —ozT) ), (3.2.33)
we conclude
0D(&,t) ol oo oT &
€ _ T g i ZE 7Tt DtTﬁ ; T 7I't( )d.T+
2T2 0 2T2 0
—i—DtT 2/ my(z 5 27, (z)dx
0 - t) 0

_ (Taféty (/OO:L' () — </O°O xm(:c)d:c>2> +

o2T? <, < g
+———D /xﬂxd:c—/ xwxdx)
g (| e [ ot

oT¢ 2T . [
- DyrVi + D3y — dr ) .
(T—t)QWJrQ(T—t)Q( et D /0 wm{a)de

Similarly,

8D(§,t) <f0 xp(x) exp(A (5,x,t))dm>
9¢ Jo" p(x) exp(A(E, x,t))dx

Iy ap(x )8A(§‘“ exp{A(&, x t)}dx — Dir [ p aA(gm el exp {A(E, x,t) }dx
I p(x)eap {A(E, = t)}dx ’

where
0A(, z,t)  Tox
o T —t
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_aT <f0°o 2?p(x)exp {A(E, x, t)}dx Dy [° xp(a)exp {A(£,$,t)}d9§)
STt I pl@)exp {A(E, x,t)} da

- V. (3.2.34)

Furthermore,

PD(Et) D fooo :Cp exp(Tl(ax& — —a 22t))dx
o2 oe? I (@) exp(75 (0xé, — s02a2t))dx

I p(x)eAErtdy ¢ I p(x)eAEstdy

fo op(z BA(fgx 1) QA& @) ] 9 fooo ep(z)eA & dy
— ag — = | Dir

B (TUT ) Ofxp( 2)exp( (ég,x;)t))c)ldx_
—t) [T p(x)exp(AE v, t))do
() (e (pamsen.
N (Taft) ViDer + (Taft> Der (jfo R 22?9( (g(“?;:f;;))c)lix_
_< oT ) (fo ep(x)eap( AL, x,t))dx)

fo r)exp(A(E, z,t))dx

ol \° [* , ol \° <,
=7 x’m(z)dr — T3 Dyr x m(z)dr+
- 0 - 0
ol \? ( oT )2 ( /00 )
+ ViDir + D x*m(z)dx — D
(T — > tDyr T3 CAWA ¢ T

~

~
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T\ [ [*
— (Ta t) ( / 2’1 (x)dx — DypVy — Dip — ZWDtT) : (3.2.35)
- 0

Substituting the expressions of 0D(&,t)/0t, OD(E,t)/0¢ and §*D(€,t)/0E?* given

above, the dynamic equation of D(&,t) is obtained as follows:

T T 2 o)
dD(&,t) = (TU_ t>2§tvtdt + (U—)t)z (DtTVt + D2 — /0 xgﬂt(m)d$) dt+

ol 1 (oT)? o
il iﬁ (/0 *my(x)dr — DV — D — 2V}DtT> dt

+T—t

Vid€ +

ol 1
= T— t‘/; (T— t<§t — OTDtT)dt+d§t) s

ol
ADir = =—V;

[ 7 (& —oTDir)dt + dgt} ,

where V, stands for the conditional variance of the dividend

Vi = /Ooo 2P (x)dr — (/Ooo xﬁt(m)dx)Q. (3.2.36)

Then, we obtain the asset price dynamics as given by

ol
dSt = TtStdt+ T _ t‘/;, |:T

1
-t

(& — oTDyr)dt + dftl . (3.2.37)

This ends the proof of the lemma.
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3.2.1 Dynamics of the Information Process

It is known that the Brownian bridge satisfies the following dynamics (see [13])

Ger
dByr = — dt +d 2.
50T = 07

and the information process

& = otDr + Bir,

dft = UDTdt + dﬁtT

Ber

— oDpdt —

g Tdt (T—t)+th

§& —otDry
=oDpdt — ———dt
o Td (T—t) d +th
_ O'DT(T—t) —£t+O'tDTdt+th
T—1t
1

Thus, the information process & is a continuous semimartingale, and its quadratic

variation is (£,§), = t for every t € [0,77].

Information-driven Brownian Motion

A new process {W;}(,p is defined as follows

b
W, — ¢ — /0 (0T D — €} ds (3.2.39)
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After some rearrangement of terms, it is found that D;; satisfies the following

stochastic differential equation

ol

dDyp =
Tt

VidW,.

The asset price process {S;},.,., satisfies the following stochastic differential

equation

dSt = TtStdt + FtTthy
where r; represents the short rate that is given by r, = —dlIn Py;/dt, and the

absolute price volatility I';r is as expressed in this way:

ol
T —1t

Uyr = Py Vi.

When the expected dividend process {D;r} is examined, it is seen that it is an

{Fi}-martingale which can be easily seen as follows: for t < s < T
Dir = B2 [Dy|F}

and
E? [Dyr|F] = E? [E? [Dr|F| | ] = E® [Dr|Fy] = Dyr.

Thus, {W;} must be an {F};}-martingale.

Proposition 3.2.2. [/] The process {W,} defined by equation (3.2.39) is a stan-
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dard {F}}-Brownian motion under the risk neutral measure Q.

Proof. For the proof, we follow the original proof of the BHM [4]. Therefore, it

is sufficient to show the following two axioms

(i) {W;} is an {F}}-martingale.
(i) (dW,)* = dt.

The conditional expectation can be expressed as follows: for ¢t <u < T

B° [Wlr¥] = B2 wile] = 59 ede] + 59| [ - edsle

v oT ]
_]EQ [/ T SDSTdS|€t
0 i

fort<s

B2 (G| Ff] = B2 [EQ [Borlo (B b <, Dr)] |FF]

As & is a Markov process,

E“ [53T’£t] = E° [EQ [ﬁsT\U(ﬁtT, DT)] |€t}
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= E? [E? [Byr| Dr, Ber) €] = EF [E? [Bor|Bir]] -

By making use of the fact that the random variable By /(T — s) — Bir /(T — t)
is independent of (3,7, the inner conditional expectation E® [3,r|8,r] is found as

follows:

Q ﬁsT_ﬁtT :|_@|:ﬁsT_ﬁtT:|_
E [T—s 70| B T ] 70

E® [5sT’ﬁtT] = —g : iﬁtTa

T—s
T —t

T —

@T} = B2 [Bu),

EZ [Bar] = EP [

EtQ €] = EtQ losDp + Ber| = 0sDyr + T

s
- B [Ber]
From this, it follows:

t s TDS u u EQ
EtQ (W] = E? €] "’/0 %ds—/ UDtTdS+/ —% [_@;r] ds.
t t

Let us recall that the definition of the process {W;}

t toT
_ g = _— ft.ds— D,rd
Wi ft /0 T_st S /0 T_s TaS

After some arrangements,

B (W) = B2 (6] + Wi — & — 0 Der(u— ) + B2 [Br] (u— 1

u—t
T —t¢

T—u

T _¢ ]EQt [5tT] —O'DtT(U—t)

= ouDr + EP Bir) + Wy — &+
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= Wt - & + EQt [ﬁtT] + O'tDtT.

Finally, using the fact that & = E2 [¢,], it is found that the process {W;} satisfies

the martingale property:

EZ [W,] = W, (3.2.40)

Furthermore, the second axiom can be seen easily:

2
— (6T Dy — &) dt) = (d&)? = dt.

(dW,)* = (d& -

Thus, it is concluded that the process {W;} is an {F}}-Brownian motion.

3.2.2 The Derivation of the Dynamics of the Conditional

Density Process

A slightly different way of finding the dynamics of the price process {S;} can be
as follows.
Firstly, the dynamics of the conditional probability process m;(x) is found by

pursuing the same path as above:

ple) exp (75 (00t — So2a?)

T
. 1
fooo p(z) exp (Tl_t(axft - %a%zt)) dx

() (3.2.41)



An application of the Ito rules to (3.2.41) gives the dynamics of the conditional

density process as follows:

d () = 6’7réix)dt N (97;;?)

10%m(x)
¢ + 5 ¢

d <£7 £>t :

By using the same notation used above, we have

T 1
A&, x,t) = T (axft — 5021'275) .

Thus,

om(x) 0 ( p(x)exp (A(E, x,t)) )
[ p(a)eap (A€, x,t)) da

_ (I‘ffit)ﬂt(x) (:p - /0 h :mrt(x)dx) - %mw (g;? _ /0 N xQWt(x)dx)

B (oT)?
2(T —t)

om,(x) :g( p(x)exp (AE, z,t)) )
0¢ IEN [y p(x)exp (A(E, x,t)) da

27Tt<'r) (‘CEQ - ‘/t - Dt2T) )

> ol
=7 tmrt(x) 7 twt(x)/o xm(z)der = T tﬂt(x)(x — Dyr),

ag_g(a:) - a% (a% (f:%(éﬁiiiii(fé,?ft)>)> dl’)>

B (;Uf)t)zm%t(x) - (j(ﬂaf)t)g xmy(2) Dy + (;Ufl)zwt(x)(x — Dy7) Dyr+
(oT)?
+ = t)QWt(iU)VZ
ol oT \? )
= T tﬂt(l’)@? — DtT) + (T — t) ﬂ't(gj> (Q;DtT _ DtT + Vt)
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oT \?
= (T_ t) m(z) (° — 22Dy + Dip — V;) .

Substituting the expressions of dm(x)/0t, Om(x)/0¢ and 0*my(x)/OE? calculated

above, the dynamic equation for the conditional probability process m;(z) is found

as follows:
oT oT)?
dr () = ﬁwt(:ﬂ) (= Dyr) — ﬁwt(x) (a2 V, — D) di+
ol 1 oT \?
+T — tTﬁg(I)(CE’ — -DtT)dgt + 5 <ﬁ) 7Tt<CC'> (172 — 2x-DtT + Dt2T — V;) dt

Taft”t(ﬂf) ((il? — Dyr) (d& -7 1_ (0T Dir — @)dt)) ,

Finally, the dynamics of the conditional probability process is

ol
T—t

dm(z) = m(z)(x — Dyp)dW,. (3.2.42)

As the asset price process is given by

St = ]I{t<T}IDtT/ xﬂt(x)dx.
0

Therefore, the same result for the dynamics of the asset price process can easily

be verified as follows:

dSt = TtStdt + PtT/ l’dﬂ't(m)dw
0
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o T
= TtStdt + HT/ €T (TU_ t(:}j — DtT)ﬂ-t(x)dVVt) dx

Hence,
ol

dSt = TtStdt + PtTT —

VidW,.

3.3 Time-Dependent Information Emerging Rate

In this section, a generalization of the model to the case where the emerging rate
of the true information depends on time is considered as given in the original
study [4]. When the parameter o in the definition of the market information
process is taken as being time-dependent, the expected dividend process and
the asset price dynamics are examined. Without deviating from the path they
follow, we present the proofs and the derivations, which are not given detailed in

the study [4].

According to this case, the market information process is defined as follows

t
& = Dr / osds + Py, (3.3.43)
0

where the function {o;}o<s<r is taken to be a nonnegative deterministic function

of time. Furthermore, the following condition is assumed:

T
0 < / olds < oo. (3.3.44)
0
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The risky asset price process is given by
S, = Lyyery PrE®[Dr|F], (3.3.45)

where the market filtration is assumed to be generated by the information process
{&} defined by equation (3.3.43). Here, a change of measure technique is used
to find out the conditional expectation given in the equation (3.3.45). The con-

ditional density process {m;(z)} is defined as

m(x) = %@(DT < z|F). (3.3.46)

Proposition 3.3.1. [4] Let the information process {&} be defined by equation
(3.3.43). Then, the conditional probability density process {m;(x)} for the random

variable Dr is given by

p(:v)em(ﬁ& Ji oadst [ oudes) a2 (g (J1 ouds)*+ fi o2ds)

m(z) = - - - o (3.3.47)
fooo p(x)eac(%—t& Jo osds+ ]y "sdfs)_%ﬂ(%—t(-fo osds) "+ ”gds) dx
and the conditional expectation looks as follows:
© () (6§ st [ 0edss) a2 (g (I owds) 4 o2ds)
Jo zp(z)e
D,T = -2 — - T TS : (3.3.48)
Jo p(x)ez(ﬁ& g osdstJy oades) =52 (g (Jg oeds) g o2ds) dx
Thus, the asset price process {Si} is given by
St - H{t<T}PtT DtT~ (3349)

Proof. The probability space (2, F,Q) with a filtration {G;}o<t<oo and W; is a
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standard {G;}-Brownian motion. Moreover, ;7 and Dy are assumed to be inde-
pendent; Dr is assumed to be Gy-measurable and bounded. Then the Brownian

bridge process {;r} can be expressed as a stochastic integral:

t
Br = (T—t)/o Tl AW, (3.3.50)

— S

Here, f;r is adapted to {G;}. The deterministic nonnegative process {14 }o<i<r is

defined as follows:

1 t
vy = 03 + T——t ; Ust, (3351)
satisfying the following relation
t 1 1 t
sds = ——— sds, 3.3.52
/0 T, vsds T/, osds ( )

which can easily be verified by differentiation. The process {A;}o<t<r is defined

by the relation

1 t 1 t
— = exp (—DT/ vedW, — —D%/ ufds), (3.3.53)
At 0 2 0

which can be used as a change of measure density from Q to By on Gy for a fixed
time horizon U € (0,7):

dBr = A;' dQ. (3.3.54)

Then, the process {W; }o<i<y defined by

t
Wy = DT/ vyds + W, (3.3.55)
0
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that is a Bpr-Brownian motion. Note that Dy has the same probability law with
respect to By and Q. Moreover, the process {&} defined by (3.3.43) is a Bp-

Brownian bridge:

¢
& = Dr / osds + B
0

t t
1
=D <d T—t dW,
T/OOS+( )/OT—SW

t t
1
= Dr / osds + (T—t)/ (AW — Drugds)
0 o I'—s

t t 1 t 1
— D (T - T—1) | ——aw>.
T(/o osds — ( t)/o T_Susds) + ( t)/o T—deS

By using the relation given by (3.3.52), we obtain

& :(T—t)/o ﬁdW;‘, (3.3.56)

which is in fact the stochastic integral representation of a Brownian bridge process.

Hence, the conditional probability density process can be derived by using a varia-

tion of the Kallianpur-Striebel formula (see [9, 5]) for the conditional expectation

E°r [f(Dr)Ad 7]

EC[f(Dr)|F;] = 3.3.57
DN = P ot (3357)
The process {A;} can be expressed in terms of {&;}
t 1 t
At = exp (DT/ Vdes+§D%/ ngS) . (3358)
0 0
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By substituting (3.3.55), we get

t 1 t
Ay = exp (DT/ vs(dW — Drvgds) + §D%/ Vfds)
0 0

t 1 t
= exp (DT/ v dW, — §D%/ Vs2d8>. (3.3.59)
0 0

Differentiating the equation (3.3.56) gives

&t
g, = — dt + dW?. 3.
¢ Fodt + AWV (3.3.60)

Substituting (3.3.60) into (3.3.59) yields

t t s 1 t
Ay = exp (DT/ vedE, +DT/ Vs £ ds——D%/ yfds),

t t
€s _ 1
d (/0 ved&, —{—/0 VST — 8ds> =1 (dft + T ¢ tftdt)
= —i—L t d d§+L§dt
=\ 0t T_1 0055 tT St

1 ¢ ¢
=d (T — tft/o o.ds +/O asd§s> ) (3.3.61)

Integrating both sides of (3.3.61) gives

t t 5 1 t t
d * _ds = d dg,. .3.62
/OVS fs +A VST_S S T—t&\/o Os 3+/0 O é.s (336 )

Similarly,

2 ¢ 1 ¢ ?
vidt = (03 + T——tgt/o osds + T 17 (/0 Usds) ) dt (3.3.63)
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=d (ﬁ (/Ot Jsds)2 + /Ot agds) : (3.3.64)

Thus, {A;} can be expressed as follows:

Ao = eap | Dr(5 [y ouds + [y 0,ds) — 1D3(

L ( 1tasds)2 +f0t U?ds)},

(3.3.65)

E® (i< Ml
E*r A ]

Q(Dr < |F) =B [Ip <l 7| = . (3.3.66)

y Tg—fo Usd8+f0 Usdfs)fgy (T 5 fo osds) +f0 o2ds)

Q(Dr < alFf) = Uk

f p(y) y(T - Jo Usds—l—fo osd€s)— 2gﬂ(w(‘fo asd8)2+f0 Ugds)
0

(3.3.67)

An alternative expression for the conditional expectation process {m;(x)}, written

in terms of {W;}, is given by

p(x) exp ( fo v, dWy — ia? fot V?dS)

) = [ plx) exp <a: [ vsdWy — La2 |7 1/2ds>

(3.3.68)

Similarly, the conditional expectation of the random variable Dy is represented

as

fg xp(zx) exp (m f(f v dW5F — 1 2f0 2ds>
[ p(x) exp (m [ vedWy — a2 [7 uzds)

(3.3.69)

tT —
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£ -t -t 1 1 ~t ~t
Jo ap() e T Jo 7sdstfo oods) =5 (s (Jo 0ds)*+ g o2ds)

[2° pla)e 7 o ondet I 7edte) o (kg (g s o)

(3.3.70)

Lemma 3.3.2. Let Dyr be the process given by the equation (3.53.74). Then the

dynamics of Dyr under Q are

dDyr = vM( & — z/tDtT) dt + v V,d& (3.3.71)

T—1

where {V;} represents the conditional variance of the random variable Dy :

v, = /OOO 2 (2)da — </OOO xwt(a:)da:>2. (3.3.72)

Then the spot asset price dynamics are:
dSt = TtStdt + FtTthT, (3373)

where

Iy = Py Vs

Proof. By using the Ito formula, the dynamics of the expected dividend process

is found as follows:

[e.e]

Jo_zp(x)e
Dy = D(&,t) = =° .
- (& 1) I p(x)eﬂf(% Jo osds+[5 0sdés) =5 (s (Jo o5ds)*+ g o2ds)

(3.3.74)

z(Tg—ﬁt [ osds+[] asdfs)—%:ﬂ(ﬁ(fot osds)?+ [ o2ds)
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We denote

t t
A&, t) = Tfit/o asds—i-/o o,dE,,

B(t) = ) (/Ot oeds)® + /Ot o2ds

and

Thus, we can express Dy in terms of A(&;,t) and B(t):

foo I.p(l,)exA(ft,t)—%IQB(t)

Plent) = }ooop(x)exA(ét’t)ézzB(t) '
The Ito formula:
_OD(E1) ,  ODED . 19D
dD(¢,t) = 9 dt + D¢ d¢ + §a—£2d<f,§>t. (3.3.75)

The first term of the formula:

aD(E, 1) 1 [9A, OA,
ot Ag( B _A1>

- ot ot

1 (0N 0N,
A, ( ot ot D(&’t))’

0A _ /0 " en(a) (xaA(;t“ B _ %ﬁag—f)) exp {:I:A(ft,t) - %sz(t)} dz,

0A(Gt) & 1 /t &
ot T—i\T—q ) ot )=
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2

OB(t) 1 t o
T _(T—t/008d8+gt) =v;.

Thus,

0A o 1 o

atl = Tgi tVt/O 22p(x) e A =37 BO) g 5%2/0 p(w)er &3m0 gy
0A ° 1 o

8t2 - Tgi tVt/O ap(z)zetMED 27 B gy 5%2/0 22p(z)e A e =2 B gy

0Dt 1 o0 o0
éi ) = Tgi tl/tvt + §V,52 (DtT/O 2my(x)dw —/0 x37rt(x)dx> ,

where V; is as defined in (3.3.72).

The second term of (3.3.75) is

oD(E,1) 1 [N, . 0N,
(G- G2nien).

oc A2
where
258} _ = 2 -2
o I/t/o x°p(x)exp {xA(ﬁ,t) 5% B(t)} dx,
92, = Vt/ xp(x)exp s AL, t) — 1:102B(75) dx.
23 0 2
Thus,
E)Da(f,t) = I/t/ 2’7 (x)dx — Div, = vV
0

The third term of (3.3.75) is
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D) 1 PA 1 0A90y  D(Et) A, RRUGUNELS :
ez A, 92 AL 9 0¢ A, e A2\ o€

1 A, OD(E, 1)

Ny 06 O
0*Ay _ 2 > 3 L,
o6 —ut/o a:p(x)exp{xA(&,t)—ﬁx B(t)}d:c,
02Ny )

= [t {eaten - epo o

2D o0 o =
D, 1) 2/ P my(z)dr — VtthT/ w?mi(x)de — VtZDtT/ () du+
0 0 0

oez
00 2
+12 Dy </ $7Tt(l')dl'> — 2DV,
0

= Vf/ 2y (x)de — v Dip 2’1y (z)dx — 202 Dyr V.
0 0

Substituting the expressions of D(&,t)/0t, OD(E,t)/0¢ and 9> D(E,t)/0E* given
above into (3.3.75):

dDyr =

1 oo o
Tgt tl/ttht + 51/3 (DtT/ 22y (z)de — / x37rt(x)dx) dt + v, Vid&+
- 0 0

1 o 1 o
+§Vt2/ 2Py (x)dwdt — él/thT/ 27y (z)dadt — v2 Dy Vidt
0 0

&
T—1

Vtv;gdt + Vt‘/;dgt + I/tQDtT‘/tdt
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1
=V (T——t& - VtDtT) dt + v, Vi d§,.

This completes the proof.

A new process {W,} is defined so as to be an {F;}-Brownian motion:

t 1 t
Wy =& + / —&ds — / v Dgrds. (3.3.76)
o I'—s 0

Proposition 3.3.3. The process {W;} defined by equation (3.3.71) is a standard

{F}-Brownian motion under the risk neutral measure Q.

Proof. For the proof, a close analogy with the proof of the proposition (3.2.2) as
given in [4] is following.
Firstly, it will be shown that {W;} is an {FF}-martingale and, then, (dW,)? = dt

will be verified. For u > t,

u 1 u
B =596l + 89| [ casts| -89 | [MvDaass].
T

0

(3.3.77)

Since the two terms f(f 7—&ds and fot vsDyrds are {F;}-measurable, the expres-

sion given by equation (3.3.77) can be written as follows:

t 1 t
ES(WW,,| 7] = E2f6, |7 + / b s / v Dpdst
o I'—s 0

u 1 u
t - t
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By the martingale property of D;r,

E%[Dor|Fi] = Dar,

for t < s, and of the conditional expectation EQ[£,|F], we get

E2[Byr|Fi] = EUEC[Ber|Gi)|F] = BUEC Byr|o{Bur; v <, Dr}]|F] =

=E° [EQ [53T|ﬁtT7 DT] |~7:t] = EQ[EQ [53T‘ﬁtT”:Ft]a

for t < s. It is already known from (3.2.1) that

T —s

EQ[ﬁsTWtT] = T _ tﬁtT-
Then, it follows
Q T =500
B[S0l 7 = - B2 (G| ]

Thus, the conditional expectation EQ[¢,|F;] can be expressed as follows:

5 T—s
EQKSL?;] = DtT/ O'UdU + ﬁEQ[ﬁtT|ft]
0 _

and, by the definition of the process {W;} given by (3.3.76),

t 1 t
/ T Egds — / veDygpds = W, — &.
0 - S 0
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(3.3.81)

(3.3.82)

(3.3.83)



Finally, substituting (3.3.82), (3.3.83) into (3.3.78) yields

ds

v T—u u
EQ[WU|E] = DtT/ O'UdU -+ EEQ[ﬁtT‘E] + EQ[ﬁtT|ft] /
t t

u u 1 s
_DtT/ VSdS + DtT/ (/ O',Udv) ds + Wt — Et
t ¢ T'=s\Jo

T—1

= Wt — ét + E@[ﬂﬁ“lﬂ] — DtT/ I/st -+ DtT/ O'Ud'U + DtT/ Vg — 0'st
t 0 t

t
— W, — & + BByl F] + Der / odv — W,
0

Moreover, it is obvious from the definition of the process {W;} that the quadratic
variation is (dW;)? = dt. Thus, it is concluded that {W,} is an {F;}-Brownian

motion.

Hence, the dynamics of the expected dividend process D;r can be written in

terms of Brownian motion
dDyr = vV dWy, (3.3.84)
and the dynamics of the asset price dynamics is given by
dS; = rp.Sidt + UypdW, (3.3.85)
where the asset price volatility process {T'yr} is given by
Ly = v PirV,. (3.3.86)
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Here, V; stands for the conditional variance of the random variable Dy and it is
given by
V; = E® [(Dr — E¥[Dr|F])?| 7] - (3.3.87)

The dynamics of {V;} is obtained [4] as follows:
dVy = —vPV2dt + vk dWs, (3.3.88)
where k; denotes the third conditional moment of D7 given by

ke = E2 [(Dr — E°[Dr|F])*|F] - (3.3.89)
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CHAPTER 4

OPTION VALUATION UNDER
INCOMPLETE INFORMATION

In this chapter, the pricing of a European-style call option having an underlying

asset price dynamics presented in the previous chapter is closely examined.

4.1 Valuation Formula

A call option on such an asset, with strike price K and maturity date ¢, is con-
sidered for the derivative valuation problem. The underlying asset pays a single
dividend D7 at time T" > t. The risk neutral value of the option under incomplete

information is given as follows: For s = 0 it holds

Co = PuE® [(S; — K)*], (4.1.1)

and for any time s <t < T we have

C, = P,ER [(S; - K)+|ff] . (4.1.2)

64



Firstly, the derivation of the valuation formula of Cj is given.

It is known that the asset price process as given in Proposition (3.1.2) have the

following form:

Sy = ]I{KT}PtT/ xm(z)dz. (4.1.3)
0

Substituting the equation (4.1.3) into the option valuation formula given by equa-

tion (4.1.1), it is found that

Co = PyE® [(PtT /0 N oy (z)dr — K)+] (4.1.4)

— P ([ (P = Bmlo) | (4.15)

where () is as given by equation (3.1.26):

z)exp (7= (ox& — 20222t
m(z) = oop( ) p(T;t( S 2 5 2)) . (4.1.6)
fo p(zx) exp (ﬂ(axft —50% t)) dx
For convenience, a density process is defined as expressed in this way:
T 1,5,
pe(z) = p(x) exp (cx& — —oz°t) | ; (4.1.7)
T—1t 2
thus, the conditional density process can be written as
G (4.1.8)

I pe(a)da

Substituting the equation (4.1.8) into the option valuation formula given in (4.1.5)
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yields

Cy = PyE® {m(/ooo(f’tﬂ: — K)pt(x)dx)ﬂ (4.1.9)
— Py,EY [Ait( /0 Oo(Pth - K)pt(x)dx)+] : (4.1.10)

where A, is denoted as

A = /Ooopt(l")dx — /Ooop(J:) exp (Tj; t(ax& _ %02$2t)> dr. (4.1.11)

Here, the process A; is used to introduce an equivalent probability measure on

(Q, F5) for every t < T.

Lemma 4.1.1. [21] The dynamics of the process Ay given by equation (4.1.11)
15 given by

dAt == At

UftDtTdt +

T T
T_¢ T _ tO’gtDtngt (4112)

for any t € [0,T)

Proof. We follow the path given in the original proof.

By using Ito’s rule, we get

2
:%dt+%d§+la/\t

dAt ot 8§ 58_8d <§7€>t7

(4.1.13)
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dA, = (TT;—UW& (/OOO :Ept(:v)d:v) dt + % (/OOO :Ezpt(m)dm> dt
+% (/OOO :Bpt(a:)dm) dé; + 2((7?—‘1);2 (/OOO xzpt(:v)dx) dt (4.1.14)

_ (TT——OtP& < /0 h xpt(x)dx> dt + (TTft) ( /0 N :Upt(ac)dx> &, (4.1.15)

_ { Ta& (/ et x) )dtJr(TT—Ut) (/wa%dx) dgt}

(4.1.16)

To o
= At {mgtl)fj‘dt + ﬁDtTdft] . (4117)

Lemma 4.1.2. [21] The dynamics of the process W, := A; ' = A% s given by

To To
av, =V, {_T DtT} [dft + Tfi tdt . tDtTdtl (4.1.18)
which is in fact
T
dv, =, { ? DtT] AW, (4.1.19)

Proof. By the same path given in [21], the Ito application and to (4.1.17) gives

1
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1 To To 1 [ To \°
= {—(T — )25tDtTdt+ T4 tDtTdftl + A (T — t) Dird (€.€), (4.1.21)
To To To \?
To To
Recall that
&t To

where W, is a standard Brownian motion defined as the information driven Brown-

ian motion by equation (3.2.39). Thus,

To

Corollary 4.1.3. The process ¥y, t € [0,T), is a Radon-Nikodym density process

with respect to Q, and so it is a strictly positive Q-martingale with Vo = 1
dBp 1
—|F =V, = — 4.1.26
e (1.1.26)
forte|0,T).

Proof. 1t is clearly seen from the definition of ¥, = A% that it is a strictly positive

process and ¥, = Aio = 1.

Furthermore, ¥, is a Q-martingale which can be verified easily by making use of
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(4.1.25):

To
dv, =, [—ﬂDtT] dwr,

where W, is a Q-Brownian motion and for any ¢ € [0, u], for any 0 < u < T, and

D,r is a bounded process. Thus, the R-N density process V¥ is

dBT 1
I F =T, = — 4.1.2
dQ ’ K ! 1\ ( 7)

for t € [0,7).

Thus, for every u € [0,¢], ¥,,, for 0 <t < T is the Radon-Nikodym density with
Uy = 1 and it follows that EQ[¥,] = 1 where ¢ is given as the option maturity

date. The R-N density can be expressed as follows:

1 ¢ To 1/t T?0?
=T, = ——— Dy | dw, — = ——— D% ) dul .
N eXpVo( (T =) ) 2/( (T —up > ]
(4.1.28)
Hence, the process W/ can be defined so as to be a Brownian motion under

the equivalent measure By, which will be called “Bridge measure”. Hence, the

Br-Brownian motion can be expressed as follows:

“ To
= —D 4.1.2
Wu Wu + /0 ((T _ S) ST) dS ( 9)

for every w € [0,¢t]. Then, W* is a standard Brownian motion on the space
(Q, F;,Br). For the measure change back form By to Q on (2, F;), the suitable

density A; with respect to By is given by
1 ¢ To 1/t T?0?
AN =—= ——Dyr | dW, + = —— D% )d 4.1.30
=g [ (gt aver g [ (et )ar] @120
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= exp Uot (%Dw) AW — %/Ot (%D?ﬁ) du} : (4.1.31)

Proposition 4.1.4. For any fizedt € [0,T), the information process &,, u € [0, ],

follows a Brownian bridge process on the equivalent probability space (2, Fy,Br).

Proof. Firstly, the Brownian motion driven by information process may be re-

called:
gt To
W, = — D
dW, d&—i—T_tdt T3 rdt
and
W*—W+/u 19 p)ds (4.1.32)
u - u 0 (T— 8) ST . P

Thus, the following result is obvious

§u

dW? = d&, + dt — =2 Dyrdu+ <
T—u

T )DuT> du (4.1.33)

(T —u

§u

¢ +T—u

dt, (4.1.34)

which gives the standard Brownian bridge definition

gu:—/ S s 4w (4.1.35)
0 T

— S

for u € [0, t] on the probability space (2, F;, Br).
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Hence, the option pricing formula given in equation (4.1.10) can be expressed as

£ ([ s = sty ]

Cy = Py, EC

= PyE"

( /0 (P — K)pt(w)dx) 1

= PyE""

t

(/OOO(Pth — K)p(z) exp (Tji (oa& — %a%%)) dx) 1 . (4.1.36)

To give the option valuation formula more explicitly, a constant £* is defined as

a critical value satisfying the following condition:

/OOO(Pth — K)p(z) exp < (o — %UQth)) e =0 a0

T—t
Then, the option price formula given by equation (4.1.36) can be written as

T
—t

oo oo 1
Cy = P()t/ / (Pirx — K)p(z) exp (T (ox& — §a2a:2t)> dz dBS.
& J0

(4.1.38)

By the Fubini Theorem,

Cy = POt/ (Pirx — K)p(z)/ exp ( (cx& — —02x2t)> dBS, dz.
0 - Tt 2

(4.1.39)

Here, it is already known that &; is a standard Brownian bridge under B, then
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it is a Gaussian random variable with zero mean and ¢(7" — t)/T variance under

this probability measure:

€~ N <O, t(TT— t)> '

Then, for any t € [0, 7)), the inner integral term can be reformulated as follows:

/ooe ( T (02 1 2x2t)> VT . ( y°T )d
X orYy — =0 ————exXp |
o PA\T 7" 73 omt(T — 1) P\ )Y

/°° VT ( 1 ( T T T, 2t>) ]
= —_— X - = - ox
e vemm—n P\ 2\ur—pn T—¢ T—1 Y

B /:O QW;/E t =P ( \/ m>

2

/Oo VT 1 [ (y— oxt)
= ————exp | 2 | TYFV— dy.
e A/ 2mt(T —t) 2 H(T—t)

T

In fact, this integral gives the probability that Y is greater than £* for a fixed

time ¢:

o0

T 1 (y— out
Pr(y > ¢) = Lexp I 0N I PR T
e A/ 2mt(T —t) 2 HT—1)
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with the random variable Y distributed as follows:

Y ~ N <<ms, HT — t)) . (4.1.41)

T

Thus, the standard normal distribution can be used to express this probability:

Pr(Y >¢) = Pr (Z > ¢ /t(TT_ . —ox ,(Tﬂ; t)) ’ (4.1.42)

where Z is a standard normal random variable.

Since Z is a standard normal distribution having symmetric probability density

function, the probability given by (4.1.42) can be written as follows:

Pr (Z > 2" — ax\/?) = Pr (Z < =+ a:z:\/?) , (4.1.43)
where
* * T
s =T (4.1.44)
tT
et (4.1.45)

This gives the following result for the option valuation formula:
Cy = Pot/ (Pyrx — K)p(z)N(—z* + ox/7)dz, (4.1.46)
0

where N(x) denotes the standard normal distribution function. Hence, the valu-
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ation formula for the option price at ¢t = 0 takes the following form:

Cy = POt/ Pyrap(x)N(=2* + ox/T)dx — POtK/ p(x)N(=2* + ox\/T)dx.
0 0
(4.1.47)

The price of a European call option at time s € [0,¢) with maturity date ¢ can

be expressed in this way:
Cy = PyEQ[(S, — K)T|F.]. (4.1.48)

After a change of the measure and by the help of the Radon-Nikodym density

given by equation (4.1.28), the option price can be represented by

P
Cg::zé]ﬁ%ﬁAxSt—}(ﬁﬂfg (4.1.49)

S

Pst B
= % gBr
Ag

(/OOO(Pth — K)pt(x)dx)+ \Fs] : (4.1.50)

Here, p;(x) given by equation (4.1.6) is a function of &. Then, the calculation
can be simplified by the fact that & is a Bpr-Brownian bridge. Furthermore, a
Br-Gaussian process Zg which will be independent of {&,}o<u<s is defined as
follows:

& &s

- - . 4.1.51
PTT o+ T —s ( )

Their independence property can be verified easily by examining its covariance

structure since they are all By-Gaussian processes. The covariance between the
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variables Zg and &, for any u € [0, s] and for ¢ > s can be computed in this way:

gt 58

Cov(Zg, &) = COU(T — T T

&u)

1

_ Br o 1 Br
- T — tE [&-téu} T — SE [ésfu]

_1 At_ut_l(/\_us>_0
“Tr—¢\Y T) T-_s\"“"*T ) =%

Thus, the fact that the process & can be written as a function of Zy; and & can

make the conditional expectation a more standard one. According to this, p,(z)

can be expressed as follows:

T T
pe(x) = p(x) exp (T — 501’55 +ToxZy — ma%%) : (4.1.52)

where Z,; is a Bp-Gaussian process with a distribution

Zy ~ N (o, T _ts)_(; — t)) . (4.1.53)

By substituting the equation (4.1.52), the option price can be expressed as follows:

Pst B
s:_ET
C A

Toxfs

o0 To2z2t +
(/ (Porx — K)p(a)e T T3 dx) |7:s] - (4.1.54)
0

Proposition 4.1.5. The price Cy admits the following representation under the

measure Br:

CS = —St [EBT<PtTCtHA’fS> - EBT(KAt]IA|fS):| ) (4155)

S

=
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where A = {Pir( > KA} and

o T T
G :/0 xp(z) exp <T— Sax§s+Tastt — ma%%) dx, (4.1.56)
A—/Oo()e r €+ ToxZy — T o224 (4.1.57)
=) p(x)exp | 0w, + ToxZy 2(T—t)0$ . 1.

Proof. We follow closely the original proof of Rutkowski-Yu [21]

Py
C, = A—tEBT [(PrG — KA)T|F . (4.1.58)

Set A is defined as A = {Pg( > KA}, and thus Cy can be represented by

using the indicator function I4:

Pst

C, = A—EBT (P — KA) T4 F] (4.1.59)
_ Pst Bt Br
= 5 [B™ [ParGlLa| ] — B [K AL F)] (4.1.60)

Proposition 4.1.6. The price of a call option on a single dividend paying risky

stock with a maturity date t and strike price K has the following form:

Oy = SuM, (u,t,T) — K PyMs(u,t,T), (4.1.61)
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where A = {Pir( > KA} and

Mt 7) = B (S LIR), MtenT) - B (

Cu

Ay
M),

(4.1.62)

Proof. Here, we again follow closely the proof of Rutkowski-Yu [21]. By recalling

the underlying stock price representation for any u € [0, t)

Su = PuTDuT7

(4.1.63)

where D,r represents the expected dividend process which can be expressed as

follows:

Cu

Du = I
T A,

and so the single dividend paying risky asset price is:

Su=Pur —

From the previous Proposition, the option price

Put Pu

Cy = LB [P 4| F) — —LEET [KAIL|F] .

A, Ay

Since the interest rates are assumed to be deterministic:

Py

Cu= B IR - KRB | 07

Ay
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(4.1.66)

(4.1.67)



Substituting the stock price representation into the equation (4.2.116), we get

A
C, = S,EEr [ﬁmﬂ] — KP,EEr {A—tmﬂ} (4.1.68)
= S, M, (u,t,T) — K Py My(u,t,T). (4.1.69)

This completes the proof.

Hence, it is seen that the price of a European call option can be expressed in a

form similar to the Black-Scholes-Merton model.

4.2 Option Pricing with Time-Dependent Infor-

mation Flux Rate

The dynamics of a single dividend paying risky asset price when the market
information process has a time dependent information flux rate are as found in

equation (3.3.85):
dSt = TtStdt + FtTthy (4270)
where the asset price volatility process {[';r} is given by

Uir = vibBirVi. (4.2.71)
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Here V; stands for the conditional variance of the random variable Dp. The

market information process

t
& = Dr / osds + Bir (4.2.72)
0

and the conditional probability density is found as follows:

(ﬁ{t fot Usds-i-foz Jsdfs)—%mj(ﬁ(fot O’SdS)Q-’-fg Jgds)

p(fv)e
m(z) = - — - (4.2.73)
fg T t& fo Usderfo asdés)f§x2(ﬁ(f0/ asd5)2+f0’ agds) dr
or, alternatively, in terms of the Bp-Brownian motion:
p(z) exp ( fo v dW5 — lx2 fot V2d8>
m(7) = (4.2.74)

“o(z)exp (2 [ v dWr — x2 v2ds
fop( ) p( fo s fo )

A European style call option on such an asset, with strike price K and maturity
date t, is considered. The underlying asset pays a single dividend Dp at time
T > t. The risk neutral value of the option conditioned on this market information

process is given as follows: For time 0 it holds

Co = PuE® [(S: — K)*], (4.2.75)

and for any time s <t < T we have
O, = PyE?[(S, — K)+|ff] . (4.2.76)

Firstly, the derivation of the valuation formula of Cj is presented. As in the
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equation (4.1.5), the option price at ¢ = 0 can be written as:
Cy = Py,E? [(/ (Pirz — K)m(x)dx)*] (4.2.77)
0

where the conditional density process is given by the equation (4.2.73). By the

same analogy used above, the change of measure density process is defined by
At _ / p(m)em(%‘t& jg O'st-f—fg Usdfs>—%x2(%_,g(.fg Ust)Q-‘r./g agds) dr. (4278)
0

Lemma 4.2.1. The dynamics of the process Ay given by equation (4.2.78) are

dA, = A, <z§tfttDtTdt + VtDtTd&) . (4.2.79)

Proof. As given in [21], by applying Ito’s formula to (4.2.78):

A oA 192A
_ O —Lde, + :

A -t
A=, o€ 2 02

d <€a €>t

oN, Eu [ 1, [
a_tt: Tt—tt/o xpt(x)dx—5y3/0 o*p,(v)dx

oAy *
% I/t/o xpy(x)dz

0%\, 2/00 9
=v xpe(x)dx
852 t 0 t( )

1 oo o
dA; = Ay i —/ xpy(x)dxdt + I/t/ xp(z)dxdé,

ftVt

=N\
T—1

/ xwt(x)dxdt+At1/t/ xmy(r)drdé,
0 0
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2

_AtT—

DtTdt + At Vi DtT dft

= At <7§tyt DtTdt -+ VtDtTdét) .

This completes the proof.

Lemma 4.2.2. The dynamics of the process ®, := A7 = 1/, are

&
T —

dCbt = (I)t [_VtDtT] |:d€t +

DtTdt] , (4.2.80)

which 1s in fact

dq)t = q)t [_VtDtT] th (4281)

Proof. As we know the dynamics of the process A;, an application of the Ito
formula gives the result as follows:

1 12
0, — d ( At) A Lay, -] i Digat

At t

-1 1
( étyttDtTdt + z/tDtTdft) - A—uthTdt

= _(I)t j?tljt DtTdt — (I)tVtDtngt (I)tVtQD?Tdt
_ &
= _¢tDtTVt T _ tdt + dft + I/tDtTdt .

We know from the Proposition (3.3.3) that {F;}-Brownian motion {W;} can be

expressed as follows:

t t
W, =& + / fsds / veDgpds.
T— 0
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Thus,
d(bt = ®t [_VtDtT] th

Corollary 4.2.3. The process ®,, t € [0,T), is a Radon-Nikodym density process
with respect to Q, and so it is a strictly positive Q-martingale with &y = 1.
Proof. Tt is clearly seen from the definition of ®;, = 1/A; that it is a strictly
positive process and &, = 1/Ay = 1.

Furthermore, ®; is a Q-martingale which is obvious by equation (4.2.81)

To
dd, = o, {_thT} AW,

where W, is a Q-Brownian motion and for any ¢ € [0, u] for any 0 <wu < T, Dyp

is a bounded process:

Brr - (4.2.82)
for t € [0,7).

For every u € [0,t], ®, is the Radon — Nikodym density for 0 < ¢t < T with
®y = 1, and it follows that EQ[®;] = 1, where ¢ is given as the option maturity

date. Thus, the R — N density can be expressed as follows:

1 t 1 [
— =&, = exp U (—vyDyr) dW,, — —/ (v2DZr) du] . (4.2.83)
Ay 0 2 /)y

Hence, the process W} can be defined so as to be a Brownian motion under the
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equivalent measure Br:
W, =W, +/ (vsDyr)ds (4.2.84)
0

for every u € [0, ].

Proposition 4.2.4. For any fized t € [0,T), the information process &, given by

(8.3.43), u € [0,t], follows a Brownian bridge on the equivalent probability space
(Q, Fi,Br).

Proof. Firstly, the Brownian motion driven by information process is recalled

i St To
AW, = d& + T tdt T tDtTdt
and
Wy =W, +/ (vsDyr) ds. (4.2.85)
0
Thus, the result is obvious
AW = de, + T&” dt — v, Dyrdu + (v, Dyr) du (4.2.86)
—u
=d&, + 5'—udt (4.2.87)
T—u '

which gives the standard Brownian bridge definition

RS
=— d : 4.2.
§u /0 7oA+ Wy (4.2.88)
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for u € [0,¢], on the probability space (2, F;, Br), for t < T.

Therefore, the option pricing formula when the market information process has

a time-dependent information flux rate can be written as

1 o t 1 t +
— (/ (Pirx — K)p(z) exp (a:/ v dW* — _xz/ ngds) dx) '
At 0 0 2 0

(4.2.89)

Cy, = EY

Here, one term is distributed as follows:

t t
/ v dW?r ~ N(O, / ygds), (4.2.90)
0 0

under the Bridge measure By. Thus,
t
wt_l/ v dW? ~ N(0,1), (4.2.91)
0

where

t
w; = / v2ds. (4.2.92)
0

Hence, the option price

C() - POtEBT

( /0 Oo(PtTa: — K)p(z) exp{zw,Y — %x%f}da:) 1 ., (4.2.93)

1
V2T

0 2 0o 1 +
Co = Pot / e T (/ (Pirx — K)p(z) exp{zwy — §x2wf}dac) dy.

Yy=—00 =0
(4.2.94)
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It is observed that there exists a critical value y* for y, such that

o 1
/ (Pirx — K)p(z) exp{zwy* — §x2wf}dx = 0. (4.2.95)
0

As a result, the option price can be expressed as

N

o0 oo 1
/ e 2V (/ (Pirz — K)p(z) exp{rwy — §x2w§}dx) dy
Y =0
(4.2.96)

o < 1 1,2 1
= Pot/ (Pirx — K)p(m)/ e 2¥ exp{rwy — §x2wf}dyd:c

i
g
ﬁ
3

=P Prx — K)p(x exp{ —=(y — wyx) Ydydx
o A e R

— P [ (P~ K)pla) N{wia — ')

=0

= POT/ xp(x)N(wr — y*)dx — POtK/ p(x)N(wir — y*)dx. (4.2.97)
0 0

Hence, we conclude that for the option price process, s < t < T', a very similar
form to the one offered in the case of a constant information flux rate can be used

in that case, as well.
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The price of a European call option at time s € [0,¢) with maturity date ¢ can

be expressed as follows:
Cy = PyEQ[(S, — K)"|F,]. (4.2.98)
After a change of the measure by the help of the Radon-Nikodym density given

by equation (4.1.28), the option price takes the following form:

P
C, = A—t EET [A,(S, — K)*|F)] (4.2.99)

Ps 00 +
= A_t EEBT (/ (Pirx — K)pt(x)dx) |]-"5] : (4.2.100)
s 0
where
1 t t 1.2(_ 1 t 2 ,t o
po(z) = (Tt g redst [ ovdte)—a? (75 ([ 7vds) g o) (4.2.101)

Proposition 4.2.5. When the market information process has a time dependent

information flux rate, the price Cs admits the following representation under Byp:

P
Co= 3 [EP7 (PG| Fo) — EP7 (KALLF)] (4.2.102)

where A = {Pr( > KA},

e 1 t t 1 1 t 2t
Ct _ / [Ep(l‘)@m(ﬁ& Jo osds+ [, Usdﬁs)f§x2<ﬁ(fo crsds) +/5 agds) dr (42103)
0
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and
Ay = / " () (e s odes) g (g (o onds) Hfyo2ds) g g 9 104)
0

or alternatively

t 00 1 t
Ay :/ p(z) exp ($/ v dW: — §x2/ l/s2d8> dz (4.2.105)
0 0 0

t 00 1 t
G = / zp(z) exp (:L‘/ v dW: — 5:62/ Vfds) dzx. (4.2.106)
0 0 0

Proof. The proof is very straightforward along the same way as for Proposition

and

4.1.5. Indeed,

P
C, = A—“EBT (PG — KA |F (4.2.107)

here, the set A is defined as A := {Pr(, > KA}, and so C; can be represented

by using the indicator function 14

P
Co= B [(PirGy — KA 14| 7] (4.2.108)
P
= L [EPT [P Gla|Fy] — BB [KAJAF] - (4.2.109)

A

Proposition 4.2.6. The price of a call option on a single dividend paying risky
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stock with a maturity date t and strike price K has the following form:
Cy = SuMi(u,t,T) — KPyMs(u,t,T), (4.2.110)

where A = {Pir( > KA} and

A
Ml(u7t7T) = EBT ( % ]IA|]:U,) ’ M2<u’t7T) = EBT ( A_t HA|’7:u) .

u U

(4.2.111)

Proof. The proof of the above Proposition is given by applying the same procedure
as in Proposition 4.1.6. The underlying stock price representation for any u €
0,1):

Su = PurDyr, (4.2.112)

where D,r represents the expected dividend process which can be expressed as
follows

Dur = 2. (4.2.113)

Sy = Pyr & (4.2.114)
Ay
From the previous Proposition, the option price can be represented as
- Put Bt Put Bt
Cu = ZEP [ParGLul ] - S4BT (KAL), (4.2.115)

Since the interest rates are assumed to be deterministic, we can express the option
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price in this way:

P, A
Cu = B [GIa| F.] — KPyEP" {A—thlﬂ} : (4.2.116)

Now, substituting the stock price representation into the equation (4.2.116) yields

A
C, = S,EBr [%Lﬂ}‘u} — KP,EBr [A—t]IAU-'u] (4.2.117)
= S, M (u,t,T) — KPyMy(u,t,T). (4.2.118)

This completes the proof.
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CHAPTER 5

CONCLUSION

In this study, we have presented two strong option pricing models which have
two totally different intuitions and approaches to the derivative pricing problem.
They differ from the Black-Scholes-Merton model in that, one of them treats the
case of a stochastic volatility, and the other one is based on a noise process rep-
resented by a Brownian bridge. In the stochastic volatility case, suggested by
Heston [11], the option pricing formula is obtained via the characteristic func-
tion method. The other model proposed by Brody-Hughston-Macrina [4] gives
the option pricing formula and the spot asset price dynamics by modeling the

structure of the information accessible in the market.

We have proved the results for the risky asset and option price processes under the
assumption of deterministic interest rate, these results were stated in the papers
[11, 4]. Furthermore, by adopting the same analogy used for defaultable bond
option prices introduced by the work of Rutkowski-Yu [21], we have presented

the option price process which was not given in the original paper [4].

In this thesis, the author looked for a bridging some gaps existing in original works
[11, 4], and for understandable arrangements which could serve the interested

reader for his futher use of it and his studies.
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Because of the time constraint of this study, we have left the calibration of the
models for the Turkish market for future works. In fact, the information-based
asset pricing model suggested by Brody-Hughston-Macrina [4, 3] has not been
calibrated yet. Its validity in the market is still unknown. Moreover, since it is
an observed and experienced fact that asset prices have jumps, the information-
based approach can be extended to capture this empirical property of the data

to further research.
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