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Abstract 

 

 

ON THE AVALANCHE PROPERTIES OF MISTY1, KASUMI 

AND KASUMI-R 

 

AKLEYLEK, Sedat 

M.Sc., Deparment of Cryptography 

Supervisor : Melek Diker YÜCEL 
 

February 2008, 69 pages 
 

 

The Global System for Mobile (GSM) Communication is the most widely used 

cellular technology. The privacy has been protected using some version of stream 

ciphers until the 3rd Generation of GSM. KASUMI, a block cipher, has been chosen as 

a standard algorithm in order to be used in 3rd Generation. 

 

In this thesis, s-boxes of KASUMI, MISTY1 (former version of KASUMI) and 

RIJNDAEL (the Advanced Encryption Standard) are evaluated according to their 

linear approximation tables, XOR table distributions and satisfaction of the strict 

avalanche criterion (SAC). Then, the nonlinear part, FI function, of KASUMI and 

MISTY1 are investigated for SAC. A new FI function is defined by replacing both s-

boxes of KASUMI by RIJNDAEL’s s-box. Calling this new version KASUMI-R, it is 

found to have an FI function significantly better than others.  

 

Finally, the randomness characteristics of the overall KASUMI-R for different rounds 

are compared to those of MISTY1 and KASUMI, in terms of avalanche weight 

distribution (AWD) and some statistical tests. The overall performance of the three 

ciphers is found to be same, although there is a significant difference in their FI 

functions. 

 

Keywords: block cipher, KASUMI, MISTY1, SAC, linear approximation table, XOR 

table distribution, AWD. 
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ÖZ 

 
 

 

MISTY1, KASUMI ve KASUMI-R’N ĐN ÇIĞ ÖZELL ĐKLER Đ 

ÜZERĐNE 

 

AKLEYLEK, Sedat 

Yüksek Lisans, Kriptografi Bölümü 

Tez Yöneticisi : Melek Diker YÜCEL 

 

Şubat 2008, 69 sayfa 

 

Küresel taşınabilir iletişim sistemi(GSM) en yaygın olarak kullanılan cep telefonu 

teknolojisidir. GSM’de gizlilik 3. nesile kadar akan şifrelerin bazı uyarlamaları 

kullanılarak sağlanmıştır. Blok şifre olan KASUMI 3. nesilde  kullanılmak üzere 

standart olarak seçilmiştir. 

 

Bu tezde, KASUMI, MISTY1(KASUMI’nin önceki versiyonu) ve RIJNDAEL’un 

(gelişkin şifreleme standardı) değiştirme kutuları, doğrusallığa yakınsama tabloları, 

XOR tablo dağılımları ve katı çığ ölçütünü sağlayabilmeleri konularında 

değerlendirilmiştir. Daha sonra, KASUMI ve MISTY1’in doğrusal olmayan FI 

fonksiyonu katı çığ ölçütüne göre incelenmiştir. KASUMI’nin değiştirme kutuları 

RIJNDAEL’un değiştirme kutusu ile yer değiştirilerek yeni bir FI fonksiyonu elde 

edilmiştir. Bu yeni FI fonksiyonuna KASUMI-R adı verilip, performansının 

diğerlerinden oldukça iyi olduğu da gözlenmiştir. 

 

Sonunda, çığ ağırlık dağılımı ve bazı sayımlamalı testler açısından KASUMI-R’nin 

tüm sisteminin farklı döngü sayıları için rasgelelik özelliklerinin MISTY1 ve 

KASUMI ile karşılaştırılması yapılmıştır. Şifrelerin FI fonksiyonları arasında dikkate 

değer fark bulunmasına rağmen, şifrelerin tüm performansları aynı bulunmuştur. 

 

Anahtar Kelimeler  : blok şifre, KASUMI, MISTY1, katı çığ ölçütü, doğrusallığa 

yakınsama tablosu, XOR tablo dağılımı, çığ ağırlık dağılımı. 
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 CHAPTER 1 
 

INTRODUCTION 

1.1 Background 

 

Cryptographic techniques have been used for many centuries to protect the secrecy of 

diplomatic correspondence and military communications. Today, developments on 

computer and communication sciences have helped transferring a big amount of data 

through the long distance channels. These data must be protected in several ways to 

provide confidentiality, integrity and authentication. Cryptology is the science, which 

answers all such needs in today’s communication systems.  

 

Cryptology is used to provide security in public applications such as e-government 

applications, electronic commerce, credit cards, wireless connections, GSM mobile 

phones. In the Global System for Mobile (GSM) communications the standard for 

mobile phones, the mobile system used all over the world, there is a built-in cipher to 

ensure that your conversation is private. The cryptographic algorithms of GSM have 

received a lot of interest and activity from the cryptographic research community. 

 

GSM has some different generations in use such as first generation (1G), and second 

generation (2G). In the beginning of 1980s, analog cellular telephone systems (1G, 

First Generation) were started to be used with rapid growth in Europe. The Conference 

of European Posts and Telegraphs (CEPT) formed a study group called the Groupe 

Spécial Mobile (GSM) in 1982 to create a digital standard (2G, Second Generation) 

for European mobile system [16]. In 1989, GSM responsibility was transferred to the 

European Telecommunication Standards Institute (ETSI), and they published the first 

GSM specifications in 1990, where the meaning of GSM was changed to Global 

System for Mobile [10].  

 

Since the nature of the wireless communication is more susceptible to attacks than 

wired communication, to provide security is very important for GSM. In the second 

generation, cryptographic techniques available for GSM were A5/1 and A5/2, both of 
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which use stream ciphers. A5/1 was the first cryptographic GSM algorithm developed 

to provide privacy in 1987. The A5/1 is based on the output of three LFSRs (Linear 

Feedback Shift Register). It was demonstrated in [3] that A5/1 could be cracked in less 

than 1 second on a desktop PC. The attack uses statistical analysis and exploits its 

poor avalanche properties. In 1989 A5/2 was developed to overcome export problem 

of A5/1 [21]. A5/2 containing four LFSRs was used to provide voice privacy for a 

short time as it was cryptanalyzed in the same month that it was published [27]. A5/2 

is a weakened version of A5/1. The approximate design of A5/1 was leaked in 1994 

and the exact design of both A5/1 and A5/2 was reverse engineered from an actual 

GSM telephone in 1999 [4]. It is interesting that only after their design became 

publicly known; they were cracked by using reverse engineering.   

 

With the technological developments, by the end of 1990’s GSM could handle 

different types of services: high quality encrypted voice transmissions, short message 

servicing, fax services, Wireless Application Protocol (WAP) promoted Internet 

applications [10]. Later, a group of studies called second and a half generation (2.5G) 

provided mobile Internet supporting services (Internet browsing, e-mail and 

multimedia messages such as the general packet radio service-GPRS which enables 

larger packets of data to be sent). Hence, 2.5G became a step between 2G and 3G.  

 

Universal Mobile Telecommunications System (UMTS), 3G, is a further development 

of the 2.5G.  In order to make this communication secure, a new security algorithm 

was chosen in 2002 by 3rd Generation Partnership Project (3GPP) founded with the 

duty of defining world wide trusted standards for 3G [22]. 

 

The next generation of A5 algorithm in contrast to previous ones has been made 

available to the public. In 2002, A5/3 was added to GSM encryption algorithms. A5/3 

is based on the block cipher KASUMI declared as the standard cryptographic 

algorithm for UMTS applications [22]. KASUMI was specially developed to gain 

public confidence in UMTS security. 
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1.2 Scope and Objective of Thesis 

 

This thesis is intended to analyze the cryptographic strength of the block cipher 

KASUMI using some cryptographic test criteria. Since KASUMI is a variant of 

MISTY1 recommended for Japanese government use by the Cryptography Research 

and Evaluation Committee (CRYPTREC project) [23] in 2003, MISTY1 is 

investigated, too.  

 

Rijndael’s s-box is only used as a reference for comparison with the s-boxes of 

MISTY1 and KASUMI; since Rijndael, selected as Advanced Encryption Standard 

(AES) [5] by the US National Institute of Standards and Technology (NIST) in 2000, 

appears to have an adequate security margin and its security is approved by the society 

of cryptographers.  

 

MISTY1’s, KASUMI’s and RIJNDAEL’s s-boxes are investigated in terms of some 

cryptographic test criteria for Boolean functions appearing in the literature such as 

completeness, avalanche, strict avalanche, nonlinearity, linear approximation table 

(LAT) and differential table distribution (XOR). S-boxes of the FI function, which is 

the core of KASUMI, are then replaced with the s-box of RIJNDAEL. We call this 

new cipher KASUMI-R. Then, FI functions of all the three ciphers are analyzed 

according to the strict avalanche criterion. In addition, the overall performance of 

MISTY1, KASUMI and KASUMI-R is measured by the avalanche weight distribution 

and some of the statistical tests for randomness, based on NIST Statistical Test Suite 

[15].  

 

In Chapter 2, the structures of the block ciphers MISTY1, KASUMI are considered in 

detail. The differences between MISTY1 and KASUMI, and some observations about 

their components are discussed. Moreover, descriptions of the s-boxes are given in this 

chapter. 

 

In Chapter 3, the theory of some well known cryptographic test criteria for Boolean 

functions appearing in the literature; such as completeness, avalanche, strict 

avalanche, nonlinearity, LAT and XOR table distribution are described. 
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In Chapter 4, the s-boxes of MISTY1, KASUMI and RIJNDAEL are investigated 

according to the test criterion defined in Chapter 3. Then, we define a new FI function 

for KASUMI-R. The FI functions of MISTY1, KASUMI and KASUMI-R are 

analyzed according to the strict avalanche criterion. The test results are presented and 

discussed. 

 

In Chapter 5, avalanche weight distribution and two core tests of the NIST Statistical 

Test Suite, monobit test and frequency test within a block, are defined to examine the 

cipher with all components and see its randomness properties. The test results are 

presented and compared. 

  

Chapter 6 summarizes the results of the work done in this thesis. 
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CHAPTER 2 
 

STRUCTURES OF MISTY1 AND KASUMI 
 

 

MISTY1 [13] is an encryption algorithm developed by Mitsubishi Electric and 

submitted to New European Schemes for Signature, Integrity and Encryption 

(NESSIE) project [25]. MISTY1’s security capabilities are later used as the base for 

KASUMI [22], which has become the international encryption standard for the 3rd 

generation mobile phones.  

 

This chapter gives detailed descriptions of MISTY1 in Section 2.1, and followed by 

KASUMI in Section 2.2. Finally, the 7x7 and 9x9 s-boxes of MISTY1 and KASUMI 

are compared in Section 2.3.  

 

2.1 MISTY1 

 

MISTY1, recommended for Japanese government use by the Cryptography Research 

and Evaluation Committee (CRYPTREC project) [23] in 2003, was first published in 

1996. It uses Feistel structure, which takes a 64-bit plaintext and a 128-bit key to 

produce a 64-bit output. It is recommended for a multiple of 4 rounds typically as 8 

rounds. The entire algorithm is built from recursive small components. This recursive 

design adds a lot of complexity to the cipher, making its analysis harder. MISTY1 is 

the first block cipher designed for practical use with provable security against 

differential and linear cryptanalysis [12].  

 

Let E  be the encryption function of MISTY1 64}1,0{:E x 64128 }1,0{}1,0{ →  that takes 

the two inputs a 64-bit plaintext P and a 128-bit key K, to return a 64-bit ciphertext 

),(: KPEC . 

 

),( KPE  decomposes into subfunctions FL and FO, both of which operating on half of 

the input text. ),( KLpFL  is a linear function which maps a 32-bit block p to a 32-bit 
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sequence, using a 32-bit key KL. The other subfunction ),,( KIKOpFO  is not linear 

but also maps a 32-bit block p to a 32-bit block, using a 64-bit key KO and a 48-bit 

key KI.  

 

Encryption process is summarized as follows: 

00 || RLP =                                                                  (2.1.1) 

For 7,5,3,1=i  

( )
( ) ( )

( )
TR

KIKOLFORL

LT

KIKORFOKLRFLL

KLLFLR

i

iiiii

i

iiiiii

iii

=
⊕=

=
⊕=

=

++

+−

−

11

11

1

,,

,,,

,

                    (2.1.2) 

For 8,6,4,2=i  

( )
1

1 ,,

−

−

⊕=
=

iii

iiii

RRL

KIKOLFOR
                                                   (2.1.3) 

where the output is 88 || RLC =  (2.1.4), and P : 64-bit, iL : 32-bit, iR : 32-bit, iKL : 

32-bit, iKI : 48-bit, iKO : 64-bit, C : 64-bit.  

 

Encryption process for two rounds can be seen in Figure 2.1. 

 

Figure 2.1 Two Rounds of MISTY1 Encryption Process  
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The main component of the ),,( KIKOpFO  is called the FI function, which maps 16 

input bits to 16 output bits. ),( KIqFI  function, where q is the 16-bit input and KI is 

the 48-bit key, uses two s-boxes, a 7x7 s-box, 7S , and a 9x9 s-box, 9S . The keys KL, 

KO and KI are produced from the initial key K as described in Section 2.1.3. 

 

2.1.1 FO Function of MISTY1 

 

The ),,( KIKOpFO  function, which is the data randomizing part of MISTY1, maps a 

32-bit input p to a 32-bit output. The function uses two subkeys, a 64-bit iKO  and a 

48-bit iKI . The main part of the FO function shown in Figure 2.2 is the ),( KIqFI  

function, where q is a 16-bit word. Since each branch of the ),,( KIKOpFO  function 

works on 16-bit words, 00 || RLp = , 4321 |||||| iiiii KOKOKOKOKO =  and 

321 |||| iiii KIKIKIKI =  are all divided into 16-bit words. Then, ),,( KIKOpFO  is 

defined as follows: 

 

For 1=j  to 3 do 

( )
1

11 ,

−

−−

=

⊕⊕=

jj

jijijjj

RL

RKIKOLFIR
   (2.1.5) 

  ( ) 343 || RKOLC i⊕=                                                            (2.1.6)  

where C  is the output.   
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Figure 2.2 FO function of MISTY1 

 

The FI function is the core of the FO function. It maps 16 input bits to 16 output bits 

and uses 7x7 s-box, 7S , and 9x9 s-box, 9S . S-boxes are incorporated into the lowest 

level of a recursively constructed Feistel structure. They are designed to obtain good 

resistance to linear and differential attacks. 7S  comprises a set of cubic functions, 9S  

comprises a set of quadratic functions. In selecting 7S  and 9S , designers of MISTY1 

have used the following criteria: 

1. Their average linear/differential probability must be minimal. 

2. Their algebraic degree should be as high as possible. 

 

Details of descriptions of the s-boxes 7S  and 9S  are given in Section 2.3. The FI 

function also uses two additional functions, which are designated by the ZE (i.e., zero 

extend) function that appends two zeros before the most significant bit of a 7-bit string 

and the TR (i.e., truncate) function that discards two most significant bit of a 9-bit 

string. 

 

The 16-bit input of the ),( KIqFI  function is split into two unequal components, a 9-

bit left half and a 7-bit right half, where 00 || RLq = . Similarly, the subkey ijKI  is split 
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into a 7-bit component 1ijKI  and a 9-bit component 2ijKI , where 21 || ijijij KIKIKI = . 

The ),( KIqFI  function is then defined as follows: 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]
23

223

212

1112

01

001

9

7

9

RL

RZELSR

KIRL

KIRTRLSR

RL

RZELSR

ij

ij

=
⊕=

⊕=

⊕⊕=
=

⊕=

   (2.1.7) 

               33 || RLC =                                                     (2.1.8)  

where C  is the output and 7S  and 9S  are the s-box functions. The FI function is 

depicted in Figure 2.3. 

 

Figure 2.3 FI Function of MISTY1 
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2.1.2 FL Function of MISTY1 

 

The ),( KLpFL  function is a linear function used for the diffusion, i.e., it makes 

individual bits harder to follow through the rounds. Since this function is linear as 

long as the key is fixed, it does not affect the average linear/differential probability of 

the entire algorithm. 

 

The ),( KLpFL  function receives a 32-bit input p and a 32-bit subkey iKL . It gives a 

32-bit output C. 

The input is split this into two 16-bit halves, where 00 || RLp = . Similarly, subkey 

iKL  is divided two 16-bit halves, where 21 || iii KLKLKL = . Then, the FL function is 

defined as follows : 

02

010

)(

)(

LKLCC

RKLLC

iRL

iR

⊕∪=
⊕∩=

   (2.1.9) 

RL CCC ||=        (2.1.10) 

where ∩  and ∪  are the logical AND and OR operations, respectively. The FL 

function is shown in Figure 2.4. 
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Figure 2.4 FL Function of MISTY1 

 

2.1.3 Key Schedule of MISTY1 

 

Key schedule comprises 8 consecutive applications of the FI function. Firstly, the 128-

bit key, K , is split into eight parts, 821 ||...|||| KKKK = ,  each of length 16-bit. Then, 

iK  for 81 ≤≤ i  is considered as the input to FI (see Figure 2.3) with )8(mod1+iK  acting 

as the key to the FI function, the 16-bit output from each FI function is extra keys, iK ′ , 

81 ≤≤ i . These are used in the FI and FL functions. Key schedule, which uses FI 

function, is shown in Figure 2.5.  
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Figure 2.5 Key Schedule of MISTY1 

 

Round subkeys, KL, KO, KI,  are demonstrated in Table 2.1 for the thi  round. First 

two rows show 32 bits of KL, the next four and the last three rows denote the 64 and 

48 bits of KO and KI, respectively. Note that all KI’s are the output of the FI function. 

 

Table 2.1 Round Subkeys of MISTY1 

Subkeys thi  Round Output 

1iKL  
2

1+iK  (odd i ) 
2

2
+

′iK  (even i ) 

2iKL  )8(mod6
2

1
+

+′iK (odd i ) 
4

2
+iK   (even i ) 

1iKO  iK  

2iKO  )8(mod2+iK  

3iKO  )8(mod7+iK  

4iKO  )8(mod4+iK  

1iKI  )8(mod5+′iK  

2iKI  )8(mod1+′iK  

3iKI  )8(mod3+′iK  
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2.2 KASUMI 

 

Within the security architecture of the Third Generation Partnership Project (3GPP) 

system there are two standardized algorithms: A confidentiality algorithm f8 and an 

integrity algorithm f9 [24]. Each of these algorithms is based on the KASUMI 

algorithm. KASUMI, eight round Feistel network, is a block cipher that produces a 

64-bit output from a 64-bit input under the control of a 128-bit key. The differences 

between MISTY1 and KASUMI are also emphasized below while explaining 

KASUMI’s structure. 

 

2.2.1 FO Function of KASUMI 

 

The basic structure of KASUMI is very similar to MISTY1. KASUMI also consists of 

the subfunctions FL, FO and FI that are used in conjunction with associated subkeys 

KL, KO and KI.  The overall structure of KASUMI is a 64-bit permutation composed 

of eight rounds of Feistel network. The round function consists of a non-linear mixing 

function FO and linear mixing function FL.  

 

Let ),( KPE  be the encryption function of KASUMI 64}1,0{:E x 64128 }1,0{}1,0{ →  

that returns a 64-bit output ),(: KPEC . The encryption function (see Figure 2.6) is 

slightly different from MISTY1’s and summarized as follows: 

 

Encryption process of KASUMI can be summarized as follows: 

00 || RLP =                                                                 (2.2.1) 

For 7,5,3,1=i  

( )

TR

TRL

LT

KIKOKLRFLFOL

LR

i

ii

i

iiiii

ii

=
⊕=

=
=
=

−

−

,),,( 1

1

                             (2.2.2) 

For 8,6,4,2=i  
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( )( )

TR

TRL

LT

KLKIKORFOFLL

LR

i

ii

i

iiiii

ii

=
⊕=

=
=
= −

,,,
1

                                (2.2.3) 

where the output is 88 ||RLC =   (2.2.4) and P : 64-bit, iL : 32-bit, iR : 32-bit, iKL : 32-

bit, iKI : 48-bit, iKO : 48-bit, C : 64-bit. 

 

In KASUMI (see Figure 2.6), the FL function precedes FO function in the odd rounds 

and it follows the FO function in the even rounds. On the other hand, in MISTY1, the 

FL function is used in both branches of the odd rounds; however, it is not used at all in 

the even rounds (see Figure 2.1).  

 

Figure 2.6 Two Rounds of KASUMI Encryption Process 

 

The ),,( KIKOpFO function of the KASUMI is almost the same as the 

),,( KIKOpFO  of MISTY1 as described in Section 2.1.1, except for the missing last 

step i.e., Eq. 2.1.6. For this reason, the required key length for KI is 48 bits for 

KASUMI whereas it is 64 bits for MISTY1. 
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The 48-bit subkeys, iKO  and iKI  are subdivided into three 16-bit subkeys, where 

321 |||| iiii KOKOKOKO =  and 321 |||| iiii KIKIKIKI = . Then, the FO function is 

defined as follows : 

For 1=j  to 3 do 

( )
1

11 ,

−

−−

=

⊕⊕=

jj

jijijjj

RL

RKIKOLFIR
   (2.2.5)  

                                   33 || RLC =         (2.2.6) 

where C  is the output. 

 

Moreover, the ),( KIqFI  function (see Figure 2.8) uses slightly different s-boxes, 

which are also 7x7 and 9x9 called 7S  and 9S  (see Section 2.3). 

The FO function of KASUMI is shown in Figure 2.7. 

 

Figure 2.7 FO function of KASUMI 

 

The second difference of KASUMI’s FI function is its additional round (see 4th round 

in Figure 2.8) as compared to MISTY1’s (see Figure 2.3).  
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Using the definitions given for MISTY1, the FI function of KASUMI is defined as 

follows : 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]334

34

23

223

212

1112

01

001

7

9

7

9

RTRLSL

RR

RL

RZELSR

KIRL

KIRTRLSR

RL

RZELSR

ij

ij

⊕=
=
=

⊕=

⊕=

⊕⊕=
=

⊕=

   (2.2.7) 

               44 || RLC =                                                     (2.2.8)  

where C  is the output.  

 

Figure 2.8 FI function of KASUMI 
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2.2.2 FL Function of KASUMI 

 

FL function is quite similar to the MISTY1’s. The only difference (see Figure 2.7) is 

the rotation operation ROT, which rotates its input one bit to left. Using the previously 

defined input and key vectors, the ),( KLpFL  function is defined as follows: 

02

010

)(

)(

LKLCROTC

RKLLROTC

iRL

iR

⊕∪=
⊕∩=

   (2.2.9) 

RL CCC ||=         (2.3.10) 

where the output is C  and,  ∩  and ∪   are the logical AND and OR operations, 

respectively. 

 

FL function in both MISTY1 and KASUMI has the property that for any subkey iKL , 

an input of 00 || RLP = . 1610 )0...00( xL = , 1610 )1...11( xR =  always give an output of all 

1’s. Hence for some round inputs, some of the key bits in iKL  can be changed without 

having any effect on the output of that round. This can be used to guarantee a zero 

difference at the end of the first round. Small changes to the input to FL function only 

make small output changes.   

 

Figure 2.9 FL function of KASUMI 

 

 

 



 18 

2.2.3 Key Schedule of KASUMI 

 

The subkeys KL, KO and KI of KASUMI are produced using the original 128-bit key 

K, as shown in Table 2.2. Each column of Table 2.2 indicates the keys used for thi  

round. First two rows denote the 32 bits of KL, the next and the last three rows show 

the 48 bits of KO and KI, respectively. l<<<  is equal to the rotation operation, which 

rotates its input l -bit to left. 

  

The 128-bit key K  is subdivided into eight 16-bit values 821 ||...|||| KKKK = . A 

second array of subkeys, K ′  is derived from K  by applying for 81 ≤≤ j , 

jjj CKK ⊕=′ , where jC  is the constant value defined in Table 2.3 in hexadecimal 

form.  
 

        Table 2.2. Round Subkeys of KASUMI 

Subkeys thi  Round Output 

1iKL  1<<<iK  

2iKL  )8(mod2+′iK  

1iKO  5)8(mod1 <<<+iK  

2iKO  8)8(mod5 <<<+iK  

3iKO  13)8(mod6 <<<+iK  

1iKI  )8(mod4+′iK  

2iKI  )8(mod3+′iK  

3iKI  )8(mod7+′iK  

 

Table 2.3. Constants for Key Schedule of KASUMI 

1C  2C  3C  4C  5C  6C  7C  8C  

0x0123 0x4567 0x89AB 0xCDEF 0xFEDC 0xBA98 0x7654 0x3210 
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The 128 bit additional bits are computed by using a linear relation, but the outcome of 

256 bit is used a little bit differently, as the bits chosen as round subkeys are rotated by 

several constants in some cases. 

 

In MISTY1 the 128-bit key is used to compute 128-bit additional key using FI 

function. The outcome of 256-bit is used again and again in various orders as the 

round subkeys. 

 

2.3 Descriptions of 7x7 and 9x9 S-boxes 

 

The s-boxes 7S  and 9S  are obtained as affine transforms of power functions over the 

corresponding fields, with Kasami’s and Gold’s exponents. 7S  and 9S  are designed 

with function 81xx →  in 7
2F  and 5xx →  in 9

2F , respectively.  

 

Firstly, the 81th and 5th power of the element in 7
2F  and 9

2F  is found for every nonzero 

element, respectively. Then, the result is transformed by an affine transformation to 

produce the output. The effect of the affine transform is to remove fixed points.  

 

2.3.1 MISTY1’s and KASUMI’s 7x7 S-boxes 

 

Definition 2.1 : Kasami’s exponents [6] implies that for ,12 += mn  mk ≤≤2  and 

1),gcd( =nk , the power function dx , where )12mod()122( 2 −+−= nkkd  is almost 

perfect nonlinear. Moreover, exponent 'd  is equivalent to d  if there is an integer t  

such dd t2=′  i.e., the power functions, dx  and dx ′  have the same properties.  

 

For 7=n , 13122 24 =+−=d  is a Kasami exponent with 2=k . Then, with 

dd 42=′ , one can design 7S  with )12mod()122(281 7244 −+−= . The Hamming 

weight of d , the degree of 7S , is 3 since 024 22213 +−= . 7S  is constructed by 

composing two transformations : 

i) Take the 81th power of the element in 7
2F . 

ii)  Apply the affine transformation : 
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 iiiiii cxxxxy ⊕⊕⊕⊕= +++ 7mod)6(7mod)4(7mod)3( , for 70 <≤ i , where ix  is the 81th 

power of the element in 7
2F  and c  is with value (0011011) for MISTY1. 

 

iii cxy ⊕= + 7mod)6( , for 70 <≤ i , where ix  is the 81th power of the element in 7
2F  and 

c  is with value  (0110110) for KASUMI. 

 

Calling an element 7
2Fx ∈ , )...( 60 xxx =  the s-box output is cxAy +⋅=  with 

)...( 60 ccc =  if x  is equal to the 81th power of the s-box input. 

 

An affine transformation can be expressed in the matrix form for MISTY1 in (2.3.1) 

and for KASUMI in (2.3.2) as : 
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  (2.3.2) 

 

2.3.2 MISTY1’s and KASUMI’s 9x9 S-boxes 

 

Definition 2.2 : Gold’s exponents [6] implies that for ,12 += mn  mk ≤≤1  and 

1),gcd( =nk , the power function dx , where )12mod()12( −+= nkd  is almost perfect 

nonlinear.  

 

Gold exponent is calculated to design 9S  such that 12)12mod(22516 2929 +=−+= , 

since for 9=n , 5122 =+=d  is a Gold exponent with 2=k . 9S  is constructed by 

composing two transformations : 
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i) Take the 5th power of the element in 9
2F . 

ii)  Apply the affine transformation : 

iiiiii cxxxxy ⊕⊕⊕⊕= ++++ 9mod)8(9mod)6(9mod)4(9mod)2( , for 90 <≤ i , where ix  is the 

5th power of the element in 9
2F  and c  is with value (110000111) for MISTY1. 

 

iiii cxxy ⊕⊕= ++ 9mod)6(9mod)3( , for 90 <≤ i , where ix  is the 5th power of the element 

in 9
2F  and c  is with value  (111001010) for KASUMI. 

 

Calling an element 9
2Fx ∈ , )...( 80 xxx =  the s-box output is cxAy +⋅=  with 

)...( 80 ccc =  if x  is equal to the 5th power of the s-box input. 

 

Matrix form of the 9x9 s-boxes of MISTY1 and KASUMI are given in (2.3.3) and 

(2.3.4), respectively: 
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CHAPTER 3 
 

TEST CRITERIA FOR BOOLEAN FUNCTIONS 

 

Shannon presented the principles of diffusion and confusion in 1949 [10]. To design a 

cipher according to the principle of diffusion means that one can design it to ensure 

that “the statistical structure of plaintext which leads to its redundancy is dissipated 

into long term statistics”. The higher the diffusion, the more output bits can be 

affected by a certain input bit. 

 

 To design a cipher according to the principle of confusion means that one can design 

it so as “to make the relation between the simple statistics of ciphertext and the simple 

description of key a very complex and involved one”. Ideally, every bit in the key 

influences every bit of the ciphertext and this dependence appears to be random. The 

security of cryptographic algorithms depends upon the strength, namely the diffusion 

and confusion properties of the constituting Boolean functions. In this chapter some 

test criteria for measuring cryptographic strength of Boolean functions are reviewed. 

 

3.1 Boolean Functions [20] 

 

A Boolean function produces a single bit result for each possible combination of 

values form many Boolean variables, namely a Boolean function of n  variables is a 

function 22: FFf n → . A vector Boolean function mn FFxS 22:)( → , where 1>n  and 

1>m  maps n  bits to m  bits. 

 

Definition 3.1 : If a Boolean function is in the form cxaxf
n

i
ii ⊕⋅=∑

=1

)( , where 

2, Fcai ∈  for ni ≤≤1 , then )(xf  is  called an affine function. )(xf  is  called a linear 

function, )(xla , if 0=c . Using the dot product xa •  of the vectors ),...,( 1 naaa =  

and ),...,( 1 nxxx = , xaxla •=)( . The n -bit x  also corresponds to an integer 

120 −≤≤ nx  
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The truth table of Boolean function 22:)( FFxf n →  is found by evaluating )(xf  for 

all possible values of x , where x  is ordered lexicographically, i.e., with respect to the 

ascending order of the integer represented by x . 

 

Definition 3.2 : The Hamming distance between 22:)( FFxf n →  and 22:)( FFxg n →  

is the function  =))(),(( xgxfd H  # )}()(|{ 2 xgxfFx n ≠∈     (3.1)  

and  n
H xgxfd 2))(),((0 ≤≤ . 

 

Definition 3.3 : A Boolean function 22:)( FFxf n →  is said to be balanced if its truth 

table contains as many 0’s as 1’s. 

 

Definition 3.4 : The autocorrelation function of 22:)( FFxf n →  is defined for all 

nFd 2∈  as 

∑
∈

⊕−−=
nFx

dxfxf
f dr

2

)()( )1()1()(     (3.2) 

  

Definition 3.5 : The Walsh-Hadamard transform of the Boolean function 

22:)( FFxf n →  is defined for all nFa 2∈  as 

∑
∈

•−−=
nFx

xaxf
f aW

2

)1()1()( )(  ,     (3.3) 

 showing the correlation between )(xf  and the linear function, xaxla •=)( .  

 

Remark 3.1 :  Let 22:)( FFxg n →  and )(),( xgxf  have ))(),(( xgxfdH  different 

elements in their truth tables. By combining (3.1) and (3.3), we get 

( ) ))(),((22)1))((),(())(),((2)1()1(
2

)()( xgxfdxgxfdxgxfd H
n

HH
n

Fx

xgxf

n

−=−+−=−−∑
∈

Now, by replacing )(xg  with )(xla  one can obtain 

))(),((d22)1()1()( H
)()(

2

xlxfaW a
n

Fx

xlxf
f

n

a −=−−= ∑
∈

, therefore  

),(( xfdH 2

)(
2))( 1

aW
xl fn

a −= −         (3.4) 
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3.2 Cryptographic Properties of Boolean Functions 

3.2.1 Completeness and Avalanche Criterion 

 

The property of completeness was introduced by Kam and Davida [11]. If a 

cryptographic transformation is complete, then each output bit must depend on all of 

the input bits. 

 

Definition 3.6 : Let nn FFxS 22:)( → . If for all },1|),{( njiji ≤≤ , there is at least one 

pair of input vectors n
i Fxx 2, ∈  that differ in bit i , and )(xS  and )( ixS  differ at least 

in bit j , then the vector Boolean function is complete.  

 

Related to the autocorrelation function given by (3.2), the idea of avalanche effect was 

defined by Feistel [8]. For a given transformation to exhibit the avalanche effect, 

almost one half of the output bits should change whenever a single input bit is 

complemented. More formally, a vector Boolean function nn FFxS 22:)( →  satisfies 

the avalanche criterion if whenever an input bit is changed, half of the output bits 

change on the average.  

 

Let ))(),...,(),(()()()( 21 xaxaxaexSxSxA iiii e
n

ee
i

e =⊕⊕=  be the avalanche vector for 

n
i Fe 2∈  such that  1)( =iewt . Then, the avalanche criterion is satisfied when the 

parameter defined in [1] as 

∑∑
= ∈

=
n

j Fx

e
ji xaeAVAL

n

i

1

)()(
2

     (3.5) 

is close to 12 −⋅ nn  for all i , ni ≤≤1 . )(
2

1
)(

1 2

xa
n

eAVAL
n

j Fx

i
jni

n
∑∑

= ∈⋅
=  is called the 

normalized avalanche parameter. If it is close to 2
1  for all i , then nn FFxS 22:)( →  

satisfies the avalanche criterion. 



 25 

 

3.2.2 Strict Avalanche Criterion 

 

The criteria of completeness and the avalanche effect were combined to define a new 

property called the strict avalanche criterion (SAC) by Webster and Tavares [19].  

 

Definition 3.7 : Let nn FFxS 22:)( → . Consider the input vectors n
i Fxx 2, ∈  that differ 

only in bit i , ni ≤≤1 .  Then, )()()( i
e xSxSxA i ⊕= . If S  is to meet SAC, the 

probability that each bit in )(xA ie  is equal to 1 should be one half over the set of all 

possible input vectors, n
i Fxx 2, ∈ , for all values of i . 

 

If a vector Boolean function, nn FFxS 22:)( → , is to satisfy the Strict Avalanche 

Criterion, the change of the thi  input bit results in the change of the thj  output bit 

exactly for half of the input vectors, so the probability that the thj  output bit is 

complemented is 2
1 .  

 

By using the autocorrelation function, defined by (3.2) one can express the Strict 

Avalanche Criterion (SAC) as follows :  

 

Definition 3.8 : Let nFx 2∈  and 22:)( FFxf n →  be a Boolean function with the auto 

correlation function )( if er . )(xf  satisfies the SAC if 

0)1()1()(
2

)()( =−−= ∑
∈

⊕

n

i

Fx

exfxf
if er  for all n

i Fe 2∈  such that 1)( =iewt , where 

ni ≤≤1 . Namely, for the Boolean function which satisfy SAC, )()( iexfxf ⊕⊕  is 

balanced for all n
i Fe 2∈  such that 1)( =iewt , where ni ≤≤1 .  

 

The original definition of SAC can be extended to an arbitrary input difference vector 

}0{2 −∈ nFi  Let nn FFxS 22:)( →  be a vector Boolean function and  

))(),...,(),(()()()( 21 xaxaxaixSxSxA i
n

iii =⊕⊕=  be the avalanche vector for any 

}0{2 −∈ nFi . Then,  if  
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∑
∈

=
nFx

i
j xajiSAC

2

)(),(      (3.6) 

is close to 12 −n  for all nj ≤≤1 , then the vector Boolean function, nn FFxS 22:)( → , 

satisfies the SAC.  

 

The measure i
jD , normalized distance to SAC, is defined in [1] and it can be used to 

indicate how close the vector Boolean function )(xS  is to satisfy SAC. 














−= ∑

∈

−
−

nFx

i
j

n
n

i
j aD

2

1
1

2
2

1
    (3.7)         

 

If the strict avalanche criteria is exactly satisfied, then 0=i
jD  for all output bits. In 

the worst case 1=i
jD . If SAC is satisfied, then the completeness and avalanche 

criterion are also satisfied. However, the satisfaction of the avalanche criterion does 

not ensure that SAC is satisfied.  

 

3.2.3 Nonlinearity 

 

Nonlinearity is one of the most critical indicators of the cryptographic strength of a 

Boolean function.  

 

Definition 3.9 : The nonlinearity of a Boolean function :)(xf 22 FF n →  is the 

minimum distance of )(xf  to the set of affine functions [20]. 

 

))(),((min
,

cxaxfdN H
ca

f ⊕•= = ),(({min xfdH
a

)),(xla ),(( xfd H ))}(xla , (3.8) 

 

where •  denotes the dot product,  )(xla  is a linear function and 1)()( ⊕= xlxl aa . 

 

Using (3.4) in (3.8) 

),(({min xfdN H
a

f = ),al ),(( xfd H )}al        

       ,)1()1(
2

1
2{min

2

)()(1 ∑
∈

− −⋅−−=
n

a

Fx

xlxfn

a
})1()1(

2

1
2

2

)()(1 ∑
∈

− −⋅−−
n

a

Fx

xlxfn  
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       |)(|max
2

1
2

2

1 aW f
Fa

n

n∈

− −= ,        (3.9) 

where )(aW f  is the Walsh-Hadamard transform of the Boolean function )(xf  given 

by Definition 3.5.  

 

The nonlinearity of a Boolean function :)(xf 22 FF n →  can be extended to vector 

Boolean functions nn FFxS 22:)( → , ))(),...,(()( 1 xfxfxS n=  by 

)}(|{min
}0{2

xScNN f
Fc

S n
•=

−∈
, where }0{2 −∈ nFc  is called a masking vector. 

 

3.2.4 Linear Approximation Table (LAT) Distribution  

 

Linear cryptanalysis [12] is a known plaintext attack that is based on effective linear 

approximate relations between the plaintext, ciphertext and the key. The linear 

approximation tables of the vector Boolean functions which constitute the block 

cipher are exploited for this purpose. LAT is an important tool to measure the security 

of s-boxes against linear cryptanalysis. 

 

Definition 3.7 : Let nFyx 2, ∈  and nn FFxS 22:)( → . Each element of the Linear 

Approximation Table is defined as 

=
∈

),(
2,

caLAT
nFca

# =−•=• −12})(|{ nxaxScx # 12})(|{ −−•=• nxaxScx            (3.10) 

            = # 12)}()(|{ −−=• n
a xlxScx  

                    ),((2 xScd H
n •−= 12))( −− n

a xl  

           ),((2 1 xScd H
n •−= − ))(xla           (3.11) 

where a  and c  are respectively the row and column indices and •  denotes the dot 

product of vectors.  

 

Using (3.4), the distance between )(xSc •  and )(xla ,  and (3.11), we have  

),(( xScd H • ),(2)(
2

1
2))(

2,

1
)(

1 caLATaWxl
nFca

n
xSc

n
a

∈

−
•

− −=−= , and 

 
2

)(
),( )(

}0{, 2

aW
caLAT xSc

Fca n

•

−∈
= .  
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Remark 3.2 : By combining nonlinearity (see 3.9) and LAT, we obtain 

              f
n

Fca
NcaLAT

n
−= −

−∈

1

}0{,
2|),(|max

2

            (3.12) 

 

An arbitrary linear combination of the output bits, )(xSc •  is most correlated with an 

arbitrary linear combination of the input bits, whenever ),(( xScd H • 12) −=• nxa . If 

this distance is 0, maximum positive correlation occurs. Similarly, if this distance is 

n2 , )(xSc •  and xa •  have maximum negative correlation. Therefore, the ),(
2,

caLAT
nFca ∈

 

defined by (3.11) also measures how close the two functions )(xSc •  and xa •  are to 

the ideal situation of being uncorrelated. Normalized values n

Fca
caLAT

n
2/),(

2, ∈
 can also be 

considered as the bias of the probability })({ xaxScP •=•  from the ideal probability 

of ½. The reason as follows: 

n
H xaxScd

xaxScP
2

)),((
})({

••=•≠•  

−=•≠• nn xaxScP 2})({2 # })(|{ xaxScx •=•  

( )
2

)(
2})({12 )(1

aW
xacScP xScnn •− −=•=•−  

n

Fca

n

xSc
caLATW

xaxScP
n

2

),(

2

1

22

1
})({ 2,

1

)( ∈
+

• +=+=•=•  

Hence, the bias of the probability })({ xaxScP •=•  is 
 

n

Fca
caLAT

xaxScP
n

2

),(

2

1
})({ 2, ∈=−•=•    (3.13) 

 

Probability bias (3.12) varies in the interval [-1/2, 1/2] since 

1

}0{,
2|),(|max

2

−

−∈
= n

Fca
caLAT

n
. Large elements of LAT are not desired since they indicate 

high probability of linear relations between the input and the output. 

 

3.2.5 Exclusive or –XOR Table Distribution 

 

Differential cryptanalysis [2] is a chosen plaintext attack, which uses the propagation 

of input differences to output differences in iterated transforms. In other words, it 

exploits the high propagation probability of certain occurrences of plaintext 
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differences to the last round input difference of the cipher. Main part of the differential 

cryptanalysis is making XOR tables of the vector Boolean functions. XOR table 

contains the distribution on the differential output.  

 

Definition 3.8 :Let nFyx 2, ∈  and nn FFxS 22:)( → . Let two inputs to the system be 

xx ′′′,  with the corresponding outputs yy ′′′,  respectively. The input and output 

differences are given by xxx ′′⊕′=∆  and yyy ′′⊕′=∆ , respectively. Then, XOR 

table can be constructed by using 
 

                 =∆∆ ),( yxXOR # })()(|{ yxxSxSx ∆=∆⊕⊕                        (3.14) 

 

The rows of the matrix, x∆ , represent the change in the output  of the s-box. The sum 

of all values in a row or a column is n2 . The parameter δ=∆∆
≠∆∆

),(max
0,

yxXOR
yx

 is 

called differential uniformity. XOR table of an s-box gives information about the 

security of the block cipher against differential cryptanalysis. If differential uniformity 

is large, this is an indication of an insecure block cipher.  

 

The main difference from LAT is that XOR table distribution involves comparing 

XOR of the two inputs to the XOR of the corresponding outputs. In LAT, we try to 

find linear relationship between a subset of input and output bits. 

 

One can find resemblances between the definition of SAC and XOR table distribution. 

SAC is useful to get an idea when input bits are changed how often output bits are 

affected. XOR table represents when the input bits are changed, the number of 

occurrences of the corresponding output difference for given input difference. In other 

words, in XOR table one finds the number of output differences, in SAC one 

calculates the number of 1’s in each bit column for all output differences.  

 

Mentioned criteria are used to test the s-boxes of block ciphers. They are not very 

practical for application to the overall cipher. Due to this reason, Chapter 5 is 

organized to test in terms of avalanche and randomness criterion the overall cipher. 
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CHAPTER 4 
 

S-BOX TEST RESULTS FOR MISTY1, KASUMI AND 

RIJNDAEL 

 

The resistance of block ciphers to cryptanalytic attacks depends heavily on their 

diffusion and confusion properties. The overall nonlinearity of a cipher is usually 

provided by the s-boxes, which should be chosen carefully.  

 

In this chapter, we investigate the cryptographic strength of the s-boxes of MISTY1, 

KASUMI, and RIJNDAEL, in terms of linear approximation table, XOR table 

distributions and the strict avalanche criterion. These s-boxes are of sizes 7x7 and 9x9 

that are described in section 2.4, 8x8 s-box of RIJNDAEL explained in section 4.4.1. 

Then, we consider the 16x16 FI function used in MISTY1 and KASUMI to find its 

strict avalanche characteristics. We finally replace the s-boxes in the FI function of 

KASUMI with RIJNDAEL’s s-box. Calling the new cipher KASUMI-R, we compare 

the FI functions of MISTY1, KASUMI and KASUMI-R in terms of their strict 

avalanche characteristics. 

 

4.1 Test Results of LAT Distribution 

 

The LAT is a matrix of size 128x128 for 7x7 s-boxes, 256x256 for 8x8 s-boxes and 

512x512 for 9x9 s-boxes, whose elements are calculated by  
 

=
∈

),(
2,

caLAT
nFca

# 12})(|{ −−•=• nxaxScx  (see 3.11). 

 

Since the size of LAT for these s-boxes is very large, we only present some part of the 

LAT’s corresponding to input and output differences weight one. We then compute 

the nonlinearity measure of each s-box by (see 3.12), i.e., 

|),(|max2
}0{,

1

2

caLATN
nFca

n
f

−∈

− −= .  However, the maximum entries encountered in 
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these partial LAT’s are observed to be the same as the maxima of the overall LAT’s 

for each s-box. 

 

4.1.1 Results for the 7x7 S-boxes of MISTY1 and KASUMI 

 

When we investigate LAT’s of MISTY1’s and KASUMI’s 7x7 s-boxes, it is seen that 

there are only three values {-8, 0, 8}. The number of 8’s is 4060 and the number of -

8’s is 4068 for both of the s-boxes. So, one can say that there is no significant 

difference between these s-boxes.  As an interesting observation we note that the 

number of LAT elements, different from zero is 
















−

−

−−

2

2
22

2

1

222

n

nn
m  for both s-

boxes  and 2

1

,
2|),(|max

2

−

∈
=

n

Fca
caLAT

n
. This gives the nonlinearity of 56 for 7x7 s-boxes, 

by using (3.12). Table 4.1 and Table 4.2 show LAT distributions for the s-boxes of 

MISTY1 and KASUMI for single bit input and output differences.  

 

Table 4.1. LAT Distribution of MISTY1’s 7x7 S-box 

for Single bit Input and Output Differences 

Output Sum 

Input Sum 

1 2 4 8 16 32 64 

1 -8 0 8 0 0 0 0 

2 0 0 0 -8 -8 0 8 

4 0 -8 8 0 0 8 8 

8 0 -8 0 8 0 8 8 

16 -8 0 8 0 0 -8 0 

32 0 0 0 -8 -8 0 0 

64 0 -8 0 0 0 8 8 
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Table 4.2. LAT Distribution of KASUMI’s 7x7 S-box  

for Single bit Input and Output Differences 

Output Sum 

Input Sum 

1 2 4 8 16 32 64 

1 8 0 -8 0 -8 0 0 

2 0 -8 0 8 0 0 0 

4 -8 0 0 0 0 -8 8 

8 8 8 -8 0 -8 0 0 

16 8 0 -8 0 -8 -8 0 

32 0 -8 0 8 -8 0 0 

64 0 0 0 0 0 -8 8 

 

4.1.2 Results for the 9x9 S-boxes of MISTY1 and KASUMI 

 

There are only three values {-16, 0, 16} in the LAT’s of the 9x9 s-boxes. This gives 

the nonlinearity of 240 for 9x9 s-boxes. Table 4.3 and Table 4.4 show partial LAT’s 

for 9x9 s-boxes of MISTY1 and KASUMI. Comparing the two tables, one observes a 

single |16| in each row and column for KASUMI’s 9x9 s-box, which is not the case for 

the first column of Table 4.3. This means that the first output bit of 9x9 s-box of 

MISTY1 is correlated with all 9-bit unit vectors as opposed to KASUMI’s s-box. 

However, this correlation is not large ( %25.6256/16 −=− ). Regarding the whole 

512x512 LAT’s, the number of 16’s is 65400 and the number of -16’s 65416 for both 

of the s-boxes. We again observe that the number of LAT elements, different from 

zero is 










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−
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,
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−

∈
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n
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n
. 
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Table 4.3. LAT Distribution of MISTY1’s 9x9 S-box  

for Single bit Input and Output Differences 

Output Sum 

Input Sum 

1 2 4 8 16 32 64 128 256 

1 -16 0 0 16 0 0 0 0 0 

2 -16 0 0 0 16 0 0 0 0 

4 -16 0 0 0 0 16 0 0 0 

8 -16 0 0 0 0 0 -16 0 0 

16 -16 0 0 0 0 0 0 0 -16 

32 -16 0 0 0 0 0 0 -16 0 

64 -16 0 0 0 0 0 0 0 0 

128 -16 -16 0 0 0 0 0 0 0 

256 -16 0 16 0 0 0 0 0 0 

 

Table 4.4. LAT Distribution of KASUMI’s 9x9 S-box  

for Single bit Input and Output Differences 

Output Sum 

Input Sum 

1 2 4 8 16 32 64 128 256 

1 0 0 0 0 0 0 16 0 0 

2 0 0 16 0 0 0 0 0 0 

4 0 0 0 0 0 -16 0 0 0 

8 -16 0 0 0 0 0 0 0 0 

16 0 0 0 0 16 0 0 0 0 

32 0 0 0 16 0 0 0 0 0 

64 0 -16 0 0 0 0 0 0 0 

128 0 0 0 0 0 0 0 0 16 

256 0 0 0 0 0 0 0 -16 0 

 

4.1.3 Results for the 8x8 S-box of RIJNDAEL 

 

In RIJNDAEL’s 8x8 s-box, as opposed to previous cases, there are various LAT 

values differing between -16 and 16 when we consider the whole LAT. This gives the 



 34 

nonlinearity of 112 by using (3.12). The number of occurrences of ( 1216 − ) LAT 

elements is shown in Figure 4.1.   

LAT Distribution of RIJNDAEL s-boxes
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Figure 4.1 Number of Occurrences of LAT Elements for RIJNDAEL S-box 

 

In Table 4.5 LAT distribution of RIJNDAEL’s 8x8 s-box is demonstrated for input 

and output differences of single weight. 
 

Table 4.5. LAT Distribution of RIJNDAEL’s 8x8 S-box  

for Single bit Input and Output Differences 

Output Sum 

Input Sum 

1 2 4 8 16 32 64 128 

1 12 0 14 12 8 -4 4 12 

2 2 8 2 6 -2 8 -16 -2 

4 -8 2 6 6 12 -16 2 -2 

8 2 2 4 0 12 6 2 4 

16 -12 -2 -6 -2 -8 -10 0 8 

32 6 -10 -2 -12 2 0 -8 12 

64 4 -4 -12 16 6 -8 -12 4 

128 -12 -12 16 14 -8 -12 -4 -4 

 

4.1.4 Comparison of MISTY, KASUMI and RIJNDAEL S-boxes 

 

The main difference between LAT’s of 7x7, 8x8 and 9x9 s-boxes is that, 

RIJNDAEL’s 8x8 s-box has 17 different LAT values, whereas MISTY1’s and 
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KASUMI’s s-boxes have only 3 different values. Table 4.6 shows the distribution 

percentages of LAT elements for the three s-boxes. 
 

Table 4.6. Distribution Percentages of LAT Elements for the Three S-boxes 

S-box Size 

Percentages of 

7x7 

 

8x8 9x9 

0’s 0.50 0.07 0.50 

|2|’s 0 0.18 0 

|4|’s 0 0.14 0 

|6|’s 0 0.15 0 

|8|’s 0.49 0.13 0 

|10|’s 0 0.09 0 

|12|’s 0 0.14 0 

|14|’s 0 0.06 0 

|16|’s 0 0.01 0.49 

 

Maximum bias of the probability )}({ xScxaP •=•  from ½, 
n

Fca
caLAT

n

2

|),(|max
}0{, 2 −∈ , is 

calculated for the three s-boxes, and given in Table 4.7. The maximum probability 

biases for the 7x7 and 8x8 s-boxes are found to be same. On the other hand, 9x9 s-box 

has the best probability bias as observed in Table 4.7. 
 

Table 4.7. Maximum Probability Biases for the Three S-boxes 

S-box Size 7x7 8x8 9x9 

Probability Bias 1/16 1/16 1/32 

 

Nonlinearity, given by |),(|max2
}0{,

1

2

caLATN
nFca

n
f

−∈

− −=  (see 3.12), of the three s-

boxes is shown in Table 4.8. 
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Table 4.8. Nonlinearity for the Three S-boxes 

S-box Size 7x7 8x8 9x9 

Nonlinearity 56 112 240 

 

4.2 Test Results of XOR Table Distribution 

 

The XOR table is a matrix of size 128x128 for the 7x7 s-boxes, 256x256 for the 8x8 s-

boxes and 512x512 for the 9x9 s-boxes, whose elements are calculated by  
 

=∆∆ ),( yxXOR # })()(|{ yxxSxSx ∆=∆⊕⊕  (see 3.14), 
 

where nn FFxS 22:)( → , ,x ,x∆ nFy 2∈∆  and ,x∆ y∆  are the input and output 

differences, respectively. Because of the same reason of LAT, the size of XOR table 

for s-boxes is very large, we only give partial XOR tables corresponding to input and 

output differences of single weight. 

 

4.2.1 Results for the 7x7 S-boxes of MISTY1 and KASUMI 

 

When we compare the 7x7 s-boxes of MISTY1 and KASUMI according to their XOR 

table distributions, XOR tables contain only two values {0, 2}. Considering the overall 

XOR tables, the number of 0’s and 2’s except the first row is equal and can be defined 

as 12 −n . Then, one can say that there is no significant difference between these s-

boxes. Table 4.9 and Table 4.10 show XOR table distributions for the s-boxes of 

MISTY1 and KASUMI for single bit input and output differences. 
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Table 4.9. XOR Table Distribution of MISTY1’s 7x7 S-box  

for Single bit Input and Output Differences 

 
1 2 4 8 16 32 64 

1 2 0 0 0 0 0 0 

2 0 0 0 2 0 0 0 

4 0 0 0 0 0 2 0 

8 0 0 0 0 0 2 2 

16 0 0 2 0 0 2 2 

32 0 0 2 0 2 2 2 

64 0 2 2 0 2 2 2 

 

Table 4.10. XOR Table Distribution of KASUMI’s 7x7 S-box  

for Single bit Input and Output Differences 

 

 
1 2 4 8 16 32 64 

1 2 0 2 2 2 2 0 

2 2 0 0 2 2 2 0 

4 2 0 0 0 2 2 0 

8 2 0 0 0 2 0 0 

16 2 0 0 0 0 0 0 

32 0 2 0 0 0 0 0 

64 0 0 0 0 0 0 2 

 

4.2.2 Results for the 9x9 S-boxes of MISTY1 and KASUMI 

 

Similar to previous case, there are only two values {0, 2} in their XOR tables. 

Moreover, we again observe that regarding the whole 512x512 XOR tables the 

number of 0’s and 2’s is equal for both s-boxes as 12 −n . XOR table distributions of 

MISTY1 and KASUMI’s 9x9 s-boxes for input and output differences of single 

weight are shown in Table 4.11 and Table 4.12. It is observed that there is only one 2 

in each row and column for KASUMI’s 9x9 s-box which is not the case for the 

seventh row of Table 4.11. The seventh input difference of 9x9 s-box of MISTY1 is 

y∆
 

 

x∆
 

y∆   

x∆
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correlated with all output differences except the first one in Table 4.11 on the contrary 

to the s-box of KASUMI. However, this correlation is not large. 
 

Table 4.11. XOR Table Distribution of MISTY1’s 9x9 S-box  

for Single bit Input and Output Differences 

 

 
1 2 4 8 16 32 64 128 256 

1 0 0 0 2 0 0 0 0 0 

2 0 0 0 0 2 0 0 0 0 

4 0 0 0 0 0 2 0 0 0 

8 0 0 0 0 0 0 2 0 0 

16 0 0 0 0 0 0 0 0 2 

32 0 0 0 0 0 0 0 2 0 

64 0 2 2 2 2 2 2 2 2 

128 0 2 0 0 0 0 0 0 0 

256 0 0 2 0 0 0 0 0 0 

 

Table 4.12. XOR Table Distribution of KASUMI’ 9x9 S-box  

for Single bit Input and Output Differences 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
1 2 4 8 16 32 64 128 256 

1 0 0 0 0 0 0 2 0 0 

2 0 0 2 0 0 0 0 0 0 

4 0 0 0 0 0 2 0 0 0 

8 2 0 0 0 0 0 0 0 0 

16 0 0 0 0 2 0 0 0 0 

32 0 0 0 2 0 0 0 0 0 

64 0 2 0 0 0 0 0 0 0 

128 0 0 0 0 0 0 0 0 2 

256 0 0 0 0 0 0 0 2 0 

y∆   

x∆
 

y∆   

x∆
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4.2.3 Results for the 8x8 S-box of RIJNDAEL 

 

In RIJNDAEL’s 8x8 s-box, as opposed to the previous cases, there are three XOR 

values differing between 0 and 4. Considering overall XOR table, every row and 

column except the first row and column contains exactly one 4. XOR table distribution 

of RIJNDAEL’s 8x8 s-box for single bit input and output differences is demonstrated 

in Table (4.13). It is noticed that the value of 4 does not appear in these specific rows 

and columns. 

 

Table 4.13. XOR Table Distribution of RIJNDAEL’s 8x8 S-box  

for Single bit Input and Output Differences 

 
1 2 4 8 16 32 64 128 

1 0 0 0 0 0 0 0 0 

2 2 0 2 2 0 0 0 2 

4 0 2 2 2 0 0 2 0 

8 2 0 0 2 2 0 0 2 

16 0 2 2 2 0 0 0 2 

32 0 2 0 2 0 0 2 0 

64 0 0 2 0 2 0 2 2 

128 0 0 0 2 2 2 2 2 

 

4.2.4 Comparison of MISTY1, KASUMI and RIJNDAEL S-boxes 

 

There are two significant differences between XOR tables of 7x7, 8x8 and 9x9 s-

boxes. The first one is differential uniformities of s-boxes and the second difference is 

related with the number of elements for each row of the s-box. Differential uniformity 

defined by, ),(max
0,

yxXOR
yx

∆∆=
≠∆∆

δ , is 4 for RIJNDAEL’s, whereas it is 2 for 

MISTY1’s and KASUMI’s s-boxes.of the 7x7, 8x8 and 9x9 s-boxes, as shown in 

Table 4.14.  

y∆
 

 

x∆
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Table 4.14. Differential Uniformity of XOR Table Elements  

for Each Row of the Three S-boxes 

S-box Size 7x7 8x8 9x9 

Differential 

Uniformity 
2 4 2 

 

The number of XOR table 0’s and 2’s is equal for MISTY1’s and KASUMI’s as 

opposed to RIJNDAEL’s s-box. Table 4.15 summarizes the number of XOR table 

elements in each row (except the first row).  

 

Table 4.15. XOR Table Elements for Each Row of the Three S-boxes 

S-box Size 

Number of 

7x7 

 

8x8 9x9 

0’s 12 −n
 12 1 +−n

 
12 −n
 

2’s 12 −n
 22 1 −−n

 
12 −n
 

4’s 0 1 0 

 

4.3 Test Results of Strict Avalanche Criterion for S-boxes 

 

SAC values constitute a table of size 127x7 for the 7x7 s-boxes, 255x8 for the 8x8 s-

box and 511x9 for the 9x9 s-boxes, whose elements are calculated by 
  














−= ∑

∈

−
−

nFx

i
j

n
n

i
j aD

2

1
1

2
2

1
 (see 3.7), 

 

 where i  is any n  bit vector, 121 −≤≤ ni , i
ja  is the thj  avalanche variable, 

nj ≤≤1 . In the following, we sketch i
jD  versus j  for each s-box, where the curves 

corresponding to different values of }0{2 −∈ nFi  are drawn on the top of each other. 
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4.3.1 Results for the 7x7 S-boxes of MISTY1 and KASUMI 

 

For the 7x7 s-boxes, i
jD  curves given by (3.7) where }0{7

2 −∈ Fi  are depicted in 

Figure 4.2 and Figure 4.3 for MISTY1 and KASUMI, respectively. In the figure there 

are 127 curves corresponding to all input differences 1-127 and each curve is shown in 

a different color. The maximum of the normalized distance to SAC over all i  and j  is 

found as 125.0
max

=D  with corresponding values of 127=i . It is observed that for 

these s-boxes SAC gets this highest value for each bit 127
ja  of the avalanche vector, 

that is for 7,...,2,1=j . However, corresponding deviation from ideal randomness is 

small i.e., %5.12 . When KASUMI and MISTY1 7x7 s-boxes are compared, there is 

no distinctive property between them. All values in Figure 4.2 and Figure 4.3 are 

equal to 0 or 0.125. 
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Figure 4.2 Normalized Distance to SAC for the 7 x 7  S-box of MISTY1 

 

e=127 

e=35 
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Figure 4.3 Normalized Distance to SAC for the 7 x 7  S-box of KASUMI 

 

4.3.2 Results for the 9x9 S-boxes of MISTY1 and KASUMI 

 

Figure 4.4 and Figure 4.5 show ijD  curves given by (3.7) where }0{9
2 −∈ Fi  for the 

9x9 s-boxes. In the figures different colors correspond to various input differences 1-

511. The maximum of normalized distance to SAC is found as 1
max

=D  with 

corresponding values of 128=i  and 8=j  for MISTY1, and 128=i  and 1=j , where 

j  is the bit position of avalanche vector. By this way we can say that both of them do 

not satisfy the strict avalanche criterion. When 9x9 s-boxes of KASUMI and MISTY1 

are compared in terms of SAC, there is only one difference between them. MISTY1’s 

9x9 s-box for input difference of 173 and 429, and seventh bit of avalanche vector has 

5.0429
7

173
7 == DD . In Figure 4.4 we have three different values {0, 0.5, 1}. However, 

all of the values in Figure 4.5 are equal to 0 or 1. An interesting observation is that in 

KASUMI 9x9 s-box all input differences whose weights are different from 1, i.e., 

1)( ≠iwt  give 0=i
jD .  

e=127 

e=67 
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Figure 4.4 Normalized Distance to SAC for the 9 x 9 S-box of MISTY1 
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Figure 4.5 Normalized Distance to SAC for the 9 x 9 S-box of KASUMI 

 

4.3.3 Results for the 8x8 S-box of RIJNDAEL 

 

For the 8x8 s-box of RIJNDAEL, i
jD  curves given by (3.7) are sketched versus j  in 

Figure 4.6 where different colors correspond to various values of }0{8
2 −∈ Fi . The 

highest normalized distance to SAC is obtained 125.0=i
jD  for input difference of 72 

and 7,6=j . SAC gets the highest value for at most two bits of avalanche vector for 

Rijndael 8x8 s-box. Although RIJNDAEL does not satisfy strict avalanche criteria, its 

e=128 

e=173 

e=128 

e=255 
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normalized distance to SAC values are very near to 0, like 7x7 s-boxes of MISTY1 

and KASUMI, which is quite good.  

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

1 2 3 4 5 6 7 8

Bit Position of Avalanche Vector

N
or

m
al

iz
ed

 D
is

ta
nc

e 
to

 S
A

C

 
Figure 4.6 Normalized Distance to SAC of RIJNDAEL 8 x 8 S-box 

 

4.3.4 Comparison of MISTY1, KASUMI and RIJNDAEL S-boxes 

 

When the s-boxes of KASUMI, MISTY1 and RIJNDAEL are compared in terms of 

SAC, although most of the normalized distance to SAC values is 0 in 9x9 s-boxes of 

MISTY1 and KASUMI yield the most undesirable value of 1
max

=i
jD , on the other 

hand, in RIJNDAEL all values are around 0. Table 4.16 summarizes the obtained 

results. In Table 4.16 only one value is given in the corresponding i  column. 

 

Table 4.16 Normalized Distance to SAC for the S-boxes 

S-box 
max

i
jD  Corresponding i  

MISTY 7x7 s-box 0.125 127 

KASUMI 7 x7 s-box 0.125 127 

MISTY 9x9 s-box 1 128 

KASUMI 9 x9 s-box 1 128 

RIJNDAEL 8 x8 s-box 0.125 72 

 

e=72 e=13 
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4.4 Test Results of Strict Avalanche Criterion for FI Functions 

 

In this section, we compare the FI functions of MISTY1 and KASUMI in terms of 

SAC. Then, we define a new FI function by replacing both s-boxes of KASUMI by 

RIJNDAEL’s s-box in subsection 4.4.1. Then, we give the SAC curves for each FI 

function.  

 

4.4.1 FI Function with RIJNDAEL S-box 

 

By replacing s-boxes of KASUMI with RIJNDAEL’s s-box a  new FI function is 

obtained. The s-box of RIJNDAEL was designed the inversion function 1−→ xx  in 

8
2F . This function is constructed according to [14] since it provides good differential 

and linear properties as a nonlinear transformation. Firstly, the inverse of the element 

in 8
2F  is found for every nonzero element. Then, the resulting inverse is transformed 

by an affine transformation to produce the output. Construction matrix is as follows: 
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  (4.4.1) 

where ix  is the thi   bit of the multiplicative inverse in the finite field 8
2F  for 80 <≤ i . 

Calling an element 8
2Fx ∈ , )...( 80 xxx =  the s-box output is cxAy +⋅=  with 

)...( 80 ccc =  if x  is equal to the inverse of the s-box input. 

 

The FI function with RIJNDAEL’s s-box, shown in Figure 4.7, also takes a 16-bit 

input P and a 16-bit subkey ijKI  and it gives 16-bit output C. 

The input P is split this into two equal components, where 00 || RLP = .  

Similarly, the subkey ijKI  is split into two equal components, where 

21 || ijijij KIKIKI =  . Then, the modified FI function is defined as follows : 
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               44 || RLC =                                                     (4.4.2)  

 

Main difference between KASUMI’s FI function is the lack of zero-extend (ZE) and 

truncate (TR) functions, since the input is split into two equal components. 

 

Figure 4.7 FI function of KASUMI-R 

 

In the following sections we give the normalized distance to SAC, i
jD , curves for the 

three FI functions. We consider 32 curves to all possible one-bit and some two-bit 

input differences which are },,...,,,,...,{ 11616153221161 eeeeeeeeeei ⊕⊕⊕⊕∈ , where 

ie  is the 16-bit unit vector in position i  in Figure 4.8, Figure 4.9 and Figure 4.10, 
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since the number of curves is very huge, 162 . Namely, the Hamming Weight of first 

16 input differences is 1, the Hamming Weight of last 16 input differences is 2. 

Moreover, SAC curves are computed for }0{2 −∈ nFi . In Figure 4.8, Figure 4.9 and 

Figure 4.10 different colors correspond to different input differences. 

 

4.4.2 Results for the FI Function of MISTY1 

 

Figure 4.8 shows the normalized distance to SAC values of MISTY1’s FI function, 

explained in section 2.1.1, versus j . The highest value is obtained as 1
max

=D  for 

eleventh bit position of avalanche vector and the input difference 9e . It is an 

interesting observation that there is not any maximum value, 1
max

=i
jD , for 

71 ≤≤ j . Moreover, 0=i
jD  for 51 ≤≤ j  and 

},,...,,,,...,{ 11616153221161 eeeeeeeeeei ⊕⊕⊕⊕∈ . Although most values are equal to 0, the 

FI function does not satisfy SAC, because of the nonzero values of i
jD . 

 

Normalized Distance to SAC of MISTY1's FI Function
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Figure 4.8 Normalized Distance to SAC of MISTY1’s FI Function 

 

4.4.3 Results for the FI Function of KASUMI 

 

The normalized distance to SAC values of KASUMI’s FI function, explained in 

section 2.2.1, are depicted in Figure 4.9. The maximum of normalized distance to SAC 
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is obtained for the input difference 6e  with 34.0
max

=i
jD  and 12=j . All values are 

closer to zero than those of MISTY1. On the other hand, similar to previous case, 

normalized distance to SAC values are very close to 0 for 51 ≤≤ j . 

Normalized Distance to SAC of KASUMI's FI Function
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Figure 4.9 Normalized Distance to SAC of KASUMI’s FI Function 

 

4.4.4 Results for the FI Function of KASUMI-R 

 

As the previous two figures, Figure 4.10 gives the normalized distance to SAC values 

of KASUMI-R’s FI function explained 4.4.1. The highest value is obtained as 

027.0
max

=i
jD  for 8=j  and the input difference 43 ee ⊕ . Although FI function with 

RIJNDAEL s-box does not satisfy the strict avalanche criteria, its normalized distance 

to SAC  values are very close to 0 which is highly satisfactory. In FI function with 

RIJNDAEL s-box, all values are in a very small gap. As an interesting observation, we 

note that the proportion of zeros of  ijD  is only 10 over 512 as opposed to other FI 

functions.  
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Normalized Distance to SAC of KASUMI-R's FI Functio n
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Figure 4.10 Normalized Distance to SAC of KASUMI-R’s FI Function 

 

4.4.5 Comparison of FI Functions of MISTY, KASUMI and KASUMI with 

RIJNDAEL S-box 

 

In Figure 4.11, we sketch the SAC performances of the three FI functions of MISTY1, 

KASUMI and KASUMI-R, in terms of the normalized distance i
jD  versus 

16,...,1=j  for the input difference set },,...,,,,...,{ 11616153221161 eeeeeeeeeei ⊕⊕⊕⊕∈ . It 

is observed that the FI function of KASUMI-R has the best performance and the 

corresponding i
jD  values are very small as compared to the FI functions of MISTY1 

and KASUMI. To make these small values more visible, we zoom at the vertical scale 

of Figure 4.11 and obtain Figure 4.12, which shows the KASUMI-R performance in 

more detail. In Figure 4.11 and Figure 4.12 each color corresponds to a cipher, i.e., 

blue is for MISTY1, red is for KASUMI and yellow is for KASUMI-R. It should be 

noticed that FI function of MISTY1 and KASUMI get their maximum normalized 

distance to SAC value for input difference of weight one as opposed to KASUMI-R’s 

FI function. It is an interesting observation that all FI functions get their maximum 

values for 7>j , where j  is the bit position of the avalanche vector. 
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Figure 4.11 Normalized Distance to SAC of FI Functions with All Values 
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Figure 4.12 Normalized Distance to SAC of FI Function
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As a conclusion, normalized distance to SAC values show that KASUMI-R seems to 

be the most random. We finally find the SAC parameters for all input differences, 

}0{16
2 −F , and see that the highest normalized distance to SAC values are 1, 0.34 and 

027.0  for the FI functions of MISTY1, KASUMI and KASUMI-R, respectively. As 

an interesting observation that when the input difference set 

},,...,,,,...,{ 11616153221161 eeeeeeeeeei ⊕⊕⊕⊕∈  is used, we obtain the maximum values 

for the three FI functions. Table 4.17 summarizes maximum values of the normalized 

distance SAC for FI functions for all input differences. 

 

Table 4.17. Normalized Distance to SAC for FI Functions 

FI Function of 
max

i
jD  Corresponding i  

MISTY  1 256 

KASUMI  0.34 32 

KASUMI-R 0.027 222 

 

The maximum values, given in Table 4.17, can also be interpreted by using 

2

||

2

1
}0)()({ max

j
iD

ixFIxFIP +==⊕⊕   as follows: 

 

Table 4.18. Probabilities for FI Functions in terms of SAC 

FI Function of Probability Function 

MISTY  1}0)()({ 9 ==⊕⊕ exFIxFIP  

KASUMI  67.0}0)()({ 6 ==⊕⊕ exFIxFIP  

KASUMI-R  5135.0}0)()({ 43 ==⊕⊕⊕ eexFIxFIP  
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CHAPTER 5 
 

RANDOMNESS CRITERIA FOR BLOCK 

CIPHERS 
 

In this chapter, Avalanche Weight Distribution (AWD) and some statistical 

randomness tests are explained in detail to examine diffusion, confusion and 

randomness properties of overall cipher.  

 

5.1 Avalanche Weight Distribution 

 

Avalanche Weight Distribution (AWD) is defined in [1] as a simple criterion for fast 

and rough analysis of the diffusion and confusion properties mentioned by Shannon. 

This criterion examines whether for quite similar plaintext pairs ( 21,PP ), histograms of 

the Hamming weight of the avalanche vectors are completely random. For a well 

diffused block cipher of blocklength n  AWD curves corresponding to all possible 

pairs of similar inputs should be binomially distributed around n /2. In order to give an 

idea about what is expected from AWD of a random block cipher, Binomial 

distribution is sketched for 64=n  in Figure 5.1. 

 

Figure 5.1 Ideal AWD Curve 
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The following test procedure is used to find the randomness of the r -th round output 

of an R -round cipher which maps n -bits to n -bits. The avalanche weight distribution 

vector with the k -th element AWD[k ] denotes the number of avalanche vectors of 

weight k . 
 

Step 0 : Choose 30000=N  random input vectors P . 

Step 1 : Set AWD[k ]=0, for }64,...,1{∈k .Choose r  and i  such that Rr ≤≤1  and 

ni ≤≤1 . Do the followings for each input vector P : 

Step 2 :  Calling ie , the n -bit unit vector having a 1 at position i , compute 

ie ePP
i

⊕= . P  and 
ieP , differ only in bit i . 

Step 3 : Submit P  and 
ieP  r -rounds of the cipher, call the thr  round outputs of )(Pf  

and )(
iePf . 

Step 4 : Find the Hamming weight of k  the avalanche vector )()(
iePfPf ⊕ . 

Step 5 : Increment the value of the thk  element of the avalanche weight distribution 

vector, i.e., AWD[k ] = AWD[ k ] + 1. 

Step 6 : Return Step 2 until all input vectors are exhausted. 

  

Using the above algorithm n  times, one obtains n  different AWD curves  for n  

different input difference ie  vectors. Similarly, letting 8,...,2,1=r , one can compute 

the randomness of the cipher for different number of rounds. Moreover, one can test 

the randomness of the round output increases as r  is augmented. By using the test 

procedure explained above, we investigate avalanche weight distribution of 64 

different input difference ie  vectors for 641 ≤≤ i  overall test of MISTY, KASUMI 

and KASUMI-R ciphers. Figure 5.2, Figure 5.3 and Figure 5.4 demonstrate eight 

different AWD curves, each corresponds to different color and rounds, for the input 

difference 1e . 

 

5.1.1 AWD Test Results for MISTY1 

 

Figure 5.2 shows the AWD curves of MISTY1 for the input difference 1e  at the end of 

different rounds of the cipher. We observe that MISTY1 satisfies the AWD criterion at 

the end of the second round. After rounds of encryption all the avalanche vectors have 
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very stable Hamming weights, gathered around a mean of 32.  

The AWD curves almost imitate each other independent of round number except the 

first round. In the first round the AWD curve is similar to a binomial distribution a 

mean value of 24. 

 

 

 Figure 5.2 AWD Curves of MISTY1 for 1e  for all Rounds 

 

5.1.2 AWD Test Results for KASUMI 

 

Eight different AWD curves of KASUMI corresponding to round number r  for the 

input difference 1e  are depicted in Figure 5.3. After augmenting the number of rounds 

to 2, we observe that KASUMI satisfies the AWD criterion. Moreover, when the 

round number is more than 1, all AWD curves are very similar to each other and very 

close to the binomial shape. On the other hand, in the first round, the Hamming weight 

of the avalanche vectors is aggregated around 19. 
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Figure 5.3 AWD Curves of KASUMI for 1e  for all Rounds 

 

5.1.3 AWD Test Results for KASUMI-R 

 

Figure 5.4 demonstrates AWD curves of KASUMI-R for the input difference 1e  for 

the eight different rounds. In the first round it resembles a binomial distribution a 

mean value of 18. Increasing the number of rounds to 2 causes satisfactory AWD 

curve. Immediately after the second round the Hamming weight of the avalanche 

vectors are gathered around a mean of 32. Moreover, there is not much difference of 

AWD curves after the second round. 
  

 

Figure 5.4 AWD Curves of KASUMI-R for 1e  for all Rounds 
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A normalized measure of closeness is defined as in [1] between the evaluated AWD 

curves and the binomial distribution, subtracting the sum of normalized error 

magnitudes from unity, as:  

[ ]∑
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2

1
1     (5.1) 

where n  is the length of the ciphertext and N  is the number of plaintexts and r  is the 

number of rounds. 

 

5.1.4 Comparison of MISTY1, KASUMI and KASUMI-R in view of AWD 

 

When we compare the AWD curves results, it can be concluded that all ciphers show 

similar behaviors input differences for ie  the 64-bit unit vector in position i .  The 

difference between them is the Hamming weights of avalanche vectors for the first 

round. 

 

Normalized measure of closeness between the evaluated AWD curves for MISTY1, 

KASUMI, KASUMI-R and the ideal Binomial distribution (see 5.1) are given in Table 

5.1 for the input difference 1e  for all rounds. It is observed from Table 5.1 that almost 

all rounds except the first round of MISTY1, KASUMI and KASUMI-R resemble the 

ideal binomial curve of mean value 32 more than 98%. At the end of the first round 

MISTY1 has the best result in terms of resemblance percentages, since AWD curve 

resembles a binomial distribution a mean value of 24 which is close to 32 than others. 

As a conclusion evaluated curves of KASUMI are much closer to the binomial 

distribution of mean value 32. The reason why all ciphers fail for the first round may 

be the Feistel structure. For input differences of weight one, we obtain similar AWD 

curves for the three ciphers.  
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Table 5.1. Resemblance Percentages 1e
rR   for MISTY1, KASUMI and KASUMI-R 

Round r  MISTY1 KASUMI KASUMI-R 

1 0.3893 0.038 0.039 

2 0.9808 0.9865 0.9831 

3 0.9815 0.9854 0.9901 

4 0.9833 0.9890 0.9867 

5 0.9827 0.9836 0.9853 

6 0.9858 0.9841 0.9888 

7 0.9849 0.9901 0.9854 

8 0.9860 0.9923 0.9863 

 

5.2 Randomness Testing 

 

Being randomness is one of the important criteria to evaluate block ciphers. The 

output of the block cipher should not give any hint that enables to distinguish it from a 

truly random sequence. Therefore, statistical tests are used to verify that whether a 

sequence is completely random. Two statistical testing for randomness are described 

in this part. 

 

5.2.1 Frequency (Monobit) Test [15] 

 

Frequency test is based on the weight of the sequence. The purpose of this test is to 

determine whether the number of 0’s and 1’s in a sequence are approximately the 

same, as would be expected for a random sequence.  

 

5.2.1.1 Test Description 

 

Step 1 : The zeroes of the sequence ),...,,( 21 nSSSS =  are converted to values -1, 

12 −= ii SS , where ni ≤≤1 . The length of sequence should be at least 100. 

Step 2 : Compute ∑
=

=
n

i
iSS

1

|| . 
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Step 3 : Compute the test statistic 
n

S
Sobs

||= . 

Step 4 : Compute 






=−
2

obsS
erfcvaluep , where erfc is the complementary error 

function as 






 −=⋅ ∫
∞

− )
2

1
,0,(12

1
2

2

znormcdfdxe
z

x

π
. 

Step 5 : If the computed p-value is greater than 0.01 (decision rule at the 1% level), 

then conclude that the sequence is random.  

 

5.2.2 Frequency Test within a Block [15] 

 

The purpose of this test is to determine whether the frequency of ones in an M -bit 

block is approximately 2/M , as would be expected under an assumption of 

randomness. Frequency test within block is based on the weight of the sequence. 

 

5.2.2.1 Test Description 

 

Step 1 : Partition the input sequence into 




=
M

n
N  non-overlapping blocks. M  

should be greater than 20. Sequences are defined as ),...,,( 21
i
M

iii SSSS =  for Ni ≤≤1 . 

Note that if 1=N , then this test is the same as frequency (monobit test). 

Step 2 : Compute the proportion of ones, ia , in each M -bit block, 
M

S

a

M

j

i
j

i

∑
== 1  for 

Ni ≤≤1 . 

Step 3 : Compute the test statistic ∑
=

−=
N

i
iaMobs

1

22 )2/1(4)(χ . 

Step 4 : Compute 







=−

2

)(
,

2

2 obsN
igamcvaluep

χ
, where igamc is the incomplete 

gamma function as 







−=

Γ
⋅

∫
∞ −−

1,
2

,
2

)(
1

)2/(

2

)(

1
2

2

Nobs
gamcdfdu

N

ue

obs

N
u χ

χ

. 

Step 5 : If the computed p-value is greater than 0.01 (decision rule at the 1% level), 

then conclude that the sequence is random.  
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5.3 Test Results for Randomness  

 

Randomness tests are performed using the strategy explained in [18] and for each data 

set separately to check whether the output is random : 

i) Plaintext Avalanche, Plaintext-Ciphertext Correlation and Low Density 

Plaintext data types are analyzed.  

 

1. Plaintext Avalanche 

 

100 binary sequences are analyzed to examine the sensitivity of individual algorithms 

to changes in the plaintext. The 10000 sequences are parsed from a string constructed 

as follows : given 10000 random 64-bit plaintext blocks and 128-bit key of all zeroes, 

6400 derived blocks are concatenated. Then, 409600 = 64x64x100 is obtained for each 

sequence. Each derived block is based on the XOR of the ciphertext formed using the 

fixed 128-bit key and the random plaintext, and the ciphertext formed using the fixed 

128-bit key and the perturbed random plaintext with the thi  bit changed, for 

641 ≤≤ i . Plaintext avalanche can be explained mathematically as follows: 

 








 ⊕⊕∪∪=∪
===

),(),(
64

1

10000

1

100

1
KePfKPfB ljj

lj
i

i
, where ∪  is used to concatenate the 

vectors, each iB  is 409600-bit vector and ),( KPf  is encryption function with input 

P , key K , le  is a 64-bit unit vector in position l . 

 

2. Plaintext/Ciphertext Correlation 

 

100 binary sequences (409600 bits per sequence) are analyzed to examine the 

sensitivity of individual algorithms to changes in the plaintext. Given a random 128-

bit key and 10000 random plaintext blocks, a binary sequence is constructed 

concatenating 10000 derived blocks (where a derived block is the result of applying 

the XOR operator on the plaintext block and its corresponding ciphertext block 

computed). Plaintext/Ciphertext correlation can be explained mathematically as 

follows: 
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






 ⊕∪∪=∪
===

),(
10000

1

64

1

100

1
jll

lj
i

i
KPfPB , where ∪  is used to concatenate the vectors, 

each iB  is 409600-bit vector and ),( KPf  is encryption function with input P , key 

K . 

 

3. Low Density Plaintext 

 

Each data set created based on low density plaintext blocks consisted of 11 sequences. 

Ciphertext blocks is calculated using plaintext blocks consisting of a single one and 63 

zeros, the one appearing in each of the 64 bit positions of the plaintext block or none. 

The other plaintext blocks had two ones and 62 zeros, the ones appearing in each 

combination of two positions of the plaintext block. Totally, 64+2015=2079 different 

plaintexts are generated. Low density plaintext can be explained mathematically as 

follows: 

 








 ∪∪=∪
===

),(
2079

1

64

1

11

1
jl

lj
i

i
KPfB , where ∪  is used to concatenate the vectors, each 

iB  is 12096-bit vector and ),( KPf  is encryption function with input P , key K , le  is 

a 64-bit unit vector in position l . 2079 input vector are given such that 

0)(1 =⇒= lPwtl , 1)(652 =⇒≤≤ lPwtl , where lP  is a 64-bit unit vector in 

position l , 2)(207966 =⇒≤≤ lPwtl  

 

ii)  Input parameters are fixed for plaintext avalanche and plaintext/ciphertext 

correlation. These parameters are set at 409600 bits for frequency test and 

4096 bits for block frequency test, 100 binary sequences for frequency test and 

10000 binary sequences for block frequency test and 0.01, sequence length, 

sample size and significance level (p-value), respectively. For low density 

plaintext parameters are set 12096 bits for frequency test and 4096 for block 

frequency test, 11 binary sequences for frequency test and 33 binary sequences 

for block frequency test and 0.01, sequence length, sample size and 

significance level, respectively. 
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iii)  For each p-value, a success/failure assessment is made on whether or not it 

exceeded or fell below the pre-selected significance level. 

 

5.3.1 Frequency within a Block Test Results for MISTY1, KASUMI and 

KASUMI-R 

 

In this part length of the sequences is fixed to 64x64 = 4096 for plaintext avalanche 

and plaintext/ciphertext correlation data. Then, 10000 binary sequences are obtained 

to test. However, we give only 100 sequences in Figure 5.5 and Figure 5.6. For low 

density plaintext, length of sequences is again fixed to 64x64 = 4096 to interpret 

results with the previous data. Then, 133056/4096, 33 binary sequences are obtained 

to test. Note that the last sequence has only 1984 elements. Figure 5.5, Figure 5.6 and 

Figure 5.7, which shows the percentages of 1’s, contains only three rounds first, 

second and last rounds, of the three ciphers for Test 5.2.2 since all ciphers get 

randomness at the end of the second round. p-values are calculated by using  









=−

2

)(
,

2

2 obsN
igamcvaluep

χ
 (see 5.2.2.1). 

 

In Figure 5.5, percentages of 1’s are away from the desired result for the first round 

for plaintext avalanche data type. By the second round all ciphers possess the 

randomness in terms of weight of the sequence and this goes until the last round. p-

values are greater than 0.01 immediately after the second round of all ciphers. Their 

distribution is quite similar to each other for the second and last round. However, in 

the first round KASUMI has the worst case since percentage of 1’s is around 25%. 
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Percentages of 1's for Plaintext Avalanche Data
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Figure 5.5 Percentages of 1’s for Plaintext Avalanche 

 

Percentages of 1’s for plaintext/ciphertext correlation for the three ciphers for the first, 

second and last rounds are depicted in Figure 5.6. Similar to previous case, ciphers 

have poorly random function for the first. By the second round all ciphers have 

equally likely zeroes and ones. p-values are very close for the second round of all 

ciphers. There is no significant difference between the second and last rounds of the 

three ciphers. However, in the first round KASUMI-R has the best case like the 

previous case. 
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Figure 5.6 Percentages of 1’s for Plaintext/Ciphertext Correlation 

 

Figure 5.7 shows percentages of 1’s for low density data for the ciphers for the first, 

second and last rounds. Outputs of the all ciphers have too many zeroes at the end of 

the first round. Therefore, satisfactory randomness is not achieved for the first round 

for low density plaintext data type. By the second there is no significant deviation 

from 50%.  p-values are greater than 0.01 immediately after the second round of all 

ciphers. Their distribution is quite similar to each other for second and last round 

except the first round.  
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Percentages of 1's for Low Density Data
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Figure 5.7 Percentages of 1’s for Low Density Plaintext 

 

By concatenating 100 sequences for plaintext avalanche, plaintext/ciphertext 

correlation, we obtain 100 sequences to implement frequency test. Length of these 

sequences is 64x64x100=409600. Similarly, after concatenating 33 sequences for low 

density plaintext, we divide this sequence, 64x64+1984=133056, into 11 equal parts. 

Length of the each sequence is 12096. Then, since satisfactory test results are obtained 

for frequency test within a block after the second round, we can say that all ciphers 

satisfy frequency test.  

 

5.4 Comparison of Avalanche Weight Distribution and Randomness Test Results 

 

According to avalanche weight distribution, monobit test and frequency test within a 

block test, MISTY1, KASUMI and KASUMI-R reach the randomness at the end of 

the second round.  
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CHAPTER 6 
 

CONCLUSION 
 

In this thesis, KASUMI, the standard algorithm for the 3rd Generation GSM, MISTY1 

and KASUMI–R, defined in Section 4.4.1, are studied in order to see their 

performance in terms of the satisfaction of some cryptographic test criteria appearing 

in the literature. Our investigation is mainly about the s-boxes and FI functions of 

these ciphers. Table 6.1 summarizes obtained test results of the five s-boxes. 
 

Table 6.1 Summary of Test Results for S-boxes 

Test 

S-box of 

|),(|max
2,

caLAT
nFca ∈

 Nonlinearity  Differential  

Uniformity 
max|| j

iD  

MISTY1 7x7 8 56 2 0.125 

KASUMI 7x7 8 56 2 0.125 

RIJNDAEL 8x8  16 112 4 0.125 

MISTY1 9x9 16 240 2 1 

KASUMI 9x9 16 240 2 1 

 

S-boxes of MISTY1 7x7, KASUMI 7x7 have essentially the same cryptographic 

properties in terms of SAC, LAT and XOR table distributions. Considering partial 

LAT and XOR table distributions, 9x9 s-box of KASUMI has zeros at the same places 

with those of LAT and XOR table distributions. There are some differences between 

RIJNDAEL’s s-box and other s-boxes in terms of the number of different elements in 

LAT and XOR table. RIJNDAEL’s 8x8 s-box has 17 different LAT values and 3 

different XOR values, whereas MISTY1’s and KASUMI’s s-boxes have only 3 

different values and 2 different values in their LAT and XOR table, respectively.  

Moreover, distribution of LAT elements  is equal for the s-boxes of MISTY1 and 

KASUMI. Similarly, distribution of XOR table elements  is also the same. 7x7 and 

8x8 s-boxes satisfy SAC within very small deviations. On the other hand, 9x9 s-boxes 

yield the most undesired value of  
max

D =1 for the deviation from SAC. 
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The FI function of KASUMI-R has the best performance and the corresponding i
jD  

values are very small as compared to the FI functions of MISTY1 and KASUMI. In 

addition, we finally find the SAC parameters for all input differences, }0{16
2 −F , and 

see that the highest normalized distance to SAC values are 1, 0.34 and 027.0  for the 

FI functions of MISTY1, KASUMI and KASUMI-R, respectively.  

 

Overall performances of MISTY1, KASUMI and KASUMI-R according to the AWD 

criterion show that AWD curves of 64-bit vectors resemble a binomial distribution 

around a mean value of 32 at the end of the second round. They all yield very similar 

curves independent of the number of rounds except for the first round. In the first 

round it resembles a binomial distribution with mean values of 24, 19 and 18 for 

MISTY1, KASUMI and KASUMI with RIJNDAEL s-boxes, respectively.  

 

The two core tests of NIST, the monobit test and the frequency test within a block are 

implemented for the plaintext avalanche, plaintext/ciphertext correlation and low 

density plaintext kinds of data in order to calculate the randomness. The test results 

are similar for all data types and tests, i.e., at the end of the second round, the number 

of 1’s seems quite random for all data types. 

 

Our observations on the MISTY1, KASUMI and KASUMI-R do not indicate any hint 

that one of these is superior to the others. The differences between FI functions of the 

three ciphers and their s-boxes seem to have no observable affect on the overall 

cryptographic strength of these ciphers.  
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