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ABSTRACT

SARMAL: A CRYPTOGRAPHIC HASH FUNCTION

VARICI, Kerem

M.S., Department of THE DEPARTMENT OF CRYPTOGRAPHY

Supervisor : Assoc. Prof. Dr. Ali Dog̃anaksoy

AUGUST 2008, 49 pages

Recent years witnessed the continuous works on analysis of cryptographic hash functions

which reveal that most of them are not as secure as claimed. Wang et al. presented the first

full round collisions on MD4 and RIPEMD using a new attack technique on hash functions

which is based on differential cryptanalysis. Then, this attack is further developed and used

in the analysis of other famous and widely used hash functions. As a result of these studies,

National Institute of Standards and Technology (NIST) announced a public competition of

designing a new hash function which will be chosen as the new hash function standard (Secure

Hash Algorithm 3, (S HA − 3)).

It is expected from new algorithm to provide security bounds for preimage, second-preimage

and collision attacks, besides being resistant against all known attack methods. The new hash

standard is expected to support variable hash sizes to be used for variable purposes. Moreover,

the design should be efficient in both software and hardware implementations.

In this thesis, we present a new cryptographic hash function family, Sarmal, which is designed

to satisfy all the properties above as a candidate for the S HA − 3 competition. It uses the

well known components from block cipher theory to satisfy both security/efficiency trade-

off. On the other hand, HAIFA iterative hashing mode is used to prevent latest weaknesses
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of standard Merkle-Damgård paradigm and provide flexible hash size. Moreover, software

implementations reveal that Sarmal can be very efficient on multiple platforms.

Keywords: Sarmal, Design, Hash Function
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ÖZ

SARMAL: KRIPTOGRAFIK ÖZET FONKSIYONU TASARIMI

VARICI, Kerem

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Ali Dog̃anaksoy

Ag̃ustos 2008, 49 sayfa

Son yıllarda kriptografik özet fonksiyonu analizinde süregelen çalışmalar, bir çog̃unun belir-

tildig̃i kadar güvenli olmadıg̃ını göstermiştir. Wang vd. özet fonksiyonları için diferansiyel

kriptanalize dayanan yeni bir atak teknig̃i kullanarak MD4 ve RIPEMD fonksiyonlarina, tüm

çevirimi kapsayan çakışmalar buldular. Daha sonra bu atak geliştirilerek herkes tarafından bi-

linen ve çog̃u alanda kullanılan dig̃er özet fonksiyonlarının analizinde kullanıldı. Yapılan bu

çalışmaların sonucunda “National Institute of Standards and Technology” (NIST), yeni özet

fonksiyon standardı S HA − 3 seçilmek üzere, herkesin katılımına açık bir tasarım yarışması

başlattı.

Yeni algoritmanın ters görüntü kümesi, ikincil ters görüntü kümesi ve çakışma atakları için

gerekli güvenlik sınırlarını sag̃lamasının yanı sıra, bilinen bütün atak yöntemlerine karşı da

güvenli olması beklenilmektedir. Yeni özet fonksiyon standardının, çeşitli amaçlarda kul-

lanılmak üzere deg̃işik özet boylarını desteklemesi beklenmektedir. Ayrıca, tasarım yazılımsal

ve donanımsal kodlamalar yönünden verimli olmalıdır.

Bu tezde, yukarda belirtilen bütün özellikleri sag̃lamak üzere tasarlanan ve yarışma adayı,

yeni bir kriptografik özet fonksiyonu ailesi olan Sarmal anlatıldı. Tasarım, güvenlik ve ver-

imlilik arasındaki ödünleşimi en iyi şekilde sag̃lamak için blok tipi algoritma tasarımında

vi



sıklıkla kullanılan parçalardan oluşturulmuştur. Öte yandan, Merkle-Damgård standardındaki

zayıflıkların önüne geçmek ve esnek özet boyu sag̃lamak için HAIFA kullanılmıştır. Ayrıca,

yapılan yazılımsal kodlamalar Sarmal’ın bir çok platformda çok verimli çalışabileceg̃ini göster-

miştir.

Anahtar Kelimeler: Sarmal, Dizayn, Özet Fonksiyonu
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CHAPTER 1

Introduction

Practically since humans began writing, they have been writing in code, and ciphers have

decided the fate of empires throughout recorded history. Cryptology is derived from the Greek

word kryptos meaning hidden. It is composed of two parts. First of them is cryptography,

which is the science of keeping secrets secret. This is done by hiding the meaning of the

message, not the message itself, by a process known as encryption. Each encryption method

has a distinct algorithm, and a secret key is required to perform. The other is cryptanalysis,

which is the science of finding the weaknesses in these algorithms and breaking into the

message without the knowledge of the key. Over centuries, the history has witnessed the

challenge between these two sciences.

Over 4000 years, cryptography has been used to conceal sensitive information, with an in-

creasing importance throughout the centuries. Having contributed to the birth of modern

computer, cryptanalysts began using technology to break all sorts of ciphers. Therefore, cryp-

tographers began designing more complex ciphers for exploiting the power of the comput-

ers. In short, both cryptography and cryptanalysis have evolved in parallel by a considerable

amount.

In the 1960s, when the computers became more powerful and cheap enough for the busi-

nesses, standardization became a must. Although companies had particular encryption sys-

tems for internal communication, they still needed a common system for communicating the

other companies. To fulfill this need, Lucifer was developed by IBM.

In the 1970s, with the beginning of the information age, the exchange of digital information

became an essential part of our society. By the end of 1990s, electronic mail became more

popular than conventional mails, and nowadays billions of e-mails are sent each day. The
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internet has also provided the infrastructure for e-commerce, online banking, e-government

applications, etc. However, the success of the information age depends on its ability to protect

the information, hence, on the power of cryptography. Therefore, people needed cryptography

in order to protect their privacy besides the national security.

In addition to privacy, it is equally important to provide confidentiality, authentication, non-

repudiation and data integrity. Hash functions are fundamental components of many crypto-

graphic applications such as digital signatures, random number generation, message integrity,

authentication, e-cash etc. Employing hash functions for these applications both increase the

security and improve the efficiency of these systems.

Hash functions are categorized into two groups; (i) keyed and (ii) unkeyed hash functions.

Keyed hash functions input a fixed length key and a message of arbitrary finite length. Mes-

sage Authentication Codes (MACs) are examples of keyed hash functions. Unkeyed hash

functions only input message and they involve no secrecy. Modification Detection Codes

(MDCs) are examples of unkeyed hash functions. They can further be divided into two groups

as One Way Hash Functions (OWHF) and Collision Resistant Hash Functions (CRHF). This

classification is summarized in Figure 1.1.

Cryptographic Hash Functions

Unkeyed Keyed

MDCs MACs

OWHF CRHF OWHF

Figure 1.1: Categorization of Cryptographic Hash Functions

Most commonly used hash functions are MD5 (Message Digest) [2], SHA-1 (Secure Hash Al-

gorithm) [3] and RIPEMD [4]. These algorithms are used in many applications such as SSL,

PGP, S/MINE, SSH and SFTP. Comparison of commonly used hash functions are provided

in Table 1.1.
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Table 1.1: Comparison of Commonly Used Hash Functions

Hash Function Hash Size State Size Block size Max. Message Collision
Length Size

MD2 [5] 128 384 128 - Almost
MD4 [6] 128 128 512 264 − 1 Yes
MD5 [2] 128 128 512 264 − 1 Yes
RIPEMD [7] 128 128 512 264 − 1 Yes
RIPEMD-128/256 [8] 128/256 128/256 512 264 − 1 No
RIPEMD-160/320 [8] 160/320 160/320 512 264−1 No
SHA-0 [3] 160 160 512 264 − 1 Yes
SHA-1 [3] 160 160 512 264 − 1 With flaws
SHA-256/224 [3] 256/224 256 512 264 − 1 With flaws
SHA-512/384 [3] 512/384 512 1024 2128 − 1 No
Tiger [9] 192/160/128 192 512 264 − 1 No
PANAMA [10] 256 8736 256 - With flaws
RadioGatún [11] Arbitrary 58 words 3 words - No

NIST Competition

The design of the commonly used hash functions are based on MD4, as they iteratively use a

compression function that inputs state variable and a fixed length block, and outputs another

fixed length block. Recently, many attacks against hash functions having similar construction

to MD4 are proposed [12, 13, 14, 15]. These recent studies motivated National Institute of

Standards and Technology (NIST) to announce a public competition in 2007 to select a new

cryptographic hash function to be used as the new standard [16]. Minimum requirements of

the competition are given as;

• the algorithm must be publicly available,

• the algorithm must be implementable in a wide range of platforms and

• the algorithm must support 224, 256, 384 and 512 bit message digests and message

length of at least 264 − 1 bits.

The candidate algorithms will be compared based on their security, computational efficiency,

memory requirements, hardware and software suitability, simplicity, flexibility and licensing

requirements.
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Overview of the Thesis

In this thesis, we aim to design a new hash function as a candidate of the NIST competition. In

Chapter 2, basic properties, generic attack methods and construction methods are presented.

In Chapter 3, our design, Sarmal is described. Chapter 4 is concluded the thesis.
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CHAPTER 2

Cryptographic Hash Functions

A hash function takes a message as an input and produces output or digest which is called a

hash value or hash. A hash function can be defined as H : D → R, where input values are

taken from a domain D and output values go to a range R. This function is always many-to-

one and |D| > |R|. Thus, there has to be always collisions by pigeonhole principle and this

can be seen in Figure 2.1(different input values with same output value). In a cryptographic

hash function H, it is expected that each output values are seen equally likely to avoid finding

collisions easily.
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Figure 2.1: Pigeonhole Principle
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2.1 Basic Properties

Hash functions take arbitrary length input and produce a fixed length output which is com-

monly called fingerprint or message digest of the input. Some desired structural and security-

wise properties of cryptographic hash functions are given below.

Structural Properties

1. Algorithm of a hash function should be publicly known. There may not be any secret

parameters.

2. For a given value x and a hash function H, it should be ‘easy’ to compute H(x).

Security-Wise Properties

1. Preimage resistance: For a given hash value H(x), it should be ‘hard’ to compute x.

2. Second preimage resistance: Given x and its hash value H(x) , it should be ‘hard’ to

find x
′

such that x , x
′

and H(x
′

) = H(x).

3. Collision resistance: It should be ‘hard’ to find x and x
′

such that x , x
′

and H(x) =

H(x
′

).

This thesis is mainly focused on collision resistant hash functions which must satisfy all the

conditions above.

2.2 Attack Methods against Hash Functions

Attacks on hash functions can be divided into two types [17]. First of them is generic attacks

which are independent from the specification of the hash function and they mainly exploit the

weaknesses of the hash functions in a general way. Second type attacks focus on structural

weaknesses and exploits the weaknesses of the algorithm. In this section, these two attack

types are going to be described.
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2.2.1 Attacks Independent of Hash Function

Birthday Attack: It is based on the generalized birthday problem. For a set of n elements,

if two sample spaces are chosen as s1 and s2 in that set, then the probability of a match

from these two spaces is approximately 1 − e−
|s1 ||s2 |

2n . Moreover, if |s1| = |s2| = n1/2, then the

probability of the match closes to 0.63. Birthday problem is used to find collisions in the

hash function. For a given hash function H(x) with output length n, there exist 2n different

hash values and if one chooses
√

2n = 2n/2 different messages, a collision is expected with

probability greater than 1/2 according to the birthday problem.

Preimage Attack: For a given hash value, one chooses random messages and expects that

the given hash value is going to be obtained. It is assumed that all output values are seen

equally likely for the cryptographic hash functions. Therefore, if the output length of the

hash function is given as n bits, then after 2n trials, one message’s output value is expected

to satisfy the given hash value. This attack can be thought as exhaustive search to the hash

functions.

Second Preimage Attack: For a given message and its hash value, one chooses random

messages to obtain the same hash value. Again, due to the fact that all output values are

seen equally likely, if the hash value is n bits, after 2n message trials, one message value’s

hash is going to satisfy the given message’s hash value. Again, this attack can be thought as

exhaustive search to the hash functions.

The attacks on hash functions based on the generic attacks above can be described as follows:

• Collision Attack: Aim of this attack is to find two colliding pair of messages for the

given hash function less than 2n/2 trials.

• Near-Collision Attack: In this attack scenerio, one tries to find two message pairs

whose hash values are not same but difference between them is as small as possible.

Moreover, message pairs must be found less than 2n/2 trials.

• Pseudo-Collision Attack: Most of the hash functions use Initial Values (IVs) which

are fixed by the designers. Pseudo-collision attack is applied with choosing the IVs to

7



find collisions and exploit the weakness of the hash function. The total complexity of

this attack is also same as other collision attacks and after 2n/2 trials, pseudo-collisions

can be found.

• Pseudo-Near-Collision Attack: This attack is combination of 2 and 3. Attacker

chooses the IV value and tries to find a near collisions after 2n/2 trials.

2.2.2 Attacks Dependent to Hash Function

Meet in the Middle Attack: Meet in the middle attack is adopted from the birthday attack.

It enables to construct a message value whose hash is same with a given one. A hash function

with an invertible compression function is required. Therefore, it is mostly applicable to the

iterated hash functions. In this attack, chaining values will be compared rather than hash

values. Attack works with going forward from initial value to an intermediate value with a

sample space s1 and going backward from hash value to the intermediate value with another

sample space s2. The probability of obtaining same intermediate chaining value from two

different sample spaces equals to 1 − e−
|s1 ||s2 |

2n by birthday problem where n is the length of the

hash and chaining values.

Fixed Point Attack: This attack is applied to hash functions that use a compression func-

tion. For the compression function f (hi−1,,mi) = hi, a chaining value h is searched where

f (h,mi) = h. This means that the message value mi does not affect the result of the hash

value. Thus, mi can be used to obtain second-preimage attacks. In other words, for a mes-

sage value m = m1m2 · · ·mt, if a fix point found for its ith element mi ( f (h,mi) = h), then

m∗ = m1m2 · · ·mi−1mi+1 · · ·mt also gives the same hash value where m , m∗ [17].

Differential Attack: Differential attack to the hash functions is based on the Differential

Cryptanalysis of block ciphers [18]. Mostly, it is applicable to block cipher based hash func-

tions. The aim of the differential attack is to find a collision for a hash function (i.e. Zero

difference is expected at the end). Moreover, differential attack is also used in an interme-

diate step to find internal collisions for hash functions and recent works on hash function

cryptanalysis commonly use this type of attacks [19, 20, 21, 22].
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2.3 Iterated Hash Functions

A common way to construct a hash function is to use iterations. Figure 2.2 gives a general

method of constructing iterative hash functions. It was described by Merkle [23] and Damgård

[24] in 1990 independently. The initial version of this iteration method has some weaknesses

against long-message attack to obtain second-preimages. Thus, it was strengthened by addi-

tion of message length as a last message block.

Input Value (Message)

Iteration Part

Output (Hash Value). . .

Compression Function

Figure 2.2: Iterated Hash Function

Merkle-Damgård - Strengthening is proceeded as follows: Firstly, a compression function

f : {0, 1}m×{0, 1}n → {0, 1}n is taken which uses messages of length m and chaining variables

of length n and outputs the next chaining variable of length n. Thus, a given message M is

padded to obtain a message of length multiple of n, then it is divided into t − 1 equal pieces

and message length of unpadded message is added as tth piece. At each iteration, inputs mi

and hi−1 is used to derive output hi. Output of ith iteration hi, is called the chaining variable or

the intermediate variable. The first chaining variable is called the Initial Value. The iterative

hash functions can be described as follows and the generalized scheme can be seen in Figure

2.3:

h0 = IV,

hi = f (mi, hi−1), i = 1, 2, . . . , t

H(m) = ht

Theorem 2.3.1 If the given compression function h(x) is collision-resistant, then the hash

function H(x) is collision resistant.
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Figure 2.3: Merkle-Damgård Construction (Strengthening)

Proof. A proof of this theorem can be found in [25]. �

As the result of this theorem, collision-resistant compression functions are become popular.

Various constructions are published based on iteration. Some of them use block ciphers as

compression function, some use stream ciphers etc. The hash functions based on block ciphers

are going to be studied in next section detailed.

2.3.1 Attacks on Merkle-Damgård Strengthening

There exist many hash functions which utilize Merkle-Damgård construction today. There-

fore, many articles related to security notions of this construction are published. Some of

them are going to be summarized below.

Length Extension Attack: Let a long message M = m1m2 · · ·mt be hashed with Merkle-

Damgård construction without any Merkle-Damgård - Strengthening. A message M∗ can be

found such that H(M) = H(M∗) by choosing a random message m∗ and computing f (IV,m∗)

and checking for the collision between f (IV,m∗) and the chaining variables of H(M). If it is

found, m∗ can be concatenated to M rather than the messages that are computed up to that

point where the same chaining variable is obtained. This yields M∗ (, M) whose hash value

is equal to hash of M. Therefore, M∗ is called a second-preimage of M and this attack can be

defined as second-preimage attack against Merkle-Damgård strengthening.
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Multi-collision Attack: Joux [26] expressed that finding multi-collisions in the iterative

hash functions is not harder than finding a collision. First, two single length messages are

found such that h1 = f (h0,m1) = f (h0,m∗1) and this operation can be repeated until t-hash

value is obtained such that hi = f (hi−1,mi) = f (hi−1,m∗i ). Then, 2t different multi-collisions

can be obtained with a complexity t × 2n/2 rather than 2n(t−1)/t. For the case t = 2, the attack

can be described as after finding h1 = f (h0,m1) = f (h0,m∗1) and h2 = f (h1,m2) = f (h1,m∗2),

22 = 4 different collisions can be obtained as evaluating the hash values of concatenation of

the messages H(m1||m2) = H(m1||m∗2) = H(m∗1||m2) = H(m∗1||m
∗
2). Figure 2.4 illustrates the

multi-collision attack.

Using multi-collisions, Joux also showed that concatenation of two different hash functions

does not improve the collision resistance.
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Figure 2.4: Multi-Collision Attack

Fixed Point and Second Preimage Attacks: It is stated by Dean [27] that for an iterative

hash function, if the fix points of compression function can be calculated easily, then finding

second-preimages is easier than expected. Davies-Meyer construction fits this condition well.

Its compression function can be written as hi = Emi(hi−1) ⊕ hi−1 where E denotes the block

cipher and subscripted value denotes the key value of block cipher. For a fixed point h, the

equality will be h = Emi(h) ⊕ h and Emi(h) = 0 or h = E−1
mi

(0). For this kind of a compression

function, it is easy to calculate fix points for randomly selected messages.

Either using Davies-Meyer construction or another one, if the fixed points can be calculated

easily, then Dean’s attack can be applicable and it works as follows:

1. Find O(2n/2) fix points which is denoted by a set A and n is the length of hash value.

2. Compute the chaining values of O(2n/2) single message blocks by taking hi−1 = IV and

call it set to B .
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3. Search for the matches between the values in A and B. Due to the choice of number

of elements in A and B, there must be a colliding pair in the sets A and B with the

probability greater than 1/2. After finding the match, concatenation of the message

from A to the message from B that give the collision, one gets the m∗ in the length

extension attack. The obtained message length can be extended to the original message

length by adding the fixed points required times. The sketch of the attack is given in

Figure 2.5
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Figure 2.5: Dean’s Fixed Point Attack

Kelsey and Schneier improved this attack to the case where it is not easy to find fixed points

[28]. They used the multi-collision technique to by pass first two steps of Dean’s attack and

then third step is applied to find second-preimages.

Herding Attack: This attack type is based on time-memory trade off and was introduced

by Kelsey and Kohno [29]. Attack has an offline and an online phase. In the offline phase

of the attack, 2t different chaining variables are chosen first, then with the aid of O(2n/2−t/2)

single message blocks, next chaining variables are computed and it is expected that some of

these hash values are collided. This step is repeated until one chaining variable left and that

value can be used as hash value. In the online phase, 2n−t operations are performed with 2n−t

different messages to connect the prefix to the one of 2t different chaining variable. (Length
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of the hash value is denoted as n.) The attack can be seen in Figure 2.6.
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Figure 2.6: Herding Attack

2.4 Hash Iterative Framework (HAIFA):

In the previous section, drawbacks of Merkle-Damgård construction are given. HAsh Iterative

FrAmework (HAIFA) is proposed by Biham and Dunkelman [30] to patch these problems and

generalize the iterative hash function schemes. Figure 2.7 gives the general scheme of HAIFA.

It is claimed that all the good properties of Merkle-Damgård construction is preserved and

security is improved also variable hash size is enabled.

In the Merkle-Damgård construction, compression function uses a chaining value of size n and

a message block of size n. In addition to these input values, a bit counter of size b and a salt

of size s are used in HAIFA and it is defined as f : {0, 1}n × {0, 1}n × {0, 1}b × {0, 1}s → {0, 1}n

and hi = f (hi−1,mi, bhi, si) where bh denotes the number of bits hashed so far and s denotes

the salt. A message is hashed after three main and one optional steps which are :

1. Padding

2. Computation of IV

3. Iteration of compression function f
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4. Truncation of the final chaining value (Optional)

Padding: The padding in HAIFA is very similar to the Merkle-Damgård Strengthening’s

padding. Moreover, the hash size is added as last r-bits of the message. The full padding can

be described as:

1. Add a bit 1 to end of the message.

2. Add 0-bits that follows the bit 1. The required number of zeroes is decided by checking

whether the length of padded message is a multiple of n after t-bits of message length

and r-bits of hash size added.

3. Add the message length in t-bits.

4. Add the hash size in r-bits.

Addition of hash size is related to preventing the variable size hash outputs against the colli-

sion attacks. Also, the last block of the message can be identified by compression function.

Computation of IV: Initial value is computed with the operation IV = f (IV0,me, 0, 0)

where IV0 is a fixed value and me is the encoded version of the hashing message. m is first
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described in k-bits. Then, a single bit 1 and n − k − 1 zeroes is padded to the obtain encoded

message me.

Iteration of compression function f : hi is found by computing f (hi−1,mi, bh, s) and this

operation is repeated until message blocks ends in the iteration part. There does not exist

any difference between iteration method of Merkle-Damgård and HAIFA. Only difference is

between the compression functions.

Truncation of the final chaining value: This step is optional. If different hash sizes are

required for the same hash function, truncating the last compression value can be applied.

This process was previously used in the hash functions S HA − 256 and S HA − 512 to obtain

S HA− 224 and S HA− 384 respectively. Except their initial values and constants, overall the

structure is the same in this constructions. On the other hand, this can cause some problems.

If the same chaining values in the first few blocks are obtained by applying collision attacks,

then the remaining operations and the obtained hash values (up to truncation) will be the same.

Therefore, the hash size of the message is added to the message in the padding part to protect

the construction against this kind of attacks.

Security of HAIFA: As mentioned before, HAIFA can be considered like a generalized

version of Merkle-Damgård construction. The proof methods of Merkle-Damgård construc-

tion can be applied to the HAIFA and collision resistance was proved by using the same

arguments in the proof of Merkle-Damgård construction. Thus, it can be said that if the com-

pression function is collision resistant, then HAIFA is also collision resistant [30]. Lately, it

was also claimed that if the compression function of HAIFA is an ideal cipher or a random

oracle, then second-preimages can be found with 2n work which is optimal case. It was pre-

sented in a Workshop (“Hash functions in cryptology: theory and practice ”) but not published

yet.

It must be also showed that the attacks on Merkle-Damgård construction do not work on

HAIFA. The additional variables in the construction mainly concentrate on preventing HAIFA

against these attacks. In the proposal of the HAIFA [30], it is stated that the addition of

number of bits hashed so far into the chaining variable provides resistance against fix point

attacks. Multi-collisions cannot be be pre-computed without knowing the exact salt value.
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In the second-preimage attack by Kelsey and Schneier, salt value must be known to produce

the expandable message. If it is not known, an expandable message can be produced for all

values of salt or there will be no offline phase in the attack. Herding attack is not feasible if the

salt value is choosing at least 64-bits length in the HAIFA [30]. Table 2.1 shows the required

works to apply the basic attacks to Ideal, Merkle-Damgård and HAIFA hash functions which

is taken from [30].

Table 2.1: Complexities of Attacks on Ideal Hash Function, Merkle-Damgård and HAIFA
(Compression functions of Merkle-Damgård and HAIFA are considered as ideal compression
functions)

Type of Attack Ideal Hash Merkle-Damgård HAIFA HAIFA
Function (fixed salt) (distinct salt)

= ≥ ≥ ≥

Preimage 2n 2n 2n 2n

One-of-many 2n/k 2n/k 2n/k 2n

Preimage
(k < 2s messages)
Second-preimage 2n 2n/l 2n 2n

(l-blocks)
One-of-many 2n/k 2n/l 2n/k 2n

Second-preimage
(l-blocks, k < 2s messages)
Collision 2n/2 2n/2 2n/2 2n/2

Multi-collision 2n(t−1)/t dlog2(t)e2n/2 dlog2(t)e2n/2 dlog2(t)e2n/2

(t-collision)
Herding Online: - 2n−t 2n−t 2n−t

Offline 2n/2+t/2 2n/2+t/2 2n/2+t/2+s

2.5 Construction of Hash Functions

In the previous sections, the basics of a hash function and some required information that helps

to understand the following chapters are given. In this section, some important construction

methods of the cryptographic hash functions are going to be described.

Up to now, many different construction methods are proposed to obtain a collision resistance

hash function and new construction methods are also being developed. Some of them uses

NP-complete mathematical problems, some uses well known cryptographic components like

block ciphers and others are designed with totally new strategies. In this section the following

construction methods are described:
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1. Provably secure hash functions,

2. Block cipher based hash functions,

3. Sponge function based hash functions.

Each choice has some advantages and disadvantages and research is going on to find the best

construction method. In the following sections, hashing methods that are given above are

examined.

2.5.1 Provably Secure Hash Functions

The designs of this type of hashing are based on hard mathematical problems. Some of

the problems can be reduced to NP-complete problems, which are also used in public key

cryptography. On the other hand, the hardness of the some mathematical problems are also

used to design a hash function. Thus, some schemes are badly broken after finding solutions

to the defined problems.

The security bounds for a CRHF can be obtained and proved in this type of constructions

easily. Due to the operations that are used for hashing, provably secure hash functions are

slower than the others.

One of the first examples of this type hashing is given by Gibson [31] whose proposal is

based on discrete logarithm problem. Three years after in 1994, Bellare et al.[32] designed a

hash function which is also based on discrete logarithm problem. In 2006, Very Smooth Hash

(VSH) [33] was presented in the Eurocrypt where the underlying number-theoretic problem

can be reduced to finding non-trivial modular square root of very smooth number.

There also exists some hash functions based on expander graphs. These make use of the

problems in the graphs and groups properties. LPS [34], ZT [35] and Prizer [34] hashes are

the examples of expander graph based hashing. LPS hash is completely broken today. ZT

and Prizer hashes are unbroken. The mathematical problems in these hashes could not be

reduced to an NP-complete problem. Therefore, there exists always a possibility to deduce

some weaknesses of the these hash functions.

There exist also some provably secure hash functions based on Knapsack [36, 37], Lattice
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[38, 39, 40] and Coding Theory and Fast Fourier Transforms (FFT) [41].

2.5.2 Block Cipher Based Hash Functions

One of the main design types of hash functions is based on block ciphers where many ideas

and theories have been developed in the last ten years related to this topic. The main problem

of constructing a hash function from a block cipher is the bijectiveness (lack of one-wayness)

of the block cipher. Thus, adopting the block ciphers to hash functions some extra operations

are needed before and/or after encryption operations.

The block cipher based hashing is mainly preferred due to some reasons. First of all, more

efficient hash functions can be constructed using block ciphers. Minimum requirements in

hardware and better performances in hashing can be obtained. But there always exists a trade-

off between the efficiency of the design and its security. The more efficient designs require

very simple constructions and these are concluded with badly broken hashes like MD− f amily

which includes MD−X (MD2, MD4, MD5 and RIPEMD) and S HA−X (S HA−0, S HA−1

and S HA − 2) hashes. The second reason why the block cipher based hashing is chosen that

the block ciphers are well examined and exploited their weaknesses.

In block cipher based hashing, a block cipher is chosen as a compression function, then it is

iterated for some rounds to produce hash values. After Merkle and Damgård showed iterative

hash functions are collision resistant if the compression functions are collision resistant, block

cipher based hashing became more popular. Most of the hashes, which are chosen as standard

and used in many applications today, are also based on block ciphers. They use very simple

encryption functions. Thus, they are more efficient than provably secure hash functions.

Choosing a block cipher did not provide the security margins in 1990s while the block length

of the ciphers were 64-bit and it leads only 232 complexity to get a collision. Therefore,

more than one block cipher were used in the designs and various lengths of hash values are

obtained. But, most designers concentrated on the following constructions:

1. Size of hash value equals to the block length of the block ciphers

2. Size of hash value equals to twice the block length of the block ciphers
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Different lengths of hash values and different number of block ciphers in the new designs

come up with one question: Which one is more efficient? The following definition enables to

compare block cipher based hash functions.

Definition 2.5.1 The rate R of a hash function is defined as hashed message block per en-

cryption.

Low rate hash functions with single length are mostly preferred rather than high rate hash

functions due to the efficiency problems of high rate hash functions. Thus, hash functions

with single block lengths examined in the following paragraphs. Then, some examples of

double block length hash functions are going to be given and finalized with other examples of

efficient designs which have neither single nor double block length.

Single Block Length Hash: All the designs with single block length have rate-1. Most

known are given by Davies-Meyer [42], Matyas-Meyer-Oseas [43], Miyaguchi-Preneel [44,

45] which are also given in Figure 2.9 [1, 5, 6] respectively.

Preneel, Govaerts and VandeWalle (PGV) Constructions: PGV [45] defined single-length

block hash with rate-1 in a general form. In the PGV construction, a block cipher is consid-

ered like Figure 2.8 where the block cipher takes two input values: Plaintext P and key k. It

gives an output value which is XORed with an feedforward value FF. The values P, k, FF are

thought as chosen from the set {mi, hi−1,mi ⊕ hi−1,C}. Therefore, there exist 43 = 64 possible

construction methods and it was stated that only 12 of them (Figure 2.9) are seemed secure.

FF

k

P

C

Figure 2.8: General Scheme (The key of the block cipher is shown as small box)
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Figure 2.9: Twelve Secure Hash Constructions (The key of the block cipher is shown as small
box)

In 2002, Black, Rogaway and Shrimpton [1] showed that collision resistance of the given

constructions are close to the birthday bound and they also showed that 8 of them (Figure 2.10)

are also collision resistant if they are iterated properly even though they do not have a secure

compression functions. Stam [46] also shows the collision resistance of the constructions in

a different way.

Double Block Length Hash: In the block cipher based hash functions if the output length

is equal to the double block length of the cipher than it is called double block length hashing.

Most known examples are MDC−2 [47] and MDC−4 [47]. The numbers at the end describes

the required block cipher calls in the compression function. The design principle of these

two hashes was to produce double length hashes using well known cipher Data Encryption

Standart (DES ) [48]. As it can can be seen from Figure 2.11 rate of these hash functions are

1/2, 1/4 respectively. Both use extended version of the Matyas-Meyer-Oseas scheme which

is stated in Figure 2.9 as number 5.

Another example to double-length hashing is given by Nandi et al.[49] with rate 2/3. The
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hash function can be seen in Figure 2.12. In addition to this construction, there exist also

Abreast-DM [50], Parallel-DM [51], Hirose family [52], Merkle’s constructions based on

DES and PBGV [53] constructions with double-length and different rates.

For all constructions mentioned above, information theoretic security bounds are discussed

in the proposals and also in related articles. Knudsen, Lai and Preneel [54] investigated the

security of double-length block hashing with rate-1. Rate 1/2 constructions were studied by

Hohl, Lai, Meier and Waldvogel [51]. Moreover, double-length block hashing with double-

length key value was discussed by Satoh, Haga and Kurosawa [55] and Hattori, Hirose and

Yoshida [56].

Larger than double block length hash functions are also introduced by Preneel and Knudsen

[57]. They used block cipher based hash functions with Quaternary Codes.

2.6 Sponge Function Based Hash Functions

Sponge functions are defined by Bertoni et al. [58]. They are iteration of finite states. Using

a sponge function it is possible to produce an infinite-length output from a variable-length

input. Sponges can be used to construct both hash functions and stream ciphers.

Grindahl [59] is an example to constructing a hash function from a sponge function. It is

designed by Thomsen et al. It supports 256 and 512 bits of output. It has some lacks in

the collision resistance and that was showed by Peyrin [60]. Another example is Radiogatùn

[11]. It is mainly a stream based hash function, but it can be also included into sponge function

based hash construction.
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It is expected from a cryptographic hash function that behaves like a random oracle and a

random oracle does not have any weaknesses. When iterated hash functions are considered,

there always exist inner collisions which can be defined as if two message pair m1 and m2

give the same chaining value, then concatenation of m1 and m2 with collide suffix m∗ collide

(i.e. m1||m∗ and m2||m∗ gives same hash value). In the sponge function construction, there

also exist inner collisions and this is the only weaknesses of sponge functions so far. Gorski

et al. [61] also showed that slide attacks can be applicable to sponge functions and gave two

examples on MAC modes of Radiogatùn and Grindahl.

2.6.1 Stream Cipher Based Hash Functions

Some of the researches to find more efficient hashing come up with new hashing techniques.

The construction method is based on neither a mathematical problem nor a block cipher. It is

based on synchronous stream ciphers which are one of the important parts of the symmetric

cryptosystems and they are suitable for applications where high speed is required. The hard-

ware requirements are also lower then a block cipher constructions. Thus, some constructions

were given in previous years.

Panama is the first stream based hash function which is designed by Daemen et al.[10] and

badly broken by the designers [62, 63]. Then, strengthened version is proposed as Radiogatùn

[11] in 2007. There is also a design which is based on the famous stream cipher RC4 [64]

which is also broken by Indesteege and Preneel[65]. Performances of stream cipher based

hash functions are better than the other constructions but there does not exist any mathematical

or information theoretic proofs related to their security. The studies on the stream ciphers and

their security can help to reach some results for the security results of stream based hashing.
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CHAPTER 3

Sarmal: Cryptographic Hash Function Family

Most of the known hash functions and their updated versions were broken with last term

attacks on hash functions [19, 20, 21, 22]. It is also showed that the commonly used construc-

tion method, Merkle-Damgård, is not secure as expected [26, 27, 28, 29]. NIST announced

for a public competition to choose new hash function which will be a new hashing standard

and called S HA − 3 [16].

In the design of Sarmal, it is aimed to construct hash function, which satisfies the stated prop-

erties of new hash function. To achieve this, HAIFA is chosen as the construction method.

Compression function of Sarmal consists of two linearly independent, identical branches

which contains generalized Feistel networks. Whole construction is word oriented and Ad-

vance Encryption Standard(AES) type operations such as s-boxes and matrices, based on

Maximum Distance Separable (MDS) codes, are used in the design. Message permutation is

preferred rather than message expansion which are come up with extra implementation costs.

Sarmal is a hash function family which supports various size of hash digests(224, 256, 384

and 512 bit). The definition of Sarmal is given through 512-bit version. 384-bit version is

defined in Section 3.1.3 and 224/256-bit versions are defined in Chapter B.

3.1 Description of Sarmal

3.1.1 Notation

Throughout this chapter, the following notation will be used. Each 512-bit block is composed

of eight 64-bit words (X[7], X[6], . . . , X[0] = X[7− 0]). Note that the words and blocks are in
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Table 3.1: Notation

⊕ Bitwise logical exclusive OR (XOR) si−1 128-bit salt value Â
� Addition modulo 264 si−1[ j] jth 64-bit word of 128-bit si−1
� Substraction modulo 264 ti−1 64-bit bit counter
Xi 512-bit intermediate value c 256-bit constant value
Xi[ j] jth 64-bit word of 512-bit Xi c[ j] jth 64-bit word of 256-bit c
hi−1 512-bit chaining value I 64-bit Input value
hi−1[ j] jth 64-bit word of 512-bit hi−1 O 64-bit Output value
S i[.] 8 × 8-bit S-box transformation M8×8 8 × 8 Maximum Distance

Separable (MDS) Matrix

little-endian order (i.e. the least significant bit is the rightmost bit numbered 0, and the most

significant bit is bit 63 for a 64-bit word.). The symbols that are used in the equations and

figures are given in the Table 3.1.

Padding: A single bit 1 is concatenated to the message M, followed by zeros until the length

of the message is 439 modulo 512. Afterwards, 100000000 is added and the 64-bit original

message length is appended to the end.

Message Permutation: The compression function of Sarmal needs a 512-bit message in

each iteration. The message is first divided into eight 64-bit words, then these words are

permuted by σk(mi), which will be used in two consecutive rounds . Since, there are 16 × 2

rounds in the compression function, 16 permutations are needed. These permutations are

given in Table 3.2. First eight permutations are used in left half and the remaining are used in

the right half of the Sarmal.

Initial value: First 128 hexadecimal digits of π is taken as the initial value (i.e. IV or h0) of

Sarmal, and it is given in Table 3.3.

s and t values: The s variable is used to show the salt value of the Sarmal where it is

required in HAIFA construction to strengthen the structure. 128-bit s is used like a counter.

It is initialized with an IV and incremented by one after each compression function calls and

t shows the number of hashed bits so far. It is 64-bit and used in both left and right branches.
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Table 3.2: Message Permutation

Left Part Right Part
mi[.] 0 1 2 3 4 5 6 7 mi[.] 0 1 2 3 4 5 6 7
σ1(mi) 0 1 2 3 4 5 6 7 σ9(mi) 3 4 0 2 5 7 6 1
σ2(mi) 6 0 7 1 2 3 4 5 σ10(mi) 0 7 6 3 4 2 1 5
σ3(mi) 5 2 6 4 0 1 7 3 σ11(mi) 1 0 5 4 3 6 7 2
σ4(mi) 1 7 3 2 5 4 0 6 σ12(mi) 7 2 1 5 6 0 3 4
σ5(mi) 4 3 5 7 1 6 2 0 σ13(mi) 6 1 3 7 2 5 4 0
σ6(mi) 3 4 1 6 7 0 5 2 σ14(mi) 5 3 4 0 7 1 2 6
σ7(mi) 2 6 0 5 3 7 1 4 σ15(mi) 2 6 7 1 0 4 5 3
σ8(mi) 7 5 4 0 6 2 3 1 σ16(mi) 4 5 2 6 1 3 0 7

Table 3.3: Initial Values of Sarmal

h0[0] = 243F6A8885A308D3x h0[4] = 452821E638D01377x

h0[1] = 13198A2E03707344x h0[5] = BE5466CF34E90C6Cx

h0[2] = A4093822299F31D0x h0[6] = C0AC29B7C97C50DDx

h0[3] = 082EFA98EC4E6C89x h0[7] = 3F84D5B5B5470917x

Constants: Sarmal uses a 256-bit constant C which is divided into four 64-bit words. They

are taken from the extension of square root of three. These values are given in Table 3.4.

Table 3.4: Constants of Sarmal

C[0] = BB67AE8584CAA73Bx C[2] = 25D834CC53DA4798x

C[1] = 25742D7078B83B89x C[3] = C720A6486E45A6E2x

3.1.2 The Algorithm

Sarmal-512 accepts a message m of arbitrary length (no more than (264 − 1)-bits) as input and

outputs a 512-bit hash value H(m). It uses a compression function f (hi−1,mi, ti−1, si−1). In

each iteration, the rightmost four words of hi−1 is concatenated with the rightmost word of the

salt si−1, rightmost two words of the constant c, and t value. The 512-bit state is iterated 16

rounds in the right branch. (X0 = (X0[7 − 0]) = (hi−1[3 − 0], si−1[0], c[1 − 0], t))

Similarly, the leftmost four words of hi−1 is concatenated with the leftmost word of the salt
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value si−1, leftmost two words of the constant c and t and the result is again processed for 16

rounds in the left branch. (X0 = (X0[7 − 0]) = (hi−1[7 − 4], si−1[1], c[3 − 2], t))

The two outputs are XORed, and the resulting value is XORed with mi. Figure 3.1 shows the

general view of the compression function.

F

F

i
h

F

F

F

F

.

.

.

F

F

.

.

.

i
mσ(    )

1

2
i

mσ(    )

i
mσ(    )

8
i

m

i
mσ (    )

10

i
mσ(    )

9

i−1
h

i−1
s c t

i−1

i−1
h

i−1
s

i−1
h

i−1
sc t

i−1
c t

i−1

F

F

F

F

m i

16
σ (    )

(
)

)[1]
(

)[0]
(

, , ,

, , , , , ,

Figure 3.1: General View of Compression Function

Round Function: Let F(x,w) denote the round function, where x and w are 512-bit and

256-bit inputs respectively, and w is obtained from mi by a permutation σk (k = 1, 2, · · · , 16).

For odd rounds w is the least significant four words of the given permutation, whereas for

even rounds it corresponds to the most significant four words (i.e. w = σk(mi)[0 − 3] or

w = σk(mi)[4 − 7]). The F-function can be seen in the Figure 3.2 and may be formally

described by the Algorithm 1:
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Figure 3.2: F-Function

Algorithm 1 F-function
Input: 512-bit state and 256-bit Message Value (mi)

Output: 512-bit new state value

Calculate F(x,w) for each branch

for 1 ≤ i ≤ 16 do

if (Round is Odd) then
xi[0] = (xi−1[1] ⊕ σk(mi)[3]) � f2(xi−1[3] ⊕ σk(mi)[2]) xi[1] = xi−1[2] ⊕ f2(xi−1[3] ⊕

σk(mi)[2]) xi[2] = xi−1[3]⊕σk(mi)[2] xi[3] = xi−1[4]� f1(xi−1[7]⊕σk(mi)[0]) xi[4] =

(xi−1[5]⊕σk(mi)[1])� f1(xi−1[7]⊕σk(mi)[0]) xi[5] = xi−1[6]⊕ f1(xi−1[7]⊕σk(mi)[0])

xi[6] = xi−1[7] ⊕ σk(mi)[0] xi[7] = xi−1[0] � f2(xi−1[3] ⊕ σk(mi)[2])

end

if (Round is Even) then
xi[0] = (xi−1[1] ⊕ σk(mi)[7]) � f2(xi−1[3] ⊕ σk(mi)[6]) xi[1] = xi−1[2] ⊕ f2(xi−1[3] ⊕

σk(mi)[6]) xi[2] = xi−1[3]⊕σk(mi)[6] xi[3] = xi−1[4]� f1(xi−1[7]⊕σk(mi)[4]) xi[4] =

(xi−1[5]⊕σk(mi)[5])� f1(xi−1[7]⊕σk(mi)[4]) xi[5] = xi−1[6]⊕ f1(xi−1[7]⊕σk(mi)[4])

xi[6] = xi−1[7] ⊕ σk(mi)[4] xi[7] = xi−1[0] � f2(xi−1[3] ⊕ σk(mi)[6])

end

end
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f1 and f2 functions: f -functions can be considered as the main non-linear part of the com-

pression function of Sarmal, since the complex operations are performed here, they are im-

portant for diffusion and confusion. Both f1 and f2 are typical examples of substitution-

permutation network (SPN).

Let f1(I) and f2(I) denote the f -functions, where I is the 64-bit input, which can be seen as

concatenation of 8-bytes I = (I[7 − 0]). It passes through 8 parallel 8 × 8-bit S-boxes and the

output is multiplied with an MDS matrix M a nd obtained 64-bit output value O. (Details of

S-boxes and Matrix M are in available Appendix A). The only difference of f1 and f2 is the

selection of S-boxes. Figure 3.3 shows f1 and f2, respectively and they are described in the

following equations:

f1 function

I = (I[7], I[6], · · · , I[0])

O8×1 = M8×8 · (S 0[I[7]], S 0[I[6]], · · · , S 0[I[0]])T

*T represents the transpose operation

f2 function

I = (I[7], I[6], · · · , I[0])

O8×1 = M8×8 · (S 1[I[7]], S 1[I[6]], · · · , S 1[I[0]])T
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3.1.3 384-bit Version of Sarmal

The followings are the only differences between Sarmal-384 and Sarmal-512.

1. The initial value (h0) and the constant c values are changed in Sarmal-384.

2. 011000000 string is added rather than 100000000 in the padding part.

3. Hash value is obtained by truncating the final hash value to 384-bits in the Sarmal-

384. The left-most 384-bits of final hash value is taken hash value of Sarmal-384.(i.e.

H(m) = (ht[7 − 2])).

Initial value of Sarmal-384: Table 3.5 shows the initial value of Sarmal-384. Extension of

Golden ratio is used in the IV.

Table 3.5: Initial Value of Sarmal-384

h0[0] = 9E3779B97F4A7C15x h0[4] = 2767F0B153D27B7Fx

h0[1] = F39CC0605CEDC834x h0[5] = 0347045B5BF1827Fx

h0[2] = 1082276BF3A27251x h0[6] = 01886F0928403002x

h0[3] = F86C6A11D0C18E95x h0[7] = C1D64BA40F335E36x

Constants of Sarmal-384: Constants are taken from the extension of square root of five.

These constant values are given in Table 3.6.

Table 3.6: Constants of Sarmal-384

C[0] = 3C6EF372FE94F82Bx C[2] = 21044ED7E744E4A3x

C[1] = E73980C0B9DB9068x C[3] = F0D8D423A1831D2Ax

3.2 Design Rationale

The following goals are taken into consideration while designing the hash function family

S armal.
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1. The new design should ensure better security results than S HA − 2 family.

2. The new design should be analyzed easily.

3. Attacks on MD and S HA family should not work on the new design.

4. The software and hardware performance should be good.

5. The new design should suggest various hash sizes.

The following design rationale is used to achieve these goals.

3.2.1 Structure

Recent attacks show that using Merkle-Damgård construction does not guarantee as much

security as expected. New iteration method HAIFA is proposed to patch the weaknesses of

MD, and to improve MD construction. Thus, we use HAIFA in our design.

Two independent branches are used in Sarmal. RIPEMD [7], RIPEMD − 128/160 [8] and

FORK [66] use similar type of construction. There exist attacks on RIPEMD and FORK

due to the flaws in their design. RIPEMD used the same message type in both branches and

the weakness was exploited in [19]. It was shown in [67] that the compression function of

FORK caused some weaknesses. On the other hand, there is no known attacks to RIPEMD−

128/160, even though it uses the MD4 structure which is badly broken today. Thus, using

more than one branch can be secure if it is used correctly.

Therefore, it can be deduced that, using more than one branch can only provide enough secu-

rity if it is used correctly.

3.2.2 F-function

It is required to handle 512-bit data in the hashing process. Generalized Feistel type block

cipher is used in S armal to handle that much of data and the required non-linear part of the

hash function is reduced to 64-bit f -functions. Addition and subtraction modulo 264 are also

used as non-linear parts to diffuse the output of f -function to the branches differently.
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3.2.3 f -functions ( f1 and f2)

A simple SPN is chosen for the design of f -functions. Constructing f -functions from 8

parallel s-boxes and the matrix M, based on a [16, 8, 9] MDS code, enables us to express

whole structure with look-up tables and to define a lower bound for the branch number of

f -functions.

Intel’s new processor (Nehalem) is going to support operations on AES and enable faster

implementations of AES-like structures which is an advantage for our design.

Diffusion Layer An 8 × 8 MDS matrix, which provides good diffusion properties, is used

for diffusion. It guarantees that to achieve branch number of at least 9 for the branch number

which is described in Definition 3.3.1. This property helps to give the security margins for

the hash function Sarmal.

Message Permutation The message permutations are considered as an 8× 8 matrix Mp for

each branch(In Table 3.2, input values form this defined matrix). Some restriction are put on

this matrix. Firs, four conditions are used in order to avoid local collisions. Let αi, j denote

the value in ith row and jth column. Then, these conditions are αi,1 , αi+1,2, αi,3 , αi+1,0,

αi,5 , αi+1,6, αi,7 , αi+1,4 . The reason, is that the same message cancels itself after two

rounds, which can be seen in Figure 3.4.

Decided permutations also satisfy that if two of the 64-bit messages are same, then at most

two of the above conditions can be satisfied for different i’s and j’s. Therefore, these two

messages keep propagating through each branch.

3.3 Security Analysis

We need some definitions, before discussing the security analysis of Sarmal.

Branch number of a transformation is a helpful tool while calculating the number of active

s-boxes of a structure which gives lower attack complexity bound of the cipher against differ-

ential cryptanalysis.
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Definition 3.3.1 (Branch Number[68]) Let F be a linear transformation operating on bytes

and let W(.) be the byte weight of an input value (i.e. counts the non-zero bytes of the given

value). Then, the branch number of F is defined as mina,0{W(a) + W(F(a)}..

For a block cipher or a block cipher based construction, one of the important parts is the non-

linear layer where s-boxes are mainly used. In each construction, they are used in parallel and

more than once. Finding the paths, with the minimum number of s-box passes, until the end

of cipher gains an important role, and a lower bound can be given for the attack complexity.

This notion is named as active s-box number (ASB).

3.3.1 Collision Resistance

The complexity of a collision attack must be less than 2n/2 for a n-bit hash function. To show

Sarmal’s collision resistance, number of active s-boxes were calculated for the worst scenario.

Choosing the worst case scenario, mentioned below, is eased the calculation of active s-boxes

and if the results are greater than the expected bound, then the last term attacks do not work

on Sarmal. Since, a good differential path with minimum number of active s-boxes is required

for the recent attacks.

• Addition and subtraction operations modulo 264 are converted to the XOR operation

which eases the active s-box computation. Since, both addition and subtraction op-

erations are non-linear, the original design’s result is not going to be worse than the

modified version’s result, and actually it is expected to see more active s-boxes.

• All of the eight words, entering the round function F, are considered as numbers rang-

ing from 0 to 8 which corresponds to the number of non-zero bytes.

• f -functions gives output ranging from 0 to 8 that depends on the input value. f -

functions use MDS matrices which guarantee that the total number of non-zero bytes

for the input and output values are greater than 9.

• Two differences cancels each other in XOR operation only if they are same. Therefore,

if the two values entering the XOR operation are the same, then the resulting value is

taken as zero regardless of the actual values and positions of the bytes, in order to create

the worst case scenario.
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• If the two values entering the XOR operation are different, then the resulting value

is taken as the difference between them which means that the non-zero bytes of two

values are in the same positions with the same byte-values, in order to form the worst

case scenario.

• A non-zero input difference is given to only one of the eight messages or one of the eight

branches in the F or these are given at the same time. A software program is developed

and results showed that the required attack complexity exceeds before reaching the 16th

round of Sarmal. The best results are given in Table 3.7.

Table 3.7: Active S-box Number

Round Number ASB (Left) ASB (Right) ASB (Total) Non-zero values
15 48 60 108 M[1] = 6
14 54 57 111 M[0] = 6
14 57 63 120 M[4] = 6
14 48 66 114 M[5] = 6
14 57 57 114 M[7] = 6
12 61 59 120 M[0] = 8

X[4] = 7
11 63 63 126 X[2] = 7

The maximum value of the negative log2 in the XOR-table is 2−5. The required attack com-

plexity for differential cryptanalysis is 2(5×AS B) which is greater than 2512. Thus, the time

complexity for differential attacks on full round Sarmal exceeds exhaustive search.

3.3.2 Resistance Against Known Attacks

Recent attacks on Merkle-Damgård construction is by passed by HAIFA. Length extension

attacks (See Section 2.3.1) are prevented by choosing t-value which includes information

about the number of bits hashed so far. Second preimage attack based on fix points or multi-

collisions are prevented by using t-value which was stated in the [28] as adding block index

into the compression function. This idea was used more practically and number of bits is kept

instead of block index. More data storage is going to be needed to perform the herding attack

due to existence of salt value (if salt is not fixed).
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3.4 Implementation Issues

Performance of Sarmal-512 is going to be compared with S HA − 512 in this section. Two

of the fastest S HA − 512 implementations, implemented by Dai [69] and Gladman [70], are

taken into consideration and compared with optimized Sarmal-512 code. Gladman’s code is

an optimized implementation of S HA − 512 without using any assembly or Streaming SIMD

Extensions 2 (S S E2) structures. Other one uses these structures in the implementation of

S HA − 512. An optimized code is also used with assembly language in the implementation

of Sarmal-512. It can be improved by using S S E2 structures. The tests are performed in the

system:

Computer : Intel Core 2 Duo (2.00 GHz, 4 MB L2 Cache),

: 2GB DDR2 667 MHz RAM

Operating System : Ubuntu 8.04.1 64-bit

Compiler : GNU C Compiler (GCC) 4.2.3

Table 3.8: Performance of Sarmal-512 and S HA − 512

Algorithm Cycles/Byte
Sarmal-512 14.4

S HA − 512 [69] 12.1
S HA − 512 [70] 31.1

The number of cycles is measured and small numbers represents faster implementations in

the Table 3.8. The results show that using assembly and S S E2 structures increase the perfor-

mances of the hash functions. Therefore, we expect better results for Sarmal after combining

the implementations of these two structures.
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CHAPTER 4

Conclusion

In this thesis, starting from the very definition of cryptographic hash functions, the design

methods together with their weaknesses and strengths are described. All the design and anal-

ysis methods that have been speeding up since a couple of years are considered and based on

the output of those scientific effort, a new family of hash function is introduced.

Our aim was to construct a cryptographic hash function which is more secure and faster than

S HA−2, as it serves as a model after the continuous attacks to the well known hash functions.

To achieve these goals, the previous experiences on block ciphers are used and a block cipher

based construction which is suitable to our constraints is figured as Sarmal. In Sarmal, we use

HAIFA construction as we believe it is more suitable for our purposes especially in terms of

security and flexibility.

We plan to submit this design to the NIST’s competition on designing a new cryptographic

hash function which will be standardized and called S HA − 3 as a new generation hashing

standard.

As a future work, we are planning to do the followings for our design:

• The design of a new and more hardware efficient s-boxes .

• Efficient implementation of our design by bit slice implementation and SSE2 tech-

niques.

• The hardware optimization and design of Sarmal which is resistant against Side Chan-

nel Attacks

• The security evaluations based on the latest attacks which will emerge before submis-
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sion

• Efficient software implementations of Sarmal which are suitable for various architec-

tures.
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free Hash Functions Based on Block Cipher Algorithms. In International Carnahan
Conference on Security Technology, pages 203–210, 1989.

[54] Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on Fast Double Block Length
Hash Functions. J. Cryptology, 11(1):59–72, 1998.

[55] T. Satoh, M. Haga, and K. Kurosawa. Towards secure and fast hash functions. In IEICE
Transactions on Fundementals, pages 55–62, 1999.

[56] Mitsuhiro Hattori, Shoichi Hirose, and Susumu Yoshida. Analysis of Double Block
Length Hash Functions. In Kenneth G. Paterson, editor, IMA Int. Conf., volume 2898 of
Lecture Notes in Computer Science, pages 290–302. Springer, 2003.

[57] Kwangjo Kim and Tsutomu Matsumoto, editors. Advances in Cryptology - ASIACRYPT
’96, International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Kyongju, Korea, November 3-7, 1996, Proceedings, volume 1163 of
Lecture Notes in Computer Science. Springer, 1996.

[58] Guido Bertoni and Joan Daemen and Michaël Peeters and Gilles Van Assche. Sponge
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APPENDIX A

S-boxes and MDS Matrices

A.1 S-Boxes

The S-boxes of Sarmal are taken from AES[78] and Whirlpool[79]. Both have nice crypto-

graphic properties. The largest values in XOR table and Linear Approximation Table (LAT)

are minimized. Hardware compatibility is also considered in the designs of S-boxes.

Table A.1: S 0-Box

00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx

00x 18x 23x C6x E8x 87x B8x 01x 4Fx 36x A6x D2x F5x 79x 6Fx 91x 52x
10x 60x BCx 9Bx 8Ex A3x 0Cx 7Bx 35x 1Dx E0x D7x C2x 2Ex 4Bx FEx 57x
20x 15x 77x 37x E5x 9Fx F0x 4Ax DAx 58x C9x 29x 0Ax B1x A0x 6Bx 85x
30x BDx 5Dx 10x F4x CBx 3Ex 05x 67x E4x 27x 41x 8Bx A7x 7Dx 95x D8x
40x FBx EEx 7Cx 66x DDx 17x 47x 9Ex CAx 2Dx BFx 07x ADx 5Ax 83x 33x
50x 63x 02x AAx 71x C8x 19x 49x D9x F2x E3x 5Bx 88x 9Ax 26x 32x B0x
60x E9x 0Fx D5x 80x BEx CDx 34x 48x FFx 7Ax 90x 5Fx 20x 68x 1Ax AEx
70x B4x 54x 93x 22x 64x F1x 73x 12x 40x 08x C3x ECx DBx A1x 8Dx 3Dx
80x 97x 00x CFx 2Bx 76x 82x D6x 1Bx B5x AFx 6Ax 50x 45x F3x 30x EFx
90x 3Fx 55x A2x EAx 65x BAx 2Fx C0x DEx 1Cx FDx 4Dx 92x 75x 06x 8Ax
A0x B2x E6x 0Ex 1Fx 62x D4x A8x 96x F9x C5x 25x 59x 84x 72x 39x 4Cx
B0x 5Ex 78x 38x 8Cx D1x A5x E2x 61x B3x 21x 9Cx 1Ex 43x C7x FCx 04x
C0x 51x 99x 6Dx 0Dx FAx DFx 7Ex 24x 3Bx ABx CEx 11x 8Fx 4Ex B7x EBx
D0x 3Cx 81x 94x F7x B9x 13x 2Cx D3x E7x 6Ex C4x 03x 56x 44x 7Fx A9x
E0x 2Ax BBx C1x 53x DCx 0Bx 9Dx 6Cx 31x 74x F6x 46x ACx 89x 14x E1x
F0x 16x 3Ax 69x 09x 70x B6x D0x EDx CCx 42x 98x A4x 28x 5Cx F8x 86x

Table A.2: S 1-Box

00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx

00x 63x 7Cx 77x 7Bx F2x 6Bx 6Fx C5x 30x 01x 67x 2Bx FEx D7x ABx 76x
10x CAx 82x C9x 7Dx FAx 59x 47x F0x ADx D4x A2x AFx 9Cx A4x 72x C0x
20x B7x FDx 93x 26x 36x 3Fx F7x CCx 34x A5x E5x F1x 71x D8x 31x 15x
30x 04x C7x 23x C3x 18x 96x 05x 9Ax 07x 12x 80x E2x EBx 27x B2x 75x
40x 09x 83x 2Cx 1Ax 1Bx 6Ex 5Ax A0x 52x 3Bx D6x B3x 29x E3x 2Fx 84x
50x 53x D1x 00x EDx 20x FCx B1x 5Bx 6Ax CBx BEx 39x 4Ax 4Cx 58x CFx
60x D0x EFx AAx FBx 43x 4Dx 33x 85x 45x F9x 02x 7Fx 50x 3Cx 9Fx A8x
70x 51x A3x 40x 8Fx 92x 9Dx 38x F5x BCx B6x DAx 21x 10x FFx F3x D2x
80x CDx 0Cx 13x ECx 5Fx 97x 44x 17x C4x A7x 7Ex 3Dx 64x 5Dx 19x 73x
90x 60x 81x 4Fx DCx 22x 2Ax 90x 88x 46x EEx B8x 14x DEx 5Ex 0Bx DBx
A0x E0x 32x 3Ax 0Ax 49x 06x 24x 5Cx C2x D3x ACx 62x 91x 95x E4x 79x
B0x E7x C8x 37x 6Dx 8Dx D5x 4Ex A9x 6Cx 56x F4x EAx 65x 7Ax AEx 08x
C0x BAx 78x 25x 2Ex 1Cx A6x B4x C6x E8x DDx 74x 1Fx 4Bx BDx 8Bx 8Ax
D0x 70x 3Ex B5x 66x 48x 03x F6x 0Ex 61x 35x 57x B9x 86x C1x 1Dx 9Ex
E0x E1x F8x 98x 11x 69x D9x 8Ex 94x 9Bx 1Ex 87x E9x CEx 55x 28x DFx
F0x 8Cx A1x 89x 0Dx BFx E6x 42x 68x 41x 99x 2Dx 0Fx B0x 54x BBx 16x
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A.2 MDS Matrices

A.2.1 Sarmal-384/512

The matrix M, used in f -functions, is a linear mapping based on a [16, 8, 9] MDS code and

defined from GF(28) to GF(28) . The field GF(28) is given as GF(2)[x]/p(x) where p(x) =

x8 + x4 + x3 + x2 + 1 and p(x) is a primitive polynomial. Each row in matrix M and input

value I are considered as polynomials in GF(28) and multiplied to find output value which is

described as O8×1 = M8×8 · I8×1.

M =



01x 09x 02x 05x 08x 01x 04x 01x

01x 01x 09x 02x 05x 08x 01x 04x

04x 01x 01x 09x 02x 05x 08x 01x

01x 04x 01x 01x 09x 02x 05x 08x

08x 01x 04x 01x 01x 09x 02x 05x

05x 08x 01x 04x 01x 01x 09x 02x

02x 05x 08x 01x 04x 01x 01x 09x

09x 02x 05x 08x 01x 04x 01x 01x


A.2.2 Sarmal-224/256

The linear mapping, used in Sarmal-224/256, is based on a [8, 4, 5] MDS code.and taken

from AES. It is defined from GF(28) to GF(28). The field GF(28) is given as GF(2)[x]/p(x)

where p(x) = x8 + x4 + x3 + x2 + 1 and p(x) is a primitive polynomial. Each row in matrix M

and input value I are considered as polynomials in GF(28) and multiplied to find output value

which is described as O4×1 = M4×4 · I4×1.

M =



02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x


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APPENDIX B

Sarmal-256/224

B.1 Description of Sarmal-256

B.1.1 Notation

Throughout this chapter, the following notation will be used. Each 256-bit block is composed

of eight 32-bit words (X[8], X[7], . . . , X[0] = X[7− 0]). Note that the words and blocks are in

little-endian order (i.e. the least significant bit is the rightmost bit numbered 0, and the most

significant bit is bit 31 for a 32-bit word.). The symbols that are used in the equations and

figures are given in the Table B.1.

Padding: A single bit 1 is concatenated to the message M, followed by zeros until the length

of the message is 183 modulo 256. Afterwards, 010000000 is added at the end and the 64-bit

original message length is appended to the end.

Table B.1: Notation

⊕ Bitwise logical exclusive OR (XOR) si−1 64-bit salt value Â
� Addition modulo 232 si−1[ j] jth 32-bit word of 64-bit si−1
� Substraction modulo 232 ti−1 32-bit bit counter
Xi 256-bit intermediate value c 128-bit constant value
Xi[ j] jth 32-bit word of 256-bit Xi c[ j] jth 32-bit word of 128-bit c
hi−1 256-bit chaining value I 32-bit Input value
hi−1[ j] jth 32-bit word of 256-bit hi−1 O 32-bit Output value
S i[.] 8 × 8-bit S-box transformation M8×8 4 × 4 MDS Matrix
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Initial value: Between the 129th hexadecimal digit to 192th hexadecimal digit of π is used

as the initial value (i.e. IV or h0) of Sarmal-256, and it is given in Table B.2.

Table B.2: Initial Value of Sarmal-256

h0[0] = 9216D5D9x h0[4] = 2FFD72DBx

h0[1] = 8979FB1Bx h0[5] = D01ADFB7x

h0[2] = D1310BA6x h0[6] = B8E1AFEDx

h0[3] = 98DFB5ACx h0[7] = 6A267E96x

s and t values: 64-bit s is used like a counter. It is initialized with an IV and incremented

by one after each compression function calls and t shows the number of hashed bits so far. It

is 64-bit and t[0] (rightmost part) used in the right branch and t[1] used in the left branch.

Constants: Sarmal uses a 128-bit constant, C, which is divided into four 32-bit words.

They are taken from the extension of square root of three from 65th hexadecimal digit to 96th

hexadecimal digit. These values are given in Table B.3.

Table B.3: Constants of Sarmal-256

C[0] = 490BCFD9x C[2] = A9930AAEx

C[1] = 5EF15DBDx C[3] = 12228F87x

B.1.2 Sarmal-256 Algorithm

The structure of Sarmal is preserved in the construction of Sarmal-224/256. On the other

hand, the size of the variables are halved. Sarmal accepts again a message m of arbitrary

length (no more than 264 − 1 bits) as input. But outputs a 256-bit hash value H(m). It uses

256-bit compression function f (hi−1,mi, ti−1, si−1). In each iteration, the rightmost four words

of hi−1 is concatenated with the rightmost word of the salt si−1, rightmost two words of the

constant c, and rightmost word of the t value. The 256-bit state is iterated 16 rounds in the

right branch. (X0 = (X0[7 − 0]) = (hi−1[3 − 0], si−1[0], c[1 − 0], t[1]))

Similarly, the leftmost four words of hi−1 is concatenated with the leftmost word of the salt

value si−1, leftmost two words of the constant c, and and leftmost word of the t and the result is
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again processed for 16 rounds in the left branch. (X0 = (X0[7−0]) = (hi−1[7−4], si−1[1], c[3−

2], t[0]))

The two outputs are XORed, and the resulting value is XORed with mi.

Round Function: The round function F(x,w) uses 256-bit x and 128-bit w inputs this time,

and w is obtained from mi by a permutation σk. For odd rounds w is the least significant four

words of the given permutation, whereas for even rounds it is the most significant four words

(i.e. w = σk(mi)[0 − 3] or w = σk(mi)[4 − 7]).

f1 and f2 functions: f1(I) and f2(I) take 32-bit input I , which can be seen as concatenation

of 8-bytes I = (I[3−0]). It passes through 4 parallel 8×8 S-boxes and the output is multiplied

with an MDS matrix M. (The same s-boxes are used in Sarmal-224/256 but the matrix M is

changed to 4 × 4 MDS matrix and details are available in Appendix A).

B.1.3 224-bit Version of Sarmal

The following are the only differences between Sarmal-224 and Sarmal-256.

1. The initial value (h0) and the constant c are changed in Sarmal-384.

2. 001100000 string is added rather than 010000000 in the padding part.

3. Hash value is obtained by truncating the final hash value to 224-bits in the Sarmal-

224, i.e., the left-most 224-bits of final hash value is taken hash value of Sarmal-224

(H(m) = (ht[7 − 2])).
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Initial Value of Sarmal-224: Table B.4 shows the initial value of Sarmal-224. Extension

of Golden ratio from 129th hexadecimal digit to 192th hexadecimal digit is used in the IV.

Table B.4: Initial Value of Sarmal-224

h0[0] = 85839D6Ex h0[4] = CADD0CCCx

h0[1] = FFBD7DC6x h0[5] = FDFFBBE1x

h0[2] = 64D325D1x h0[6] = 626E33B8x

h0[3] = C5371682x h0[7] = D04B4331x

Constants of Sarmal-224: Constants are taken from the extension of square root of five

from 65th hexadecimal digit to 96th hexadecimal digit . These constant values are given in

Table B.5.

Table B.5: Constants of Sarmal-224

C[0] = 4ECFE162x C[2] = 068E08B6x

C[1] = A7A4F6FEx C[3] = B7E304FEx
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