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ABSTRACT

ON THE AVALANCHE PROPERTIES OF MISTY1, KASUMI
AND KASUMI-R

AKLEYLEK, Sedat
M.Sc., Deparment of Cryptography
Supervisor : Melek Diker YUCEL

February 2008, 69 pages

The Global System for Mobile (GSM) Communication tie most widely used
cellular technology. The privacy has been proteaisthg some version of stream
ciphers until the 8 Generation of GSM. KASUMI, a block cipher, has ebosen as

a standard algorithm in order to be used'frGneration.

In this thesis, s-boxes of KASUMI, MISTY1 (formerension of KASUMI) and
RIJNDAEL (the Advanced Encryption Standard) areleat@d according to their
linear approximation tables, XOR table distribusoand satisfaction of the strict
avalanche criterion (SAC). Then, the nonlinear ,p&ttfunction, of KASUMI and
MISTY1 are investigated for SAC. A new FI functiadefined by replacing both s-
boxes of KASUMI by RIJINDAEL'’s s-box. Calling thisew version KASUMI-R, it is

found to have an FI function significantly bettean others.

Finally, the randomness characteristics of the @l/&ASUMI-R for different rounds
are compared to those of MISTY1 and KASUMI, in termf avalanche weight
distribution (AWD) and some statistical tests. Tdwerall performance of the three
ciphers is found to be same, although there isgaifsiant difference in their FI

functions.

Keywords: block cipher, KASUMI, MISTY1, SAC, linear approxation table, XOR
table distribution, AWD.
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MISTY1, KASUMI ve KASUMI-R'N IN CIG OZELL IKLER i
UZERINE

AKLEYLEK, Sedat
Yuksek Lisans, Kriptografi B6lumu
Tez Yoneticisi : Melek Diker YUCEL

Subat 2008, 69 sayfa

Kiresel tainabilir iletisim sistemi(GSM) en yaygin olarak kullanilan cepetehu
teknolojisidir. GSM’de gizlilik 3. nesile kadar akasifrelerin bazi uyarlamalari
kullanilarak sglanmstir. Blok sifre olan KASUMI 3. nesilde kullanilmak tzere

standart olarak segilgtir.

Bu tezde, KASUMI, MISTY1(KASUMI'nin 6nceki versiyar) ve RIJNDAEL'un

(geliskin sifreleme standardi) gestirme kutulari, d@rusalliga yakinsama tablolari,
XOR tablo d&limlari ve kati ¢¢ Olgutund sglayabilmeleri konularinda
deserlendirilmistir. Daha sonra, KASUMI ve MISTYY'in dgusal olmayan FI
fonksiyonu kati ¢i 6lcutiine gore incelengtir. KASUMI'nin degistirme kutulari

RIJNDAEL'un desistirme kutusu ile yer destirilerek yeni bir FI fonksiyonu elde
edilmistir. Bu yeni FlI fonksiyonuna KASUMI-R adi verilipperformansinin

digerlerinden oldukca iyi oldtu da g6zlennstir.

Sonunda, @ agirhk dagihmi ve bazi sayimlamali testler agisindan KASURIhN
tum sisteminin farkli déngu sayilari icin rasgeédelozelliklerinin MISTY1 ve
KASUMI ile karsilastiriimasi yapilmgtir. Sifrelerin FI fonksiyonlari arasinda dikkate

deger fark bulunmasina ganen,sifrelerin tim performanslari ayni bulungtur.

Anahtar Kelimeler : blok sifre, KASUMI, MISTY1, kati ¢g Olcutu, dgrusallga
yakinsama tablosu, XOR tabloglami, ¢ig agirlik dagilimi.
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CHAPTER 1

INTRODUCTION
1.1 Background

Cryptographic techniques have been used for mamtyiges to protect the secrecy of
diplomatic correspondence and military communicatioToday, developments on
computer and communication sciences have helpedfénaing a big amount of data
through the long distance channels. These data beuptotected in several ways to
provide confidentiality, integrity and authentiaati Cryptology is the science, which

answers all such needs in today’s communicatiotesys

Cryptology is used to provide security in publicobgations such as e-government
applications, electronic commerce, credit cardselss connections, GSM mobile
phones. In the Global System for Mobile (GSM) cominations the standard for
mobile phones, the mobile system used all ovextidd, there is a built-in cipher to
ensure that your conversation is private. The og@phic algorithms of GSM have

received a lot of interest and activity from thgptographic research community.

GSM has some different generations in use suclrsaggeneration (1G), and second
generation (2G). In the beginning of 1980s, analeliular telephone systems (1G,
First Generation) were started to be used withdrgppwth in Europe. The Conference
of European Posts and Telegraphs (CEPT) formeddy siroup called the Groupe

Spécial Mobile (GSM) in 1982 to create a digitalmstard (2G, Second Generation)
for European mobile system [16]. In 1989, GSM resality was transferred to the

European Telecommunication Standards Institute (EB8d they published the first

GSM specifications in 1990, where the meaning oMG8as changed to Global

System for Mobile [10].

Since the nature of the wireless communication @sensusceptible to attacks than
wired communication, to provide security is verypontant for GSM. In the second

generation, cryptographic techniques availabled8M were A5/1 and A5/2, both of



which use stream ciphers. A5/1 was the first crg@phic GSM algorithm developed
to provide privacy in 1987. The A5/1 is based oa t¢lutput of three LFSRs (Linear
Feedback Shift Register). It was demonstrated]ithi@ A5/1 could be cracked in less
than 1 second on a desktop PC. The attack usestistdtanalysis and exploits its
poor avalanche properties. In 1989 A5/2 was deweldp overcome export problem
of A5/1 [21]. A5/2 containing four LFSRs was usedprovide voice privacy for a

short time as it was cryptanalyzed in the same Intwt it was published [27]. A5/2
is a weakened version of A5/1. The approximategtesi A5/1 was leaked in 1994
and the exact design of both A5/1 and A5/2 wasreevengineered from an actual
GSM telephone in 1999 [4]t is interesting that only after their design heea

publicly known; they were cracked by using revessgineering.

With the technological developments, by the end1880's GSM could handle
different types of services: high quality encryptexce transmissions, short message
servicing, fax services, Wireless Application Poaio (WAP) promoted Internet
applications [10]. Later, a group of studies cabedond and a half generation (2.5G)
provided mobile Internet supporting services (Inér browsing, e-mail and
multimedia messages such as the general packet sadiice-GPRS which enables
larger packets of data to be sent). Hence, 2.5@mea step between 2G and 3G.

Universal Mobile Telecommunications System (UMT33}, is a further development
of the 2.5G. In order to make this communicatienuse, a new security algorithm
was chosen in 2002 by%3Generation Partnership Project (3GPP) founded thi¢h
duty of defining world wide trusted standards @& [22].

The next generation of A5 algorithm in contrastpi@vious ones has been made
available to the public. In 2002, A5/3 was adde@&M encryption algorithms. A5/3
is based on the block cipher KASUMI declared as sit@ndard cryptographic
algorithm for UMTS applications [22]. KASUMI was egally developed to gain
public confidence in UMTS security.



1.2 Scope and Objective of Thesis

This thesis is intended to analyze the cryptog@mtiength of the block cipher
KASUMI using some cryptographic test criteria. SSInKASUMI is a variant of
MISTY1 recommended for Japanese government us@édytyptography Research
and Evaluation Committee (CRYPTREC project) [23] #8003, MISTY1 is

investigated, too.

Rijndael's s-box is only used as a reference fanmarison with the s-boxes of
MISTY1 and KASUMI; since Rijndael, selected as Adeed Encryption Standard
(AES) [5] by the US National Institute of Standaedsl Technology (NIST) in 2000,
appears to have an adequate security margin aedatsity is approved by the society

of cryptographers.

MISTY1's, KASUMI's and RIJNDAEL’s s-boxes are inuegated in terms of some
cryptographic test criteria for Boolean functiongpearing in the literature such as
completeness, avalanche, strict avalanche, nonilipedinear approximation table
(LAT) and differential table distribution (XOR). I8exes of the FI function, which is
the core of KASUMI, are then replaced with the s-lod RIINDAEL. We call this
new cipher KASUMI-R. Then, FI functions of all thbree ciphers are analyzed
according to the strict avalanche criterion. Iniadd, the overall performance of
MISTY1, KASUMI and KASUMI-R is measured by the aaathe weight distribution
and some of the statistical tests for randomnessedon NIST Statistical Test Suite
[15].

In Chapter 2, the structures of the block ciphetSTW1, KASUMI are considered in
detail. The differences between MISTY1 and KASUId some observations about
their components are discussed. Moreover, desanpbf the s-boxes are given in this

chapter.

In Chapter 3, the theory of some well known crypapdic test criteria for Boolean
functions appearing in the literature; such as detepess, avalanche, strict

avalanche, nonlinearity, LAT and XOR table disttibo are described.



In Chapter 4, the s-boxes of MISTY1, KASUMI and RIJAEL are investigated
according to the test criterion defined in Cha@tefhen, we define a new FI function
for KASUMI-R. The FI functions of MISTY1, KASUMI ah KASUMI-R are
analyzed according to the strict avalanche criterikhe test results are presented and

discussed.

In Chapter 5, avalanche weight distribution and twee tests of the NIST Statistical
Test Suite, monobit test and frequency test withislock, are defined to examine the
cipher with all components and see its randomnespepties. The test results are

presented and compared.

Chapter 6 summarizes the results of the work dorlei$ thesis.



CHAPTER 2

STRUCTURES OF MISTY1 AND KASUMI

MISTY1 [13] is an encryption algorithm developed bjitsubishi Electric and
submitted to New European Schemes for Signaturgegiity and Encryption
(NESSIE) project [25]. MISTY1's security capab#is are later used as the base for
KASUMI [22], which has become the international Bmtion standard for the'3

generation mobile phones.

This chapter gives detailed descriptions of MISTiM1Section 2.1, and followed by
KASUMI in Section 2.2. Finally, the 7x7 and 9x9 exies of MISTY1 and KASUMI

are compared in Section 2.3.
2.1 MISTY1

MISTY1, recommended for Japanese government usbebZryptography Research
and Evaluation Committee (CRYPTREC project) [23RD03, was first published in
1996. It uses Feistel structure, which takes a i64laintext and a 128-bit key to
produce a 64-bit output. It is recommended for dtipla of 4 rounds typically as 8
rounds. The entire algorithm is built from recuessemall components. This recursive
design adds a lot of complexity to the cipher, mgkits analysis harder. MISTY1 is
the first block cipher designed for practical uséhwprovable security against

differential and linear cryptanalysis [12].

Let E be the encryption function of MISTYE: {01}*x{01}**® — {01}* that takes
the two inputs a 64-bit plaintext P and a 128-ley K, to return a 64-bit ciphertext
C:E(P,K).

E(P,K) decomposes into subfunctions FL and FO, both a¢kvbperating on half of
the input text.FL(p, KL )is a linear function which maps a 32-bit blqzrko a 32-bit



sequence, using a 32-bit key KL. The other subfancFO(p, KO, Kl ) is not linear

but also maps a 32-bit blogkto a 32-bit block, using a 64-bit key KO and abi8-
key KI.

Encryption process is summarized as follows:
P=L,||R, (2.1.1)
Fori= 1357
R =FL(Liy. KL)
L, =FL(R,,KL;,,) 0 FO(R, KO, KI)
T=L, (2.1.2)
L =R D FO(L,,KO,.,,Kl,,,)
R =T
Fori= 2468
R =FO(L,_,,KO,,Kl,)
L=RUOR,
where the output i€ =L, ||R; (2.1.4), andP: 64-bit, L,: 32-bit, R : 32-bit, KL, :

(2.1.3)

32-bit, KI, : 48-bit, KO, : 64-bit, C: 64-bit.

Encryption process for two rounds can be seengargi2.1.

64
32 32
| |
KL;—+~ FL +—K11.K(:)1 FL t KLo
= FO 5

;I{Ig. KOs

FO |

Figure 2.1 Two Rounds of MISTY1 Encryption Process



The main component of theO(p, KO, Kl i3 called the FI function, which maps 16
input bits to 16 output bitsFl (g, KI  junction, where q is the 16-bit input and Kl is
the 48-bit key, uses two s-boxes, a 7x7 s-lfx,and a 9x9 s-boxS,. The keys KL,

KO and Kl are produced from the initial key K asdgbed in Section 2.1.3.
2.1.1 FO Function of MISTY1

The FO(p, KO, KI ) function, which is the data randomizing part ofSMI¥1, maps a
32-bit inputp to a 32-bit output. The function uses two subkey84-bit KO, and a
48-bit KI,. The main part of the FO function shown in Figar2 is theFl (g, Kl )
function, whereg is a 16-bit word. Since each branch of #@(p, KO,KI function
works on 16-bit words, p=L,||R,, KO, =KO, ||KO, ||KO,||KO, and
KI, =Kl |[KI,, ||KI,; are all divided into 16-bit words. TherkO(p,KO,KI i}

defined as follows:

For j =1to 3do

Rj = Fl (Lj—l U Koij ) KIij )D Rj‘l (215)
Lj = Rj_l

C=(L, OKO,)IIR, (2.1.6)

whereC is the output.
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KO —=D

KI;; —{FI]
Ty
L

16

KO;o —»
KLz —|{F
.
N

KLz —F
P
N

>
1]
")‘

KOs —»éf
1]
S
5

KOi4 —=(

Figure 2.2FO function of MISTY1

The FI function is the core of the FO functionmiaps 16 input bits to 16 output bits

and uses 7x7 s-boX§,, and 9x9 s-boxS,. S-boxes are incorporated into the lowest
level of a recursively constructed Feistel struetdrhey are designed to obtain good
resistance to linear and differential attacks.comprises a set of cubic functiorts,
comprises a set of quadratic functions. In selgcn and S,, designers of MISTY1

have used the following criteria:
1. Their average linear/differential probability mix& minimal.

2. Their algebraic degree should be as high as pessibl

Details of descriptions of the s-box& and S; are given in Section 2.3. The FlI

function also uses two additional functions, whack designated by the ZE (i.e., zero
extend) function that appends two zeros beforertbst significant bit of a 7-bit string
and the TR (i.e., truncate) function that discamle most significant bit of a 9-bit

string.

The 16-bit input of theFI (g, KI Yunction is split into two unequal components,-a 9

bit left half and a 7-bit right half, wherg =L, || R,. Similarly, the subkexI; is split



into a 7-bit componenKl;;, and a 9-bit componerKl;,, where Kl;, =Kl ||Kl;,.

The FI (g, Kl ) function is then defined as follows:

R, = S9L,] O ZE[R,]

Ll = I:'20

R, =S7L]OTRR]OKI,,
L, =R OKI,

R, = sqL,] 0 ZE[R)]

L3 = RZ

C=L, IR, (2.1.8)

(2.1.7)

whereC is the output an&7 and S 9are the s-box functions. The FI function is

depicted in Figure 2.3.

116
9 7
S9
P ZE
S7
G+ TR
KIijl——& Be— KIij2

Pl
I
I
[~
m

Figure 2.3FI Function of MISTY1



2.1.2 FL Function of MISTY1

The FL(p,KL) function is a linear function used for the diffoisj i.e., it makes

individual bits harder to follow through the rounddince this function is linear as
long as the key is fixed, it does not affect therage linear/differential probability of

the entire algorithm.

The FL(p,KL) function receives a 32-bit inpptand a 32-bit subke¥L, . It gives a
32-bit output C.

The input is split this into two 16-bit halves, waep =L, || R,. Similarly, subkey
KL; is divided two 16-bit halves, wheréL, = KL,, || KL;,. Then, the FL function is

defined as follows :
Cr =(L, n KL,,) O
R ( 0 Il) RO (2'1.9)
C =(Cr OKL,)OL,
C=C_||Cg (2.1.10)
where n and LU are the logical AND and OR operations, respecfivélhe FL

function is shown in Figure 2.4.
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Figure 2.4FL Function of MISTY1
2.1.3 Key Schedule of MISTY1

Key schedule comprises 8 consecutive applicatibmiseoF| function. Firstly, the 128-

bit key, K, is split into eight partsK = K, [|K, ||...||Kg, each of length 16-bit. Then,
K; for 1<i <8 is considered as the input to FI (see Figure ®i8) K, .4 acting

as the key to the FI function, the 16-bit outponfreach FI function is extra keys; ,

1<i<8. These are used in the FI and FL functions. Keyeduale, which uses FlI

function, is shown in Figure 2.5.
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Figure 2.5Key Schedule of MISTY1

Round subkeys, KL, KO, Kl, are demonstrated inl@&ah1 for thei” round. First
two rows show 32 bits of KL, the next four and tast three rows denote the 64 and

48 bits of KO and KI, respectively. Note that all¥are the output of the FI function.

Table 2.1Round Subkeys of MISTY1

Subkeys i™ Round Output

KL, K%l (oddi) K,iz” (eveni)
KL, KL;l+6(mod8) (oddi) KiE+4 (eveni)
KO, K,

KO, K, +2(mod8)

KO, Ki+7(mod8)

KO, K +amoce)

Kl Ki +5(mods)

Kl K/ 1(mods)

Klis K i'+3(mod8)
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2.2 KASUMI

Within the security architecture of the Third Geateom Partnership Project (3GPP)
system there are two standardized algorithms: Aidentiality algorithmf8 and an
integrity algorithm f9 [24]. Each of these algorithms is based on the WKN$
algorithm. KASUMI, eight round Feistel network, asblock cipher that produces a
64-bit output from a 64-bit input under the contobla 128-bit key. The differences
between MISTY1 and KASUMI are also emphasized belatile explaining
KASUMI’s structure.

2.2.1 FO Function of KASUMI

The basic structure of KASUMI is very similar to $TY1. KASUMI also consists of

the subfunctions FL, FO and FI that are used irjurarion with associated subkeys
KL, KO and KI. The overall structure of KASUMI & 64-bit permutation composed
of eight rounds of Feistel network. The round fimctconsists of a non-linear mixing
function FO and linear mixing function FL.

Let E(P,K) be the encryption function of KASUME: {01}*x{01}**® - {01}*
that returns a 64-bit outpu® : E(P,K . )lhe encryption function (see Figure 2.6) is
slightly different from MISTY1’s and summarized falows:

Encryption process of KASUMI can be summarizedadisws:
P=L,|IR, (2.2.1)
Fori= 1357
R =L
L, = FO(FL(R_,,KL,),KO,,Kl,)
T=L (2.2.2)
L=ROT
R=T
Fori= 2468
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L

T=L (2.2.3)
L=ROT

R=T

where the output i€ = L, || R, (2.2.4) andP: 64-bit, L, : 32-bit, R : 32-bit, KL, : 32-
bit, KI,: 48-bit, KO, : 48-bit, C: 64-bit.

In KASUMI (see Figure 2.6), the FL function preced€O function in the odd rounds
and it follows the FO function in the even roun@s the other hand, in MISTY1, the
FL function is used in both branches of the oddhds) however, it is not used at all in
the even rounds (see Figure 2.1).

r KL, +— KO,. KI,
—» FL —» FO —»D
I _

—»  FO — | FL —P»D

Figure 2.6 Two Rounds of KASUMI Encryption Process

The FO(p,KO,KI )function of the KASUMI is almost the same as the
FO(p,KO,Kl) of MISTY1 as described in Section 2.1.1, excepttifi®@ missing last

step i.e., Eg. 2.1.6. For this reason, the requiey length for Kl is 48 bits for
KASUMI whereas it is 64 bits for MISTY1.
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The 48-bit subkeysKO, and KI, are subdivided into three 16-bit subkeys, where
KO, = KO, [|KO, [|KO,; and KI, =Kl ||Kl,, [|Kl;;. Then, the FO function is

defined as follows :
For j =1to 3do

R, =FI({L,_, OKO,,KI,)JOR, 225
L =R,
C=LIR, (2.2.6)

where C is the output.

Moreover, theFl(qg,KI )function (see Figure 2.8) uses slightly differsaboxes,
which are also 7x7 and 9x9 call&l and S, (see Section 2.3).
The FO function of KASUMI is shown in Figure 2.7.

16 |32

]{{.) il —PE
KI;; —-[F
;
]

16

P

e

KOs —o¢
K1z _’E

]

sl s ;
‘:fuw\/
\

uw
X

KO3 —(
KI.{;; F
T
A
T
.—-—""_f

'

Figure 2.7 FO function of KASUMI

The second difference of KASUMI's FI function is idditional round (se€"4ound

in Figure 2.8) as compared to MISTY1's (see Figu®).
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Using the definitions given for MISTY1, the FI furan of KASUMI is defined as
follows :
R = S9L,] 0 ZE[R)]
L =R
R, = S7[L,|OTRR ] O K,
L, =R UKIly,

R, = SoL,]0 ZE[R) @27

L
c=LIR, (2.2.8)

whereC is the output.

Dg— KI,,

Figure 2.8FI function of KASUMI
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2.2.2 FL Function of KASUMI

FL function is quite similar to the MISTY1’s. Thanly difference (see Figure 2.7) is
the rotation operation ROT, which rotates its inpu bit to left. Using the previously
defined input and key vectors, ti(p, KL function is defined as follows:

S ROTCL B KL, 229)

C=C, ||Cq (2.3.10)
where the output i<C and, n and [0 are the logical AND and OR operations,

respectively.

FL function in both MISTY1 and KASUMI has the propethat for any subke¥L, ,
aninputofP =1L, ||R,. L, = (00...0),,¢, R, = 1...1),,,, always give an output of all
1's. Hence for some round inputs, some of the kisyilb KL, can be changed without

having any effect on the output of that round. Ttas be used to guarantee a zero
difference at the end of the first round. Smallrgfes to the input to FL function only

make small output changes.

a2
16 i 16

rﬁ‘ bitwise AND operation

:L.JI bitwise OF operation
{{{1 one bit left rotation

Figure 2.9FL function of KASUMI
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2.2.3 Key Schedule of KASUMI

The subkeys KL, KO and KI of KASUMI are producedngsthe original 128-bit key

K, as shown in Table 2.2. Each column of Tablei@dicates the keys used fof

round. First two rows denote the 32 bits of KL, ttext and the last three rows show

the 48 bits of KO and KI, respectively<<| is equal to the rotation operation, which

rotates its input -bit to left.

The 128-bit keyK is subdivided into eight 16-bit valuegs = K, [|K, ||..]|Ks. A

second array of subkeysK' is derived from K by applying for 1< j< 8§

K; =K; O Cj, where Cj is the constant value defined in Table 2.3 in dexanal

form.

Table 2.2Round Subkeys of KASUMI

Subkeys i™ Round Output
KL, K, <<<1
KL, Ki,+2(mod8)
KO, Ki1amoasy <<<5
KO, Ki+5(mod8) <<<8
KO, Kiemods <<<13
Kl Ki'+4(mod8)
K, K i’+3(mod8)
Klis Ki,+7(mod8)

Table 2.3.Constants for Key Schedule of KASUMI
C, C, C, C, C, C, C, C,
0x0123| 0x4567| Ox89AB | OXCDEF | OXFEDC| OXxBA98 | 0x7654| 0x3210
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The 128 bit additional bits are computed by usinigear relation, but the outcome of
256 bit is used a little bit differently, as theésothosen as round subkeys are rotated by

several constants in some cases.

In MISTY1 the 128-bit key is used to compute 128-hdditional key using FI
function. The outcome of 256-bit is used again agdin in various orders as the

round subkeys.
2.3 Descriptions of 7x7 and 9x9 S-boxes

The s-boxesS, and S, are obtained as affine transforms of power fumstiover the
corresponding fields, with Kasami’'s and Gold's expets. S, and S, are designed

with function x » x* in F, andx - x° in F,, respectively.

Firstly, the 81"and &' power of the element ifr, and F, is found for every nonzero

element, respectively. Then, the result is tramséat by an affine transformation to

produce the output. The effect of the affine transfis to remove fixed points.
2.3.1 MISTY1's and KASUMI’s 7x7 S-boxes

Definition 2.1 : Kasami's exponents [6] implies that for=2m+ 2<k<m and
gcdk,n) =1, the power functionx’, whered = (2* - 2* +1)modR" - 1)is almost
perfect nonlinear. Moreover, exponetit is'equivalent tod if there is an integet

suchd' =2'd i.e., the power functionx® and x* have the same properties.

For n=7, d=2°-2°+1=13 is a Kasami exponent witkk = .2Then, with
d’'=2'd, one can desigr§, with 81=2*(2* -2* +1))mod@R’ —-1). The Hamming
weight of d, the degree ofS,, is 3 sincel3=2"-2%+2°. S, is constructed by
composing two transformations :

i) Take the 84 power of the element i, .

i) Apply the affine transformation :
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- : : h
Yi =% O Xisgymoar O Xgsaymoar U Xisgymoar U C» fOr 0<i <7, where x is the hi

power of the element iff, andc is with value (0011011) for MISTY1.

Yi = Xisgymoar U G, for 0<i <7, wherex is the 81 power of the element ifr,” and

c is with value (0110110) for KASUMI.

Calling an elementxOF,, x=(X,..X;) the s-box output isy=Alx+c with

c =(c,..Cq) if x is equal to the dpower of the s-box input.

An affine transformation can be expressed in th&iméorm for MISTY1 in (2.3.1)
and for KASUMI in (2.3.2) as :

'yv,] [ 0011 0 1][x] [1]
v, [1 100110 |x]||1
Y, 0110011 |x 0 (2.3.1)
Y./={1 0 1 1 0 0 1|(x;|+|1
Y, 110110 0f]]|x, 1
Y 011011 0||x 0
1 Y¢] [0 01 1 0 1 1|][x] |O]
[y,] [0 0 0001 0][x,] [0]
Y,| |0 00 00O 1||x| |1
Y, |1 00000 0|[x,| |2 (2.3.2)
Y;[=[0 1 0 0 0 0 0|x,|+|0
Y,/ |0 01 00 0 0f[x,| |2
Y| |00 01 00 0]|x]| |1
¥s] [0 0 0 010 0f|x] [0

2.3.2 MISTY1's and KASUMI’s 9x9 S-boxes

Definition 2.2 : Gold’s exponents [6] implies that fon=2m+ ZI<k<m and
gcdk,n) =1, the power functiorx?, whered = (2¢ +1)mod@" - 1)is almost perfect

nonlinear.

Gold exponent is calculated to desi§nsuch that516=2° + 2° mod@’ -1) =2* + 1
since forn= 9 d =2°+1=5 is a Gold exponent witlk = .2S, is constructed by

composing two transformations :
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i) Take the B power of the element i, .
i) Apply the affine transformation :

yi = X(i+2)mod9 D X(i+4) mod9 D X(i+6)mod9 D X(i+8)mod9 D Ci ’ fOf OSI < 9’ Where Xi IS the

5" power of the element ifr, andc is with value (110000111) for MISTY1.

Yi = Xiszgymode U Xi+eymoae U Ci» fOr 0<i <9, wherex is the 8 power of the element

in F, andc is with value (111001010) for KASUMI.

Calling an elementxOF,, x=(X,..X) the s-box output isy=Alx+c with

c=(c,..Cg) if x is equal to the‘%power of the s-box input.

Matrix form of the 9x9 s-boxes of MISTY1 and KASUMre given in (2.3.3) and
(2.3.4), respectively:

y] oo 101010 1][x] 1
vl |t 00101010|x]| |2
v,/ 01001010 1]|x]| |0
v, l101001010||x]||o0
v.|=l0 1010010 1|0x|+0 (2.3.3)
v.| |l101010010||x| |0
vl 101010100 1||x/| |1
v.| lto1010100||x||1
v] 01010101 0]|%||L
'y,] [0 00100 10 0][x] [1]
v/ loooo1o0010][x]]2
v, loooo00100 1|x]| |1
v,/ [too0o00010o0||x]| |0
v.|=l0 1 0 000 0 1 olthx [+ o0 (2.3.4)
v.| oo 100000 1]|x| |1
v.| |1 0010000 0[|x]| |0
v lo10010000||x]| |1
'yv,] 00100100 0]|x]| |0
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CHAPTER 3

TEST CRITERIA FOR BOOLEAN FUNCTIONS

Shannon presented the principles of diffusion amfusion in 1949 [10]. To design a
cipher according to the principle of diffusion meahat one can design it to ensure
that “the statistical structure of plaintext whildads to its redundancy is dissipated
into long term statistics”. The higher the diffusjothe more output bits can be

affected by a certain input bit.

To design a cipher according to the principle @ffasion means that one can design
it so as “to make the relation between the simfagstics of ciphertext and the simple
description of key a very complex and involved onigieally, every bit in the key
influences every bit of the ciphertext and thisetefence appears to be random. The
security of cryptographic algorithms depends ugmndtrength, namely the diffusion
and confusion properties of the constituting Bool&anctions. In this chapter some

test criteria for measuring cryptographic streraftBoolean functions are reviewed.
3.1 Boolean Functiong20]

A Boolean function produces a single bit result &ach possible combination of

values form many Boolean variables, namely a Boofeaction of n variables is a
function f : F,;' — F,. A vector Boolean functior§(x): F,' - F,", wheren> land

m>1 mapsn bits tom bits.

Definition 3.1 : If a Boolean function is in the fornf (x) :Zai x, O c, where
i=1

a,cOF, for1<i<n,thenf(x)is called an affine functionf (x is called a linear
function, 1,(x), if ¢=0. Using the dot producae x of the vectorsa=(a,,....a, )

and X=(X;,....X, ), I,(x)=aex. The n-bit x also corresponds to an integer

O<sx<2"-1
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The truth table of Boolean functioh(x): F,' — F, is found by evaluatingf (x Jor

all possible values ok, where x is ordered lexicographically, i.e., with respexthe

ascending order of the integer representec by

Definition 3.2 : The Hamming distance betwedr(x): F,' - F, andg(x): F,;' - F,
is the function d, (f(x),9(x) = #HxOF,| f(x) # g(x)} (3.2)
and 0<d, (f(x),g(x)) <2".

Definition 3.3 : A Boolean functionf (x): F,' - F, is said to be balanced if its truth

table contains as many O’'s as 1's.

Definition 3.4 : The autocorrelation function of (x): F,' — F, is defined for all
dOF,) as

re(d) = (-2)'® (-1 (3.2)

xaFy

Definition 3.5 : The Walsh-Hadamard transform of the Boolean fumnctio

f(x):F,' - F, is defined for allaOF," as

W (@)= > (- (™, (3.3)

xaF,

showing the correlation betwed(x ajpd the linear functior, (x) = a Xx.

Remark 3.1 : Let g(x):F, - F, and f(x),g(x) have d, (f(x),g(x)) different

elements in their truth tables. By combining (3@l (3.3), we get
Zﬂ(-l) "09(=1)90 = (2" —d, (f (%), 9(x))+ iy (F(x), g()(=D) = 2" = 2d],, (f (%), 9(x))
Nozvv, by replacing g(x ) with 1, (X) one can obtain
W, (@) = > (=D ' (-D"™® =2" - 2d,, (f(x),I,(x)) , therefore
W; (a)

dy (F(9, 1.(x)) =2"" - 5

(3.4)
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3.2 Cryptographic Properties of Boolean Functions

3.2.1 Completeness and Avalanche Criterion

The property of completeness was introduced by Kamd Davida [11]. If a
cryptographic transformation is complete, then eawatput bit must depend on all of

the input bits.

Definition 3.6 : Let S(x): F,' — F,". If for all {(i, j)|1<i, j £ n}, there is at least one
pair of input vectorsx,x. O F," that differ in biti, and S(x ) and S(x; ) differ at least

in bit j, then the vector Boolean function is complete.

Related to the autocorrelation function given by)3the idea of avalanche effect was
defined by Feistel [8]. For a given transformatinexhibit the avalanche effect,

almost one half of the output bits should changeenever a single input bit is
complemented. More formally, a vector Boolean fiorctS(x): F,' - F,' satisfies

the avalanche criterion if whenever an input biclenged, half of the output bits

change on the average.

Let A°(X)=S(x)0S(xOe)=(a’ (x),a; (x),..,a° (x)) be the avalanche vector for
e OF, such that wt(e) = 1Then, the avalanche criterion is satisfied whea t

parameter defined in [1] as

AVAL(e) = Z > ajf (%) (3.5)

j=1 x0Fy
is close ton2"™ for all i, 1<i<n. AVAL(e) :inz Y ai(x) is called the
j=1 xOF)

normalized avalanche parameter. If it is close}@ for all i, then S(x): F,' - F,

satisfies the avalanche criterion.
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3.2.2 Strict Avalanche Criterion

The criteria of completeness and the avalancheteffere combined to define a new

property called the strict avalanche criterion (3§ Webster and Tavares [19].

Definition 3.7 : Let S(x): F,' — F,'. Consider the input vectors x, OF," that differ
only in bit i, 1<i<n. Then, A*(x)=S(X) 0 S(x;, ) If S is to meet SAC, the
probability that each bit iM% (x }s equal to 1 should be one half over the setlof a

possible input vectorsy, x. O F,", for all values ofi .

If a vector Boolean functionS(x):F,’ - F,', is to satisfy the Strict Avalanche
Criterion, the change of the" input bit results in the change of th& output bit

exactly for half of the input vectors, so the proitiy that the j™ output bit is

complemented i% :

By using the autocorrelation function, defined 32 one can express the Strict

Avalanche Criterion (SAC) as follows :

Definition 3.8 : Let xOF,' and f(x):F,’ - F, be a Boolean function with the auto

correlation function r,(e ) f(X) satisfies the SAC if

r(g)=>. (=)' (=0 =0 for all ¢OF, such thatwt(e)= 1 where

XOF,

1<i<n. Namely, for the Boolean function which satisthG§ f(x)J f(xUe) is

balanced for ale OF," such thatwt(e ) = 1wherel<i<n.

The original definition of SAC can be extended moaabitrary input difference vector

iOF-{0} Let S(x):F,) - F, be a vector Boolean function and
A'(x)=S(x) 0 S(xOi) = (a;(x),a,(x),...,a. (x)) be the avalanche vector for any

i OF, -{0}. Then, if
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sAC(, j) = Ya (%) (3.6)

xaFy
is close to2"™ for all 1< j <n, then the vector Boolean functioB(x): F,' - F,,

satisfies the SAC.

The measureD} , hormalized distance to SAC, is defined in [1] d@ncln be used to

indicate how close the vector Boolean functigfx is Jo satisfy SAC.

D! = 2}_1 (2"-1 - Zagj (3.7)

XOF}

If the strict avalanche criteria is exactly saasdfi then‘DH =0 for all output bits. In

the worst casefD}‘ =1. If SAC is satisfied, then the completeness analaamche

criterion are also satisfied. However, the satisbacof the avalanche criterion does

not ensure that SAC is satisfied.
3.2.3 Nonlinearity

Nonlinearity is one of the most critical indicatatthe cryptographic strength of a

Boolean function.

Definition 3.9 : The nonlinearity of a Boolean functiof(x F, - F, is the

minimum distance off (x }o the set of affine functions [20].
N, =mind,, (f (x),(a+ x 0 0))=min{d,, (f (x), I,(x)). d, (F (), 1,(x))} . (3.8)

where« denotes the dot product, (x i9 a linear function and, (x) =1_(x) O 1.

Using (3.4) in (3.8)
N =min{d,, (f(x), 1), dy ( (¥, 1)}

— main{zn—l _% Z(_l) f(x) m_l)la(x)' on-1 _% Z(_l)f(x) m_l)fa(x)}

XOFy XOF)!
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=2~ Lnaxw, ()], (3.9)
2 alF;

whereW, (a ) is the Walsh-Hadamard transform of the Boolearction f(x) given

by Definition 3.5.

The nonlinearity of a Boolean functiof(x F,’ - F, can be extended to vector
Boolean functions S(X):F' - F, S(x) = (f,(X),..., (X)) by
Ng = DrpnTO}{ N, |ce S(X)} , wherecOF,' — {O}is called a masking vector.

3.2.4 Linear Approximation Table (LAT) Distribution

Linear cryptanalysis [12] is a known plaintext akdhat is based on effective linear
approximate relations between the plaintext, cigxtrand the key. The linear
approximation tables of the vector Boolean fundaiomhich constitute the block
cipher are exploited for this purpose. LAT is arpartant tool to measure the security

of s-boxes against linear cryptanalysis.

Definition 3.7 : Let x,yOF,' and S(x):F,' - F,'. Each element of the Linear
Approximation Table is defined as

LA;I:(a,c) =#{x|ceS(X)=asx} -2"" =#{x|ce S(x) =ax} -2"* (3.10)

=#x|ce S(x) =1,(x)} -2""
=2"-d,, (c* S(x )l,(9) - 2"
=2" —d, (c* S(x ).l (X)) (3.11)

where a and ¢ are respectively the row and column indices andenotes the dot

product of vectors.

Using (3.4), the distance betweem S(x andl,(x), and (3.11), we have

d, (c* S(x), I, (x)=2"" —%WC,S(X) (a)=2"" - LAT(a,c), and
a,cdF;)
W, o (A
LAT (a,c) = LM _
a,c0F, {0}
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Remark 3.2 : By combining nonlinearity (see 3.9) and LAT, wdab
max |LAT(a,c)|=2"" - N, (3.12)

a,cOF,}' {0}

An arbitrary linear combination of the output bit, S(x) is most correlated with an
arbitrary linear combination of the input bits, wleser d,, (ce S(x), a» x) =2"*. If
this distance is 0, maximum positive correlatiows. Similarly, if this distance is

2", c* S(x) andae+ x have maximum negative correlation. Therefore, Itid (a, c)
a,cOF,

defined by (3.11) also measures how close the tiwotionsce S(x Jandae« x are to

the ideal situation of being uncorrelated. NormedizaluesLAT (a,c)/2" can also be
a,cOF,

considered as the bias of the probabilce S(x) =ae+ x frgm the ideal probability
of %2. The reason as follows:
d, (ce S(x),ae x)
2n
2"P{ce S(x) Zae*x} =2" —#{x|ce S(x) =a-* x}
Wc-S(x) (a)
2
LAT (a,c)
1 Wc-S(x) 1 a,cOFy)
P{ce S(x) =a*x} =—+ =+
{ ( ) } 2 2n+1 2 2n
Hence, the bias of the probabiliB{ce S(x) =ae* x %

P{ce S(X) Zae* X} =

2”(1_ P{C. S(C) =ae X}) — 2n—1 _

LAT (a,c)

P{ce S(x) =aex} —— =2 3.13
{ce S(X) } 5 o (3.13)
Probability bias (3.12) varies in the interval PR1/ 1/2] since

maf} | LAT (a,c)|= 2"". Large elements of LAT are not desired since thdjcate
a,c0F,' {0

high probability of linear relations between thpuhand the output.

3.2.5 Exclusive or —XOR Table Distribution

Differential cryptanalysis [2] is a chosen plairtextack, which uses the propagation
of input differences to output differences in itedh transforms. In other words, it

exploits the high propagation probability of cemtabccurrences of plaintext
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differences to the last round input differenceha tipher. Main part of the differential
cryptanalysis is making XOR tables of the vectoroBan functions. XOR table

contains the distribution on the differential outpu

Definition 3.8 :Let x,yOF, and S(x):F,’ - F,'. Let two inputs to the system be
x',x" with the corresponding outputy’,y" respectively. The input and output
differences are given bAx=x" 0 X" and Ay=y' 0 y", respectively. Then, XOR

table can be constructed by using
XOR(AX, Ay) =#{x| S(x) O S(x O Ax) = Ay} (3.14)

The rows of the matrixAx, represent the change in the output of the s-bb&.sum

of all values in a row or a column &". The parameterAinAa% XOR(AX,Ay) =0 is
Ay#

called differential uniformity. XOR table of an &b gives information about the
security of the block cipher against differentigtgtanalysis. If differential uniformity
is large, this is an indication of an insecure kloipher.

The main difference from LAT is that XOR table distition involves comparing
XOR of the two inputs to the XOR of the correspogdoutputs. In LAT, we try to
find linear relationship between a subset of immd output bits.

One can find resemblances between the definitiddA®® and XOR table distribution.
SAC is useful to get an idea when input bits arenged how often output bits are
affected. XOR table represents when the input ares changed, the number of
occurrences of the corresponding output differdncgiven input difference. In other
words, in XOR table one finds the number of outplifferences, in SAC one

calculates the number of 1’s in each bit columnalboutput differences.
Mentioned criteria are used to test the s-boxebladk ciphers. They are not very

practical for application to the overall cipher. édo this reason, Chapter 5 is

organized to test in terms of avalanche and rand@smariterion the overall cipher.
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CHAPTER 4

S-BOX TEST RESULTS FOR MISTY1, KASUMI AND
RIINDAEL

The resistance of block ciphers to cryptanalytitacMs depends heavily on their
diffusion and confusion properties. The overall Inmearity of a cipher is usually
provided by the s-boxes, which should be choseefaidy.

In this chapter, we investigate the cryptograptiergth of the s-boxes of MISTY1,
KASUMI, and RIIJNDAEL, in terms of linear approxina table, XOR table
distributions and the strict avalanche criteriohe3e s-boxes are of sizes 7x7 and 9x9
that are described in section 2.4, 8x8 s-box oNRIBEL explained in section 4.4.1.
Then, we consider the 16x16 FI function used in M$ and KASUMI to find its
strict avalanche characteristics. We finally repldélce s-boxes in the FI function of
KASUMI with RIJINDAEL'’s s-box. Calling the new ciph& ASUMI-R, we compare
the FI functions of MISTY1, KASUMI and KASUMI-R irterms of their strict

avalanche characteristics.
4.1 Test Results of LAT Distribution

The LAT is a matrix of size 128x128 for 7x7 s-box256x256 for 8x8 s-boxes and

512x512 for 9x9 s-boxes, whose elements are cadulilay

LAT(a,c) =#{x|c* S(x) =a* % -2" (see 3.11).

Since the size of LAT for these s-boxes is vergdame only present some part of the
LAT’s corresponding to input and output differencesight one. We then compute

the nonlinearity measure of each s-box by (see )3.12.e,

N, =2""- max |LAT(ac)|. However, the maximum entries encountered in
a,cdF {0}
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these partial LAT’s are observed to be the samih@snaxima of the overall LAT's

for each s-box.
4.1.1 Results for the 7x7 S-boxes of MISTY1 and KASMI

When we investigate LAT'’s of MISTY1’'s and KASUMIBX7 s-boxes, it is seen that
there are only three values {-8, 0, 8}. The numtiie8’s is 4060 and the number of -
8's is 4068 for both of the s-boxes. So, one can that there is no significant

difference between these s-boxes. As an integesibservation we note that the

n-1

2
number of LAT elements, different from zero &"? - 2”‘2_27 for both s-

n-1
boxes andmax|LAT(a,c)|=2 2 . This gives the nonlinearity of 56 for 7x7 s-boxes
a,cOFy)

by using (3.12). Table 4.1 and Table 4.2 show LAStributions for the s-boxes of
MISTY1 and KASUMI for single bit input and outpuifférences.

Table 4.1.LAT Distribution of MISTY1’s 7x7 S-box
for Single bit Input and Output Differences

OutputSum 1| 2|48 |16|32|64

Input Sum
1 -8/0|8/0|{0| 0| O
2 0/0|0|-8/-8/0| 8
4 0/-8/8 8| 8
8 0(-8/0 8| 8
16 -8/0|8/0(0|-8|0
32 0/0(0(-8/-8/0| 0
64 0/-8/0/0|0| 8| 8
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Table 4.2.LAT Distribution of KASUMI’s 7x7 S-box
for Single bit Input and Output Differences

OutputSum 1| 2|4|8|16|32|64

Input Sum
1 8/0(-8/0|/-8/0|0
2 0/-8/0|8/0|0|O0
4 -8/0|0|0|0|-8| 8
8 8 -8/0|-8/0| 0
16 8/0(-8/0/-8/-8|0
32 0/-8/0|8(-8/0|0
64 0/{0;|0|0|0O]|-8]|8

4.1.2 Results for the 9x9 S-boxes of MISTY1 and KASMI

There are only three values {-16, 0, 16} in the L&®f the 9x9 s-boxes. This gives
the nonlinearity of 240 for 9x9 s-boxes. Table dt®®l Table 4.4 show partial LAT'’s
for 9x9 s-boxes of MISTY1 and KASUMI. Comparing ttveo tables, one observes a
single |16| in each row and column for KASUMI's 3¢®ox, which is not the case for
the first column of Table 4.3. This means that fingt output bit of 9x9 s-box of
MISTY1 is correlated with all 9-bit unit vectors apposed to KASUMI's s-box.
However, this correlation is not large-16/256=-625 )%Regarding the whole
512x512 LAT'’s, the number of 16’s is 65400 and rlvenber of -16’s 65416 for both

of the s-boxes. We again observe that the numb&rAdT elements, different from

n-1

2 ni
and max|LAT(a,c)|=2 2 .
a,cOF,

) u o2
zerois2®"? —| 2"? ¥
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Table 4.3.LAT Distribution of MISTY1’s 9x9 S-box
for Single bit Input and Output Differences

OutputSum 1 | 2 | 4| 8| 1632| 64 |128|256

Input Sum
1 -16/ 0 | 0|16 O 0| O
2 -16) 0 | 0| 0|10 0| O] O
4 -16) 0 | 0| 0| 0] 16 O 0
8 -16) 0 | 0| 0| O] O -16 O | O
16 -16 0 | 0| O| O/ Of 0| O] -16
32 -16) 0 | 0| O| O] O] O] -16 O
64 -16) 0 | 0| O] O] O] O] O] O
128 -16-16/ 0| 0| 0| O] O] O| O
256 -16 0 |16/0| 0| O] Of O] O

Table 4.4.LAT Distribution of KASUMI’s 9x9 S-box
for Single bit Input and Output Differences

OutputSum 1 | 2 | 4| 8| 16 32 |64|128|256

Input Sum
1 0| 0| 0] O O O 10| O
2 0| 0(160|0, O] O] O O
4 0| 0| 0] O] O -160| O | O
8 -16 0 | 0| O O] O] O O] O
16 O 0| 0 O 160 |0 O] O
32 0Ol 0| 0160 0| 0| O| O
64 0O(-1g 0| 0| O] O] Of O] O
128 O 00 OO0 @ O O a 1p
256 0| 0/ 00 00 0 O O -160

4.1.3 Results for the 8x8 S-box of RIINDAEL

In RIINDAEL’s 8x8 s-box, as opposed to previousesaghere are various LAT
values differing between -16 and 16 when we comgliewhole LAT. This gives the
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nonlinearity of 112 by using (3.12). The numberoaturrences of 2'° —1) LAT

elements is shown in Figure 4.1.

LAT Distribution of RIINDAEL s-boxes

7000

6000 -
5000 +
4000 -
3000 +

2000 -

Number of Occurences

1000 -

0 2 2 4 4 6 6 8 -8 10 -10 12 -12 14 -14 16 -16
LAT Elements

Figure 4.1 Number of Occurrences of LAT Elements for RIINDA&box

In Table 4.5 LAT distribution of RIINDAEL's 8x8 sk is demonstrated for input

and output differences of single weight.

Table 4.5.LAT Distribution of RIINDAEL'’s 8x8 S-box
for Single bit Input and Output Differences

OutputSum 1 | 2 | 4| 8| 1632 | 64|128
Input Sum
1 121 0 | 14|12 8| 4| 4| 12
2 2| 8| 2| 6| -2 8 |-16| -2
4 8| 2 12-16| 2 | -2
8 2|1 2| 4] 0|126 | 2| 4
16 -12 -2 | -6| -2| -8/-10| O
32 6(-10 -2 |-12/ 2| 0| -8| 12
64 4| 4| -1216|6| -8(-12 4
128 -12/-121 16|14 |-8|-12| -4 | -4

4.1.4 Comparison of MISTY, KASUMI and RIJNDAEL S-boxes

The main difference between LAT's of 7x7, 8x8 and99s-boxes is that,
RIJNDAEL’'s 8x8 s-box has 17 different LAT valuesheveas MISTY1's and
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KASUMI's s-boxes have only 3 different values. Tall.6 shows the distribution

percentages of LAT elements for the three s-boxes.

Table 4.6.Distribution Percentages of LAT Elements for thede S-boxes

S-box Size 7x7 | 8x8 | X9
Percentages of
O’s 0.50 | 0.07f 0.50
2's 0 |018] 0
14]'s 0 | 014| 0
6]'s 0 |015] 0
18['s 049 | 013| 0
110['s 0 | 009 O
112's 0 | 014] 0
114]'s 0 | 006] O
116['s 0 | 0.01] 049
max |LAT(a,c)|
Maximum bias of the probabilitP{as x=ce S(x )from s, 2= > s

calculated for the three s-boxes, and given in dabV. The maximum probability
biases for the 7x7 and 8x8 s-boxes are found &abee. On the other hand, 9x9 s-box
has the best probability bias as observed in Talle

Table 4.7.Maximum Probability Biases for the Three S-boxes

S-box Size 7 8x8 9%9

Probability Bias 1/16 | 1/16| 1/32

Nonlinearity, given byN, =2"" - max |LAT(a,c )[see 3.12), of the three s-

a,cOF' <0}

boxes is shown in Table 4.8.
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Table 4.8.Nonlinearity for the Three S-boxes

S-box Size 7 8x8 9%9

Nonlinearity 56 112 240

4.2 Test Results of XOR Table Distribution

The XOR table is a matrix of size 128x128 for th& g-boxes, 256x256 for the 8x8 s-
boxes and 512x512 for the 9x9 s-boxes, whose elsnaea calculated by

XOR(AX, Ay) =#{x| S(x) O S(x 0 Ax) = Ay} (see 3.14),

where S(x):F, - F', x, Ax, AyOJF,' and Ax,Ay are the input and output
differences, respectively. Because of the sameorneat LAT, the size of XOR table

for s-boxes is very large, we only give partial X@®les corresponding to input and
output differences of single weight.

4.2.1 Results for the 7x7 S-boxes of MISTY1 and KASMI

When we compare the 7x7 s-boxes of MISTY1 and KAS@btording to their XOR
table distributions, XOR tables contain only twdwes {0, 2}. Considering the overall
XOR tables, the number of 0’'s and 2’s except thet fow is equal and can be defined
as 2"*. Then, one can say that there is no significafferdince between these s-
boxes. Table 4.9 and Table 4.10 show XOR tableibligions for the s-boxes of
MISTY1 and KASUMI for single bit input and outpuifférences.
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Table 4.9.XOR Table Distribution of MISTY1's 7x7 S-box
for Single bit Input and Output Differences

& 1102|a|8| 16| 32|64
AX
1 |2/o]|ojolo| 0] 0
olojo|2] 0] 0] 0
4 [ojojojoj o] 2|0
olojolo] 0] 2] 2
16 |o0jo|2|0l0]| 2] 2
32 [0/o|2[0] 2|22
64 |0/2|2l0l 2| 2] 2

Table 4.10.XOR Table Distribution of KASUMI's 7x7 S-box
for Single bit Input and Output Differences

Ay
112(4/8|16|32|64
AX
1 2/012(2,22|0
2/1010(2, 22| 0
4 2|0/0(0]| 2] 2|0
21000200
16 2/10/0|0] 0] 0] O
32 |0/2|0|0/ 0] 0] O
64 |0[{0(0|O0j] O] O] 2

4.2 .2 Results for the 9x9 S-boxes of MISTY1 and KASMI

Similar to previous case, there are only two val{@s2} in their XOR tables.
Moreover, we again observe that regarding the whdigx512 XOR tables the
number of O’s and 2’s is equal for both s-boxes2&$. XOR table distributions of
MISTY1 and KASUMI's 9x9 s-boxes for input and outpdifferences of single
weight are shown in Table 4.11 and Table 4.1% thserved that there is only one 2
in each row and column for KASUMI's 9x9 s-box which not the case for the
seventh row of Table 4.11. The seventh input difiee of 9x9 s-box of MISTY1 is
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correlated with all output differences except tingt fone in Table 4.11 on the contrary
to the s-box of KASUMI. However, this correlatiannot large.

Table 4.11.XOR Table Distribution of MISTY1's 9x9 S-box

for Single bit Input and Output Differences

by 12| 4] 8| 16| 32| 64, 128 256
AX
1 0| 0| O] 21 O 0 0 0 0
O 0| O] Of 2 0 0 0 0
4 O 0| O] Of O 2 0 0 0
O 0| O] Of O 0 2 0 0
16 0, 0| Of 0] O 0 0 0 2
32 0, 0| Of 0] O 0 0 2 0
64 0| 2| 2| 2| 2 2 2 2 2
128 0| 2, 0] 0Of O 0 0 0 0
256 0 0, 20 O0f O 0 0 0 0
Table 4.12.XOR Table Distribution of KASUMI' 9x9 S-box
for Single bit Input and Output Differences
& V1] 2] 4| 8| 16| 32| 64 128 256
Ax
1 0| 0| O] 0] O 0 2 0 0
2 0| 0| 2| 0] O 0 0 0 0
4 0| 0| O] 0] O 2 0 0 0
8 2/ 01 0] 0] O 0 0 0 0
16 0L 0| O] Of 2 0 0 0 0
32 0, 0| 0] 2/ O 0 0 0 0
64 0, 2| 0] 0f O 0 0 0 0
128 0 0 O] 0f O 0 0 0 2
256 0| 0, 0] 0Of O 0 0 2 0
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4.2.3 Results for the 8x8 S-box of RIINDAEL

In RIINDAEL’s 8x8 s-box, as opposed to the previcases, there are three XOR
values differing between 0 and 4. Considering d/et®R table, every row and
column except the first row and column containscéyane 4. XOR table distribution
of RIINDAEL'’s 8x8 s-box for single bit input andtput differences is demonstrated
in Table (4.13). It is noticed that the value ad@des not appear in these specific rows

and columns.

Table 4.13.XOR Table Distribution of RIINDAEL'’s 8x8 S-box
for Single bit Input and Output Differences

&0112]a|8| 16| 32| 64| 128
AX
1 |ojojojojo| 0] 0] o
2 [2/o0(2[2] 0| 0] 0] 2
4 |ol2(2/2] 00| 2| o
2lo(o[2] 20| 0] 2
6(0/2/2/2]0] 0|0 2
32 |0l2(0/2]0|0] 2| 0
64 |0jl0|2/0| 2| 0] 2| 2
1280/0|0(2] 2] 2| 2] 2

4.2.4 Comparison of MISTY1, KASUMI and RIJNDAEL S-boxes

There are two significant differences between X@Blds of 7x7, 8x8 and 9x9 s-
boxes. The first one is differential uniformitiesssboxes and the second difference is
related with the number of elements for each rowhefs-box. Differential uniformity

defined by, 5:AmAa§)XOR(AX,Ay), is 4 for RIJNDAEL's, whereas it is 2 for
X,y

MISTY1's and KASUMI's s-boxes.of the 7x7, 8x8 and99s-boxes, as shown in
Table 4.14.
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Table 4.14.Differential Uniformity of XOR Table Elements

for Each Row of the Three S-boxes

S-box Size 7 8x8 9x9
Differential

_ _ 2 4 2
Uniformity

The number of XOR table 0's and 2’s is equal forSMY1l's and KASUMI's as
opposed to RIJNDAEL’s s-box. Table 4.15 summarittes number of XOR table

elements in each row (except the first row).

Table 4.15.XOR Table Elements for Each Row of the Three Selsox

S-box Size | 7x7 8x8 99
Number of
0's 2" | 241 | 2™
2's 2t 2" -2 2"
4’s 0 1 0

4.3 Test Results of Strict Avalanche Criterion forS-boxes

SAC values constitute a table of size 127x7 fortkie s-boxes, 255x8 for the 8x8 s-

box and 511x9 for the 9x9 s-boxes, whose elemeatsaiculated by

i 1 n- i
D :F(z - Zaj} (see 3.7),

xXaF,

where i is any n bit vector, 1<i<2" -1 aij is the j™ avalanche variable,
1< j<n. In the following, we sketcHD‘j versusj for each s-box, where the curves

corresponding to different valuesofl F,' = {@ye drawn on the top of each other.
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4.3.1 Results for the 7x7 S-boxes of MISTY1 and KASMI

For the 7x7 s-boxesD} curves given by (3.7) wheredF, — {Ore depicted in

Figure 4.2 and Figure 4.3 for MISTY1 and KASUMIspectively. In the figure there

are 127 curves corresponding to all input diffeeent-127 and each curve is shown in

a different color. The maximum of the normalizestance to SAC over alland j is

found as|D|max = 0.125 with corresponding values of= 12T is observed that for

these s-boxes SAC gets this highest value for &itch;”’ of the avalanche vector,

that is for j =12,...,7 However, corresponding deviation from ideal randess is

small i.e.,12.5 %. When KASUMI and MISTY1 7x7 s-boxes are compatbédre is

no distinctive property between them. All valuesFigure 4.2 and Figure 4.3 are

equal to 0 or 0.125.
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O 0'12 a a4 \ 4 /r 4 v
< \ /,’/’
(%)) \ /
e 01 /’
8 \ /
= 0,08 - \ /
— \ /
@ \ /
0 0,06 ;
3 \ /
= 0,04 - \\\ //’/
© \ ////
e \ /,//
s 0,02 —
= / ‘ \/ \/
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Figure 4.2 Normalized Distance to SAC for the 7 x 7 S-boi6TY1
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Figure 4.3Normalized Distance to SAC for the 7 x 7 S-boX&iSUMI

4.3.2 Results for the 9x9 S-boxes of MISTY1 and KASMI

Figure 4.4 and Figure 4.5 shoW} curves given by (3.7) whered F, - {Ofpr the
9x9 s-boxes. In the figures different colors copmesl to various input differences 1-
511. The maximum of normalized distance to SAC denfl as|D| =1 with
corresponding values of= 128d j = 8for MISTY1, andi = 128and j = 1 where
j is the bit position of avalanche vector. By thigywve can say that both of them do

not satisfy the strict avalanche criterion. Whe® 8xboxes of KASUMI and MISTY1
are compared in terms of SAC, there is only onfeihce between them. MISTY1's

9x9 s-box for input difference of 173 and 429, apdenth bit of avalanche vector has

‘Df?" =‘D;‘29‘ = 05. In Figure 4.4 we have three different valuesd®, 1}. However,

all of the values in Figure 4.5 are equal to 0.0Ad interesting observation is that in

KASUMI 9x9 s-box all input differences whose weigldre different from 1, i.e.,

wt(i) # 1 give |Dj| = 0.

42



Normalized Distance to SAC

1 2 3 4 5 6 7 8 9

Bit Position of Avalanche Vector

Figure 4.4 Normalized Distance to SAC for the 9 x 9 S-boMiIETY 1
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Figure 4.5Normalized Distance to SAC for the 9 x 9 S-boXa&iSUMI

4.3.3 Results for the 8x8 S-box of RIJINDAEL

For the 8x8 s-box of RIJNDAELD} curves given by (3.7) are sketched vergum
Figure 4.6 where different colors correspond taotes values ofi OF? - {0} The
highest normalized distance to SAC is obtai"[eﬁ = 0.125 for input difference of 72

and j = 6,7. SAC gets the highest value for at most two bitavalanche vector for

Rijndael &8 s-box. Although RIJINDAEL does not satisfy stasalanche criteria, its
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normalized distance to SAC values are very nedl, tiikke 7x7 s-boxes of MISTY1
and KASUMI, which is quite good.
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Figure 4.6 Normalized Distance to SAC of RIINDAEL 8 x 8 S-box

4.3.4 Comparison of MISTY1, KASUMI and RIJNDAEL S-boxes

When the s-boxes of KASUMI, MISTY1 and RIJNDAEL aempared in terms of

SAC, although most of the normalized distance t&€SAlues is 0 in 9x9 s-boxes of

MISTY1 and KASUMI yield the most undesirable vaque‘Dij

=1, on the other

max

hand, in RIJNDAEL all values are around 0. Tabl&é64summarizes the obtained

results. In Table 4.16 only one value is giverhia torresponding column.

Table 4.16Normalized Distance to SAC for the S-boxes

S-box ‘D] . | Corresponding i
MISTY 7 x7 s-box 0.125 127
KASUMI 7 x7 s-box 0.125 127
MISTY 9x9 s-box 1 128
KASUMI 9 x9 s-box 1 128
RIJNDAEL 8 x8 s-box | 0.125 72
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4.4 Test Results of Strict Avalanche Criterion forFl Functions

In this section, we compare the FI functions of Y8 and KASUMI in terms of
SAC. Then, we define a new FI function by replacdbmih s-boxes of KASUMI by
RIINDAEL'’s s-box in subsection 4.4.1. Then, we gille SAC curves for each FlI

function.

4.4.1 Fl Function with RIINDAEL S-box

By replacing s-boxes of KASUMI with RIJINDAEL'’s s-kca new FI function is
obtained. The s-box of RIINDAEL was designed theiision functionx — x™ in
F.. This function is constructed according to [14]csi it provides good differential
and linear properties as a nonlinear transformatanstly, the inverse of the element
in F; is found for every nonzero element. Then, theltiespinverse is transformed

by an affine transformation to produce the out@anstruction matrix is as follows:

y,] J1 00011 1 1][x] [1
v/ [1 100011 1||x]| |1
v,| |11 110001 1||x| |0
Ya[_[1 111000 1/lx| |0 441)
v,/ |11 111100 0||x,| |0
V| 10111110 0||x| |1
V| 1001 1111 0||x]| |1
y,] [0001 111 1]|x]| |0

where x is thei™ bit of the multiplicative inverse in the finiteefd F? for 0<i <8.
Calling an elementxOF?, x=(X,..X;) the s-box output isy=Alx+c with

c =(c,..Cg) if x is equal to the inverse of the s-box input.

The FI function with RIINDAEL’s s-box, shown in kige 4.7, also takes a 16-bit
input P and a 16-bit subkeyl;; and it gives 16-bit output C.

The input P is split this into two equal componentsereP =L, || R, .
Similarly, the subkey KI; is split into two equal components, where

KI; =Kl [|KIy;, . Then, the modified FI function is defined adduls :
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R =SgL,|OR,

L, =

R, =SgL,|OR OKI,

L, =R OKl,,

r=sLIOR (4.4.1)
L, =R,

R, =R

L, =SgL,]OR,
c=L,|IR, (4.4.2)

Main difference between KASUMI's Fl function is theck of zero-extend (ZE) and

truncate (TR) functions, since the input is spitbitwo equal components.

16
f_i_“

S8

A
]
4

Figure 4.7 FI function of KASUMI-R

In the following sections we give the normalizesdtdnce to SAC‘,D” , curves for the

three FI functions. We consider 32 curves to alisilile one-bit and some two-bit
input differences which arell{e,....e.,e Ue,, e Ue,,....e;. Ue,,e,0e}, where

e Is the 16-bit unit vector in position in Figure 4.8, Figure 4.9 and Figure 4.10,
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since the number of curves is very hu@€,. Namely, the Hamming Weight of first

16 input differences is 1, the Hamming Weight dadtld6 input differences is 2.
Moreover, SAC curves are computed fdi F,' = {0k Figure 4.8, Figure 4.9 and

Figure 4.10 different colors correspond to différ@put differences.
4.4.2 Results for the FI Function of MISTY1

Figure 4.8 shows the normalized distance to SAQeslof MISTY1’s FI function,

explained in section 2.1.1, versys The highest value is obtained |a§11max =1 for
eleventh bit position of avalanche vector and thpui differencee,. It is an

interesting observation that there is not any maximvalue, ‘D']‘ le' for

ma

1<j<7. Moreover, ‘D;‘ =0 for 1<j<5 and
i{e,...ese0e,e 0e,...e;0646€,06}. Although most values are equal to O, the

FI function does not satisfy SAC, because of thezeoo values O’fD” .

Normalized Distance to SAC of MISTY1's FI Function
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Figure 4.8 Normalized Distance to SAC of MISTY1's FI Function
4.4.3 Results for the FI Function of KASUMI
The normalized distance to SAC values of KASUMI'k fEnction, explained in

section 2.2.1, are depicted in Figure 4.9. The maxn of normalized distance to SAC
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is obtained for the input differencg with ‘D']‘ =034 and j = 12 All values are

ma

closer to zero than those of MISTY1. On the othand) similar to previous case,

normalized distance to SAC values are very clogefty 1< j < 5.

Normalized Distance to SAC of KASUMI's FI Function
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Figure 4.9 Normalized Distance to SAC of KASUMI’'s FI Function
4.4.4 Results for the FI Function of KASUMI-R

As the previous two figures, Figure 4.10 givesibemalized distance to SAC values
of KASUMI-R’s FI function explained 4.4.1. The higét value is obtained as

o)

=0.027 for j =8 and the input difference, U e,. Although FI function with

max

RIINDAEL s-box does not satisfy the strict avalanchiteria, its normalized distance
to SAC values are very close to 0 which is highly satisfey. In FI function with

RIIJNDAEL s-box, all values are in a very small gAp.an interesting observation, we

note that the proportion of zeros ¢D;‘ is only 10 over 512 as opposed to other FI

functions.
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Figure 4.10Normalized Distance to SAC of KASUMI-R’s FI Furmti

4.4.5 Comparison of FI Functions of MISTY, KASUMI and KASUMI with
RIJNDAEL S-box

In Figure 4.11, we sketch the SAC performancesethiree Fl functions of MISTY1,
KASUMI and KASUMI-R, in terms of the normalized thsce ‘D;‘ versus

J =1,...16 for the input difference set{g,...e, € Ue,,e Ue,...a.06e,6,06}. It
is observed that the FI function of KASUMI-R ha% thest performance and the

correspondindD” values are very small as compared to the FI fanstof MISTY1

and KASUMI. To make these small values more visibde zoom at the vertical scale
of Figure 4.11 and obtain Figure 4.12, which sholwes KASUMI-R performance in
more detail. In Figure 4.11 and Figure 4.12 eadbrcoorresponds to a cipher, i.e.,
blue is for MISTY1, red is for KASUMI and yellow i®r KASUMI-R. It should be
noticed that FI function of MISTY1 and KASUMI gelhdir maximum normalized
distance to SAC value for input difference of weighe as opposed to KASUMI-R’s
FI function. It is an interesting observation tladit FI functions get their maximum

values forj > 7 where j is the bit position of the avalanche vector.
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As a conclusion, normalized distance to SAC vaklesv that KASUMI-R seems to

be the most random. We finally find the SAC parareetfor all input differences,
F,° -{0}, and see that the highest normalized distancA® &lues are 1, 0.34 and
0.027 for the FI functions of MISTY1, KASUMI and KASUMR, respectively. As
an interesting observation that when the input edgiice set
i{e,...esel0e,e Oe,...e. 066,06} is used, we obtain the maximum values
for the three FI functions. Table 4.17 summarizesimum values of the normalized

distance SAC for FI functions for all input differees.

Table 4.17.Normalized Distance to SAC for FlI Functions

FI Function of ‘D; - Corresponding i
MISTY 1 256
KASUMI 0.34 32
KASUMI-R 0.027 222

The maximum values, given in Table 4.17, can also ifterpreted by using

i
P{FI (x) O FI (x01) =0} = % +% as follows:

Table 4.18.Probabilities for FI Functions in terms of SAC

FI Function of Probability Function
MISTY P{FI(X) O FlI(xOeg)=0}=1
KASUMI P{FI(x) O FI (xO e;) =0} = 067
KASUMI-R P{FI(x) O FlI(xOe,Oe,) =0} =0.5135
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CHAPTER 5

RANDOMNESS CRITERIA FOR BLOCK
CIPHERS

In this chapter, Avalanche Weight Distribution (AWDand some statistical
randomness tests are explained in detail to exandiffeision, confusion and

randomness properties of overall cipher.

5.1 Avalanche Weight Distribution

Avalanche Weight Distribution (AWD) is defined id][as a simple criterion for fast
and rough analysis of the diffusion and confusioopprties mentioned by Shannon.
This criterion examines whether for quite simil&iptext pairs €,P,), histograms of

the Hamming weight of the avalanche vectors areptet®ly random. For a well
diffused block cipher of blocklengtin AWD curves corresponding to all possible
pairs of similar inputs should be binomially dibtrted aroundh/2. In order to give an
idea about what is expected from AWD of a randorockl cipher, Binomial

distribution is sketched fon = 6#h Figure 5.1.

Number of Occurrences of
wt({Avalanche Vector)

10 20 32 40 50 60 64

wt{Avalanche Vector)

Figure 5.1Ideal AWD Curve
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The following test procedure is used to find thed@mness of the -th round output
of an R-round cipher which maps-bits to n-bits. The avalanche weight distribution
vector with thek-th element AWDEK] denotes the number of avalanche vectors of

weight k .

Step 0 :ChooseN = 30000andom input vector® .
Step 1 : Set AWDI[k]=0, for k[{1,...64}.Chooser andi such thatl<r <R and

1<i < n. Do the followings for each input vectér:

Step 2 : Calling e, the n-bit unit vector having a 1 at position, compute
P, =P0e. P andP,, differ only in biti .

Step 3 :SubmitP and R, r-rounds of the cipher, call the" round outputs off (P )
and f (P, ).

Step 4 :Find the Hamming weight of the avalanche vectof (P) U f (P, .)

Step 5 :Increment the value of the™ element of the avalanche weight distribution

vector, i.e., AWDK] = AWD[ k] + 1.

Step 6 :Return Step 2 until all input vectors are exhadiste

Using the above algorithnm times, one obtains different AWD curves forn
different input differencee vectors. Similarly, lettingr =12,..., 8one can compute
the randomness of the cipher for different numidetoands. Moreover, one can test
the randomness of the round output increases &s augmented. By using the test
procedure explained above, we investigate avalanebight distribution of 64
different input differences vectors forl<i < 64overall test of MISTY, KASUMI
and KASUMI-R ciphers. Figure 5.2, Figure 5.3 andjufe 5.4 demonstrate eight
different AWD curves, each corresponds to differesior and rounds, for the input

differencese,.

5.1.1 AWD Test Results for MISTY1

Figure 5.2 shows the AWD curves of MISTY1 for theut differencee, at the end of
different rounds of the cipher. We observe that WW$ satisfies the AWD criterion at

the end of the second round. After rounds of ertargpall the avalanche vectors have
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very stable Hamming weights, gathered around a meah 32.
The AWD curves almost imitate each other indepehdémound number except the
first round. In the first round the AWD curve issiar to a binomial distribution a

mean value of 24.

EightRounds AWD Curves of MISTY1
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O

1T 4 7 10 13 16 19 22 25 25 31 34 37 40 43 46 49 52 55 58 B1 B4
wt{fvalanche Vector)

Figure 5.2 AWD Curves of MISTY1 fore, for all Rounds

5.1.2 AWD Test Results for KASUMI

Eight different AWD curves of KASUMI correspondinig round number for the
input differencee, are depicted in Figure 5.3. After augmenting thmhber of rounds
to 2, we observe that KASUMI satisfies the AWD eribn. Moreover, when the
round number is more than 1, all AWD curves are/\semilar to each other and very
close to the binomial shape. On the other hantharfirst round, the Hamming weight

of the avalanche vectors is aggregated around 19.
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Figure 5.3AWD Curves of KASUMI fore, for all Rounds

5.1.3 AWD Test Results for KASUMI-R

Figure 5.4 demonstrates AWD curves of KASUMI-R fbe input differencee, for

the eight different rounds. In the first round ésembles a binomial distribution a
mean value of 18. Increasing the number of round® tauses satisfactory AWD
curve. Immediately after the second round the Hamgmweight of the avalanche
vectors are gathered around a mean of 32. Moretvere is not much difference of
AWD curves after the second round.

Eight Rounds AWD Curves of KASUMI-R
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Figure 5.4AWD Curves of KASUMI-R fore, for all Rounds
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A normalized measure of closeness is defined 4%]ibetween the evaluated AWD
curves and the binomial distribution, subtractirige tsum of normalized error

magnitudes from unity, as:
1 N(n
S =1-—> | AWD|k|-— 5.1

where n is the length of the ciphertext amdl is the number of plaintexts andis the

number of rounds.
5.1.4 Comparison of MISTY1, KASUMI and KASUMI-R in view of AWD

When we compare the AWD curves results, it candreladed that all ciphers show

similar behaviors input differences f@ the 64-bit unit vector in position. The

difference between them is the Hamming weightswafiamche vectors for the first

round.

Normalized measure of closeness between the eedluwdtVD curves for MISTY1,
KASUMI, KASUMI-R and the ideal Binomial distributio(see 5.1) are given in Table
5.1 for the input difference, for all rounds. It is observed from Table 5.1 thEhost

all rounds except the first round of MISTY1, KASUMhd KASUMI-R resemble the
ideal binomial curve of mean value 32 more than 98%the end of the first round
MISTY1 has the best result in terms of resemblgmeeentages, since AWD curve
resembles a binomial distribution a mean valuedoaich is close to 32 than others.
As a conclusion evaluated curves of KASUMI are muwbbser to the binomial
distribution of mean value 32. The reason why ghers fail for the first round may
be the Feistel structure. For input differencesveifght one, we obtain similar AWD

curves for the three ciphers.
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Table 5.1.Resemblance Percentag§§ for MISTY1, KASUMI and KASUMI-R

Round r MISTY1 KASUMI KASUMI-R
1 0.3893 0.038 0.039
2 0.9808 0.9865 0.9831
3 0.9815 0.9854 0.9901
4 0.9833 0.9890 0.9867
5 0.9827 0.9836 0.9853
6 0.9858 0.9841 0.9888
7 0.9849 0.9901 0.9854
8 0.9860 0.9923 0.9863

5.2 Randomness Testing

Being randomness is one of the important criteoiaevaluate block ciphers. The
output of the block cipher should not give any hivdt enables to distinguish it from a
truly random sequence. Therefore, statistical tastsused to verify that whether a
sequence is completely random. Two statisticalngdor randomness are described
in this part.

5.2.1 Frequency (Monobit) Tesf15]

Frequency test is based on the weight of the segudrhe purpose of this test is to
determine whether the number of 0's and 1's in @ueace are approximately the

same, as would be expected for a random sequence.
5.2.1.1 Test Description

Step 1 : The zeroes of the sequen&e= (S, S,,...,S

n

ale converted to values -1,

S =2S -1, wherel<i<n. The length of sequence should be at least 100.

Step 2 :Compute| S| 'S .

i=1

58



Step 3 :Compute the test statisti, . = E

n

Step 4 : Compute p—valuezerfc(s"bsj, where erfc is the complementary error

V2

function as2 EJ'—e‘X2 dx = 2(1— nor medf (z,O,i)] .

1
Jn 2
Step 5 :If the computed p-value is greater than 0.01 &ewgirule at the 1% level),
then conclude that the sequence is random.

5.2.2 Frequency Test within a Bloc15]

The purpose of this test is to determine whetherfrbguency of ones in aM -bit
block is approximatelyM /2 as would be expected under an assumption of

randomness. Frequency test within block is basetti@meight of the sequence.

5.2.2.1 Test Description

Step 1 : Partition the input sequence intd :[ﬁJ non-overlapping blocksM

should be greater than 20. Sequences are defin8d=a¢S,, S,.,...,S,,) for 1<i < N.

Note that if N = ] then this test is the same as frequency (momnedkt.

S
28

=1

Step 2 : Compute the proportion of ones,, in eachM -bit block, a, = for

1<i<N.
N

Step 3 :Compute the test statistjg’ (obs) = 4M > (a, —1/2)*.
i=1

2
Step 4 : Compute p—value:igamc(%,@j, where igamc is the incomplete

o —Uu

2
gamma function as J' &du =1- gamcdf(

X (obs) ﬁl
F(N/2) 2 '

X?(0bs) 2
Step 5 :If the computed p-value is greater than 0.01 &ewgirule at the 1% level),

then conclude that the sequence is random.
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5.3 Test Results for Randomness

Randomness tests are performed using the strakgigireed in [18] and for each data
set separately to check whether the output is rardo
) Plaintext Avalanche, Plaintext-Ciphertext Corraati and Low Density

Plaintext data types are analyzed.
1. Plaintext Avalanche

100 binary sequences are analyzed to examine tisgigiy of individual algorithms

to changes in the plaintext. The 10000 sequencegaased from a string constructed
as follows : given 10000 random 64-bit plaintexadis and 128-bit key of all zeroes,
6400 derived blocks are concatenated. Then, 4096031Xx64x100 is obtained for each
sequence. Each derived block is based on the XQReafiphertext formed using the

fixed 128-bit key and the random plaintext, and ¢hmhertext formed using the fixed
128-bit key and the perturbed random plaintext witle i" bit changed, for

1<i < 64. Plaintext avalanche can be explained mathemBtiaslfollows:

! I=1

100 10000 [ 64
i=1

OB, =0 |0f(P,K)DO f(P, O el,K)j,whereD is used to concatenate the

j=1
vectors, eachB, is 409600-bit vector and (P,K s encryption function with input

P, key K, g is a 64-bit unit vector in positioh

2. Plaintext/Ciphertext Correlation

100 binary sequences (409600 bits per sequencelarsabyzed to examine the
sensitivity of individual algorithms to changesthe plaintext. Given a random 128-
bit key and 10000 random plaintext blocks, a binagquence is constructed
concatenating 10000 derived blocks (where a derbledk is the result of applying
the XOR operator on the plaintext block and itsresponding ciphertext block
computed). Plaintext/Ciphertext correlation can d&eplained mathematically as

follows:
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100 64 ( 10000 .
OB =0 ( Dl PO f(P,K j)j , Wherel is used to concatenate the vectors,

i=1 j=1 |=
each B, is 409600-bit vector and (P,K s encryption function with inpuP, key
K.

3. Low Density Plaintext

Each data set created based on low density plaibtesks consisted of 11 sequences.
Ciphertext blocks is calculated using plaintextckkconsisting of a single one and 63
zeros, the one appearing in each of the 64 bitipasiof the plaintext block or none.
The other plaintext blocks had two ones and 62 zdlms ones appearing in each
combination of two positions of the plaintext blodlotally, 64+2015=2079 different
plaintexts are generated. Low density plaintext banexplained mathematically as

follows:

11 64 2079
0B, = ,D—l[ |D_1 f(P,K j)j , whereJ is used to concatenate the vectors, each

B, is 12096-bit vector and (P,K {5 encryption function with inpulP, key K, g is

a 64-bit unit vector in positioh. 2079 input vector are given such that

| =1=wt(R) =0, 2<I<65=wt(R)=1, where R is a 64-bit unit vector in

positionl, 66<1<2079= wt(R) =2

i) Input parameters are fixed for plaintext avalanemel plaintext/ciphertext
correlation. These parameters are set at 409600fditBequency test and
4096 bits for block frequency test, 100 binary saopes for frequency test and
10000 binary sequences for block frequency test@fAd, sequence length,
sample size and significance level (p-value), respely. For low density
plaintext parameters are set 12096 bits for frequeest and 4096 for block
frequency test, 11 binary sequences for frequesstyand 33 binary sequences
for block frequency test and 0.01, sequence lengtmple size and

significance level, respectively.
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i) For each p-value, a success/failure assessmenadg on whether or not it
exceeded or fell below the pre-selected signifiedegel.

5.3.1 Frequency within a Block Test Results for MI$Y1, KASUMI and
KASUMI-R

In this part length of the sequences is fixed ta684= 4096 for plaintext avalanche
and plaintext/ciphertext correlation data. Then,DBinary sequences are obtained
to test. However, we give only 100 sequences inrE€id.5 and Figure 5.6. For low
density plaintext, length of sequences is agaiedixo 64x64 = 4096 to interpret
results with the previous data. Then, 133056/4096hiBary sequences are obtained
to test. Note that the last sequence has only #88dents. Figure 5.5, Figure 5.6 and
Figure 5.7, which shows the percentages of 1'stato®: only three rounds first,
second and last rounds, of the three ciphers fot 5652 since all ciphers get

randomness at the end of the second round. p-vateesalculated by using

2
p—value= igamc(%,@j (see 5.2.2.1).

In Figure 5.5, percentages of 1's are away fromdigred result for the first round
for plaintext avalanche data type. By the secondndoall ciphers possess the
randomness in terms of weight of the sequence lsdybes until the last round. p-
values are greater than 0.01 immediately afterstw®nd round of all ciphers. Their
distribution is quite similar to each other for tbecond and last round. However, in
the first round KASUMI has the worst case sincecpetage of 1's is around 25%.
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Percentages of 1's for Plaintext Avalanche Data

60%
——KASUMI 1 Round
50% == ———— —— e MISTY1 1 Round
ﬂ 40% KASUMI-R 1 Round
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% 30% + ——MISTY1 2 Rounds
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E 20% ——KASUMI 8 Rounds
10% - ——MISTY1 8 Rounds
0% KASUMI-R 8 Rounds

1 9 17 25 33 41 49 57 65 73 81 89 97

Number of Sequences

Figure 5.5Percentages of 1's for Plaintext Avalanche

Percentages of 1's for plaintext/ciphertext cotrelafor the three ciphers for the first,
second and last rounds are depicted in Figure &tilar to previous case, ciphers
have poorly random function for the first. By thecend round all ciphers have
equally likely zeroes and ones. p-values are véwgecfor the second round of all
ciphers. There is no significant difference betw#ensecond and last rounds of the
three ciphers. However, in the first round KASUMIHRs the best case like the

previous case.
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Percentages of 1's for Plaintext/Ciphertext Correla  tion

Data
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Figure 5.6 Percentages of 1's for Plaintext/Ciphertext Catieh

Figure 5.7 shows percentages of 1's for low dernd#ha for the ciphers for the first,
second and last rounds. Outputs of the all ciphax® too many zeroes at the end of
the first round. Therefore, satisfactory randomnss®ot achieved for the first round
for low density plaintext data type. By the secdhdre is no significant deviation
from 50%. p-values are greater than 0.01 immelgiatier the second round of all
ciphers. Their distribution is quite similar to eacther for second and last round

except the first round.
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Percentages of 1's for Low Density Data
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Figure 5.7 Percentages of 1's for Low Density Plaintext

By concatenating 100 sequences for plaintext ach®n plaintext/ciphertext

correlation, we obtain 100 sequences to implemeaguency test. Length of these
sequences is 64x64x100=409600. Similarly, afteccatanating 33 sequences for low
density plaintext, we divide this sequence, 64x®84E133056, into 11 equal parts.
Length of the each sequence is 12096. Then, sinistastory test results are obtained
for frequency test within a block after the secoadnd, we can say that all ciphers

satisfy frequency test.
5.4 Comparison of Avalanche Weight Distribution andRandomness Test Results
According to avalanche weight distribution, mondest and frequency test within a

block test, MISTY1, KASUMI and KASUMI-R reach thendomness at the end of

the second round.
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CHAPTER 6

CONCLUSION

In this thesis, KASUMI, the standard algorithm fbe 3° Generation GSM, MISTY1
and KASUMI-R, defined in Section 4.4.1, are studied order to see their
performancean terms of the satisfaction of some cryptographbst criteria appearing
in the literature. Our investigation is mainly abahe s-boxes and FI functions of

these ciphers. Table 6.1 summarizes obtaineddsslis of the five s-boxes.

Table 6.1Summary of Test Results for S-boxes

Test max| LAT (a,c)| | Nonlinearity | Differential | | D/ |
S-box of o Uniformity
MISTY1 7x7 8 56 2 0.125
KASUMI 7x7 8 56 2 0.125
RIJNDAEL 8x8 16 112 4 0.125
MISTY1 9x9 16 240 2 1
KASUMI 9x9 16 240 2 1

S-boxes of MISTY1 7x7, KASUMI 7x7 have essentialletsame cryptographic
properties in terms of SAC, LAT and XOR table disitions. Considering partial
LAT and XOR table distributions, 9x9 s-box of KASUlkas zeros at the same places
with those of LAT and XOR table distributions. Themn® some differences between
RIJNDAEL'’s s-box and other s-boxes in terms of tinenber of different elements in
LAT and XOR table. RIINDAEL's 8x8 s-box has 17 diffet LAT values and 3
different XOR values, whereas MISTY1l's and KASUMIsboxes have only 3
different values and 2 different values in their TAnd XOR table, respectively.
Moreover, distribution of LAT elements is equal fine s-boxes of MISTY1 and
KASUMI. Similarly, distribution of XOR table elemén is also the same. 7x7 and
8x8 s-boxes satisfy SAC within very small deviato@n the other hand, 9x9 s-boxes

yield the most undesired value 41D| =1 for the deviation fron$AC.
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The FI function of KASUMI-R has the best performamscel the correspondid@‘j‘

values are very small as compared to the FI funstiof MISTY1 and KASUMI. In
addition, we finally find the SAC parameters fok iaput differences,F,° - {0} and

see that the highest normalized distance to SAGegahare 1, 0.34 and  02or the
Fl functions of MISTY1, KASUMI and KASUMI-R, respteely.

Overall performances of MISTY1, KASUMI and KASUMI-&cording to the AWD

criterion show that AWD curves of 64-bit vectorsemble a binomial distribution
around a mean value of 32 at the end of the sewmndl. They all yield very similar
curves independent of the number of rounds exaapthie first round. In the first
round it resembles a binomial distribution with mezalues of 24, 19 and 18 for
MISTY1, KASUMI and KASUMI with RIINDAEL s-boxes, regctively.

The two core tests of NIST, the monobit test andibguency test within a block are
implemented for the plaintext avalanche, plain@gtiertext correlation and low
density plaintext kinds of data in order to caltellthe randomness. The test results
are similar for all data types and tests, i.ethatend of the second round, the number

of 1's seems quite random for all data types.

Our observations on the MISTY1, KASUMI and KASUMId® not indicate any hint
that one of these is superior to the others. THeréifices between FI functions of the
three ciphers and their s-boxes seem to have nendise affect on the overall

cryptographic strength of these ciphers.
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