
ON STATISTICAL ANALYSIS OF SYNCHRONOUS STREAM CIPHERS

MELTEM SÖNMEZ TURAN

APRIL 2008

ON STATISTICAL ANALYSIS OF SYNCHRONOUS STREAM CIPHERS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELTEM SÖNMEZ TURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF CRYPTOGRAPHY

APRIL 2008

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Ersan AKYILDIZ

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor

of Philosophy.

Prof. Dr. Ferruh ÖZBUDAK

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Ali DOĞANAKSOY

Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Prof. Dr. Ferruh ÖZBUDAK

Prof. Dr. Semih Koray

Assoc. Prof. Dr. Ali DOĞANAKSOY

Dr. Orhun KARA

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last name :

Signature :

iii

Abstract

ON STATISTICAL ANALYSIS OF SYNCHRONOUS STREAM

CIPHERS

Sönmez Turan, Meltem

Ph.D., Department of Cryptography

Supervisor: Assoc. Prof. Ali Doğanaksoy

April 2008, 146 pages

Synchronous stream ciphers constitute an important class of symmetric ciphers.

After the call of the eSTREAM project in 2004, 34 stream ciphers with different design

approaches were proposed. In this thesis, we aim to provide a general framework

to analyze stream ciphers statistically. Firstly, we consider stream ciphers as pseudo

random number generators and study the quality of their output. We propose three

randomness tests based on one dimensional random walks. Moreover, we theoretically

and experimentally analyze the relations of various randomness tests.

We focus on the ideas of algebraic, time memory tradeoff (TMTO) and correlation

attacks and propose a number of chosen IV distinguishers. We experimentally observe

statistical weaknesses in some of the stream ciphers that are believed to be secure.

Keywords: Synchronous stream ciphers, Statistical analysis, eSTREAM, Distinguishing

attacks.

iv

Öz

SENKRONİZE AKAN ŞİFRELERİN İSTATİSTİKSEL ANALİZİ

ÜZERİNE

Sönmez Turan, Meltem

Doktora, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ali Doğanaksoy

Nisan 2008, 146 sayfa

Senkronize akan şifreler simetrik anahtarlı kriptosistemlerin önemli bir parçasını oluşturur.

2004 yılında duyurulan eSTREAM projesi üzerine, farklı tasarımlara sahip 34 akan

şifre önerilmiştir. Bu tezde, senkronize akan şifrelerin istatistiksel analizi üzerine genel

bir çerçeve verilmesi hedeflenmiştir. İlk olarak, akan şifreler rastgele sayı üreteçleri

olarak düşünülmüş ve çıktılarının kalitesi çalışılmıştır. Tek boyutlu rastgele yürüyüşlere

dayanan üç test önerilmiştir. Ayrıca, teorik ve deneysel olarak testlerin birbirleri ile

olan ilişkileri çalışılmıştır.

Cebirsel, zaman-hafıza özdünleşimi ve ilinti ataklarının fikirleri üzerinde durularak

ayırt edici testler önerilmiştir. Güvenli olduğu düşünülen bazı şifrelerde deneysel zayıflıklar

gözlemlenmiştir.

Anahtar Kelimeler: Senkronize akan şifreler, İstatistiksel analiz, eSTREAM, Ayırt edici

ataklar.

v

To Fırat,

vi

Acknowledgments

This thesis has been an inspiring, exciting and challenging experience. During the

preparation of this thesis, I have been accompanied and supported by a great number

of people whose contribution is worth to mention.

First, I would like to express my deep and sincere thanks to my supervisor, As-

soc. Prof. Ali Doğanaksoy for his mentoring, expertise and guidance throughout the

research.

Many thanks go to all members of the Institute of Applied Mathematics especially to

Prof. Dr. Ersan Akyıldız for providing an excellent and inspiring working atmosphere.

Special thanks go to Dr. Orhun Kara, for his guidance and ideas.

I thank Çağdaş Çalık for his endless help in implementation of tests, proof reading

of the thesis and most importantly for being a good friend. My sincere thanks go to

Onur Özen and Kerem Varıcı for their motivation and encouragement. I thank Fatih

Sulak for his help on probability calculations. I also thank Nurdan Buz Saran, Güçlü

Dündar and Zülfükar Saygı for their support.

I gratefully thank Prof. Dr. Thomas Johansson for giving me the opportunity to

work with him. Many thanks go to friends in Lund especially to H̊akan, Martin and

Koraljka.

I greatly appreciate the guidance of Prof. Dr. Nur Evin Özdemirel and Assoc. Prof.

Dr. Haldun Süral during my MS studies, who taught me the importance of academic

work.

Finally, I wish to express my love and gratitude to my family. I’d particularly like

to thank my parents and brother Tunç. Last but not least, without the understanding

of my husband Fırat, it would have been impossible for me to finish this work.

vii

Table of Contents

Plagiarism . iii

Abstract . iv

Öz . v

Acknowledgments . vii

Table of Contents . viii

List of Figures . xi

List of Tables . xiii

List of Abbreviations . xvii

1 Introduction . 1

1.1 Motivation . 5

1.1.1 Outline of the Thesis . 6

2 Brief Overview of Synchronous Stream Ciphers 8

2.1 Basic Building Blocks . 9

2.1.1 Feedback Shift Registers . 9

2.1.2 Boolean Functions and S-boxes 14

2.1.3 T-functions . 15

2.2 Desired Properties of Keystream . 16

2.2.1 Period . 17

viii

2.2.2 Randomness . 17

2.2.3 Complexity Measures . 20

2.3 Common Designs . 23

2.3.1 Designs Based on Feedback Shift Registers 24

2.3.2 Designs Based on Block Ciphers 28

2.3.3 Designs Based on Hash Functions 30

2.3.4 Designs Based on NP-Hard Problems 30

2.3.5 Other Designs . 31

2.4 Cryptanalysis of Stream Ciphers . 32

2.5 Distinguishing Attacks . 33

3 Analysis of Keystream . 38

3.1 Randomness Tests . 40

3.2 New Tests Based on Random Walks . 44

3.2.1 Random Walks . 45

3.2.2 Test Descriptions . 48

3.3 Independence of Tests . 50

3.3.1 Theoretical Results . 52

3.3.2 Experiments on Short Sequences 53

3.4 Sensitivity of Tests . 57

3.5 Summary . 58

4 Tests Based on Algebraic Properties . 60

4.1 Basics of Algebraic Attacks . 61

4.2 Desired Properties of Fi’s . 62

4.3 Analyzing Classical Designs . 63

4.4 A Case Study on Trivium . 67

4.4.1 Description of Trivium . 67

4.4.2 Linear Approximations . 69

4.4.3 Searching for Linear Approximations 70

ix

4.4.4 Linear Approximations for 2-round Trivium 71

4.4.5 Discussion . 74

4.5 d-Monomial Approach . 75

4.5.1 A Generalized Approach . 77

4.5.2 Monomial Distribution Test . 78

4.5.3 Maximal Degree Test . 79

4.5.4 Experimental Results . 81

4.5.5 Discussion . 85

4.5.6 Improvement of Fischer et al.[1] 86

4.6 Linear Independence . 86

4.6.1 Preliminaries . 86

4.6.2 Linear Span Test . 87

4.6.3 Experimental Results . 88

4.7 Completeness Property . 88

4.7.1 Diffusion Test . 88

4.7.2 Experimental Results . 90

4.8 Summary . 90

5 Tests Based on Random Mappings . 93

5.1 Preliminaries . 94

5.2 Time Memory Tradeoff Attacks . 95

5.3 Three New Distinguishers . 98

5.3.1 Coverage Test . 99

5.3.2 ρ-Test . 100

5.3.3 DP-Coverage Test . 102

5.4 Experimental Results . 103

5.5 Summary . 104

6 Tests Based on Correlations . 105

6.1 Basics of Correlation Attacks . 105

x

6.2 Tests Based on Correlation of Key, IV and Keystream 107

6.2.1 Key/Keystream Correlation Test 107

6.2.2 IV/Keystream Correlation Test 108

6.2.3 Frame Correlation Test . 109

6.3 Experimental Results . 110

6.4 Summary . 112

7 Conclusion . 114

References . 117

Appendices . 132

A Basics of Statistical Inference . 132

A.1 Probability Theory . 132

A.1.1 Some Special Distributions . 133

A.2 Hypothesis Testing . 135

B Other Attacks Against Stream Ciphers . 139

B.1 Resynchronization Attacks . 139

B.2 Guess and Determine Attacks . 140

B.3 Side Channel Attacks . 141

C NIST Test Results . 143

D F1 for 2-round Trivium . 144

E Linear Regression Model for d-monomial Test of Grain 145

Vita . 147

xi

List of Figures

1.1 Encryption and decryption . 1

1.2 Classification of cryptographic primitives 2

2.1 Generic structure of a synchronous stream cipher 9

2.2 Binary additive stream cipher . 9

2.3 Block diagram of a FSR . 10

2.4 Nonlinear combining generator . 24

2.5 Nonlinear filtering generator . 26

2.6 Distinguishing finite sequences . 33

2.7 Distinguishing frames generated by different IVs 35

3.1 Independence and coverage of test suites 39

3.2 Multi level testing . 44

3.3 Random walk examples . 45

3.4 Height, excursion and expansion in one dimensional random walks . . . 46

3.5 Grid representation of an example random walk (1,2,1,2,1,0,-1,0,1,0,1,2,1,0,-

1,-2,-1,-2,-1,-2,-3,-4,-3,-4) of length w + m = 24 with max{yi} less than

r = 5 and min{yi} greater than −s = −7 47

3.6 Distributions of test statistics for n = 20 54

4.1 Linear approximations for n round stream ciphers 71

4.2 Linear approximations for 2-round Trivium 73

4.3 Number of clockings vs. miniG(i, j) for original and proposed initializa-

tion of Trivium . 75

5.1 Graphical representation of an iteration 95

xii

5.2 Construction of the lookup table in the offline phase 96

5.3 The table generated in the coverage test 99

5.4 The rows generated in the ρ-test . 100

5.5 Distinguished points . 102

5.6 The number of p-values in intervals of length 0.1 versus expected values

for Pomaranch . 104

6.1 Use of BSC in fast correlation attacks 106

E.1 The linear regression model for d-monomial test of Grain 145

xiii

List of Tables

1.1 Timeline of the eSTREAM Project . 5

2.1 Building blocks and proposed platforms of Phase III eSTREAM Candidates 25

3.1 A non-exhaustive list of statistical randomness tests with input param-

eters, test statistics and constraints (The sequence length is denoted as

n.) . 42

3.2 Interval and probability values of Random Walk Excursion Test for block

lengths of 16,32, 64, 128 and 256 bits. 50

3.3 Interval and probability values of Random Walk Height Test for block

lengths of 64,128, 256, 512 and 1024 bits. 50

3.4 Interval and probability values of Random Walk Expansion Test for block

lengths of 32, 64 and 128 bits. 51

3.5 Lower Limits (LLs) and Upper Limits (ULs) of the test statistics for 20

bit sequences and corresponding type I error, α 55

3.6 Results of tests for all sequences of length n = 20 for α = 0.01 55

3.7 Results of tests for all sequences of length n = 30 for α = 0.01 56

3.8 Number of sequences that only fail the given test (but pass all other tests) 56

3.9 Sensitivity of randomness tests toward some transformations. 58

4.1 Details of the six small sized examples 66

4.2 Average cryptographic properties obtained using the first 40 Boolean

functions . 66

4.3 Comparison of d-monomial tests . 76

4.4 Number of IV bits needed to attack the first keystream bit of Grain-128

for different number of rounds in the initialization (out of 256 rounds). . 81

xiv

4.5 Number of IV bits needed to attack the initial state variables Grain-128

for different number of rounds in the initialization (out of 256 rounds). . 82

4.6 Number of IV bits needed to attack the first keystream bit of Grain-128

with alternative key and IV loading for different number of rounds in

the initialization (out of 256 rounds). 83

4.7 Number of IV bits needed to attack the initial state variables of Grain-

128 with alternative key and IV loading for different number of rounds

in the initialization (out of 256 rounds). 83

4.8 Number of IV bits needed to attack the first keystream bit of Trivium

for different number of rounds in the initialization (out of 1152 rounds). 83

4.9 Number of IV bits needed to attack the initial state variables of Trivium

for different number of rounds in the initialization (out of 1152 rounds). 84

4.10 Number of IV bits needed to attack the first keystream bit of Trivium

with alternative key and IV loading for different number of rounds in

the initialization (out of 1152 rounds). 84

4.11 Number of IV bits needed to attack the initial state variables of Trivium

with alternative key and IV loading for different number of rounds in

the initialization (out of 1152 rounds). 84

4.12 Number of IV bits needed to attack the first keystream bit of Decim-v2

for different number of rounds in the initialization (out of 768 rounds). . 85

4.13 Number of IV bits needed to attack the initial state variables of Decim-v2

for different number of rounds in the initialization (out of 768 rounds). . 85

4.14 The average of 100 p-values of Linear Span Test for Phase III eSTREAM

Candidates . 89

4.15 Interval and probability values of Diffusion Test using 1024 key and IV

pairs. 89

4.16 The average of 100 p-values of Diffusion Test for Phase I eSTREAM

Candidates . 92

5.1 Interval and probability values of Coverage test using 12 and 14 IV bits 100

5.2 Interval and probability values of ρ-test using 15 and 20 IV bits 101

5.3 The average 100 p-values obtained from Coverage, ρ and DP-Coverage

tests . 103

xv

6.1 Interval and probabilities values of Key/Keystream Correlation test for

key size of 80 and 128 bits . 109

6.2 Interval and probability values of IV/Keystream Correlation test for IV

size of 64, 80 and 128. 110

6.3 The average of 100 p-values obtained using Key/Keystream Correlation,

IV/Keystream Correlation and Frame Correlation Test against Phase I

candidates of eSTREAM . 113

C.1 The result of NIST tests that indicate weaknesses. There are total of

148 nonperiodic template test results for each cipher, and Decim fails 11

of them. 143

xvi

List of Abbreviations

AES Advanced Encryption Standard

ANF Algebraic Normal Form

BSC Binary Symmetric Channel

CBC Cipher Block Chaining

CFB Cipher Feedback Mode

CTR Counter Mode

DFT Discrete Fourier Transform

DP Distinguished Point

ECB Electronic Codebook

ECRYPT European Network of Excellence for Cryptology

EP End Point

FCSR Feedback Shift Registers with Carry

FSR Feedback Shift Register

GF Galois Field

IV Initialization Vector

lcm least common multiple

LEX Leak Extraction

LFSR Linear Feedback Shift Register

LL Lower Limit

MAC Message Authentication Code

MD Message Digest

MOC Maximum Order Complexity

NESSIE New European Schemes for Signature, Integrity and Encryption

NFSR Nonlinear Feedback Shift Register

NIST National Institute of Standards and Technology

OFB Output Feedback Mode

OTP One Time Pad

PRNG Pseudo Random Number Generator

S-box Substitution-box

xvii

SHA Secure Hash Algorithm

SP Start Point

TMTO Time Memory Tradeoff

XL Extended Linearilization

XOR Exclusive OR

XSL Extended Sparse Linearilization

UL Upper Limit

xviii

Chapter 1

Introduction

Cryptography is the branch of information security that has four major objectives.

The first objective is confidentiality (or secrecy) that aims to keep the information secret

from anyone except the intended receiver. The second objective is integrity that ensures

that the message is not manipulated by unauthorized users during its transmission.

Authentication aims to verify the identity of sender/receiver in a communication. Final

objective is non-repudiation that aims to prevent users from denying their previous

actions.

In cryptographic terminology, the process of encoding the plaintext (or message) so

that the content is hidden from unintended parties is called encryption, whereas the

process of converting the ciphertext (or encrypted message) back to the plaintext is

called decryption. Encryption and decryption are done using keys Ke and Kd, respec-

tively as given in Figure 1.1.

Message m
Encryption with Ke−→ Ciphertext c

Decryption with Kd−→ Message m

Figure 1.1: Encryption and decryption

Cryptanalysis is the study of cryptosystems with the aim of finding weaknesses

that permit retrieval of the plaintext from the ciphertext without knowing the secret

key. According to the famous principle of Kerckhoffs, the security of ciphers should

depend entirely on the secrecy of keys, not on the details of the encryption/decryption

algorithms.

Cryptographic primitives are algorithms that aim to provide cryptographic objec-

tives and they are divided into three main groups; unkeyed, asymmetric key and sym-

metric key primitives. In Figure 1.2, the classification of cryptographic primitives are

presented.

1

Cryptographic
Primitives

� j?
Symmetric Key

Primitives
Asymmetric Key

Primitives
Unkeyed

Primitives

	 R

Stream
Ciphers

Block
Ciphers

	 R
Synchronous

Stream Ciphers
Self-Synchronizing
Stream Ciphers

Figure 1.2: Classification of cryptographic primitives

Unkeyed Cryptography

The family of unkeyed primitives consists of the tools mainly used for message in-

tegrity and authentication. As the name implies, these primitives do not use secret

keys, therefore no secrecy is involved in their algorithms. An important example of

unkeyed cryptographic primitives is the hash functions that are fundamental compo-

nents of many cryptographic applications such as digital signatures, random number

generation, integrity protection, e-cash etc. MD5 (Message Digest) [2], SHA-1 (Se-

cure Hash Algorithm) [3] and RIPEMD [4] are widely used hash functions especially in

SSL, PGP, S/MIME, SSH and SFTP applications. Employing hash functions for these

applications both increases the security and improves the efficiency of these systems.

The design of these functions are based on the hash function MD4 [5], as they

iteratively use a compression function that inputs state variable and a fixed length

block, and outputs another fixed length block. Recently, many attacks against hash

functions having similar construction to MD4 are proposed [6, 7, 8, 9]. These recent

studies motivated National Institute of Standards and Technology (NIST) to announce

a public competition in 2007 to select a new cryptographic hash function to be used as

the new standard [10].

Asymmetric Key Cryptography

Asymmetric key cryptography, also known as public key cryptography, is invented

by Diffie and Hellman [11] in 1976. Here, each user has two different keys; a public key

2

Ke that is used for encryption and a private key Kd that is used for decryption. There

is a mathematical relation between each public and private key, but private key cannot

be practically derived from the public key.

To send a message m using asymmetric key cryptography, the public key of the

intended receiver is used and the ciphertext c is obtained as c = EKe(m). The receiver

uses his private key and obtains the message as m = DKd
(c).

The security of asymmetric primitives rely on mathematical trapdoor functions that

are easy to calculate in one direction, but hard to invert without knowing the secret

trapdoor. As an example, RSA primitive is based on the famous integer factorization

problem, that is, the problem of factorization of a given integer which is the product

of two large primes.

Symmetric Key Cryptography

Symmetric key cryptography is a very important class of cryptographic primitives

that is mainly used to provide confidentiality and integrity of transmitted data. Sym-

metric key ciphers are faster compared to asymmetric ciphers, therefore more suitable

for applications requiring high data throughput.

In symmetric key cryptography, the sender and the receiver share the same secret

key K (or in some cases different keys that can easily be generated from each other)

that is used for encryption and decryption processes, in other words, Ke = Kd = K.

Sender encrypts a message m and produces the ciphertext as c = EK(m). Then, the

ciphertext is sent through an insecure channel. Receiver decrypts the ciphertext c and

obtains the plaintext as m = DK(c).

Symmetric key primitives are mainly divided into parts; block and stream ciphers.

Block ciphers are symmetric key encryption algorithms that transform a n bit block

of plaintext into a block of ciphertext of the same length. For each secret key K,

block ciphers define a permutation on the set of n bit binary blocks. Using the same

key, decryption is performed by applying the inverse transformation to the ciphertext

blocks.

Stream ciphers constitute another important class of symmetric key ciphers that

are suitable for applications where the length of the plaintext is unknown in advance,

such as secure wireless connections. Important examples of stream ciphers may be

given as A5/1 used in GSM standard to provide security in the air link of voice and

data communication, and E0 [12], used to supply privacy in the radio network link,

Bluetooth.

3

Self-synchronizing and synchronous stream ciphers are the two main types of stream

ciphers. In self-synchronizing stream ciphers, the keystream is generated as a function

of key and a fixed number of previous ciphertext bits. These ciphers have the advantage

of automatically synchronizing after receiving a number of ciphertext digits.

Synchronous stream ciphers generate a keystream independent of plaintext and

ciphertext and commonly the keystream is XORed (eXclusive ORed) with plaintext to

produce ciphertext. Synchronous stream ciphers are widely adopted in many industrial,

government and military applications compared to self-synchronizing stream ciphers.

For correct decryption, the sender and receiver should be synchronized. In case of

insertion/deletion of ciphertext bits, the synchronization is lost and should be restored

using a pre-selected protocol. In case of bit flips, only the corresponding plaintext bits

are affected and the error does not propagate to other parts of the message.

Recent Projects

In 2001, the block cipher Rijndael [13], developed by J. Daemen and V. Rijmen, was

selected to be the Advanced Encryption Standard (AES), that became the new U.S.

Federal Information Processing Standard to encrypt sensitive information. After selec-

tion of the AES, other similar projects have been announced. The first announcement is

done by New European Schemes for Signature, Integrity and Encryption (NESSIE) [14]

between 2000 and 2003 with the objective to generate strong cryptographic primitives

in block ciphers, stream ciphers, hash functions, MAC algorithms, digital signatures

schemes, and public key encryption schemes. For stream ciphers category, BMGL,

Leviathan, LILI-128, SNOW, Sober-t16 and Sober-t32 were proposed, however no can-

didate in this category managed to satisfy the high security requirements, mainly due to

the weaknesses against distinguishing attacks. This indicated that the study of stream

ciphers is not as sound as the study of block ciphers.

Another project, CRYPTREC [15] was announced by Japanese government in 2000

to list cryptographic techniques to be used for electronic government applications. In

2003, CRYPTREC has recommended MUGI, Multi-S01, RC4 with 128 bit key length

and some pseudo-random number generators using SHA-1 in the area of stream ciphers.

Also, in 2004, a new project eSTREAM [16] was announced by European Network

of Excellence for Cryptology (ECRYPT), a 4-year network of excellence funded within

the Information Societies Technology Program of the European Commission’s Sixth

Framework Program. eSTREAM received 34 stream ciphers suited to at least one of

the profiles; (i) Profile I for software applications with high throughput requirements

and (ii) Profile II for hardware applications with restricted resources. The timeline of

4

the project is given in Table 1.1

Table 1.1: Timeline of the eSTREAM Project

Date Event
November 2004 eSTREAM Call for Primitives
April 2004 34 Submissions
February 2006 End of Phase I
July 2006 Beginning of Phase II
April 2007 Beginning of Phase III
May 2008 Final report of eSTREAM

1.1 Motivation

In the design proposals, apart from the details of the cipher, authors are expected to

show that the proposal is resistant to all previously known attacks. After analyzing the

specifications of eSTREAM candidates, we observed that limited theoretical security

proofs were provided by most of the authors. This is not surprising. Proving security is

extremely hard for most ad hoc designs, unlike the primitives of public key cryptography

whose security is based on hard mathematical problems like integer factorization. For

most designs, it is even hard to provide tight theoretical bounds for important properties

of keystream such as period, linear complexity etc.

In this thesis, we focus on the statistical analysis of synchronous stream ciphers and

give a framework for black box statistical testing. These tests play an important role

in the design of cryptosystems, since in some cases, black box distinguishers are able to

detect weaknesses that are hard to detect by theoretical analysis. Additionally, most

of them have very low complexity and provide results in a very short time. Although

black box distinguishers do not consider the inner structure of ciphers, to increase the

success rate of the distinguishers, some properties of the cipher can be used as input to

the distinguisher. For example, the word length in word oriented stream ciphers can be

selected as block length of 2-level statistical tests. If a cipher fails any of the proposed

tests, it is for certain that the design should be reevaluated and necessary changes

should be applied. If a cipher is resistant to all the statistical tests, this increases the

confidence on the cipher.

Firstly, considering stream ciphers as random number generators, we focus on test-

ing the quality of the output keystream by statistical randomness tests. After defining

new randomness tests based on random walks, we emphasize the importance of indepen-

5

dence of randomness tests in test suites and present some theoretical and experimental

results on the relations of some commonly used tests. We also define the concept of

sensitivity, where we analyze the effect of simple transformations on test results. We

propose to add the composition of transformation and the test to randomness test

suites to increase the coverage of the suite, if the transformation significantly changes

the output p-values.

We also propose a number of statistical tests that are based on the classical attacks

against stream ciphers. We focused on the ideas of algebraic, time-memory tradeoff

(TMTO) and correlation attacks to design the tests. Most of the proposed tests can

directly be used to distinguish output of the ciphers from ideal distributions. Distin-

guishers are important since they are suitable to detect the cipher used during commu-

nication, this has significant importance especially in military applications. Also, it is

possible to extend some of the tests to recover the secret key.

Proposed tests mainly evaluate two security principles, confusion and diffusion,

defined by Shannon in [17]. For synchronous stream ciphers, to satisfy diffusion each bit

of keystream should depend on each bit of Initialization Vector (IV) and key and minor

changes in the IV and key should result in random looking changes in the keystream. To

satisfy confusion, the relation between IV, key and keystream should be too complex to

be exploited by the attacker. Most attacks against cryptosystems are due to weaknesses

in confusion and diffusion.

1.1.1 Outline of the Thesis

Chapter 2 (Brief Overview of Stream Ciphers) gives the basics of synchronous

stream ciphers focusing on the desired properties of keystream and common build-

ing blocks. Moreover, widely used design approaches and different attack scenarios are

presented.

Chapter 3 (Analysis of Keystream) focuses on the randomness properties of the

output keystream and proposes three new randomness tests based on one dimensional

random walks namely (i) excursion, (ii) height and (iii) expansion tests. Moreover, a

classification of randomness tests is given as tests based on k-tuple pattern frequencies

and tests based on ordering of k-tuples patterns. Some experimental results on inde-

pendence of randomness tests are presented for short sequences. Also, the concept of

sensitivity is defined for randomness tests to observe the effect of some transformations

on the output p-values. The results of the chapter are published in [18, 19].

Chapter 4 (Tests Based on Algebraic Properties) aims to analyze stream ciphers

based on the cryptographic properties of Boolean functions that input key and ini-

6

tial nonce and produce a particular keystream bit. These properties are also used in

algebraic attacks against stream ciphers. First, we study some classical designs and

experimentally observe the distribution of some cryptographic properties such as non-

linearity, number of linear terms, degree etc. for small sized ciphers. Then, we present

a case study for eSTREAM finalist Trivium and obtain a linear approximation for F1

with bias 2−31 using 288 initial clocking. To analyze the completeness properties of the

ciphers, we apply a diffusion test that measures the effect of each key and IV bit on

keystream bits. Moreover, we propose some new chosen IV distinguishing tests based

on the d-monomial approach described by Filiol [20]. Also, we introduce another dis-

tinguisher linear span test that measures the inheritance of linear dependence of input

IVs to keystream bits and apply the test to all Phase III candidates of the eSTREAM

project. The results of the chapter are published in [21, 22, 23].

Chapter 5 (Tests Based on Random Mappings) aims to analyze stream ciphers based

on some properties of random mappings. By focusing on different TMTO attacks, we

try to find suitable test statistics. First, we consider the coverage of mappings generated

using a subset of IV bits, then we analyze the index of the first repetition when the

random mapping is iteratively applied. Finally, we consider the distinguished point

method against stream ciphers and analyze the coverage properties of random mappings

that are followed by a special keystream pattern. Using these test statistics, we propose

three new distinguishers namely (i) coverage test, (ii) ρ-test and (iii) distinguished

point coverage test and apply these tests to the Phase III Candidates of the eSTREAM

project. The results of the chapter are published in [24].

Chapter 6 (Tests Based on Correlations) focuses on the correlations of key, input

nonce and output keystream. We introduce three tests namely (i) key/keystream cor-

relation, (ii) IV/keystream correlation and (iii) frame correlation and apply them to all

Phase I candidates of eSTREAM project. The results of the chapter are published in

[23].

Finally, Chapter 7 (Conclusion) summarizes the contributions of this study and

suggests future research directions from the results.

7

Chapter 2

Brief Overview of Synchronous

Stream Ciphers

In this chapter, we present a brief overview of synchronous stream ciphers, fo-

cusing on basic building blocks, the desired properties of keystream, common design

approaches and distinguishing attacks.

A synchronous stream cipher is a finite state machine in which the output keystream

zt is produced independent of plaintext, using following equations;

σ0 = finit(K, IV),

σt+1 = g(σt,K, IV),

zt = f(σt,K, IV),

ct = h(zt,mt),

where σt is the internal state at time t, finit is the initialization function that inputs

k-bit secret key K and v-bit public IV and outputs the secret initial state of σ0, g

is the next state function that updates the internal state, f is the keystream genera-

tion function that produces keystream zt and h is the encryption function that inputs

plaintext mt and keystream bits zt to produces ciphertext ct as given in Figure 2.1.

The synchronous stream ciphers using bitwise XOR as the encryption function h, are

called binary additive stream ciphers. For binary additive stream ciphers, encryption

is given as

ct = zt ⊕mt, (2.0.2)

and similarly decryption is given as

mt = zt ⊕ ct, (2.0.3)

8

m , m , . . .21

c , c , . . .21

Ciphertextz , z , . . .1 2

f

Plaintext

K IV,

g

f h
State

init

Figure 2.1: Generic structure of a synchronous stream cipher

as given in Figure 2.2. For correct decryption, sender and receiver must be synchronized,

i.e must have the same internal state at the same time. Whenever the synchronization

is lost, techniques for re-initialization should be employed.

z , z , . . .1 2

m , m , . . .21

Plaintext

c , c , . . .21

CiphertextKey

IV Cipher

Stream

Keystream

Figure 2.2: Binary additive stream cipher

2.1 Basic Building Blocks

The internal structure of stream ciphers varies extensively, however there are some

very commonly used building blocks. In the following sections, brief background in-

formation about Feedback Shift Registers (FSRs), Boolean functions, S-boxes and t-

functions are presented.

2.1.1 Feedback Shift Registers

FSRs are the most widely used building blocks of synchronous stream ciphers due

to their large period, good statistical properties, and efficiency in hardware implemen-

tations.

A FSR is a device that shifts its contents into adjacent positions within the register

and fills the position on the other end with a new value generated by feedback polyno-

mial. The individual delay cells of the register are called the stages and the number of

the stages n, is called the length of the FSR. The contents of the n stages are called the

state of the FSR. The n bit vector (x0, x1, . . . , xn−1) initially loaded into FSR states

specify the initial conditions. A block diagram of a FSR is given in Figure 2.3.

9

Figure 2.3: Block diagram of a FSR

The properties of a FSR are mainly based on the selection of its feedback polynomial

f(x0, . . . , xn−1) = c11 + cx0x0 + cx1x1 + cx0x1x0x1 + . . . + cx0x1...xnx0x1 . . . xn (2.1.1)

where ci, xi ∈ F. The output of the FSRs satisfy the following recursion,

xn+i = f(xi, . . . , xn−1+i), i ≥ 0, (2.1.2)

given (x0, . . . , xn−1) as the initial condition.

There are total of 22n
different feedback polynomials of n variables. FSRs are

divided into two groups depending of their feedback function. If the feedback function

is linear, then the register is called Linear Feedback Shift Register (LFSR), otherwise

it is called Nonlinear Feedback Shift Register (NFSR).

Linear Feedback Shift Registers

LFSRs are widely used as building blocks of stream ciphers due to their good

statistical properties and long period of their output. LFSR based stream ciphers

include A5, Snow [25] and E0 [12]. A large amount of study on stream ciphers is

related to the analysis of LFSR based stream ciphers [26, 27, 28] .

The output sequence S= {x0, x1, x2, . . .} of a LFSR initialized by (x0, x1, . . . , xn−1)

is uniquely determined by the following nth order linear recursion equation

xn+j =
n∑

i=1

cixn−i+j (2.1.3)

for j ≥ 0 where ci corresponds to the tap positions. Then, trivially following equation

10

is satisfied,
n∑

i=0

cixn−i+j = 0 (2.1.4)

where c0 = −1 and j ≥ 0.

This recursion may be represented using either of the feedback polynomial

F (x) =
n∑

i=0

cix
i (2.1.5)

and the characteristic polynomial,

C(x) =
n∑

i=0

cix
n−i. (2.1.6)

Characteristic polynomial is the reciprocal of the feedback polynomial, i.e.

C(x) = xnF (x−1) (2.1.7)

holds.

We can see that each state of a n-bit LFSR is a vector in the n-dimensional space.

Then, a LFSR is a linear operator on n-dimensional vector space that changes current

state into its successor vector according to the feedback function. The following n× n

state transition matrix uniquely represents the LFSR,

0 0 0 . . . 0 c0

1 0 0 . . . 0 c1

0 1 0 . . . 0 c2

...

0 0 0 . . . 1 cn−1

.

If C(x) or F (x) is a primitive polynomial with degree n, then each of the 2n − 1

non-zero initial states of the LFSR produce an output with maximum possible period

2n − 1. This sequence is called a maximal length sequence or m-sequence.

The maximal length sequences have good statistical properties and satisfy the ran-

domness postulates of Golomb [27]. However, they are cryptographically insecure, since

whenever 2n bits of the output of a n-bit LFSR is given, the sequence is totally de-

terministic using the Berlekamp-Massey algorithm. Therefore, many design attempts

have been done to add nonlinearity to the systems based on LFSRs, such as combining

outputs of several LFSRs by a nonlinear function, nonlinearly filtering the LFSR or

11

irregularly decimating the LFSR output.

For implementation purposes, choosing a LFSR with small number of nonzero co-

efficients is advantageous, but these LFSRs are vulnerable to algebraic and correlation

attacks. Availability of a low-weight multiple of the feedback polynomial and bitwise

linear approximations can be exploited [29]. Additionally, it is suggested to use a poly-

nomial that satisfies full positive difference set to avoid guess and determine attacks.

Bit based LFSRs are very efficient in hardware, but inefficient in software. In or-

der to increase the efficiency of software applications, the approach of using LFSRs on

higher fields rather than GF (2) is proposed in [25]. LFSRs over GF (2n) are mathe-

matically equivalent to n parallel shift registers over GF (2), each with same recurrence

but different initial states.

Nonlinear Feedback Shift Registers

NFSRs are becoming more popular building blocks for stream ciphers. The eS-

TREAM candidates Grain [30], Achterbahn [31], Trivium [32], Vest [33] and Dragon

[34] utilize NFSRs as building blocks. NFSRs are good tools to avoid algebraic attacks,

since they do not have low linear complexity as LFSRs have.

By using n-bit NFSRs, it is possible to generate cyclic sequences in which each n bit

pattern appear exactly once. These sequences are called de Bruijn and they have very

good statistical properties with period 2n. The number of such sequences is 22n−1−n

[27]. However, there is no efficient method to find feedback polynomials producing de

Bruijn sequences, moreover given a feedback polynomial, it is hard to predict its period.

Also, optimal selection of tap numbers, optimal degree are not known, only average

period values for large NFSRs are estimated in [27].

In [35], the necessary conditions for feedback polynomials f(x0, . . . , xn−1) = c11 +

cx0x0 + cx1x1 + cx0x1x0x1 + . . . + cx0x1...xnx0x1 . . . xn to generate a maximum length

output are given as follows;

1. The coefficient c1 should be 1 to ensure that the state (0, 0, . . . , 0) is followed by

the state (1, 0, . . . , 0).

2. The number of terms in the feedback polynomial should be even, to ensure that

the state (1, 1, . . . , 1) is followed by state (0, 1, . . . , 1).

3. The function f should be in the form f(x0, . . . , xn−1) = x0 + f1(x1, . . . , xn−1) to

ensure that the function has one predecessor.

4. There should at least be one cxi = 0 for i = 1, . . . , n− 1.

12

Also, the feedback function f should contain at least 4 tap positions [27]. Two

nonlinear functions with 4 tap positions are extensively studied in [27] and the following

important theorem is stated.

Theorem 2.1.1. All of the tap positions of a NFSR should be used in the feedback

polynomial to generate a de Bruijn sequence.

To obtain outputs with period 2n − 1, this condition is not necessary. Therefore,

it is more advantageous to search for feedback polynomials with output period 2n − 1.

It is possible to convert a feedback polynomial of an LFSR with period 2n − 1 to a

feedback polynomial that generates a de Bruijn sequence by

Fnew = Fold + c′1c
′
2 . . . c′n−1, (2.1.8)

where c′i is the complement of ci.

Another theorem in [27] states that the distribution of cycle lengths, for fixed initial

vector and variable feedback logic is uniform for all lengths between 1 and 2n.

In [36], two different types of NFSRs are considered. In Type I, the feedback is

added to arbitrary number of stages, whereas in Type II the feedback is added only to

the first stage. Massey and Liu showed that for every Type-I register, there exists an

equivalent Type-II register, that generates same keystream with the only difference in

the labeling of the states.

The output of a NFSR cannot be directly used as a keystream generator. All LFSR

models such as nonlinear combining, nonlinear filtering or decimation are applicable to

NFSRs. In Achterbahn [31], maximum length NFSRs with sizes between 21 and 31 are

combined using a nonlinear Boolean function. Due to their small size, the maximum

length NFSRs are found by exhaustive search in the design of Achterbahn. As an

alternative approach, it is possible to use larger NFSRs with unknown period. To

avoid short cycles, the register may additionally fed by a maximum length LFSR as

done in Grain [30].

Feedback Shift Registers with Carry or Memory

Feedback shift registers with carry (FCSR), another variant of FSRs, are introduced

by Klapper and Goresky [37]. They can be considered as LFSRs with memory. The

periodicity analysis, exponential representation, description of maximal period FCSR

sequences, and parallel implementation architecture are presented in [38]. The eS-

TREAM candidate F-FCSR use FCSRs as building blocks.

13

Jump Registers

Irregular clocking of LFSRs removes most of the disadvantages of LFSRs such as

linearity and therefore provides more security against many attacks such as correlation

attacks. However, generating one bit of keystream after multiple clockings makes the

cipher inefficient and also, resistance to side channel attacks such as timing and power

attacks decreases. Jump registers are introduced as an alternative way to do irregular

clocking in [39]. Jump registers allow transition from one step to another without going

through all the intermediate states. The stream cipher Pomaranch [40] uses nine 14-bit

jump registers as its main components.

2.1.2 Boolean Functions and S-boxes

Boolean functions play a crucial role in design of symmetric ciphers. A Boolean

function f with n variables is a mapping from Fn
2 into F2. Boolean functions can be

represented using various forms such as truth table, algebraic normal form (ANF) and

numerical normal form [41].

Let αi be the n-bit vector corresponding to the binary representation of integers

i = 0, 1, 2, . . . , 2n − 1. For a Boolean function with n variables, the sequence

(f(α0), f(α1), . . . , f(α2n−1)) (2.1.9)

is called the truth table of f .

The ANF of a Boolean function is the polynomial

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ . . .⊕ anxn ⊕ a12x1x2 ⊕ . . .⊕ a12...nx1x2 . . . xn (2.1.10)

with unique ai1...ik ’s in F2. The number of terms in the highest order product term

with nonzero coefficient is called the algebraic degree, or simply the degree of f . The

Boolean functions with degree 1 are called affine and in particular for a0 = 0, the

functions are called linear.

For a Boolean function to be cryptographically secure, it should satisfy various

conflicting criteria such as being balanced, having high nonlinearity, high algebraic

degree, high algebraic immunity and high correlation-immunity. For balancedness, the

weight of the truth table, that is the number of ones in the truth table, should be

2n−1. Nonlinearity of a Boolean function is the minimum distance of f to the set of

all affine functions. For f to be mth order correlation-immune, f(x1, . . . , xn) should be

statistically independent of (xi1 , xi2 , . . . , xim) for every choice of i1, i2, . . . , im. Balanced

14

mth order correlation immune functions are called m-resilient. A Boolean function f

with n variables satisfies the Strict Avalanche Criteria, if

f(x)⊕ f(x + α) (2.1.11)

is balanced for every α ∈ Fn
2 with weight 1. A statistical approach on the number of

functions satisfying SAC is given in [42].

Theorem 2.1.2. [43] For a n-bit function having mth order correlation immunity, the

degree of f is at most n−m, and for balanced functions the bound is n−m + 1. The

maximum algebraic degree of a balanced function is n− 1.

The number of n variable Boolean functions is 22n
, therefore exhaustive search

for functions with good cryptographic properties is infeasible even for small values of

n(≥ 6).

A (n, m) Substitution-box (S-box) is a vectorial Boolean function F from Fn
2 into Fm

2

represented by m-tuple (f1, . . . , fm) Boolean functions fi on Fn
2 . S-boxes are commonly

used in block cipher designs, but also suitable for stream ciphers. Sober [44] uses 8×32

S-box which is a combination of the S-box of block cipher Skipjack and the S-box

designed by the Information Security Research Centre. Snow [25] uses the S-box of

Rijndael and Dragon [34] uses two 8 × 32 optimized S-box. To be more efficient, S-

boxes are usually implemented as lookup tables.

2.1.3 T-functions

T (triangular)-functions are functions from n-bit input to n-bit output which do not

propagate from left to right. Klimov and Shamir [45] showed that t-functions can be

used as efficient building blocks for stream ciphers, especially as nonlinear maximum

length state transition functions. Mir-1 [46], ABC [47], TSC-4 [48] use t-functions

as building blocks. T -functions are fast in software oriented and dedicated hardware

systems. They are more resistant to algebraic attacks, however their security is not

well studied.

Some examples of t-functions are addition (x + y mod 2n), subtraction (x− y mod

2n), negation (−x mod 2n), multiplication (x · y mod 2n), bit-wise complementation

(x), xor (x⊕ y), and (∧) and or (∨) operations. Also, combinations of t-functions are

also t-functions.

For a t-function to be used in a stream cipher design, it should be invertible and

should have a single cycle property. An example of a single cycle t-function is given in

15

[45] as

f(x) = x + (x2 ∨ 5). (2.1.12)

2.2 Desired Properties of Keystream

In most attacks against stream ciphers, the plaintext (so is the keystream) is as-

sumed to be known. In this section, we first describe the perfectly secure One Time

Pad (OTP), then present some of the desired properties of keystream like long period,

randomness and high complexity measures.

One Time Pad

The basic design philosophy of synchronous stream ciphers is inspired by the OTP,

invented by Vernam in 1917. OTP encrypts the plaintext with a random key using the

XOR operation as follows;

ci = mi ⊕ ki (2.2.1)

where mi, ki and ci corresponds to the ith bit of message, key and ciphertext, respec-

tively.

Shannon [17] proved that OTP is perfectly secure provided that (i) key is truly

random, (ii) the lengths of the key and plaintext are same, and (iii) the key is used

only once. In perfectly secure ciphers, ciphertext provides no information about (even

statistically weak) plaintext. Mathematically, conditional entropy of plaintext given

ciphertext H(M |C) is equal to the entropy of the plaintext H(M).

The need for the key to be as long as the plaintext and distributing it securely

in advance makes OTP impractical. As an alternative way of designing ciphers, con-

ditional security concept is defined. A system is conditionally secure if breaking the

system requires very high computing power compared to realistic attacks. As an ap-

proximation to the action of OTP, stream ciphers are developed with the motivation

of generating a long pseudo-random keystream from a short random key to overcome

the disadvantages of OTP. Although stream ciphers are practical, they are not able to

provide the theoretical security of OTP.

Existence of any successful distinguisher of keystream from truly random sequences

is a threat to the security of the ciphers. In this section, we present some desired

cryptographic properties that should be satisfied by the keystream.

16

2.2.1 Period

The first of these properties is about the period of the keystream. For a sequence

{si}, if there exists an integer p > 0 and u > 0 such that

si+p = si, (2.2.2)

for all i > u, then the sequence is called ultimately periodic. The smallest p that satisfies

the equation is called the period of the sequence.

Synchronous stream ciphers have finite internal states and it is clear that some

of the internal states will occur twice after a number of clocking. Re-occurrences of

the same internal state result in producing same keystream, i.e. encrypting different

messages using identical keystream. This obviously violates one assumption of OTP

that key is not used twice. In stream ciphers, to avoid keystream reusage, theoretical

lower bounds of period for each key and IV pair should be given.

For a stream cipher with n bit internal state, the period of the keystream is bounded

by 2n. If the cipher is using a random next bit function, the keystream is expected to

repeat itself after 2n/2 clockings. If this function is a permutation, number of expected

clockings increase to 2n−1. In the design of stream ciphers, estimating the period of

the keystream is very important. It should be very unlikely to use the same portion

of the keystream twice during encryption. The required period length depends on the

applications and open to debate. For current applications, the period of a practical

stream cipher should at least be 264.

2.2.2 Randomness

Randomness is another important criterion of keystream and existence of any sta-

tistical deviation from truly random sequences may be exploited to attack the cipher.

For infinite sequences, basic properties of random numbers can be given as follows.

Unpredictability: Given the first t bits of the sequence S = s1, s2, . . . , st, it should

be infeasible to predict the next output bit st+1 with probability statistically greater

than 1/2 without the knowledge of the secret seed. This property is called the forward

predictability, similarly, backward predictability is also required unpredictability.

Uniformity: The distribution of 0’s and 1’s should be uniform throughout the se-

quence. For each randomly taken subsequence from the entire sequence, the probability

of getting 1 or 0 should be equal.

Independence: For each i, j i 6= j, the probability that si is equal to sj should be

17

equal to 1/2.

When we consider finite sequences, it is not easy to define randomness. This is

mainly because the probability of generating a particular sequence of length n is equal

to 2−n using a binary random generator, therefore accepting or rejecting randomness of

these finite sequences does not seem to be reasonable. Kolmogorov defined randomness

of finite sequences as the length of the shortest description of a generation rule for the

sequence [49]. According to this definition, a sequence is random if one of the shortest

descriptions is the sequence itself. However, determining the shortest description for

sequences is computationally infeasible, therefore cannot be used to test randomness.

Golomb’s Postulates

Golomb [27] proposed three postulates for the appearance of periodic pseudo-

random sequences as followings;

• Postulate 1 requires the sequence to be balanced. The difference between the

number of 1’s and the number of 0’s must be at most 1.

• Postulate 2 is about the number of runs observed throughout the sequence. A

run is defined as a subsequence that consists of consecutive 0’s or 1’s that is not

preceded or succeeded by the same symbol. Half of the runs of the sequence must

have length 1, one fourth of runs must have length 2, one eighth must have length

3, etc. Moreover, there must be equally many runs of 1’s and of 0’s for each of

these lengths.

• Postulate 3 is related to the auto-correlation function of the sequence which is

defined as follows.

Definition 2.2.1. Let S = s0, s1, . . . be a sequence with period p. The auto-

correlation function of S is an integer valued function C(j) defined as

C(j) =
1
p

p−1∑
i=0

(2si − 1)(2si+j − 1) (2.2.3)

for 0 ≤ j ≤ p− 1.

The auto-correlation function that gives the similarity of the sequence and its

shifted version, and should be two-valued.

A sequence that satisfies these three postulates is called G-random. The output of

LFSRs with primitive feedback function satisfies these postulates. Therefore, it is clear

that these three postulates are not sufficient to describe random looking sequences.

18

Generating high quality random numbers is a very serious problem and also very

difficult using deterministic methods. The best way to generate unpredictable random

numbers is to use physical processes such as radioactive decay, thermal noise or sound

samples from a noisy environment, since the output sequences of truly random gener-

ators are (i) not periodic, (ii) not based on an algorithm, (iii) not predictable and (iv)

involve no inner correlation. However, generating random numbers using these physical

methods is extremely inefficient. Therefore, most systems use Pseudo Random Num-

ber Generators (PRNGs) based on deterministic algorithms. The unpredictability of

random sequence is established using a random seed, that is obtained by a physical

source like timings of keystrokes. Without the seed, the attacker must not be able to

make any predictions about the output bits, knowing the details of the design. Desired

properties of PRNGs are (i) good randomness properties of the output sequence, (ii)

reproducibility, (iii) speed or efficiency and (iv) large period. Reproducibility is espe-

cially necessary for simulation applications. Some of the PRNGs used in the literature

are given below.

Linear Congruential Generators produce a pseudorandom sequence x1, x2, . . . ac-

cording to the given linear recursion

xn = axn−1 + b (mod m) (2.2.4)

where a,b and m are parameters and x0 is the seed. The size of the modulus gives an

upper bound on the period of the sequence. Since this generator is easily predictable,

it is not suitable for cryptographic applications.

Shift Register Generators produce a sequence according to the given recursion

xn+k =
k−1∑
i=0

aixn+i (mod 2) (2.2.5)

where ai values are parameters and xi values are seed for 0 ≤ i ≤ k−1. This generator is

very effectively implemented in hardware and is able to generate sequences with good

statistical properties. However, neither this generator is suitable for cryptographic

applications.

Additive Lagged-Fibonacci Generators produce a pseudorandom sequence according

to the given equation

xn = xn−j + xn−k (mod 2k). (2.2.6)

The quality of the generator highly depends on the initial conditions, again due to

predictability these generators are not suitable for cryptographic applications.

19

Some of the commonly used PRNGs for cryptographic applications are ANSI X9.17

generator, PGP 2.x generator, SSH generator and Applied Cryptography generator

[50], generator based on elliptic curves [51] and biometric random number [52]. Stream

ciphers can be considered as PRNGs and output keystream should behave randomly

to anyone who does not know the secret key.

2.2.3 Complexity Measures

As mentioned in previous section, unpredictability of keystream is very essential

for stream ciphers. There are various complexity measures to evaluate the unpre-

dictability of output keystream such as linear complexity, k-error linear complexity,

maximum order complexity, quadratic complexity, 2-adic span, Lempel-Ziv complexity

etc. Keystream should have complexity measures approximately equal to that of a

random sequence, otherwise it is possible to predict the keystream or even to recover

the secret key.

Linear Complexity

The most important and widely used complexity measure is the linear complexity,

which is determined by the length of the shortest LFSR (See Section 2.1.1) that pro-

duces the sequence. Mathematically, linear complexity of an infinite binary sequence

Λ(S), S = s1, s2, . . . is defined as the shortest length t recurrence

sn+t = ct−1sn+t−1 + ct−2sn+t−2 + . . . + c0sn, n ≥ 0. (2.2.7)

satisfied by the sequence, where ci ∈ F2 for 0 ≤ i ≤ t− 1. Using the Berlekamp-Massey

algorithm [53], it is possible to calculate the linear recurrence satisfied by a sequence

with linear complexity t after observing 2t bits of the sequence.

Linear complexity of a zero sequence is defined to be 0. If no LFSR generates S,

then the linear complexity of S is defined to be∞. As an example, the linear complexity

of the sequence 10100100010000 . . . is ∞. Every periodic sequence can be generated

using a cycling LFSR with length equal to the period of the keystream, thus the linear

complexity of a periodic sequence is bounded by its period.

For a random sequence of length n, the expected value of the linear complexity [26]

is

µ =
n

2
+

(9 + (−1)n+1)
36

−
n
3 + 2

9

2n
. (2.2.8)

As the length of the sequence increases, linear complexity is approximately n/2 + 2/9

20

for even n, and n/2 + 5/18 for odd n and the variance of the linear complexity is ap-

proximately 86/81 [26]. For a sequence with period p, the expected linear complexity of

the sequence is p− 1 + 2−p. In [54], the distinction between periodic linear complexity

-the length of the shortest LFSR that periodically generates the sequence- and aperi-

odic linear complexity -the length of the shortest LFSR that generates the sequence

followed by arbitrary bits- is emphasized. Since it is not allowed to use stream cipher

output longer than its period, it is claimed that aperiodic linear complexity is a better

measure for predictability. Therefore, aperiodic linear complexity should be large for

all subsequences of the output keystream. This has been also pointed out by Rueppel

[26] who introduced the usage of the linear complexity profile for the analysis of stream

ciphers and showed that the linear complexity of a random sequence follows the y = x/2

line.

Another complexity measure related to linear complexity is the k-error Linear Com-

plexity denoted by Λk(S). It is defined as the smallest linear complexity that can be

obtained by changing k or less number of bits of the sequence. Trivially, when k is

taken as zero, k-error complexity is equal to the linear complexity of the sequence, that

is Λ(S) = Λ0(S). The definition is originally given for periodic sequences, however can

also be defined for finite sequences. In [55], an efficient algorithm to compute k-error

linear complexity of a periodic sequence having period a power of 2 is given.

Let Nn,k(c) be the number of sequences of length n having k-error linear complexity

c. It is an open question to find an algorithm that efficiently computes the k-error linear

complexity spectrum of a binary sequence of an arbitrary period [56].

Theorem 2.2.2. [57] For k ≥ 1,

Nn,k(0) =
k∑

t=0

(
n

t

)
for k ≤ n. (2.2.9a)

Nn,k(1) =
k∑

t=0

(
n

t

)
+

(
n− 1

k

)
for k < (n− 1)/4. (2.2.9b)

Nn,k(n) = 0, k ≤ n. (2.2.9c)

Theorem 2.2.3. [58] Nn,k(c) = 0, for
⌊

n
2

⌋
≤ k ≤ n and 2 ≤ c ≤ n.

Maximum Order Complexity

Maximum Order Complexity (MOC) is the length of the shortest FSR that generates

the sequence, the feedback is polynomial no longer required to be linear as in linear

complexity. MOC of a sequence can be calculated using a directed acyclic word graph

21

or suffix trees. The detailed analysis of MOC is given in [59]. In [60], an approximate

probability distribution of MOC is given for random sequences. For a sequence of

length n, the expected value of MOC is approximately 2log2n, when n is large. One

obvious relationship between linear complexity and MOC is that MOC is always less

than or equal to the linear complexity of a sequence. It should be noted that sequences

with very large linear complexity might have much smaller MOC values.

Quadratic Complexity

The Quadratic Complexity concept lies between linear and maximum order com-

plexity, here the feedback polynomial is restricted to linear and quadratic terms. The

expected value of quadratic complexity is approximately
√

2n, for sequences of length

n [61]. Quadratic complexity of de Bruijn sequences (n ≥3) is bounded above by

2n−
(

n
2

)
-1 and below by n + 1 [62], also it is conjectured that the lower bound is n + 2

for n > 3. The quadratic span distribution for de Bruijn sequences for small n (< 7) is

listed in [62], for large n the distribution is unknown.

2-adic span

2-adic span of a sequence is length of the smallest FCSR (See Section 2.1.1) that

generates the sequence. An efficient method to find 2-adic span is presented in [37].

2M + 2lg(M) bits are needed to find the 2-adic span of a sequence with complexity

M . The 2-adic span complexity profile of random sequences approximately follows n/2

line, similar to the linear complexity [37].

Lempel-Ziv Complexity

The Lempel-Ziv Complexity concentrates on the speed of occurrences of new pat-

terns into the sequence. For instance Lempel-Ziv complexity of 010101001001011 is

7, since different patterns observed in the sequence are 0|1|01|010|0100|10|11. The

Lempel-Ziv complexity LZ of a n bit sequence is bounded as;⌈
−1 +

√
1 + 8n

2

⌉
≤ LZ ≤

⌈
2t+2 + n− 2t− 4

t + 1

⌉
(2.2.10)

where t = max{i ∈ N : (i−1)2i+1+2 ≤ n} [63]. However the expected value of Lempel-

Ziv complexity for an arbitrary length of sequence is unknown. In [63], a recurrence

relation for Lempel-Ziv complexity is given.

22

2.3 Common Designs

While designing a stream cipher, security and performance are the two most impor-

tant goals. Security is satisfied if there does not exist an algorithm that gives the secret

key with complexity less than the complexity of exhaustive key search, 2k. Therefore,

key size determines the level of security. Given the level of security, the secondary goal

is to optimize the performance which can be measured by speed, chip area or power

consumption. It is a challenge to design fast and secure stream ciphers.

Other design goals can be given as flexibility, scalability and simplicity. It should

be noted that these design goals are satisfied differently for hardware and software

oriented stream ciphers. In hardware oriented systems, usually the memory space

is restricted and power consumption is more important whereas in software oriented

systems usage of higher memory and security level is possible. To satisfy different

requirements, hardware and software oriented ciphers use different building blocks, as

an example, bit oriented building blocks are more commonly used in hardware oriented

systems, whereas software oriented systems use word-oriented building blocks. Also,

initial key/IV loading of hardware oriented stream ciphers are usually simpler compared

to software oriented systems.

Initialization and Keystream Generation

After initialization of a cipher, each key and IV bit should be diffused to all internal

state bits. Additionally, the relation between key, IV and the internal state variables

should be as complex as possible. While designing the initialization phases, target

applications should be considered. In some applications such as in wireless communi-

cation, the synchronization between sender and receiver may be lost, frequently. To

regain synchronization, the cipher should be reinitialized. Usually, instead of choosing

a new secret key, the IV is updated publicly according to a protocol. In those ap-

plications that require frequent reinitializations, initialization should be as efficient as

possible. Also, if possible, key and IV loading phases may be separated.

Next state function that updates the internal state should not produce short cycles

that lead to small period, and also should be 1− 1.

Selection of Building Blocks

In stream cipher design, the most crucial decision is probably the selection of build-

ing blocks. Cipher should be designed as simple and compact as possible and only

23

necessary components should be included to the system. Each building block and its

parameters should be carefully selected to satisfy its purpose. Also, the advantages

and disadvantages of each building block should be carefully analyzed and the disad-

vantages of a building block should be compensated with other components. Clearly,

the relation between selected building blocks should be examined, since the interaction

between secure building blocks may lead to a security flaw.

In Table 2.1, the building blocks of Phase III candidates of eSTREAM are listed. As

seen from the table, more than half of the designs are based on FSRs. In the following

sections, common design approaches based on FSRs, block ciphers, hash functions and

NP hard problems are summarized.

2.3.1 Designs Based on Feedback Shift Registers

In most stream cipher designs, LFSR with maximum period are used as building

blocks. However, necessary precautions must be taken against the linearity of LFSRs.

To increase the nonlinearity of the system, there are three general methods, (i) nonlinear

combining generator, (ii) filter generator and (iii) clock controlled generators. A huge

amount of literature [77, 26] on these methods are available.

Nonlinear Combining Generator

The first method of designing a stream cipher using LFSRs is the nonlinear com-

bining generator. This structure consists of n primitive LFSRs each of length Li that

are combined using a nonlinear Boolean function f as illustrated in Figure 2.4. The

Geffe and the summation generator [77] are examples of nonlinear combiners.

Figure 2.4: Nonlinear combining generator

The period of the system p is given as the least common multiple (lcm) of the

24

Table 2.1: Building blocks and proposed platforms of Phase III eSTREAM Candidates

Cipher Platform Building Blocks
Crypt-MT v.3 [64] Software Linear generator

Filter with memory
Dragon [34] Software NFSR of length 1024 bits

F : F192
2 → F192

2

64 bit memory
Decim v2[65] Hardware LFSR of length 192

13 variable Boolean function
ABSG decimation
32-bit buffer

Decim-128 [66] Hardware LFSR of length 288
14 variable Boolean function
ABSG decimation
64-bit buffer

Lex [67] Software Block cipher AES
Grain [30] Hardware NFSR of length 128

LFSR of length 128
9 variable Boolean function

Trivium [32] Hardware 3 NFSRs of lengths 93, 84, 111
Linear filter function

HC-256 [68] Software 2 tables with 1024 32-bit integers
Nonlinear Filter
32-bit-to-32 bit mapping
Linear masking

NLSv2 [69] Software NFSR of length 544
Nonlinear Filter
16 bit Counter

Rabbit [70] Software 8 32-bit state variables
8 32-bit counters
Counter carry bit

Salsa20 [71] Software Hash function
Sosemanuk [72] Software Word oriented LFSR of length 10

Finite State Machine
Serpent block cipher

Edon80 [73] Hardware 80 e-transformers
4 Quasigroups

F-FCSR [74] Hardware FCSR
Filtering

Mickey [75] Hardware 2 Registers
Irregular clocking

Moustique [76] Hardware Conditional complementing shift register
Pipelined stages

Pomaranch [40] Hardware 5 Jump registers

25

periods of each LFSR, that is.

p = lcm(2L1 − 1, 2L2 − 1, . . . , 2Ln − 1). (2.3.1)

Upper bound on the linear complexity of the keystream is f(L1, . . . , Lk) where f is

evaluated over the integers. This bound is attained whenever all LFSRs are primitive

with coprime degrees [77].

The choice of f is very critical. To produce unbiased keystream, f should be

balanced. Also, to obtain high linear complexity, the algebraic degree of f should be

as large as possible. Additionally, to avoid correlation and distinguishing attacks, the

correlation-immunity and nonlinearity of f should be high. However, there is a trade

off between algebraic degree and correlation immunity order of a Boolean function.

For efficiency reasons, the gate complexity of f should be low. Moreover, to resist

decimation attacks, the period of the LFSR should be prime [78].

Nonlinear Filter Generator

This structure consist of an LFSR and a nonlinear Boolean function f which is

used as a filter function as given in Figure 2.5. Knapsack generator is an example of

nonlinear filter generators.

Figure 2.5: Nonlinear filtering generator

Period of the system is bounded by the period of the LFSR. Using a maximum

length LFSR with length L and a filtering function of algebraic degree d, the linear

complexity of the keystream is at most
∑d

i=1

(
L
i

)
. Most of the Boolean functions attain

the bound. According to [77], f should include many terms of each order up to the

degree of f .

A complete study on the analysis of filter and combiner generators and their resis-

26

tance to most important cryptanalytic attacks is presented in [79].

For any filter generator, it is possible to find an equivalent combining generator such

that the output keystreams are identical. Equivalent combining generator include n

LFSRs used in the filter generator with shifted initial states and the combining function

corresponds to the filtering function.

Clock Controlled Generators

Clock controlled generators introduce nonlinearity to the system by irregular clock-

ings of the registers. Irregular clocking is good to resist correlation attacks. The main

disadvantage of irregular clocking is decrease in efficiency and period. Also, these sys-

tems are vulnerable to timing and power attacks. To avoid these side channel attacks

and to guarantee constant throughput, buffering mechanism is commonly used, as in

Decim [80].

Alternative step generator is an example for clock controlled generators. In this

design, three maximum length LFSRs R1, R2 and R3 with lengths L1, L2 and L3 are

used. R1 determines the clocking of R2 and R3 that generate the keystream. Suppose

R1 generates a de Bruijn sequence and L2 and L3 are relatively prime, then according

to [77], the system has period

2L1(2L2 − 1)(2L3 − 1) (2.3.2)

and the linear complexity of the output keystream L satisfies

(L2 + L3) · 2L1−1 < L < (L2 + L3) · 2L1 . (2.3.3)

Shrinking generator [81], another important example for clock controlled generator,

consists of two maximum length LFSRs R1 and R2 with lengths L1 and L2. The

output of the first LFSR determines whether the output of the second LFSR is used

as keystream. Thus, the keystream is irregular decimation output of the second LFSR.

According to [77], provided that L1 and L2 are relatively prime, the keystream has

period (2L2 − 1) · 2L1−1 and the linear complexity L satisfies

L2 · 2L1−2 < L < L2 · 2L1−1. (2.3.4)

Self shrinking generator is a variant of the shrinking generator, in which only one

LFSR is used. Any self-shrinking generator can be represented as a shrinking generator.

The output of LFSR (s0, s1, . . .) is decimated so that s2i+1 is given as output if and

27

only if s2i = 1. If a primitive LFSR of length l is used, the period of the shrinking

generator is between 2bl/2c and 2l−1 [82]. A lower bound on the linear complexity of

self-shrinking generator is given by half of the period and the upper bound is proven

to be 2l−1 − (l − 2) [83].

The stream cipher A5 is a real world example for stop and go clocking according to

the tap bits of 3 LFSRs. Another example is the cipher LILI-128 [84], where the clocking

of an LFSR is controlled by another LFSR that outputs the number of clockings.

Various decimation mechanisms are available in the literature. The pseudocode of

the decimation mechanism ABSG used in the stream cipher DECIM [65] is given in

Algorithm 2.3.1.

Algorithm 2.3.1: ABSG(yt)

i← 0;

j ← 0;

Repeat

e = yi, zj = yi+1;

i = i + 1;

while (yi = ē) i = i + 1;

i = i + 1;

output zj ;

j = j + 1;

2.3.2 Designs Based on Block Ciphers

Block ciphers, as another class of symmetric-key encryption algorithms, transforms

n-bit plaintext blocks to n-bit ciphertext blocks, with a user-provided secret key. Since

they operate on fixed length blocks, there is a need for a technique on how to encrypt

plaintext longer than n bits. Various modes of operations such as Electronic Code-

book (ECB), Cipher Block Chaining (CBC), Output Feedback Mode (OFB), Cipher

Feedback Mode (CFB), Counter Mode (CTR) are available in the literature [77].

The OFB and CTR modes enable the block cipher to be used as a synchronous

stream cipher. These modes operate similarly, as they both encrypt sequence of blocks

and generate keystreams by concatenating the ciphertexts. To encrypt the first block,

a publicly known IV is chosen.

Main disadvantage of using block cipher mode of operations is the large number

28

of rounds and expensive operations of block cipher designs, this approach may not be

suitable for applications that require high speed and low resource.

In OFB with r-bit feedback, r-bit of output keystream and a part of previous

input sequence are used as input in the next encryption. When full feedback OFB is

used, that is, r = n, the expected cycle length before repeating itself is around 2n−1,

assuming that the encryption is a random permutation among (2n)!. For r < n, the

expected cycle length reduces to 2n/2. Therefore, it is advised to use OFB with full

n-bit feedback. In this mode of operation, it is not possible to parallelize the process,

but it is possible to generate the output stream before the plaintext is available.

In CTR mode, the input sequences are generated incrementally using a counter.

The period of the keystream can be controlled by the size of the counter, so this mode

avoids short cycle problems. Also, it is possible parallelize the process.

Different from OFB and CTR, CFB mode enables the block cipher to be used as

a self-synchronizing stream cipher. In this mode, the plaintext blocks also affect the

next sequence to be encrypted.

The OFB and CTR modes of block cipher can be distinguished using 2n/2 blocks.

According to the birthday paradox, a collision occurs in 2n/2 blocks with high proba-

bility. In the OFB mode, if a block occurs twice, then the remaining blocks should be

repeated. Similarly, in the CTR mode, since it is not possible to observe a collision of

blocks, it is easy to distinguish the output. However, no information about the key is

revealed.

Alternatively, stream ciphers can be designed similar to block ciphers by including

common building blocks of block ciphers such as S-boxes. The ciphers Phelix [85],

Salsa20 [71] and Dragon [34] can be given as examples to such ciphers. The design of

the stream cipher Sosemanuk [72] is combination of the design principles of the stream

cipher Snow [25] and transformations derived from the block cipher Serpent [86].

eSTREAM candidate LEX (Leak EXtraction) [67], designed by Biryukov, is an

AES-based stream cipher. The idea is to use some part of the internal state of the

block cipher at certain rounds as keystream. In each AES round, 4 bytes of the internal

state is used to generate keystream. This is similar to OFB mode, instead of using the

ciphertext blocks are keystream, certain parts of the intermediate rounds are used. At

each encryption, 320 bits (10 rounds × 4 bytes) are generated and this makes LEX 2.5

times faster than AES.

29

2.3.3 Designs Based on Hash Functions

Hash functions map an input with arbitrary length to an output of fixed length.

For a hash function to be cryptographically secure, it should satisfy the following three

properties;

• one wayness: It should be hard to find the input sequence x given the output

h(x).

• second pre-image resistance:Given x1, it should be hard to find x2 satisfying

h(x1) = h(x2).

• collision resistance It should be hard to find x1 and x2 with same hash value.

Hash functions can be used to design stream cipher. As one example, Salsa20 [71]

that is composed of three main functions; hash function, expansion function, encryption

function can be given. The hash function takes 64-byte input x and produces 64-byte

output Salsa20(x). The expansion function inputs 32 or 16 byte key K and 16-byte

sequence n and produces 64-byte output Salsa20K(n). Finally, the encryption of an l-

byte message m using key K, 8-byte nonce v is done as Salsa20K(v)⊕m. Salsa20K(v)

produces a sequence of 270 bytes as given below;

Salsa20K(v, 00 . . . 0︸ ︷︷ ︸
64bits

), Salsa20K(v, 00 . . . 1), . . . , Salsa20K(v, 11 . . . 1︸ ︷︷ ︸
64bits

).

2.3.4 Designs Based on NP-Hard Problems

In public key cryptography, the general idea is to design ciphers based difficult

problems that take very long time to solve. The systems utilize a private and a public

key where the public key is used to encrypt messages and the private key is used for

decryption. The security of these cryptosystems is based on the fact that the private

key can be computed from the public key only by solving a NP-hard problem. As

examples, RSA and Rabin cryptosystems based on integer factorization, and Diffie-

Hellman, ElGamal systems based on discrete logarithm problem can be given.

The same idea may be used to design stream ciphers. However, generating fast

stream ciphers using this approach is a challenge. The cipher QUAD, introduced by

Berbain et al. [87], is based on the iteration of multivariate quadratic system of m

equations and n < m variables over a finite field GF (q), typically GF (2). The security

of keystream generation of QUAD, is provably reduced to the conjectured intractability

of solving multivariate system of quadratic equations. No efficient algorithm to solve

30

this problem with high success probability is known for large n (> 100) when the

quadratic equations are random.

QUAD uses three fixed and publicly known multivariate system of quadratic equa-

tions, S, S0 and S1. S = (Q1, . . . , Qkn) consists of kn randomly chosen equations with

n variables over GF (q). S0 and S1 are smaller systems with n equations and n vari-

ables. These two systems are only used during the initialization of the cipher where

the internal state (x1, . . . , xn), n-tuple of GF (q) values, is generated using key and IV.

Keystream generation phase of QUAD is iterative and in each iteration the following

steps are performed;

• Compute S(x) = (Q1(x), . . . , Qkn(x)) where x is the current internal state,

• Output (Qn(x), . . . , Qkn(x)),

• Update the internal state as x = (Q1(x), . . . , Qn(x)).

Analysis of different instances of QUAD(q, n, r) are given in [88], where q is the

field size, n is the number of variables and r is the number of outputs per round.

In particular, the instance of QUAD(256, 20, 20) is broken using XL-Wiedemann in

approximately 266 cycles.

2.3.5 Other Designs

The internal structures of stream ciphers vary extensively and there are some ciphers

that do not fit the previous categorizations. Some of these ciphers are given in this

section.

• RC4, designed by Rivest [89], is commonly used in SSL and WEP applications.

The internal state of the cipher is a permutation of values from 0 to 255 byte.

• Rabbit, designed by Boesgaard et al. [90] in 2003, utilizes eight 32-bit state

variables, eight 32-bit counters and one counter carry bit with internal state size

of 513 bits. The state variables are updated by eight nonlinear functions. The

cipher is word oriented cipher and outputs 128 bit per clocking.

• SEAL (Software-Optimized Encryption Algorithm) [77] is a length-increasing

pseudorandom function that transforms a 32-bit sequence number n to an L-

bit keystream using a 160-bit secret key. The cipher requires large amount of

precomputation in initialization that use the hash function SHA.

31

2.4 Cryptanalysis of Stream Ciphers

Cryptanalysis is the study of deciphering the encrypted message without knowing

the secret key. A trivial attack to any cryptosystem is to try every possible key until

the correct one is recovered. If the key size is k, attacker has to try 2k keys in the worst

case, and on the average 2k−1 keys. To detect the correct key, a plaintext/ciphertext

pair is needed. However, if the plaintext contain redundancies, it may still be possible

to recover the key using only the ciphertexts. One advantage of the attack is that it

can be implemented in parallel. As the ability to compute increases, larger key sizes

are needed. The size of the secret key should be large enough to avoid these exhaustive

or brute force search attacks. In todays technology, 80-bit keys seem to offer acceptable

level of security.

All other attacks applied to stream ciphers are compared to exhaustive key search in

terms of time, data and memory complexity. Time complexity is related to the required

number of primitive operations and can be separated into two parts, offline and online.

The offline part is done once independent of the secret key and the results obtained in

this part is used to attack the system in the online part. Data complexity considers the

amount of data required for the attack, lastly, memory complexity is determined by the

required amount of memory. The attack is considered to be successful if the maximum

of time, data and memory complexity is less than the complexity of exhaustive search.

Attacks with higher complexity are not be considered to be successful.

Different Attack Scenarios

• Ciphertext Only Attacks: In this type, the attacker aims to obtain information

about the secret key or the plaintext by only observing the ciphertext. This

kind of attack is successful if some information about the plaintext such as the

language is available. Also, if plaintext is written using ASCII characters, it is

very likely that the most significant bit of each character is equal to 0. In that

case, ciphertext only attacks can be considered as known plaintext attacks.

• Known Plaintext Attacks: Most of the attacks available in the literature use this

scenario. Since keystream is generated independent of plaintext, this type is

equivalent to known keystream attacks. Well known chosen plaintext or chosen

ciphertext attacks are not suitable to analyze synchronous stream ciphers since

chosen plaintext attack is also equivalent to the known plaintext attack.

• Known IV or Chosen IV Attacks: In most of the protocols the value of IV is

assumed to be public. In chosen IV attacks, the attacker is allowed to choose the

32

set of IVs and resynchronize the cipher using this set.

The attack models against symmetric cryptosystems are divided into two groups

depending on the intention of the attacker. Key recovery attacks aim to recover the

secret key whereas distinguishing attacks aim to find deviations of cipher output from

ideal distribution. It is clear that distinguishing attacks are weaker compared to key

recovery attacks that enable to decrypt any given encrypted message. However, dis-

tinguishing attacks are suitable to detect the cipher used during communication, this

has significant importance especially in military applications. Moreover, in many cases,

the idea of distinguishers may be improved to recover the key. It should also be noted

that most of the candidates of the NESSIE project [14] were broken by distinguishing

attacks and were not included in the final report of the project. In the next section,

more information on distinguishing attacks is presented.

2.5 Distinguishing Attacks

Given a part of the ciphertext or keystream, distinguishing attacks make a decision;

the sequence is random or the sequence is generated using a specific cipher via statistical

hypothesis testing (See Appendix A.2). Existence of any successful distinguisher of

keystream from truly random sequences violates the first requirement of OTP and

is a thread to the security of stream ciphers. In some situations, it is possible to

make incorrect conclusions such as claiming a truly random sequence as cipher output,

or conversely claiming cipher output as a truly random sequence. A distinguisher is

considered to be successful, if the probability of making correct decisions is significantly

better than pure guessing.

Distinguishing attacks against stream ciphers usually assume a known plaintext

scenario and aim to determine whether the given keystream (z1, z2, . . .) has been gen-

erated by a particular generator or by a truly random number generator as presented

in Figure 2.6.

z1, z2, . . . , zn - Distinguisher

-

- Cipher

Random Sequence

Figure 2.6: Distinguishing finite sequences

In cases where the message space M1, . . . ,Ml is small, distinguishing attacks can

be used to recover encrypted message. Each message Mi is XORed with ciphertext C,

33

corresponding keystream Z is generated and if Z is distinguished as the cipher output,

it is likely that Mi is the encrypted message (See Algorithm 2.5.1).

Distinguishing attacks generally use very long keystream and do not leak any infor-

mation about the key and the internal state of the cipher. In [91], authors argue that

weak distinguishing attacks that use large known plaintext do not represent a security

problem in practice. However, it is usually possible to improve the ideas of these attacks

to recover a part of secret key or initial state. One open discussion about distinguishing

attacks is that there is no commonly accepted keystream length in terms of key size to

accept the cipher as broken using the distinguishing attack. However, it is pointed out

that the today’s largest application use 250 bytes and encrypting this amount of data

using a single key and IV pair does not seem to be reasonable. According to [92], a

synchronous stream cipher should not encrypt more than 2
k
2 message blocks using the

same secret key. To avoid distinguishing attacks that require long keystream, in some

of the cipher specifications the size of the longest allowable keystream generated using

a key and IV pair is specified, in Lex it is limited by 320 × 500 = 160, 000 bits [67]

wheres in Trivium the bound is 264 bits [32].

Algorithm 2.5.1: Distinguisher(C;M1,M2, . . . ,Ml)

message = NONE;

for i = 1 to l

Z = C ⊕Ml;

Apply distinguisher to Z;

if Z is distinguished as cipher output{
message = Ml;

break;

return (message)

Chosen IV Distinguishers

Alternative to using very long keystream, it is also possible to distinguish the out-

put of stream ciphers using a number of shorter keystream portions (called frame)

generated using different IVs as given in Figure 2.7. Stream ciphers should also be

resistant to distinguishers using chosen IVs, because in many wireless applications, in-

stead of generating long keystream, the ciphers are frequently synchronized and short

keystreams are generated. More information on resynchronization process is available

34

in Section B.1.

-

-

-

IV1

IV2

...

IVl

Cipher

-

-

-

...

Z
(1)
1 , Z

(1)
2 , . . . , Z

(1)
n

Z
(2)
1 , Z

(2)
2 , . . . , Z

(2)
n

Z
(l)
1 , Z

(l)
2 , . . . , Z

(l)
n

-

-

-

Distinguisher

-

-

Random Mapping

Cipher

Figure 2.7: Distinguishing frames generated by different IVs

Black box and Cipher Specific Distinguishers

To attack a specific stream cipher using distinguishing attacks, the inner structure

of the cipher should be analyzed extensively. In many cases, the distinguishers are

successful due to the wrong selection of some parameters such as tab points of registers.

As example, due to the choice of the weak feedback functions, a distinguishing attack

against Grain is presented in [93].

In [94, 95], it is shown that for a binary keystream generator with M bit memory,

there exists a linear function of at most M + 1 consecutive output bits which is an

unbalanced function of the initial state variables. Also, an efficient method for finding

distinguishers based on linear circuit approximation is presented. The linear function

of these consecutive bits can be used to distinguish the keystream and the required

keystream length is inversely proportional to the bias of the liner approximation. Some

examples for the ciphers analyzed using this approach are Sober [96], Snow [97], Grain

and Trivium [98].

Englund et al. [99] proposed an extension to the generic distinguisher against OFB

mode of block ciphers. The attack is successful if the part of the state that depends on

the both the key and the IV is smaller than twice the key size. It is shown that LEX

is vulnerable to this distinguisher using approximately 265.7 resynchronizations. Other

examples of distinguishing attacks against stream ciphers are presented in [100, 101,

102].

Alternative to cipher specific distinguishers, some black box distinguishers that

are independent of the inner structure of ciphers, can be used. Traditional statistical

randomness tests such as frequency, runs, serial etc. [103] can be given as examples of

distinguishers presented in Figure 2.6.

35

Approach of eSTREAM Candidates

Anashin et al. [47] applied the randomness tests in the NIST and DIEHARD test

suite and observed no statistical deviation of keystream and they also proved that the

distribution of 32-bit words in the keystream of ABC is uniform. In [104], Fubuki and

AES have been tested according to their bit diffusion property with small number of

rounds and it is claimed that there exist no diffusion bias for 4-round AES and 2-

round Fubuki. In [34], the keystream of Dragon is tested by the statistical randomness

tests given in Crypt-X suite. Authors applied the frequency, binary derivative, change

point, subblock and runs tests to 30 keystreams of length 8 megabits. Additionally,

the sequence and linear complexity tests were applied to 30 streams with 200 kilobits

each. Dragon showed no deviation from randomness according to these results. Also,

the output of the F-FCSR generator is tested using the NIST suite [74].

Theoretical validation for diffusion criteria in the initialization state has been done

for Grain to defeat statistical chosen-IV attacks [30]. Wu [68] analyzed the keystream

of HC-256 with no linear masking and weakened feedback function and concluded that

distinguishing 2128 bits of keystream from a truly random sequence is computationally

infeasible.

In [105], it is reported that the output of Hermes8 is tested using the FIBS 140-2 and

DIEHARD Battery of Tests and no deviation from randomness is observed. Vuckovac

[106] reported that the output of Mag has been tested for patterns in every stage of

development by using statistical randomness tests available in ENT, DIEHARD and

Crypt-X test suites and observed no statistical deviation. The cipher Py had also been

tested using statistical randomness tests [107]. It is claimed that the output keystream

is uncorrelated and statistical tests should not succeed even when more extensive tests

are made.

For the cipher Rabbit, the statistical tests from NIST, DIEHARD and ENT suites

was applied. The tests were done for both the internal state and the keystream [70].

Also, various statistical tests were applied to the key setup function and also to the

reduced version of Rabbit where each state variable has been given in 8 bits. Authors

did not find any statistical weakness in any of these cases. Hong et al. [108] reported

that they had applied statistical randomness tests similar to the ones in NIST suite

and had not found any weaknesses.

Bigeard et al. [33] tested the output of each component of Vest and claimed that

individual streams of any of the outputs of Vest accumulators, combined Vest counters

and complete Vest ciphers were indistinguishable from truly random sequences.

36

The randomness property of WG is analyzed in terms of high period, balance, two-

level autocorrelation, t-tuple distribution and linear complexity [109]. The keystream

generated using ZK-Crypt passed from the statistical randomness tests of NIST and

DIEHARD [110].

As seen the different approaches, there is no general framework on how to test

ciphers using block box distinguishers. Moreover, no statistical analysis is reported

for the ciphers Achterbahn, Decim, Dicing, Edon80, Lex, Mickey, Mickey-128, Mir-

1, NLS, Phelix, Polar Bear, Pomaranch, Salsa20, Sfinks, Sosemanuk, Trivium and

Yamb in algorithm specification documents. In this thesis, we aim to provide a general

framework to statistically analyze stream ciphers. First, we test all Phase I candidates

of eSTREAM using the NIST test suite and the results are presented in Appendix C.

Statistical weaknesses are observed in the keystream of Decim and Frogbit.

37

Chapter 3

Analysis of Keystream

Random numbers are widely used in many applications such as statistical sampling,

Monte Carlo simulation, numerical analysis, game theory, cryptography etc. In cryptog-

raphy, the need for random numbers arises in key generation, authentication protocols,

digital signature schemes, zero-knowledge protocols, etc. Using weak random numbers

in such applications may result in an adversary ability to break the whole cryptosystem.

However, for many simulation applications strong random numbers are not required,

in other words, different applications may require different levels of randomness.

Generating high quality random numbers is a very serious problem–and is very

difficult if deterministic methods are used. The best way to generate unpredictable

random numbers is to use physical processes such as radioactive decay, thermal noise

or sound samples from a noisy environment. However, generating random numbers

using these physical processes is extremely inefficient. Therefore, most systems use

PRNGs based on deterministic algorithms. Some of the commonly used PRNGs for

cryptographic applications are ANSI X9.17 generator, PGP 2.x generator, SSH gener-

ator and Applied Cryptography generator [50], generator based on elliptic curves [51]

and biometric random number [52].

Desired properties of PRNGs are (i) good randomness properties of the output

sequence, (ii) reproducibility (especially for simulation applications), (iii) speed or effi-

ciency and (iv) large period.

Unpredictability of random sequences is established using a random seed that is

obtained by a physical source like timings of keystrokes. Without the seed, the attacker

must not be able to make any predictions about the output bits, even when all details

of the generator is known.

Since stream ciphers produce random looking keystream using the key as the seed

of the generator, stream ciphers are also PRNGs. All testing mechanisms applied for

38

PRNGs can also be applied to stream ciphers to analyze their randomness properties.

A theoretical proof for the randomness of a generator is impossible to give, therefore

statistical inference based on observed sample sequences produced by the generator

seems to be the best option. Considering the properties of binary random sequences,

various statistical tests can be designed to evaluate the assertion that the sequence is

generated by a perfectly random source. Test suites [103, 111, 112, 113, 114] define a

collection of tests to evaluate randomness of generators extensively.

One important attribute of test suites is the variety or coverage of tests that they

include. A generator may behave randomly based on a number of tests, and fail when

it is evaluated by another test. So, to have more confidence in the randomness of

generators, coverage of test suite should be as high as possible. We defined the coverage

of a test suite as the sequences that fail any of the tests in the suite for a pre-specified

type I error.

Test suites produce many p-values while evaluating a random number generator.

Interpretation of these p-values is sometimes complicated and requires careful atten-

tion. According to the NIST test suite, these p-values are evaluated based on (i) their

uniformity and (ii) the proportion of p-values that are less than a predefined threshold

value which is typically 0.01 [103]. As Soto stated in [115] to achieve reliable results

using these measures, the statistical tests in a suite should be independent, in other

words the results of the tests should be uncorrelated. In [116], the relation between

approximate entropy, overlapping serial and universal test is analyze and highly corre-

lated results are obtain using defective sources. In Figure 3.1, the relation of coverage

and independence of tests are illustrated. The proportion of highlighted parts is equal

to the coverage of the suite designed by six randomness tests. According to the figure,

the tests T5 and T6 are not independent, due to their large intersection.

Figure 3.1: Independence and coverage of test suites

There is a strong relation between the coverage of the suite and independence of

tests. In this chapter, we study the independence of some commonly used randomness

39

tests and present some theoretical and experimental results. Moreover, we define the

concept of sensitivity, the effect of some transformations to sequences on test results.

We propose to add the composition of the transformation and the test to the suite,

whenever the effect of transformation is significant.

The organization of the chapter is as follows. In Section 3.1, basic background

information about randomness tests and test suites, and a rough classification based

on the test statistics, are presented. In Section 3.2, three new randomness tests based

on random walks are proposed. In Section 3.3, theoretical and experimental results

on the independence of randomness tests are presented for a subset of commonly used

tests. In Section 3.4, the concept of sensitivity is defined and effect of some basic

transformations is presented. In the last section, we give some concluding remarks and

possible future work directions.

3.1 Randomness Tests

Let L be the set of n bit binary sequences, trivially |L| = 2n. A statistical test

T is a deterministic algorithm that takes a sample sequence and produces a decision

regarding the randomness of a sequence, as T : L → {accept, reject}. Therefore, T

divides the set L of binary sequences Sn = (s1, s2, . . . , sn) of length n into two sets;

LA = {Sn ∈ L : T (Sn) = accept} ⊆ L

LR = {Sn ∈ L : T (Sn) = reject} ⊆ L

The size of these two sets is determined by the type I error α, i.e. |LR|/|L| = α.

The most commonly used test is probably the frequency test [103] that evaluates

the randomness of a given sequence based on the number of ones (that is, the weight

w) of the sequence. A trivial extension of the frequency test can be given as the

equidistribution test that focuses on the frequencies of k-bit tuples throughout the

sequence. Overlapping and non-overlapping template matching tests [103] only consider

the number of occurrences of pre-specified templates in the sequence.

Another commonly used statistics in randomness testing is about the changes from

1 to 0 or visa versa, which is called a run. Runs test [103] focuses on the number of

runs in the sequence which is expected to be around (n+1)
2 for a random sequence of

length n. Alternatively, there are tests that concentrate on length of runs, particularly

length of the longest run of ones [103] in the sequence.

Especially in cryptographic applications, the complexity of sequences -the ability to

40

reproduce the sequence- is of interest. Sequences with low complexity measures can be

easily generated with alternative machines. Some examples of randomness tests based

on complexity measures can be given as linear complexity [103], Lempel-Ziv complexity

[63] and maximum order complexity [117]. A non-exhaustive list of randomness tests

is given in Table 3.1.

Classification of Tests

While selecting a subset of randomness tests to be included in a test suite, it is

necessary to understand what exactly the test measures. Tests that focus on similar

properties should not be included in the test suite, but one of such a class should be

chosen.

In [120], two important properties of random sequences are emphasized. The first

is about the appearance of the sequence which is related to the ability of the attacker

to guess the next bit better than random guessing. The second property is about the

ability to reproduce the sequence, i.e., the complexity of the sequence. Considering these

properties, we give a rough classification of randomness tests into two categories:

• tests based on k-tuple pattern frequencies and

• tests based on ordering of k-tuples patterns.

Tests based on k-tuple pattern frequencies aim to detect the biases in the

appearance of the sequences. Weaknesses in the appearance of sequences can be con-

sidered as the deviations in the frequencies of k-tuples (1 ≤ k ≤ log2n) which are

expected to occur nearly equally many times throughout the sequence. An example

for this category with k = 1 is the most commonly used frequency test and its ex-

tension equidistribution test with k = 2, 3, Other examples can be given as runs,

overlapping template, serial, coupon collectors, etc.

Tests based on ordering of k-tuples aim to detect weaknesses based on the

reproducibility of sequences. Most of the test statistics in this category are related to

the size of simpler systems that generate the sequence. If the size of these machines

are less than expected, it is possible to use these machines to regenerate the sequence.

Tests based on complexity measures like linear complexity, maximum order complexity

can be given as examples.

These categories are closely related and obviously not disjoint. It is possible to find

randomness tests that can be included in more than one category. As an example,

consider the runs test which can be included to the category of tests based on ordering

41

Table 3.1: A non-exhaustive list of statistical randomness tests with input parameters,
test statistics and constraints (The sequence length is denoted as n.)

Test Input Parameters Test Statistics Constraints

Frequency [103] - Weight n > 100

Frequency Block length, M Block weights n > 100
within a Block [103] M ≥ 20, M > 0.01n

Overlapping Template length, m Frequency of T n ≥ 106

Templates Matching [103]Template T m = 9 or m = 10

Non-overlapping Template length, m Frequency of T n ≥ 106

Templates Matching [103]Template T m = 9 or m = 10

Runs [103] - Number of runs n > 100

Longest Run Block length, M Length of the M = 8, n > 128
of ones [103] longest run M = 128, n > 6272

M = 104, n > 750000

Linear Block length, M Linear n > 106

Complexity [103] complexity 500 ≤ M ≤ 5000

Maximum Order - Maximum order n > 106

Complexity [117] complexity

Lempel-Ziv [103, 63] Block length, M Lempel-Ziv M = 1024, n > 100000
complexity

Matrix Rank [103] Number of rows, M Matrix ranks M = Q = 32, n > 38912
Number of columns, Q

Universal [118] Block length, L Distance between 6 ≤ L ≤ 16
Number of blocks, Q matching patterns n > 387840

Discrete Fourier - Peak heights in n > 1000
Transform (DFT) [103] DFT

Serial [103] Block length, M Frequency of M < blog2nc − 2
M -bit patterns

Approximate Block length, M Frequency of M < blog2nc − 2
Entropy [103] M and M + 1-bit patterns

Random Walk Block length, M Number of M = 16, n > 500
Excursion [18] excursions M = 128, n > 3600

M = 256,n > 6800

Random Walk Block length, M Maximum Height M = 64, n > 2000
Height [18] M = 512, n > 14000

M = 1024, n > 26000

Random Walk Block length, M Maximum Expansion M = 32, n > 1000
Expansion [18] M = 64, n > 2000

M = 128, n > 4000

Coupon Pattern size, t First index where all n > 2t

Collectors [119] t-bit patterns are observed

Maximum-of-t Block length, M Maximum of n > 100M
Pattern size, t t-bit patterns M > 10t

Minimum-of-t Block length, M Minimum of n > 100M
Pattern size, t t-bit patterns M > 10t

42

of k = 1-tuples and also to the category of tests based on k = 2-tuple pattern frequency

since it actually counts the number of 01 and 10 patterns throughout the sequence.

Even for applications that do not require strong random numbers, generators should

produce uniform outputs, in other words, should pass the tests in the first category.

The tests in the second category usually take more time compared to the first category,

but they are more important for applications that require strong randomness such as

cryptographic applications where randomness is used in key, nonce and initial vector

generation.

Test Suites

A randomness test suite is a collection of randomness tests that are selected to

analyze the randomness properties of generators. Here, we provide some information

about widely used test suites.

• Knuth Test Suite [113], developed in 1998, presents several empirical tests includ-

ing frequency, serial, gap, poker, coupon collector’s, permutation, run, maximum-

of-t, collision, birthday spacings and serial correlation.

• DIEHARD Test Suite [111] consists of 18 different, independent statistical tests

including; birthday spacings, overlapping 5-permutations, binary rank, bitstream

test, monkey tests on 20-bit Words, monkey tests OPSO, OQSO, DNA, count

the 1’s in a stream of bytes, count the 1’s in specific bytes, parking lot, minimum

distance, 3D spheres, squeeze, overlapping sums, runs and craps. Since the se-

quence sizes are fixed for most of the tests, suite is not suitable to test sequences

with variable sizes.

• Crypt-XS [112] suite which was developed in the Information Security Research

Centre at Queensland University of Technology consists of frequency, binary

derivative, change point, runs, sequence complexity and linear complexity tests.

• NIST Test Suite [103] consists of 16 tests namely frequency, block frequency, cu-

mulative sums, runs, long runs, rank, spectral, nonoverlapping template match-

ings, overlapping template matchings, Maurer’s universal statistical, approximate

entropy, random excursions, Lempel-Ziv complexity, linear complexity, and serial.

During the evaluation of block ciphers presented for AES, Soto [115] proposed

nine different ways to generate large number of data streams from a block cipher

and tested these streams using the NIST test suite to evaluate the security of

AES candidates.

43

• TestU01 Suite [114] is another test suite for empirical testing of random number

generators. This suite consists of many randomness tests and it is also suitable

to test sequences that take real values.

Multi Level Testing

In [121], to increase the power of tests, it is proposed to apply the test N times to

disjoint parts of the sequence, yielding N different test statistics, t1, t2, . . . , tN . Then,

using standard goodness of fit tests, the empirical distribution of ti values is compared

to the theoretical distribution of the test statistic under H0. This is called level-2

testing (See Figure 3.2). To increase the power, the level of tests may be increased

further. The level-2 version of frequency test is the frequency test within a block [103]

that focuses on the weight of disjoint parts of a given sequences.

One Level: (s1, . . . , sn)︸ ︷︷ ︸
t

→ Evaluate t

Two Level: (s1, . . . , sm)︸ ︷︷ ︸
t1

, . . . (sn−m+1, . . . , sn)︸ ︷︷ ︸
tN

→ Evaluate t1, . . . , tN

Figure 3.2: Multi level testing

3.2 New Tests Based on Random Walks

Random walks are stochastic processes based on a sequence of changes, where the

magnitude or direction of change is determined by chance. They are widely used in

applications of physics, economics and population genetics. They can also be used to

analyze randomness properties of binary sequences. In the test suite of NIST [103],

there are three tests concerning random walks namely, Cumulative Sums, Random

Excursions and Random Excursion Variants test. The last two tests can only be applied

to sequences with length n > 106, due to approximations used for the distribution of

test statistic.

In this section, we present three new randomness tests based on random walks.

Proposed tests observe properties associated with the sequence of partial sums, such as

number of zero sums, maximum value and the expansion of random walks. The basic

idea of tests are very similar to the tests presented in the NIST suite, but they are also

suitable to test shorter sequences, since exact probability distributions are used during

evaluation.

44

3.2.1 Random Walks

Consider a particle on the real line located at a point k ∈ Z. At each step, this

particle moves either to k + 1 or k − 1 by equal probabilities. The motion described

by this particle is known as the one dimensional random walk. Random walks can be

generalized by various ways; a motion in 2, 3 or higher dimension, a motion concern-

ing different probabilities to different directions etc. Examples of one, two and three

dimensional random walks are given in Figure 3.3

(a) One dimensional random
walk.

(b) Two dimensional random
walk

(c) Three dimensional ran-
dom walk

Figure 3.3: Random walk examples

In this work, we only consider one dimensional random walks with equal proba-

bilities, since they are very suitable for analyzing the randomness properties of finite

binary sequences.

Let s1, s2, . . . be independent random variables with the following distribution

P (si = 1) = P (si = −1) =
1
2
. (3.2.1)

The partial sum Si is defined by Si = s1 + s2 + . . . + si, i = 1, 2, . . . and S0 = 0. Then,

the sequence {Si}∞i=0 defines a one dimensional random walk.

A random walk can be represented in the plane by the points (xi, yi) where xi = i,

yi = Si, for i ≥ 1 and x0 = y0 = 0. The points at which the path intersects the

x-axis correspond to Sn = 0. The part of the sequence between two such successive

intersection points is referred to an excursion. Length of an excursion starting at (xi, yi)

and ending at (xi, yi) is j − i. Note that in such a case, yi = yj = 0 and yk 6= 0 for

i < k < j. The maximum value of |yn| is defined as the height of a random walk and

the expansion of a random walk is defined as the difference between the maximum and

the minimum value of Sn, i.e. max{y} −min{y} (See Figure 3.4).

45

Figure 3.4: Height, excursion and expansion in one dimensional random walks

Let l be the length of an excursion. The probability distribution of l is given by

P (l = x) =

C x

2−1

2x−1 , even x

0, odd x
(3.2.2)

where Ci is the Catalan number 1
i+1

(
2i
i

)
. It is obvious that the length of an excursion

is always even.

Let Pk be the probability that the length of a random excursion is greater than k.

Obviously,

P2k = 1−
k−1∑
i=1

P (2i) (3.2.3)

and P2k = P2k+1.

For our tests, we are interested in the probability P (N, k) that having exactly k

excursions in a given sequence of length N . We calculate the probability distribution

separately for balanced and unbalanced sequences.

• Balanced sequences with k complete excursions. To calculate the number of bal-

anced sequences with k complete excursions, we first utilize the number of differ-

ent partitions of N/2 with k positive integers p1, . . . , pk, such that

N = 2p1 + 2p2 + . . . + 2pk. (3.2.4)

Then, the probability of having k successive excursions of respective lengths

2p1, . . . , 2pk is P (2p1).P (2p2) . . . P (2pk). Consequently, the desired probability

is given by the sum
∑

P (2p1) . . . P (2pk) where the summation ranges over all

46

ordered partitions (p1, . . . , pk) of N/2 into k positive integers.

• Unbalanced sequences with k − 1 complete and 1 incomplete excursions. Let the

length of the first k − 1 complete excursions be N − 2m and the last incom-

plete excursion be of length 2m (m > 0). In this case, the required probability

is
∑N/2

m=1 PN−m
∑

P (2p1) . . . P (2pk−1) where the inner summation runs over all

ordered partitions p1, . . . , pk−1 of N/2−m into k − 1 positive integers.

Given a random walk of length B. Let w be the weight of the sequence and m =

B − w. It is possible to represent this walk as a path starting from the bottom left

corner in a m×w grid, (stepping one unit up for a +1 term and stepping one unit right

for a −1 in the sequence) and ending at the top right corner (See Figure 3.5). The

paths that intersects the line l1 corresponds to random walks with height greater than

r. The number of such paths is known to be equal to
(
m+w
m−r

)
, provided r > |m− w|.

Figure 3.5: Grid representation of an example random walk (1,2,1,2,1,0,-1,0,1,0,1,2,1,0,-
1,-2,-1,-2,-1,-2,-3,-4,-3,-4) of length w + m = 24 with max{yi} less than r = 5 and
min{yi} greater than −s = −7

Let us investigate a more general case. To calculate the number of paths starting

from A, finishing at B and not cutting the two given lines l1 and l2 (that corresponds

to random walks with m ones and w zeros and taking values between [−s, r]), the

principle of inclusion-exclusion is employed. The required number can be found by

excluding the paths cutting the above and below lines from all paths and including

the paths cutting both above and below lines and continuing in this way. Thus, the

probability, Pr(Smax < r, Smin > −s|m,w) is

(
m+w

m

)
−

∑∞
i=1

((
m+w

m−ir−(i−1)s

)
+

(
m+w

w−(i−1)r−is

)
−

(
m+w

m−ir−is

)
−

(
m+w

w−ir−is

))
2m+w

(3.2.5)

47

for r, s > |m− w| and 0, otherwise.

If r = s, then

Pr(Smax < r|m,w) =

(m+w

m)−
∑∞

i=1{[(m+w
m−ir)+(m+w

w−ir)](−1)i+1}
2m+w if r > |m− w|,

0 otherwise.
(3.2.6)

3.2.2 Test Descriptions

We define three new tests to decide the randomness of a sequence considering sta-

tistical distributions based on certain properties of the random walk; (i) Random Walk

Excursion Test, (ii) Random Walk Height Test, (iii) Random Walk Expansion Test.

As their names suggest, tests consider the number of excursions, the height and the

expansion of the random walk generated by the input binary sequence, respectively.

All of these tests are level-2 tests, i.e. tests partition the input sequence into non-

overlapping blocks with certain lengths (B = 16, 32, 64, . . .) and calculate test statistics

ej , (j = 1, 2, . . . ,
⌊

N
B

⌋
) for each subblock and apply a χ2-goodness of fit test.

To test a binary sequence {ai}ni=1 = {a1, a2, . . . , an} for randomness, we first convert

{ai} into the sequence {bi}ni=1 by setting bi = 1−2i so that bi ∈ {−1, 1}, i = 1, 2, . . . , n.

The pseudocode of the tests are given in Algorithm 3.2.1, 3.2.2 and 3.2.3.

Algorithm 3.2.1: Random Walk Excursion Test(B, bn)

for j ← 1 to
⌊

n
B

⌋

ej = 0;

for i← 1 to B{
Si =

∑i
k=1 b(j−1)B+k;

for i← 1 to B{
if Si = 0

then ej + +;

Apply χ2-Goodness of Fit test to ej values;

return (p− value)

48

Algorithm 3.2.2: Random Walk Height Test(B, bn)

for j ← 1 to
⌊

n
B

⌋

ej = 0;

for i← 1 to B{
Si =

∑i
k=1 b(j−1)B+k;

for i← 1 to B{
if |Si| > ej

then ej = |si|;
Apply χ2-Goodness of Fit test to ej values;

return (p− value)

Algorithm 3.2.3: Random Walk Expansion Test(B, bn)

for j ← 1 to
⌊

n
B

⌋

ej = 0, max = 0, min = 0;

for i← 1 to B{
Si =

∑i
k=1 b(j−1)B+k;

for i← 1 to B
if Si > max

then max = Si;

if − Si > min

then min = −Si;

ej = max + min;

Apply χ2-Goodness of Fit test to ej values;

return (p− value)

In the following tables, intervals and corresponding probabilities are presented.

These intervals are determined in such a manner that each interval has approximately

equal probability. Firstly, we calculate the exact probability distributions for length

of excursion, heights and expansion of random walks. Then, to apply χ2-Goodness of

fit test, we generate boxes with approximately equal probabilities for block lengths of

16, 32, 64, 128 and 256 bits. These probabilities are given in Tables 3.2, 3.3 and 3.4,

respectively.

49

Table 3.2: Interval and probability values of Random Walk Excursion Test for block
lengths of 16,32, 64, 128 and 256 bits.

B=16, n > 509 B=32, n > 761 B=64, n > 1849 B=128, n > 3615 B=256, n > 6772
Interval Pr. Interval Pr. Interval Pr. Interval Pr. Interval Pr.

Box 1 0 0.196 0-1 0.279 0-1 0.198 0-2 0.210 0-3 0.198
Box 2 1 0.196 2-3 0.261 2-3 0.192 3-5 0.200 4-7 0.189
Box 3 2 0.183 4-5 0.210 4-5 0.173 6-8 0.177 8-12 0.206
Box 4 3 0.157 6-16 0.247 6-8 0.206 9-12 0.184 13-19 0.211
Box 5 4-8 0.266 - - 9-32 0.228 13-64 0.227 20-128 0.193

Table 3.3: Interval and probability values of Random Walk Height Test for block lengths
of 64,128, 256, 512 and 1024 bits.

B=64, n > 1693 B=128, n > 3555 B=256, n > 6597 B=512, n > 14222 B=1024, n > 26256
Interval Pr. Interval Pr. Interval Pr. Interval Pr. Interval Pr.

Box 1 0-6 0.252 0-8 0.180 0-12 0.196 0-17 0.180 0-25 0.196
Box 2 7-8 0.227 9-11 0.241 13-16 0.230 18-22 0.205 26-32 0.203
Box 3 9-10 0.182 12-14 0.209 17-20 0.194 23-28 0.214 33-40 0.200
Box 4 11-13 0.173 15-18 0.183 21-26 0.195 29-36 0.195 41-52 0.204
Box 5 14-64 0.163 19-128 0.185 27-256 0.232 37-512 0.203 53-1024 0.195

3.3 Independence of Tests

There are extensive number of randomness tests in the literature and to design a

test suite a careful selection should be done. Many generators may appear to be random

according to a number of tests, but may be non-random when subjected to another

test, therefore the variety or the coverage of the tests used in the test suite should

be high enough. However, including dependent tests may result in wrong conclusions

about the generators.

Two tests T1 and T2 are considered to be independent if the distribution of their

test statistics t1 and t2 (and corresponding p-values) are independent, that is

Pr(t1|t2) = Pr(t1), (3.3.1)

and visa versa.

In this section, we analyze the relation between some of the commonly used tests

and try to observe if there exists any statistically significant correlation. We consider

ten level-1 tests, which are also suitable for testing to short sequences. Given a sequence

(s1, s2, . . . , sn) of length n, each test defines a test statistic as described below.

• Frequency Test: The test statistic is the weight of the sequence, that is t =

s1 + . . . + sn, taking values between 0 and n.

50

Table 3.4: Interval and probability values of Random Walk Expansion Test for block
lengths of 32, 64 and 128 bits.

B=32, n > 963 B=64, n > 2025 B=128, n > 3978
Interval Pr. Interval Pr. Interval Pr.

Box 1 0-6 0.307 0-8 0.188 0-12 0.196
Box 2 7 0.166 9-10 0.234 13-14 0.165
Box 3 8-9 0.266 11-12 0.212 15-17 0.235
Box 4 10-32 0.259 13-15 0.206 18-21 0.214
Box 5 - - 16-64 0.158 22-128 0.187

• Overlapping Template Test: Test statistic is the number of occurrences of a m

bit pattern a throughout the sequence, that is

t = |{i|(si, . . . , si+m−1) = a, 1 ≤ i ≤ n−m + 1}|. (3.3.2)

For our experiments, a is chosen to be 111.

• Longest Run of Ones Test: Test statistic is the length of the longest run of ones,

that is

t = max{m|si = si+1 . . . = si+m = 1, 1 ≤ i ≤ n}, (3.3.3)

taking values between 0 and n.

• Runs Test: Test statistic is the number runs throughout the sequence, taking

values between 1 and n.

• Random Walk Height Test: Test statistic is the height of random walk, that is

t = max
i=1,...,n

|
i∑

j=1

(2sj − 1)| (3.3.4)

taking values between 1 and n.

• Random Walk Excursion Test: Test statistic is the number of excursions in the

random walk, that is

t = |{i|
i∑

j=1

(2sj − 1) = 0, 1 ≤ i ≤ n}|, (3.3.5)

taking values between 0 and n/2

• Linear Complexity Test: Test statistic is the linear complexity of the sequence,

that is, the length of the shortest LFSR that generates the sequence, taking values

between 0 and n. Linear complexity of a sequence can efficiently be calculated

using the Berlekamp-Massey algorithm.

51

• k-error Linear Complexity Test: Test statistic is the k-error linear complexity of

the sequence that is the length of the shortest LFSR that generate the sequence

with at most k bit difference. In our experiments, we focused on the k = 1 case,

in which the test statistic takes values between 0 and n/2.

• Maximum Order Complexity Test: Test statistic is the maximum order complex-

ity of the sequence that is the length of the shortest feedback shift register that

generates the sequence, taking values between 0 and n− 1.

• Lempel-Ziv Test: Test statistic is the Lempel-Ziv complexity of the sequence that

takes its maximum value as n/2. For instance Lempel-Ziv complexity of s =

010101001001011 is 7, since different patterns observed are 0|1|01|010|0100|10|11.

3.3.1 Theoretical Results

In this section, to analyze the relation of two tests T1 and T1, we present some

theoretical bounds on the maximum and minimum values of t1 as a function of t2.

Frequency versus Runs Test Given a sequence of length n and weight w, the

maximum possible number of runs R is

max{R} =

{
n if w = n

2

min{2w + 1, 2(n− w) + 1} if w 6= n
2

whereas the minimum number of runs R is

min{R} =

{
2 if 1 ≤ w < n

1 w = 0 or w = n
.

For balanced sequences, the number of runs takes values between 1 and n, but as

the weight of the sequence deviates from n/2, the maximum possible number of runs

decreases. Sequences with weight less than n/4, it is not possible to achieve expected

number of runs. Conversely, given the number of runs R, w ≥
⌊

R
2

⌋
.

Frequency versus Random Walk Height Test Given a sequence of length n

and weight w, the random walk height test statistic H attains the maximum value as

max{w, n− w} and minimum value

min{H} =

{
1 if w =

⌊
n
2

⌋
|n− 2w| otherwise

.

Given H, the weight of the sequence is at least min{H,n−H}. From this property, if

a sequence fails random walk height test, it is very likely that it also fails the frequency

52

test. The relation is more significant for short sequences.

Frequency versus Longest Run of Ones Given a sequence of length n and

weight w, the longest run of ones test statistic L takes its maximum value as w and

minimum value as
⌈

w
n−w−1

⌉
.

Frequency versus Random Walk Excursion Test Given the weight w of a n-

bit sequence, the number of random walk excursion test statistic E takes its maximum

value as min{w, n− w} and minimum value as

min{E} =

{
1 if w = n

2

0 otherwise
.

Runs versus Random Walk Excursion Both tests are related to the speed of

changes from 0 to 1 (or from 1 to 0). Sequences with large number of excursions are

expected to have large number of runs, similarly sequences with small number of runs,

are expected to have less number of excursions. Each excursion consists of at least two

runs, therefore number of runs is at least twice the number of excursions.

Frequency versus Linear Complexity There is no direct relation between the

weight and the linear complexity of the sequence. Even with very low weight, it is

possible to achieve high linear complexity values. As an example, consider the sequences

with w = 1, location of the bit 1 determines the linear complexity. There is however a

strong relation between the weight of the Discrete Fourier Transform of the sequence

and its linear complexity, so-called Blahut’s theorem [122].

3.3.2 Experiments on Short Sequences

As an alternative definition of independence of randomness tests, tests T1 and T2

can be considered independent, if their rejection regions are independent for all selection

of α. In this part of the study, we analyze the relations of 10 tests given in Section 3.3,

focusing the rejection regions with size approximately 0.01.

Considering all binary sequences of length n = 20 and 30, we formed the rejection

regions RTi
n of each test, that is, the set of all n bit sequences that fail Ti. The upper

and lower acceptable limits for test statistics are calculated so that α ≈ |R1
n| ≈ . . . ≈

|R10
n | ≈ 0.01. If the test statistic is more extreme than the lower or upper limit given in

Table 3.5, the sequence is assumed to be non-random. Empirical distributions of two

test statistics for n = 20 is given in Figure 3.6.

The (i, j)th entry of Tables 3.6 and 3.7 represents the proportion of sequences that

fail Ti and Tj to the sequences that fail Ti, that is, |R
i
n∩Rj

n|
|Ri

n|
, for n = 20, 30. The expected

53

(a) Frequency (b) Overlapping Tem-
plate

(c) Longest Run of Ones (d) Runs

(e) Random Walk Height (f) Random Walk Excur-
sion

(g) Linear Complexity (h) k-error Linear Com-
plexity

(i) Maximum Order
Complexity

(j) Lempel-Ziv

Figure 3.6: Distributions of test statistics for n = 20

54

Table 3.5: Lower Limits (LLs) and Upper Limits (ULs) of the test statistics for 20 bit
sequences and corresponding type I error, α

Test n = 20 n = 30
LL UL α LL UL α

Frequency 5 15 0.011818 9 21 0.016125
Overlapping Template 0 8 0.014478 0 10 0.017750
Longest Run of Ones 1 8 0.012691 1 9 0.010727
Runs 5 15 0.011818 9 21 0.016125
RW Height 1 11 0.014395 1 14 0.010446
RW Excursion 0 7 0.022461 0 10 0.011818
LC 8 12 0.031250 13 17 0.031250
1-error LC 6 10 0.012996 11 15 0.019407
Maximum Order Complexity 2 10 0.017889 4 12 0.016291
Lempel-Ziv 8 10 0.026367 11 13 0.031378

value of this proportion is 0.01 and tables are expected to be symmetric for larger n

values. In the tables, the percentages that significantly deviate (> 0.10) from expected

values are highlighted.

Table 3.6: Results of tests for all sequences of length n = 20 for α = 0.01
Test FrequencyOverlappingLongest Run Runs RW RW LC 1-error MOC Lempel

Template of Ones Height Excursion LC Ziv
Frequency - 0.4334 0.2012 0.04341 1 0 0.1011 0.0657 0.1785 0.3689
Overlapping 0.3538 - 0.4391 0.0516 0.4171 0 0.0491 0.0234 0.1699 0.1632
Template
Longest 0.1874 0.5009 - 0.0634 0.2370 0 0.0385 0.0225 0.1740 0.1040
Run of Ones
Runs 0.04341 0.0632 0.0681 - 0.0618 0.1933 0.0933 0.0531 0.1635 0.1228
RW 0.8210 0.4195 0.2089 0.0507 - 0 0.1050 0.0542 0.1972 0.3108
Height
RW 0 0 0 0.1017 0 - 0.0351 0.0160 0.0369 0.0348
Excursion
LC 0.0383 0.0227 0.0156 0.0353 0.0484 0.0252 - 0.1339 0.1737 0.0424
1-error LC 0.0598 0.0260 0.0220 0.0483 0.0601 0.0277 0.3220 - 0.0961 0.0643
MOC 0.1179 0.1375 0.1235 0.1080 0.1586 0.0464 0.3035 0.0698 - 0.0951
Lempel-Ziv 0.1654 0.0896 0.05006 0.0550 0.1697 0.0296 0.05031 0.0317 0.0645 -

According to Table 3.6 and 3.7, frequency, overlapping template (with input tem-

plate 111), longest run of ones, random walk height tests and maximum order com-

plexity tests are closely related. Also, there is a correlation between the results of

linear complexity and 1-error linear complexity tests. Moreover, a significant relation

is observed between Lempel-Ziv and frequency test. As also mentioned in the theo-

retical results part in Section 3.3.1, no correlation between the weight and the linear

complexity is observed.

Another interesting result is that none of the sequences that fail the random walk

excursion test, fail any of the (i) frequency; (ii) overlapping template; (iii) longest run

of ones or (iv) random walk height tests for sequences of length n = 20 and 30. This

means that including the random walk excursion test increases the coverage of test

suites significantly. To measure the effect of each test to the coverage, we present the

number of 20 bit sequences that only fail the given test in Table 3.8. The tests based

55

Table 3.7: Results of tests for all sequences of length n = 30 for α = 0.01

Test FrequencyOverlappingLongest Run Runs RW RW LC k-error MOC Lempel
Template of Ones Height Excursion LC Ziv

Frequency - 0.3853 0.1231 0.0409 0.5591 0 0.0339 0.0207 0.1035 0.3399
Overlapping 0.3500 - 0.3096 0.0733 0.2490 0 0.0309 0.0185 0.0875 0.1631
Template
Longest 0.1851 0.5124 - 0.0869 0.1602 0 0.0303 0.0172 0.1026 0.0991
Run of Ones
Runs 0.0409 0.0807 0.0578 - 0.0441 0.0876 0.0343 0.0212 0.1016 0.1308
RW 0.8630 0.4231 0.1645 0.0681 - 0 0.0355 0.0204 0.1498 0.3520
Height
RW 0 0 0 0.1195 0 - 0.0320 0.0192 0.0328 0.0395
Excursion
LC 0.0175 0.0175 0.0104 0.0177 0.0119 0.0121 - 0.1398 0.0250 0.0328
1-error LC 0.0172 0.0170 0.0095 0.0176 0.0110 0.0117 0.2251 - 0.0184 0.0330
MOC 0.1025 0.0953 0.0676 0.1005 0.0960 0.0238 0.0480 0.0219 - 0.0917
Lempel-Ziv 0.1747 0.0922 0.0339 0.0672 0.1172 0.0149 0.0327 0.0204 0.0476 -

Table 3.8: Number of sequences that only fail the given test (but pass all other tests)

Tests Number of Sequences
Linear Complexity 22436
Lempel-Ziv Complexity 19680
Random Walk Excursion 19428
Maximum Order Complexity 8419
k = 1-error Linear Complexity 7895
Runs 6454
Longest Run of Ones 6196
Overlapping Template 4765
Random Walk Height 1163
Frequency 0

on ordering of k-tuples seem to increase the coverage of the selection more compared

to tests based on k-tuple pattern frequency and this is mainly due to the correlation of

these tests presented in above tables. Also, it is observed that all sequences that fail

frequency test also fail any of the other tests in our scheme. So, there is no contribution

of frequency tests to the coverage of selected tests, for sequences of length 20.

We also calculated the coverage, that is | ∪10
i=1 Ri

n|, for n = 20 and 30 as 0.122948

and 0.134930, respectively. Whenever RTi
n sets are disjoint, coverage takes its maximum

value as
∑

αi which is 0.176163 for 20 and 0.181317 for 30 bit sequences. Due to the

correlations in this suite, coverage reduces around 30%.

Testing short sequences, these correlations should be considered. As the length

of the sequences increase, it is possible to observe weaker correlation between tests.

For instance, in Table 3.6 for n = 20, the number of highlighted cells (proportion

> 0.1) is 37, whereas this number decreases to 27 for n = 30 given in Table 3.7. It

should be noted that in case of testing longer sequences by level-2 version of these tests,

correlations still exist whenever the input block size is small.

56

3.4 Sensitivity of Tests

To have more confidence in a random number generator, it is advantageous to use

as many randomness tests as possible. In this part of the study, we propose to apply

simple transformations to input sequences that significantly change the output p-value

of a randomness test as an alternative to developing more tests.

Definition 3.4.1. Consider a randomness test T and a transformation σ : L → L

where L is the set of all n bit binary sequences. T is said to be invariant under σ if for

any S in L, T (S) = T (σ(S)).

Here, we define a new concept of sensitivity to measure the effect of a transformation

to output p-values. If a test T is invariant under σ, sensitivity of T to σ is represented by

0. If the transformation has small effect on the test results, that is, there is a significant

correlation between T (S) and T (σ(S)), sensitivity is represented by 1. Whenever T (S)

and T (σ(S)) are statistically independent, sensitivity is represented by 2, in those cases

T (σ(.)) can be added to the test suite as a new test.

The transformation σ can be chosen in various ways, in this section, we consider a

few of them as examples.

• Complementation a binary sequence is applying the unary bitwise NOT operation,

that is σc(s1, . . . , sn) = (s1 ⊕ 1, . . . , sn ⊕ 1).

• l-Rotation is a circular shift operation commonly used in cryptography, that is

σl−rot(s1, . . . , sn) = (sl+1, . . . , sn, s1, . . . , sl). Most of the level-2 tests are invariant

to l-rotation, when l is equal to the block length.

• ith Bit flip is simply flipping ith bit of the sequence, that is σfi
(s1, . . . , sn) =

(s1, . . . , si ⊕ 1, . . . , sn).

• Reversing is simply considering the sequence backwards, that is

σrvs(s1, . . . , sn) = (sn, . . . , s1).

• lth Derivative of a sequence is the summation of the sequence and its l-bit rotation,

that is σdl
(s1, . . . , sn) = (s1 ⊕ sl+1, . . . , sn−l ⊕ sn, . . . , sn ⊕ sl).

In Table 3.9, sensitivity of the tests selected in previous section are given according

to σc, σl−rot, σfi
, σrvs and σdl

.

As observed from the Table 3.9, some of the transformations do not have any effect

on the test results. Complementing the input sequences only affect the results of over-

lapping template and longest run of ones tests. However, for the overlapping template

57

Table 3.9: Sensitivity of randomness tests toward some transformations.

Tests σc σl−rot σfi
σrvs σd

Frequency 0 0 1 0 2
Overlapping template 2 1 1 0 2
Longest run of ones 2 1 1 0 2
Runs 0 1 1 0 2
Random walk height 0 1 1 2 2
Random walk excursion 0 1 1 2 2
Linear complexity 1 2 2 2 2
1-error linear complexity 1 2 0 2 2
Maximum order complexity 0 1 2 2 2
Lempel-Ziv 0 1 1 2 2

test, instead of complementing the whole sequence, it is also possible to complement

the input template which would result in the same p-value. l-rotation affects the results

of linear complexity and 1-error linear complexity tests, whereas flipping ith bit affects

the results of linear complexity and maximum order complexity tests. Reversing the

sequences significantly changes the outputs of tests based on random walks and com-

plexity measures. However, for balanced sequences reversing the output of random

excursion test does not affect the output. Taking the lth derivative of sequences signif-

icantly affect all test results available in our set. So, taking the lth derivative seems to

be a good choice of transformation to design new tests.

It is obvious that the independence of T (σ(S)) and T (S) is not enough to justify

adding T (σ(·)) to the suite. It should also be independent of other tests in the suite.

As an example, applying the frequency tests to the first derivative of the sequence is

equivalent to applying the runs test.

3.5 Summary

In this chapter, we focus on the statistical testing of PRNGs, it is our interest since

stream ciphers can also be considered as PRNGs. We first consider the sequences as

random walks, and proposed three tests. The apparent benefit of using the proposed

tests rises from the fact that no approximations have been used for test statistics.

Therefore, they can be used to test short sequences. As a future work, it is also

possible to extend these tests using two-dimensional graphs.

We also emphasize the importance of independence of randomness tests in test suites

and present some theoretical and experimental results. We experimentally observe that

frequency, overlapping template (with input template 111), longest run of ones, random

58

walk height tests and maximum order complexity tests produce correlated results for

short sequences. These correlations should be considered while analyzing generators

using short sequences. The strength of these correlations is likely to decrease as the

input lengths increase, but in the case of testing longer sequences by level-2 version of

these tests, correlations still exist whenever the input block size is small.

We also define the concept of sensitivity, where we analyze the effect of simple

transformations on test results. If the transformation significantly changes the output

p-values, then the composition of transformation and the test may be included in the

suite to increase the coverage. Ideally, we would like to have each test applied to

a transformed sequence σ(S) to be independent of all different tests applied to the

original sequence. Clearly, as the set of allowable transformations grows, this becomes

harder to achieve. By choosing a good set of allowable transformations, one can use a

given set of tests in a more powerful fashion. For example, one should not introduce

unnatural transformations of the data, but stick to a set of transformations which

are generated by a small set of basic transformations, such as the ones given here as

examples. It is of interest to investigate this problem further in future work.

59

Chapter 4

Tests Based on Algebraic

Properties

According to the famous quote of Shannon, breaking a secure cipher should require as

much work as solving a system of simultaneous equations in a large number of unknowns

of a complex type. Any stream cipher can be modeled as a system of algebraic equations,

where the solution of the binary nonlinear system gives the secret key.

Let

Fi : Fk
2 × Fv

2 → F2, i = 1, 2, . . . (4.0.1a)

(K, IV)→ zi (4.0.1b)

where each Fi produces the ith keystream bit zi using k bit key and v bit IV.

In this chapter, we aim to analyze the security of stream ciphers based on the cryp-

tographic properties of the Boolean functions, Fi’s. These properties are also utilized

in algebraic attacks against stream ciphers (See Section 4.1). First, we study some

classical designs and experimentally observe the distribution of some cryptographic

properties such as nonlinearity, number of linear terms, degree etc. for small sized

ciphers. In Section 4.4, we present a case study for eSTREAM candidate Trivium and

obtain a linear approximation for F1 with bias 2−31 which is valid for a subset of keys

and IVs with 288 initial clocking. In Section 4.5, we consider the number of mono-

mials of degree d and propose two new tests that are variants of the tests described

by Filiol [20] and analyze the security of Grain, Trivium and Decim. We also propose

the linear span test that measures the inheritance of linear dependence of input IVs to

keystream bits. Finally, to analyze the completeness property of the ciphers, we apply

the diffusion test that measures the effect of each key and IV bit on keystream bits.

60

4.1 Basics of Algebraic Attacks

The idea of algebraic attacks is to find the equations of unknown key bits and

to solve these equations. The steps of an algebraic attack are (i) finding a system

of equations in terms of keystream bits and the key bits, (ii) reducing the degree of

equations, (iii) obtaining keystream bits, and (iv) recovering the secret key by solving

the system of equations.

The problem of solving equations is NP-hard, to solve the problem many algorithms

based on linearization such as XL (eXtended Linearilization), XSL (eXtended Sparse

Linearilization) [123] or using Gröbner bases are proposed. It should be noted that

having a large size system and high number of variables does not mean that the system

is hard to solve. The difference between the number of equations and the number of

monomials is what makes the system harder. In some situations it is seen that big

systems with multivariate equations are solved efficiently. Some systems with over

defined or sparse can be solved easier than expected by the XL method [124] and XSL

method [123]. Therefore, the systems of equations of a cryptosystem should behave

randomly in terms of number of monomials and other cryptographic properties.

Analysis of filter generators using algebraic attacks is given in [125]. The formulation

of the attack is as follows.

z0 =f(K) (4.1.1a)

z1 =f(L(K))

z2 =f(L2(K))
...

where L is the linear next state function of the LFSR and f is the nonlinear filter

function. In this formulation, the aim is to recover the secret key using the equations.

In practical filter generators, the degree of f is chosen to be so high that it is not

possible to solve the systems of equations efficiently. In [125], a new idea of multiplying

f with a properly chosen polynomial g such that f · g has low degree is proposed. This

gives a new system of equations in terms of state bits, that can be solved efficiently if

sufficiently many keystreams exist where the system of equations is rewritten as

zt · g(Lt(K)) = f(Lt(K)) · g(Lt(K)). (4.1.2)

The idea of algebraic attacks is also extended to attack combining generators in

[126]. Let xi
t be the output of LFSR i at time t. Then, the system of equations can be

61

written as;

z0 =f(x1
0, . . . , x

l
0) = F1(K)

z1 =f(x1
1, . . . , x

l
1) = F2(K)

...

Since in combining generators the internal state variables are updated linearly, the

degree d of Fi’s are equal to the degree of f . After the linearization process, a system

of linear equations with around
(
n
d

)
unknowns are obtained. The required keystream is

around nd bits, whereas the required number of operations is approximately ndw where

w < 3. In [127], a more general theorem is given and it is shown that fast algebraic

attacks exist for any cipher that outputs several bits at a time, this method is applied

on modified versions of Snow, E0, LILI-128 and Turing.

Other examples for successful algebraic attacks can be given as (i) Toyocrypt using

249 CPU clocks and 20 Kbytes of keystream [125], (ii) LILI-128 using 257 CPU clocks

[125], (iii) Sfinks with 270 computation and 243 keystream bits [128].

4.2 Desired Properties of Fi’s

Each cipher design can be treated as a subset of Boolean functions Fi’s of k + v

variables where k and v are the key and IV size, respectively. There are 22k+v
many

Boolean functions of k + v input. Ideally, the subset that simulate the cipher should

be randomly selected among this set.

The cryptographic properties of Fi’s are closely related to the security of the stream

cipher and any cryptographic weaknesses of these Boolean functions may be exploited

to distinguish the keystream or to recover a part of secret key. If for any Fi,

Pr(Fi(K, IV) = 1) = Pr(zi = 1) = 1/2 + ε (4.2.1)

where ε 6= 0, then Fi is not balanced. The value of zi can be predicted with success

probability depending on the amount of bias. Therefore, any linear combination of Fi’s

must be balanced for a secure stream cipher.

Nonlinearity of Fi’s is also very important for the security of the stream ciphers.

Existence of a linear Fi has catastrophic results, using the related keystream bit, one

bit key information can be recovered by solving this linear equation. For functions

that have very low nonlinearity, similar results can be obtained. If there exists a linear

62

function Li such that

Pr(Fi = Li) = 1/2 + ε, (4.2.2)

then the nonlinearity of Fi, NFi is at most 2n(1
2 − ε) for a n variable Boolean function.

Similarly, if there exists non-complete Fi’s, in other words not all input bits affect

output, then it may be possible to mount guess and determine or algebraic attacks. If

a subset of key bits is not used, this may be used to reduce the search space.

Correlation between any two Fi’s

Pr(Fi(K) = Fi+δ(K)) =
1
2

+ ε (4.2.3)

where δ 6= 0, means that corresponding zi’s are also correlated, i.e.

Pr(zi = zi+δ,) =
1
2

+ ε. (4.2.4)

By converting the sequences to Z∗
i = zi ⊕ zi+δ, the output keystream may be distin-

guished from random streams depending on the magnitude of ε. Therefore, another

condition for Fi’s is that they should be independent of each other.

4.3 Analyzing Classical Designs

In most of the classical stream ciphers, linear next state functions are used to

guarantee high period and good statistical properties. Especially, maximum length

LFSRs are used as building blocks in such designs.

Here, we present some results on the balancedness, degree and nonlinearity of Fi’s

for some classical stream cipher designs such as nonlinear combiner, nonlinear filter

and clock controlled stream ciphers. Since there is no generic IV loading schemes for

these classical designs, we consider state bits as input variables.

Consider a stream cipher of state size n. Let Fi : Fn
2 → F2 and f : Fl

2 → F2

be the filter function that generates keystream using the current state variables. Let

ϕ : Fn
2 → Fn

2 be the next state function of the stream cipher.

Proposition 4.3.1. The nonlinearity of F1 is determined by the nonlinearity of the

keystream generation (filter) function f . For a l−bit filter function with nonlinearity

Nf , the nonlinearity of F1 is equal to 2n−lNf . If the next state mapping is linear, then

NFi = NF1 for all i.

63

Proof. The filter function f is from Fl
2 to F2. Without loss of generality,

F1 : Fl
2 × Fn−l

2 → F2

(x, y)→ f(x)

The Walsh spectrum of F1 can be written as;

WF1(γ) = WF1(α, β),

=
∑

(x,y)∈F l
2×F n−l

2

(−1)F1(x,y)+<(α,β),(x,y)>,

=
∑

(x,y)∈F l
2×F n−l

2

(−1)F1(x,y)+<(α,x)>+<(β,y)>,

=
∑

(x,y)∈F l
2×F n−l

2

(−1)f(x)+<(α,x)>+<(β,y)>,

=
∑
x∈F l

2

(−1)f(x)+<(α,x)> ·
∑

y∈F n−l
2

(−1)<(β,y)>,

= Wf (α) · δβ
0 2n−l

where γ = (α, β) ∈ F l
2 × Fn−l

2 and the Kronecker delta function δ(β) is equal to 1 only

when β = 0 and zero otherwise. Then, we obtain

WF1(γ) =

{
2n−lWf (α) if β = 0

0 if β 6= 0.

Here it follows that,

NF1 = 2n−lNf . (4.3.3)

For any Boolean function F and a nonsingular linear transformation ϕ : Fn
2 → Fn

2 , we

have NF◦ϕ = NF . By definition,

F2 = F1 ◦ ϕ, F3 = F1 ◦ ϕ2, . . . , Fi = F1 ◦ ϕi−1. (4.3.4)

Since ϕi is a linear mapping, it follows that

NFi = NF1 = 2n−lNf for i = 2, 3, . . . (4.3.5)

Proposition 4.3.2. Weight(F1) is equal to 2n−l ·weight(f). If the next state mapping

is one to one, weights of all Fi are same, in particular, Fi’s are all balanced if and only

if f is balanced.

64

Proof. From the previous proof, we have WF1(0) = 2n−l ·Wf (0) and it is known that

for a Boolean function g, weight(g) = (2n − Wg(0))/2 holds. Hence, weight(F1) =

2n−kweight(f) holds.

If the next state mapping ϕ : Fn
2 → Fn

2 of a stream cipher is one to one, then it

defines a permutation on the set Fn
2 . It is known that for any permutation ϕ : Fn

2 → Fn
2

and a Boolean function g, we have weight(g) = weight(g ◦ ϕ). Hence,

weight(Fi) = weight(F1) = 2n−kweight(f). (4.3.6)

Then, it is obvious that Fi’s are balanced if and only if f is balanced.

Proposition 4.3.3. If the next state function of a stream cipher is linear, then the

degree of Fi’s are equal to the degree of keystream generation function.

Proof. It is obvious by definition that the degree of F1 is equal to the degree of f . If

the next state function is linear, then the next state mapping ϕ is also linear. It is

known that deg(F ◦ ϕ) = deg(F).

Some Small Sized Examples

In this part of the section, we present six small sized stream cipher examples where

we can evaluate the ANFs of Fi’s, efficiently. First, we start with classical LFSR based

ciphers; nonlinear filter and nonlinear combiner, then repeat the same experiments

using NFSRs with period 2n − 1 instead of maximum length LFSRs. Finally, we give

two clock controlled examples; shrinking and self-shrinking generators. The details of

the example ciphers are presented in Table 4.1.

All of the given examples have state size of 20, therefore it is possible to calculate the

cryptographic properties of Fi’s efficiently. Considering the first 40 Boolean functions,

we compared the degree, weight, nonlinearity and number of linear and nonlinear terms.

These figures are presented in Table 4.2. It is observed that for clock controlled ciphers

(Example 5 and 6), the balancedness of Fi’s is not achieved. In Example 5, the weight

of the Fi’s are fixed to 524032, in other words,

Pr(Fi = 1) =
1
2
− 256

1048576
= 1/2− 0.00245 (4.3.7)

holds. In Example 6, different weights are obtained with the average 524274.7 and

the standard deviation 693.2267. Degree of n bit Boolean functions is expected to

be around n − 1 and this is only achieved by self-shrinking generator considering the

first 40 Boolean functions, all other examples have smaller degree. When we compare

65

Table 4.1: Details of the six small sized examples

Examples Parameters
1. Nonlinearly Filtering Recursion:
of a primitive xi+20 = xi+19 + xi+15 + xi+4 + xi

LFSR of size 20 Filter function:
f(x1, . . . , x20) = x1 + x3 + x7 + x12 + x15 + x2.x4

+x5.x8 + x6.x9.x14 + x10.x11.x13.x16

2. Nonlinear Combining Recursions:
of 3 LFSRs of size xi+5 = xi + xi+3

5, 7 and 8 xi+7 = xi + xi+4 + xi+5 + xi+6

xi+8 = xi + xi+3 + xi+5 + xi+7

Combining function:
f(x1, x2, x3) = x1 + x2 + x1.x2 + x2.x3

3.Nonlinearly Filtering Recursion:
of an NFSR g(x1, . . . , x20) = x1 + x18 + x19 + x20 + x7x9 + x8x16

of size 20 Filter function:
f(x1, . . . , x20) = x1 + x3 + x7 + x13 + x19 + x2.x4

+x5.x8 + x6.x9.x15 + x11.x12.x14.x20

4.Nonlinear Combining Recursions:
of 3 NFSRs of size xi+5 = xi + xi+1 + xi+2 + xi+4 + xi+1xi+2 + xi+1xi+4

5, 7 and 8 xi+7 = xi + xi+6 + xi+1xi+2 + xi+2xi+3xi+6

xi+8 = xi + xi+7 + xi+4xi+6 + xi+5xi+6

Combining function:
f(x1, x2, x3) = x1 + x2 + x1.x2 + x2.x3

5. Shrinking Generator Recursions:
using two LFSRs of xi+11 = xi + xi+3 + xi+5 + xi+9

size 11 and 9 xi+9 = xi + xi+5

6. Self-shrinking Recursion:
Generator using a LFSR xi+20 = xi+17 + xi+15 + xi+11 + xi

of size 20

the average nonlinearity values, it is seen that filtering generators (Examples 1 and 3)

achieve higher nonlinearity compared to combining generators (Examples 2 and 4). It

is observed that NFSR based systems have higher degree and nonlinearity compared

to LFSR based ciphers.

The number of linear terms which is expected to be around n/2 = 10, is only

achieved by filter generators (Examples 1 and 3). It is interesting to observe that

shrinking generator in Example 5 does not include any linear terms. Finally, when we

consider the number of all terms which is expected to be 1
2

(
n
2

)
= 522248. It is only

achieved using the self-shrinking generator in Example 6.

Table 4.2: Average cryptographic properties obtained using the first 40 Boolean func-
tions

Example Balancedness Average Average Average # of Average # of
Degree Nonlinearity Linear TermsTerms

1. Nonlinear Filter Yes 4 (fixed) 438272 (fixed) 9.8 1556.9
2. Nonlinear CombinerYes 2 (fixed) 262144 (fixed) 5.4 22.9
3. Nonlinear Filter Yes 13.0 505842.2 11.7 238139.9
4. Nonlinear CombinerYes 10.3 351436.8 5.4 5711.8
5. Shrinking No, 524032 (fixed)12 (fixed)475161.6 0 9086.5
6. Self-shrinking No, 524274.7 19.4 477556.9 7.7 524164.9
Expected values Yes 19 523776 (maximum)10 524288

66

Irregular clocking significantly improves the total number of monomials. However,

it should be used carefully in designs, since it is hard to guarantee balancedness of

the keystream which is very important criteria. Additionally, as observed from the

examples, using linear next state functions should be avoided to obtain functions with

high degree.

4.4 A Case Study on Trivium

Trivium [32], one of the focus algorithms in eSTREAM project, is a synchronous

binary additive stream cipher. Previously, two attacks have been presented for the

analysis of Trivium and none of them has complexity less than exhaustive search. In

[98], the linear sequential circuit approximations are used to evaluate the strength of

Trivium against distinguishing attacks. The correlation coefficient is calculated as 2−72,

and the complexity to distinguish the output is O(2144). According to the paper, it

is not possible to find a linear function with correlation coefficient larger than 2−40

using linear sequential circuit approximations. Another study [129] tries to find 288

unknown internal state bits by solving systems of equations. Solving this system has

complexity O(2164), which is more than exhaustive search complexity. Also, in terms

of randomness properties, no statistical weaknesses are observed [23].

We concentrate on the initialization of Trivium which consists of 1152 clockings.

Although Trivium is one of the fastest ciphers proposed in eSTREAM project [130], its

initialization with 1152-clockings may hinder the speed in platforms where resynchro-

nization is performed very often. For instance, frequent initializations of Trivium may

slow it down more than five times in a frame based encryption like GSM over-the-air

privacy standard since length of each frame is 228 bits. We propose a new input to the

initialization function of Trivium which provides a faster diffusion of key bits and IV

bits into the register. Moreover, we introduce some open problems on security margins

of Trivium.

4.4.1 Description of Trivium

Trivium supports the usage of 80 bit key and 80 bit IV with internal state size of

288 bits. It is claimed to be suitable to generate up to 264 bits of keystream from a

pair of key and IV.

67

Initialization

80 bit key K (k1, k2, . . . , k80), and IV (iv1, iv2, . . . , iv80), is directly assigned to the

internal state of the cipher (s1, s2, . . . , s288) and the remaining bits (except the last

three) are set to zero. Then, the cipher is clocked over 4 full cycles without producing

any output. The pseudocode of the initialization phase is given in Algorithm 4.4.1.

Algorithm 4.4.1: Loading Key and IV(K, IV)

(s1, s2, . . . s93)← (k1, k2, . . . , k80, 0, . . . , 0);

(s94, s95, . . . s177)← (iv1, iv2, . . . , iv80, 0, . . . , 0);

(s178, s179, . . . s288)← (0, . . . , 0, 0, 1, 1, 1);

for i← 1 to 4 · 288

t1 ← s66 + s91.s92 + s93 + s171;

t2 ← s162 + s175.s176 + s177 + s264;

t3 ← s243 + s286.s287 + s288 + s69;

(s1, s2, . . . s93)← (t3, s1, . . . , s92);

(s94, s95, . . . s177)← (t1, s94, . . . , s176);

(s178, s179, . . . s288)← (t2, s178, . . . , s287);

Keystream Generation

Keystream generation function is very similar to key and IV loading. The only

difference is the filter function that generates the keystream zi, i = 1, 2, The

pseudocode of keystream generation is given in Algorithm 4.4.2.

68

Algorithm 4.4.2: Keystream Generation(N)

for i← 1 to N

t1 ← s66 + s93;

t2 ← s162 + s177;

t3 ← s243 + s288;

zi ← t1 + t2 + t3;

t1 ← t1 + s91.s92 + s171;

t2 ← t2 + s175.s176 + s264;

t3 ← t3 + s286.s287 + s69;

(s1, s2, . . . s93)← (t3, s1, . . . , s92);

(s94, s95, . . . s177)← (t1, s94, . . . , s176);

(s178, s179, . . . s288)← (t2, s178, . . . , s287);

4.4.2 Linear Approximations

Linear cryptanalysis, introduced by Matsui [131], is an effective known plaintext at-

tack against block ciphers. It exploits some statistical correlations between input and

output bits. For a block cipher with k-bit key (k1, . . . , kk), n-bit plaintext (p1, . . . , pn)

and ciphertext (c1, . . . , cn), the aim of the attack is to find the index sets I, J , L such

that

∑
i∈I

ki +
∑
j∈J

pj =
∑
l∈L

cl (4.4.1)

holds with probability p = 1/2 + ε, ε 6= 0.

Some variants of linear cryptanalysis are applied to stream ciphers. The most

famous example may be the correlation attacks mounted on LFSR based stream ciphers

[132, 133, 134] where some linear approximations between key and keystream bits are

utilized. Another example is proposed by Golić [135]. In [136], a linear approximation

for t−functions is used to attack the TSC stream ciphers. In [137], a new method to find

biased linear approximations without searching all possible linear relations individually

is presented and it is used to distinguish the output of the stream cipher Pomaranch.

Here, we introduce a new version of linear cryptanalysis on stream ciphers. The

analysis is a kind of resynchronization attack. We consider the initialization phase (key

and IV loading) of a stream cipher as an iterated function. Then, we apply Matsui’s

linear cryptanalysis to the initialization by finding approximations for each iteration

69

and combining them by piling-up lemma. As an example, we consider the initialization

phase of Trivium as 8-round function and find a linear approximation for 2-round

Trivium with a bias of 2−31 for a subset of key and IVs.

In the following section, we give a framework for finding linear approximations and

present a linear approximation for 2-round Trivium.

4.4.3 Searching for Linear Approximations

Searching for linear approximations is composed of three steps:

(i) Selecting a subset of zi. In this step, our aim is to find the right hand side of

our linear approximation. Selection of the subset of zi’s or equivalently the subset of

Fi’s is done such that
∑

zi or
∑

Fi is affected from minimum number of internal state

variables.

(ii) Partitioning the initialization phase. Initialization phase of stream ciphers

consists of iteratively applying the same next state function to the internal state vari-

ables. To find a linear approximation for Fi efficiently, the initialization is partitioned

into rounds with ti clockings so that for each round, it is possible to find approximations

efficiently.

As given in Figure 4.1, the initialization phase of the cipher can be represented as

n rounds, where ti is the number of clockings in each round. The sum of ti’s should be

equal to the total number of clockings, T , in initialization.

In the extreme case, each round is composed of one clockings, then for each round,

linear approximations with high biases can be found easily. However, as T gets large,

the approximation for the whole cipher is likely to have a very small bias. On the other

hand, if the number of clockings in each round is chosen to be very high, then finding

linear approximations for each round becomes infeasible. This gives a trade-off between

number of rounds and the selection of ti values. Optimal selection of ti values is an

open question.

(iii) Combining linear approximations. The approximations found for each

round are combined to find an approximation for the whole cipher. Approximations are

selected so that all internal state bits are canceled out. Finally, the linear approximation

based on key, IV and keystream is obtained. Bias of the approximation is found by

using the piling-up lemma.

Lemma 4.4.1. For n independent random variables X1, . . . , Xn that take values from

{0,1}, the summation given by X = X1 + X2 + . . . Xn has bias ε = p− 1/2 is given by

70

Figure 4.1: Linear approximations for n round stream ciphers

ε = 2n−1
n∏

j=1

εj (4.4.2)

where εi’s are biases of the terms Xi’s.

To attack the cipher, the found bias should be greater than 2−k/2. It is also possible

to fix some of the IV bits to increase the bias, however this puts a restriction on the

number of resynchronizations. In such cases, the attack requires chosen IVs. There

may be other approximations valid for a subset of keys, with better biases.

4.4.4 Linear Approximations for 2-round Trivium

The initialization of Trivium can be modeled as n disjoint rounds. As a result of

making a trade-off between number of rounds and number of clockings in each round,

the number of clockings in each round is chosen to be 144. The more number of

clockings in each round, the better approximations are found, but number of clockings

should not be too large to prevent finding linear approximations exhaustively.

For 2-round Trivium, the followings

K = (s0(1), s0(2), . . . , s0(80)),

IV = (s0(94), s0(95), . . . , s0(173)),

z1 = s288(66) + s288(93) + s288(162) + s288(177) + s288(243) + s288(288)

hold where st(i) is the ith internal state bit at time t.

To check for possible trivial weaknesses of 2-round Trivium, diffusion of IV and key

to internal state bits are examined using 1000 random key and IV pairs. All key and

71

IV bits are diffused to all internal state bits, except the last seven internal state bits.

However, this does not lead to any trivial attack.

While selecting the subset of Fi’s to approximate, the only restriction is the total

number of internal state variables that affect the keystream bits. Each zi is generated

using the modulo 2 summation of six internal state bits. A subset of zi’s such that

their summation includes less than six internal state bits after cancellations is not

found. Therefore, the function to be approximated is chosen to be F1 that generates

the first output bit, z1, in terms of key and IV bits.

For 2-round Trivium, finding the equation F1 in terms of initial state variables is

not efficient, therefore an approximation is found for each round and then they are

combined to find an approximation as given in Figure 4.2. The bias of the obtained

approximation is found by the piling-up lemma.

The output bit z1 is the modulo sum of bits s288(66), s288(93), s288(162), s288(177),

s288(243) and s288(288). The algebraic normal form of F1 is found exhaustively in terms

of the internal state bit of t = 144 as

z1 = s144(6) + s144(16).s144(117) + s144(31)s144(32) + s144(33) + s144(57) +

s144(82).s144(83) + s144(84) + s144(96) + s144(97).s144(98) + s144(99) +

s144(111) + s144(129) + s144(142).s144(143) + s144(144) + s144(150) +

s144(162) + s144(163).s144(164) + s144(165) + s144(186) + s144(192) +

s144(208).s144(209) + s144(210) + s144(231) + s144(235).s144(236) +

s144(237) + s144(252)

and its closest linear approximation is

z1 = s144(6) + s144(33) + s144(57) + s144(84) + s144(96) + s144(99) +

s144(111) + s144(129) + s144(144) + s144(150) + s144(162) + (4.4.3)

s144(165) + s144(186) + s144(192) + s144(210) + s144(231) +

s144(237) + s144(252)

with bias 1/2 + 2−9.

Since the aim is to obtain an approximation based on key, IV and output bits, the

linear approximation given above is rewritten in terms of s0(i), i = 1, 2, . . . , 80 and

i = 94, . . . , 173 values, the remaining terms are omitted, since they are assigned to

72

constants during initialization. Then, the equation given in Appendix D is obtained.

The equation has 24 linear, 59 quadratic terms, 20 terms with degree 3. The linear

approximation for the function is found as

z1 = 1 + s0(3) + s0(6) + s0(15) + s0(21) + s0(27) + s0(30) + s0(39) +

s0(54) + s0(57) + s0(67) + s0(68) + s0(69) + s0(72) + s0(96) + (4.4.4)

s0(99) + s0(114) + s0(117) + s0(123) + s0(126) + s0(132) + s0(138) +

s0(144) + s0(165) + s0(171)

with bias 278·(0.25)59·(0.375)20 = 2−68.30, assuming all nonlinear terms are independent.

We increase the amount of the bias by assigning zero string to certain IV and key bits.

Chosen IVs

For IVs in the form iv25 = iv26 = iv31 = iv32 = iv49 = iv50 = iv54 = iv55 = iv70 =

iv71 = 0, the bias of the equation increases to 2−44. This bias is still very low and

cannot be used to break 2-round Trivium. To improve bias further, also some of the

key bits are fixed. Then, the bias of the second linear approximation increases to 2−23

for keys satisfying k14 = k19 = k20 = k38 = k39 = k45 = k63 = k64 = k65 = k77 = 0.

Figure 4.2: Linear approximations for 2-round Trivium

Combining two linear approximations (4.4.3) and (4.4.4), the total bias of the fol-

lowing approximation,

z1 = 1 + k3 + k6 + k15 + k21 + k27 + k30 + k39 + k57 + k67 + k68 +

k69 + k72 + iv3 + iv6 + iv21 + iv24 + iv30 + iv33 + iv39 + iv45 +

iv51 + iv72 + iv78,

73

is obtained as 2 ·2−9 ·2−23 = 2−31 by piling-up lemma. The upper bound on the number

of resynchronizations is 270, since 10 bits of IV bits are fixed to zero. To identify a key

with specified bits, we need 262 chosen IV.

Proposal for Initialization

In this section, we propose a new method for initialization which is very similar to

the original. The only difference is related to the initial assignment of state bits. Only

22 of the internal state variables are set to constants and this change does not increase

the cost significantly. This obviously increases the number of variables while searching

for linear approximations and therefore it gets harder to find linear approximations.

As a result, it may be possible to decrease the number of initial clockings.

The proposed initial assignment is

(s1, . . . , s93) ← (iv1, . . . , iv13, iv14 + k1, . . . , iv80 + k67, k68, . . . k80),

(s94, . . . , s177) ← (iv1 + k1, . . . , , iv80 + k80, 0, 0, 0, 0),

(s178, . . . , s288) ← (k1, . . . , k13, k14 + iv1, . . . , k80 + iv67, iv68, . . . iv80, 0, . . . , 0, 1, 1, 1).

Let us note that we propose 13 shifts while loading key bits into the first register

and 13 shifts while loading IV bits into the third register. The number of shifts may be

chosen something else. However, same key bits or same IV bits should not be XORed

in the feedback functions of the registers during the first 80-90 clockings.

A comparison of the proposed and original method is done in terms of the com-

pleteness property. Let G(i, j) be the number of key and IV bits that affect the state

bit i after j clockings. The comparison of both methods is done based on miniG(i, j)

and as seen from Figure 4.3 the diffusion of key and IV bits are better in the proposed

method. In the original method, completeness is satisfied after 525 clockings, whereas

in the proposed method, 484 clockings are enough.

4.4.5 Discussion

In this part of the chapter, we mainly concentrate on the initialization of Trivium

which is one of the focus ciphers of eSTREAM project. We model the initialization

phase of Trivium as an iterated cipher with 8 rounds. For frame based applications

requiring frequent resynchronizations, we question the efficiency of the initialization

phase and try to attack initialization with smaller rounds. For 2-round Trivium, we

obtain a linear approximation of z1, which is valid for a subset of key and IV’s.

74

Figure 4.3: Number of clockings vs. miniG(i, j) for original and proposed initialization
of Trivium

As a list of future studies, the followings can be given:

• Use of multiple approximations. As an extension of linear cryptanalysis, in [138],

the use of multiple linear approximations is proposed. As a future work, different

approximations for the same output bits can be found and combined to make

better approximations.

• Use of nonlinear approximations. As an alternative to linear approximations,

nonlinear approximations may be applied to the initialization phase to find better

approximations.

• Different modelings of initialization. The initialization phase can be remodeled

differently, using different number of clockings in each round and better approx-

imations may be found.

4.5 d-Monomial Approach

In the d-monomial approach, the aim is to analyze ciphers using the number of

monomials of degree d in Fi’s. In an ANF of a randomly chosen Fi, each monomial

should occur with probability 1
2 which is equivalent to the Bernoulli process and the

total number of all monomials M follow the Binomial distribution with parameters 2n

and p = 1/2 for a n bit Boolean function Fi. Let the number of monomials of degree

d be denoted by Md, i.e., M =
∑n

d=0 Md. The distribution of Md is Bin(
(
n
d

)
, 1

2) with

expected value of E(Md) = 1
2

(
n
d

)
.

Analyzing cryptosystems based on the number of monomials is first proposed by

75

Filiol [20]. Filiol defined affine constant and d-monomial tests. The affine constant test

focuses on the number of Fi’s i = 1, 2, . . . , N that include the affine constant a0. For

large N , the distribution of the number of Fi’s with a0 is Normal with parameters N/2

and N/4. The d-monomial tests only consider the number of terms with degree d. Two

different variation of the tests T d
1 and T d

2 are proposed, T d
1 considers first N Fi’s with

input d, computes the number of terms with degree d in N ANFs, then performs a χ2

test with N − 1 degrees of freedom, whereas T d
2 considers first N Fi’s and categorizes

the number of monomials with degree d to v groups. Then, again χ2 test with v degrees

of freedom is applied.

Instead of working on key bits, Saarienen [139] proposed d-monomial IV distin-

guishers based on the work of [20]. The behavior of the keystream is analyzed using

a function of n IV bits, i.e., z = f(iv0, . . . , ivn−1). All other IV and key bits are con-

sidered to be constants. In Saarinen’s scheme, the number of terms with degree d is

counted and a χ2-test with 1 degree of freedom is applied. In the bit flip test, given a

vector b with weight 1, the number of occurrences where f(x) = f(x + b) is counted

and a χ2-test with 1 degrees of freedom is applied. The monomial tests are summarized

in Table 4.3. A similar approach called Algebraic Structure Defectoscopy is given in

[140].

Table 4.3: Comparison of d-monomial tests

Test Name InputNumber ofDistribution Description
Keystream

Filiol’s Affine - N Normal(N/2,N/4) Counts the number of
Constant Test affine terms in N ANFs
Filiol’s d-monomial d N χ2 with N − 1 Counts the number of
T d
1 degrees of freedom terms with degree d in N ANFs.

Filiol’s d-monomial d N χ2 with v Categorizes the number of
T d
2 degrees of freedom, 2 ≤ v ≤ 9monomials with degree d into v groups.

Saarinen’s d-monomiald 1 χ2 with 1 Counts the number of
test terms with degree d
Saarinen’s bit d 1 χ2 with 1 Counts the number of occurrences
flip test where f(x) = f(x + b)

Here, we give a classical example of d-monomial IV distinguisher. First, we find the

number of monomials for each d and evaluate the result using n+1 degrees of freedom.

The algorithm for the d-Monomial test is summarized in Algorithm 4.5.1.

76

Algorithm 4.5.1: d-Monomial Test(d)

for iv ← 1 to 2n − 1{
Initialize cipher with IV;

v[iv] = First keystream bit after initialization;

Compute ANF of vector v and store result in v;

for i← 1 to 2n − 1
if v[i] = 1{

weight = weight of monomial i;

distr[weight] + +;

for d← 1 to n{
χ2+ =

(distr[d]− 1
2(

n
d))2

1
2(

n
d)

;

if χ2 > χ2(1− α;n + 1)

then return cipher;

else return random;

The complexity of this attack is O(n log n) operations and it needs memory O(n log n).

The downside of this method is that statistical deviations for lower and higher degree

monomials are hard to detect since their numbers are few. So even if the maximal de-

gree monomial never occurs, the test does not detect this anomaly. In the next section,

we present alternative attacks that solves this problem.

4.5.1 A Generalized Approach

As a general approach, instead of analyzing just one function in ANF form, we

can study the behavior of more polynomials so that monomials that are more (or less)

probable than others can be detected.

Let us select n IV values, denoted iv0, . . . , ivn−1, as our variables. The remaining

IV values as well as key bits are kept constant. Using the first output symbol, z1 =

f1(iv0, . . . , ivn−1), for each choice of iv0, . . . , ivn−1, the ANF of f1 can be constructed.

The new approach is to use some other choice on IV values outside the IV variables

iv0, . . . , ivn−1. Running through each choice of IV variables in this case gives us a new

function f2. Continuing in this way, we derive the ANFs of P different Boolean functions

f1, f2, . . . , fP . In some situations, it might also be possible to obtain polynomials from

different keys, where the same IVs have been used.

Having P different polynomials in our possession we can now design any test that

77

looks promising, taken over all polynomials. The d-monomial test would appear for the

special case P = 1 and the test being counting the number of weight d monomials. We

now propose in detail two different tests.

4.5.2 Monomial Distribution Test

The attack scenario is similar to the d-monomial test, but instead of counting the

number of monomials of a certain degree, we use P polynomials and calculate in how

many of the polynomials each monomial is present. That is, we generate P polynomials

of the form

f = a0 + a1x1 + . . . + an+1x1x2 + . . . + a2n−1x1x2 . . . xn−1xn (4.5.1)

and count the number of occurrences of ai = 1, 0 ≤ i ≤ 2n − 1.

Let us denote the number of occurrences of coefficient ai by Mai . Since each mono-

mial should be included in a function with probability 1/2, i.e., P (ai = 1) = 0.5, 0 ≤
i ≤ 2n − 1. Therefore, the expected number of occurrences is binomially distributed

with expected value E(Mai) = P/2 for each monomial. As previously, we perform a χ2-

goodness of fit test with 2n degrees of freedom, as described by the following equation

(4.5.2).

χ2 =
2n−1∑
i=0

(Mai − P
2)2

P
2

. (4.5.2)

If the observed amount is larger than some tabulated limit χ2(1 − α; 2n), for some

significance level α, we can distinguish the cipher from a random one. The pseudocode

of the Monomial Distribution Test is given in Algorithm 4.5.2.

78

Algorithm 4.5.2: Monomial Distribution Test(P)

for j ← 1 to P

for iv ← 1 to 2n − 1{
Initialize cipher with IV;

v[iv] = First keystream bit after initialization;

Compute ANF of vector v and store result in v;

for i← 1 to 2n − 1if v[i] = 1{
Mai + +;

for d← 1 to 2n − 1{
χ2+ = (Mad

−P
2

)2

P
2

;

if χ2 > χ2(1− α; 2n)

then return cipher;

else return random;

This algorithm has a higher computational complexity than the d-Monomial attack,

O(Pn log n), and needs the same amount of memory, O(n log n). On the other hand, if

for a cipher some certain monomials are highly non-randomly distributed, the attack

may be successful with less number of IV bits, in other words, smaller n, compared

to the d-monomial test. Additionally, although this attack is originally proposed for

chosen IV scenario of a fixed unknown key, it is also possible to apply the test for

different key values, if the same IV bits are considered.

4.5.3 Maximal Degree Test

A completely different and very simple test is to see if the maximal degree monomial

can be produced by the keystream generator. The maximal degree monomial is the

product of all IV bits and can hence only occur if all the IV bits have been properly

mixed. In hardware oriented stream ciphers the IV loading is usually as simple as

possible to save gates, usually the IV bits are loaded into different memory cells. The

update function is then performed a number of steps to produce proper diffusion of

the bits, intuitively it will take many clockings before all IV bits meet in the same

memory cell and even more clocking before they spread to all the memory cells and are

mixed nonlinearly. The aim of the maximal degree monomial is to check in a simple

way whether the number of initial clockings are sufficient. Since the maximal degree

monomial is unlikely to exist if lower degree monomials do not exist, this is our best

79

candidate to study. Hence, the existence of the maximal degree term in ANFs is a good

indication to the satisfaction of diffusion criteria, especially completeness.

According to the Reed-Muller transform the maximal degree monomial can be cal-

culated as the XOR of all entries in the truth table. So the test is similar to the

previous tests performed by initializing the cipher with all possible combinations for n

IV bits, ziv0,...,ivn−1 = f(iv0, . . . , ivn−1), all other bits are considered to be constants.

The existence of the maximal degree monomial can be checked by XORing the first

keystream bit from each initialization this is equivalent to determining a2n−1.

a2n−1 =
⊕

iv0,...,ivn−1

ziv0,...,ivn−1 .

By changing some other IV bits, we receive a new polynomial, perform the same pro-

cedure again, and we repeat it to obtain P polynomials. If the maximal degree poly-

nomial never occurs in any of the polynomials or if it occurs in all of the polynomials

we successfully distinguish the cipher. Hence we can, with low complexity, and more

importantly, almost no memory, check whether the maximal degree monomial exists in

the output from the cipher. It is possible, with the same complexity, to consider other

weak monomials, the coefficient can be calculated according to the Reed-Muller trans-

form. The complexity of the Maximal Degree Attack is O(P2n) and it only requires

O(1) memory. The description of the test is given in Algorithm 4.5.3.

Algorithm 4.5.3: Maximal Degree Monomial Test(P)

for j ← 1 to P

do

a2n−1 = 0;

for IV ← 1 to 2n − 1

do
Initialize cipher withIV;

z = first keystream bit after initialization;

a2n−1 = a2n−1 ⊕ z;

if a2n−1 = 1

then ones + +;

if ones=0 or ones=P

then return cipher;

else return random;

80

4.5.4 Experimental Results

We applied the proposed tests described above on some of the Phase III eSTREAM

candidates to evaluate the efficiency of their initializations. We evaluated their security

margin by testing reduced round versions of the ciphers. We also presented some results

on the statistical properties of the internal state variables.

The significance level of the hypothesis tests is chosen to be approximately 1−α =

1 − 2−10. The tabulated results have a success rate of at least 90%. The required

number of IVs, polynomials and the amount of memory needed to attack the ciphers

are given in tables. Also, the results for initial state variables are presented with the

percentage of weak initial state variables.

Hardware oriented stream ciphers use simple initial key and IV loading compared

to software oriented ciphers. Generally, key and IV bits affect one initial state variable.

Therefore, they require a large number of clockings to satisfy the diffusion of each input

bit on each state bit. We repeated some of our simulations using alternative key and

IV loadings in which each IV bit is assigned to more than one internal state bit and

then we compared the results to the original settings. In the alternative loadings, the

hardware complexity is slightly higher, however on the other hand the cipher has more

resistance to chosen IV attacks.

Grain-128

Grain-128 [141] is a hardware oriented stream cipher using a LFSR and a NFSR

together with a nonlinear filter function. In the initialization of Grain, a 128 bit key is

loaded into the NFSR and a 96 bit IV is loaded into the first 96 positions of the LFSR,

the rest of the LFSR is filled with ones. The cipher is then clocked 256 times and for

each clock the output bit is fed back into both the LFSR and the NFSR.

In Table 4.4, the results obtained for reduced version of Grain are presented. The

highest number of rounds, we succeeded to break is 192 out of the original 256 which

corresponds to the 75% of the initialization.

Table 4.4: Number of IV bits needed to attack the first keystream bit of Grain-128 for
different number of rounds in the initialization (out of 256 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

160 1 14 214 26 7 27 25 11 1

192 1 25 225 26 22 222 25 22 1

81

In Table 4.5, the results of the experiments for initial state variables are presented.

The number of weak initial state variables are three times better in the maximum

degree test compared to the d-monomial test. The statistical deviations in state bits

remain even after full initialization. These weak state bits are located in the left most

positions of the feedback shift registers. To remove the statistical deviations in state

variables, at least 320 initial clockings are needed.

It is possible that if we use larger number of IV bits, the weaknesses in state variables

may also be observed from the keystream bits. In Appendix E, we applied a linear

regression model and predicted that using around 50 IV bits, it is possible to attack

Grain with d-monomial tests.

Table 4.5: Number of IV bits needed to attack the initial state variables Grain-128 for
different number of rounds in the initialization (out of 256 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

256 1 14 214 33/256 26 8 28 20/256 25 14 1 108/256

256 1 16 216 40/256 26 10 210 35/256 25 16 1 120/256

256 1 20 220 56/256 26 15 215 44/256 25 20 1 138/256

288 1 20 220 0/256 26 20 220 0/256 25 20 1 73/256

Alternative Key and IV Loading for Grain-128

Here, we propose an alternative key and IV loading in which only the loading of

the first 96 bits of the NFSR is different from the original. Instead of directly assigning

the key, we assign the modulo 2 summation of IV and the first 96 bits of the key. The

proposed loading is very similar to the original and the increase in number of gates

required is approximately 10-15%. In an environment where many resynchronizations

are expected, one can reduce the number of initial clockings by using some more gates

in the hardware implementation. In the new loading, each IV bit affects two internal

state variables. We repeated our experiments using the new loading and the results

are given in Table 4.6 and Table 4.7. Using alternative loading, Grain shows more

resistance to the presented attacks, but still the statistical deviations in the state bits

remain after full initialization. However, the number of weak state bits decreases to 47

from 73.

82

Table 4.6: Number of IV bits needed to attack the first keystream bit of Grain-128
with alternative key and IV loading for different number of rounds in the initialization
(out of 256 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

160 1 19 219 26 20 220 25 21 1

Table 4.7: Number of IV bits needed to attack the initial state variables of Grain-128
with alternative key and IV loading for different number of rounds in the initialization
(out of 256 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

256 1 14 214 1/256 26 8 28 4/256 25 14 1 100/256

256 1 16 216 5/256 26 10 210 10/256 25 20 1 108/256

288 1 20 220 0/256 26 20 220 0/256 25 20 1 47/256

Trivium

Trivium [32] is another hardware oriented stream cipher based on NFSRs (See

Section 4.4.1 for details of the algorithm.). The results for Trivium are given in Table

4.8 and Table 4.9. The distinguishers are successful to attack 704 rounds of Trivium.

The percentage of weak initial state variables for Trivium are approximately same using

d-monomial and maximal degree tests.

Table 4.8: Number of IV bits needed to attack the first keystream bit of Trivium for
different number of rounds in the initialization (out of 1152 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

608 1 12 212 25 9 29 25 9 1

640 1 15 215 26 13 213 25 13 1

672 1 20 220 28 18 217 25 18 1

704 1 27 227 26 23 223 25 24 1

Alternative Key and IV Loading for Trivium

In the original key and IV loading, 128 bits of the initial state are assigned to

constants and the key and IV bits affect only one state bit. Here, we propose an

alternative initial key and IV loading in which the first register is filled with the modulo

2 summation of key and IV, the second register is filled with IV and the last register is

83

Table 4.9: Number of IV bits needed to attack the initial state variables of Trivium for
different number of rounds in the initialization (out of 1152 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

608 1 12 212 144/288 25 12 212 105/288 25 12 1 169/288

640 1 12 212 57/288 25 12 212 29/288 25 12 1 86/288

672 1 15 215 87/288 25 15 215 0/288 25 15 1 108/288

704 1 20 220 74/288 25 20 220 12/288 25 20 1 76/288

filled with the complement of key plus IV. In this setting, each IV bit affects 3 internal

state bits, therefore the diffusion of IV bits to the state bits is satisfied in less number of

clockings. We repeated the tests using the alternative loading and obtained the results

given in Table 4.10 and Table 4.11. In the alternative loading, the required number

of IV bits and memory needed to attack Trivium are approximately 50 percent more

compared to the original loading.

Table 4.10: Number of IV bits needed to attack the first keystream bit of Trivium with
alternative key and IV loading for different number of rounds in the initialization (out
of 1152 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

608 1 18 218 25 22 222 25 17 1

640 1 23 223 − − − 25 21 1

Table 4.11: Number of IV bits needed to attack the initial state variables of Trivium
with alternative key and IV loading for different number of rounds in the initialization
(out of 1152 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

608 1 12 212 4/288 25 12 212 2/288 25 12 1 21/288

640 1 18 218 17/288 25 18 218 19/288 25 18 1 24/288

672 1 20 220 0/288 25 20 220 0/288 25 20 1 0/288

Decim

Decim-v2 [65] is also a hardware oriented stream cipher based on a nonlinearly

filtered LFSR and the irregularly decimation mechanism, ABSG. The internal state

84

size of Decim-v2 is 192 bit and it is loaded with 80 bit Key and 64 bit IV. The first

80 bits of the LFSR are filled with the key, the bits between 81 and 160 are filled with

linear functions of key and IV and the last 32 bits are filled with a linear function of

IV bits.

The results we obtained for Decim-v2 are given in Table 4.12 and Table 4.13. The

security margin for Decim against chosen IV attacks is very large, the cipher can only

be broken when not more than about 3% of the initialization is used. This is mainly

because of the initial loading of key and IV in which each IV bits affect 3 state variables

and the high number of quadratic terms in the filter function. The weakness in initial

state variables can be observed for higher number of clockings. The number of weak

initial state variables are approximately same for all attacks.

Table 4.12: Number of IV bits needed to attack the first keystream bit of Decim-v2 for
different number of rounds in the initialization (out of 768 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

20 1 16 216 25 13 213 25 19 1

Table 4.13: Number of IV bits needed to attack the initial state variables of Decim-v2
for different number of rounds in the initialization (out of 768 rounds).

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

160 1 12 212 47/192 25 17 217 47/192 25 12 1 44/192

192 1 20 220 18/192 25 20 220 13/192 25 20 1 17/192

4.5.5 Discussion

In this part of the study, we generalize the idea of d-monomial attacks and propose

a framework for chosen IV statistical analysis. The proposed framework can be used as

an instrument for designing good initialization procedures. It can be used to verify the

effectiveness of the initialization, but also to help designing a well-balanced initializa-

tion, e.g., prevent an unnecessary large number of initial clockings or even reduce the

number of gates used in an hardware implementation by being able to use a simpler

loading procedure.

Also, we propose a few new statistical attacks, apply them on some existing stream

cipher proposals, and give some conclusions regarding the strength of their IV initializa-

tion. In particular, we experimentally detected statistical weaknesses in the keystream

85

of Trivium using an initialization reduced to 704 rounds as well as in some state bits

of Grain-128 with full IV initialization.

For ciphers Grain and Trivium, we also propose alternative initialization schemes

with slightly higher hardware complexity. In the proposed loadings, each IV and key

bit affects more than one state bit and the resistance of the ciphers to the proposed

attacks increases about 50%. Decim seems to have a high security margin and it is an

interesting question whether a simpler loading procedure could be used in Decim which

could mean a smaller footprint in hardware, fewer intial clockings could also be used

for a faster intialization procedure.

4.5.6 Improvement of Fischer et al.[1]

Fischer et al. [1] proposed an attack using the concept of probabilistic neutral key

bits that is, the key bits having no influence on the value of coefficient with some high

probability. Using this approach, it is possible to improve our distinguishers to recover

a part of the secret key. In [1], this method is applied to reduced round Grain and

Trivium. In this proposed approach, weak IV bits are selected randomly, how to select

weak IV bits intelligently is an open question.

4.6 Linear Independence

The focus of this test is to analyze the effect of linear relations of IVs on keystream

bits. For a secure cipher, the linear relation of IVs should completely be destroyed by

the encryption function.

4.6.1 Preliminaries

Here, we first present some necessary definitions.

Definition 4.6.1. Let α1, α2, . . . , αk be distinct elements of the vector space V . If the

vector equation

c1α1 + c2α2 + . . . + ckαk = 0, (4.6.1)

has only the trivial solution c1 = c2 = . . . = ck = 0, then αi’s are said to be linearly

independent. If there exist scalars ci not all zero, the vectors are linearly dependent.

Definition 4.6.2. The vector γ is said to be linear combination of α1, α2, . . . , αk if

86

there exists scalars c1, c2, . . . , ck such that

γ = c1α1 + c2α2 + . . . + ckαk. (4.6.2)

The collection of all linear combinations of the vectors α1, α2, . . . , αk is called the linear

span of these vectors.

Rank of a matrix is defined to be the number of independent rows (or columns)

and it is calculated using the Gaussian elimination. For a M ×M square matrix, the

probability distribution of the rank value is given as

Pr(Rank = r) = 2r(2M−r)−M2
r−1∏
i=0

(1− 2i−M)2

1− 2i−r
, (4.6.3)

where r = 0, 1, 2, . . . ,M [142].

4.6.2 Linear Span Test

Well known Binary Matrix Rank Test [103] evaluates the randomness properties of

a given sequence based on the ranks of binary non-overlapping matrices generated from

the sequence. It can directly be applied to evaluate stream ciphers given a keystream

(of length > 40, 000 bits) generated by the cipher.

Here, we present a new application of the binary matrix rank test to stream ciphers.

Instead of generating a long keystream, we use a chosen IV approach and input linearly

dependent IVs and observe the linear dependence of keystream portions.

In our approach, we consider all linear combinations of m independent IV s { IV1,

IV2, . . . , IVm} that are generated randomly. Then, we initialize the cipher using (2m)

IVs and for each IV we produce 2m bit keystream and generate a matrix of size (2m)×
(2m). We repeat this process N times and obtain N rank values, then evaluate the

distribution of ranks as given in the Matrix Rank Test. The pseudocode of the Linear

Span Test is given in Algorithm 4.6.1. The total number of resynchronization required

during the test is (2m)N .

The rank of a matrix is expected to be high for random matrices. The probability

of full rank is approximately 0.2888 and the rank distribution takes its maximum value

0.5776 for one less of full rank. Obtaining low rank matrices is an indication that the

encryption function is not able to destroy linear relations of the input IVs.

87

Algorithm 4.6.1: Linear Span Test(N,m)

for i← 1 to N

Randomly select m independent vectors α1, . . . , αm;

Generate 2m linear combinations of αi’s and produceIV1, . . . , IV2m ;

for j ← 1 to (2m){
Initialize the cipher with IVj ;

Zj = First 2m bits of keystream;

M =

Z1

Z2

...

Z2m

Ri = Rank of M ;

Evaluate R1, . . . , RN using Matrix Rank Test;

return (p− value)

4.6.3 Experimental Results

For our experiments, we fixed the input m as 5 and choose N = 100. So, the size of

the matrices are fixed to 32× 32 as given in the NIST test suite. We applied the tests

to the Phase III Candidates of eSTREAM project and obtained the results presented

in Table 4.14. As seen from the table, none of the results significantly deviates from

0.5, therefore all Phase III candidates are strong against linear span test.

4.7 Completeness Property

Completeness is a very important security measure and a Boolean function is said

to be complete if its output depends on all input bits. In this part of the study, we

propose a diffusion test that measures the effect of each key and IV bit on keystream.

4.7.1 Diffusion Test

In the Diffusion Test, firstly, a random vector (u1, . . . , uk, uk+1, . . . , uk+v) is chosen,

where the first k bits represent the key, and the remaining v bits represent the IV.

Using this key and IV, a keystream of length L is generated. Then, k + v new vectors

are generated by the operation (u1, . . . , uk+v) ⊕ ei, where ei is the vector having 1 in

88

Table 4.14: The average of 100 p-values of Linear Span Test for Phase III eSTREAM
Candidates

Cipher Average p-value
Crypt-MT 0.517496

Decim 0.525619
Dragon 0.487644
Edon80 0.481070
FFCSR 0.507010
Grain 0.441762
HC 0.559911
Lex 0.491445

Mickey 0.484703
NLSv2 0.485840

Pomaranch 0.516326
Rabbit 0.543500
Salsa20 0.535868

Sosemanuk 0.482181
Trivium 0.496277

the entry i and zero elsewhere. For each vector, keystream of length L is generated.

Then, these keystreams are XORed with the original keystream. Using these vectors, a

matrix of size (k+v)×L is obtained. This procedure is repeated N times and obtained

matrices are added. Matrix entries are evaluated using χ2 goodness of fit test using

the probabilities given in Table 4.15. The pseudocode of the test is given in Algorithm

4.7.1.

The entries of the matrix are expected to follow a normal distribution with mean

N/2 and variance N/4, when N is large. For this test to be applicable, the value of

N should be greater than 100. Entries with high/low value indicate poor diffusion

properties of corresponding cells. The χ2 goodness of fit test is applied to the entries

of the matrix to evaluate diffusion property. If the cipher fails this test, initialization

phase of the algorithm should be revised.

Table 4.15: Interval and probability values of Diffusion Test using 1024 key and IV
pairs.

Category Limits Probability
0 - 498 0.199405

499 - 507 0.189855
508 - 516 0.221481
517 - 525 0.189855
526 - 1024 0.199405

89

Algorithm 4.7.1: Diffusion(N)

Let M be a zero matrix of size (k + v)× l;

for i← 1 to N

Randomly choose Ki and Vi;

Mi = S(Ki, Vi, l) and let Mi = (Mi1 , . . . ,Mil);

for j ← 1 to k{
Kj = Ki ⊕ ej

Pj = S(k′j , V j, l);

for j ← k to k + v{
Vj = Vi ⊕ ej

Pj = S(k′i, V
′
j , l);

M∗ =

P1

...

Pk+v

M = M + M∗;

Evaluate entries of M using χ2 test;

return (p− value)

4.7.2 Experimental Results

For the diffusion test, a matrix of size (k + v)× 256 is generated using 210 random

key and IV pairs. Table 4.16 presents the average of 100 p-values of Phase I candidates

of eSTREAM from the diffusion test. F-FCSR-8 fails this test mainly due to the lack of

diffusion property of IV bits between 66 and 101. Also, the cipher Frogbit and Mag do

not satisfy the necessary diffusion property. For Zk-Crypt, the 29th and 30th bits of IV

and key do not satisfy the desired diffusion. These p-values are expected to distributed

normally with mean 0.5 and standard deviation 0.0289. Therefore, it is unlikely to

obtain an average greater than 0.6 and less than 0.4. Therefore, diffusion property of

the ciphers ABC, CryptMT, Decim, Dicing, Mir-1, Sfinks and TSC-3 are suspicious.

4.8 Summary

To summarize the chapter, analysis of stream ciphers based on cryptographic prop-

erties of Boolean functions are studied. We obtained a linear approximation for F1

with bias 2−31 valid for a subset of keys and IVs for Trivium with 288 initial clocking.

90

Using this approximation, it is possible to attack the cipher using 262 resynchroniza-

tions, given that one of the weak keys are used. Using the d-monomial approach, we

experimentally detected statistical weaknesses in the keystream of Trivium using an

initialization reduced to 704 rounds as well as in some state bits of Grain-128 with

full IV initialization. Also, we experimentally show that F-FCSR-8, Frogbit, Mag and

Zk-Crypt do not satisfy the required diffusion of input bits.

91

Table 4.16: The average of 100 p-values of Diffusion Test for Phase I eSTREAM Can-
didates

Cipher Key IV Diffusion
Size Size

ABC v.2 128 128 0.356969
Achterbahn 80 64 0.462577
CryptMT 128 128 0.340794

Decim 80 64 0.379434
Dicing 128 64 0.279894
Dragon 128 128 0.471513
Edon80 80 64 0.535973

F-FCSR-8 128 128 0.000000
Frogbit 128 128 0.000000
Fubuki 128 128 0.557280
Grain 80 64 0.478812

HC-256 128 64 0.574439
Hermes8 128 128 0.535768

LEX 128 128 0.460434
Mag 128 32 0.000000

Mickey 80 64 0.528977
Mickey-128 128 128 0.517717

Mir-1 128 64 0.658961
NLS 128 128 0.511876

Phelix 128 128 0.469131
Polar Bear 128 128 0.499867
Pomaranch 128 64 0.569247

Py 128 64 0.489706
Rabbit 128 64 0.537224
Salsa20 128 64 0.480442
SFINKS 80 80 0.676244

Sosemanuk 128 64 0.447910
Trivium 80 64 0.533170
TSC-3 128 64 0.637575
Vest-4 128 64 0.427980
WG 128 128 0.527545

Yamb 128 64 0.407011
Zk-Crypt 128 128 0.000000

92

Chapter 5

Tests Based on Random

Mappings

Random mappings are functions from a finite set of n elements onto itself. They are

widely used in many combinatorial problems such as (i) proportion of empty urns after

throwing n balls into n urns, (ii) probability that two persons have the same birthday

among a group of n people, (iii) the required number of random selections among n

coupons to obtain a full collection, etc. Using a subset of key and IV bits as input and

a subset of keystream bits as output, it is possible to form random mappings by using

stream ciphers.

The problem of inverting (finding the pre-image of a given point) random mappings

has a great practical importance. For mappings generated by stream ciphers, this

problem corresponds to obtaining secret state bits using the output keystream sequence,

i.e., breaking the cipher. However, there is no known efficient algorithm to find the pre-

image of a given point for a random function. Trivially, using exhaustive search, it is

possible to check all possible inputs until desired output is obtained, leading excessive

time requirement. Alternatively, a lookup table that contains the pre-images of all

points can be constructed, resulting in large memory requirement. To balance between

solution time and required memory, TMTO attacks are proposed as generic methods

to invert random mappings [143].

It is possible to apply TMTO attacks to stream ciphers by various approaches

[144, 145, 146, 147]. The success probabilities of the attacks are calculated under the

assumption that the cipher behaves like a random mapping or a random permutation

depending on the setting. To avoid the attack, some conditions for stream ciphers are

given as (i) IV size should be at least equal to key size, (ii) state size should be at least

the size of key plus IV and (iii) key size should be at least 80 bits [147].

93

In this chapter, we aim to analyze the security of stream ciphers based on some

properties of random mappings. By focusing on different TMTO attacks, we try to find

suitable test statistics. First, we consider the coverage of mappings generated using a

subset of IV bits, then we analyze the index of the first repetition when the random

mapping is iteratively applied. Finally, we consider the distinguished point method

against stream ciphers and analyze the coverage properties of random mappings that

are followed by a special keystream pattern. Using these test statistics, we propose three

new distinguishers namely (i) coverage test, (ii) ρ-test and (iii) distinguished point (DP)

coverage test and apply these tests to all Phase III Candidates of eSTREAM project.

The organization of the chapter is as follows. In the following section, some prelimi-

nary information about random mappings is presented and then background knowledge

on TMTO attacks focusing on stream ciphers are presented. In Section 5.3, the new

distinguishers are presented and in Section 5.4, experimental results on eSTREAM

candidates are given. Finally, we give a summary of the chapter.

5.1 Preliminaries

Let f(x) be a random mapping X → X where X is a finite set of n elements.

Random mappings independently assign one of the image points y ∈ X for each input

x ∈ X. The sample space consists of nn random mappings. For each mapping f , we

can associate the random variable C = |image of f |, that is the coverage of f .

Proposition 5.1.1. Let us have n independent and identically distributed random vari-

ables X1, X2, . . . Xn, each uniformly selected from the set {1, 2, . . . , n}. Let Ak be the

number of selections that contain k different elements. The recursive formulation of

Ak is given as

Ak =
(

n

k

) [
kn −

k−1∑
i=1

(
k

i

)
Ak−i(

n
k−i

)]
(5.1.1)

where A1 =
(
n
1

)
.

Example 5.1.2. Let n = 3. The total number of selections is 33 = 27. The selections

with k = 1 distinct elements are {111, 222, 333}, with k = 2 distinct elements are {112,

121, 211, 113, 131, 311, 221, 212, 122, 223, 232, 322, 331, 313, 133, 332, 323, 233} and

with k = 3 distinct elements are {123, 132, 213, 231, 312, 321}. Then, A1 = 3, A2 = 18,

A3 = 6, with a total of 27.

Following the above proposition, the probability distribution of C is obtained as

Pr(C = k) =
Ak

nn
(5.1.2)

94

for k = 1, . . . , n.

The expected value of C is n − n(1 − 1
n)n which is approximately n(1 − e−1) and

for large n, hence C ≈ 0.632n.

Iteratively application of f to x0 ∈ X yields the sequence

{x0, x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1)}. (5.1.3)

In Figure 5.1, the typical behavior of an iteration operation is given. Since the set

X is finite, after some iterations, we will encounter a point that has occurred before.

Starting with a point x0, let xm be the point that the iteration enters a loop to form a

cycle. The path between x0 and xm is called the tail length. The sum of the tail length

and cycle length is defined as the ρ-length.

x0
xm

Figure 5.1: Graphical representation of an iteration

Proposition 5.1.3. The probability distribution of the ρ-length for a random mapping

of n elements is given as

Pr(ρ− length = k) = (
k − 1

n
)

k−2∏
i=1

(
n− i

n
), for k ≥ 2. (5.1.4)

5.2 Time Memory Tradeoff Attacks

TMTO attacks aim to speed up the exhaustive key search at the expense of memory

usage and the success rate depends on the time and memory allocated for cryptanalysis.

The attacks consist of offline (or pre-computation) and online phases. In the offline

phase, a look up table based on the cipher is constructed. In the online phase, a given

target is searched using the previously constructed table. In the attack,

• N is the size of the search space,

• P is the complexity reserved for pre-calculations,

• M is the amount of memory available,

• T is the online time complexity and

95

• D is the amount of data available.

Complexity of the TMTO attack is usually assumed to be the maximum of T and M

and the attack is considered to be successful if the complexity is less than N . Generally,

the pre-computation complexity P is not included to the attack complexity.

In 1980, Hellman presented a probabilistic tradeoff attack that recovers the secret

key in N2/3 operations using N2/3 words of memory after N operations of precompu-

tation, for an arbitrary block cipher with N keys [143]. The success rate of the attack

depends on the assigned memory and time. Different from exhaustive key search that

uses an arbitrary known plaintext and ciphertext pair, tradeoff attacks against block

ciphers require a chosen plaintext block. Given a plaintext and ciphertext pair (P0, C0),

the aim is to find the secret key k that satisfies C0 = Ek(P0).

In the offline phase, chains of length t are generated using the function f which is

the composition of the reduction function R and the encryption function E. Reduction

functions are necessary for cases where the input and output size of f are different.

Successive keys are generated using the following equation

xj i+1 = f(xj i),

= R(Exj i(P0)), 0 ≤ i ≤ t.

where xj 0 (1 ≤ j ≤ m) is selected randomly. Starting from m random points xj0, the

target P0 is encrypted using the successive keys and start points (SPs) and end points

(EPs) of m chains are stored in a table. The construction of the table is summarized

in Figure 5.2.

Figure 5.2: Construction of the lookup table in the offline phase

In the online phase, the aim is to find the key that generates (P0, C0) pair, assuming

it is one of the keys used in the offline phase. Since only SPs and EPs of the table

are stored, a similar chain for C0 is generated and after each encryption, the obtained

96

value is compared to the EPs of the table. If a match is obtained, then the whole

chain corresponding to the EP is regenerated and the key just before reduction of C0

is obtained as the secret key. Therefore, the success probability of the attack is closely

related to the percentage of the keys that are covered in the offline phase. It should be

noted that sometimes the desired key is a part of a chain that is merged with another

chain of the table which causes a false alarm.

The efficiency of TMTO attacks can be improved using different approaches. Using

distinguished points approach, instead of generating fixed length chains, the chains are

terminated whenever a distinguished ki (e.g. having last m bits as zero) is obtained.

This improvement reduces the memory access in the online phase, since the value ki

is compared to the end points only if it is a distinguished point. In [148], the idea of

distinguished points is used to attack 40-bit DES and the key is recovered in 10 seconds

with a success rate of 72%. Another improvement is to use Rainbow tables [149] where

different reduction functions are utilized. In this approach, instead of having t different

tables, only one table of size mt× t is generated.

TMTO Attacks Against Stream Ciphers:

TMTO attacks against stream ciphers are firstly proposed by Babbage [144] and

Golić [145] independently. In the pre-computation phase, the function f : FlogN
2 →

FlogN
2 that inputs the logN bit state and outputs logN keystream bits is considered

and the following table is generated;

(S1, f(S1))

(S2, f(S2))
...

(SM , f(SM))

using M randomly selected initial states Si. Then, the table is sorted with complexity

O(MlogM) based on the output keystream bits. Given the output keystream of length

D+ logN−1, D overlapping logN bit subsequences are generated and compared to the

table generated in the offline phase. It should also be noted that different from block

ciphers, the TMTO attacks against stream ciphers do not require chosen plaintext.

In [146], Biryukov and Shamir combined the tradeoff attacks presented by Hellman

and Babbage-Golić. Using the same f function, chains of length t are generated by

assigning the output keystream as the new internal state as presented in Figure 5.2.

Instead of using output size of n bits (internal state size), for stream ciphers using k

97

bit key and v bit IVs the output size is taken as k + v bits, this function is also close

to a permutation. Using this approach, it is possible to recover the key with time and

memory complexity T = M = 2
1
2
(k+v) if D = 2

1
4
(k+v) frames are available [147]. For

IVs shorter than key (v < k), the stream cipher is vulnerable to the TMTO attack.

Therefore, to avoid the attack, IV size should be at least equal to the key size and IVs

should not be used in a predictable way and the state size should at least be the size

of key plus IV.

According to [146], it is also possible to use distinguished points idea against stream

ciphers. Similar to Babbage-Golić scheme, the states and the corresponding keystream

with distinguished property are stored. This is especially important in online phase

where the different keystream portions are compared to the table. Since there is no

need to check keystream portions that do not satisfy the distinguishing property, this

reduces the complexity of checking memory significantly.

In [147], the following remarks are given; (i) putting restriction on the number of

resynchronizations using a fixed key does not increase the security of the cipher against

TMTO, (ii) the complexity of the initialization phase has no effect on the efficiency of

the attack, and (iii) the attack may be applied to any keystream positions as long as

they are known.

In [150], a tradeoff attack against LILI-128 is proposed using 264 bits of keystream,

a lookup table of 245 89-bit words and 248 operations. In [145], a TMTO attack

against A5 is presented with T.M ≥ 263.32 and precomputation time about T/102.

An improvement of this attack, presented by Biryukov et al. [151], requires about 2

minutes of GSM conversation and finds the key in a few seconds with 242 preprocessing

and memory complexity of four 73 GB hard-drives.

5.3 Three New Distinguishers

In the following part of the chapter, we present three new distinguishers against

synchronous stream ciphers, but they can also be used to test the security of other

cryptosystems such as block ciphers and hash functions. For a synchronous stream

cipher with k bit key K = (k1, k2, . . . , kk) and v bit IV = (iv1, iv2, . . . , ivv), let Z =

z0, z1, . . . denote the keystream sequence. In this part, we consider the chosen IV

approach where the attacker has access to a number of different keystream sequences

generated using different (possibly chosen) IV values and same random secret key.

98

IV (1) = (
v−l bits︷ ︸︸ ︷
∗ ∗ ∗ . . . ∗ |

l bits︷ ︸︸ ︷
000 . . . 0)→ Z(1) = (z(1)

1 , z
(1)
2 , . . . , z

(1)
l)

IV (2) = (∗ ∗ ∗ . . . ∗ |000 . . . 1)→ Z(2) = (z(2)
1 , z

(2)
2 , . . . , z

(2)
l)

...

IV (2l) = (∗ ∗ ∗ . . . ∗ |111 . . . 1)→ Z(2l) = (z(2l)
1 , z

(2l)
2 , . . . , z

(2l)
l)

Figure 5.3: The table generated in the coverage test

5.3.1 Coverage Test

The coverage test is a new probabilistic distinguisher against stream ciphers where

a table similar to the approach of Babbage-Golić is used. In the original approach,

output keystreams of length n (state size) are generated. For our statistical test, it is

impractical to use keystream bits of size as large as n, so we focus on a subset of IV

bits (l out of v) and generate l bit keystreams.

First, we select l random (active) positions from IV and fix the rest (inactive) bits

to a random value. Then, we synchronize the cipher for all possible 2l IVs and generate

l bit keystream (z(i)
1 , z

(i)
2 , . . . , z

(i)
l) for each IV as given in Figure 5.3. Then, calculate

the number of distinct Z(i)’s and denote it as C1 which is expected to be around

0.63× 2l. We repeat the experiment for a number of times with different assignments

of the inactive IV bits and obtain a coverage variable for each trial, then evaluate the

randomness of the cipher based on the distribution of Ci’s. The pseudocode of the

Coverage test is given in Algorithm 5.3.1.

Using the recursive formula (5.1.2), the probability distributions of Ci for 12 and 14

bits are calculated and categorized into 5 groups with approximately equal probability.

The limit of the groups and corresponding probabilities are given in Table 5.1.

If the coverage test returns low p-value (< 0.01), it means that the coverage of the

corresponding mapping is statistically different than the expected values. Obtaining

a low coverage value means that the first keystream bits that are generated using

different IVs are similar, it is obviously a threat for frequently resynchronized ciphers.

This is also an indication of low diffusion properties. Obtaining a high coverage value

means that the mapping is close to a permutation. This may be interpreted as follows;

whenever a subpart of the secret bits is recovered and the rest of the bits form a

permutation, to identify unknown state bits, the required number of keystream bits is

equal to the number of unknown state bits. For mappings close to permutation, cipher

is more vulnerable to TMTO attacks.

99

Z(0) IV (0)=(∗∗∗|Z(0))−→ Z(1) IV (1)=(∗∗∗|Z(1))−→ . . .
IV (R)=(∗∗∗|Z(R))−→ Z(R)

Figure 5.4: The rows generated in the ρ-test

Algorithm 5.3.1: Coverage Test(R, l)

Randomly select l positions p1, p2, . . . , pl from v bits of IV;

for i← 0 to R

Randomly select IV = (iv1, iv2, . . . , ivv);

for j ← 0 to 2l − 1
J = (j1, j2, . . . , jl) binary representation of j;

(ivp1 , ivp2 , . . . , ivpl
) = J ;

Z(j) = First l keystream bits using K and IV ;

Coveragei = Number of distinct Z(1), . . . , Z(2j);

Evaluate (Coverage1, . . . , CoverageR) using χ2 test;

return (p− value)

Table 5.1: Interval and probability values of Coverage test using 12 and 14 IV bits

12 IV Bits 14 IV Bits

Category Limits Probability Category Limits Probability

0-2572 0.199139 0-10323 0.201591

2573-2584 0.204674 10324-10346 0.195966

2585-2594 0.197856 10347-10367 0.207519

2595-2606 0.203225 10367-10390 0.195253

2607-4096 0.195106 10392-16384 0.199671

5.3.2 ρ-Test

ρ-test is another probabilistic distinguisher against stream ciphers where the encryp-

tion function is iteratively applied and a sequence of l bits keystreams Z(1), Z(2), . . . are

generated until one of the entries is repeated (See Figure 5.4). The index of the last

entry, ρ-length, is used to evaluate the randomness of the cipher.

First, we select l random positions from IV and fix the rest (inactive) bits to a

random value, then initialize the cipher with this IV and secret key K and generate l

bit keystream, Z(1). Then, Z(1) is assigned to the variable part of IV and iteratively

l bit keystreams are generated until one of the Z(i) is repeated and the index of the

last entry is stored as R1. This is repeated for different assignments of inactive IV bits,

100

then Ri values are compared to their theoretical distribution using χ2 goodness of fit

tests. The pseudocode of ρ test is given in Algorithm 5.3.2.

Using the recursive formula (5.1.4), the probability distribution of Ri for 15 and 20

bits is calculated and categorized into 5 groups with approximately equal probability.

The limit of the groups and corresponding probabilities are given in Table 5.2.

Algorithm 5.3.2: ρ-Test(R, l)

Randomly select K = (k1, k2, . . . , kk);

Randomly select l positions p1, p2, . . . , pl from v bits of IV;

for i← 0 to R

do

Randomly select IV = (iv1, iv2, . . . , ivv);

repeat

Z = First l keystream bits using K and IV ;

(ivp1 , ivp2 , . . . , ivpl
) = (z1, z2, . . . , zl);

Xi = Z;

Indexi + +;

until a Xi value is repeated

Evaluate (Index1, . . . , IndexR) using χ2 test;

return (p− value)

Table 5.2: Interval and probability values of ρ-test using 15 and 20 IV bits

15 IV Bits 20 IV Bits

Category Limits Probability Category Limits Probability

2- 122 0.201906 2-685 0.200258

123 - 184 0.200448 686-1036 0.200124

185 - 246 0.199904 1037-1386 0.199400

247 - 325 0.198270 1387-1838 0.200518

326 - 32768 0.199472 1839 -1048576 0.199700

Rows of Hellman tables are generated by applying encryption and reduction func-

tions iteratively. This test generates rows similar to Hellman’s table and calculates

their ρ-length. Obtaining a low p-value from the ρ test means that length of iterations

is statistically longer or shorter than the expected values. Having short cycles results

low coverage, which motives us to use smaller number of iterations t.

101

5.3.3 DP-Coverage Test

The last distinguisher is very similar to the Coverage test described in Section 5.3.1.

The only difference is instead of considering the coverage of first l keystream bits, we

find the coverage of l bit keystream after the first k bit DP, as given in Figure 5.5.

(0, 0, . . . , 0︸ ︷︷ ︸
k bits

, ∗, ∗, . . . , ∗︸ ︷︷ ︸
l bits

)

Figure 5.5: Distinguished points

First, we select l random positions (active bits) from IV and fix the rest (inactive)

bits to a random value. Then, we synchronize the cipher for all possible 2l IVs and

generate l bit distinguished keystreams. Then, calculate the number of different l-bit

keystreams and denote it as C1. We repeat the experiment for a number of times with

different assignments of the inactive IV bits and obtain a coverage variable for each

trial, then evaluate the randomness of the cipher based on the distribution of Ci’s. The

pseudocode of the DP Coverage test is given in Algorithm 5.3.3. To evaluate the output

coverage values, the theoretical distribution given in the Coverage test is used.

Distinguished points in TMTO attacks are used to reduce the number of memory

checks, since only distinguished keystream portions with a special property are checked.

These distinguished portions are assumed to be uniformly distributed throughout the

keystream, otherwise it is possible to distinguish the cipher using the Overlapping

Template Matching Test from the randomness test suite of NIST [103].

An important criterion against stream ciphers is that the initial states (states

that are generated after key/IV initialization phase) should be uniformly distributed

throughout the keystream. If for any key, there exist IV1 and IV2 that identify close

starting points, most important assumption of stream ciphers keystream must only be

used once may be violated. A similar observation against Grain is pointed out by

Küçük [152]. The ciphers having close starting points are expected to reach the same

distinguished keystream portions resulting in low coverage.

102

Algorithm 5.3.3: DP-Coverage Test(R, l, k)

Randomly select K;

Randomly select l positions p1, p2, . . . , pl from v bits of IV;

for i← 0 to R

Randomly select IV = (iv1, iv2, . . . , ivv);

for j ← 0 to 2l − 1
J = (j1, j2, . . . , jl) binary representation of j;

(ivp1 , ivp2 , . . . , ivpl
) = J ;

Z(j) = l bit keystream after k bit distinguisher using K and IV ;

Coveragei = Number of distinct Z(1), . . . , Z(2j);

Evaluate (Coverage1, . . . , CoverageR) using χ2 test;

return (p− value)

5.4 Experimental Results

We applied the three distinguishers to the Phase III candidates of eSTREAM project

with following parameters; Coverage(100,12), Coverage(100,14), ρ(100,15), ρ(100,20),

DP-Coverage(100,12,10), DP-Coverage(100,14,10). Each test is repeated 100 times

using random keys and the average values are tabulated in Table 5.3. Since the p-values

are expected to distribute uniformly between 0 and 1, the average of 100 p-values are

expected to be distributed normally with mean 0.5 and standard deviation 0.0289.

Table 5.3: The average 100 p-values obtained from Coverage, ρ and DP-Coverage tests
Cipher Coverage Test ρ Test DP Coverage Test

12 14 15 20 12 14

Crypt.MT 0.421172 0.502259 0.438767 0.434522 0.491562 0.496520

Decim 0.483673 0.498243 0.515213 0.561964 0.507519 0.434853

Dragon 0.467800 0.524956 0.531447 0.508126 0.475863 0.490167

Edon80 0.503102 0.504606 0.496585 0.506221 0.458080 0.511870

FFCSR 0.501281 0.536393 0.522143 0.505929 0.487775 0.501770

Grain128 0.507743 0.546400 0.521265 0.473777 0.514002 0.481063

HC-128 0.453212 0.502525 0.489393 0.475678 0.516889 0.513914

Lex 0.472844 0.497004 0.500221 0.475852 0.473196 0.497984

Mickey-128 0.490894 0.499849 0.510405 0.479021 0.434051 0.544828

NLS 0.508358 0.483571 0.474961 0.477997 0.516875 0.468336

Pomaranch 0.433858 0.320433 0.506190 0.520325 0.483106 0.513709

Rabbit 0.512423 0.473658 0.522667 0.518543 0.470558 0.470504

Salsa20 0.485817 0.527911 0.533091 0.501501 0.430587 0.498490

Sosemanuk 0.439461 0.487562 0.497158 0.527524 0.555262 0.531222

Trivium 0.413683 0.500991 0.491455 0.495252 0.458730 0.508625

Most significant deviation from 0.5 is obtained from the cipher Pomaranch [153]

103

using the coverage test with 14 variable IV bits. For a secure cipher, although the

probability that the average is less than 0.320433 is negligible, we repeated the exper-

iment 450 times and obtained the following histogram. As seen from the figure, the

distribution of p-values significantly deviates from uniform distribution.

Figure 5.6: The number of p-values in intervals of length 0.1 versus expected values for
Pomaranch

5.5 Summary

In this chapter, we propose a new framework of randomness testing based on some

properties of random mappings, focusing on TMTO attacks against stream ciphers.

We present three chosen IV distinguishers namely; (i) coverage test, (ii) ρ-test and (iii)

DP-coverage test. Unlike most of the randomness tests available in the literature, we

try to give clues to convert the results to attack the cipher, whenever cipher fails from

the tests and we experimentally observed some statistical deviations in the distribution

of p-values in Pomaranch.

104

Chapter 6

Tests Based on Correlations

Correlation is a very commonly used statistics to describe the degree of relation-

ship between two variables. In cryptographic applications, any significant correlation

between public and secret variables can be exploited to attack the cipher.

In this chapter, we focus on correlations between input (key and IV) and output

(keystream) of ciphers. First, we give the basics of correlation attacks that divide the

cipher into several components and exploit the correlations between weak components

and known keystream. Then, we present three new statistical tests to analyze the

correlation between key, IV and keystream. Finally, we present some experimental

results on Phase I candidates of eSTREAM Project.

6.1 Basics of Correlation Attacks

Correlation attacks constitute a type of divide and conquer attacks, where the

attacker divides the keystream generator into several weak components and exploits

the correlation between the keystream and the output of weak components.

The first correlation attack, proposed by Siegenthaler [132], attempts to analyze the

nonlinear combining generator only using the ciphertext information. The statistical

relations between output of a subset of LFSRs and the keystream are analyzed to

identify internal states of the LFSRs independently. For a nonlinear combiner with

n LFSRs each having length li, if a significant correlation for each LFSR output and

keystream is available, the complexity of recovering the secret internal state reduces to∑n
i=1(2

li−1) from
∏n

i=1(2
li−1). This attack is very practical especially if the max{li}

is less than 50. To avoid attacks against combining generators, the nonlinear combiner

should have high correlation immunity. However, it should be noted that there is

a tradeoff between the correlation immunity and the nonlinearity of the combining

105

function.

A disadvantage of the attack proposed by Siegenthaler is that the initial state of each

LFSR has to be found using exhaustive search. Meier and Staffelbach [133] improved

the idea and proposed fast correlation attacks based on decoding algorithms.

Let L be the set of binary sequences. For a LFSR with length l, there are 2l possible

different LFSR sequences. The set of truncated sequences of L is a linear [N, l] block

code C, for a fixed N . Then, N bit output of a LFSR is a codeword from the code

C. Assumed that the codeword is transferred though a Binary Symmetric Channel

(BSC) where probability of error is p as given in Figure 6.1. Then, the keystream zi

can be regarded as the received channel output. By using error correcting techniques,

the initial state of the target LFSR can recovered, so the requirement to search for all

possible initializations is eliminated.

Figure 6.1: Use of BSC in fast correlation attacks

Fast correlation attacks have two different phases; (i) finding a set of suitable parity

check equations, and (ii) using these equations to recover the initial state of the LFSR.

For a LFSR with feedback polynomial g(x) = 1 + c1x + c2x
2 + . . . + clx

l, the output

sequence {ui} satisfies the following recursion;

ui = c1ui−1 + c2ui−2 + . . . + clui−l, i > l. (6.1.1)

Let t be the number of tab points (number of nonnegative ci’s). Using the recursion

given in (6.1.1), t + 1 different parity check equations for ui can be found. Also, using

the fact that g(x)j = g(xj) for j = 2k, more equations can be generated by repeatedly

squaring the polynomial g(x). Using these methods, the total number of parity check

equations [133] is approximately

m = (t + 1)log(
N

2l
). (6.1.2)

In the second phase, these parity check equations are used to decode the keystream.

106

Two different decoding methods, Algorithm A and Algorithm B are proposed in [133].

Success of these algorithms depend on the number of tabs t and for the attack to be

successful t should be small. As t gets large more equations are needed to succeed.

Some improvements for finding more parity check equations are proposed in [154].

As an example, in [155], an irregularly decimated filter generator LILI-128 is at-

tacked using fast correlation attacks with complexity around 271 operations, precom-

putation complexity of 279 table lookups and a keystream of length 128 MByte.

6.2 Tests Based on Correlation of Key, IV and Keystream

Considering the importance of correlation of input and output in analysis of stream

ciphers, we proposed three new statistical tests.

• Key/Keystream Correlation Test considers the correlation between key and the

corresponding keystream using a fixed IV.

• IV/Keystream Correlation Test considers the correlation between IV and the

corresponding keystream using a fixed key.

• Frame Correlation Test considers the correlation between keystreams using dif-

ferent IV values.

The first test uses different keys, whereas the other two tests use a chosen IV

approach. If a cipher fails any of these tests, it can be concluded that the correlations

between key, IV and keystream are significant, therefore designers should revise their

cipher to remove this correlation.

The following notation is used in the next sections. For a stream cipher S with k-bit

key K, v-bit initialization vector V , let S(K, V, l) be the first l bits of the keystream

generated by the cipher S, key K and initialization vector V .

6.2.1 Key/Keystream Correlation Test

The purpose of this test is to evaluate the bitwise correlation between the key and

the first k bits of keystream. Significant correlation between key and keystream may

enable the cryptanalyst to recover the secret key using the keystream or may reduce the

exhaustive search space for key significantly. If the cipher fails this test, key loading part

of the initialization phase should be revised. For ciphers with iterative initialization

function, the number of rounds may be increased to remove correlation.

107

In this test, firstly IV is fixed to a random value and m key values are generated

randomly. Next, keystream z1, . . . , zk of length k, is produced for each key. To evaluate

the correlation between key and its corresponding keystream, they are XORed and

weight of the resulting sequence is calculated. The pseudocode of the test is given in

Algorithm 6.2.1.

Small weights indicate that the key and its corresponding keystream are similar,

meaning they are positively correlated. High weights point to a negative correlation

between ith bit of key and ith bit of keystream for i = 1, . . . , k.

Algorithm 6.2.1: key/keystream Correlation(m)

Fix V ;

for i← 1 to m{
Choose Ki randomly;

wi = weight of S(Ki, V, k)⊕Ki;

Evaluate wi’s using χ2-goodness of fit tests;

return (p− value)

For a secure cipher, distribution of the weights is Binomial with parameters k and

1/2 with given probability distribution

P (weight = x) =
(

k

x

)
(1/2)k,

for weights between 0 and k.

Using χ2-goodness of fit tests, obtained m weights are compared to the Binomial

distribution by categorizing weights into five intervals with approximately equal proba-

bilities. The intervals and corresponding probabilities for k = 80 and k = 128 are given

in Table 6.1. For the χ2 test to be applicable, the value of m should at least be 100.

6.2.2 IV/Keystream Correlation Test

The purpose of this test is to evaluate the bitwise correlation between IV and the

first v bits of keystream. Significant correlation between IV and keystream may lead

to generation of keystream without knowing the value of secret key. If the cipher

fails this test, IV loading part of the initialization phase should be revised. Similar

to the previous test, the number of rounds may be increased for ciphers with iterative

initialization function.

108

Table 6.1: Interval and probabilities values of Key/Keystream Correlation test for key
size of 80 and 128 bits

Key Size = 80 Key Size = 128
Interval Probability Interval Probability
0 - 35 0.157153 0 - 58 0.165468
36 - 38 0.211624 59 - 62 0.230035
39 - 41 0.262446 63 - 65 0.208994
42 - 44 0.211624 66 - 69 0.230035
45 - 80 0.157153 70 - 128 0.165468

Firstly, the value of key is fixed to a random value and m random IVs are selected.

Then, a keystream of length v is produced using each IV value and the fixed key. To

evaluate the correlation, IV and its corresponding keystream are XORed and its weight

is calculated. The pseudocode of the test is given in Algorithm 6.2.2.

Algorithm 6.2.2: IV/keystream Correlation(m)

Fix K;

for i← 1 to m{
Select Vi randomly;

wi = weight of S(K, Vi, v)⊕ Vi;

Evaluate wi’s using χ2-goodness of fit tests;

return (p− value)

Similar to the previous test, small weights indicate that the IV and its corresponding

keystream are similar, meaning they are positively correlated. High weights point to a

negative correlation between ith bit of IV and ith bit of keystream for i = 1, . . . , v. The

smallest IV size is chosen to be 64.

Using the χ2-goodness of fit tests, obtained weights are compared to the Binomial

distribution by categorizing into five intervals with approximately equal probabilities.

The intervals and corresponding probabilities for v = 64, 80 and 128 are given in Table

6.2. For χ2 test to be applicable, the value of m should at least be 100.

6.2.3 Frame Correlation Test

In synchronous stream ciphers, after generating a fixed length keystream called

frame, IV values are updated. Since counters are commonly used as IVs, two consecu-

tive IV values are similar. The purpose of this test is to analyze the correlation between

109

Table 6.2: Interval and probability values of IV/Keystream Correlation test for IV size
of 64, 80 and 128.

IV Size = 64 IV Size = 80 IV Size = 128

Interval Probability Interval Probability Interval Probability

0 - 28 0.190866 0 - 35 0.157153 0 - 58 0.165468
29 - 30 0.163124 36 - 38 0.211624 59 - 62 0.230035
31 - 33 0.292019 39 - 41 0.262446 63 - 65 0.208994
34 - 35 0.163124 42 - 44 0.211624 66 - 69 0.230035
36 - 64 0.190866 45 - 80 0.157153 70 - 128 0.165468

frames generated using similar IVs. In this test, first a random key and an IV value

are selected, then a keystream of length l is produced. This procedure is repeated m

times with incremented values of IV. Using these keystreams, a matrix of size m × l

is generated and the column weights of the matrix are calculated. Distribution of the

weights is approximately N(m/2,m/4), when m is large. Columns with very high/low

weight indicate weaknesses due to insecure resynchronization. The χ2-goodness of fit

test is applied to evaluate the correlation between frames. If the cipher fails this test,

IV loading part of initialization phase should be revised.

Algorithm 6.2.3: Frame Correlation(l, m)

Randomly choose K and V ;

for i← 1 to m{
(Zi1 , . . . , Zil) = S(K, V, l);

Increment V ;

wi =
∑

j Zij for i = 1, . . . l;

Evaluate wi’s using χ2-goodness of fit tests;

return (p− value)

6.3 Experimental Results

The proposed tests based on correlation of key, IV and keystream are applied to

the candidates of Phase I candidates eSTREAM with the following settings.

• Key/Keystream Correlation Test : m = 220 keys are generated randomly and for

each key, keystream of length k (80 or 128 bits) is generated using a zero vector

as IV.

110

• IV/Keystream Correlation Test : m = 220 IVs and a fixed key are generated

randomly and for each IV, keystream of length v (64, 80 or 128 bits) is generated.

• Frame Correlation Test : Starting with the IV 0x00000001 and incrementing until

the IV 0x00100000, m = 220 keystreams of length l = 256 bits are generated with

a fixed random key.

Table 6.3 lists the average results of three tests for each Phase I candidate of eS-

TREAM. Each test is repeated 100 times, and the p-values significantly different from

0.5 are assumed to be weak. Following ciphers are detected to be weak as results of

the proposed tests.

Decim

Decim [80] is hardware oriented cipher based on both a nonlinear filter LFSR and

an irregular decimation mechanism called ABSG. Decim fails all three tests meaning

there exist a significant correlation between (i) key and keystream bits, (ii) IV and

keystream and (iii) frames generated using similar IVs.

F-FCSR-8

F-FCSR-8 [74] is a software oriented cipher in which the output is obtained by

filtering internal states of an FCSR automaton using linear Boolean functions. The

cipher fails the frame correlation test meaning there exists a significant correlation

between keystreams generated by similar IVs. However, no weaknesses are observed

using the other two tests.

Frogbit

Frogbit [156] is a software oriented patented stream cipher including a message

authentication code. According the our test results, Frogbit fails the frame correlation

test meaning the frames generated using different IVs are correlated.

Mag

Mag [106] is proposed for both software and hardware applications. Due to the small

IV size of Mag (32 bit), the IV/Key Correlation Test is not applied. According the our

test results, the cipher fails the frame correlation test meaning the frames generated

using different IVs are correlated.

111

Zk-Crypt

The ZK-Crypt [110] is a hardware oriented stream cipher utilizing permutations

and non-linear correlation immunizing parallel and serially operating hardware func-

tions. According the our tests, the 29th and 30th bits of IV do not satisfy the desired

diffusion in Zk-Crypt, therefore the cipher fails the frame correlation test. However, no

weaknesses are observed using the other two tests.

For a secure cipher, it is very unlikely to obtain an average of 100 p-values less

than 0.4 and greater than 0.6. The p-values outside the interval (0.4 − 0.6) are also

assumed to be suspicious and highlighted in the table. Suspicious results are obtained

for Edon80, Fubuki, Mickey, Rabbit, TSC-3, Vest-4, WG and Yamb.

6.4 Summary

In this chapter, considering the important class of divide and conquer attacks, we

focused on the correlation attacks and the correlations between key, IV and keystream

bits. Different from correlation attacks, we presented tests that do not consider the

inner structure of ciphers, but focus on the input and output values. Key/Keystream

and IV/Keystream correlation tests do not analyze the correlations between ith bit of

keystream to jth bit of key and IV (i 6= j), respectively. As trivial extension of these

tests, the correlations of key and keystream bits with different indices can be studied

by applying a permutation to keystream bits. Depending on the correlation of key and

keystream, first test can be used to recover key.

112

Table 6.3: The average of 100 p-values obtained using Key/Keystream Correlation,
IV/Keystream Correlation and Frame Correlation Test against Phase I candidates of
eSTREAM

Cipher Key IV Key/Keystream IV/Keystream Frame
Size Size Correlation Correlation Correlation

ABC v.2 128 128 0.594847 0.581965 0.499155
Achterbahn 80 64 0.447456 0.509330 0.445827
CryptMT 128 128 0.467099 0.565633 0.504488

Decim 80 64 0.000000 0.000000 0.000000
Dicing 128 64 0.510794 0.518198 0.469110
Dragon 128 128 0.515234 0.509020 0.493730
Edon80 80 64 0.395271 0.490394 0.450119

F-FCSR-8 128 128 0.465567 0.497677 0.000000
Frogbit 128 128 0.469433 0.605391 0.000000
Fubuki 128 128 0.428599 0.660642 0.449259
Grain 80 64 0.424768 0.454764 0.498692

HC-256 128 64 0.453745 0.546300 0.513012
Hermes8 128 128 0.528543 0.504307 0.496917

LEX 128 128 0.569770 0.412822 0.507724
Mag 128 32 0.534794 - 0.000000

Mickey 80 64 0.576635 0.475921 0.608017
Mickey-128 128 128 0.525417 0.657516 0.528486

Mir-1 128 64 0.518211 0.490121 0.415622
NLS 128 128 0.526565 0.472976 0.525124

Phelix 128 128 0.506611 0.506333 0.521635
Polar Bear 128 128 0.447812 0.482900 0.487471
Pomaranch 128 64 0.462254 0.502730 0.591795

Py 128 64 0.496108 0.443042 0.522252
Rabbit 128 64 0.547722 0.503607 0.608813
Salsa20 128 64 0.504370 0.535973 0.510886
SFINKS 80 80 0.540354 0.497505 0.529415

Sosemanuk 128 64 0.471755 0.507739 0.516827
Trivium 80 64 0.479925 0.504355 0.518177
TSC-3 128 64 0.521729 0.351436 0.485147
Vest-4 128 64 0.526154 0.657904 0.512552
WG 128 128 0.532289 0.363903 0.518250

Yamb 128 64 0.326160 0.427037 0.497137
Zk-Crypt 128 128 0.593001 0.468749 0.000000

113

Chapter 7

Conclusion

In this thesis, we have studied statistical analysis of synchronous stream ciphers

which is an important class of symmetric ciphers. Since proving the security of stream

ciphers are extremely hard for most ad hoc designs, these tests play an important role

in the design of cryptosystems, since in some cases, black box distinguishers are able to

detect weaknesses that are hard to detect by theoretical analysis. Additionally, most

of them have very low complexity and provide results in a very short time. Although

black box distinguishers do not consider the inner structure of ciphers, to increase the

success rate of the distinguishers, some properties of the cipher can be used as input

to the distinguisher. If a cipher fails any of the proposed tests, it is for certain that the

design should be reevaluated and necessary changes should be applied.

The contributions of the thesis and some future research suggestions are given below.

• Considering stream ciphers as PRNGs, we have focused on the statistical test

suites that are used to evaluate PRNGs. We have emphasized the importance of

independence of randomness tests in test suites. We have presented some theo-

retical and experimental results on relations of ten commonly used randomness

tests. We have experimentally observed that frequency, overlapping template

(with input template 111), longest run of ones, random walk height tests and

maximum order complexity tests produce correlated results for short sequences.

It is suggested that these correlations are considered while analyzing generators

using short sequences. Moreover, for testing longer sequences with level-2 version

of these tests, these correlations should still be taken into account.

• We have defined the concept of sensitivity, the effect of simple transformations to

input sequences on the test results. If a transformation significantly changes the

output p-values, then we have proposed to include the composition of transfor-

mation and the test to the suite to increase the coverage. Ideally, we would like

114

to have each test applied to a transformed sequence σ(S) to be independent of

all different tests applied to the original sequence. Clearly, as the set of allowable

transformations grows, this becomes harder to achieve. By choosing a good set

of allowable transformations, one can use a given set of tests in a more powerful

fashion. For example, one should not introduce unnatural transformations of the

data, but stick to a set of transformations which are generated by a small set of

basic transformations, such as the ones presented in the thesis. It is of interest

to investigate this problem further in future work.

• We have proposed three randomness tests based on one dimensional random walks

namely; (i) random walk excursion, (ii) random walk height and (iii) random walk

expansion. The exact distributions of the test statistics are provided, therefore

tests are suitable to analyze short sequences, unlike the random walk tests based

in NIST suite. Moreover, we have experimentally showed that for short sequences,

the random walk expansion test is independent of some of the commonly used

randomness tests such as frequency, overlapping templates, longest run of ones

and random walk height tests, therefore significantly increases the coverage of

test suites containing given tests. Proposed random walk tests can be extended

using two or more dimensional random walks.

• We have analyzed the stream ciphers based on the properties of Boolean functions

Fi’s that generate the ith keystream bit from key and IV. We have generalized the

idea of Filiol [20] and Saarinen [157], and have proposed a framework for chosen

IV statistical attacks using a polynomial description and we have experimentally

detected statistical weaknesses in the keystream of Trivium using an initialization

reduced to 736 rounds as well as in some state bits of Grain-128 with full IV

initialization. In our tests, weak IV bits are selected randomly and how to select

weak IV bits intelligently is an open question.

• We have focused on the initialization of Trivium which is one of the focus ciphers

of eSTREAM. We have obtained a linear approximation for the Boolean function

F1 with bias 2−31 valid for a subset of keys and IVs for Trivium with 288 initial

clocking. Using this approximation, it is possible to attack the cipher using 262

resynchronizations, given that one of the weak keys are used. Using multiple

and nonlinear approximations, better biases may be obtained. Also, different

modeling of initializations may lead to better approximations.

• We have proposed the linear span test which is an alternative application of

Binary Matrix Rank test given in NIST suite [103]. Linear span test analyzes

the effect of linear relation of IVs on the relations of keystream blocks. We have

115

applied the test on Phase III candidates of eSTREAM, and none of the candidates

show statistical weaknesses based on the test. It is of interest to improve the

linear span test so that it is possible to recover the key whenever a weaknesses is

observed.

• We have also tested the Phase I candidates of eSTREAM using the diffusion

test that considers the effect of each bit of key and IV on the keystream. Se-

vere statistical weaknesses are observed in Phase I versions of Frogbit, Mag and

Zk-Crypt. Also, the results obtained from the ciphers ABC, CryptMT, Decim,

Dicing, Mir-1, Sfinks and TSC-3 seem to be suspicious.

• Considering the generic TMTO attacks against stream ciphers, we have proposed

three chosen IV distinguishers namely; (i) coverage, (ii) ρ and (iii) DP-coverage

tests. Using the coverage test with 14 variable IV bits, we have experimentally

observed positive skewness in the distribution of p-values in Pomaranch, due to

this deviation the average of 100 p-values which is expected to be 0.5 is obtained

as 0.320433. Improvement of these tests so that it is possible to recover the key

is of interest.

• We have focused on correlations between input (key and IV) and output (keystream)

of ciphers, since any significant correlation between public and secret variables

can be exploited to attack the cipher. To test these correlations, we have proposed

three distinguishers namely; (i) key/keystream correlation, (ii) IV/keystream cor-

relation and (iii) frame correlation tests. We have experimentally observed signifi-

cant correlations in Decim, F-FCSR-8, Frogbit, Mag and Zk-crypt. Key/Keystream

and IV/Keystream correlation tests do not consider the correlations between ith

bit of keystream to jth bit of key and IV (i 6= j), respectively. As trivial extension

of these tests, the correlations of key and keystream bits with different indices

can be analyzed by applying a permutation to keystream bits.

116

References

[1] S. Fischer, S. Khazaei, and W. Meier. Chosen IV Statistical Analysis for Key

Recovery on Stream Ciphers. SASC 2008 - The State of the Art of Stream

Ciphers, 2008.

[2] R. L. Rivest. The MD5 message digest algorithm, 1992.

http://theory.lcs.mit.edu/rivest/rfc1321.txt. Request For Comments

1321.

[3] Secure Hash Standard. National Institute of Standards and Technology, Wash-

ington, 2002. http://csrc.nist.gov/publications/fips/. Note: Federal In-

formation Processing Standard 180-2.

[4] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strengthened

version of RIPEMD. In D. Gollmann, editor, Fast Software Encryption, volume

1039 of Lecture Notes in Computer Science, pages 71–82. Springer, 1996.

[5] R. L. Rivest. The MD4 message digest algorithm. In CRYPTO ’90: Proceedings of

the 10th Annual International Cryptology Conference on Advances in Cryptology,

pages 303–311, London, UK, 1991. Springer-Verlag.

[6] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,

HAVAL–128 and RIPEMD, 2004. URL: http://eprint.iacr.org/2004/199/.

[7] F. Chabaud and A. Joux. Differential collisions in SHA-0. In CRYPTO ’98:

Proceedings of the 18th Annual International Cryptology Conference on Advances

in Cryptology, pages 56–71, London, UK, 1998. Springer-Verlag.

[8] X. Wang and H. Yu. How to break MD5 and other hash functions. In Cramer

[158], pages 19–35.

[9] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions

of SHA-0 and reduced SHA-1. In Cramer [158], pages 36–57.

[10] Announcing the Development of New Hash Algorithm(s) for the Revision of

Federal Information Processing Standard (FIPS) 180-2, Secure Hash Standard.

117

http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Jan07.pdf,

2007.

[11] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22:644–654, 1976.

[12] SIG Bluetooth. Bluetooth specification. Available at http://www.bluetooth.com,

Accessed May 1, 2007, 2003.

[13] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2002.

[14] B. Preneel. New European Schemes for Signature, Integrity and Encryption

(NESSIE): A Status Report. In PKC ’02: Proceedings of the 5th International

Workshop on Practice and Theory in Public Key Cryptosystems, pages 297–309,

London, UK, 2002. Springer-Verlag.

[15] H. Imai and A. Yamagishi. CRYPTREC Project - Cryptographic Evaluation

Project for the Japanese Electronic Government. In ASIACRYPT ’00: Proceed-

ings of the 6th International Conference on the Theory and Application of Cryp-

tology and Information Security, pages 399–400, London, UK, 2000. Springer-

Verlag.

[16] eSTREAM, the ECRYPT Stream Cipher Project.

http://www.ecrypt.eu.org/stream, 2004.

[17] C.E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical

Journal, 28:656–715, 1949.

[18] A. Doğanaksoy, Ç. Çalık, F. Sulak, and M. Sönmez Turan. New randomness tests

using random walk. In II. Ulusal Kriptoloji Sempozyumu, 2006.

[19] M. Sönmez Turan, A. Doğanaksoy, and S. Boztaş. On Independence and Sensi-

tivity of Statistical Randomness Tests. In International Conference on Sequences

and Their Applications (SETA), Lecture Notes in Computer Science. Springer,

2008.

[20] E. Filiol. A new statistical testing for symmetric ciphers and hash functions. In

V. Varadharajan and Y. Mu, editors, International Conference on Information,

Communications and Signal Processing, volume 2119, pages 21–35, 2001.

[21] H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A framework

for chosen iv statistical analysis of stream ciphers. In K. Srinathan, C. Pandu

118

Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes

in Computer Science, pages 268–281. Springer, 2007.

[22] M. Sönmez Turan and O. Kara. Linear approximations for 2-round trivium. In

Proc. First International Conference on Security of Information and Networks

(SIN 2007), pages 96–105. Trafford Publishing, 2007.

[23] M. Sönmez Turan, A. Doğanaksoy, and Ç. Çalık. Statistical analysis of syn-

chronous stream ciphers. SASC 2006: Stream Ciphers Revisited, 2006.

[24] M. Sönmez Turan, Ç. Çalık, N. Buz Saran, and A. Doğanaksoy. New distinguish-

ers based on random mappings against stream ciphers. In International Confer-

ence on Sequences and Their Applications (SETA), Lecture Notes in Computer

Science. Springer, 2008.

[25] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In SAC

’02: Revised Papers from the 9th Annual International Workshop on Selected

Areas in Cryptography, pages 47–61, London, UK, 2003. Springer-Verlag.

[26] R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag New

York, Inc., New York, NY, USA, 1986.

[27] S. W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills, CA,

USA, 1981.

[28] S. W. Golomb and G. Gong. Signal Design for Good Correlation: For Wireless

Communication, Cryptography, and Radar. Cambridge University Press, New

York, NY, USA, 2004.

[29] P. Hawkes and G. G. Rose. Exploiting Multiples of the Connection Polynomial

in Word-Oriented Stream Ciphers. In ASIACRYPT ’00: Proceedings of the 6th

International Conference on the Theory and Application of Cryptology and In-

formation Security, pages 303–316, London, UK, 2000. Springer-Verlag.

[30] M. Hell, T. Johansson, and W. Meier. Grain - A Stream Cipher for Constrained

Environments. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010,

2005. http://www.ecrypt.eu.org/stream.

[31] B. Gammel, R. Göttfert, and O. Kniffler. The Achterbahn Stream Ci-

pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/002, 2005.

http://www.ecrypt.eu.org/stream.

119

[32] C. De Cannière and B. Preneel. Trivium - a stream cipher construction inspired

by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/030, 2005. http://www.ecrypt.eu.org/stream.

[33] C. Bigeard, S. O’Neil, B. Gittins, and H. Landman. VEST hardware dedicated

stream ciphers. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/032,

2005. http://www.ecrypt.eu.org/stream.

[34] E. Dawson, K. Chen, M. Henricksen, W. Millan, L. Simpson, and S. Moon H. Lee.

Dragon: A Fast Word Based Stream Cipher. eSTREAM, ECRYPT Stream

Cipher Project, Report 2005/006, 2005. http://www.ecrypt.eu.org/stream.

[35] D. Ferrero, R. Gonzalo, and M. Soriano. Some properties of non linear feedback

shift registers with maximum period. Proc. Sixth Int. Conf. Telecommunications

Systems, 1998.

[36] J. L. Massey and R. W. Liu. Equivalence of Nonlinear Shift-Registers. Informa-

tion Theory, IEEE Transactions, 10, 1964.

[37] A. Klapper and M. Goresky. Feedback shift registers, 2-adic span, and combiners

with memory. Journal of Cryptology, 10(2):111–147, 1997.

[38] A. Klapper. A survey of feedback with carry shift registers. In Tor Helleseth,

Dilip V. Sarwate, Hong-Yeop Song, and Kyeongcheol Yang, editors, SETA, vol-

ume 3486 of Lecture Notes in Computer Science, pages 56–71. Springer, 2004.

[39] C.J.A. Jansen. Stream cipher design based on jumping finite state machines.

Cryptology ePrint Archive, Report 2005/267, 2005.

[40] C. Jansen and A. Kolosha. Cascade Jump Controlled Sequence Generator. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2005/022, 2005.

[41] C. Carlet and P. Guillot. A new representation of Boolean functions. In AAECC-

13: Proceedings of the 13th International Symposium on Applied Algebra, Alge-

braic Algorithms and Error-Correcting Codes, pages 94–103, London, UK, 1999.

Springer-Verlag.

[42] Elif Yıldırım, Zülfükar Saygı, Meltem Sönmez Turan, and Ali Doğanaksoy. A sta-

tistical approach on the number of functions satisfying Strict Avalanche Criteria.

In Jean-Francis Michon, Pierre Valarcher, and Jean-Baptiste Yunès, editors, Pro-

ceedings of BFCA’05 Conference, March 7–8, 2005 Rouen, France, pages 39–48,

2005.

120

[43] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-

tographic applications. IEEE Transactions on Information Theory, 30(5):776–,

1984.

[44] G. G. Rose. A stream cipher based on linear feedback over GF(28). In ACISP

’98: Proceedings of the Third Australasian Conference on Information Security

and Privacy, pages 135–146, London, UK, 1998. Springer-Verlag.

[45] A. Klimov and A. Shamir. Cryptographic applications of t-functions. In Matsui

and Zuccherato [159], pages 248–261.

[46] A. Maximov. A New Stream Cipher Mir-1. eSTREAM, ECRYPT Stream Cipher

Project, Report 2005/017, 2005. http://www.ecrypt.eu.org/stream.

[47] V. Anashin, Bogdanov A., Kizhvatov I., and Kumar S. ABC: A New Fast Flexible

Stream Cipher. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001,

2005.

[48] J. Hong, D. H. Lee, Y. Yeom, D. Han, and S. Chee. T-function based stream

cipher TSC-4. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/024,

2005. http://www.ecrypt.eu.org/stream.

[49] A. N. Kolmogorov. Three approaches to the quantitative definition of information.

Problems of Information Transmission, 1:1–11, 1965.

[50] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source

code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[51] L. Lee and K. Wong. An elliptic curve random number generator. In R. Stein-

metz, J. Dittmann, and M. Steinebach, editors, Communications and Multimedia

Security, volume 192 of IFIP Conference Proceedings. Kluwer, 2001.

[52] J. Szczepanski, E. Wajnryb, J. Amigo, Maria V. Sanchez-Vives, and M. Slater.

Biometric random number generators. Computers & Security, 23(1):77–84, 2004.

[53] J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on

Information Theory, 15:122–127, 1969.

[54] R. T. C. Kwok and M. Beale. Aperiodic linear complexities of de bruijn sequences.

In CRYPTO ’88: Proceedings on Advances in cryptology, pages 479–482, New

York, NY, USA, 1990. Springer-Verlag New York, Inc.

[55] M. Stamp and C. F. Martin. An algorithm for the k-error linear complexity of

binary sequences with period 2n. IEEE Transactions on Information Theory,

39(4):1398–, 1993.

121

[56] A. G. B. Lauder and K. G. Paterson. Computing the error linear complexity

spectrum of a binary sequence of period 2n. IEEE Transactions on Information

Theory, 49(1):273–280, 2003.

[57] W. Meidl and H. Niederreiter. Counting functions and expected values for the

k-error linear complexity. Finite Fields Appl, 8:142–154, 2002.

[58] W. Meidl and H. Niederreiter. Counting functions and expected values for the

k-error linear complexity. Finite Fields Appl, 8:142–154, 2002.

[59] C.J.A Jansen. Investigations on nonlinear streamcipher systems: Construction

and evaluation methods. Ph.d. thesis, Technical University of Delft, 1989.

[60] D. Erdmann and S. Murphy. An approximate distribution for the maximum order

complexity. Designs Codes Cryptography, 10(3):325–339, 1997.

[61] A.M. Youssef and G. Gong. On the quadratic span of binary sequences.

http://citeseer.ist.psu.edu/309367.html.

[62] A. H. Chan and R. A. Games. On the quadratic spans of periodic sequences. In

CRYPTO ’89: Proceedings of the 9th Annual International Cryptology Confer-

ence on Advances in Cryptology, pages 82–89, London, UK, 1990. Springer-Verlag.

[63] A. Doğanaksoy and F. Göloğlu. On Lempel-Ziv complexity of sequences. In

G. Gong, T. Helleseth, H. Song, and K. Yang, editors, SETA, volume 4086 of

Lecture Notes in Computer Science, pages 180–189. Springer, 2006.

[64] M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita. CryptMT Stream Cipher

Version 3. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/028, 2007.

http://www.ecrypt.eu.org/stream.

[65] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert,

L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin,

and H. Sibert. Decimv2. eSTREAM, ECRYPT Stream Cipher Project, 2007.

http://www.ecrypt.eu.org/stream.

[66] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert,

L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin,

and H. Sibert. Decim-128. eSTREAM, ECRYPT Stream Cipher Project, 2007.

http://www.ecrypt.eu.org/stream.

[67] A. Biryukov. A New 128-bit Key Stream Cipher LEX. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2005/012, 2005.

http://www.ecrypt.eu.org/stream.

122

[68] H. Wu. Stream Cipher HC-256. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/011, 2005. http://www.ecrypt.eu.org/stream.

[69] G. Rose, P. Hawkes, M. Paddon, and M. W. de Vries. Primitive Specification

for NLS. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/019, 2005.

http://www.ecrypt.eu.org/stream.

[70] M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner. The Stream Cipher

Rabbit. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/024, 2005.

http://www.ecrypt.eu.org/stream.

[71] D. J. Bernstein. Salsa20 Design. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/025, 2005. http://www.ecrypt.eu.org/stream.

[72] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,

A. Gouget, L. Granboulan, C. Lauradoux, M Minier, T. Pornin, and

H. Sibert. Sosemanuk, a Fast Software-oriented Stream Cipher. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2005/027, 2005.

http://www.ecrypt.eu.org/stream.

[73] D. Gligoroski, S. Markovski, L. Kocarev, and M. Gusev. Edon80.

eSTREAM, ECRYPT Stream Cipher Project, Report 2005/007, 2005.

http://www.ecrypt.eu.org/stream.

[74] T. Berger, F. Arnault, and C. Lauradoux. F-FCSR. eSTREAM, ECRYPT Stream

Cipher Project, Report 2005/008, 2005. http://www.ecrypt.eu.org/stream.

[75] S. Babbage and M. Dodd. The Stream Cipher MICKEY (version

1). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/015, 2005.

http://www.ecrypt.eu.org/stream.

[76] J. Daemen and P. Kitsos. The self-synchronizing stream cipher moustique. eS-

TREAM, ECRYPT Stream Cipher Project, 2006.

[77] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

applied cryptography. CRC Press, Boca Raton, Florida, 1996. URL:

http://cacr.math.uwaterloo.ca/hac.

[78] E. Filiol. Decimation attack of stream ciphers. In B. K. Roy and E. Okamoto,

editors, INDOCRYPT, volume 1977 of Lecture Notes in Computer Science, pages

31–42. Springer, 2000.

[79] A. Braeken and J. Lano. On the (im)possibility of practical and secure nonlinear

filters and combiners. In Selected Areas in Cryptography, pages 159–174, 2005.

123

[80] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert,

L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin,

and H. Sibert. Decim, A New Stream Cipher for Hardware Applica-

tions. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/004, 2005.

http://www.ecrypt.eu.org/stream.

[81] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In

Douglas R. Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer

Science, pages 22–39. Springer, 1993.

[82] W. Meier and O. Staffelbach. The self-shrinking generator. In EUROCRYPT,

pages 205–214, 1994.

[83] S. R. Blackburn. The linear complexity of the self-shrinking generator. IEEE

Transactions on Information Theory, 45(6):2073–2077, 1999.

[84] L. Simpson, E. Dawson, J. Dj. Golic, and W. Millan. LILI keystream generator.

In SAC ’00: Proceedings of the 7th Annual International Workshop on Selected

Areas in Cryptography, pages 248–261, London, UK, 2001. Springer-Verlag.

[85] D. Whiting, B. Schneier, S. Lucks, and F. Muller. Phelix, Fast En-

cryption and Authentication in a Single Cryptographic Primitive. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2005/020, 2005.

http://www.ecrypt.eu.org/stream.

[86] E. Biham, R. J. Anderson, and L. R. Knudsen. Serpent: A new block cipher

proposal. In S. Vaudenay, editor, Fast Software Encryption, volume 1372 of

Lecture Notes in Computer Science, pages 222–238. Springer, 1998.

[87] C. Berbain, H. Gilbert, and J. Patarin. Quad: A practical stream cipher with

provable security. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of

Lecture Notes in Computer Science, pages 109–128. Springer, 2006.

[88] B. Yang, O. C. Chen, D. J. Bernstein, and J. Chen. Analysis of QUAD. In

A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science,

pages 290–308. Springer, 2007.

[89] R.L. Rivest. The RC4 encryption algorithm. RSA Data Security, Inc, 1992.

[90] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius.

Rabbit: A new high-performance stream cipher. In Thomas Johansson, editor,

FSE, volume 2887 of Lecture Notes in Computer Science, pages 307–329. Springer,

2003.

124

[91] P. Hawkes and G. Rose. On the Applicability of Distinguishing Attacks Against

Stream Ciphers. 2002.

[92] E. Zenner and M. Boesgaard. How Secure is Secure? On Message and IV Lengths

for Synchronous Stream Ciphers. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/039, 2005.

[93] A. Maximov. Cryptanalysis of the ”Grain” family of stream ciphers. In ASIACCS

’06: Proceedings of the 2006 ACM Symposium on Information, computer and

communications security, pages 283–288, New York, NY, USA, 2006. ACM.

[94] J. Dj. Golić. Linear models for keystream generators. IEEE Trans. Comput.,

45(1):41–49, 1996.

[95] J. Dj. Golić. Intrinsic statistical weakness of keystream generators. In ASI-

ACRYPT, pages 91–103, 1994.

[96] P. Ekdahl and T. Johansson. Distinguishing attacks on sober-t16 and t32. In

J. Daemen and V. Rijmen, editors, FSE, volume 2365 of Lecture Notes in Com-

puter Science, pages 210–224. Springer, 2002.

[97] D. Watanabe, A. Biryukov, and C. De Cannière. A distinguishing attack of snow

2.0 with linear masking method. In Matsui and Zuccherato [159], pages 222–233.

[98] S. Khazaei, M. M. Hasanzadeh, and M. S. Kiaei. Linear Sequential Circuit Ap-

proximation of Grain and Trivium Stream Ciphers. eSTREAM, ECRYPT Stream

Cipher Project, Report 2005/063, 2005.

[99] H. Englund, M. Hell, and T. Johansson. A note on distinguishing attacks. In In-

formation Theory for Wireless Networks, 2007 IEEE Information Theory Work-

shop, pages 1–4, 2007.

[100] C. De Cannire, J. Lano, B. Preneel, and J. Vandewalle. Distinguishing Attacks on

SOBER-t32. In Proceedings of the 3rd NESSIE Workshop, page 14, Munich,B,D,

2002.

[101] J. Daemen and G. Van Assche. Distinguishing stream ciphers with con-

volutional filters. Cryptology ePrint Archive, Report 2005/039, 2005.

http://eprint.iacr.org/.

[102] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm

of RC4. Lecture Notes in Computer Science, 2259:1–24, 2001.

125

[103] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,

M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for

random and pseudorandom number generators for cryptographic applications.

2001. http://www.nist.gov.

[104] M. Matsumoto, H. Mariko, T. Nishimura, and M. Saito. Cryptographic Mersenne

Twister and Fubuki Stream/Block Cipher. eSTREAM, ECRYPT Stream Cipher

Project, Report 2005/003, 2005. http://www.ecrypt.eu.org/stream.

[105] U. Kaiser. Hermes Stream Cipher. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/011, 2005. http://www.ecrypt.eu.org/stream.

[106] R. Vuckovac. MAG My Array Generator (A New Strategy for Random Number

Generation). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/014,

2005. http://www.ecrypt.eu.org/stream.

[107] E. Biham and J. Seberry. Py: A Fast Secure Stream Cipher using Rolling

Arrays. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023, 2005.

http://www.ecrypt.eu.org/stream.

[108] J. Hong, D. H. Lee, Y. Yeom, D. Han, and S. Chee. T-function based stream

cipher TSC-3. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/031,

2005. http://www.ecrypt.eu.org/stream.

[109] G. Gong and Y. Nawaz. The WG stream cipher. eSTREAM, ECRYPT Stream

Cipher Project, Report 2005/033, 2005. http://www.ecrypt.eu.org/stream.

[110] C. Gressel, R. Granot, and G. Vago. Zk-crypt - a compact stream cipher and

more. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/035, 2005.

http://www.ecrypt.eu.org/stream.

[111] G. Marsaglia. The Marsaglia random number CDROM including the DIEHARD

battery of tests of randomness. 1996.

[112] W. Caelli, E. Dawson, L. Nielsen, and H. Gustafson. CRYPT–X statistical pack-

age manual, measuring the strength of stream and block ciphers, 1992.

[113] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer

Programming. Addison-Wesley, 1981.

[114] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of ran-

dom number generators. ACM Transactions on Mathematical Software, 2006. to

appear.

126

[115] J. Soto. Randomness testing of the AES candidate algorithms, 1999.

[116] P. Hellekalek and S. Wegenkittl. Empirical evidence concerning AES. ACM

Trans. Model. Comput. Simul., 13(4):322–333, 2003.

[117] P.R. Kasselman. A statistical test for stream ciphers based on the maximum

order complexity. In South African Symposium On Communication and Signal

Processing, pages 213–218, 1998.

[118] U. M. Maurer. A universal statistical test for random bit generators. J. Cryptol.,

5(2):89–105, 1992.

[119] R. E. Greenwood. Coupon collector’s test for random digits. Math. Tables and

other Aids to Computation, 9:1–5, 224, 229, 1955.

[120] M.J.B. Robshaw. Stream ciphers. Technical Report TR - 701, July 1994.

[121] P. L’Ecuyer. Testing random number generators. In Proceedings of the 1992

Winter Simulation Conference, pages 305–313. IEEE Press, Dec 1992.

[122] J. L. Massey and S. Serconek. A Fourier Transform approach to the linear

complexity of nonlinearly filtered sequences. In CRYPTO ’94: Proceedings of

the 14th Annual International Cryptology Conference on Advances in Cryptology,

pages 332–340, London, UK, 1994. Springer-Verlag.

[123] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined

systems of equations. In ASIACRYPT, pages 267–287, 2002.

[124] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving

overdefined systems of multivariate polynomial equations. In EUROCRYPT,

pages 392–407, 2000.

[125] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-

back. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in

Computer Science, pages 345–359. Springer, 2003.

[126] F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In

Boneh [160], pages 162–175.

[127] N. Courtois. Algebraic attacks on combiners with memory and several outputs.

In Choonsik Park and Seongtaek Chee, editors, ICISC, volume 3506 of Lecture

Notes in Computer Science, pages 3–20. Springer, 2004.

[128] N. T. Courtois. Cryptanalysis of Sfinks. Cryptology ePrint Archive, Report

2005/243, 2005.

127

[129] H. Raddum. Cryptanalytic results on Trivium. eSTREAM, ECRYPT Stream

Cipher Project, Report 2006/039, 2006.

[130] F. K. Gürkaynak, P. Luethi, N. Bernold, R. Blattmann, V. Goode, M. Marghitola,

H. Kaeslin, N. Felber, and W. Fichtner. Hardware Evaluation of eSTREAM

Candidates: Achterbahn, Grain, Mickey, Mosquito, Sfinks, Trivium, Vest, ZK-

crypt. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/015, 2006.

[131] M. Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT ’93:

Workshop on the theory and application of cryptographic techniques on Advances

in cryptology, pages 386–397, Secaucus, NJ, USA, 1994. Springer-Verlag New

York, Inc.

[132] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE

Trans. Computers, 34(1):81–85, 1985.

[133] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.

Journal of Cryptology, 1(3):159–176, 1989.

[134] V. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast

correlation attacks on stream ciphers. In Fast Software Encryption, pages 181–

195, London, UK, 2001. Springer-Verlag.

[135] J. Dj. Golić. Linear cryptanalysis of stream ciphers. In Fast Software Encryption,

pages 154–169, 1994.

[136] F. Muller and T. Peyrin. Linear cryptanalysis of the TSC family of stream ciphers.

In ASIACRYPT, pages 373–394, 2005.

[137] M. Hell and T. Johansson. On the Problem of Finding Linear Approximations

and Cryptanalysis of Pomaranch Version 2. In SAC, 2006.

[138] Jr. B. S. Kaliski and M. J. B. Robshaw. Linear cryptanalysis using multiple

approximations. In CRYPTO, pages 26–39, London, UK, 1994. Springer-Verlag.

[139] M.J. O. Saarinen. Chosen-IV Statistical Attacks on eSTREAM Stream Ci-

phers. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/013, 2006.

http://www.ecrypt.eu.org/stream.

[140] S. O’Neil. Algebraic structure defectoscopy. Cryptology ePrint Archive, Report

2005/378, 2007.

[141] M. Hell, T. Johansson, A. Maximov, and W. Meier. A stream cipher proposal:

Grain-128. ISIT, Seattle, USA, 2006.

128

[142] I. N. Kovalenko. Distribution of the linear rank of a random matrix. Theory of

Probability and Its Applications, (17):342–346, 1972.

[143] M. E. Hellman. A cryptanalytic time-memory trade off. IEEE Trans. Inform.

Theory, IT-26:401–406, 1980.

[144] H. Babbage. Improved exhaustive search attacks on stream ciphers. European

Convention on Security and Detection, IEE Conference publication, (408):161–

166, 1995.

[145] J. D. Golić. Cryptanalysis of alleged A5 stream cipher. In Walter Fumy, editor,

Advances in Cryptology - EuroCrypt ’97, pages 239–255, Berlin, 1997. Springer-

Verlag. Lecture Notes in Computer Science Volume 1233.

[146] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for

stream ciphers. In Okamoto [161], pages 1–13.

[147] J. Hong and P. Sarkar. Rediscovery of time memory tradeoffs. Cryptology ePrint

Archive, Report 2005/090, 2005. http://eprint.iacr.org/.

[148] J. Quisquater, F. Standaert, G. Rouvroy, J. David, and J. Legat. A cryptanalytic

time-memory tradeoff: First FPGA implementation. In FPL ’02: Proceedings of

the Reconfigurable Computing Is Going Mainstream, 12th International Confer-

ence on Field-Programmable Logic and Applications, pages 780–789, London, UK,

2002. Springer-Verlag.

[149] P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-off. In Boneh

[160], pages 617–630.

[150] M. O. Saarinen. A time-memory tradeoff attack against LILI-128. In FSE ’02:

Revised Papers from the 9th International Workshop on Fast Software Encryp-

tion, pages 231–236, London, UK, 2002. Springer-Verlag.

[151] A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis of A5/1 on a

PC. In FSE, pages 1–18, 2000.

[152] Ö. Küçük. Slide resynchronization attack on the initialization of Grain 1.0. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2006/044, 2006.

[153] T. Helleseth, C. J.A. Jansen, and A. Kholosha. Pomaranch - design and analysis

of a family of stream ciphers. eSTREAM, ECRYPT Stream Cipher Project,

Report 2006/008, 2006.

129

[154] M. J. Mihaljevic and J. Dj. Golić. A fast iterative algorithm for a shift register ini-

tial state reconstruction given the nosiy output sequence. In Jennifer Seberry and

Josef Pieprzyk, editors, AUSCRYPT, volume 453 of Lecture Notes in Computer

Science, pages 165–175. Springer, 1990.

[155] F. Jönsson and T. Johansson. A fast correlation attack on LILI-128. Inf. Process.

Lett., 81(3):127–132, 2002.

[156] T. Moreau. The Frogbit cipher, A Data Integrity Algorithm. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2005/009, 2005.

http://www.ecrypt.eu.org/stream.

[157] M. O. Saarinen. d-monomial Tests are Effective against Stream Ciphers. SASC

2006-The State of the Art of Stream Ciphers http://www.ecrypt.eu.org/stream

2006,.

[158] R. Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture

Notes in Computer Science. Springer, 2005.

[159] Mitsuru Matsui and Robert J. Zuccherato, editors. Selected Areas in Cryptogra-

phy, 10th Annual International Workshop, SAC 2003, Ottawa, Canada, August

14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science.

Springer, 2004.

[160] D. Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 17-21,

2003, Proceedings, volume 2729 of Lecture Notes in Computer Science. Springer,

2003.

[161] T. Okamoto, editor. Advances in Cryptology - ASIACRYPT 2000, 6th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture

Notes in Computer Science. Springer, 2000.

[162] G. Boero, J. Smith, and K. F. Wallis. The sensitivity of chi-squared goodness-

of-fit tests to the partitioning of data. Econometric Reviews, 23(4):341–370,

January 2005. available at http://ideas.repec.org/a/taf/emetrv/v23y2005i4p341-

370.html.

[163] J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization weaknesses in

synchronous stream ciphers. In EUROCRYPT ’93: Workshop on the theory and

130

application of cryptographic techniques on Advances in cryptology, pages 159–167,

Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[164] F. Armknecht, J. Lano, and B. Preneel. Extending the resynchronization attack.

In Selected Areas in Cryptography, pages 19–38, 2004.

[165] S. Kiyomoto, T. Tanaka, and K. Sakurai. Experimental Analysis of Guess-and-

Determine Attacks on Clock-Controlled Stream Ciphers. IEICE Transactions,

88-A(10):2778–2791, 2005.

[166] J. Mattsson. A Guess and Determine Attack on The Stream Cipher Polar

Bear. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/017, 2006.

http://www.ecrypt.eu.org/stream.

[167] P. Hawkes and G. G. Rose. Guess-and-Determine Attacks on SNOW. In Selected

Areas in Cryptography, pages 37–46, 2002.

[168] D. Bleichenbacher and S. Patel. Sober crytanalysis. In Lars R. Knudsen, editor,

Fast Software Encryption, volume 1636 of Lecture Notes in Computer Science,

pages 305–316. Springer, 1999.

[169] P. Hawkes and G. G. Rose. Exploiting multiples of the connection polynomial in

word-oriented stream ciphers. In Okamoto [161], pages 303–316.

[170] Y. Zhou and D. Feng. Side-Channel Attacks: Ten Years After Its Publication

and the Impacts on Cryptographic Module Security Testing. Cryptology ePrint

Archive, Report 2005/388, 2005.

[171] C. Rechberger and E. Oswald. Stream Ciphers and Side-Channel Analysis. SASC

2004-The State of the Art of Stream Ciphers, 2004.

131

Appendix A

Basics of Statistical Inference

A.1 Probability Theory

Probability theory is based on the paradigm of a random experiment. Sample space

of an experiment is the set of all possible outcomes. An event is a subset of a sample

space. If the observed outcome of an experiment is an element of the set E, then the

event E is said to occur.

Let Ω be a sample space and P be a function that associates a number for each

event. Then, P is called a probability measure provided that (i) for any event E,

0 ≤ P (E) ≤ 1, (ii) P (Ω) = 1, (iii) for any sequence E1, E2, . . . of disjoint events,

P (∪∞i=1Ei) =
∞∑
i=1

P (Ei). (A.1.1)

A random variable is a function defined on the points of the sample space. Random

variables that take only distinct values on a scale are called discrete random variable,

whereas random variables having values on a continuum are called continuous random

variables.

The probability distribution of a discrete random variable X associates a probability

f(x) = Pr(X = x) with each distinct outcome x. For continuous random variables,

the distribution corresponds to the mathematical function for which the area under the

curve corresponding to any interval is equal to the probability that X with take on a

value in the interval, that is

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx (A.1.2)

for any real constants a and b with a ≤ b.

132

The cumulative distribution function F of X is defined as F (a) = P (X ≤ a) for

−∞ < a <∞. For discrete random variables, it corresponds to the summation F (a) =∑
x≤a f(x), and for continuous random variables, it corresponds to the integral F (a) =∫ a

−∞ f(x)dx.

Let X be a continuous random variable with probability distribution f(x), and

u(x) be a function of X such that
∫∞
−∞ u(x)f(x)dx (

∑
x u(x)f(x) for discrete random

variables) exists, the integral (or the sum) is called the mathematical expectation of

u(X) and denoted by E[u(x)]. The mean value µ of a random variable X is defined as

µ = E[X], if exists. The variance of X, denoted by σ2, is equal to E[(X − µ)2].

Linear relation between two random variables X and Y can be measured by two

measures covariance and correlation of correlation. The covariance of two random

variables cov(X, Y) is defined as

cov(X, Y) = E[(X − µx)(Y − µy)] = E[XY]− E(X)E[Y] (A.1.3)

The correlation of coefficient ρX,Y between two random variables X and Y is

ρX,Y =
cov(X, Y)

σxσy
(A.1.4)

where σx and σy are the standard deviations of X and Y , respectively. The correlation

coefficient ρ{X, Y } takes values between -1 and 1. The coefficient 1 is obtained when

Y = a + bX with a positive b value, similarly the coefficient −1 is obtained when

Y = a + bX with a negative b value. As the coefficient gets close to -1 or 1, the

correlation between variables gets stronger. A coefficient of correlation of 0 indicate

that there is no linear relation between X and Y .

The discrete random variables X1, . . . , Xn are independent if

P [X1 = a1, . . . , Xn = an] = P (X1 = a1) · · ·P (Xn = an) (A.1.5)

for all ai ∈ E.

A.1.1 Some Special Distributions

The probability distribution of Discrete Uniform Distribution is

p(x) =

{
1
k , if x = 1, 2, . . . , k

0, otherwise

133

with mean (k+1)
2 and variance (k2−1)

12 .

The probability distribution of Bernoulli Distribution is

p(x) =

p if x = 1

1− p if x = 0

0 otherwise

where p is the probability of success. The mean and the variance of the Bernoulli

distribution is µ = p and σ2 = p(1− p), respectively.

The sum of n independent and identically distributed (i.i.d.) Bernoulli random vari-

ables is called the binomial random variable. The distribution of Binomial distribution

is

p(x) =
(

n

x

)
px(1− p)n−x (A.1.6)

with mean µ = np and σ2 = np(1− p).

The probability distribution of continuous uniform distribution is f(x) = 1
(b−a)

where a ≤ x ≤ b. The mean and variance of a continuous uniform probability distribu-

tion are µ = (b+a)
2 and σ2 = (b−a)2

12 .

The Normal distribution (also called Gaussian distribution) is widely used and has

great importance in many fields. The distribution is determined by two parameters,

mean µ and variance σ2 and represented by N(µ, σ2). The probability distribution

with mean µ and standard deviation σ is given as

f(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 (A.1.7)

where −∞ < x, µ < ∞ and σ > 0. The cumulative distribution function of normal

distribution is

F (x;µ, σ) = Pr(X < x) =
1√
2πσ

∫ x

−∞
e−

(u−µ)2

2σ2 du

= Φ(
x− µ

σ
)

where Φ is the cumulative distribution function of the standard normal distribution

which is a special case of Normal distribution with µ = 0 and σ = 1. If the random

variable X is normally distributed with mean µ and variance σ2, σ2 > 0, then the

random variable Y = (X−µ)
σ is distributed standard normally.

For a random variable X ∼ N(0, 1), the probability that X is between −a and a

134

where a > 0 is

Pr(−a < X < a) = Φ(a)− Φ(−a) = 2Φ(a)− 1 (A.1.8)

for any µ and σ.

Importance of the Normal distribution lies on the following Central Limit Theorem

which is the foundation of many statistical procedures.

Theorem A.1.1. Let X1, . . . , Xn is a random sample from a distribution with mean

µ and variance σ2 > 0. Then, the random variable Y = (
∑n

i=1 Xi−nµ)√
nσ

has a standard

normal limiting distribution.

For large n, Binomial approximation can be approximated by the Normal distri-

bution, given that the distribution is not highly skewed. As a rule of thumb, np and

n(1− p) should be greater than 5.

The probability distribution of the Gamma distribution is

f(x|α, β) =
βα

Γ(α)
xα−1e−βx (A.1.9)

for x ≥ 0 where α and β are input parameters and Γ[α] =
∫∞
0 xα−1e−xdx. Gamma

distributions with parameters α and β are denoted as Γ(α, β).

χ2
n is the distribution of X2

1 + · · · + X2
n, where X1, . . . , Xn are i.i.d standard nor-

mal. Gamma distribution with parameters n
2 and 1

2 , Γ(n
2 , 1

2), coincides with the χ2
n

distribution.

A.2 Hypothesis Testing

In most of the statistical inferences, hypothesis testing is employed in which the null

hypothesis H0 is tested against the alternative hypothesis H1 (or Ha). A hypothesis

is a statement or a conjecture about the distribution of one or more random variables.

The null hypothesis claims a theory that is believed to be true or is used as a basis for

argument, but has not been proved. In randomness testing, an example null hypothesis

is The data is generated by a truly random generator.

A hypothesis test is defined by a test statistic T whose distribution under H0 is

either well approximated or known. The aim is to find an empirical evidence against

H0, if the evidence is found in a reasonable time, then H0 is rejected. There are two

possible decisions reject H0 or do not reject H0. Concluding do not reject H0, does not

mean that H0 is true, the only suggestion is that there is not sufficient evidence against

H0 in favor of the alternative hypothesis.

135

While testing the hypothesis θ ∈ δ, the sample is partitioned into subsets {S0, S1}
and if T ∈ S0 then the null hypothesis can not be rejected and otherwise the alternative

hypothesis is accepted. Here, S0 is known as the acceptance region and S1 as the critical

region of the test. There are two similar decision ways; to check the test statistic T

and if T is in S0 conclude H0, otherwise conclude H1. The second way to decide

is to use a probability value that corresponds to the probability of observing a test

statistic as extreme or more extreme than the observed test statistic given that the

null hypothesis H0 is true. This probability value is called p-value. Obtaining small

p-values is considered as evidence against the null hypothesis. If the output p-value is

less than the significance level α, then H0 is rejected, otherwise H1 is accepted.

The probability of rejecting null hypothesis H0 when H0 is in fact true is called the

significance level or size of the test, α and 1− α is called the confidence level.

P (Type I error) = P (T ∈ S1|θ ∈ δ) = α (A.2.1)

Another type of error, Type II error or β is done if H0 is accepted when in fact H1

is true.

P (Type II error) = P (T ∈ S0|θ /∈ δ) = β (A.2.2)

The power of test, 1−β, is defined to be the probability that type II error is not made,

equivalently it is the ability of a test to detect a defect, if it exists. As expected, these

two errors probabilities, α and β are inversely related.

The procedure of hypothesis testing is given in the following algorithm.

Algorithm A.2.1: Hypothesis Testing(−)

Formulate H0 and H1 ;

Choose level of significance, α;

Collect a sample;

Calculate test statistic, T ;

p− value = Pr(x > T |H0);

if p− value < α

decision = Reject H0;

else decision = Not reject H0;

return (decision)

136

Goodness of Fit Tests

One classical problem in statistics is the degree of correspondence between observed

values and the expected values based on a hypothesized distribution. There are several

nonparametric approaches to test goodness of fit.

Pearson’s Chi Square (χ2) Test involves grouping data into classes and comparing

observed outcomes to the expected figures under the null distribution. The tests is

applied to both continuous and discrete data, however the data should be categorized

into groups. The structure of the test is as follows; firstly the data is categorized into

k mutually exclusive groups and the test statistic is defined as

χ2 =
k∑

i=1

(oi − ei)2/ei (A.2.3)

where oi and ei is the observed and expected frequency for group i, respectively. If

H0 is true, then χ2 is distributed according to χ2(k − 1− p) where k is the number of

groups and p is the number of parameters estimated from the data.

For the χ2 approximation to be valid, the expected frequency of each group should

be at least 5. Therefore, enough sample size should be available. One assumption of

the model is that the sample is independent and identically distributed.

The test statistic highly depend on the the categorization of data. In [162], some

points are emphasized about the usage of χ2 tests

• The number of classes should be in the range 8-12 to maximize the power of χ2.

• The choice of non-equiprobable classes can increase the power of the χ2 test

significantly.

Kolmogorov Smirnov Test is another approach to test goodness of fit and it utilizes

the empirical cumulative distribution function.

Definition A.2.1. Let x1, x2, . . . , xn be a random sample. The empirical distribution

S(x) is a function of x, that equals to the proportion of xi’s less than or equal to x, for

each x, that is,

S(x) =
n(i)
N

(A.2.4)

where n(i) is the number of points less than xi

The Kolmogorov-Smirnov test statistic is the maximum distance between the em-

137

pirical and the hypothesized distribution F ∗(x), that is

T = maxx|S(x)− F ∗(x)|. (A.2.5)

The test statistics does not depend on the underlying distribution, however it can

only be applied to continuous distributions. The population mean and variance should

be known to apply this test.

138

Appendix B

Other Attacks Against Stream

Ciphers

The details of the distinguishing, correlation, algebraic and TMTO attacks against

stream ciphers are presented in the thesis. Basics of resynchronization, guess and

determine and side channel attacks are presented in this part of the study.

B.1 Resynchronization Attacks

The transmission of ciphertext is assumed to be done using a noisy channel. Due to

the noise, some modifications such as flip/flop or insertion/deletion errors may occur.

If the value of a ciphertext bit is changed, decryption of the corresponding bit is done

incorrectly and remaining bits are not affected which means that the flip/flop errors

in synchronous stream ciphers are not propagated. However, if a ciphertext bit is

deleted or inserted during transmission, synchronization between sender and receiver

is lost. If sender and receiver are not synchronized in other words do not have exact

same internal state variables, it is not possible to decrypt the ciphertext correctly until

synchronization is reestablished.

Different resynchronization mechanisms can be used depending on the selected pro-

tocol. The first method is the fixed resynch in which the message is divided into frames

of equal length and each frame is encrypted using a different IV. This approach is

commonly used in wireless communication applications such as Bluetooth and GSM

systems. The frame length is selected depending on the probability of error, in GSM

applications, the frame length is selected as 228 bits. Second method can be given as

requested resync in which resynchronization is done only when it is lost and detected by

the receiver. As another approach, some special markers may be placed in predefined

139

intervals to avoid synchronization lost.

The first resynchronization attack is described by Daemen et al. [163]. According to

the attack scenario, the attacker has access to R frames (zi
0, z

i
1, . . . , z

i
T), i = 0, 2, . . . , R−

1 and their corresponding IVs. This attack is applicable to ciphers having following

structure;

Si
0 = A.K + B.IV i,

zi
t = f(ΠSi

t),

Si
t+1 = L.Si

t

where A ∈ Zn×k
2 , B ∈ Zn×v

2 , L ∈ Zn×n
2 and Π ∈ Zϕ×n

2 are known. Since A and B

are linear, this attack only works for stream ciphers with linear resynchronizations.

According to the matrix Π, only ϕ of n bits are used in keystream generation. To

obtain the secret key K, the following equations are utilized;

Kt = Π · Lt ·A ·K, (B.1.2a)

IV i
t = Π · Lt ·A · IV i. (B.1.2b)

The system of equations may be given as

zt
i = f(Kt ⊕ IVt) , (B.1.3a)

for 0 ≤ i ≤ R− 1 and 0 ≤ t ≤ T − 1. For small values of ϕ, exhaustive key search may

be done on Kt for each t using R equations. When R is larger than ϕ, unique solution

of Kt can be found. This procedure may be repeated until the entire key is found. The

complexity of the attack is dk/ϕe · 2ϕ evaluations of f , at least ϕ resynchronizations,

and k bits from the kesytream in total. The main drawback of the attack is that it

requires the cipher to have a linear initialization. Also, for large ϕ, the complexity of

the attack is very high. In [164], the idea of resynchronization attacks is extended and

the attack is combined with algebraic attacks and linear cryptanalysis.

B.2 Guess and Determine Attacks

In Guess and Determine attacks, as the name implies, the general approach is to

guess some of the secret variables and then to determine the value of other variables

based on the observed keystream. To remove nonlinearity of the system, some assump-

tions are made and new linear recurrences that reduces the number of variables to be

guessed are obtained.

140

The procedure can be summarized as follows;

• Guessing some parts of key or the internal state bits,

• Determining the rest of the unknown bits, using an assumption,

• Comparing generated keystream with the available keystream, to check whether

the guess is correct. If the guess is correct, it can be confirmed by using the

output keystream. If the guess is not correct, a new guess is made and the whole

procedure is repeated.

For a stream cipher with k bit key, the attack is successful if 2g.(1/p).w ≤ 2k where

g is the number of guessed variables, p is the probability that the assumption holds

and w is the work done to check whether guessed bits are correct when the assumption

holds. The expected required number of trials is given by 1/p. A problem regarding

the probability of the assumptions is pointed out by [165] and it is claimed that the

internal states that permit a guess and determine attack are non-uniformly distributed

in the period of the cipher. Thus it is claimed that the real average of complexity of a

guess and determine attack is approximately twice the theoretical complexity.

Some examples of the attack may be listed as follows. A guess and determine attack

is presented in [166] against Polar Bear that requires the internal state with complexity

of O(279) and 24 bytes of keystream. In [167], two attacks are presented against SNOW,

the first of them has data complexity O(264) and process complexity O(2256) and the

second has process complexity of O(2224) and a data complexity of O(295). Another

attack is against SOBER by Bleichenbacher and Patel [168].

Using irregular clocking increases resistance to guess and determine attacks, but the

ciphers excluding the irregular clocking part should be designed secure against guess

and determine attacks. Also, in [169], it is shown that guess and determine attacks are

more effective in word-oriented stream ciphers.

B.3 Side Channel Attacks

Side channel attacks utilize implementation-specific characteristics such as time

delays, power consumptions or electromagnetic radiation. Since these attacks are im-

plementation specific, physical implementation of the cipher is very critical, even tiny

changes may result in big differences in security. Timing attacks and power analysis are

important types of side channel attacks. In timing attacks, the time taken to execute

various steps in algorithms is analyzed. In power analysis, the attacker uses the varying

141

power consumption of a cryptographic hardware device during computation and tries

to find information about the state of the device. Other types of side channel attacks;

fault, electromagnetic, acoustic, visible light, error message, cache based, frequency

based, scan based attacks are summarized in [170].

To avoid side channel attacks in stream ciphers, apart from implementation issues,

in [171], it is advised not to use building blocks such as stuttering phase in Sober-t32

and repeated manipulations of same bytes as in key schedule of RC4.

142

Appendix C

NIST Test Results

We test the Phase I candidates of eSTREAM using the test suite of NIST [103].

First, we generated 100 keystreams each having length 220, by randomly chosen key

and IV pairs then, tested the outputs of all candidates using 15 tests with variable

parameters. We obtained 100 × 188 many p-values for each cipher. The results that

indicate weaknesses are summarized in Table C.1. Significant deviations are observed

for Decim and Frogbit.

Table C.1: The result of NIST tests that indicate weaknesses. There are total of 148
nonperiodic template test results for each cipher, and Decim fails 11 of them.

Cipher Test p-value proportion
Decim Block Frequency 0.000000 0.0000

Runs 0.000000 0.0200
Longest Run 0.000000 0.9300
Nonperiodic Templates 0.000000 0.7200
Overlapping Templates 0.000000 0.7500
Approximate Entropy 0.000000 0.8900

Frogbit Frequency 0.000000 1.0000
Block Frequency 0.000000 0.9200
Cumulative Sum 0.000000 1.0000

143

Appendix D

F1 for 2-round Trivium

z1 = 1+s0(3)+s0(6)+s0(15)+s0(21)+s0(27)+s0(30)+s0(39)+s0(54)+s0(57)+

s0(67) + s0(68) + s0(69) + s0(72) + s0(96) + s0(99) + s0(114) + s0(117) + s0(123) +

s0(126)+s0(132)+s0(138)+s0(144)+s0(165)+s0(171)+s0(4).s0(5)+s0(13).s0(14)+

s0(13).s0(41)+s0(13).s0(119)+s0(14).s0(40)+s0(14).s0(118)+s0(16).s0(17)+s0(19).s0(20)+

s0(19).s0(47)+s0(19).s0(125)+s0(20).s0(46)+s0(20).s0(124)+s0(22).s0(23)+s0(25).s0(26)+

s0(28).s0(39)+s0(34).s0(35)+s0(37).s0(38)+s0(37).s0(65)+s0(37).s0(143)+s0(38).s0(64)+

s0(39).s0(40)+s0(38).s0(142)+s0(40).s0(119)+s0(41).s0(118)+s0(43).s0(44)+s0(45).s0(46)+

s0(46).s0(125)+s0(47).s0(124)+s0(49).s0(50)+s0(52).s0(53)+s0(58).s0(59)+s0(58).s0(164)+

s0(59).s0(163)+s0(61).s0(62)+s0(63).s0(64)+s0(64).s0(65)+s0(64).s0(143)+s0(64).s0(170)+

s0(65).s0(169)+s0(65).s0(142)+s0(67).s0(68)+s0(70).s0(71)+s0(76).s0(77)+s0(79).s0(77)+

s0(103).s0(104)+s0(106).s0(107)+s0(118).s0(119)+s0(124).s0(125)+s0(127).s0(128)+

s0(130).s0(131) +

s0(133).s0(149) + s0(134).s0(148) + s0(142).s0(143) + s0(147).s0(148) +

s0(151).s0(152) + s0(154).s0(155) + s0(160).s0(161) + s0(163).s0(164) +

s0(166).s0(167) + s0(13).s0(39).s0(40) + s0(14).s0(38).s0(39) +

s0(19).s0(45).s0(46) + s0(20).s0(44).s0(45) + s0(37).s0(63).s0(64) +

s0(38).s0(39).s0(40) + s0(38).s0(39).s0(41) + s0(38).s0(39).s0(119) +

s0(38).s0(62).s0(63) + s0(39).s0(40).s0(118) + s0(44).s0(45).s0(46) +

s0(44).s0(45).s0(47) + s0(44).s0(45).s0(125) + s0(45).s0(46).s0(124) +

s0(62).s0(63).s0(64) + s0(62).s0(63).s0(65) + s0(62).s0(63).s0(143) +

s0(63).s0(64).s0(142) + s0(133).s0(147).s0(148) + s0(134).s0(146).s0(147)

with bias 2−9.

144

Appendix E

Linear Regression Model for

d-monomial Test of Grain

Linear regression is a statistical tool to analyze the relationship between two vari-

ables; X and Y . One of the variables is considered to be explanatory and the other is

considered to be dependent variable. Linear regression models the relation by fitting a

linear equation to the observed data. The linear equation has the form Y = a + bX,

where X is the explanatory variable and Y is the dependent variable. The association

between X and Y are measured by the correlation coefficient that takes values between

-1 and 1.

In this part, we model the relationship between the number of IVs and number

of rounds using linear regression. We fit a linear equation to the observed data of

d-monomial test of Grain as given in Figure E.1.

Figure E.1: The linear regression model for d-monomial test of Grain

The trend equation is obtained as y = 0.3981092437x − 52.21953782 where y

represents the number of IVs and x represents the number of rounds in initializa-

tion. The correlation coefficient of the model is 0.96850. Using this model, the

145

prediction of required number of IVs to attack Grain with d-monomial test is y =

0.3981092437(256)− 52.21953782 = 49.69643 ≈ 50.

146

VITA

Meltem Sönmez Turan was born in Samsun on May 27, 1977. She received her BSc

degree in Department of Statistics from Middle East Technical University (METU),

in June 1999 and her MS degree in Industrial Engineering Department in January

2003, specializing in genetic algorithms. During her BS studies, she also received a

minor degree in Production Planning and Control from from Industrial Engineering

Department, METU. She had worked as a teaching assistant in Informatics Institute,

METU between 1999 and 2006.

In April 2008, she received her PhD degree in Cryptography Department of METU.

Her research interests are analysis of symmetric cryptosystems, hash functions and

genetic algorithms.

Meltem is married to Fehmi Fırat Turan.

List of Publications

• Sönmez Turan M., Doğanaksoy A., Boztaş S., On Independence and Sensitivity of

Statistical Randomness Tests, International Conference on Sequences and Their

Applications (SETA), Lecture Notes of Computer Science, Springer-Verlag, 2008.

• Sönmez Turan M., Çalık Ç., Buz Saran N., Doğanaksoy A., New Distinguishers

Based on Random Mappings Against Stream Ciphers, International Conference

on Sequences and Their Applications (SETA) Lecture Notes of Computer Science,

Springer-Verlag, 2008.

• Sönmez Turan M., Kara O. Linear Approximations for 2-round Trivium, SASC07

Stream Ciphers Revisited, Bochum, Germany 2007, also in Proc. First Interna-

tional Conference on Security of Information and Networks (SIN 2007), Gazima-

gusa, TRNC, May 2007, Trafford Publishing, 96-105, ISBN: 978-1-4251-4109-7.

147

• Englund H., Johansson T., Sönmez Turan M., A Framework for Chosen IV Sta-

tistical Analysis of Stream Ciphers, Tools for Cryptanalysis, Poland, 2007 also in

Progress in Cryptology - INDOCRYPT 2007, volume 4859 of Lecture Notes of

Computer Science, 268-281, Springer-Verlag, 2007.

• Sönmez Turan M., Doğanaksoy A., Çalık Ç., Statistical Analysis of Synchronous

Stream Ciphers, SASC06 Stream Ciphers Revisited, Leuven, Belgium 2006

• Doğanaksoy A., Çalık Ç., Sulak F., Sönmez Turan M., New Randomness Tests

Using Random Walk, 2. Ulusal Kriptoloji Sempozyumu, Ankara, 2006.

• Saygı E., Saygı Z., Sönmez Turan M., Doğanaksoy A., Statistical approach on the

number of functions satisfying SAC, BFCA’05, Boolean Functions: Cryptography

and Applications, Editors: J-F. Michon, P. Valarcher, J-B. Yuns, pp. 39-48, 7-9

Mart 2005, Rouen, France.

• Süral H., Sönmez Turan M, Özdemirel, Nur E., Nearest Neighborhood and Greedy

Crossovers in an Evolutionary Algorithm for Solving Traveling Salesman Problem,

MIC’05, The 6th Metaheuristics International Conference, Vienna, Austria., 2005

• Toz D., Doğanaksoy A., Sönmez Turan M., Statistical Analysis of Block Ciphers,

First National Cryptology Symposium, Ankara, Turkey 2005

• Sönmez M., Özdemirel N.E., Süral H., An Evolutionary Approach to Travelling

Salesman Problem, YA/EM’02, Operational Research and Industrial Engineering

XXIII. National Congress, İstanbul, Turkey, 2002

148

