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abstract

ANALYSIS OF TURKISH STOCK MARKET WITH

MARKOV REGIME SWITCHING VOLATILITY

MODELS

Karadaḡ, Mehmet Ali

M.Sc., Department of Financial Mathematics

Supervisor: Assist. Prof. Dr. Seza Danışoğlu

Co-advisor: Dr. C. Coşkun Küçüközmen

August 2008, 88 pages

In this study, both uni-regime GARCH and Markov Regime Switching GARCH

(SW-GARCH) models are examined to analyze Turkish Stock Market volatility.

We investigate various models to find out whether SW-GARCH models are an

improvement on the uni-regime GARCH models in terms of modelling and fore-

casting Turkish Stock Market volatility. As well as using seven statistical loss

functions, we apply Superior Predictive Ability (SPA) test of Hansen (2005) and

Reality Check test (RC) of White (2000) to compare forecast performance of

various models.

Keywords: Volatility, Markov Regime Switching GARCH models, Turkish Stock

Market, Superior Predictive Ability test.
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öz

TÜRKİYE HİSSE SENETLERİ PİYASASININ MARKOV

REGIME SWITCHING VOLATİLİTE MODELLERİ İLE

ANALİZİ

Karadaḡ, Mehmet Ali

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Yar. Doç. Dr. Seza Danışoğlu

Tez Yönetici Yardımcısı: Dr. C. Coşkun Küçüközmen

Ağustos 2008, 88 sayfa

Bu çalışmada Türkiye Hisse Senetleri Piyasası volatilitesinin analiz edilmesi ama-

cıyla uni-regime GARCH ve Markov Regime Switching GARCH (SW-GARCH)

modelleri incelenmiştir. Türkiye Hisse Senetleri Piyasası volatilitesinin modellen-

mesi ve öngörürülmesi bakımından SW-GARCH modellerinin uni-regime GARCH

modellerine göre daha iyi tahminler yapıp yapmadıḡı araştırılmıştır. Bir çok

modelin öngörü performanslarını karşılaştırmak amacıyla yedi istatistiksel kayıp

fonksiyonunun yanında Superior Predictive Ability (Hansen, 2005) ve Reality

Check (White, 2000) testleri de kullanılmıştır.

Anahtar Kelimeler: Volatilite, Markov Regime Switching GARCH modelleri,

Türkiye Hisse Senetleri Piyasası, Superior Predictive Ability testi.
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chapter 1

INTRODUCTION

1.1 Introduction

Volatility can simply be represented as fluctuations in returns. This issue is

extremely crucial for many financial activities such as risk management, deriva-

tive pricing, hedging, market making and portfolio management. Over the last

decades, there has been enormous interest in modelling and forecasting volatil-

ity among both market professionals and academicians. Given the importance

of volatility, many models have been developed. These models can be collected

under three groups: econometric modelling such as Generalized Autoregressive

Conditionally Heteroscedasticity (GARCH) type and stochastic volatility type

models, implied volatility obtained from option prices and realized volatility ob-

tained from high frequency data. GARCH type models are the most used ones

for modelling time varying volatility in finance.

GARCH type models have been very popular since they are simple, easier

to model and found quite successful in modelling time varying volatility. Also,

they provide accurate volatility forecasts1. The first Autoregressive Conditionally

Heteroscedasticity model (ARCH) was proposed by Engle (1982) and this study

made him to win Nobel Prize in 2003 for his contributions to modelling volatility.

Then, Bollerslev (1986) improved the ARCH models by introducing the General-

ized ARCH models. The GARCH models mainly capture three characteristics of

financial returns. First one is volatility clustering that large changes tend to be

followed by large changes and small changes tend to be followed by small changes

1See Andersen and Bollerslev (1998)
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(Mandelbrot (1963), Fama (1963)). Second is fat tailedness (excess kurtosis) that

financial returns often display a fatter tail than a standard normal distribution

and third one is leverage effect that negative returns result in higher volatility

than positive returns of the same size.

Empirical studies suggest that parameter estimates of the GARCH models

usually imply a high degree of persistence in conditional volatility of financial

returns2. Hamilton and Susmel (1994) stated that the spurious high persistence

problem in GARCH type models can be solved by combining Markov Regime

Switching model with ARCH models and firstly introduced Markov Regime Switch-

ing ARCH models (SWARCH). Gray (1996) and Duaker (1997) extended this

method to GARCH specification (SW-GARCH). The idea behind regime switch-

ing model is that as market condition changes, the factors that influence volatility

change. For example, conditional volatility processes behave very differently in

the period of crises (or recession) relative to the usual market conditions.

In the SW-GARCH setting, volatility level switches between two levels of

volatility namely high and low volatility regimes3. All parameters of GARCH

model take different values in each regime. In contrast to using dummy variable

for pre-determined sub periods, the regimes are unobservable variables and esti-

mated along with the other parameters of the model using maximum likelihood

method.

In this thesis, uni-regime GARCH and Markov Regime Switching GARCH

(SW-GARCH) models are examined to analyze Turkish Stock Market while early

studies on Turkish Stock Market only consider the uni-regime GARCH models.

We compare those models in order to see which ones are better in modelling the

Turkish Stock Market volatility. We use four goodness of fit statistics and seven

statistical loss functions to evaluate in-sample estimation performance of various

models. Also, we attempt to detect if any structural breaks appear in volatility

process of Turkish Stock Market. In order to proxy Turkish Stock Market, we

2See Bollerslev and Engle (1993), Ding and Granger (1996), Engle and Patton (2001)
3There can be more than two regimes. For simplicity, we assume presence of two regimes.
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use Istanbul Stock Exchange 100 index (ISE-100)4.

The main purpose of modelling volatility is forecasting future volatility5.

Therefore, we also examine whether SW-GARCH models can contribute to the

forecasting accuracy of Turkish Stock Market volatility. As well as using seven sta-

tistical loss functions, we apply Superior Predictive Ability (SPA) test of Hansen

(2005) and Reality Check test (RC) of White (2000) to compare forecast perfor-

mance of various models.

The thesis is organized as follows: uni-regime GARCH models including

GARCH, EGARCH and GJR-GARCH models are presented in Chapter 2. In

Chapter 3, Markov Regime Switching models are discussed in detail. Estimation

and in-sample evaluation results are given in Chapter 4. In Chapter 5, Statistical

loss functions, SPA test and RC test are described and out-of-sample forecasting

performance of various models are discussed. Conclusion is given in Chapter 6.

1.2 Literature Review

As being basic risk measure in risk management, volatility have attracted

enormous attention by researchers in recent years and vast literature has been

accumulated on this subject. Since the introduction of ARCH model by Engle

(1982) and its generalized version GARCH model by Bollerslev (1986), these type

models have received considerable attention by research community. In ARCH

models, current conditional volatility is determined by squared errors in previous

p periods and a constant. The current conditional volatility in GARCH models

is formulated as a linear function of squared errors in previous p periods and

4ISE is one of the fastest growing emerging stock markets. In recent years, market cap-

italization and foreign investment have noticeably increased. The ISE-100 index is an index

consists of the largest and liquid 100 stocks, and regarded as a main indicator of Turkish Stock

Market.
5A comprehensive literature review on volatility forecasting can be found in Poon and

Granger (2003).
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conditional variances in previous q periods.

The volatility of financial returns is usually affected asymmetrically from pos-

itive and negative shocks6. The exponential GARCH (EGARCH) of Nelson

(1991), the GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993)

and Threshold GARCH model of Zakoian (1994) were introduced to account for

asymmetric effects of positive and negative shocks on volatility.

In addition, unconditional distribution of financial returns usually have fatter

tails than normal distribution7 and standard GARCH or EGARCH models can

not often fully capture the excess kurtosis in financial returns with assumption of

normality (Pagan, 1996) . For that reason, generalized error distribution (Nelson,

1991) and student-t distribution (Engle and Bollerslev, 1986) were proposed to

overcome the excess kurtosis feature.

There are many extensions and modifications of GARCH type models in

the literature. Some of them are long memory GARCH of Ding et al. (1993),

Quadratic GARCH of Sentana (1995) and absolute GARCH of Hentschel (1995).

Several surveys on those models are available in Bollerslev, Chou and Kroner

(1992), Bera, Bollerslev and Higgins (1993), Engle and Nelson (1994), Franses

and van Dijk (2000) and Granger and Poon (2003).

Although proven success of GARCH type models in characterizing many fea-

tures of volatility, they are not problem-free. In empirical studies, parameters

of GARCH models are generally assumed to be stable over time. However, con-

ditional distribution of financial returns differs between recession and expansion

periods (Perez-Quiros and Timmermann (2000)). Moreover, GARCH models of-

ten imply a high volatility persistence of individual shocks. Lamoureux and Las-

trapes (1990) argued that high persistence in volatility may be caused by struc-

tural changes in variance process. Following these ideas, Cai (1994) and Hamil-

ton and Susmel (1994) have independently introduced Markov Regime Switching

ARCH model (SWARCH) which combines Markov Switching model of Hamil-

6Black (1976), Engle and Ng (1993).
7Mandelbrot (1963), Fama (1963, 1965).
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ton (1989, 1990) with ARCH specification. SWARCH model was designed to

capture regime changes in volatility with unobservable state variable following

first order Markov Chain process. That is, parameters in the ARCH process

are allowed to be changed in different states. Although it has been shown that

GARCH specification is better to fit financial data, Cai (1994) and Hamilton and

Susmel (1994) used ARCH specification to overcome infinite path dependence

problem arising in Markov Regime Switching GARCH model (SW-GARCH). On

the other hand, Gray (1996) proposed a new approach that allows tractable es-

timation of the SW-GARCH model and eliminates the infinite path dependence

problem. Also, Dueker (1997) took same approach as Gray (1996) to overcome in-

finite path dependence problem and introduced various alternative SW-GARCH

models. Klaassen (1998) modified Gray’s SW-GARCH model and argue that his

specification improves forecasting performance of SW-GARCH models. Recently,

Haas, Mittnik, and Paolella (2004) proposed a new method different from Gray’s

(1996) approach and claim that analytical tractability of their new model allows

derivation of stationarity conditions and dynamic properties.

Hamilton and Susmel (1994) used weekly returns on New York Stock Ex-

change Index over the period 1962 to 1987 to test their SWARCH model with

two to four regimes. They suggest that SWARCH specification is better to fit the

data, to forecast volatility and to reduce volatility persistence than uni-regime

GARCH type models.

Leon Li and William Lin (1994) and Wai Mun Fong (1996) applied the

SWARCH model of Hamilton and Susmel (1994) to examine regime shifts and

volatility persistence respectively in weekly Taiwan Stock Index (TAIEX) and

weekly Japanese Stock Index (TOPIX). They conclude that SWARCH model

provides a better description of the data and a much lower degree of volatility per-

sistence than uni-regime GARCH type models. Moreover, SWARCH model have

been applied to international stock markets by Fornari and Mele (1997), Schaller

and Norden(1997), Susmel (1998a, 2000), Bautista (2003), Leon Li (2007) and

5



exchange rate by Fong (1998).

As an alternative estimation technique, Kaufmann and Schnatter (2002) de-

veloped Bayesian estimation techniques using Markov Chain Monte Carlo meth-

ods (MCMC) for SWARCH models. Also, Kaufmann and Scheicher (2006) ap-

plied the SWARCH model performed within Bayesian framework to describe daily

German Stock Index (DAX).

Gray (1996) extended SWARCH model to SW-GARCH case by developing a

recombining method that merges conditional variances in different regimes into

a single conditional variance. This makes SW-GARCH model path independent

and allow for constructing a tractable likelihood function. Moreover, SW-GARCH

model with time varying transition probabilities is proposed in the same study.

To implement his model, Gray (1996) used weekly one-month U.S. Treasury bill

rates for the period of 1970 to 1994. He concludes that the SW-GARCH model

outperforms simple uni-regime models in forecasting performance and reduces

persistence in volatility more than SWARCH model of Cai (1994) and Hamilton

and Susmel (1994).

Dueker (1997) introduced a collapsing procedure based on Kim’s (1994) algo-

rithm for SW-GARCH and applied it to daily S&P500 index. A modification of

Gray’s model, which allows multi-step ahead volatility forecasting, was suggested

by Klaassen (1998). In addition to normal distribution, he adopted student-t dis-

tribution for error terms and estimated his SW-GARCH specification with two

regimes using daily U.S. dollar exchange rates. The results show that Klaassen’s

model improves volatility forecasts and volatility persistence is time-varying.

Recently, Marcucci (2005) compare a set of GARCH, EGARCH and GJR-

GARCH models with a group of SW-GARCH in terms of their ability to fore-

cast S&P100 volatility from one day to one month. Also, he assumed normal,

student-t and generalized error distribution for the error terms. The main find-

ing of Marcucci (2005) is that forecasting performance of SW-GARCH models

are significantly better than uni-regime GARCH type models at shorter horizons

6



while standard asymmetric GARCH is found better at longer horizon. Daouk and

Guo (2004) extended SWARCH model to Markov Switching Regime Asymmet-

ric GARCH (SW-Asymmetric GARCH) which allows both regime switching in

volatility and asymmetry. Ane and Ureche-Rangau (2006) introduced a Regime

Switching Asymmetric Power GARCH model to analyze Asian stock indices.

Other studies on SW-GARCH model contain Fong and See (2001, 2002), Yu

(2001), Francq and Zakoian (2005), Elliott, Siu and Chan (2006), Liu (2006),

Lee and Yoder (2007), Abramson and Cohen (2007a, 2007b), Brunetti, Mariano,

Scotti and Tan (2007).

A number of empirical studies have investigated behavior of Istanbul Stock

Exchange (ISE) by using various GARCH type models. Balaban (1995) exam-

ined the day of week effect on return and volatility for ISE with GARCH models.

Yavan and Aybar (1998) and Okay (1998) focused on modeling volatility of ISE

using GARCH type models. Muradoğlu, Berument and Metin (1999) argued that

risk-return relationship and the factors determining risks in ISE change during a

financial crisis. Harris and Küçüközmen (2001a, 2001b) stated that ISE returns

are highly non-normal and display significant linear and nonlinear dependence.

Güner and Önder (2002), Salman (2002), Yüksel (2002), Gündüz and Hatemi

(2005) investigated relationship between volatility, return and trading volume of

ISE. Kilic (2004) analyses long memory in ISE by using Fractionally Integrated

GARCH (FIGARCH) model and claim that ISE volatility is a long memory pro-

cess. Bildik and Elekdağ (2004) examined the effects of price limits on stock

return volatility. Other studies on the ISE are Muradoğlu and Metin (1996),

Yılmaz (1997), Muradoğlu (1999), Odabaş, Aksu and Akgiray (2004). In addi-

tion to these studies, Balaban (1999) firstly adopted seventeen models including

random walk model, moving average models, regression models and GARCH type

models to forecast monthly ISE volatility. Also, Mazıbaş (2004) compares fore-

casting performance of fifteen symmetrical and asymmetrical GARCH models for

daily, weekly and monthly volatility in ISE.

7



chapter 2

UNI-REGIME GARCH MODELS

The aim of this chapter is to present three main uni-regime GARCH type

models used in this study: GARCH, EGARCH and GJR-GARCH. These models

are derived from Autoregressive Conditional Variance (ARCH) model of Engle

(1982). ARCH models are designed to capture volatility clustering and correla-

tion. In ARCH model, conditional variance at time t depends on the past squared

errors1.

Let rt be log-return at time t and assume conditional mean equation as

rt = µ + ut,

ut = εt

√
ht,

where µ is constant drift term, ht is conditional variance of errors ut, εt|ψt−1 →
iidD(0, 1) and ψt−1 refers all available information up to time t − 1. The distri-

bution D is generally assumed to be normal, student-t or GED.

Then, ARCH (q) process is specified as

ht = α0 +

q∑
i=1

αiu
2
t−i. (2.0.1)

To guarantee conditional variance is positive, it must be α0 > 0 and αi > 0.

Unconditional variance of returns for ARCH (q) process can be computed as

σ2 =
α0

1−
q∑

i=1

αi

.

The use of ARCH models is not practical since those models are highly out-

performed by standard GARCH models (Alexander, 2001).

1See Hamilton (1994), Alexander (2001) and Tsay (2002) for more detailed information on

ARCH/GARCH type models.
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2.1 GARCH (1, 1) Model

Bollerslev (1986) introduced the generalized ARCH model by adding past

conditional variances into the ARCH specification. The standard GARCH(p, q)

model is specified as:

ht = α0 +

q∑
i=1

αiu
2
t−i +

p∑
i=1

βiht−i. (2.1.2)

Many papers that focus on GARCH modelling suggest that the use of p = q =

1 specification is quite successful in modelling most of the financial returns volatil-

ity2. Thus, we consider only GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1,

1) models. The GARCH (1, 1) model is as follows3,

ht = α0 + α1u
2
t−1 + β1ht−1, (2.1.3)

where α0 > 0, α1 > 0 and β1 > 0 to ensure positive conditional variance.

Bollerslev (1986) proposed that the inequality α1 + β1 < 1 must be satisfied for

stationary covariance process of returns4. In that case, unconditional variance of

returns can be shown as follows:

σ2 =
α0

1− α1 − β1

.

The parameter estimates α1 and β1 reveal some information on volatility

process. The large β1 indicate that shocks to the conditional variance take a long

time to die out, so volatility is persistent. Large error coefficient α1 means that

volatility reacts quite intensely to market movements, and so if α1 is relatively high

and β1 is relatively low then volatilities tend to be more spiky. (Alexander,2001,

p73).

2See Bollerslev, Chou and Kroner (1992), Hansen and Lunde (2001).
3In fact, GARCH (1, 1) model is equivalent to the ARCH model with infinite lag.
4If α1 + β1 = 1, this process is known as “Integrated GARCH (IGARCH)” (Engle and

Bollerslev, 1986).
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For one-step-ahead, volatility forecasting from GARCH (1, 1) model is shown

in equation (2.1.4),

ĥt+1 = α0 + α1u
2
t + β1ht. (2.1.4)

In order to forecast volatility for 2-step-ahead, the fact E[u2
t+1|ψt] = ĥt+1 is used5.

Then,

ĥt+2 = α0 + α1u
2
t+1 + β1ĥt+1,

ĥt+2 = α0 + (α1 + β1)ĥt+1.
(2.1.5)

Therefore, forecasting formula can be generalized for k-step-ahead forecast as

follows,

ĥt+k = α0

k−1∑
i=1

(α1 + β1)
i−1 + (α1 + β)k−1ĥt+1. (2.1.6)

2.2 EGARCH (1, 1) Model

The main problem of standard GARCH model is that positive and negative

shocks have the same effects on volatility. However, impacts of positive and nega-

tive shocks on the volatility may be asymmetric (Black, 1976). Several alternative

GARCH models have been proposed to capture the asymmetric nature of volatil-

ity responses. One of them is the exponential GARCH (EGARCH) model of

Nelson (1991). In this specification, conditional variance is modelled in logarith-

mic form, which means that there is no restriction on parameters in the model

to avoid negative variances. The conditional variance equation of EGARCH (1,

1) is defined as

ln(ht) = α0 + α1

∣∣∣∣∣
ut−1√
ht−1

∣∣∣∣∣ + β1 ln(ht−1) + ξ
ut−1√
ht−1

, (2.2.7)

where ξ is the asymmetry parameter to capture leverage effect. The EGARCH

process is covariance stationary if the condition β1 < 1 is satisfied6.

5See Poon (2005, p.39).
6See Poon (2005, p.41).
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One-step-ahead volatility forecast is computed as

ln(ĥt+1) = α0 + α1

∣∣∣∣
ut√
ht

∣∣∣∣ + β1 ln(ht) + ξ
ut√
ht

. (2.2.8)

Then, multi-step-ahead volatility forecast is computed7 as

ln(ĥt+k) = α0 + β1 ln(ĥt+k−1). (2.2.9)

2.3 GJR-GARCH (1, 1) Model

Another model that allows for different impacts of positive and negative shocks

on volatility is GJR-GARCH model of Glosten, Jagannathan and Runkle (1993).

The GJR-GARCH (1, 1) model takes following form,

ĥt = α0 + α1u
2
t−1(1− I{ut−1>0}) + β1ht−1 + ξu2

t−1I{ut−1>0}, (2.3.10)

where I{ut−1>0} is equal to one when ut−1 is greater than zero. The conditions

α0 > 0, (α1+ξ)/2 > 0 and β1 > 0 must be satisfied to ensure positive conditional

variance8. Also, process is covariance-stationary if (α1 + ξ)/2 + β1 < 1. Then,

unconditional variance is defined as

σ2 =
α0

1− (α1 + ξ)/2− β1

.

One-step-ahead volatility forecast is computed as

ĥt+1 = α0 + α1u
2
t (1− I{ut>0}) + β1ht + ξu2

t I{ut>0}. (2.3.11)

Then, multi-step-ahead volatility forecast is computed as

ĥt+k = α0 +

(
α1 + ξ

2
+ β1

)
ĥt+k−1. (2.3.12)

7Alexander (2001, p.80) state that making volatility forecast with EGARCH models is ex-

tremely difficult since this model does not have analytic form for the volatility term structure.

Therefore, we follow Marccuci (2005) to forecast volatility with EGARCH model.
8See Franses and Van Dijk (2000) for more detailed information.
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2.4 Distributions for Standardized Errors

Standard normal distribution sometimes may not be enough to describe fat-

tail feature of the financial returns. In order to capture fat-tail feature in the

data, Bollerslev (1987) and Nelson (1991) proposed the student-t and general-

ized error distributions (GED) respectively. Although these two distributions are

also symmetric such as normal distribution, they have fatter tails than normal

distribution captures. In this study, we assume that standardized errors follow

student-t and GED distributions as well as normal distribution.

In the case of normal distribution, the conditional probability density function

of errors is defined as

f (ut|ut−1, ut−2, ..) =
1√
2πht

exp

(
−1

2
· u2

t

ht

)
. (2.4.13)

When errors are assumed to follow student-t distribution, the conditional

probability density function of errors is defined as

f (ut|ut−1, ut−2, ..) =
Γ [(ν + 1)/2]√
π(v − 2)Γ(v/2)

1√
ht

[
1 +

u2
t

ht(v − 2)

]−(v+1)

2

. (2.4.14)

where Γ(.) is Gamma function. v is degree of freedom and must be greater than

2. When v → ∞ student-t distribution becomes normal distribution. So, lower

v implies fatter tails.

If GED is considered as distribution assumption, the conditional probability

density function of errors is defined as

f (ut|ut−1, ut−2, ..) =
v exp

[(−1
2

) ∣∣∣ ut

δ
√

ht

∣∣∣
v]

δ2( v+1
v )Γ (1/v)

√
ht

, (2.4.15)

where δ =

√(
2(−2/v)Γ(1/v)

Γ(3/v)

)
, Γ is Gamma function and v is tail thickness param-

eter. When v = 2, GED becomes a standard normal distribution. It has fatter

tails than normal distribution in the case of v < 2 , whereas normal distribution

has fatter tails than GED in the case of v > 2 .
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The parameters in GARCH type models are generally estimated by Maxi-

mum Likelihood Estimation (MLE) method9. The idea behind this method is to

determine the set of parameters that maximize the likelihood (probability) func-

tion of the sample data under assumption about standardized residuals. This is

done by forming the likelihood function. Since maximum of likelihood function

can not be obtained analytically for GARCH type models, numerical optimization

techniques are used to find set of parameters that maximize likelihood function10.

The log-likelihood functions for a sample with T observations are as follows;

For normal distribution,

LNormal = −1

2

T∑
t=1

[
ln (2π) + ln (ht) +

u2
t

ht

]
. (2.4.16)

For student-t distribution,

LStudent−t = T
{
ln [Γ((v + 1)/2)]− ln [Γ(v/2)]− 1

2
· ln [π (ν − 2)]

}

−1
2

T∑
t=1

[
ln (h2

t ) + (ν + 1) ln
(
1 +

u2
t

h2
t (ν−2)

)] . (2.4.17)

For GED distribution,

LGED =
T∑

t=1

[
ln(v/δ)− 1

2

∣∣∣∣
ut

δ
√

ht

∣∣∣∣
v

−
(

v + 1

v

)
ln(2)− ln[Γ(1/v)]− 1

2
ln(ht)

]
.

(2.4.18)

9Other methods to estimate parameters of GARCH type models are Generalized Method of

Moment (GMM) and Bayesian estimation technique.
10Bollerslev (1986) recommend Berndt-Hall-Hall-Hausmann (BHHH) algorithm.
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chapter 3

MARKOV REGIME

SWITCHING MODELS

An important technique for analyzing structural breaks in financial return is

Markov Switching model of Hamilton (1989, 1990). In his study, Hamilton ex-

tended Markov switching regression model of Goldfeld and Quandt (1973) to time

series framework and analyzed the growth rate of U.S. real GNP. In Hamilton’s

model, the process is allowed to switch stochastically between different regimes.

Also, regimes are usually governed by first order Markov Chain process. In our

study, we assume that there are two unobservable regimes.

3.1 Markov Regime Switching Models for Re-

turns

3.1.1 Serially Uncorrelated Data

Let rt is a financial return series and follows the model with structural breaks

rt =





c1 + α1xt + ut if st = 1

c2 + α2xt + ut if st = 2

or, for shorthand notation,

rt = cst + αstxt + ut,
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where ut ∼ N(0, σ2
st
), x is exogenous variable(s) and st = 1 if process is in regime

1 and st = 2 if process is in regime 2

The important point here is how the regime process is determined. If date of

regimes 1 and 2 are known previously or determined by researcher, the model be-

comes a dummy variable model. Then, log-likelihood function of dummy variable

model can expressed as

L =
T∑

t=1

ln(f(rt|st, ψt−1)), (3.1.1)

where

f(rt|st, ψt−1) =
1√

2πσ2
st

· exp

(
−1

2
· (rt − cst − αstxt)

2

σ2
st

)
. (3.1.2)

The parameters in the dummy variable models can be estimated by maximum

likelihood estimation method using log-likelihood function in equation (3.1.1).

However, if date of regimes are not known previously and regimes are determined

by an unobservable variable st, the log-likelihood function can be constructed in

two steps. Firstly, joint density of returns (rt ) and unobserved regime variable

(st) can be written as follows,

f(rt, st|ψt−1) = f(rt|st, ψt−1)f(st|ψt−1), (3.1.3)

where ψt−1 refers the all available information up to t − 1 and f(rt|st, ψt−1) is

given by equation (3.1.2).

Secondly, marginal density function of rt can be constructed as follows;

f(rt|ψt−1) =
2∑

st=1

f(rt, st|ψt−1)

=
2∑

st=1

f(rt|st, ψt−1)f(st|ψt−1)

=
1√
2πσ2

1

· exp

(
−1

2
· (rt − c1 − α1xt)

2

σ2
1

)
Pr(st = 1|ψt−1)

+
1√

2πσ2

· exp

(
−1

2
· (rt − c2 − α2xt)

2

σ2
2

)
Pr(st = 2|ψt−1).

(3.1.4)

15



Then, the log-likelihood function can be written as

L =
T∑

t=1

ln

(
2∑

st=1

f(rt|st, ψt−1)Pr(st|ψt−1)

)
. (3.1.5)

The Pr(st = i|ψt−1) for i = 1, 2 in equation (3.1.5), called regime probability,

is the probability that the process is in regime i at time t based on the all infor-

mation up to time t− 1. As seen from log-likelihood function in equation (3.1.5),

regime probabilities must be computed to complete log-likelihood function. How-

ever, it is impossible to make inference about regime probabilities without any

assumption on unobserved regime variable st (Kim and Nelson, 1999). There are

mainly two assumptions on behavior of regime variable st: Independent Switching

and Markov Chain Switching. In the case of independent switching, evolution of

regime variable st is assumed independent from its own previous values1. In the

case of Markov Chain Switching, it is assumed that regime switching is directed

by first order Markov Chain process with constant transition probabilities, that

is the current regime st only depends on the regime one period ago st−1. Then,

Pr(st|st−1, st−2...s1, ψt−1) = Pr(st|st−1). (3.1.6)

Considering only two regimes, the constant transition probabilities which are

probability of switching from one regime to other regime can be defined as follows,

Pr(st = 1|st−1 = 1) = p =
exp(po)

1 + exp(po)
,

P r(st = 2|st−1 = 1) = 1− p,

Pr(st = 2|st−1 = 2) = q =
exp(qo)

1 + exp(qo)
,

P r(st = 1|st−1 = 2) = 1− q.

(3.1.7)

In order to compute regime probabilities Pr(st = i|ψt−1) for i = 1, 2 in equa-

tion (3.1.5), following filter adopted by Kim and Nelson (1999) can be applied.

1More detailed information for the case of independent switching can be found at Kim and

Nelson (1999).
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For simplicity, we denote

p1t = Pr(st = 1|ψt−1),

p2t = Pr(st = 2|ψt−1),

f1t = f(rt|st = 1, ψt−1),

f2t = f(rt|st = 2, ψt−1).

Step 1: Given Pr(st−1 = j|ψt−1) for j = 1, 2 at the end of the time t− 1 the

regime probabilities pit = Pr(st = i|ψt−1) for i = 1, 2 are computed as follows

Pr(st = i|ψt−1) =
2∑

j=1

Pr(st = i, st−1 = j|ψt−1).

Since current regime (st) only depends on the regime one period ago (st−1), then

Pr(st = i|ψt−1) =
2∑

j=1

Pr(st = i|st−1 = j) Pr(st−1 = j|ψt−1)

=
2∑

j=1

pji Pr(st−1 = j|ψt−1).

Step 2: At the end of the time t, the Pr(st = i|ψt) for i = 1, 2 is calculated

as follows

Pr(st = i|ψt) = Pr(st = i|rt, ψt−1),

where ψt = {ψt−1, rt}, and by using bayesian arguments

Pr(st = i|ψt) =
f(st = i, rt|ψt−1)

f(rt|ψt−1)

=
f(rt|st = i, ψt−1) Pr(st = i|ψt−1)

2∑
i=1

f(rt|st = i, ψt−1) Pr(st = i|ψt−1)

=
fitpit

2∑
i=1

fitpit

.

Then, all regime probabilities pit for t = 1, 2, .., T can be computed by iterating

these two steps. However, at the beginning of iteration, the Pr(s0 = i|ψ0) for
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i = 1, 2 are necessary to start iteration. Hamilton (1989, 1990) suggest to use

unconditional regime probabilities instead of Pr(s0 = i|ψ0). These are given by

π1 = Pr(s0 = 1|ψo) =
1− q

2− p− q
,

π2 = Pr(s0 = 2|ψo) =
1− p

2− p− q
.

(3.1.8)

3.1.2 Serially Correlated Data

In this section, Markov regime switching Autoregressive (AR) models are pre-

sented. We focus on a simple case: An AR model with first order autoregression

AR(1). For the case of general AR(q) models, the procedure would be same as

AR(1). Let rt is a financial return series, Hamilton’s (1989) two state Markov

regime switching AR(1) model is as follows

rt − µst = α1(rt−1 − µst−1) + ut,

where ut ∼ N(0, σ2
st
) and st = 1 if process is in regime 1 and st = 2 if process is

in regime 2.

As seen in Section 3.1.1, if date of regimes are known previously, model be-

comes a dummy variable model. Then, log-likelihood function can be constructed

easily as follows

L =
T∑

t=1

ln(f(rt|st, st−1, ψt−1)), (3.1.9)

where

f(rt|st, st−1, ψt−1) =
1√

2πσ2
st

· exp

(
−1

2
· [rt − µst − α1(rt−1 − µst−1)]

2

σ2
st

)
.

(3.1.10)

As before, if regimes are determined by an unobserved variable, log-likelihood

function is constructed in two steps. Differently from the case of uncorrelated
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data, we must consider both of the regimes that is observed at time t and t − 1

while constructing log-likelihood function.

Firstly, joint density of returns (rt) and unobserved regime variables st and

st−1 can be written as follows;

f(rt, st, st−1|ψt−1) = f(rt|st, st−1, ψt−1)f(st, st−1|ψt−1), (3.1.11)

where ψt−1 refers the all available information up to time t−1 and f(rt|st, st−1, ψt−1)

is given by equation (3.1.10).

Secondly, marginal density function of rt can be expressed as follows;

f(rt|ψt−1) =
2∑

st=1

2∑
st−1=1

f(rt, st, st−1|ψt−1)

=
2∑

st=1

2∑
st−1=1

f(rt|st, st−1, ψt−1)f(st, st−1|ψt−1)

(3.1.12)

Then, the log-likelihood function can be written as

L =
T∑

t=1

ln[
2∑

st=1

2∑
st−1=1

f(rt|st, st−1, ψt−1)Pr(st, st−1|ψt−1)]. (3.1.13)

In order to be able to compute the log-likelihood function in equation (3.1.13),

obviously we have to calculate regime probabilities Pr(st, st−1|ψt−1) that is the

probability of being in either regime at time t and t − 1 given the information

up to time t − 1. Assuming the unobserved regime variable st is governed by

first order Markov Chain, Pr(st, st−1|ψt−1) are computed by following two steps

below.

Step 1 : Given Pr(st−1 = j|ψt−1) for j = 1, 2 at the end of the time t−1, the

regime probabilities Pr(st = i, st−1 = j|ψt−1) for i = 1, 2, j = 1, 2 are computed

as follows

Pr(st = i, st−1 = j|ψt−1) = Pr(st = i|st−1 = j, ψt−1)Pr(st−1 = j|ψt−1).

Since current regime (st) only depends on the regime one period ago (st−1), then

Pr(st = i, st−1 = j|ψt−1) = Pr(st = i|st−1 = j)Pr(st−1 = j|ψt−1).
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Step 2 : At the end of the time t, the Pr(st = i, st−1 = j|ψt) for i = 1, 2, j =

1, 2 are calculated as follows

Pr(st = i, st−1 = j|ψt) = Pr(st = i, st−1 = j|rt, ψt−1),

where ψt = {ψt−1, rt}, and by using bayesian arguments

Pr(st = i, st−1 = j|ψt) =
f(st = i, st−1 = j, rt|ψt−1)

f(rt|ψt−1)

=
f(rt|st = i, st−1 = j, ψt−1)Pr(st = i, st−1 = j|ψt−1)

2∑
i=1

2∑
j=1

f(rt|st = i, st−1 = j, ψt−1)Pr(st = i, st−1 = j|ψt−1)

.

Then,

Pr(st = i|ψt) =
2∑

j=1

Pr(st = i, st−1 = j|ψt).

All regime probabilities Pr(st = i, st−1 = j|ψt−1) for t = 1, 2, .., T can be

computed by iterating these two steps. In order to start iteration, as shown in

Section 3.1.1, the unconditional regime probabilities in equation (3.1.8) can be

used instead of starting probabilities Pr(s0 = i|ψ0) for i = 1, 2.

If the regime probabilities at time t are computed by using information up

to time t − 1, they are called as ex ante probability (Pr(st = i|ψt−1)). These

probabilities are useful for estimation and forecasting future regimes. When the

regime probabilities are based on information up to time t, they are called as

filtered probability (Pr(st = i|ψt)). The estimation procedures of ex ante and

filtered probabilities are explained in Section 3.1.1 and 3.1.2. On the other hand,

Kim (1994) proposed smoothed probability (Pr(st = i|ψT )) which use all sample

data to estimate regime probabilities at time t.

3.1.3 Kim’s Smoothing Algorithm

After estimating transition probabilities, filtered probabilities and parameters

in the model, the smoothed probabilities can be computed for each date t. These
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probabilities are generally used to make inference about which regime the pro-

cess was in at a given time. Following Kim and Nelson (1999), the smoothed

probabilities for Markov switching AR(1) model are estimated as below

Pr(st = i|ψT ) =
2∑

j=1

Pr(st = i, st+1 = j|ψT ).

Then, the joint density of st = i and st+1 = j conditional on information up to

time T are computed as

Pr(st = i, st+1 = j|ψT ) = Pr(st = i|st+1 = j, ψT )Pr(st+1 = j|ψT )

= Pr(st = i|st+1 = j, ψt)Pr(st+1 = j|ψT )

=
Pr(st = i, st+1 = j|ψt)Pr(st+1 = j|ψT )

Pr(st+1 = j|ψt)

=
Pr(st+1 = j|st = i, ψt)Pr(st = i|ψt)Pr(st+1 = j|ψT )

Pr(st+1 = j|ψt)

=
Pr(st+1 = j|st = i)Pr(st = i|ψt)Pr(st+1 = j|ψT )

Pr(st+1 = j|ψt)
.

(3.1.14)

Given Pr(sT = j|ψT ) which is computed at last iteration of filtered probability

algorithm, the smoothed probabilities for date T − 1, T − 2, ..., 1 are computed

iteratively by following algorithm above.

The setting Pr(st = i|st+1 = j, ψT ) = Pr(st = i|st+1 = j, ψt) used in equation

(3.1.14) can be shown as

Pr(st = i|st+1 = j, ψT ) = Pr(st = i|st+1 = j, ψt, rt+1, rt+2, .., rT )

=
f(st = i, rt+1, rt+2, .., rT |st+1 = j, ψt)

f(rt+1, rt+2, .., rT |st+1 = j, ψt)

=
Pr(st = i|st+1 = j, ψt)f(rt+1, rt+2, .., rT |st+1 = j, st = i, ψt)

f(rt+1, rt+2, .., rT |st+1 = j, ψt)

= Pr(st = i|st+1 = j, ψt).
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3.2 Markov Regime Switching Models for Volatil-

ity

3.2.1 Markov Regime Switching ARCH Model

Hamilton and Susmel (1994) and Cai (1994) proposed Markov Regime Switch-

ing ARCH (SWARCH) model independently by combining Markov Regime Switch-

ing model with ARCH models. In this model, each regime is characterized by a

different ARCH (q) process and parameters of conditional variance take different

values for each regime. Basically, two regime SWARCH (q) model can be written

as follows2

rt = µst + ut,

ut = ũt
√

gst , (3.2.15)

ũt = εt

√
ht, εt ∼ iid(0, 1), (3.2.16)

ht = α0 +

q∑
i=1

αiũ
2
t−i, (3.2.17)

where gst is a regime factor with value of g1 when the process is in the regime 1

and g2 when the process is in the regime 2. The unobserved regime variable st

follows a first order Markov Chain process and takes values of 1 and 2. εt is a

zero mean, unit variance process.

As seen, ũt is a standard ARCH process. The underlying ARCH process is

multiplied by constant g1 when the process is in the regime 1 and multiplied by

constant g2 when the process is in the regime 2. Generally, the constant g1 is

normalized to unity with g2 > 1, and then g2 is interpreted as the ratio of the

average conditional variance when the process is in the regime 2 compared to that

observed when the process is in the regime 1. So, the thought behind SWARCH

is to model changes in regime as changes in the scale of the process3.

2Extension to more than two regimes is straightforward.
3Hamilton and Susmel (1994).
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The parameters of the SWARCH model are generally estimated by maxi-

mum likelihood method. The method explained in Section 3.1.2 can be used to

construct likelihood function derived by Hamilton and Susmel (1994, appendix)

and make inference about unobserved regime variable st . Based on information

current and past regimes, the conditional variance implied for errors is

ht(st, .., st−q, ut−1, .., ut−q) = E[u2
t |st, ..., st−q, ut−1, .., ut−q]

= gst

[
α0 + α1

(
u2

t−1

gst−1

)
+ α2

(
u2

t−2

gst−2

)
+ .. + αq

(
u2

t−q

gst−q

)]
.

(3.2.18)

3.2.2 Markov Regime Switching GARCH Model of Gray

The SW-GARCH model proposed by Gray (1996). The SW-GARCH model

with two regimes simply can be represented as follows

rt = µst + ut,

ut ∼ εt

√
ht,st , (3.2.19)

ht,st = α0,st + α1,stu
2
t−1 + β1,stht−1, (3.2.20)

where st = 1 or 2. µst and ht,st are the conditional mean and conditional vari-

ances respectively. Both are allowed to switch between two regimes. To ensure

positivity of conditional variance in each regime, necessary conditions are similar

to the necessary conditions in uni-regime GARCH (1, 1) model.

The unobserved regime variable st is governed by a first order Markov Chain

with constant transition probabilities given by

Pr(st = 1|st−1 = 1) = p,

Pr(st = 2|st−1 = 1) = 1− p,

Pr(st = 2|st−1 = 2) = q,

Pr(st = 1|st−1 = 2) = 1− q.

(3.2.21)
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In matrix notation,

P =


 p 1− q

1− p q


 . (3.2.22)

Then, conditional distribution of return series rt becomes a mixture-of-distribution

model in which mixing variable is ex ante probability (Pr(st = i|ψt−1)) denoted

by pit,

rt|ψt−1 =





f (rt|st = 1, ψt−1) with probability p1t

f (rt|st = 2, ψt−1) with probability p2t = 1− p1t

where f (rt|st, ψt−1) denotes one of the assumed conditional distributions for er-

rors: Normal, Student-t or GED. ψt−1 denotes the information at time t − 1.

p1t is the ex ante probability of being in regime 1. The estimation procedure for

computing p1t is explained in details in Section 3.1.1.

The log-likelihood function for SW-GARCH model can be written as

L =
T∑

t=1

ln[f(rt|st = 1, ψt−1)p1t + f(rt|st = 2, ψt−1)(1− p1t)]. (3.2.23)

Both Hamilton and Susmel (1994) and Cai (1994) limited their estimation

to the Markov Regime Switching ARCH model. The reason of this limitation

is that there is an infinite path dependence problem inherent in SW-GARCH

models. In SWARCH models, the conditional variance at time t depends on past

q squared residuals and past q regime variables (st, .., st−q). However, in SW-

GARCH model, the conditional variance at time t depends on the conditional

variance at time t − 1 and regime variable at time t (st ) while the conditional

variance at time t−1 depends on the conditional variance at time t−2 and regime

variable at time t − 1 (st−1 ), and so on. Therefore, the conditional variance at

time t depends on the entire history of regimes up to time t. Both Hamilton

and Susmel (1994) and Cai (1994) stated that path dependence nature of SW-

GARCH model makes estimation infeasible and impossible for large sample size.
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For example, in a SW-GARCH with M -regimes model, the number of paths

enlarges by a factor of M in each period and integrating all possible paths is

required to construct the likelihood function. For the tth observation, there are

M t components of likelihood function and this makes estimation intractable for

large sample sizes.

In order to solve problem of path dependence in SW-GARCH model, Gray

(1996) proposed to use conditional expectation of the lagged conditional variance

Et−2(ht−1) instead of lagged conditional variance ht−1. This approach preserves

the natural essential of the GARCH process and allows tractable estimation of

model4. Gray’s approach recombines ht−1,st−1=1 and ht−1,st−1=2 into ht−1 , and

recombines ut−1,st−1=1 and ut−1,st−1=2 into ut−1 by taking conditional expectations

of ht−1 and ut−1 based on the ex ante probabilities. That is,

ht−1 = Et−2(ht−1)

= E(r2
t−1|ψt−2)− [E(rt−1|ψt−2)]

2

= p1t−1

[
µ2

st−1=1 + ht−1,st−1=1

]
+ (1− p1t−1)

[
µ2

st−1=2 + ht−1,st−1=2

]

− [
p1t−1µst−1=1 + (1− p1t−1) µst−1=2

]2
.

(3.2.24)

Similarly, error terms ut−1 is given by

ut−1 = rt−1 − E(rt−1|ψt−2) = rt−1 − p1t−1µst−1=1 + (1− p1t−1) µst−1=2. (3.2.25)

Given equations (3.2.24) and (3.2.25), the conditional variance ht,st in Gray’s

model can be written as

ht,st = α0,st + α1,stu
2
t−1 + β1,stht−1. (3.2.26)

The use of conditional expectation of the lagged conditional variance Et−2(ht−1)

instead of lagged conditional variance ht−1 makes conditional variance at time t

depends on only current regime st and inference about st−1. Therefore, the Gray’s

collapsing procedure simplifies and makes tractable the estimation of SW-GARCH

models.
4Gray (1996).
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Given initial values for regime probabilities, conditional mean and conditional

variance in each regime, the parameters of SW-GARCH model can be obtained

by maximizing numerically the log-likelihood function given in equation (3.2.23).

The log-likelihood function is constructed recursively similar to that in a uni-

regime GARCH models

3.2.3 Markov Regime Switching GARCH Model of Klaassen

Klaassen (2002) introduced modification of Gray’s SW-GARCH model. Dif-

ferently from Gray (1996), he suggests using the conditional expected value

Et−1(ht−1|st) instead of Et−2(ht−1) to substitute for ht−1 . The setting of Klaassen

for conditional expectation of the lagged conditional variance contains broader

information than that of Gray. The specification of Klaassen for conditional

variance can be given as5

ht,st=i = α0,st=i + α1,st=iu
2
t−1 + β1,st=iht−1

= α0,st=i + α1,st=iu
2
t−1 + β1,st=iEt−1(ht−1|st = i),

(3.2.27)

where

Et−1(ht−1|st = i) =
2∑

j=1

p̃ji,t−1

[
µ2

st−1=j + ht−1,st−1=j

]−
[

2∑
j=1

p̃ji,t−1µ
2
st−1=j

]2

,

(3.2.28)

and the probabilities p̃ji,t−1 in 3.2.28 are computed as follows

p̃ji,t−1 = Pr(st−1 = j|st = i, ψt−1) =
pjiPr(st−1 = j|ψt−1)

Pr(st = i|ψt−1)
(3.2.29)

with pji = Pr(st = i|st−1 = j) for i, j = 1, 2.

The specification of Klaassen has mainly two advantages over that of Gray.

First one is that, when integrating out the previous regime (st−1), Klaassen’s

specification uses the information up to time t − 1 and regime variable st while

5Marcucci (2005).
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Gray’s specification uses the information up to time t−2 and regime variable st−1.

This makes Klaassen’s specification more efficient (observable) use of conditional

information. The second and most important one is that Klaassen’s specification

allows a convenient recursive formulation for multi-step ahead volatility forecast.

In SW-GARCH model with two regimes, volatility forecast for k-step-ahead

conditional on information available at time T − 1 is as follows6

ĥT,T+k =
2∑

i=1

Pr(sT+k = i|ψT−1)ĥT,T+k,sT+k=i, (3.2.30)

where ĥT,T+k,sT+k=i is k-step-ahead volatility forecast in regime i made at time T

and computed as

ĥT,T+k,sT+k=i = α0,sT+k=i + (α1,sT+k=i + β1,sT+k=i)ET−1(ĥT,T+k−1|sT+k = i).

(3.2.31)

Also, the
2∑

i=1

Pr(sT+k = i|ψT−1) in equation (3.2.30) is computed as


 Pr(sT+k = 1|ψT−1)

Pr(sT+k = 2|ψT−1)


 = P k+1


 Pr(sT−1 = 1|ψT−1)

Pr(sT−1 = 2|ψT−1)


 , (3.2.32)

where P is given in equation (3.2.22).

Lastly, in order to compute expectation part ET−1(ĥT,T+k−1|sT+k = i) in

equation (3.2.31), the probability Pr(sT+k−1 = j|sT+k = i, ψT−1) is required, then

Pr(sT+k−1 = j|sT+k = i, ψT−1) =
pji Pr(sT+k−1 = j|ψT−1)

Pr(sT+k = i|ψT−1)
(3.2.33)

with pji = Pr(st = i|st−1 = j) for i, j = 1, 2.

6Marcucci (2005).
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chapter 4

EMPIRICAL METHODOLOGY

AND GARCH ESTIMATION

RESULTS

4.1 Data

The data set used in this study is the daily closing prices of value-weighted

ISE-100 index over the period 03/01/1997 through 27/12/2007. The data set is

obtained from the web site of the Central Bank of Republic of Turkey1. The data

is divided into a ten year in-sample estimation period (2480 observations) and a

subsequent one year out-of-sample forecasting period (248 observations):

t = −T + 1,−T + 2, ..., 0︸ ︷︷ ︸
estimation period

1, 2, ..., n︸ ︷︷ ︸
evaluation period

.

Daily observations are converted into continuously compounded returns in a

standard method as log differences:

rt = 100 ∗ ln

(
Pt

Pt−1

)
,

where Pt and Pt−1 are closing values of ISE-100 index at time t and t− 1.

The plot of return and price series are given in Figure 4.1 and Figure 4.2. ISE-

100 return index displays usual properties of financial data series. As expected,

1http://evds.tcmb.gov.tr/
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Figure 4.1: Graph of ISE-100 index for the period 1997 to 2006
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Figure 4.2: Graph of ISE-100 index returns for the period 1997 to 2006

volatility is not constant over the time and exhibits volatility clustering that is, as

noted by Mandelbrot (1965), large changes in the price of an asset often followed

by large changes, and small changes often followed by small changes. Moreover,
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the plot of returns show persistence in the return of ISE-100 index. There are

huge spikes in 1998, late of 2000 and beginning of 2001 and March of 2003. The

huge spikes in 1998 were mainly due to the crisis in Southeast Asian countries

and transmission this crisis into Russia. Russia announced moratorium on debts

and devaluated their currency in 1998 August. So, these economic crises has

affected Turkey negatively and resulted in a capital outflows from the country.

Moreover, spikes in the late 2000 and beginning of 2001 are caused by two crises

in November and February respectively. These crises take root from domestic

factors such as unsuccessful economic policies especially about curbing inflation,

high current account deficits, short term foreign borrowing of companies and

banks. External factors such as collapsing NASDAQ and other stocks in 2000,

economic crises in Argentina and other Latin American countries, September 11

attacks upon the USA in 2001 have contributed to crises eruption. In addition, in

the March of 2003, some developments can be said stock movements in Istanbul

Stock Exchange. Possibility of an attack to Iraq by the USA and realizing in

20th of March, expectations about whether Turkey would involve in this process,

the uncertainty about continuation of IMF economic program have been main

reasons for fluctuation in financial markets.

Descriptive statistics of return series are represented in Table 4.1. As table

shows, the index has a positive average return 0.156%. Daily standard deviation

is 2.988%. The series also displays a negative skewness of -0.098 and an excess

kurtosis of 4.255. These values indicate that the returns are not normally dis-

tributed, namely it has fatter tails. Also, Jarque-Bera test2 statistic of 1864,827

confirms the non-normality of ISE-100 returns. These findings are consistent with

other financial returns’ properties.

As Alexander (2001) states, volatility is a concept that only applies to station-

ary processes. Therefore, we need to check whether return series is stationary or

2Jarque-Bera Normality test follows a χ2 distribution with 2 degrees of freedom under the

null hypothesis.
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Table 4.1: Summary Statistics for ISE-100 returns (%)

Mean 0.156

Standard Error 0.060

Standard Deviation 2.988

Sample Variance 8.925

Excess Kurtosis 4.255

Skewness -0.098

Range 37.752

Minimum -19.979

Maximum 17.774

Jarque-Bera Normality Test 1864.827 (p=0.000)

Table 4.2: Augmented Dickey-Fuller Test Results

Inclusion in ADF test ADF test Statistic p-values

AIC SBIC AIC SBIC

with Constant term -11.229 -49.519 0.000 0.000

with Constant and Trend term -11.231 -49.501 0.000 0.000

not before modelling volatility. In order to test stationarity, we apply Augmented

Dickey-Fuller (Dickey and Fuller, 1981) test (ADF). The optimal lag length of

ADF test is determined by both the Schwarz Bayesian Information Criterion

(SBIC) and Akaike Information Criterion (AIC). We applied two versions of this

test: with constant and with constant and trend terms. The null hypothesis of

ADF test is that the series is non-stationary. Table 4.2 shows the results obtained

and all tests indicate the stationarity of ISE-100 returns.

The autocorrelation functions (ACF) and partial autocorrelation functions

(PACF) of the ISE-100 returns and squared ISE-100 returns are presented in

Table 4.3. All ACF and PACF of return series are very small and less than
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0.06. The very low autocorrelation indicate that the return series are almost

uncorrelated. In order to test the significance level of autocorrelation, we apply

Ljung and Box (1978) Q test3. According to results of the Ljung-Box Q test

(LBQ) statistics, the null hypothesis of no serial correlation cannot be rejected

up to fifth order lag for return series with 99% confidence level. However, there

is significant serial dependence after fifth order lag.

Serial correlation in the squared returns suggests the conditional heteroskedas-

ticity. Therefore, we analyze the significance of autocorrelation in the squared

mean adjusted return (rt − µ)2 series by Ljung-Box Q test4. The results re-

ported in Table 4.3 show that there is significant correlation in squared returns

up to fortieth order lag and this proves presence of ARCH effects in the returns.

Moreover, we apply Engle’s (1982) ARCH test and it confirms strong evidence

of heteroskedasticity. Thus the use of GARCH type models for the conditional

variance is justified.

4.2 Empirical Methodology

This empirical part adopts standard uni-regime GARCH and Markov Regime

Switching GARCH models to estimate the volatility of the daily Turkish Stock

Market. Standard uni-regime GARCH models contain GARCH, EGARCH and

GJR-GARCH. In order to account fat tails feature of financial returns, we con-

sider three different distributions for the innovations: Normal, Student-t and

GED distributions. In the literature, GARCH (1, 1) is usually found good enough

to describe a large number of financial returns5. So, we particularly focus on

p = q = 1 specification for all GARCH and SW-GARCH models.

Since it allows a convenient recursive formulation for multi-step ahead volatil-

3The null hypothesis of the test is that there is no serial correlation in the series up to the

specified lag.
4It refers the Breusch-Godfrey Lagrange Multiplier test.
5Bollerslev, Chou and Kroner (1992).
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Table 4.3: ACF, PACF and Ljung and Box Q Test Results

ISE-100 returns ISE-100 Squared returns

Lag ACF PACF LBQ stat p-value ACF PACF LBQ stat p-value

1 0.006 0.006 0.081 0.776 0.237 0.237 139.33 0.000

2 0.052 0.052 6.708 0.035 0.206 0.159 244.78 0.000

3 -0.017 -0.017 7.405 0.060 0.118 0.043 279.35 0.000

4 0.019 0.017 8.331 0.080 0.089 0.027 298.89 0.000

5 -0.041 -0.040 12.603 0.027 0.146 0.106 351.66 0.000

10 0.034 0.031 28.312 0.002 0.109 0.063 449.94 0.000

15 0.036 0.045 41.290 0.000 0.044 -0.001 511.860 0.000

20 -0.035 -0.031 54.504 0.000 0.088 0.053 585.99 0.000

25 0.021 0.016 56.466 0.000 0.075 0.039 647.99 0.000

Table 4.4: Results for Engle’s ARCH test

LAG ARCH Test stat p-value

1 137.73 0.0000

2 199.0836 0.0000

3 202.6983 0.0000

4 204.3614 0.0000

5 230.4518 0.0000

10 250.3987 0.0000

15 259.0636 0.0000

20 264.2695 0.0000

25 269.9312 0.0000

ity forecasting, we apply SW-GARCH model of Klaassen (2002) in our analysis.

We consider two volatility regimes: Low volatility (regime 1) and high volatility
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(regime 2). All parameters in the GARCH processes and mean equations are al-

lowed to switch between different two regimes. For simplicity, first order Markov

chain and constant transition probabilities are considered. In SW-GARCH model,

standardized errors are assumed to follow normal, student-t, GED and student-t2

distribution in which each regime takes different degrees of freedom of a student-

t distribution. All degrees of freedom and transition probabilities in models are

determined by data.

All parameter estimates of the GARCH and SW-GARCH models are com-

puted using Quasi Maximum Likelihood (QML) method with Broyden, Fletcher,

Goldfarb, and Shanno (BFGS) algorithm. The negative log-likelihoods are min-

imized numerically by using MATLAB optimization routines6. Parameters in

mean equation and variance equation are estimated jointly. For all models, 100

different sets of starting values are generated randomly and parameter estimates

of those giving the highest likelihood value are used as initial values to get final

parameter estimates. We find a single local maximum for all models.

To develop any GARCH type model, we have to provide two distinct specifi-

cations: one for the conditional mean equation and the other for the conditional

variance equation. Since the major focus of this study is modelling and forecast-

ing volatility of Turkish Stock Market, following Klaassen (2002) and Marcucci

(2005), we specify the conditional mean as

rt = µ + ut,

ut =
√

ht εt,

εt ∼ Normal, Student− t or GED,

where µ = µ1St + µ2(1 − St) for regime switching models and St = 1 when

process is in the low volatility regime 1, St = 0 when process is in the high

volatility regime 2.

6We thank Marcucci for providing his Matlab source codes which estimate SW-GARCH

models’s parameters and forecast volatility.
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According to Ljung-Box Q test, there is no significant serial correlation up

to 5 lags in returns. Also, ACF and PACF of returns seem very low. So, these

results support our specification for conditional mean equation.

4.3 Empirical Results

4.3.1 Uni-regime GARCH Models

Table 4.5 present estimation results for uni-regime GARCH models. It is

clear from the table that almost all parameter estimates including µ in uni-

regime GARCH models are highly significant at 1%. Only the leverage effect

ξ of EGARCH model with normal and GED errors are insignificant. However,

the asymmetry effect term ξ in GJR-GARCH models is significantly different

from zero, which indicates unexpected negative returns imply higher conditional

variance as compared to same size positive returns.

The degree of volatility persistence for GARCH models can be obtained by

summing ARCH and GARCH parameters estimates (α1 + β1)
7. All models dis-

play strong persistence in volatility ranging from 0.980 to 0.987, that is, volatility

is likely to remain high over several future periods once it increases.

If distribution assumptions for standardized errors are compared, it reveals

that normality assumption is highly outperformed by other two fat-tailed distri-

butions in terms of log-likelihood values. It is an anticipated result because of

fat tails property of Turkish Stock Market. Overall, student-t distribution yields

an improvement in fitting the data over the others and the GJR-GARCH model

with student-t has the largest log-likelihood among uni-regime GARCH models.

If a GARCH model is successful at capturing volatility clustering, squared

standardized residuals should have no autocorrelation. Applying Ljung-Box Q

test to GARCH residuals, results presented in Table 4.5 show that p-values are

7For EGARCH (1, 1) and GJR-GARCH(1,1), persistence is equal to β1 and α1+ξ
2 + β1

respectively.
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Table 4.5: Summary results of uni-regime GARCH models
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high and indicate squared standardized residual appear to be serially uncorre-

lated. Thus, uni-regime GARCH models are well specified at modeling condi-

tional variance. It is noteworthy that p-values of Ljung-Box Q test are too small

in the case of EGARCH models compared with those from remaining models,

which may imply EGARCH specification is not as good as other two models to

eliminate ARCH effects in Turkish Stock Market. Also, Ljung-Box Q statistics

for standardized residuals display no serial dependence.

4.3.2 Markov Regime Switching GARCH Models

Estimation results and summary statistics of SW-GARCH models are pre-

sented in Table 4.6. Almost all parameter estimates are significantly different

from zero at least 95% confidence level. The conditional mean estimates in

high volatility regime of SW-GARCH with normal and GED distributions are

barely significant at 90% confidence level. However, ARCH parameters α1 in

both volatility regimes of SW-GARCH with normal distribution are insignificant.

To check accuracy of SW-GARCH models, we examine the autocorrelations in

standardized residuals and squared standardized residuals from the models. Ac-

cording to results of Ljung-Box Q test given in Table 4.6, all SW-GARCH models

appear to fit the data very well except SW-GARCH with normal distribution.

Similar to the raw data, squared standardized residuals from SW-GARCH under

normal distribution display significant autocorrelation. So, this result indicates

that normality assumption for standardized errors in SW-GARCH model fails

to capture heteroscedasticty in Turkish Stock Market. Therefore, although we

report the results of model SW-GARCH with normal distribution, we will not

take into consideration it while analyzing results and comparing estimation and

prediction performance of volatility models. Hereafter, we imply SW-GARCH

models with student-t, student-t2 and GED while discussing the SW-GARCH

models.

In order to see existence of different volatility regimes, we compute the un-
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Table 4.6: Summary results of Markov Regime Switching GARCH models

Markov Regime Switching-GARCH 

Normal Student’s t2 Student’s t  GED 

low
volatility
regime 

high
volatility
regime 

low
volatility
regime 

high
volatility
regime 

low
volatility
regime 

high
volatility
regime 

low
volatility
regime 

high
volatility
regime 

µ 0.174*** 0.476* 0.195*** 0.153** 0.198*** 0.153** 0.205*** 0.133*

std. err. 0.05 0.27 0.05 0.07 0.05 0.08 0.05 0.08 

t stat 3.73 -1.77 3.72 2.09 3.83 1.99 4.10 1.78 

0 0.199** 9.315*** 0.150** 1.132*** 0.149* 1.104*** 0.150** 1.196***

std. err. 0.10 2.10 0.07 0.33 0.08 0.32 0.07 0.32 

t stat 1.99 4.45 2.13 3.43 1.89 3.45 2.06 3.72 

1 0.012 0.003 0.084*** 0.149*** 0.082*** 0.148*** 0.088*** 0.143***

std. err. 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.03 

t stat 0.48 0.06 2.82 5.11 2.58 5.31 2.90 5.50 

1 0.787*** 0.985*** 0.870*** 0.766*** 0.880*** 0.764*** 0.868*** 0.759***

std. err. 0.02 0.08 0.04 0.04 0.04 0.04 0.04 0.04 

t stat 33.33 12.56 21.89 17.63 21.95 17.69 21.75 17.58 

p 0.934*** 0.999*** 0.999*** 0.999*** 

std. err. 0.01 0.00 0.00 0.00 

t stat 70.79 1083.56 778.90 1057.39 

q 0.528*** 0.999*** 0.999*** 0.999*** 

std. err. 0.08 0.00 0.00 0.00 

t stat 6.40 1903.45 1815.68 1757.19 

df - 10.32*** 5.85*** 6.88*** 1.42*** 

std. err. - 3.25 0.93 0.92 0.05 

t stat - 3.17 6.29 7.46 28.13 

Log(L) -5878.97 -5845.22 -5846.56 -5854.76 

2 0.990 765.486 3.188 13.290 3.722 12.526 3.432 12.231

0.878 0.122 0.438 0.562 0.451 0.549 0.440 0.560 

Persistence 0.799 0.988 0.953 0.915 0.962 0.912 0.956 0.902 

LBQ(25)
35.24

(0.084)
33.64

(0.116)
33.58          

(0.117)
34.04

(0.107)

LBQ2(25)
46.89

(0.005)
20.67

(0.711)
19.56

(0.769)
19.95

(0.749)

Note: *, ** and *** refer the significance at 90%, 95%, 99% confidence level respectively. p-values for LBQ test are in 

parentheses.
2
 refers the unconditional variance in each regime.   is unconditional probability of being in associated 

regime. 
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conditional variances in each volatility regime. The results showed in Table 4.6

reveal that unconditional variance of high volatility regime is about four times

higher than that of low volatility regime for all SW-GARCH models. These find-

ings confirm that the volatility process of Turkish Stock Market is characterized

by two different regimes. Also, the big difference between variance of each regime

shows need of volatility models that allow regime switching.

The long term volatility level depends on the estimates of constant parameter

α0
8. Results in Table 4.6 are consistent with this argument and display that there

are huge differences between α0 estimates of each volatility regime. The param-

eter estimates α0 in high volatility regimes are nearly eight times greater than

parameter estimates α0 in low volatility regimes. Moreover, short run dynamics

of volatility is determined by the ARCH parameter α1 and GARCH parameter

β1. Large estimates of β1 suggest that effect of shocks to future volatility die

out in a long time, so volatility is persistent. Large values of α1 display reaction

of volatility to the recent price changes9. Comparing the low and high volatility

regimes in all SW-GARCH models, the former volatility regimes have lower α1

estimates but higher β1 estimates than latter volatility regimes have. So, the

GARCH processes in the low volatility regimes are more reactive but less per-

sistent than that in the high volatility regime. In addition, it is interesting to

notice that degree of volatility persistence (α1 + β1) within low volatility regime

is higher compared to the high volatility regime10

Parameter estimates of transition probabilities p and q are statistically sig-

nificant at 99% confidence level and close to unity, indicating that the volatility

regimes are highly persistent. Moreover, we compute unconditional probability

of being in low and high volatility regimes11 and those are about 0.45 and 0.55

respectively.

8Alexander (2001), p.85.
9Alexander (2001), p.73.

10Persistence within each regime is calculated as αi
1 + βi

1 where i=1, 2.
11p(st = 1) = 1−q

2−p−q , p(st = 2) = 1−p
2−p−q
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As expected conditional mean returns in low volatility regime are higher than

that of high volatility regimes for all SW-GARCH models. So, the lower uncer-

tainty in ISE-100 index gives chance of higher profit to the practitioners. This

shows the importance of regimes switching models to model volatility.

In markov regime switching and uni-regime models, the degrees of freedom

of GED distribution do not indicate any big difference. Also same inference can

be attributed to Student-t distributions. However, SW-GARCH with student-t2

in which each regime takes different degrees of freedom displays that degrees of

freedom are 10.32 and 5.85 respectively for low and high volatility regimes. That

means high volatility regime has fatter tails than the low ones.

In order to display how volatility regimes have evolved over the estimation

period, we report both ex ante and smoothed probabilities of being in high volatil-

ity regime in Figures 4.3, 4.4 and 4.5. To make inference about which volatility

regime the process was in at a given time, the smoothed probabilities based on full

sample data Prob(st = i|yT,yT−1, ..., y1) are generally used12. Following Hamilton

(1989), we assume that process is in the high volatility regime at a given time if

the associated smoothed probability of being in high volatility regime is greater

than 0.5. The ex ante probabilities Prob(st = i|yt−1,yt−2, ..., y1,) enables us to

make inference about which volatility regime the process was in at date t based

on observation obtained date t− 1.

The graphs of the smoothed probabilities of being in high volatility regime

clearly show up existence of two different volatility regimes. They also confirm

that each regime is highly persistent. All SW-GARCH models identify that Turk-

ish Stock Market starts in high volatility regime and then, switches permanently

to the low volatility regime in the middle of 2003. So, the high volatility regime

describes the long period from beginning 1997 to middle of 2003 while the re-

maining period from middle of 2003 to the end of 2006 is characterized by low

12Since smoothed probabilities use complete data, they give the most accurate answer to the

question which regime the procees was likely in at a given time (Klaassen, 2002).
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Figure 4.3: Ex-ante and Smoothed probabilities of being in high volatility regime

for SW-GARCH-t2 respectively during the period 1997 to 2006
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Figure 4.4: Ex-ante and Smoothed probabilities of being in high volatility regime

for SW-GARCH-t respectively during the period 1997 to 2006
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SW-GARCH-GED
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Figure 4.5: Ex-ante and Smoothed probabilities of being in high volatility regime

for SW-GARCH-GED respectively during the period 1997 to 2006

volatility regime.

More importantly, Figures 4.3, 4.4 and 4.5 reveal that Turkish Stock Market

exhibit a structural break around middle of 2003. There is a sharp decline in

conditional variances after the break. Reasons of structural break and volatility

reduction in Turkish Stock Market volatility can be quite complicated. Since our

concern is estimating and forecasting Turkish Stock Market volatility, we do not

examine the reasons behind the structural break.

Finally, we plot the estimated conditional volatility of all GARCH specifica-

tions in Figures 4.6, 4.7, and 4.8. All of the volatility models display similar

patterns. Also, the significance decline about middle of 2003 confirms the struc-

tural break in Turkish Stock Market.
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SW-GARCH-GED

0

20

40

60

80

100

9
7

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

GARCH-N

0

20

40

60

80

100

9
7

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

SW-GARCH-t2

0

20

40

60

80

100
9
7

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

SW-GARCH-t

0

20

40

60

80

100

9
7

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

Figure 4.6: Conditional volatility of daily ISE-100 index returns over in-sample

period 1997 to 2006.
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Figure 4.7: Conditional volatility of daily ISE-100 index returns over in-sample

period 1997 to 2006.
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GJR-GARCH-t
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Figure 4.8: Conditional volatility of daily ISE-100 index returns over in-sample

period 1997 to 2006.

4.3.3 In-Sample Evaluation

While making comparison between SW-GARCH and uni-regime GARCH mod-

els, standard Likelihood Ratio (LR) test is not applicable. Since the Markov tran-

sition probabilities are not identified under null hypothesis, the LR test statistics

no longer follow χ2 distribution (Hamilton and Susmel, 1994). Therefore, we use

various goodness-of- fit statistics to compare volatility models. These statistics

are Akaike information Criteria (AIC, Akaike, 1974) Schwarz Bayesian informa-

tion criteria (SBIC, Schwarz, 1978), Hannan Quinn information criteria (HQIC,

Hannan and Quinn, 1979) and Log-likelihood values.

The information criteria vary according to how they penalize number of es-

timated parameters. The SBIC penalize additional parameters larger than does

the AIC. The SBIC and HQIC are consistent whereas AIC is not consistent.

Also, SBIC is inefficient. The model with smaller value of information criteria is
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preferable13. The Akaike’s, Schwarz’s Bayesian and Hannan Quinn information

criteria are computed as follows:

AIC =
−2L

T
+

2k

T
, (4.3.1)

SBIC =
−2L

T
+

k ln(T )

T
, (4.3.2)

HQIC =
−2L

T
+

2k ln(ln(T ))

T
, (4.3.3)

where L is the value of the likelihood function, T is the number of observations,

and k is the number of estimated parameters.

In Table 4.7, the results of goodness-of- fit statistics for all volatility models are

presented. According to AIC and HQIC, SW-GARCH model with student-t and

student-t2 perform best in modelling Turkish Stock Market volatility. However,

in contrast the AIC and HQIC, the SBIC suggests that the uni-regime GARCH

model with student-t provide the most accurate description of the data. In ad-

dition, three information criteria suggest that choice of student-t assumption for

standardized errors is improves the fitting performance of all GARCH models. If

log-likelihood function values are compared, SW-GARCH models highly outper-

form the uni-regime GARCH models and have considerably higher log-likelihood

function values.

In addition to the goodness-of-fit statistics, we consider various statistical loss

functions to analyze in-sample estimation performance of the volatility models14.

We assume daily squared return as actual volatility. As seen Table 4.7, one of the

SW-GARCH models obtains the highest ranking according to all statistical loss

functions. Also, first three ranks are generally shared by SW-GARCH models.

13More detailed information on GARCH model selection criteria can be found in McKenzie

and Mitchell (2003).
14The detailed information on statistical loss functions and actual volatility are introduced

in Chapter 5.
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Thus, evaluating in sample estimation results according to loss functions, as well

as goodness-of-fit statstics, we conclude that SW-GARCH models perform better

than uni-regime GARCH models in describing Turkish Stock Market volatility.

Lastly, as seen in third column of Table 4.7, comparing persistence of uni-

regime GARCH models and SW-GARCH models, it is observed that the high

persistence in the former specification is reduced by latter models15. This result is

consistent with Lamoureux and Lastrapes’s (1990) finding that is high persistent

in volatility of GARCH is caused by regime shifts in the volatility process. Among

all SW-GARCH models, SW-GARCH with student-t2 shows the largest decline

in volatility persistence.

15For SW-GARCH models, following Marcucci (2005) we report the higher persistence value

within each regime as model persistence value.
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Table 4.7: In-Sample Evaluation Results
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chapter 5

FORECASTING VOLATILITY

Volatility plays a key role in empirical finance and good forecasts of volatility

is crucial for implementation of derivative pricing, risk management and port-

folio selection decisions. Even if any given model outperforms the alternative

models in-sample evaluation, it may fail to forecast volatility accurately. In this

chapter, we evaluate forecasting performance of SW-GARCH models with those

of uni-regime GARCH models to determine which models make more accurate

volatility prediction. To perform out-of-sample forecast, we divide sample into

two parts. The first 2480 observations from 03/1/1997 to 31/12/2006 are used

to estimate model parameters and remaining 248 observations from 04/01/2007

to 27/12/2007 are used for out-of-sample evaluation. Forecasts are based on the

rolling window procedure and parameters of all models are re-estimated on each

forecast date by adding next day observation and deleting first observation in

the previous sample. So, all volatility models are estimated 227 times based

on the samples of 2480 observations. Although many volatility forecasting pa-

pers compare accuracies at daily horizons, we evaluate forecasting performance

of volatility models over daily (k = 1), weekly (k = 5), bi weekly (k = 10) and

monthly (k = 22) horizons.

5.1 Realized Volatility

In order to assess forecasting performance of various models, firstly we have

to define a proxy for actual volatility. Since volatility is not directly observable

from market, unlike financial returns, it must be estimated. In the literature,
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general approach is to use squared daily (mean adjusted) returns as the measure

of actual volatility, that is,

σ2
t = (rt − r̄)2, (5.1.1)

where r̄ is average daily return at out-of-sample evaluation period. The squared

daily return is an unbiased estimator of actual volatility, but it produces very

noisy estimate of unobserved volatility. Andersen and Bollerslev (1998) intro-

duced an alternative volatility measure called Realized Volatility1. This measure

has recently attracted attention of many researchers as an accurate measure of

volatility. If returns are uncorrelated and have zero mean, realized volatility is

an unbiased and consistent estimator for actual volatility (Andersen, Bollerslev,

Diebold and Labys, 2003). Realized Volatility is obtained by summing squared

intraday returns and the higher frequency intraday data, the more noise reduc-

tion in the volatility estimate. Realized Volatility at day t can be formulated as

follows

σ2
t =

∑D

d=1
r2
t,d, (5.1.2)

where D is number of intraday return, such as D=24 for hourly data. However

several assets are not traded whole day and changes during the out of trading

hours must be considered. Then, if this method is applied to the stock market

data, realized volatility is defined as sum of squared intraday returns and squared

overnight return. (Koopman, Jungbacker and Hol, 2004). That is,

σ2
t = R2

t,0 +
∑D

d=1
r2
t,d, (5.1.3)

where Rt,0 is the overnight return at day t. Hansen and Lunde (2005) stated that

using overnight return, relatively large compared to the intraday return, leads to

a noisy measure and suggest scaling estimator to obtain a measure for whole day

1Another alternative for actual volatility is Implied Volatility approach which is derived from

matching trading prices of options.
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volatility. So,

σ2
t = ĉ

∑D

d=1
r2
t,d where ĉ =

T−1

T∑
t=1

r2
t

T−1

T∑
t=1

∑D

d=1
r2
t,d

. (5.1.4)

Other studies on realized volatility include Martens (2002), Barucci and Reno

(2002), Areal and Taylor (2002).

Since intraday data of ISE-100 index is not available to us, we used squared

daily returns as actual volatility for forecast horizon one. In order to calculate

volatility over the k days, following Klaassen (2002), we sum squared daily returns

over relevant (5, 10 and 22 days) horizons. This method is unbiased and more

accurate than the traditional method which is the squared return of the forecast

horizon. We can define actual volatility over the k days t, ..., t + k − 1 as

σ2
t,K =

∑t+k−1

i=t
(ri − r̄)2, (5.1.5)

where r̄ is average daily return at out-of-sample evaluation period.

In practice, an investor, who has an investment horizon one month, generally

concern with volatility forecast over the next 22 days rather than volatility fore-

cast for day t+22 made on day t. So, we focus on volatility forecast over the next

k days instead of k-step-ahead forecasts. In order to compute volatility forecast

over the next k days, we aggregate k-step-ahead forecasts. Let ht,K denotes the

volatility forecast over next k days, and then it can be formulated as follows,

ht,K =
k∑

k=1

ht+k, (5.1.6)

where ht+k denotes the k-step-ahead forecast made at time t 2.

2This calculation is permissible because of additive property of variance over the time

(Brooks and Persand, 2003).
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5.2 Statistical Loss Functions

After making forecasts and choosing a proxy for actual volatility, the re-

searchers should choose a statistical loss function to see how close the forecasts

are to their target and compare forecasting performance of challenging models.

In the literature, various loss functions have been used to evaluate forecast er-

rors. Popular measures for forecasting performance are given by the Mean Square

Error (MSE), Mean Absolute Percentage Error (MAPE), QLIKE Loss Function,

R2LOG Loss Function, Mean Absolute Error (MAE) and Heteroscedasticity-

adjusted Mean Square Error (HMSE);

MSE =
1

n

n∑
t=1

(
σt+K −

√
ht,K

)2

,

MAPE = 100
1

n

n∑
i=1

∣∣∣∣∣
σt+K −

√
ht,K

σt+K

∣∣∣∣∣,

QLIKE =
1

n

n∑
t=1

(
ln (ht,K)− σ2

t+K

ht,K

)
,

R2LOG =
1

n

n∑
t=1

(
ln

(
σ2

t+K

ht,K

))2

,

MAE1 =
1

n

n∑
t=1

(
σt+K −

√
ht,K

)
,

MAE2 =
1

n

n∑
t=1

(
σ2

t+K − ht,K

)
,

HMSE =
1

n

n∑
t=1

(
σ2

t+K

ht,K

− 1

)2

.

(5.2.7)

Since there is not any unique criterion that shows the best forecasting model3,

following Marcucci (2005), we used all of them rather than choosing a single loss

function. That provides more comprehensive forecast evolution.

3See Bollerslev et al. (1994), Diebold and Lopez (1996) and Lopez (2001).
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The MSE is the most widely used measure in forecast accuracy. The MAE1

and MAE2 are very similar to the MSE but they are more robust because of being

less sensitive to large forecast errors. The main drawback of these loss functions

is that they penalize both over forecast and under forecast equally. Bollerslev

and Ghysels (1996) argued that MSE may be unreliable in the presence of het-

eroscedasticity and proposed HMSE4. Moreover, Bollerslev et al. (1994) intro-

duced QLIKE loss function which corresponds to the loss implied by a Gaussian

likelihood. The loss function R2LOG is similar to the R2 of logarithmic ver-

sion of Mincer-Zarnowitz (1969) (MZ) regression where log(σ2
t,K) is regressed on

log(ht,K) and a constant. More detailed analysis of all these loss functions pro-

vided by Patton and Sheppard (2007). The lower loss functions values, the better

forecasting performance.

As well as forecasting volatility accurately, predicting direction of volatility

may be helpful for practitioners while constructing their investment strategies.

For that purpose, we also evaluate out-of-sample forecasts by comparing fraction

of the volatility forecast that have same sign of change as the actual volatility.

We consider so-called Success Ratio (SR),

SR =
1

n

n∑
j=1

I(
_
σ

2

t+j,K .
_

ht+j,K > 0), (5.2.8)

where I is indicator function; K = 1, 2, ..., 22;
_
σ

2

t+j,K = σ2
t+j,K − σ̄2

t,K and
_

ht+j,K = ht+j,K − h̄t,K .

We apply Directional Accuracy (DA) test of Pesaran and Timmermann (1992)

to test whether SR is significantly different from success ratio obtained in the

case of independence of
_
σ

2

t+j,K and
_

ht+j,K (SRI). Let P = 1
n

n∑
j=1

I(
_
σ

2

t+j,K > 0)

4This type of performance measure is not appropriate if the absolute magnitude of the forecast

error is a major concern. It is not clear why it is the predicted and not the actual volatility that

is used in the denominator. The squaring of the error again will give greater weight to large

errors, Poon (2005).
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and P̂ = 1
n

n∑
j=1

I(
_

ht+j,K > 0), then SRI is computed as

SRI = PP̂ + (1− P )(1− P̂ ). (5.2.9)

DA test statistics is given as

DA =
(SR− SRI)√

var(SR)− var(SRI)

A→N(0, 1), (5.2.10)

where

var(SR) =
1

n
SRI(1− SRI),

var(SRI) =
1

n

[
(2P̂ − 1)2P (1− P ) + (2P − 1)2P̂ (1− P̂ ) +

4

n
PP̂ (1− P )(1− P̂ )

]
.

5.3 Tests for Forecasting Performance

The accuracy of volatility forecasting from different models can be measured

by forecast error statistics (loss functions). However, when a forecast error statis-

tics of a benchmark model is smaller than that of an alternative model we can not

undoubtedly conclude that forecasting performance of benchmark model is supe-

rior to that of alternative model. To make a fair comparison among forecasting

performance of different models, statistical significance of the observed diffrence

in forecast error statistics should be investigated. For that purpose, Diebold and

Mariano (1995) developed a test for equal predictive ability of two challenging

models. Diebold and Mariano (DM) test is designed as follows:

H0 : No difference between predictive performance of two models,

HA : Predictive performance of two models are not equally accurate.

Let (ei,t)
n
t=1 and (ej,t)

n
t=1 denote forecast errors of two models i and j, then

loss differential between two challenging models is defined as

dt = g (ei,t)− g (ej,t) t = 1, 2, ..., n,
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where g(.) is the loss function. Assuming dt is covariance stationary and has

short memory, Diebold and Mariano (1995) show that mean difference between

loss functions d̄ = 1
n

∑n
t=1 dt is asymptotically distributed as

√
n(d̄− µ)

a→N(0, V̂ (d̄)),

where V̂ (d̄) = n−1(γ̂0+2
k−1∑
i=1

γ̂i), γ̂ is an estimate of the i−th order autocovariance

of the series dt and k is the forecast horizon. So, DM test statistics under null

hypothesis of equal predictive accuracy is given as

DM =
d̄√
V̂ (d̄)

→ N(0, 1).

Harvey, Leybourne, and Newbold (1997) state that DM test can be over-sized

when sample size is small and forecast horizon is long. To overcome the oversize

problem, they propose Modified DM statistics (MDM) which is obtained by

multiplying DM statistics with correction factor below

√
n−1 [n + 1− 2k + n−1 k(k − 1)],

where n is evaluation period and k is the forecast horizon. Also, they suggest

student-t distribution instead of normal distribution to compare test statistics.

DM test gives an opportunity to verify whether forecasting performance of

two models is statistically same or not, but in practice a benchmark model is

generally compared with multiple models. To make multiple comparison, White

(2000) proposed Reality Check (RC) test for superior predictive ability. There

are two main contributions of White’s RC test that make it crucial in empirical

finance. First, it enables researchers to implement joint hypothesis testing by

using bootstrap methods . Second, it overcomes potential data snooping prob-

lem which arise when a given set of data is used more than once for purpose

of model selection5. Null hypothesis of RC test is that a benchmark model is

not outperformed by an alternative set of models according to pre-specified loss

5See White (2000) for more details on data snooping problem.
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function. Let L(σ2
t , ht) denotes loss function for prediction with model m, then

relative forecasting performance of model m compared to the benchmark model

0 at time t is defined as

Xm,t= L(σ2
0, t, h0, t)− L(σ2

m, t, hm, t),

where m : 1, 2, ..., M ; t : 1, 2, ..., n.

If Xm,t is stationary, expected relative forecasting performance of model m

can be defined as µm = E(Xm,t). When the benchmark model 0 is outperformed

by model m, µm takes positive values. So, the null hypothesis that benchmark

model is not outperformed by any alternative model is formulated as follows

H0 : max µm ≤ 0 m : 1, 2, .., M.

The RC test statistics of White (2000) is given as

TRC
n = max

m=1,..M

√
nX̄m, (5.3.11)

where X̄m = n−1
n∑

t=1

Xm,t.

However, it is very difficult to derive the theoretical distribution of test statis-

tics TRC
n under null since null distribution is not unique. For this reason, White

(2000) suggest that empirical distribution of test statistics under null can be ob-

tained by stationary bootstrap of Politis and Romano (1994). The appropriate

p-values for testing null hypothesis can be computed by this method (White,

2000). After getting bootstrap samples Xb
m for b : 1, 2, ..., B where B is number

of bootstraps, the empirical distribution of test statistic TRC
n under null can be

identified as

TRC
b = max

m=1,..M

√
n(X̄b

m − X̄m), (5.3.12)

where X̄b
m = n−1

n∑
t=1

Xb
m,t, b : 1, 2, ...B.

Hansen (2005) indicates that the RC test is conservative since it is too sen-

sitive to inclusion of poor models. When there is a poor model in the set of
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alternative models, RC p-values may remain large even after inclusion of better

models. To tackle this problem, Hansen (2005) introduced the Superior Predic-

tive Ability (SPA) test which is an additional development of RC. He suggests

a method to obtain consistent estimate and lower bound of p-values of SPA

test; those are more powerful and less sensitive to the inclusion of poor models.

Hansen (2005) proposed to use following standardized test statistics to test null

hypothesis

T SPA
n = max

m=1,..M

√
nX̄m

ŵmm

, (5.3.13)

where ŵmm is consistent estimate of wmm = lim
n→∞

var(
√

nX̄m).

Since the empirical distribution of test statistics under null is unknown, the

consistent p-value of SPA test (SPAC), lower bound for p-value of SPA test

(SPAL) and consistent estimator of wmm can be computed with a stationary

bootstrap of Politis and Romano (1994). After having bootstrap samples Xb
m,

following modifications are considered by Hansen (2005) to obtain empirical dis-

tribution of test statistic T SPA
n

T SPAC
b = max

m=1,..M

√
n(X̄b

m − X̄mI(X̄m>−Am
)

ŵmm

, (5.3.14)

T SPAL
b = max

m=1,..M

√
n(X̄b

m −max(X̄m, 0))

ŵmm

, (5.3.15)

where ŵmm = n
B

∑B
b=1

(
X̄b

m − X̄m

)2
, Am = 1

4
n0,25ŵmm, b : 1, 2, ..., B.

Hence, consistent estimate and lower bound of the p-values of SPA test are

directly computed as below

pC − value =
1

B

∑B

b=1
I
(T

SPAC
b >T SPA

n )
, (5.3.16)

pL − value =
1

B

∑B

b=1
I
(T

SPAL
b >T SPA

n )
, (5.3.17)

where I(.) is the indicator function, with value 1 when its argument is true and

0 otherwise.
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5.3.1 Stationary Bootstrap

The bootstrap is an alternative technique for estimating distribution of an

estimator or test statistic without making precise distributional assumption about

data (Efron, 1979, 1982). This method is applied when conventional techniques

are not valid or original sample size is small. The idea of the bootstrap is to

generate many resamples by repeatedly sampling with replacement from the data

at hand. Sample size of each resample is same with that of original data.

The methods for implementing the bootstrap depend on whether the data is a

random sample from a distribution or a time series. Since our interest is in times

series data, we do not focus on bootstrap methods for random sample. Detailed

information about bootstrap methods for random sample can be found in Beran

and Ducharme (1991), Hall (1992) and Efron and Tibshirani (1993).

There are mainly two bootstrap approaches that capture dependence structure

in time series data: sieve bootstrap and block bootstrap. Each of them has

many variants. Particularly, in block bootstrap methods, originally proposed by

Kunsch (1989) , observed sample is divided into fixed length blocks of consecutive

observations to generate resample. Then, blocks of consecutive observations are

drawn with replacement from the set of blocks instead of only one observation.

The blocks may be either overlapping or non-overlapping. In order to describe

overlapping and non-overlapping blocks, let Xi for i = 1, 2, ..., n be the original

data set and block length l be 4. Then, non-overlapping and overlapping blocks

can be represented respectively as below,

X1 X2 X3 X4 X5 X6 X7  X8.......... Xn-3Xn-2 Xn-1 Xn     non-overlapping blocks

       

X1 X2 X3 X4 X5 X6 X7  X8.......... Xn-3Xn-2 Xn-1 Xn      overlapping blocks   

   . 

                                   . 

                                   .     

                             

The choice of block length is the most important part of the block bootstrap.
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However, selecting an appropriate block length is not an easy task always and

may effects significantly performance of bootstrap (Lahiri, 1999). For instance,

if block length is small, resamples may not imitate the pattern of dependence in

original data. Another drawback of the block bootstrap is that resamples are not

stationary even if original data is stationary (Hardle, Horowitz and Kreiss, 2003).

Politis and Romano (1994) introduced the stationary bootstrap which is a

modification of overlapping block bootstrap method. They argue that resamples

generated by this method become stationary and less sensitive to choice of ex-

pected block length. The stationary bootstrap uses random block length instead

of fixed blocks length and the length of blocks are drawn independently from a

geometric distribution with mean block length q. Then, random lengths become

ideally small but sufficiently large to reflect serial dependence in the original data

(Koopman, Jungbacker and Hol, 2000). Recent surveys of bootstrap methods for

time series data include Horowitz (2003), Politis (2003), and Hardle, Horowitz,

and Kreiss (2003).

To construct empirical distribution of SPA test statistics, following algorithm

proposed by Politis and Romano (1994) can be implemented. Let X be M × n

matrix consist of Xm,t which is the relative forecasting performance of model m

compared to the benchmark model at time t for m = 1, 2, ..., M and t = 1, 2, ...n.

Also, let q denotes expected block length which is an integer satisfying 0 < q < n.

Then p = 1/q.

1. Select a column (X1,t, X2,t, ..., XM,t) randomly from the original matrix X.

2. Set first observation of resample data
(
Xb

1,1, X
b
2,1, ..., X

b
M,1

)
= (X1,t, X2,t, ..., XM,t) .

3. Draw an independent standard uniform variable U (between 0 and 1).

4. If U ≥ p, then set
(
Xb

1,2, X
b
2,2, ..., X

b
M,2

)
= (X1,t+1, X2,t+1, ..., XM,t+1)

as the second observation of resample data; else select a new column

(X1,t, X2,t, ..., XM,t) randomly from original matrix X and
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set
(
Xb

1,2, X
b
2,2, ..., X

b
M,2

)
= (X1,t, X2,t, ..., XM,t) as the second observation of

resample data.

5. Repeat the steps 3 and 4 to construct
(
Xb

1,3, X
b
2,3, ..., X

b
M,3

)
= (X1,t, X2,t, ..., XM,t), and continue until n columns

are drawn.

Repeating this procedure B times yields an empirical distribution for X̄b
m with B

realizations.

5.4 Out-of-Sample Evaluation

5.4.1 Results of Statistical Loss Functions

One of the main purpose of specifying a volatility model, as well as describing

its some features, is forecasting future volatilities. Since volatility forecasting is

crucial for option pricing, risk management and portfolio management etc., it

has attracted much attention of investors over the recent decays. So far, we com-

pared various GARCH models in terms of fitting data, capturing persistence and

in-sample estimation performance. However, good fitting the data or superior in-

sample estimation performance do not insure superior performance at volatility

forecasting. In this section, we investigate ability of markov regime switching and

uni-regime GARCH models to forecast Turkish Stock Market volatility at differ-

ent forecast horizons. The forecast horizons 1, 5, 10 and 22 days are considered

in this thesis.

In Table 5.1, we present the forecast error statistics for one day ahead. The

six of seven forecast error statistics suggest that SW-GARCH models provide

the most accurate volatility forecasts. In terms of MSE, MAPE, R2LOG, MAE1

and MAE2, the best forecasting performance belongs to the SW-GARCH model

with GED; the second and third best models are SW-GARCH with student-t
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Table 5.1: Out-of-Sample forecasting results for one day forecast horizon
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and student-t2. These models are followed by uni-regime GARCH models. Also,

QLIKE loss function suggests that SW-GARCH model with student-t2 ranks top.

In contrast, according to HMSE, SW-GARCH models are highly outperformed

by uni-regime models and GJR-GARCH models performs the best among all

models. Overall, it can be suggested that SW-GARCH models improve volatility

forecast at one day ahead compared to the uni-regime GARCH models. Lastly, if

we consider the distribution assumptions for errors, models with student-t clearly

perform the worst out-of-sample forecasts within each GARCH specifications on

all statistical loss functions, although they are the best at fitting the data and

in-sample estimation.

For the 5 days (one week) horizon, results of forecast error statistics are given

in Table 5.2. According to all forecast error statistics except QLIKE and HMSE,

EGARCH model with normal distribution shows the best forecasting performance

and followed by models EGARCH with GED and student-t. SW-GARCH models

with GED and student-t come only fourth and fifth. On the other hand, in terms

of QLIKE, first three ranks are shared by SW-GARCH models. Although most

of the loss functions choose GJR-GARCH model as the worst models, HMSE

suggest that they have better forecasting performance than the all other models

have. Overall, since EGARCH models outperform others with respect to five of

seven loss function, it can be proposed that these models beat all other models

in respect to forecasting performance.

Table 5.3 reports values and rankings of the statistical loss functions for fore-

casts horizon 10 days (two weeks). From the examination of Table 5.3, it is

noted that none of the models clearly outperform the alternatives. Three of loss

functions (MSE, R2LOG, and MAE2) indicate SWGARCH model with GED

provide the most accurate forecasts, while two of them (MAPE and MAE1) favor

EGARCH model with normal. Also, models SW-GARCH with student-t and

GJR-GARCH with student-t rank first in terms of QLIKE and HMSE respec-

tively. However, in general, it seems that GJR-GARCH models are dominated
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Table 5.2: Out-of-Sample forecasting results for one week (5 days) forecast horizon
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Table 5.3: Out-of-Sample forecasting results for two weeks (10 days) forecast

horizon
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by others.

As well as short forecast horizons, we consider forecasting performance of

various GARCH models at longer horizon 22 days (one month). Results are

presented in Table 5.4. The rankings for one month horizon are quietly similar

to that of the one day horizon. According to all loss functions except HMSE,

SW-GARCH model with GED is the best model in forecasting volatility while

SW- GARCH model with student-t ranks second and SW- GARCH model with

student-t2 ranks third. Following markov regime switching models, standard

uni-regime GARH models are ranked as fourth, fifth and sixth. On the other

hand, HMSE suggests that top three volatility forecasters are standard uni-regime

GARCH models.

It is important to note that there is substantial difference between results of

HMSE and other statistical loss functions if model comparisons are considered.

Most of time, result of HMSE are completely opposite to that of others. Marcucci

(2005) has confronted with similar results and stated that HMSE loss is not

particularly suitable for evaluating different volatility forecasts and it should be

expected to give weird results6.

Finally, we examine ability of volatility models to forecast sign of Turkish

Stock Market volatility relative to its average volatility. We apply DA test and

results are shown at last column of Tables 5.1-5.4. At all horizons, all models have

the success ratios changing between 0.58 and 0.64. But none of the models are

successful to predict sign of Turkish Stock Market volatility accurately relative

to its average over the all forecasts horizons even 90% significance level.

5.4.2 Results of SPA test

So far, we evaluate forecasting performance of volatility models in terms of

seven statistical loss functions. However, these loss functions give us only an idea

to evaluate forecasting performance of models. Without any formal statistical

6For more discussion, see Patton (2005).
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Table 5.4: Out-of-Sample forecasting results for one month (22 days) forecast
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test, we can not answer the question that relative differences between forecasting

performance of volatility models are fairly large or not. So, just by ranking the

forecast error statistics, we can not undoubtedly suggest any model is superior

or outperformed significantly.

If a benchmark model is compared with a single alternative model, DM test

can be applied. However, if we compare a benchmark model with several models,

DM test may give wrong result because of data snooping problem7. Therefore, we

apply the RC of White (2000) and SPA test of Hansen (2005) since they overcome

the data snooping problem and allow simultaneous comparison of many models.

The null hypothesis of these two tests is that none of the alternative models

outperform the benchmark model in terms of pre-specified loss function.

In Tables 5.5-5.8, results from RC and SPA test are presented in the form of

p-values. One by one, each model is defined as a benchmark and tested against

other remaining models in terms of seven statistical loss functions. Benchmark

models are shown in the rows. While the RC in tables denotes the p-values of

RC8 test, SPAL and SPAC refer to the lower and consistent p-values of SPA

test.

We use stationary bootstrap algorithm proposed by Politis and Romano (1994)

with 10.000 re-samples to compute p-values. Following Marcucci (2005), three

different expected block length 3, 5 and 10 are considered. Since there is no con-

siderable difference between p-values, we report only the result of expected block

length 10.

Hansen (2005) indicates that inclusion of poor models in the set of alterna-

tive models may artificially increase p-values of the RC test, and then make it

7Data snooping problem occurs since the DM test statistics become mutually dependent

because of using same data set more than once. White (2000) stated that When data reuse

occurs, there is always the possibility that any satisfactory results obtained may simply be due

to chance rather than to any merit inherent in the method yielding the results.
8SPA test includes RC as special case and upper bound for p-values of SPA test is p-values

of RC test (Marcucci, 2005).
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conservative. Moreover, he shows that the SPA test is a more powerful test than

the RC9. Therefore, although we present results of RC test, following Hansen

and Lunde (2005), we consider only the p-values based on SPAC test to assess

relative performance of volatility models. As seen in Tables 5.5-5.8, p-values of

RC test based on the all loss functions except HMSE display too conservative

results10. All of the models can not be beaten by alternative models in terms of

any loss functions. These results are consistent with Hansen (2005) findings.

Table 5.5 reports p-values of SPAC tests for forecast horizon one day. When

uni-regime models are benchmark, in terms of all loss functions except QLIKE,

the p-values are very small and indicate clearly that all uni-regime GARCH mod-

els are outperformed by other models at least 94% confidence level. However,

when SW-GARCH models are defined as benchmark, all SPAC tests based on

all loss function except HMSE have high p-values (at least 0.14) and indicating

SW-GARCH models under each distribution can not be beaten. Thus, there is

strong evidence that SW-GARCH models superior uni-regime GARCH models.

Moreover, the higher p-values indicate the more accurate forecasting ability. Since

p-values of SPAC obtained when SW-GARCH model with GED is benchmark

are dramatically higher than that of remaining models, we can suggest this model

is best to forecast volatility of Turkish Stock market at one day forecast horizon.

In Table 5.6, we present p-values of SPAC test for five days (a week) forecast

horizon. All GARCH and GJR-GARCH models are outperformed significantly

by other models at least 93% confidence level in terms of all loss functions except

QLIKE. It is interesting to notice that although EGARCH models have the small-

est loss functions values11, their p-values are smaller than that of SW-GARCH

models. Moreover, EGARCH models are outperformed significantly by other

9For more discussion, see Hansen (2005), Hansen and Lunde (2005) and Hsu and Kuan

(2005).
10The p-value of less than α indicate the rejection of Null hypothesis with (1−α)% confidence

level.
11Results are given in Table 5.2.
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models in terms of MAPE, R2LOG and HMSE, while any model can not superior

the SW-GARCH models in terms of all loss functions except HMSE. Therefore,

overall, it can be concluded that SW-GARCH models are the best specifications

to forecast volatility for five day forecast horizon. On the other hand, when the

SW-GARCH models with GED is the benchmark, p-values display substantial

increase. Thus, it can be concluded that forecast from SW-GARCH model with

GED is the most preferable among all models for 5 days forecast horizons.

If we consider the p-values of SPAC test for ten days forecast horizon (given

in Table 5.7), GARCH and GJR-GARCH models again have very small p-values

and display significantly worse forecasting performance. On the other hand, when

SW-GARCH or EGARCH model is benchmark, p-values are very high and indi-

cating that these models can not be outperformed by other models. Moreover,

since p-values are too close to each others in both cases, we can not claim that

SW-GARCH models are superior to the EGARCH models or vice-versa. It can

be concluded that there is not a huge difference in ability of these two models to

forecast volatility for two weeks horizons.

Lastly, performances of volatility models are tested by SPAC for long fore-

cast horizon 22 days. Results are given in Table 5.8. GARCH and GJR-GARCH

models are outperformed by other models in terms of all loss functions except

QLIKE. However, SW-GARCH and EGARCH models have high p-values accord-

ing to all loss function except HMSE when they are benchmark. As can be seen

in Table 5.4, loss function values of SW-GARCH models are smaller than that of

EGARCH models, but latter ones have dramatically higher p-values than former

ones in terms of all loss functions when they are benchmark. Thus, it is implied

that EGARCH models are the best forecaster for one month forecast horizons.

Besides, it can be suggested that the choice of model specification effects

quality of forecasting more importantly than that of distribution assumption.

On the other hand, the loss functions HMSE and QLIKE do not reveal any

information on forecasting performance of models. Independent of benchmark
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model and forecast horizon, the SPAC test is always rejected in terms of HMSE

while not rejected in terms of QLIKE.
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Table 5.5: SPA and RC test results for one day forecast horizon

Benchmark Test MSE MAPE QLIKE R2LOG MAE1 MAE2 HMSE

GARCH N SPA L 0.014 0.038 0.284 0.000 0.001 0.013 0.002

GARCH N SPA C 0.033 0.038 0.284 0.000 0.001 0.013 0.002

GARCH N RC 0.508 0.437 0.505 0.256 0.317 0.500 0.002

GARCH t SPA L 0.020 0.040 0.246 0.000 0.000 0.014 0.002

GARCH t SPA C 0.020 0.040 0.246 0.000 0.000 0.014 0.002

GARCH t RC 0.510 0.423 0.472 0.245 0.310 0.502 0.002

GARCH GED SPA L 0.021 0.048 0.268 0.000 0.001 0.016 0.001

GARCH GED SPA C 0.021 0.048 0.268 0.000 0.001 0.016 0.001

GARCH GED RC 0.523 0.451 0.488 0.257 0.331 0.499 0.001

EGARCH N SPA L 0.011 0.046 0.664 0.000 0.000 0.000 0.001

EGARCH N SPA C 0.011 0.046 0.675 0.000 0.000 0.000 0.001

EGARCH N RC 0.478 0.289 0.845 0.200 0.227 0.457 0.001

EGARCH t SPA L 0.006 0.030 0.603 0.000 0.000 0.000 0.004

EGARCH t SPA C 0.006 0.030 0.603 0.000 0.000 0.000 0.004

EGARCH t RC 0.472 0.257 0.827 0.174 0.205 0.429 0.004

EGARCH GED SPA L 0.011 0.043 0.667 0.000 0.000 0.000 0.002

EGARCH GED SPA C 0.011 0.043 0.670 0.000 0.000 0.000 0.002

EGARCH GED RC 0.476 0.287 0.842 0.201 0.221 0.451 0.002

GJR-GARCH N SPA L 0.003 0.054 0.777 0.000 0.000 0.000 0.002

GJR-GARCH N SPA C 0.003 0.054 0.790 0.000 0.000 0.000 0.002

GJR-GARCH N RC 0.484 0.275 0.985 0.147 0.215 0.441 0.002

GJR-GARCH t SPA L 0.003 0.040 0.716 0.000 0.000 0.000 0.003

GJR-GARCH t SPA C 0.003 0.040 0.749 0.000 0.000 0.000 0.003

GJR-GARCH t RC 0.470 0.259 0.949 0.144 0.208 0.440 0.003

GJR-GARCH GED SPA L 0.003 0.055 0.784 0.000 0.000 0.000 0.001

GJR-GARCH GED SPA C 0.003 0.055 0.861 0.000 0.000 0.000 0.001

GJR-GARCH GED RC 0.490 0.270 0.981 0.159 0.221 0.452 0.001

SW-GARCH t2 SPA L 0.144 0.206 0.786 0.178 0.117 0.098 0.004

SW-GARCH t2 SPA C 0.144 0.206 0.861 0.186 0.117 0.105 0.004

SW-GARCH t2 RC 0.607 0.616 0.900 0.593 0.538 0.570 0.004

SW-GARCH t SPA L 0.127 0.194 0.707 0.139 0.083 0.046 0.003

SW-GARCH t SPA C 0.426 0.214 0.760 0.139 0.251 0.371 0.003

SW-GARCH t RC 0.803 0.705 0.954 0.607 0.700 0.801 0.003

SW-GARCH GED SPA L 0.576 0.765 0.532 0.671 0.649 0.568 0.003

SW-GARCH GED SPA C 0.765 0.896 0.646 0.860 0.864 0.568 0.003

SW-GARCH GED RC 0.992 1.000 0.717 1.000 1.000 0.999 0.003
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Table 5.6: SPA and RC test results for one week (5 days) forecast horizon

Benchmark Test MSE MAPE QLIKE R2LOG MAE1 MAE2 HMSE

GARCH N SPA L 0.049 0.000 0.207 0.001 0.005 0.018 0.001

GARCH N SPA C 0.049 0.000 0.207 0.001 0.005 0.018 0.001

GARCH N RC 0.535 0.345 0.469 0.337 0.364 0.497 0.001

GARCH t SPA L 0.054 0.000 0.180 0.001 0.004 0.014 0.001

GARCH t SPA C 0.054 0.000 0.180 0.001 0.004 0.014 0.001

GARCH t RC 0.554 0.337 0.460 0.325 0.360 0.514 0.001

GARCH GED SPA L 0.065 0.001 0.191 0.002 0.005 0.022 0.002

GARCH GED SPA C 0.065 0.001 0.191 0.002 0.005 0.022 0.002

GARCH GED RC 0.545 0.346 0.457 0.346 0.371 0.513 0.002

EGARCH N SPA L 0.190 0.010 0.829 0.030 0.109 0.117 0.000

EGARCH N SPA C 0.190 0.010 0.867 0.030 0.125 0.132 0.000

EGARCH N RC 0.676 0.409 0.964 0.435 0.476 0.598 0.000

EGARCH t SPA L 0.165 0.002 0.722 0.010 0.059 0.065 0.000

EGARCH t SPA C 0.165 0.002 0.792 0.010 0.067 0.069 0.000

EGARCH t RC 0.619 0.385 0.925 0.399 0.427 0.533 0.000

EGARCH GED SPA L 0.195 0.009 0.907 0.033 0.103 0.112 0.000

EGARCH GED SPA C 0.195 0.009 0.965 0.033 0.119 0.123 0.000

EGARCH GED RC 0.676 0.414 0.988 0.431 0.463 0.580 0.000

GJR-GARCH N SPA L 0.016 0.000 0.575 0.000 0.001 0.000 0.000

GJR-GARCH N SPA C 0.016 0.000 0.612 0.000 0.001 0.000 0.000

GJR-GARCH N RC 0.515 0.260 0.952 0.264 0.304 0.469 0.000

GJR-GARCH t SPA L 0.010 0.000 0.519 0.000 0.000 0.000 0.000

GJR-GARCH t SPA C 0.010 0.000 0.521 0.000 0.000 0.000 0.000

GJR-GARCH t RC 0.500 0.241 0.890 0.245 0.292 0.470 0.000

GJR-GARCH GED SPA L 0.011 0.000 0.560 0.000 0.000 0.000 0.001

GJR-GARCH GED SPA C 0.011 0.000 0.586 0.000 0.000 0.000 0.001

GJR-GARCH GED RC 0.496 0.257 0.937 0.270 0.306 0.474 0.001

SW-GARCH t2 SPA L 0.181 0.162 0.586 0.197 0.164 0.146 0.001

SW-GARCH t2 SPA C 0.181 0.162 0.614 0.197 0.217 0.157 0.001

SW-GARCH t2 RC 0.607 0.574 0.746 0.589 0.566 0.584 0.001

SW-GARCH t SPA L 0.243 0.116 0.512 0.165 0.119 0.089 0.002

SW-GARCH t SPA C 0.243 0.155 0.532 0.220 0.421 0.089 0.002

SW-GARCH t RC 0.851 0.643 0.708 0.674 0.752 0.832 0.002

SW-GARCH GED SPA L 0.587 0.724 0.455 0.728 0.658 0.591 0.001

SW-GARCH GED SPA C 0.944 0.724 0.455 0.728 0.995 0.991 0.001

SW-GARCH GED RC 0.975 1.000 0.622 0.999 0.998 0.996 0.001
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Table 5.7: SPA and RC test results for two weeks (10 days) forecast horizon

Benchmark Test MSE MAPE QLIKE R2LOG MAE1 MAE2 HMSE

GARCH N SPA L 0.106 0.009 0.412 0.012 0.029 0.048 0.001

GARCH N SPA C 0.106 0.009 0.412 0.012 0.029 0.048 0.001

GARCH N RC 0.574 0.398 0.673 0.398 0.406 0.540 0.001

GARCH t SPA L 0.106 0.007 0.359 0.013 0.027 0.053 0.001

GARCH t SPA C 0.106 0.007 0.359 0.013 0.027 0.053 0.001

GARCH t RC 0.571 0.386 0.647 0.386 0.397 0.552 0.001

GARCH GED SPA L 0.117 0.008 0.382 0.014 0.034 0.048 0.001

GARCH GED SPA C 0.117 0.008 0.382 0.014 0.034 0.048 0.001

GARCH GED RC 0.598 0.396 0.654 0.406 0.409 0.556 0.001

EGARCH N SPA L 0.771 0.488 0.811 0.742 0.263 0.253 0.000

EGARCH N SPA C 0.874 0.496 0.906 0.790 0.342 0.253 0.000

EGARCH N RC 0.983 0.785 0.933 0.910 0.681 0.787 0.000

EGARCH t SPA L 0.470 0.286 0.834 0.404 0.187 0.145 0.000

EGARCH t SPA C 0.491 0.316 0.866 0.450 0.237 0.194 0.000

EGARCH t RC 0.874 0.644 0.957 0.736 0.588 0.689 0.000

EGARCH GED SPA L 0.677 0.475 0.895 0.698 0.261 0.243 0.000

EGARCH GED SPA C 0.725 0.475 0.922 0.724 0.332 0.243 0.000

EGARCH GED RC 0.965 0.753 0.959 0.922 0.670 0.771 0.000

GJR-GARCH N SPA L 0.022 0.000 0.541 0.001 0.001 0.001 0.000

GJR-GARCH N SPA C 0.022 0.000 0.572 0.001 0.001 0.001 0.000

GJR-GARCH N RC 0.522 0.301 0.890 0.321 0.312 0.465 0.000

GJR-GARCH t SPA L 0.012 0.000 0.440 0.002 0.000 0.001 0.000

GJR-GARCH t SPA C 0.012 0.000 0.452 0.002 0.000 0.001 0.000

GJR-GARCH t RC 0.512 0.290 0.815 0.306 0.291 0.453 0.000

GJR-GARCH GED SPA L 0.016 0.000 0.500 0.002 0.001 0.001 0.001

GJR-GARCH GED SPA C 0.016 0.000 0.527 0.002 0.001 0.001 0.001

GJR-GARCH GED RC 0.502 0.297 0.868 0.318 0.289 0.452 0.001

SW-GARCH t2 SPA L 0.189 0.232 0.597 0.266 0.175 0.131 0.000

SW-GARCH t2 SPA C 0.191 0.232 0.639 0.266 0.187 0.131 0.000

SW-GARCH t2 RC 0.627 0.604 0.776 0.617 0.524 0.566 0.000

SW-GARCH t SPA L 0.378 0.250 0.610 0.283 0.265 0.241 0.001

SW-GARCH t SPA C 0.378 0.286 0.657 0.310 0.548 0.319 0.001

SW-GARCH t RC 0.840 0.724 0.801 0.717 0.806 0.843 0.001

SW-GARCH GED SPA L 0.473 0.567 0.529 0.511 0.717 0.661 0.000

SW-GARCH GED SPA C 0.547 0.796 0.563 0.662 0.992 0.981 0.000

SW-GARCH GED RC 0.867 0.971 0.668 0.891 0.993 0.988 0.000
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Table 5.8: SPA and RC test results for one month (22 days) forecast horizon

Benchmark Test MSE MAPE QLIKE R2LOG MAE1 MAE2 HMSE

GARCH N SPA L 0.047 0.001 0.544 0.007 0.010 0.013 0.000

GARCH N SPA C 0.047 0.001 0.544 0.007 0.010 0.013 0.000

GARCH N RC 0.540 0.322 0.771 0.354 0.355 0.475 0.000

GARCH t SPA L 0.048 0.002 0.510 0.006 0.009 0.012 0.000

GARCH t SPA C 0.048 0.002 0.510 0.006 0.009 0.012 0.000

GARCH t RC 0.535 0.313 0.761 0.347 0.348 0.465 0.000

GARCH GED SPA L 0.052 0.001 0.524 0.007 0.009 0.016 0.001

GARCH GED SPA C 0.052 0.001 0.524 0.007 0.009 0.016 0.001

GARCH GED RC 0.538 0.326 0.762 0.361 0.356 0.469 0.001

EGARCH N SPA L 0.603 0.510 0.738 0.543 0.621 0.592 0.000

EGARCH N SPA C 0.842 0.630 0.762 0.656 0.815 0.854 0.000

EGARCH N RC 0.959 0.882 0.789 0.881 0.925 0.953 0.000

EGARCH t SPA L 0.346 0.083 0.861 0.168 0.352 0.245 0.000

EGARCH t SPA C 0.571 0.368 0.891 0.168 0.531 0.461 0.000

EGARCH t RC 0.886 0.709 0.948 0.751 0.822 0.845 0.000

EGARCH GED SPA L 0.590 0.451 0.758 0.471 0.585 0.458 0.000

EGARCH GED SPA C 0.764 0.451 0.765 0.471 0.867 0.827 0.000

EGARCH GED RC 0.948 0.907 0.804 0.905 0.918 0.920 0.000

GJR-GARCH N SPA L 0.015 0.000 0.597 0.004 0.005 0.004 0.000

GJR-GARCH N SPA C 0.015 0.000 0.632 0.004 0.005 0.004 0.000

GJR-GARCH N RC 0.509 0.267 0.930 0.305 0.307 0.448 0.000

GJR-GARCH t SPA L 0.008 0.000 0.507 0.003 0.002 0.002 0.000

GJR-GARCH t SPA C 0.008 0.000 0.514 0.003 0.002 0.002 0.000

GJR-GARCH t RC 0.495 0.238 0.858 0.284 0.284 0.430 0.000

GJR-GARCH GED SPA L 0.012 0.001 0.565 0.002 0.004 0.003 0.000

GJR-GARCH GED SPA C 0.012 0.001 0.589 0.002 0.004 0.003 0.000

GJR-GARCH GED RC 0.505 0.257 0.907 0.296 0.291 0.435 0.000

SW-GARCH t2 SPA L 0.140 0.046 0.758 0.079 0.151 0.118 0.000

SW-GARCH t2 SPA C 0.142 0.046 0.776 0.079 0.151 0.119 0.000

SW-GARCH t2 RC 0.586 0.455 0.904 0.492 0.509 0.536 0.000

SW-GARCH t SPA L 0.142 0.022 0.869 0.061 0.162 0.094 0.000

SW-GARCH t SPA C 0.142 0.022 0.899 0.069 0.303 0.094 0.000

SW-GARCH t RC 0.722 0.457 0.991 0.506 0.634 0.685 0.000

SW-GARCH GED SPA L 0.233 0.063 0.742 0.104 0.277 0.197 0.000

SW-GARCH GED SPA C 0.233 0.114 0.742 0.104 0.496 0.197 0.000

SW-GARCH GED RC 0.770 0.564 0.839 0.599 0.745 0.758 0.000
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chapter 6

CONCLUSION

In this thesis, volatility of Turkish Stock Market for the period of 1997 to 2007

is examined. Daily ISE-100 index returns are used to proxy Turkish Stock Market.

Differently from previous works, we adopt Markov Regime Switching GARCH

models. These models allow volatility to have different dynamics according to

unobserved regime variables.

The main purpose of this thesis is to find out whether SW-GARCH models

are an improvement on the uni-regime GARCH models in terms of modelling

and forecasting Turkish Stock Market volatility. We compare SW-GARCH mod-

els with standard GARCH(1 ,1), EGARCH(1, 1) and GJR-GARCH(1, 1) models.

All models are estimated under three distributional assumptions that are Nor-

mal, Student-t and GED. Moreover, Student-t distribution which takes different

degrees of freedom in each regime is considered for SW-GARCH models.

We first analyze in-sample performance of various volatility models to deter-

mine the best form of the volatility model over the period 1997 to 2006. SW-

GARCH models under fat tailed distributions offer a better statistical fit to the

data in terms of Log-likelihood, AIC and HQIC1. However, BIC suggest that

uni-regime GARCH models with Student-t distribution provide more accurate

description of the data. It is noteworthy that choice of Student-t assumption

for standardized errors increase in-sample performance of volatility models. In

addition, we compare in-sample volatility estimation performance of all models

1The squared standardized residuals from SW-GARCH model under normal distribution

display highly significant autocorrelation. Therefore, we never account for this model while

evaluating the results and comparing the competing models.
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in terms of seven different statistical loss functions. The volatility models which

show the lowest value for a loss function are considered to be most accurate, and

then all loss functions favor the SW-GARCH models.

The use of SW-GARCH models also reveals the presence of two different

volatility regimes in Turkish Stock Market. The unconditional variance in high

volatility regime is found nearly four times greater than that in low volatility

regimes. Moreover, the graphs of smoothed probabilities being in high volatility

regime confirm the existence of two volatility regimes and clearly show that there

is a structural break in Turkish Stock Market around middle of 2003. Before

middle of 2003, volatility process is in high volatility regime, and then it switches

the low volatility regime permanently.

Another improvement of the SW-GARCH models is that they reduce the

high persistence in uni-regime GARCH models. The sum of ARCH and GARCH

parameter estimates in the SW-GARCH models implies lower degree of volatility

persistence than uni-regime GARCH models. These results are consistent with

findings of Lamoureux and Lastrapes (1990) that regime shifts in volatility can

lead to spuriously high levels of volatility persistence. On the other hand, under

all distribution assumptions, estimated transition probability of each regime is

extremely close to one and indicating that each regime is highly persistent.

Finally, we evaluate out-of-sample forecasting performance of SW-GARCH

models compared to the uni-regime GARCH models for one day, one week, two

weeks and one month forecast horizons over the period 2006 to 2007. Superior

Predictive Ability (SPA) test of Hansen (2005) is applied by using seven statistical

loss functions. This test is a powerful tool and widely used to compare jointly

forecast performance of several models. The main results are: Firstly, for short

horizons one day and one week, overall, uni-regime GARCH models are highly

outperformed by SW-GARCH models. Also, among all models, the most accurate

forecasts are obtained with SW-GARCH model under GED. Secondly, if we turn

to two weeks of forecast horizon, we notice that standard GARCH and GJR-
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GARCH models were significantly outperformed by SW-GARCH and EGARCH

models. No superior models are identified between EGARCH and SW-GARCH

models. Lastly, when forecasting performance of models at one month horizon

are considered, EGARCH and SW-GARCH models perform better than other

models. Moreover, we have some evidence that EGARCH models are better than

SW-GARCH models in forecasting at one month horizon.

For further study, three or four volatility regimes setting can be considered

rather than two-volatility regimes. Also, time varying transition probabilities

can be adopted instead of constant ones. In addition, the performance of SW-

GARCH models can be compared in terms of their ability to forecast Value at

Risk (VaR) for long and short positions.
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