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Signature:

iii



abstract

A MARKET MODEL FOR PRICING INFLATION

INDEXED BONDS WITH JUMPS INCORPORATION

Güney, İbrahim Ethem

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

Co-advisor: Assist. Prof. Dr. Kasırga Yıldırak

August 2008, 83 pages

Protection against inflation is an essential part of the today’s financial markets,

particularly in high-inflation economies. Hence, nowadays inflation indexed in-

struments are being increasingly popular in the world financial markets. In this

thesis, we focus on pricing of the inflation-indexed bonds which are the unique

inflation-indexed instruments traded in the Turkish bond market. Firstly, we re-

view the Jarrow-Yıldırım model which deals with pricing of the inflation-indexed

instruments within the HJM framework. Then, we propose a pricing model that

is an extension of the Jarrow-Yıldırım model. The model allows instantaneous

forward rates, inflation index and bond prices to be driven by both a standard

Brownian motion and a finite number of Poisson processes. A closed-form pricing

formula for an European call option on the inflation index is also derived.

Keywords: Inflation-indexed bond, HJM framework, Jarrow-Yıldırım model, In-

stantaneous forward rates.
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öz

ENFLASYONA ENDEKSLİ TAHVİLLERİ

FİYATLAMAK İÇİN SIÇRAMALARI İÇEREN BİR

PİYASA MODELİ

Güney, İbrahim Ethem

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Azize Hayfavi

Tez Yönetici Yardımcısı: Yar. Doç. Dr. Kasırga Yıldırak

Ağustos 2008, 83 sayfa

Enflasyona karşı korunmak, günümüz finansal piyasalarında, özellikle yüksek enf-

lasyona sahip ekonomiler için oldukça hassas bir konudur. Bu nedenle, günümüz-

de finansal piyasalarda enflasyona endeksli enstrümanların popülaritesi gittikçe

artmaktadır. Bu çalışmada, Türk tahvil piyasasında işlem gören enflasyona

endeksli tek enstrüman olan tahvillerin fiyatlandırılması üzerinde çalışılmıştır.

İlk olarak, Jarrow ve Yıldırım’ın geliştirmiş oldukları, enflasyona endeksli ens-

trümanları HJM çerçevesinde fiyatlayan model incelenmiştir. Daha sonra, Jarrow-

Yıldırım modelin genişlemesi olan bir fiyatlama modeli önerilmiştir. Bu model,

ileri tarihli faiz oranlarının, enflasyon endeksinin ve tahvil fiyatlarının Brown

hareketi ve sonlu sayıdaki Poisson süreçlerini içerdiğini kabul etmektedir. Son

olarak, enflasyon endeksi üzerine yazılmış olan Avrupa tipi bir alım opsiyonu için

kapalı formda fiyatlama formülü elde edilmiştir.

Anahtar Kelimeler: Enflasyona endeksli tahvil, HJM çerçevesi, Jarrow-Yıldırım

modeli, İleri tarihli anlık faiz oranları.
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chapter 1

INTRODUCTION

Inflation is defined as the increase over time of the prices of goods and services in

the economy. Various inflation measures are in use, because there exists several

price indices for different types of consumers. Two widely used indices are con-

sumer price index (CPI) which measures the price of selection of goods purchased

by the consumers and GDP deflator which measures the price of all the goods

and services in gross domestic product (GDP).

An inflation indexed bond is a financial instrument which is designed to pro-

tect the purchasing power of investors’ savings by indexing coupon and principal

payments to inflation indices. The main difference between an inflation indexed

bond and a conventional bond is that, while a conventional bond assures to pay

fixed nominal coupon and principal payments, an inflation indexed bond adjusts

its coupon and principal payments with respect to the inflation ratio at each

time interval over its life. Therefore this instrument pays to its investors real

returns. By having this property, an inflation indexed bond saves both investors

and issuers from the inflation risk, over the life of the bond.

Nowadays most world markets use inflation indexed instruments including

indexed bonds, swaps, options, etc. Although indexation has become increas-

ingly popular during the 1990′s, its roots date back to the 18th century. Deacon,

Derry and Mirfendereski [15] gives the history of indexation in detail. In 1742,

the State of Massachusets issued bills of public credit related to silver prices in

London Exchange. As silver prices appreciated more rapidly than general prices

in the economy, the State encountered significant economic losses. Then in 1747

the State passed a law that declaring that a group of commonly consumed com-
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modities would be used for indexation. In 1780, with the purpose of preserving

the value of wages of the soldiers in the American Revolutions, as wages to sol-

diers, the State issued notes that were indexed to the prices of five bushels of

corn, sixty eight and four-sevenths pounds of beef, ten pounds of sheep wool and

sixteen pounds of sole leather. In the first half of the 19th century, economists

published certain books about indexation of debt. In 1875, W. Stanley Jones pro-

posed to use gold prices for indexation. In 1924, John Maynard Keynes supported

the idea of using indexation of debt in his report to the British Government. De-

spite the early suggestions of economists, the indexation of debt only came into

prominence with the high and volatile inflation levels during the Second World

War. Some countries including Finland 1945 and France 1952 then issued in-

dexed debt. In the 1950′s and 1960′s, hyperinflation was a big problem for some

South American countries such as Brazil, Argentina and Mexico who also issued

indexed instruments. In the last three decades several countries began to issue

inflation indexed debts. For instance the United Kingdom issued them in 1981,

followed by Australia (1985), Canada (1991), Sweden (1994), the United States

(1997), France (1998), Greece (2003), Italy (2003) and Turkey (2007).

Recently, the number of studies on these instruments increased rapidly in the

finance literature. Unfortunately, in Turkey little work has been done on this

subject, leading to the observation that the pricing of these instruments may be

problematic in Turkey. In the light of the forementioned, the main purposes of

this study are to investigate existing literature and pricing models for inflation

indexed securities, to review the Heath, Jarrow and Morton (HJM) [22] framework

and the Jarrow-Yıldırım [31] model in detail, to extend the HJM framework and

the Jarrow-Yıldırım model with jumps and to price options on an inflation index.

The organization of this thesis is as follows. Second chapter includes studies

existing in the finance literature. In chapter 3, the basic definitions and concepts

related to stochastic calculus, jump processes, bonds and interest rates are given.

In the fourth chapter, the HJM framework is reviewed in detail. This is followed
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by the review of the Jarrow-Yıldırım model in chapter 5. In chapter 6, extensions

of the HJM framework and the Jarrow-Yıldırım model with jumps are introduced.

In chapter 7, a closed form formula for the price of an European call option on

an inflation index is derived. Concluding remarks are given in chapter 8.

1.1 History of the Inflation Indexed Bonds in

Turkey

In this section, the history of inflation indexed bonds in Turkey is given following

Tekmen [47], Deacon, Derry and Mirfendereski [15] and the Public Debt Man-

agement Reports of the Turkish Treasury [19, 20, 21]. The Turkish Treasury

began issuing inflation indexed bonds in July, 1994. First, bonds with one and

two year maturities that pay interest semi-annually were issued. Wholesale price

index was used for indexation and the issuance was performed by TAP1. Table

1.1 summarizes2 TAP sales for period of 1994− 1996.

In this scope, the percentage of these WPI (Wholesale Price Index)-bonds in

overall internal national debt was equal to 2, 4 in 1994, 7, 5 in 1995 and 1 in 1996.

At the time, the annual increase in the wholesale price index was approximately

70−80%, but nominal interest rates were much above 100%, as a result with those

instruments borrowing costs were decreased. However yields of those instruments

were lower than nominal bonds. Coupon payments were based on WPI and a

constant return. Based on the increase in inflation, the real returns of these

instruments would have been decreased. Therefore there wasn’t as much demand

as the Treasury had hoped for.

Due to the weak demand for those WPI bonds, in March 1997 the Treasury

1In Tapping system, the Treasury store long term government bonds with floating interest

rates in the Central Bank, investors are able to buy these bonds at any moment. The Central

Bank has the ownership of these bonds until the investors buy.
2E. Tekmen. Enflasyona endeksli tahviller ve Türkiye uygulaması. Hazine Müsteşarlığı

Kamu Finansmanı Genel Müdürlüğü Uzmanlık Tezi. 2005, Ankara.
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Table 1.1: TAP sales for the period 1994− 1996

Maturity (year) Issuance Date Maturity Date Sales (TL Billion)

1 18.07.1994 18.07.1995 7820,5

1 02.01.1995 02.01.1996 20517,8

2 02.01.1995 02.01.1997 213,8

1 14.07.1995 14.07.1996 12192,7

2 14.07.1995 14.07.1997 1161

1 25.12.1995 25.12.1996 20500,9

2 25.12.1995 25.12.1997 335,9

1 12.02.1996 12.02.1997 2405,2

2 12.02.1996 12.02.1998 36,3

1 09.07.1996 09.07.1997 14166,6

2 09.07.1996 09.07.1998 301,6

Total 79652,2

decided to use the consumer price index for indexation. Those new bonds were

of two-year maturity and paid interests quarterly. Their structure was based on

the current pay format3. Unlike former bonds, CPI-bonds paid inflation adjusted

coupons that fixed the real return. The second difference was that coupon pay-

ments of the latter instruments were fixed in the beginning of the coupon period.

In this frame accrued interest rates could be calculated in the secondary market

for CPI-indexed bonds. However, since inflation assumption was necessary in the

pricing of those bonds, no transaction could be done in the secondary market.

Total sales in 1997 is given4 in Table 1.2.

Total sales in Table 1.2 includes both auction sales and sales to the public

3In current pay format, the inflation differences of the principal value of inflation index

bonds are paid within the coupon payments. Thus, principal value is not adjusted at maturity.
4E. Tekmen. Enflasyona endeksli tahviller ve Türkiye uygulaması. Hazine Müsteşarlığı

Kamu Finansmanı Genel Müdürlüğü Uzmanlık Tezi. 2005, Ankara.
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Table 1.2: CPI-indexed bond sales 1997

Issuance Date Maturity Date Real return (%) Sales (TL Trillion)

05.03.1997 05.03.1999 25 18,6

02.04.1997 02.04.1999 24 127

09.04.1997 09.04.1999 22 135,7

02.05.1997 02.05.1999 22 10,5

07.05.1997 07.05.1999 25 53,7

14.05.1997 14.05.1999 29,95 63

04.06.1997 04.06.1999 32 269,1

18.06.1997 18.06.1999 32 3,1

26.11.1997 26.11.1999 26 140,2

24.12.1997 24.12.1999 32 146,4

Total 967,2

institutions with a noncompetitive offer. At the end of 1997, total internal debt

was equal to 6, 3 quadrillion TL and the percentage of CPI-bonds was equal to

15, 5. The method used in indexation differed from general applications. In this

method index ratio which was used for adjusting coupon payments was calculated

by taking the fourth root of an annual rate. For example, consider a bond issued

in May, 1997. The nominal value of the first coupon was determined by the fourth

root of the increase in the CPI between April 1996 and April 1997 rather than

its increase between January and April 1997. The reason behind this idea was

to decrease the impact of the seasonality of inflation on the cash flows and thus

lessen the variability of the nominal cash flows. However using a 15 months lag

for the CPI in such calculations constrained the effect of instantaneous inflation

changes on the bonds’ cash flows.

In 1998, the Treasury declared to change the design of these instruments fol-

lowing the prediction of a sharp decrease in inflation. In this frame, the Treasury

started to issue CPI-bonds with 1-year maturity. In this design, all coupon and
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principal payments were paid at redemption. Thus, the indexation lag would

have disappeared. At the end of 1998, the internal national debt was equal to

11, 6 quadrillion TL and the percentage of the CPI-bonds was to 12, 3. Table 1.3

summarizes5 total CPI-bond sales in 1998 and 1999.

Table 1.3: Total CPI-Bond sales 1998− 1999

Issuance Date Maturity Date Real return (%) Sales (TL Trillion)

21.01.1998 22.01.1999 18,9 119

25.02.1998 24.02.1999 30,95 133,4

25.03.1998 25.03.1999 24 96

22.04.1998 21.04.1999 19 245,3

27.05.1998 26.05.1999 23 138,3

17.06.1998 16.06.1999 25 244,3

29.07.1998 28.07.1999 23 164,3

19.08.1998 18.08.1999 30 184,3

30.09.1998 29.09.1999 30 58,1

09.06.1999 09.08.2000 23,7 2,9

Total 1385,9

In September 1998, the maturities of new indexed bonds were increased from

1 year to 14 months. However, demand for the securities continued to be low and

the final auction was held in June, 1999.

Within 1999− 2007, the Treasury directly issued small quantities of indexed

bonds to potential purchasers, but those were seldom traded in the secondary

market.

Finally, the Treasury began issuing inflation indexed bonds again in 2007, 8

year after their last introduction. The consumer price index was used for in-

dexation. Those instruments were of 5-year maturity with semi-annual coupon

5E. Tekmen. Enflasyona endeksli tahviller ve Türkiye uygulaması. Hazine Müsteşarlığı

Kamu Finansmanı Genel Müdürlüğü Uzmanlık Tezi. 2005, Ankara.
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payments. Bonds were issued with the single price auction method. Total sales

of those bonds for the period January 2007-June 2008 were given6 in Table 1.4.

Table 1.4: CPI-Bond sales in 2007− 2008.

Issuance Date Maturity Date Real return (%) Sales (Y TL Million)

20.02.2007 15.02.2012 4,86 4145

29.05.2007 15.02.2012 4,85 1219

21.08.2007 15.02.2012 5,15 698

06.11.2007 15.02.2012 4,52 576

19.02.2008 15.02.2012 4,82 728

06.05.2008 15.02.2012 5,09 397

Total 7763

The percentage of CPI-bonds in the total internal debt was equal to 6 in 2007

and to 3, 9 for the period between January-June 2008. The Treasury is planning

to increase this percentage in the following years.

1.2 Inflation Indexed Bond Markets

The global market for index linked bonds has established itself more firmly over

the past years. We give a brief information about international indexed govern-

ment bond markets7 in Table 1.5.

Also a more detailed information for major international inflation indexed

bond markets given8 in Table 1.6.

6Hazine Müsteşarlığı Kamu Borç Yönetimi Raporu. No.30,32,35 Ankara
7www.barclayscapital.com
8www.barclayscapital.com
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Table 1.5: Summary of International Indexed Government Bond Markets.

Country Market Number Average Average Average

Cap ($Bn) ofIssues Real Y ield Life(year) Duration

US 499,9 24 1,38 9,58 8,45

UK 319,8 14 0,98 17,37 12,60

France 208,7 11 1,87 9,15 7,73

Brazil 143,1 11 7,10 9,06 4,82

Italy 99,7 6 2,08 10,28 8,42

Japan 74,7 14 1,02 8,42 8,03

Canada 37,3 5 1,97 22,51 15,71

Sweden 37,2 5 1,58 11,32 9,74

Greece 24,4 2 2,36 20,02 15,41

Germany 23,5 2 1,65 7,39 6,85

Argentina 20,3 6 7,93 12,12 7,21

Mexico 20,0 8 3,62 12,75 9,27

South Africa 10,6 4 2,60 12,71 9,05

Australia 8,3 3 2,64 8,39 6,95

Turkey 6,4 1 9,51 4,04 3,14

Colombia 6,4 7 5,77 5,84 4,44

Chile 4,9 10 3,12 5,68 4,84

Poland 3,9 1 2,65 8,55 7,49

South Korea 2,2 1 2,97 9,10 7,90

8



Table 1.6: Summary of the Major International Indexed Government Bond Mar-

kets.

Japan Italy Brazil France UK US

Market Value 74,7 99,7 143,1 208,7 319,8 499,9

(US $ Bn)

Average 1,02 2,08 7,10 1,87 0,98 1,38

Real Yield(%)

Coupon semi annual semi annual semi semi

Frequency annual annual annual annual

Frequency of one one one one one one

price index month month month month month month

publication

Indexation 3 3 3 3 8 3

lag(Months)

Number 14 6 11 11 14 24

of issues

9



chapter 2

LITERATURE REVIEW

In the finance literature, two types of studies stand out. Studies in the first group

investigate inflation indexed securities and their working principles and studies

in the second group work on pricing of such instruments.

The first study on inflation indexed securities and their working principles was

done by Shen [41]. The benefits and limitations of inflation indexed Treasury

bonds are expressed in detail. The paper concludes by saying that in spite of

some limitations, inflation indexed Treasury bonds are very valuable innovations

for financial markets.

Wrase [49] described the structure of inflation indexed bonds by explaining the

advantages and disadvantages of such instruments. The reasons for issuance of

these bonds by the Treasury, their importance for investors and effects of indexed

bonds on the monetary policies are also explained in this work.

Wilcox [48] investigated the question of whether issuing inflation indexed debt

is a good idea or not. He argues that for the following reasons it is a good idea.

Firstly, it protects investors from inflation risk. Governments real expenditures

become stable. Finally by these instruments, the government gets useful informa-

tion on the future inflation. The author also adds that there exist some limitations

of the inflation indexed debt but they are minor.

Another study in the first group is the work of Kapcke and Kimball [33]. This

article analyzes inflation indexed bonds in general and Treasury inflation pro-

tected securities (TIPS) in particular to understand clearly their limited appeal

to American investors. They replicate potential risk and return characteristics of

TIPS by using market data and they conclude that TIPS will appeal to savers

10



who are especially risk averse and who are especially cautious of inflation.

In 2000, Taylor [46] explored the role of US inflation indexed bonds in the

portfolios of expected utility maximizing investors. The findings of his work raise

questions about the usefulness of US inflation indexed bonds as portfolio diversi-

fiers. By using three different assumptions relating to the time series behavior of

real yields, this paper argues that including inflation indexed bonds in an opti-

mal portfolio does not considerably improve investor utility over and above that

obtained when these bonds are excluded. Also it is observed that alternative se-

curities with similar risk-return characteristics can easily be substituted in place

of inflation indexed bonds.

Shen and Corning [42] investigated the question of whether TIPS help iden-

tifying long-term inflation expectations or not. Having an accurate measure of

market inflation expectations may help policymakers assign their efficiency in

controlling long term inflation, as well as their credibility among market partic-

ipants. The yield difference between conventional bonds and TIPS is used as a

measure of inflation expectations. It is found that yield difference is not a satis-

factory measure of market inflation expectations because of the large and floating

liquidity premium on TIPS.

Roll [38] analyzed the correlations of TIPS returns with the conventional bond

returns and with equity returns over the period 1997 − 2003, real and nominal

effective durations and changes in volatility over time. It is observed that TIPS

nominal return volatility is less than the conventional bonds, nominal effective

durations are much lower for TIPS than for nominal bonds, TIPS have a small

correlation with the nominal bonds with negative sign.

The most detailed work on inflation indexed securities belongs to Deacon,

Derry and Mirfendereski [15]. They discuss various factors that go into the design

of index based instruments such as the choice of index, the cash flow structure

of the bond, the application of the index to the cash flows and the impact of tax

regulations. Indexed based bonds issued by various countries are also compared
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in detail.

Sack and Elsasser [40] discussed the US experience with inflation indexed debt,

including the development of movement in the TIPS market since its inception

and valuation of these securities relative to nominal Treasury issues. They observe

that in spite of the potential demand for TIPS, their yields have been surprisingly

high relative to those on comparable nominal Treasury securities. Also the paper

indicates that originally costs of indexed securities are higher and the liquidity of

the market for these instruments is lower than the nominal ones but in time all

the conditions of indexed securities improve and at the time of the writing of the

article are being preferred to conventional bonds.

Kitamura [32] evaluated indexed bonds by considering the market trading

records of TIPS between 1997 − 2003 to give information to the Japanese Gov-

ernment. His findings show that, real interest rates are stable, expected inflation

rate is more closely related to the observed CPI than to the real yield, information

content of the expected inflation rates from the indexed bonds is limited and the

issue conditions for the TIPS are not adequate.

Chamon and Mauro [9] described the advantages of inflation indexed bonds

for financial markets, especially for emerging markets.

Hurd and Rellen [29] examined the development of inflation indexed swaps

and index-linked bonds in England. They observe that by using market data of

such instruments a greater range of international inflation and real interest rate

forward curves are estimated. Inflation forward rate curves may be useful to raise

the ability of monetary authorities to control inflation.

Garcia and Rixtel [17] gave the main reasons for and against the issuance of

inflation indexed bonds and the key dynamics that effect their current develop-

ment. The independence and credibility of central banks and the environment of

low and stable inflation that they set up may be the most important factors for

the development of inflation indexed bond markets in recent years.
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One of the early studies on pricing inflation linked derivatives is the work

of Hughston [27] who outlines a general theory for the pricing and hedging of

inflation linked derivatives. Assumptions in his model are the completeness of

the markets with no arbitrage opportunity. Methodologies for valuing foreign

currency and interest rate derivatives are used in this study. The consumer price

index is considered as an exchange rate between real and nominal prices. Bond

price processes are also examined by using the HJM [22] model. Several inflation

linked derivative pricing formulas are given in closed form. It is shown that index

linked derivatives can be treated in the same way as foreign exchange derivatives.

Jarrow and Yıldırım [31] introduced a three factor HJM model in order to price

Treasury inflation protected securities and options on inflation index. Foreign

currency analogy, where nominal prices correspond to the domestic currency real

prices correspond to the foreign currency and the inflation index corresponds

to the spot exchange rate, is used. Their key assumptions are deterministic

volatilities and the non-zero correlation between different factors. Bond prices

are assumed to be Gaussian and forward volatility corresponds to the extended

Vasicek model. The validity of their model is tested by hedging analysis and the

usefulness of the model is demonstrated by pricing a European call option on the

CPI-U inflation index.

Belgrade et al. [3] introduced a new market model based on inflation indexed

swaps. Their model has a few parameters and is robust enough to replicate market

prices. The model is only driven by the term structure of parameters, describing

CPI’s forwards. By this property consistent relations between zero-coupon and

year-on-year swaps volatilities are obtained. They also give certain boundaries

for implicit correlations between these instruments.

Mercurio [35] works on pricing inflation indexed swaps, caplets and floorlets.

After reviewing the Jarrow-Yıldırım model, zero-coupon and year-on-year infla-

tion indexed swaps are priced by this model. Two new market model approaches

are introduced then. Pricing formulas for both instruments are derived with three
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models. Performance of models are tested in terms of calibration to market data.

Mercurio and Moreni [36] proposed a market model for pricing inflation in-

dexed caps and floors. The key assumptions of their model are as follows: forward

CPI’s follow a driftless geometric Brownian motion under the corresponding for-

ward measure and forward CPI’s volatilities are stochastic that evolve according

to a square-root process as in Heston [24]. In the case of zero correlations be-

tween forward rates and forward CPI’s exact closed form formulas for cap and

floor prices are derived. Classical drift freezing techniques are used in the non-zero

correlation case.

Henrard [23] derives an explicit pricing formula for inflation bond options

in the Jarrow-Yıldırım model. He defines an extra condition on the real rate

volatility to get an explicit formula for bond options.

Hinnerich [25] suggested an extension of the Jarrow-Yıldırım model to price

the inflation indexed swaps, swaptions and bond options. The main differences

from the previous works are that, here there is no assumption that the foreign

currency analogy holds and forward rate, inflation and bond price dynamics are

driven by both multidimensional Wiener process and a general marked point

process. Another assumption in this work is that, the intensity at the point as

well as the volatilities of all asset prices and the consumer price index, with respect

to both the Wiener process and the point process, are deterministic. Eventually

it is proved that the foreign currency analogy is valid.

Dodgson and Kainth [16] proposed a two-process short-rate model for pric-

ing inflation linked derivatives. The inflation rate and the short interest rate

are assumed to be diffusion processes with mean reversion property. A closed

form solution for inflation options is derived with constant volatility assumption.

However this model may not capture the volatility smile seen in market prices

for inflation options. Therefore a generalized inflation short-rate model with lo-

cal volatility is defined and complex derivatives are priced with a Monte-Carlo

sampling.
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Hughston and Macrina [28] introduce a class of discrete time stochastic models

for the pricing of inflation indexed derivatives. The main idea is that at any

time, there exists imperfect information about the future values of macroeconomic

factors in the market. Such partial information effects the consumption, money

supply and other variables that determine interest rates and price levels. A

model under this partial information is proposed in order to derive arbitrage

free dynamics of real and nominal interest rates, price indices and index linked

securities.

The final study on pricing inflation indexed derivatives is the work of Stewart

[45]. The aim of his work is to review the framework for pricing inflation-indexed

derivatives by using the two currency HJM approach introduced by Jarrow and

Yıldırım and to obtain prices for the most liquid inflation indexed derivatives

using the Hull and White model. He uses Mercurio and Moreni’s methodology

for pricing inflation indexed swaps, caps, floors and swaptions. Like previous

works, performance of the model is tested by calibration to the market data. The

results are consistent with the previous ones.

When we look at the Turkish financial literature only two studies stand out.

A former study belongs to Balaban [2]. Balaban investigates the relevant factors

that need to be considered when issuing inflation indexed securities in Turkey.

These factors are system selection, exchange rate effects, inflation index selection,

cash flow structure, maturity, bidding method, liquidity and amount. All the

factors are examined in detail in this work.

A latter study is the work of Tekmen [47]. In this study, the benefits of

inflation indexed bonds to the whole economy, design of these securities, history

of inflation indexed debt in Turkey and in some developed and emerging markets

are given in detail. Also a regression analysis is conducted. Strong correlation

between standard deviation of expected consumer price index values and real

interest rates is observed.
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chapter 3

PRELIMINARIES

In this chapter the main terminologies and definitions that will be used through-

out this study are presented.

3.1 Basics of Stochastic Calculus

In this section a summary of stochastic calculus is given following Lamberton and

Lapeyre [34], Björk [4], Shreve [44], Brigo and Mercurio [7] and Yolcu [51].

Definition 3.1.1. Consider a complete probability space (Ω, A, P). Let T be a

fixed positive number and t ∈ [0, T ]. Filtration is an increasing family F = {F t,
t ∈ [0, T ]}. For each s, t ≥ 0 , if s ≤ t then F s ⊆ F t.

Definition 3.1.2. Let (Ω, F , P) be a probability space. A Brownian motion is a

real valued continuous stochastic process (Xt) t≥ 0 with stationary and independent

increments.

• Continuity: P- a.s. the map s 7→ Xs(w) is continuous.

• Stationary increments: If s ≤ t then Xt−Xs and Xt−s−X0 have the same

probability law.

• Independent increments: If s ≤ t, then Xt − Xs is independent of F s =

σ (Xu, u ≤ s).

Definition 3.1.3. A Brownian motion is called standard if X0 = 0 P- a.s.,

E(Xt) = 0 and V ar(Xt) = t.
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Definition 3.1.4. A stochastic process on (Ω,A,F ,P) is said to be adapted to

filtration F if ∀t Xt is F t - measurable.

Definition 3.1.5. Consider a probability space (Ω,A,P) and a filtration (F t) t≥0

on this space. An adapted family (Mt) t≥0 of integrable random variables, i.e.,

E(|Mt|) < +∞ for any t is :

• a martingale if, for any s ≤ t, E(Mt | F s) = Ms,

• a supermartingale if, for any s ≤ t, E(Mt | F s) ≤ Ms,

• a submartingale if, for any s ≤ t, E(Mt | F s) ≥ Ms .

Theorem 3.1.1. Let (Ω,F ,P) be a probability space. Let Q be another probabil-

ity measure on (Ω,F) that is equivalent to P and let Z be almost surely positive

random variable that relates P and Q. Then Z is called the Radon-Nikodym

derivative of Q. Z is given as dQ
dP
, i.e. ∀ A ∈ A;

Q(A) =

∫
A

Z(ω)dP(ω).

Theorem 3.1.2. (Girsanov Theorem) Let (Ω , F ,(F t) 0≤t≤T ,P) be a prob-

ability space and let (Wt) 0≤t≤T be an F-Brownian motion.

Let (θt) 0≤t≤T be an adapted measurable process satisfying
∫ t

0
θ2
s ds < ∞ a.s. and

such that the process (Zt) 0≤t≤T defined by

Zt = exp (

∫ t

0

θs dBs −
1

2

∫ t

0

θ2
s ds)

is a martingale. Then under the probability Q with density Z(T ) relative to P, the

process (WQ(t)) 0≤t≤T defined by (WQ(t)) = (Wt) +
∫ t

0
θs ds , is a F-Brownian

motion under Q.

Definition 3.1.6. Let (Ω , F ,(F t) t≥0, P) be a probability space and let (Wt) t≥0

be an F-Brownian motion. (Xt) 0≤t≤T is an R-valued Ito process if it can be

written as P a.s. ∀ t ≤ T

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs, (3.1.1)

where
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• X0 is F0- measurable.

• (Kt) 0≤t≤T and (Ht) 0≤t≤T are F t adapted processes.

•
∫ t

0
|Ks| ds <∞ and

∫ t
0
H2
s ds <∞ P a.s.

Theorem 3.1.3. Let (Xt) 0≤t≤T be an Ito process satisfying (3.1.1) and f be twice

continuously differentiable function, then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs) d〈X,X〉s (3.1.2)

where 〈X,X〉t =
∫ t

0
H2
s ds.

Lemma 3.1.4. The quadratic variation of the Ito process is 〈X,X〉t =
∫ t

0
H2
s ds.

Theorem 3.1.5. (ITO-Deblin Formula) Let (Xt) t≥0 be an Ito process and

f(t,x) be a function with well defined continuous partial derivatives, ft(t, x), fx(t, x),

fxx(t, x). Then for every T ≥ 0

f(T,XT ) = f(0, X0) +

∫ T

0

ft(t,Xt)dt+

∫ T

0

fx(t,Xt) dXt

+
1

2

∫ T

0

fxx(t,Xt)d〈X,X〉t. (3.1.3)

Proposition 3.1.6. (ITO-Integration by Parts Formula) Let (Xt) t≥0 and

(Yt) t≥0 be two Ito processes such that

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

and

Yt = Y0 +

∫ t

0

K ′s ds+

∫ t

0

H ′s dWs

then

XtYt = X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X, Y 〉t (3.1.4)

with 〈X, Y 〉t =
∫ t

0
HsH

′
s ds.
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Definition 3.1.7. (Xt) 0≤t≤T is an Ito process if

Xt = X0 +

∫ t

0

Ks ds+

p∑
i=1

∫ t

0

H i
s dW

i
s , (3.1.5)

where

• Kt and all the processes H i
t are adapted to F t,

•
∫ t

0
|Ks| ds <∞ ,

•
∫ t

0
H i
s

2 ds <∞ .

Proposition 3.1.7. Let (X1
t , X

2
t , .., X

n
t ) be n Ito processes satisfying

X i
t = X i

0 +

∫ t

0

Ki
s ds+

p∑
j=1

∫ t

0

H i,j
s dW i

s

then if f is twice differentiable with respect to x and once differentiable with respect

to t with continuous partial derivatives in (t,x)

f(t,X1
t , .., X

n
t ) = f(0, X1

0 , .., X
n
0 ) +

∫ t

0

∂f

∂s
(s,X1

s , .., X
n
s )ds

+
n∑
i=1

∫ t

0

∂f

∂Xi

(s,X1
s , .., X

n
s )dXi

+
1

2

n∑
i,j=1

∫ t

0

∂2f

∂Xi∂Xj

(s,X1
s , .., X

n
s )d〈X i, Xj〉s, (3.1.6)

where

• dX i
s = Ki

sds+

p∑
j=1

H i,j
s dW

j
s ,

• d〈X i, Xj〉s =

p∑
m=1

H i,m
s Hj,m

s ds.
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3.2 Basics of Jump Processes

This section introduces the basics of jump processes following Shreve [44] and

Cont and Tankov [11]. The Poisson process is the fundamental example of a

stochastic process with discontinuous trajectories. It is the basic building block

for jump processes.

3.2.1 Construction of a Poisson Process

Definition 3.2.1. A positive random variable τ is called an exponential random

variable if its probability density function is of the form:

f(t) =

 λ exp(−λt), t ≥ 0

0, t < 0,

where λ is a positive constant parameter. τ has the following properties:

• Mean of τ is equal to 1
λ

,

• Variance of τ is equal to 1
λ2 ,

• Cumulative distribution of τ is given by ∀t ∈ [0,∞]

Fτ(t) = P(τ ≤ t) = 1 - exp(−λt),

• τ has the memoryless property i.e. ∀ t,s > 0

P(τ > t+ s | τ > s) = P(τ > s).

Definition 3.2.2. An integer valued random variable N is called a Poisson ran-

dom variable with parameter λ if

P (N = n) =
exp(−λ)λn

n!
,

where λ is a positive constant parameter. N has the following properties:

• Mean of N is equal to λ,
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• Variance of N is equal to λ,

• Moment generating function of N is given by M = exp(λ(eu − 1)).

Consider a sequence τ1, τ1, .. of exponential random variables. τi
′s ∀ i=1..

have the same mean 1
λ
. Let the first jump occurs at τ1, the second occurs τ2 time

units after the first, the third occurs τ3 time units after the second etc. Then the

time of the nth jump can be defined as

Sn =
n∑
k=1

τk.

Lemma 3.2.1. For n≥1, the random variable Sn has the gamma probability

density function

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0

Definition 3.2.3. Let (τi)i≥0 be a sequence of independent random variables with

parameter 1
λ

and Sn =
∑n

k=1 τk be the time of the nth jump. The process (Nt) t≥0

defined by

Nt =
∑
n≥1

1t≥Sn

is called a Poisson process with intensity λ.

Proposition 3.2.2. Let (Nt) t≥0 be a Poisson process. Then

1. For any t > 0, (Nt) is almost surely finite.

2. For any ω, the sample path , t 7→ Nt(ω) is piecewise constant and increasing.

3. The sample paths t 7→ Nt are right continuous with left limits (cadlag pro-

cess).

4. For any t > 0, Nt−= Nt with probability 1.

5. Nt is continuous in probability, i.e. ∀t > 0 as s→ t, Ns → Nt in probability.
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6. For any t > 0, Nt follows a Poisson distribution with parameter λt, i.e.

∀k ∈ N

P (Nt = k) =
exp(−λt)(λt)k

k!
.

7. The characteristic function of Nt is given by

E(eiuNt) = exp(λt(eiu − 1)), ∀u ∈ R.

8. Nt has independent increments, i.e. for any t1 < t2 < .. < tn; Ntn −Ntn−1,

Ntn−1 −Ntn−2,.., Nt2 −Nt1, Nt1 are independent random variables.

9. The increments of Nt are stationary, i.e. for any t > s, Nt − Ns has the

same distribution of Nt−s.

10. Nt has the Markov property, i.e. ∀t > s

E(f(Nt) | Nu, u ≤ s) = E(f(Nt) | Ns).

Theorem 3.2.3. Let Nt be a Poisson process with intensity λ > 0 and let

0 = t0 < t1 < t2 < .. < tn be given. Then the increments Ntn − Ntn−1,

Ntn−1 −Ntn−2,.., Nt2 −Nt1,Nt1 −Nt0 have the distribution

P (Ntj+1
−Ntj = k) =

exp(−λ(tj+1 − tj))(λ)k(tj+1 − tj)k

k!
,

where k = 0, 1, 2.. Then the mean and the variance of the increments are:

• E(Nt −Ns) = λ(t− s),

• Var(Nt −Ns) = λ(t− s).

Theorem 3.2.4. Let Nt be a Poisson process with intensity λ > 0. Then the

compensated Poisson process

Mt = Nt − λt

is a martingale.

22



3.2.2 Compound Poisson Processes

In this subsection, a new process that allows the jump size to be random will be

introduced.

Definition 3.2.4. A compound Poisson process with intensity λ > 0 and jump

size distribution f, is a stochastic Process Qt defined as

Qt =
Nt∑
i=1

Yi,

where jump sizes are independent identically distributed random variables with

distribution f and Nt is a Poisson process with intensity λ, independent from

(Yi)i≥1. The jumps in Qt occur at the same time as the jumps in Nt.

Proposition 3.2.5. Let (Qt) t≥0 be a compound Poisson process. Then

1. The sample paths of Qt are cadlag piecewise constant functions.

2. Qt has independent increments, i.e. for any t1 < t2 < .. < tn; Qtn −Qtn−1,

Qtn−1 −Qtn−2,.., Qt2 −Qt1, Qt1 are independent random variables.

3. The increments of Qt are stationary, i.e. for any t > s, Qt − Qs has the

same distribution of Qt−s.

4. E(Qt) = βλt where β = E(Yi).

5. The moment generating function of Qt is given by

ϕQt(u) = E(euQt) = exp(λt(ϕY (u)− 1)),

where ϕY (u) = E(euYi).

Theorem 3.2.6. Let Qt be a Poisson process with intensity λ > 0. Then the

compensated Poisson process

Mt = Qt − βλt

is a martingale.
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3.2.3 Jump Processes and Their Integrals

Let X(t) be a processes of the form:

X(t) = X(0) + I(t) +R(t) + J(t), (3.2.7)

where

• X(0) is a non-random initial condition,

• I(t) =
∫ t

0
Γ(s)dW (s) is an Ito integral of an adapted process Γ(s) with

respect to a Brownian motion relative to the filtration,

• R(t) =
∫ t

0
Θ(s)ds is a Riemann integral for some adapted process Θ(s),

• J(t) is an adapted right continuous pure jump process with J(0) = 0

The continuous part of the X(t) is defined to be

X(t) = X(0) + I(t) +R(t) = X(0) +

∫ t

0

Γ(s)dW (s) +

∫ t

0

Θ(s)ds,

where the quadratic variation of this process is

〈Xc, Xc〉(t) =

∫ t

0

Γ2(s)ds

or in differential form

dXc(t) dXc(t) = Γ2(t)dt.

Another assumption is that J(t) does not have a jump at time zero, has finitely

many jumps on each finite time interval, [0,T ] and is constant between jumps.

Definition 3.2.5. A process of the form (3.2.7) with Ito integral part I(t), Rie-

mann integral part R(t) and a pure jump part J(t) as described above is called a

jump process.

A jump process X(t) is right continuous adapted. Jump size of X(t) at time

T is denoted by

∆X(t) = X(t)−X(t−)
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Definition 3.2.6. Let X(t) be a jump process and let φ(t) be an adapted process.

The stochastic integral of φ(t) with respect to X is defined as∫ t

0

φ(s)dX(s) =

∫ t

0

φ(s)Γ(s)dW (s) +

∫ t

0

φ(s)Θ(s)ds+
∑

0<s≤t

φ(s)∆J(s)(3.2.8)

or in the differential form

φ(t)dX(t) = φ(t)Γ(t)dW (t) + φ(t)Θ(t)dt+ φ(t)dJ(t). (3.2.9)

Theorem 3.2.7. Let

X1(t) = X1(0) + I1(t) +R1(t) + J1(t)

be a jump process where

• I1(t) =
∫ t

0
Γ1(s)dW(s),

• R1(t) =
∫ t

0
Θ1(s)ds,

• J1(t) is a right continuous pure jump process,

Then,

〈X1, X1〉(T ) = 〈Xc
1, X

c
1〉(T ) + 〈J1, J1〉(T ) =

∫ T

0

Γ2
1(s)ds+

∑
0<s≤T

(∆J1(s))
2.

Let

X2(t) = X2(0) + I2(t) +R2(t) + J2(t)

be another jump process, then

〈X1, X2〉(T ) = 〈Xc
1, X

c
2〉(T )+〈J1, J2〉(T ) =

∫ T

0

Γ1(s)Γ2(s)ds+
∑

0<s≤T

∆J1(s)∆J2(s).

Corollary 3.2.8. Let W(t) be a Brownian motion and M(t) = N(t)- λt be a

compensated Poisson process relative to the same filtration F(t), then

〈W,M〉(t) = 0, t ≥ 0
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Theorem 3.2.9. (ITO-Deblin Formula for One Jump Process) Let X(t)

be a jump process and f(x) be a function with well defined continuous first and

second derivatives, f ′(x) and f ′′(x). Then

f(X(t)) = f(X0) +

∫ t

0

f ′(X(s))dXc(s) +
1

2

∫ t

0

f ′′(X(s))dXc(s)dXc(s)

+
∑

0<s≤T

[f(X(s))− f(X(s−))]. (3.2.10)

Theorem 3.2.10. (Two-Dimensional ITO-Deblin Formula for Jump Pro-

cesses) Let X1(t) and X2(t) be jump processes and let f(t, x1, x2) be a function

whose first and second partial derivatives appearing in the following formula are

defined and continuous. Then

f(t,X1(t), X2(t)) = f(0, X1(0), X2(0)) +

∫ t

0

ft(s,X1(s), X2(s))ds

+

∫ t

0

fx1(s,X1(s), X2(s))dX
c
1(s)

+

∫ t

0

fx2(s,X1(s), X2(s))dX
c
2(s)

+
1

2

∫ t

0

fx1x1(s,X1(s), X2(s))dX
c
1(s)dXc

1(s)

+

∫ t

0

fx1x2(s,X1(s), X2(s))dX
c
1(s)dXc

2(s)

+
1

2

∫ t

0

fx2x2(s,X1(s), X2(s))dX
c
2(s)dXc

2(s)

+
∑

0<s≤T

[f(s,X1(s), X2(s))− f(s,X1(s−), X2(s−))].

(3.2.11)
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Corollary 3.2.11. (ITO-Product Rule for Jump Processes ) Let X1(t) and

X2(t) be jump processes. Then

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0

X2(s) dX
c
1(s) +

∫ t

0

X1(s) dX
c
2(s)

+〈Xc
1, X

c
2〉t +

∑
0<s≤T

[X1(s)X2(s)−X1(s−)X2(s−)].

(3.2.12)

3.2.4 Change of Measure for Jump Processes

Let (Ω,F ,P) be a probability space and W(t) is a Brownian motion defined on

it. Suppose the compound Poisson process

Qt =
Nt∑
i=1

Yi

with intensity λ and density function of jumps f(y), is also defined on this space.

There exists one filtration for both the Brownian motion and the compound

Poisson process.

Let λ̃ be a positive number, let f̃(y) be another density function with the

property that f̃(y) = 0 whenever f(y) = 0 and Θ(t) be an adapted process.

Then we define

Z1(t) = exp (

∫ t

0

θs dBs −
1

2

∫ t

0

θ2
s ds), (3.2.13)

Z2(t) = exp ((λ− λ̃)t)

N(t)∏
i=1

λ̃f̃(Yi)

λf(Yi)
, (3.2.14)

Z(t) = Z1(t) Z2(t). (3.2.15)

Lemma 3.2.12. The process Z(t) of (3.2.15) is a martingale. In particular

E(Z(t)) = 1 ∀t ≥ 0.
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Theorem 3.2.13. Under the probability measure P̃ the process

W̃ (t) = W (t) +

∫ t

0

Θ(s)ds

is a Brownian motion , Q(t) is a compound Poisson process with intensity λ̃ and

independent, identically distributed jump sizes having density f̃ , and the processes

W̃ and Q(t) are independent.

3.3 Basics of Bonds and Interest Rates

In this section we introduce basic definitions of bonds and interest rates satisfying

intuition and motivation for their introduction following Altay [1], Björk [4],Brigo

and Mercurio [7] and Yolcu [51].

Definition 3.3.1. A zero-coupon bond with maturity T, is a contract which guar-

antees its holder the payment of one unit of currency at time T with no inter-

mediate payments. The price of such a bond at time t < 0 is defined by P (t, T ).

P (t, T ) is equal to one for all maturities.

Definition 3.3.2. A coupon bearing bond with maturity T, is a contract that

ensures intermediate coupon payments at times ti , i = 1, .., n such that 0 < ti < T .

The last cash flow includes the principal value of the bond in addition to the last

coupon payment.

Next we consider the definition of a bank account which provides a locally

riskless investment in which profit accrued continuously at the market risk free

rate at any moment.

Definition 3.3.3. (Bank Account) The Bank account process is defined by

Bt = exp (

∫ t

0

rs ds)
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where r(t) is the instantaneous short rate. B(t) evolves according to the following

differential equation:  dBt = rtBt dt

B0 = 1.

Definition 3.3.4. (Discount Factor) The discount factor D(t, T ) between to

time instants at time t and T is the amount at time T equivalent to one unit of

currency payable at time T and is given by

D(t, T ) =
B(t)

B(T )
= exp(−

∫ T

t

r(s)ds).

In the following we give commonly used interest rates that have an important

effect on the pricing of interest rate derivatives.

Definition 3.3.5. The simply compounded forward rate contracted at time t for

the period [S, T ] is denoted by

L(t;S, T ) = −P (t, T )− P (t, S)

(T − S)P (t, T )
.

Definition 3.3.6. The continuously compounded forward rate contracted at time

t for the period [S, T ] is denoted by

R(t;S, T ) = − logP (t, T )− logP (t, S)

T − S
.

Definition 3.3.7. The instantaneous forward rate contracted at time t for the

maturity T > t is denoted by

f(t, T ) = −∂ lnP (t, T )

∂T
.

Definition 3.3.8. The instantaneous short rate at time t is denoted by

r(t) = f(t, t).
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chapter 4

HEATH-JARROW-MORTON

FRAMEWORK

Short rate models are useful to clearly understand the interest rate world. These

models use instantaneous short rate as the state variable and have particular

advantages. The main advantages of such models are:

• Specifying r(t) as the solution of the stochastic differential equation allows

us to work within a partial differential equation framework.

• It is always possible to obtain tractable formulas for bond and derivative

prices.

However, implementation of short rate models to the real world is a polemical

subject because of the following reasons:

• An exact calibration to the initial curve of discount factors and a clear

understanding the volatility structures of the forward rates are both difficult

to achieve.

• The entire market is governed by one or few explanatory variables assump-

tion is unreasonable.

• When the short rate model becomes more realistic, matching the current

yield curve becomes more difficult.

• Without defining a very complicated short rate model, a realistic volatility

structure can not be obtained easily, (see Björk [4]).

30



These facts motivated various authors to develop alternative models. In this

section we focus on the Heath-Jarrow-Morton [22] framework . Heath, Jarrow and

Morton proposed a continuous time general framework for modelling the entire

yield curve. The key step of their approach is choosing the instantaneous forward

rates as fundamental quantities to derive an arbitrage-free term structure where

the forward rate dynamics are determined through their instantaneous volatility

structures.

Now let us give the following example in order to better understand the Heath-

Jarrow-Morton framework ( see Brigo and Mercurio [7]). Let us take the following

equation for the short rate under the risk neutral measure

dr(t) = αdt+ σdWt. (4.0.1)

This is a very simple case of the Ho - Lee [26] model with constant coefficient α.

For this model, the price of the zero-coupon bond can easily be computed as:

P (t, T ) = exp[
σ2

6
(T − t)3 − α

2
(T − t)2 − (T − t)r(t)]. (4.0.2)

By using the definition of instantaneous forward rate

f(t, T ) = −∂ lnP (t, T )

∂T
= −σ

2

2
(T − t)2 + α(T − t) + r(t). (4.0.3)

Differentiating this and substituting the short rate dynamics, the following dy-

namics is obtained

df(t, T ) = (σ2(T − t)− α)dt+ αdt+ σdWt

= σ2(T − t)dt+ σdWt. (4.0.4)

From the last equation it is seen that, the drift term is determined by a

certain transformation of the volatility term σ. That is, if one wishes to model

an instantaneous forward rate, the drift of its process is completely determined

by the chosen volatility term. This is not a coincidence, instead it is a general fact

proved by the Heath, Jarrow and Morton. An analysis of the HJM-framework

both under an objective and a risk-neutral measure is given in detail.
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4.1 Forward Rate and Bond Price Dynamics

Consider the f(0, T ) , 0 ≤ T ≤ T ′ where T ′ is the longest maturity in the

market. f(0, T ) is called the initial forward curve. For a fixed maturity T,

the instantaneous forward rate f(t, T ) evolves under the objective probability

measure P, as follows

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T ) ds+

∫ t

0

σ(s, T ) dW (s),

f(0, T ) = fM(0, T ), (4.1.5)

where fM(0, T ), T ≥ 0, the observed forward rate curve is used as the initial

condition. As a result of this selection a perfect fit between the observed and the

theoretical bond prices is satisfied. In differential form

df(t, T ) = α(t, T ) dt+ σ(t, T ) dW (t) , 0 ≤ t ≤ T, (4.1.6)

where W (t) is the Brownian motion under P, α(t, T ) and σ(t, T ) may be random.

For each fixed T, α(t, T ) and σ(t, T ) are adapted processes in the t variable.

Forward rate dynamics are driven by a single Brownian motion but the results

can easily be generalized to the multiple Brownian motion case.

Firstly, bond price dynamics will be obtained by using the following equation:

P (t, T ) = exp(−
∫ T

t

f(t, s)ds). (4.1.7)

Note that the differential of −
∫ T
t
f(t, s)ds is given by

d(−
∫ T

t

f(t, s)ds) = f(t, t)dt−
∫ T

t

df(t, s)ds (4.1.8)

since −
∫ T
t
f(t, s) ds has t-variable in two places, its differential has two terms.

The instantaneous short rate at time t is given by r(t) = f(t, t). By using this

equation, we have

d(−
∫ T

t

f(t, s)ds) = r(t)dt−
∫ T

t

[α(t, s) dt+ σ(t, s) dW (t)]ds. (4.1.9)
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Let us define

α̂(t, T ) :=

∫ T

t

α(t, s)ds, (4.1.10)

σ̂(t, T ) :=

∫ T

t

σ(t, s)ds, (4.1.11)

In conclusion by changing the order of the integration by the Fubini theorem and

using the equations (4.1.10) and (4.1.11), the formula becomes

d(−
∫ T

t

f(t, s) ds) = r(t)dt− α̂(t, T ) dt− σ̂(t, T ) dW (t). (4.1.12)

By choosing h(x) = ex, the price of the zero-coupon bond is given by

P (t, T ) = h(−
∫ T

t

f(t, s)ds).

Then the Ito-Deblin formula implies

dP (t, T ) = h′(−
∫ T

t

f(t, s) ds) d(−
∫ T

t

f(t, s)ds)

+
1

2
h′′(−

∫ T

t

f(t, s) ds) [ d(−
∫ T

t

f(t, s) ds) ]2

= P (t, T ) [ r(t)dt− α̂(t, T ) dt− σ̂(t, T ) dW (t) ]

+
1

2
P (t, T )σ̂(t, T )2dt.

As a result we end up with

dP (t, T )

P (t, T )
= [ r(t)− α̂(t, T ) +

1

2
σ̂(t, T )2 ] dt− σ̂(t, T ) dW (t). (4.1.13)

The first fundamental theorem of asset pricing implies that if there exists a risk

neutral probability measure in the market model, the market is arbitrage free.

Therefore we should explore such a measure P̂ under which discounted asset

prices are martingale. The discounted bond price is given as follows:

P̃ (t, T ) = P (t, T ) exp(−
∫ t

0

r(s) ds) (4.1.14)
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Then Ito’s integration by parts formula gives us

dP̃ (t, T ) = −P (t, T ) exp(−
∫ t

0

r(s) ds) r(t)dt

+exp(−
∫ t

0

r(s) ds) P (t, T ) [ r(t)− α̂(t, T ) +
1

2
σ̂(t, T )2 ] dt

−exp(−
∫ t

0

r(s) ds) P (t, T ) σ̂(t, T ) dW (t).

After small algebra,

dP̃ (t, T )

P̃ (t, T )
= [−α̂(t, T ) +

1

2
σ̂(t, T )2 ] dt− σ̂(t, T ) dW (t). (4.1.15)

If the right hand side of the above equation is equal to −σ̂(t, T )dŴ (t) where

Ŵ (t) =

∫ t

0

Θ(s)ds +W (t) (4.1.16)

then the Girsanov’s theorem can be applied to transfer to a risk neutral proba-

bility measure P̂, under which Ŵ (t) is a P̂-Brownian motion, Θ(t) is the market

price of risk and also the dynamics of the discounted bond price is written as

dP̃ (t, T ) = −P̃ (t, T ) σ̂(t, T ) dŴ (t). (4.1.17)

The next step is to solve the following equation to find a market price of risk

process, Θ(t).

[−α̂(t, T ) +
1

2
σ̂(t, T )2 ] dt− σ̂(t, T ) dW (t) = −σ̂(t, T ) [dW (t) + Θ(t) dt].

Hence

[−α̂(t, T ) +
1

2
σ̂(t, T )2 ] dt = −σ̂(t, T ) Θ(t) dt,

where Θ(t) is the solution of the infinitely many equations above one for each

maturity. However Θ(t) is a single process since the random source is due to the

one-dimensional Brownian motion in our model.
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Finally, differentiating the above equation with respect to the T and using the

definitions of α̂(t, T ) and σ̂(t, T ) gives us

α(t, T ) = σ(t, T ) [ σ̂(t, T ) + Θ(t) ].

which is known as the HJM drift condition under objective probability measure.

The following theorem summarizes the current study.

Theorem 4.1.1. (HJM Drift Condition) A term structure model for a zero

coupon bond prices of all 0 ≤ T ≤ T ′ is arbitrage free if there exist a process Θ(t)

such that

α(t, T ) = σ(t, T ) [ σ̂(t, T ) + Θ(t) ] (4.1.18)

holds for all 0 ≤ t ≤ T ≤ T ′.

4.2 Forward Rate and Bond Price Dynamics un-

der Martingale Measure

In this section, The HJM drift condition under the risk neutral measure will be

given. Let us consider that the model satisfies the HJM no-arbitrage condition

(4.1.18). Since the local rate of return should be equal to the short rate under

the risk neutral measure, i.e. α = r, then we may apply equation (4.1.18) with

Θ(t) = 0. The following proposition gives the HJM drift condition under the risk

neutral measure.

Proposition 4.2.1. Under martingale measure P̂, for every t and T satisfying

0 ≤ t ≤ T , the following relation between the α(t, T ) and σ(t, T ) processes should

be satisfied

α(t, T ) = σ(t, T ) σ̂(t, T ). (4.2.19)
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By using the equation (4.2.19), the forward rate dynamics can be written as

df(t, T ) = σ(t, T ) σ̂(t, T ) dt+ σ(t, T ) dŴ (t). (4.2.20)

In addition, we have proved that the discounted zero-coupon bond price process

has the following dynamics

dP̃ (t, T ) = −P̃ (t, T ) σ̂(t, T ) dŴ (t).

Let B(t) be the bank account process. In order to reach a zero-coupon bond price

process, we have to apply Ito’s integration by parts formula to d(B(t) P̃ (t, T )).

Then

dP (t, T ) = d(B(t) P̃ (t, T ))

= r(t) P (t, T ) dt− σ̂(t, T ) P (t, T ) dŴ (t).

From the above equation it is seen that zero-coupon bonds have a risk-free return

under risk neutral measure P̂.

4.3 Implementation of the HJM Framework

The key parameter of the HJM model is the volatility term σ(t, T ) of the in-

stantaneous forward rates. Therefore, the first step is to specify the volatility

structure under the actual measure. By the Girsanov Theorem, it is known that

the volatility term is not affected by the change of measure. Hence, we can then

reach the forward rate dynamics and bond prices of each maturity.

The following algorithm summarizes the HJM methodology.

1. Specify the volatility structure σ(t, T ).

2. Determine the drift parameters of forward rates by using the HJM drift

condition:

α(t, T ) = σ(t, T ) σ̂(t, T ).
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3. Observe current forward rates fM(0, T ) in the market.

4. Obtain forward rates by using the following formula:

f(t, T ) = fM(0, T ) +

∫ t

0

α(s, T ) ds+

∫ t

0

σ(s, T ) dW (s).

5. Compute the bond prices by using

P (t, T ) = exp(−
∫ T

t

f(t, s)ds).

Finally, the use of the HJM methodology is given with an example. Let us

take volatility structure σ(t, T ) = σ where σ is a positive constant. Then the

HJM drift condition gives us

α(t, T ) = σ(t, T ) σ̂(t, T ) = σ

∫ T

t

σds = σ2(T − t)

by substituting α(t, T ) and σ(t, T ) processes into the forward rate equation

f(t, T ) = fM(0, T ) +

∫ t

0

σ2(T − s) ds+

∫ t

0

σ dW (s).

Then by using f(t, t) = r(t)

r(t) = f(t, t) = fM(0, t) + σ2 t
2

2
+ σ W (t).

Hence the short rate dynamics are

dr(t) = (ft(0, t) + σ2 t) dt + σ dW (t).
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chapter 5

JARROW-YILDIRIM MODEL

Jarrow and Yıldırım [31] propose an approach for pricing Treasury inflation pro-

tected securities (TIPS). The key assumptions in their model are the determinis-

tic volatility and the non-zero correlation between different factors. Real prices

correspond to foreign currency, nominal prices correspond to domestic currency

and the inflation index corresponds to the exchange rate between nominal and

real prices. This methodology is known as the foreign currency analogy. Key

notations and dynamics used in their model are given in the following:

• (Ω, F , P) is objective probability space, where Ω is a state space, F is the

σ-algebra on Ω, P is the objective probability measure.

• {Ft : t ∈ [0,T]} is the standard filtration generated by the three Brown-

ian motions (W n(t),W r(t),W I(t) : t ∈ [0, T ]) where r:real, n:nominal, I:

inflation.

• Correlations between Brownian motions are given by

dW n(t)dW r(t) = ρnrdt,

dW n(t)dW I(t) = ρnIdt,

dW r(t)dW I(t) = ρrIdt.

• Nominal and real instantaneous forward rates and Consumer Price In-

dex(CPI) dynamics under objective probability measure are given by

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dW n(t), (5.0.1)
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df r(t, T ) = αr(t, T )dt+ σr(t, T )dW r(t), (5.0.2)

dI(t)

I(t)
= µI(t)dt+ σI(t)dW I(t), (5.0.3)

where αn(t, T ), αr(t, T ), µI(t) are random, σr(t, T ), σn(t, T ), σI(t) are de-

terministic.

•

f i(0, T ) = f iM(0, T ), i ε {r, n}

where fnM(0, T ) and f rM(0, T ) are nominal and real instantaneous forward

rates observed in the market at time 0, for maturity T .

• Nominal and real instantaneous short rate are given by

rn(t) = fn(t, t),

rr(t) = f r(t, t).

• P r(t, T ) is the time t price of a real zero-coupon bond maturing at time T

in CPI-U units.

• P n(t, T ) is the time t price of a nominal zero-coupon bond maturing at time

T in CPI-U1 units.

• Bn(0) is the time 0 price of a nominal coupon bearing bond issued at time

t0 ≤ 0 in dollars where the coupon payment is C dollars per period, T is

the maturity and F is the face value:

Bn(0) =
T∑
t=1

CP n(0, t) + FP n(0, T ). (5.0.4)

1Consumer price index for all urban consumers is denoted as CPI-U in USA
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• BTIPS(0) is the time 0 price of a coupon bearing Treasury inflation protected

security in dollars issued at time t0 ≤ 0

BTIPS(0) =

{
T∑
t=1

CI(0)P r(0, t) + FI(0)P r(0, T )

}
/I(t0). (5.0.5)

• The price of a real zero-coupon bond in dollars without an issue date ad-

justment is given as

P TIPS(t, T ) = I(t)P r(t, T ). (5.0.6)

Arbitrage-free drift restrictions in the Jarrow-Yıldırım model is given by the fol-

lowing proposition.

Proposition 5.1. Pn(t,T )
Bn(t)

, I(t)P r(t,T )
Bn(t)

and I(t)Br(t)
Bn(t)

are P̂-martingales if and only if

the following conditions hold.

αn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds− θn(t)

)
, (5.0.7)

αr(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− σI(t)ρrI − θr(t)
)
, (5.0.8)

µI(t) = rn(t)− rr(t)− σI(t)θI(t), (5.0.9)

where P̂ is an equivalent risk neutral measure to P, (θn(t), θr(t), θI(t) : t ε [0, T ])

are the risk premiums for the three risk factors in the economy, Bn(t) and Br(t)

are time t money market account values.

Proof. First, let us prove the equation (5.0.7) which ensures that Pn(t,T )
Bn(t)

is a

P̂-martingale. By equation (4.1.13),

dP n(t, T ) = P n(t, T )

[
rn(t)− α̂n(t, T ) +

1

2

(
σ̂n(t, T )2

)]
dt

−P n(t, T )σ̂n(t, T )dW n(t) (5.0.10)

and the bank account
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Bn(t) = exp

(∫ T

t

rn(s)ds

)
or, in the differential form,

dBn(t) = Bn(t)rn(t)dt. (5.0.11)

Then

Bn(t)−1 =
1

Bn(t)
= exp

(
−
∫ T

t

rn(s)ds

)
or, in the differential form

dBn(t)−1 = −Bn(t)−1rn(t)dt. (5.0.12)

By Ito’s integration by parts formula

d

(
P n(t, T )

Bn(t)

)
= d

(
P n(t, T )Bn(t, T )−1

)
= dP n(t, T )Bn(t)−1 + P n(t, T )d

(
Bn(t)−1

)
+ d〈P n, (Bn)−1〉t

=
P n(t, T )

Bn(t)

[(
rn(t)− α̂n(t, T ) +

1

2
σ̂n(t, T )2

)
dt

]

−P
n(t, T )

Bn(t)
[σ̂n(t, T )dW n(t)]− P n(t, T )Bn(t)−1rn(t)dt

=
P n(t, T )

Bn(t)

[(
−α̂n(t, T ) +

1

2
σ̂n(t, T )2

)
dt− σ̂n(t, T )dW n(t)

]
.

(5.0.13)

In order to use Girsanov’s Theorem, the right hand side of the above equation

should be equal to

−σ̂n(t, T )dŴ n(t),

where

Ŵ n(t) = W n(t)−
∫ T

t

θn(s)ds
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is the standard Brownian motion under risk neutral probability measure P̂ and

the θn(t) is the market price of risk of the nominal prices. In the differential form

dŴ n(t) = dW n(t)− θn(t)dt. (5.0.14)

Thus the right hand side of the equation (5.0.13) should be equal to

−σ̂n(t, T ) (dW n(t)− θn(t)dt) .

Therefore, the following equation has to be satisfied(
−α̂n(t, T ) +

1

2
σ̂n(t, T )2

)
dt− σ̂n(t, T )dW n(t) = −σ̂n(t, T )dW n(t)

+σ̂n(t, T )θn(t)dt.

Then

−α̂n(t, T ) +
1

2
σ̂n(t, T )2 = σ̂n(t, T )θn(t).

If we differentiate both sides with respect to T and use the equations (4.1.10) and

(4.1.11), i.e.,

α̂n(t, T ) =

∫ T

t

αn(t, s)ds,

σ̂n(t, T ) =

∫ T

t

σn(t, s)ds,

we reach the following result

αn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds− θn(t)

)
. 2

Secondly, we will prove the equation (5.0.9) under which I(t)Br(t)
Bn(t)

is a P̂-

martingale.

Br(t)

Bn(t)
= exp

(∫ T

t

(rr(s)− rn(s))ds

)
or, in the differential form

d

(
Br(t)

Bn(t)

)
=
Br(t)

Bn(t)
[rr(t)− rn(t)] dt. (5.0.15)
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Then by the integration by parts formula

d

(
I(t)Br(t)

Bn(t)

)
= dI(t)Br(t)Bn(t)−1 + I(t)d

(
Br(t)Bn(t)−1

)
+d〈I, Br(Bn)−1〉t

=
I(t)Br(t)

Bn(t)

(
µI(t)dt+ σI(t)dW I(t)

)
+
I(t)Br(t)

Bn(t)
(rr(t)− rn(t)) dt

=
I(t)Br(t)

Bn(t)

[(
µI(t) + rr(t)− rn(t)

)
dt+ σI(t)dW I(t)

]
.

(5.0.16)

By the Girsanov’s Theorem

Ŵ I(t) = W I(t)−
∫ t

0

θI(s)ds

is the standard Brownian motion under risk neutral probability measure P̂ and

the θI(t) is the market price of risk of the inflation. In the differential form

dŴ I(t) = dW I(t)− θI(t)dt.

Then the following equation has to be satisfied(
µI(t) + rr(t)− rn(t)

)
dt+ σI(t)dW I(t) = σI(t)dW I(t)− σI(t)θI(t)dt.

Hence,

µI(t) + rr(t)− rn(t) = −σI(t)θI(t)

or, equivalently,

µI(t) = rn(t)− rr(t)− σI(t)θI(t),

which is known as the Fisher equation. 2
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The final step is to obtain equation (5.0.8) under which I(t)P r(t,T )
Bn(t)

is P̂-martingale

by using Ito’s integration by parts formula and Fisher equation. By equation

(4.1.13)

dP r(t, T ) = P r(t, T )

[
rr(t)− α̂r(t, T ) +

1

2

(
σ̂r(t, T )2

)]
dt

−P r(t, T )σ̂r(t, T )dW r(t) (5.0.17)

First let us apply the integration by parts formula:

d (I(t)P r(t, T )) = dI(t)P r(t, T ) + dP r(t, T )I(t) + d〈I, P r〉t

= P r(t, T )I(t)
[
µI(t)dt+ σI(t)dW I(t)

]
+P r(t, T )I(t)

[(
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2

)
dt

]
−P r(t, T )I(t) [σ̂r(t, T )dW r(t)]

−I(t)P r(t, T )σI(t)σ̂r(t, T )ρrIdt

= P r(t, T )I(t)[ µI(t) + rr(t)− α̂r(t, T ) +
1

2
σ̂r(t, T )2

−σI(t)σ̂r(t, T )ρrI ]dt

−P r(t, T )I(t)[ σ̂r(t, T )dW r(t)− σI(t)dW I(t) ]. (5.0.18)

Then, applying same formula gives

d
(
I(t)P r(t, T )Bn(t, T )−1

)
= d(I(t)P r(t, T ))Bn(t)−1 + I(t)P r(t, T )dBn(t)−1

+d〈IP r, (Bn)−1〉t
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which is equal to following in the explicit form

d
(
I(t)P r(t, T )Bn(t, T )−1

)
=

P r(t, T )I(t)

Bn(t)
[µI(t) + rr(t)− α̂r(t, T )− rn(t)

−σI(t)σ̂r(t, T )ρrI +
1

2
σ̂r(t, T )2]dt

−P
r(t, T )I(t)

Bn(t)

[
σ̂r(t, T )dW r(t)− σI(t)dW I(t)

]
if we put (5.0.9) into the above equation

d
(
I(t)P r(t, T )Bn(t)−1

)
=

P r(t, T )I(t)

Bn(t)
[−σI(t)θI(t)− α̂r(t, T )

+
1

2
σ̂r(t, T )2 − σI(t)σ̂r(t, T )ρrI ]dt

−P
r(t, T )I(t)

Bn(t)

[
σ̂r(t, T )dW r(t)− σI(t)dW I(t)

]
.

(5.0.19)

By the multi-dimensional Girsanov’s Theorem

Ŵ r(t) = W r(t)−
∫ T

t

θr(s)ds,

Ŵ I(t) = W I(t)−
∫ T

t

θI(s)ds

are the standard Brownian motions under risk neutral probability measure P̂ and

the θ r(t) and the θI(t) are the market price of risks of the real prices and inflation

index respectively.

Thus, I(t)P r(t,T )
Bn(t)

is martingale under P̂ and the following equation is satisfied.[
−σI(t)θI(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2 − σI(t)σ̂r(t, T )ρrI

]
dt

−σ̂r(t, T )dW r(t) + σI(t)dW I(t) = −σ̂r(t, T )dŴ r(t) + σI(t)dŴ I(t)

= −σ̂r(t, T )dW r(t) + σ̂r(t, T )θr(t)dt+ σI(t)dW I(t)− σI(t)θI(t)dt.
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Then after some simplifications

−α̂r(t, T ) +
1

2
σ̂r(t, T )2 − σI(t)σ̂r(t, T )ρrI = σ̂r(t, T )θr(t)

or equivalently

α̂r(t, T ) =
1

2
σ̂r(t, T )2 − σ̂r(t, T )θr(t)− σ̂r(t, T )σI(t)ρrI .

By differentiating both sides with respect to T and using definitions of α̂r(t, T ),

σ̂r(t, T ), the final equation appears

αr(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− θr(t)− σI(t)ρrI
)
. 2

Then under martingale measure P̂ , nominal and real forward rates, zero coupon

bond prices and inflation dynamics can be restated. The next proposition gives

the new dynamics.

Proposition 5.2. The following price processes satisfy under risk-neutral mea-

sure:

i) dfn(t, T ) = σn(t, T )

∫ T

t

σn(t, s)ds+ σn(t, T )dŴ n(t), (5.0.20)

ii) df r(t, T ) = σr(t, T )

[∫ T

t

σr(t, s)ds− ρrIσI(t)
]
dt+ σr(t, T )dŴ r(t),

(5.0.21)

iii)
dI(t)

I(t)
= [rn(t)− rr(t)] dt+ σI(t)dŴ I(t), (5.0.22)

iv)
dP n(t, T )

P n(t, T )
= rn(t)dt− (

∫ T

t

σn(t, s)ds)dŴ n(t), (5.0.23)

v)
dP TIPS(t, T )

P TIPS(t, T )
= rn(t)dt+ σI(t)dŴ I(t)− (

∫ T

t

σr(t, s)ds)dŴ r(t), (5.0.24)

vi)
dP r(t, T )

P r(t, T )
=

[
rr(t) + ρrIσ

I(t)

∫ T

t

σr(t, s)ds

]
dt− (

∫ T

t

σr(t, s)ds)dŴ r(t).

(5.0.25)

46



Proof. i) By equation (5.0.1)

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dW n(t).

Also using the definition of αn(t, T ) from proposition(5.1) gives us

dfn(t, T ) = [σn(t, T )σ̂n(t, T )− σn(t, T )θn(t)] dt+ σn(t)dW n(t).

Under the martingale measure the local rate of return is equal to the short rate,

i.e.,

θ =
α− r
σ

= 0

(see Björk [4]).Thus,

dŴ n(t) = dW n(t)− θn(t)dt = dW n(t),

which gives the result

dfn(t, T ) = σn(t, T )

∫ T

t

σn(t, s)ds+ σn(t, T )dŴ n(t).

2

ii) The real forward rate dynamics under the objective probability measure is

given as

df r(t, T ) = αr(t, T )dt+ σr(t, T )dW r(t),

By using the same method as in (i), putting the definition of αr(t, T ) into the

above equation gives

df r(t, T ) =

(
σr(t, T )

∫ T

t

σr(t, s)ds− σr(t, T )σI(t)ρrI − σr(t, T )θr(t)

)
dt

+σr(t, T )dW r(t)

Under the martingale measure, θr(t) = 0 and dŴ r(t) = dW r(t). Hence,

df r(t, T ) = σr(t, T )[

∫ T

t

σr(t, s)ds− σI(t)ρrI + dŴ r(t)]. 2
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iii) Inflation index follows a geometric Brownian motion process

dI(t) = I(t)µIdt+ I(t)σI(t)dW I(t).

By the Fisher equation µI(t) = rn(t)− rr(t)− σI(t)θI(t). Substituting µI(t) into

the above equation provides

dI(t) = I(t)
(
rn(t)− rr(t)− σI(t)θI(t)

)
dt+ I(t)σI(t)dW I(t).

Finally, taking θI(t) = 0 and dŴ I(t) = dW I(t) gives the result:

dI(t)

I(t)
= (rn(t)− rr(t)) dt+ σI(t)dŴ I(t). 2

iv) Nominal zero coupon bond price dynamics under objective probability mea-

sure is presented as

dP n(t, T ) = P n(t, T )

[
rn(t)− α̂n(t, T ) +

1

2
σ̂n(t, T )2

]
dt− σ̂n(t, T )dW n(t).

By equation (5.0.7)

αn(t, T ) = σn(t, T )σ̂n(t, T )− σn(t, T )θn(t)

integrating both sides from t to T and taking market price of risk, θn(t) = 0 gives

α̂n(t, T ) =
1

2
σ̂n(t, T )2.

Finally, we get the following result by using above equation

dP n(t, T )

P n(t, T )
= rn(t)dt− (

∫ T

t

σn(t, s)ds)dŴ n(t).

2

vi) Since the dynamics of P r(t, T ) is required in the derivation of P TIPS(t, T ) we

will need the dynamics of P r(t, T ). The dynamics of P r(t, T ) under the objective

probability measure is

dP r(t, T )

P r(t, T )
=

(
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2

)
dt− σ̂r(t, T )dW r(t).
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By equation (5.0.8)

αr(t, T ) = σr(t, T )σ̂r(t, T )− σr(t, T )σI(t)ρrI − σr(t, T )θr(t)

integrating both sides from t to T and taking market price of risk, θr(t) = 0 gives

α̂r(t, T ) =
1

2
σ̂r(t, T )2 − σ̂r(t, T )σI(t)ρrI .

Using the above equation yields

dP r(t, T )

P r(t, T )
=

(
rr(t) + ρrIσ

I(t)

∫ T

t

σr(t, s)ds

)
dt− (

∫ T

t

σr(t, s)ds)dŴ r(t). 2

v) The final step of the proof is to reach the dynamics of P TIPS(t, T ) under

martingale measure. By equation (5.0.6)

P TIPS(t, T ) = I(t)P r(t, T ).

By Ito’s integration by parts formula

dP TIPS(t, T ) = d (I(t)P r(t, T ))

= dI(t)P r(t, T ) + I(t)dP r(t, T ) + d〈I, P r〉t

= I(t)P r(t)
[
(rn(t)− rr(t)) dt+ σI(t)dŴ I(t)

]
+ I(t)P r(t, T )

[(
rr(t) + ρrIσ

I(t)σ̂r(t, T )
)
dt− σ̂r(t, T )dŴ r(t)

]
− σI(t)σ̂r(t, T )I(t)P r(t, T )ρrIdt.

Then,

dP TIPS(t, T )

P TIPS(t, T )
= rn(t)dt+ σI(t)dŴ I(t)− (

∫ T

t

σr(t, s)ds)dŴ r(t).

2
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After that Jarrow and Yıldırım strip real and nominal zero coupon bond prices

from the observed market prices of the coupon-bearing securities. If we go back

to the equation (5.0.5), the price of the coupon bearing TIPS is given as

BTIPS(0) =

{
T∑
t=1

CP r(0, t)I(0) + FP r(t, T )I(0)

}
/I(t0).

where C, I(0), F and I(t0) are observable at time 0 in the market. BTIPS(0)

may be known or not. If the price of the TIPS is observable at time 0 in the

market, then putting all variables into the above equation easily gives the price

of the real zero coupon bond at time 0. However, if it is not observable at such a

time, stripping real zero coupon bond prices will be required. In Jarrow-Yıldırım

model, stripping procedure is applied by using piecewise constant forward rate

curve. Firstly, forward rates are estimated by nonlinear least square method.

Then, by using the relation between zero coupon bonds and forward rates, real

zero coupon bond prices are obtained. Nominal zero coupon bond prices are also

stripped with the same method. Then the volatility parameters for the real and

nominal forward rates are estimated. The validity of their model is tested by a

hedging procedure.
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chapter 6

EXTENSIONS OF THE HJM

AND THE JARROW-YILDIRIM

MODELS WITH JUMPS

INCORPORATION

In finance literature, most of the works propose models based on diffusion type

processes and especially on the geometric Brownian motion. However, such mod-

els have same drawbacks. In financial markets, asset price processes may always

have jumps and these models can not capture this property. When pricing and

hedging comes to order, empirical studies show that the performances of such

models are sometimes inadequate. Hence, stochastic processes with jumps have

become increasingly popular in the last two decades. These new models allow

prices and interest rates follow a continuous process at most of the time. On the

other hand they support the fact that longer jumps may appear from time to

time.

One of the early studies on the inclusion of jump components into forward rate

dynamics is that of Shirakawa [43]. The framework here assumes a finite number

of possible jump sizes and there exists a sufficient number of traded bonds to

hedge away possible jump risks, thus guaranteeing market completeness. Björk

et al. [5] and Jarrow and Madan [30] propose interest rate models driven by

point processes, when the mark space is finite. Burnetas and Ritchken [8], Das

[13], Das and Foresi [14] work on the pricing of interest rate derivatives in the
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presence of jumps. Das [12] introduce a discrete time jump diffusion version of

the HJM model. Glasserman and Kou [18] derive arbitrage free dynamics of

interest rates in the presence of jump diffusion process. Chiarella and Sklibosios

[10] present a multifactor jump diffusion model of the term structure of interest

rates under a specific volatility structure. Björk, Kabanov and Runggaldier [6]

focus on interest rate models driven by point processes where the mark space

is infinite. In this chapter, extensions of the HJM and Jarrow-Yıldırım models

depending on Shirakawa’s framework will be introduced.

6.1 An Extension of the HJM Model

Uncertainty in the financial market is characterized by (Ω, F , P) where Ω is the

state space, F is the filtration on Ω, P is the objective probability measure on

(Ω, F). W is the standard Brownian motion, Ni’s, i=1,..,n are Poisson processes

which are independent of each other and of the Brownian motion.

Assumption 6.1.1. There exists a sufficient number of traded bonds to hedge

away all of the jump risks, hence the market is complete.

Dynamics of the instantaneous forward rate f(t, T ) , ∀t ≤ T ∈ R+ is given

by

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t) +
n∑
i=1

δi(t, T ) [dNi(t)− λidt] , (6.1.1)

where α(t, T ) and σ(t, T ) are the drift and the Brownian coefficients, δi’s (i=1..n)

are jump sizes that occur at the Poisson jump times. λi’s are constant intensities

of Ni(t).

dNi(t) =


1 , if a jump occurs in the time interval (t, t+ dt)

(with probability λi dt);

0 , otherwise (with probability 1− λi dt)

(6.1.2)
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σ(t, T ) is a positive-valued, well defined function which depends on time and

maturity. Forward rate dynamics can be expressed in stochastic integral form as

f(t, T ) = f(0, T )+

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dW (s)+
n∑
i=1

∫ t

0

δi(s, T )[dNi(s)−λids].

(6.1.3)

Setting t=T in the above equation gives the dynamics of the instantaneous spot

rate as follows

r(t) = f(0, t) +

∫ t

0

α(s, t)ds+

∫ t

0

σ(s, t)dW (s) +
n∑
i=1

∫ t

0

δi(s, t)[dNi(s)− λids].

(6.1.4)

Then, let us find the dynamics of P (t, T ) by using the following relation:

P (t, T ) = exp(−
∫ T

t

f(t, s)ds)

also note that

d(−
∫ T

t

f(t, s)ds) = f(t, t)dt−
∫ T

t

df(t, s)ds

= r(t)dt−
∫ T

t

[α(t, s)dt+ σ(t, s)dW (t)]ds

−
∫ T

t

n∑
i=1

δi(t, s)[dNi(t)− λidt]ds.

Define

α̂(t, T ) =

∫ T

t

α(t, s)ds (6.1.5)

σ̂(t, T ) =

∫ T

t

σ(t, s)ds. (6.1.6)
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Then by the Fubini theorem

d

(
−
∫ T

t

f(t, s)ds

)
= r(t)dt− α̂(t, T )dt− σ̂(t, T )dW (t)

−
n∑
i=1

∫ T

t

δi(t, s)[dNi(t)− λidt]ds.

Let us apply the Ito-Deblin formula for jump processes with g(x) = ex. Then,

dP (t, T ) = P (t−, T )(r(t)dt− α̂(t, T )dt− σ̂(t, T )dW (t) +
n∑
i=1

λidt

∫ T

t

δi(t, s)ds)

+
1

2
P (t−, T )σ̂(t, T )2dt

+
n∑
i=1

[
e−

∫ T
t f(t−,s)+δi(t,s)ds − e−

∫ T
t f(t−,s)ds

]
dNi(t).

Let us define

δ̂i(t, T ) =

∫ T

t

δi(t, s)ds. (6.1.7)

Then we get

dP (t, T )

P (t−, T )
=

[
r(t)− α̂(t, T ) +

1

2
σ̂(t, T )2 +

n∑
i=1

λiδ̂i(t, T )

]
dt

− σ̂(t, T )dW (t) +
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dNi(t). (6.1.8)

In our model there exist n+ 1 sources of risk, 1 due to the Brownian motion,

others due to the Poisson processes. For the hedging procedure we can take

a suitable position in the n + 1 bonds in order to eliminate both Poisson and

Brownian motion risks.

In order to guarantee that the market is arbitrage free we should find risk

neutral probability measure P̂ under which discounted bond prices are martingale.

First let’s find the dynamics of discounted bond prices

P̃ (t, T ) = P (t, T ) exp

(
−
∫ t

0

r(s)ds

)
.
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By the integration by parts formula for jump processes

dP̃ (t−, T ) = −P (t−, T )e−
∫ t
0 r(s)dsr(t)dt

+e−
∫ t
0 r(s)dsP (t−, T )

[
r(t)− α̂(t, T ) +

1

2
σ̂(t, T )2

]
dt

−e−
∫ t
0 r(s)dsP (t−, T ) [σ̂(t, T )dW (t)]

+e−
∫ t
0 r(s)dsP (t−, T )

[
n∑
i=1

λiδ̂i(t, T )dt+
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dNi(t)

]
.

Then, finally we get

dP̃ (t, T )

P̃ (t−, T )
=

[
−α̂(t, T ) +

1

2
σ̂(t, T )2 +

n∑
i=1

λiδ̂i(t, T )

]
dt

−σ̂(t, T )dW (t) +
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dNi(t). (6.1.9)

By the Girsanov Theorem, let P̂ be a risk neutral probability measure equivalent

to objective probability measure P, and let φ(t) be the market price of diffusion

risk associated with the Brownian motion sources of uncertainty W(t), and let

ψi(t)’s be the intensities under P̂ defined as

ψi(t) = λiρi,

where λi’s are intensities under P and ρi’s are the market prices of jump risk

associated with the Poisson processes sources of uncertainty Ni(t)
′s. Also note

that ρi ≥ 0 are predictable processes (See Oksendal [37], Runggaldier [39] for

detail). Then,

Ŵ (t) = W (t)−
∫ t

0

φ(s)ds,

N̂i(t) = Ni(t)−
∫ t

0

ψi(s)ds.
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Discounted asset prices are martingale if the right hand side of equation (6.1.9)

is equal to

−σ̂(t, T )dŴ (t) +
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dN̂i(t),

i.e., [
−α̂(t, T ) +

1

2
σ̂(t, T )2 +

n∑
i=1

λiδ̂i(t, T )

]
dt− σ̂(t, T )dW (t)

+
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dNi(t) = −σ̂(t, T )dW (t) + σ̂(t)φ(t)dt

+
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
dNi(t)−

n∑
i=1

(
e−δ̂i(t,T ) − 1

)
ψi(t)dt.

After small simplifications

−α̂(t, T ) +
1

2
σ̂(t, T )2 +

n∑
i=1

λiδ̂i(t, T )dt = σ̂(t)φ(t)dt−
n∑
i=1

(
e−δ̂i(t,T ) − 1

)
ψi(t)dt.

Differentiating both sides with respect to T and using the definition of α̂(t, T ),

σ̂(t, T ), δ̂i(t, T ) yields

−α(t, T ) + σ(t, T )σ̂(t, T ) +
n∑
i=1

λiδi(t, T ) = σ(t)φ(t)

+
n∑
i=1

δi(t, T )ψi(t)
(
e−δ̂i(t,T ) − 1

)
.

Finally we end up with

α(t, T ) = σ(t, T )σ̂(t, T )− σ(t)φ(t) +
n∑
i=1

δi(t, T )
[
λi − ψi(t)

(
e−δ̂i(t,T ) − 1

)]
,

(6.1.10)

which can be defined as the drift condition of extension of HJM model, satisfying

that the financial market is arbitrage free. By substituting the drift restriction
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into the bond price equation we get the bond price in arbitrage free economy

dP (t, T )

P (t−, T )
= r(t)dt− σ̂(t, T )dŴ (t)−

n∑
i=1

(
e−δ̂i(t,T ) − 1

)
[dNi(t)− ψi(t)dt] .

(6.1.11)

Finally, by substituting the drift condition into the short rate equation, we obtain

the dynamics of spot interest rate r(t) under the risk neutral measure P̂

r(t) = f(0, t) +

∫ t

0

σ(s, t)σ̂(s, t)ds+
n∑
i=1

∫ t

0

ψi(s)δi(s, t)
[
1− e−δ̂i(s,T )

]
ds

+

∫ t

0

σ(s, t)dŴ (s) +
n∑
i=1

∫ t

0

δi(s, t)[dNi(s)− ψi(s)ds].

(6.1.12)

6.2 An Extension of the Jarrow-Yıldırım Model

The key assumptions in our model is consistent with the Jarrow-Yıldırım model.

Volatility is assumed to be deterministic and different factors are correlated with

each other. We also used foreign currency analogy. Some notations used in our

model are as follows:

• {Ft : t ε [0.T ]} is the standard filtration generated by the three Brownian

motions (W n(t), W r(t), W I(t) : tε [0, T ]) where r denotes real, n denotes nominal,

I denotes inflation.

• Correlations between Brownian motions are given by

dW n(t)dW r(t) = ρnrdt,

dW n(t)dW I(t) = ρnIdt,

dW r(t)dW I(t) = ρrIdt.
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• Nominal and real instantaneous forward rates and CPI dynamics under the

objective probability measure are given by

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dW n(t) +
n∑
i=1

δni (t, T ) [dNn
i (t)− λni dt] ,

(6.2.13)

df r(t, T ) = αr(t, T )dt+ σr(t, T )dW r(t) +
n∑
i=1

δri (t, T ) [dN r
i (t)− λridt] ,

(6.2.14)

dI(t) = I(t)µI(t)dt+ I(t)σI(t)dW I(t) +
n∑
i=1

δIi (t, T )
[
dN I

i (t)− λIi dt
]
,

(6.2.15)

where αn(t, T ), αr(t, T ), µI(t) are random, σn(t, T ), σr(t, T ), σI(t) are determin-

istic, Nk
i , k ∈ {r, n, I} are Poisson processes which are independent of each

other and of the Brownian motions, W k(t). Although in real world, jump sizes of

nominal and real rates are correlated to each other, in this study, for mathemat-

ical simplification, no correlation between Poisson processes for different factors

assumption is used. δki are jump sizes that occur at the Poisson jump times, λki

are constant intensities of Nk
i .

• fk(0, T ) = fkµ(0, T ), i ∈ {r, n}, where fnµ (0, T ) and f rµ(0, T ) are nominal and

real instantaneous forward rates observed in the market at time 0, for maturity

T.

• All the assumptions and notations used in section 6.1 are still valid.

Assumption 6.2.1. There are no arbitrage possibilities in the market

By assumption 6.1.1, there exist a unique measure P̂ such that Pn(t,T )
Bn(t)

, I(t)P r(t,T )
Bn(t)

,
I(t)Br(t,T )
Bn(t)

are P̂ martingales. Next proposition presents the necessary and suffi-

cient conditions required on the bond price dynamics in order that the market

be arbitrage free.
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Proposition 6.2.1. Pn(t,T )
Bn(t)

, I(t)P r(t,T )
Bn(t)

, I(t)Br(t,T )
Bn(t)

are P̂ martingales iff the follow-

ing conditions hold

αn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds− φn(t)

)

+
n∑
i=1

δni (t, T )
[
λni − ψni (t)e−δ̂

n
i (t,T )

]
, (6.2.16)

αr(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− σI(t)ρrI − φr(t)
)

+
n∑
i=1

δri (t, T )
(
λri + e−δ̂

r
i (t,T )ψri (t)

)
, (6.2.17)

µI(t) = rn(t)− rr(t)− σI(t)φI(t) +
n∑
i=1

δIi (t, T )
(
λIi − ψIi (t)

)
. (6.2.18)

Proof. First let’s find the P̂-dynamics of Pn(t,T )
Bn(t)

. By equation (6.1.8), the nom-

inal zero-coupon bond price dynamics under the objective probability measure

is

dP n(t, T )

P n(t, T )
=

[
rn(t)− α̂n(t, T ) +

1

2
σ̂n(t, T )2 +

n∑
i=1

λni δ̂
n
i (t, T )

]
dt

−σ̂n(t, T )dW n(t) +
n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dN̂n

i (t). (6.2.19)

The nominal money market account has the following dynamics

Bn(t) = exp

(∫ t

0

rn(s)ds

)
or, in the differential form

dBn(t) = Bn(t)rn(t)dt.
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Then the dynamics of Bn(t)−1 is given

dBn(t)−1 = −Bn(t)−1rn(t)dt.

By the integration by parts formula

d

(
P n(t, T )

Bn(t)

)
= d

(
P n(t, T )Bn(t)−1

)
= dP n(t, T )Bn(t)−1 + P n(t, T )dBn(t)−1 + d〈P n, (Bn)−1〉t

=
P n(t, T )

Bn(t)

[
rn(t)− α̂n(t, T ) +

1

2
σ̂n(t, T )2 +

n∑
i=1

λni δ̂
n
i (t, T )

]
dt

−P
n(t, T )

Bn(t)

[
σ̂n(t, T )dW n(t) +

n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dNn

i (t)

]

−P
n(t, T )

Bn(t)
rn(t)dt

=
P n(t, T )

Bn(t)

(
−α̂n(t, T ) +

1

2
σ̂n(t, T )2 +

n∑
i=1

λni δ̂
n
i (t, T )

)
dt

+
P n(t, T )

Bn(t)

(
−σ̂n(t, T )dW n(t) +

n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dNn

i (t)

)
.

Then, let us use Girsanov Theorem to transfer to risk neutral measure with

Ŵ n(t) = W n(t)−
∫ t

0

φn(s)ds,

N̂n
i (t) = Nn

i (t)−
∫ t

0

ψni (s)ds,

where φn(t) is the market price of diffusion risk associated with the Brownian

motion sources of uncertainty W n(t), ψni (t)’s are the intensities under P̂ defined

as

ψni (t) = λni ρ
n
i (t),
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where λni ’s are intensities under P and ρni (t)’s are the market prices of jump risk

associated with the Poisson processes sources of uncertainty Nn
i (t)′s.

Then the right hand side of the above equation should be equal to

−σ̂n(t, T )dŴ n(t) +
n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dN̂n

i (t)

after some simplifications , we get(
−α̂n(t, T ) +

1

2
σ̂n(t, T )2 +

n∑
i=1

λni δ̂
n
i (t, T )

)
dt

=

(
σ̂n(t, T )φn(t)−

n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
ψni (t)

)
dt.

Differentiating both sides with respect to T and using the definitions of α̂n(t, T ),

σ̂n(t, T ), δ̂ni (t, T ) presents

αn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds− φn(t)

)
+

n∑
i=1

δni (t, T )
[
λni − ψni (t)e−δ̂

n
i (t,T )

]
(6.2.20)

which is the same as equation (6.2.16). 2

Secondly, let’s find the dynamics of I(t)Br(t)
Bn(t)

. By equation (6.2.15)

dI(t)

I(t)
= µI(t)dt+ σI(t)dW I(t) +

n∑
i=1

δIi (t, T )
[
dN I

i (t, T )− λIi dt
]
.

In addition nominal and real money market account equations are

dBn(t) = Bn(t)rn(t)dt,

dBr(t) = Br(t)rr(t)dt.

Then

d

(
Br(t)

Bn(t)

)
=
Br(t)

Bn(t)
(rr(t)− rn(t)) dt
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Ito’s integration by parts formula presents

d

(
I(t)Br(t)

Bn(t)

)
=

I(t)Br(t)

Bn(t)

(
µI(t)dt+ σI(t)dW I(t)

)

+
I(t)Br(t)

Bn(t)

(
n∑
i=1

δIi (t, T )
[
dN I

i (t)− λIi dt
])

+
I(t)Br(t)

Bn(t)
(rr(t)− rn(t)) dt.

By Girsanov’s Theorem

Ŵ I(t) = W I(t)−
∫ t

0

φI(s)ds,

N̂ I
i (t) = N I

i (t)−
∫ t

0

ψIi (s)ds,

where φI(t) is the market price of diffusion risk associated with the Brownian

motion sources of uncertainty W I(t), ψIi (t)’s are the intensities under P̂ defined

as

ψIi (t) = λIi ρ
I
i (t),

where λIi ’s are intensities under P and ρIi (t)’s are the market prices of jump risk

associated with the Poisson processes sources of uncertainty N I
i (t)′s. Then the

right hand side of the above equation should be equal to

σI(t)dŴ I(t) +
n∑
i=1

δIi dN̂
I
i (t),

i.e., (
µI(t) + rr(t)− rn(t)−

n∑
i=1

δIi (t, T )λIi

)
dt+ σI(t)dW I(t)

+
n∑
i=1

δIi (t, T )dN I
i (t) = σI(t)dW I(t)− σI(t)φI(t)dt

+
n∑
i=1

δIi (t, T )dN I
i (t)−

n∑
i=1

δIi (t, T )ψIi dt.
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After some simplifications

µI(t) + rr(t)− rn(t)−
n∑
i=1

δIi (t, T )λIi = −σI(t)φI(t)−
n∑
i=1

δIi (t, T )ψIi (t)

or, equivalently,

µI(t) = rn(t)− rr(t)− σI(t)φI(t) +
n∑
i=1

δIi (t, T )
(
λIi − ψIi (t)

)
.

2

The last step of the proof is to obtain equation (6.2.17). We should find the

dynamics of I(t)P
r(t,T )

Bn(t,T )
first. The dynamics of I(t), Bn(t, T ) is obtained beforehand.

By equation (6.1.8), the real zero-coupon bond price dynamics under the objective

probability measure is

dP r(t, T )

P r(t, T )
=

[
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2 +

n∑
i=1

λri δ̂
r
i (t, T )

]
dt

−σ̂r(t, T )dW r(t) +
r∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t). (6.2.21)

Thus, all we have to do is to apply Ito’s integration by parts formula, then to

make a change of measure and, finally, to use equation (6.2.18) which will give

us the result. By Ito’s integration by parts formula

d(I(t)P r(t, T )) = I(t)dP r(t, T ) + P r(t, T )dI(t) + d〈I, P r〉t,

63



which is equal to the following

d(I(t)P r(t, T )) = I(t)P r(t, T )

(
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2

)
dt

+I(t)P r(t, T )

(
n∑
i=1

λri δ̂
r
i (t, T )

)
dt

−I(t)P r(t, T )σ̂r(t, T )dW r(t)

+I(t)P r(t, T )
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN r

i (t)

+P r(t, T )I(t)(µI(t)dt+ σI(t)dW I(t))

+I(t)P r(t, T )

(
n∑
i=1

δIi (t, T )
(
dN I

i (t)− λIi dt
))

−
(
I(t)P r(t, T )σ̂r(t, T )σI(t)ρrI

)
dt

If we apply Ito’s integration by parts formula again,

d
(
I(t)P r(t)Bn(t)−1

)
= d (I(t)P r(t))Bn(t)−1 + dBn(t)−1P r(t, T )I(t)

=
I(t)P r(t, T )

Bn(t)

[(
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2

)
dt

]

+
I(t)P r(t, T )

Bn(t)

[
n∑
i=1

λri δ̂
r
i (t, T )dt

]

−
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN r

i (t) + µI(t) + σI(t)dW I(t)

+
n∑
i=1

δIi (t, T )
(
dN I

i (t)− λIi dt
)
− σ̂r(t, T )σI(t)ρrIdt

−Bn(t)−1rn(t)I(t)P r(t, T )dt.
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For simplicity, let K =
I(t)P r(t, T )

Bn(t)
. Then

dK = K

[(
rr(t)− α̂r(t, T ) +

1

2
σ̂r(t, T )2 +

n∑
i=1

λri δ̂
r
i (t, T )

)
dt

]

+K

[(
µI(t)− σ̂r(t, T )σI(t)ρrI − rn(t)−

n∑
i=1

δIi (t, T )λIi

)
dt

]

−K
[
σ̂r(t, T )dW r(t)− σI(t)dW I(t)

]
+K

[
n∑
i=1

[(
e−δ̂

r
i (t,T ) − 1

)
dN r

i (t) + δIi (t, T )dN I
i (t)

]]
.

By using equation (6.2.18)

dK

K
=

[
−σI(t)φI(t)−

n∑
i=1

δIi (t, T )ψIi (t)− α̂r(t, T ) +
1

2
σ̂r(t, T )2

]
dt

+

[
n∑
i=1

λri δ̂
r
i (t, T )− σ̂r(t, T )σI(t)ρrI

]
dt

−σ̂r(t, T )dW r(t) + σI(t)dW I(t)−
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN r

i (t)

+
n∑
i=1

δIi (t, T )dN I
i (t)

By Girsanov’s Theorem

dŴ r(t) = dW r(t)− φr(t)dt,

dŴ I(t) = dW I(t)− φI(t)dt,

dN̂ r
i (t) = dN r

i (t)− ψri (t)dt,

dN̂ I
i (t) = dN I

i (t)− ψIi (t)dt.
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Then right hand side of the above equation should be equal to

−σ̂r(t, T )dŴ r(t) + σI(t)dŴ (t)−
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t) +
n∑
i=1

δIi (t)dN̂
I
i (t).

After some simplifications we have the following equation

α̂r(t, T ) =
1

2
α̂r(t, T )2 − σ̂r(t, T )σI(t)ρrI +

n∑
i=1

λri δ̂
r
i (t, T )

−σ̂r(t, T )φr(t)−
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
ψri (t).

Differentiating the above equation with respect to T and substituting the ex-

pressions of α̂r(t, T ), σ̂r(t, T ), δ̂ri (t, T ), the equation for the αr(t, T ) is found as

follows:

αr(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− σI(t)ρrI − φr(t)
)

+
n∑
i=1

δri (t, T )
(
λri + e−δ̂

r
i (t,T )ψri (t)

)
.

2

In Proposition (6.2.1) arbitrage free drift conditions have been derived. By us-

ing these equations, forward rate, inflation and bond price processes under the

martingale measure will be obtained in the following proposition.

Proposition 6.2.2. The following price processes hold under the martingale mea-

sure:

i) dfn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds+ dŴ n(t)

)
+

n∑
i=1

δni (t, T )dN̂n
i (t),

(6.2.22)

ii) df r(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− σI(t)ρrIdt+ dŴ r(t)

)
+

n∑
i=1

δri (t, T )dN̂ r
i (t), (6.2.23)
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iii)
dI(t)

I(t)
= (rn(t)− rr(t)) dt+ σI(t)dW I(t) +

n∑
i=1

δIi (t, T )dN̂ I
i (t), (6.2.24)

iv)
dP n(t, T )

P n(t, T )
= rn(t)dt− σ̂n(t, T )dŴ n(t) +

n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dN̂n

i (t),

(6.2.25)

v)
dP TIPS(t, T )

P TIPS(t, T )
= rn(t)dt+ σI(t)dŴ I(t) + σ̂r(t, T )dŴ r(t)

+
n∑
i=1

δIi (t, T )dN̂ I
i (t) +

n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t),

(6.2.26)

vi)
dP r(t, T )

P r(t, T )
=
(
rr(t) + σ̂r(t, T )σI(t)ρrI

)
dt− σ̂r(t, T )dŴ r(t)

+
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t). (6.2.27)

Proof. i) By equation (6.2.13) we have,

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dW n(t) +
n∑
i=1

δni (t, T ) [dNn
i (t)− λni dt] .

Substituting the definition of αn(t, T ) from proposition 6.2.1 into above equation

presents

dfn(t, T ) = (σn(t)σ̂n(t, T )− σn(t, T )φn(t)) dt

+

(
n∑
i=1

δni (t, T )
[
λni − ψni (t)

(
e−δ̂

n
i (t,T )

)])
dt

+σn(t, T )dW n(t) +
n∑
i=1

δni (t, T )[dNn
i (t)− λni dt].

Under the martingale measure, market price of risks φn(t) and ρni (t) (so ψni (t))

are equal to zero. Thus,

dŴ n(t) = dW n(t),
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dN̂n
i (t) = dNn

i (t).

After some simplifications

dfn(t, T ) = σn(t, T )

(∫ T

t

σn(t, s)ds+ dŴ n(t)

)
+

n∑
i=1

δni (t, T )dN̂n
i (t).

2

ii) With the same method in (i), substituting the definition of αr(t, T ) into the

equation (6.2.14) gives

df r(t, T ) = σr(t, T )σ̂r(t, T )− σr(t, T )σI(t)ρrI − σr(t, T )φr(t)

+
n∑
i=1

δri (t, T )
(
λri + e−δ̂

r
i (t,T )ψri (t)

)
+ σr(t, T )dW r(t)

+
n∑
i=1

δri (t, T ) [dN r
i (t)− λridt] .

Since under martingale measure φr(t), ρri (t), (so ψri (t)) are equal to zero, i.e.

dŴ r(t) = dW r(t),

dN̂ r
i (t) = dN r

i (t).

After some simplifications, finally we have

df r(t, T ) = σr(t, T )

(∫ T

t

σr(t, s)ds− σI(t)ρrIdt+ dŴ r(t)

)
+

n∑
i=1

δri (t, T )dN̂ r
i (t).

2

iii) If we put the definition of µI(t) (6.2.18) into the equation (6.2.15) we get

dI(t)

I(t)
=

(
rn(t)− rr(t)− σI(t)φI(t) +

n∑
i=1

δIi (t, T )
(
λIi − ψIi (t)

))
dt

+
n∑
i=1

δIi (t, T )
[
dN I

i (t)− λIi dt
]

+ σI(t)dW I(t)
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where φI(t) and ρIi (t) are equal to zero under risk neutral measure. Thus,

dŴ I(t) = dW I(t),

dN̂ I
i (t) = dN I

i (t).

After some small algebra, inflation index process under martingale measure is

obtained as follows:

dI(t)

I(t)
= (rn(t)− rr(t)) dt+ σI(t)dŴ I(t) +

n∑
i=1

δIi (t, T )dN̂ I
i (t).

2

iv) The nominal zero coupon bond price equation has been derived as (6.2.19),

also by proposition (6.2.1), the definition of α̂n(t, T ) is as follows:

αn(t, T ) = σn(t, T ) (σ̂n(t, T )− φn(t)) +
n∑
i=1

δni (t, T )
[
λni − ψni (t)e−δ̂

n
i (t,T )

]
.

Integrating both sides from t to T gives

α̂n(t, T ) =
1

2
σ̂n(t, T )2 +

n∑
i=1

δ̂ni (t, T )λni −
n∑
i=1

ψni (t)eδ̂
n
i (t,T ) − σ̂n(t, T )φn(t).

By substituting this equation into the nominal bond price equation, we have

dP n(t, T )

P n(t, T )
=

(
rn(t)− 1

2
σ̂n(t, T )2 −

n∑
i=1

δ̂ni (t, T )λni

)
dt

+

(
n∑
i=1

ψni (t)e−δ̂
n
i (t,T ) +

1

2
σ̂n(t, T )2 +

n∑
i=1

λni δ̂
n
i (t, T )

)
dt

−σ̂n(t, T )dW n(t) +
n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dNn

i (t).

Under martingale measure φn(t) and ρni (t) are equal to zero, then some simplifi-

cations reach the following result:

dP n(t, T )

P n(t, T )
= rn(t)dt− σ̂n(t, T )dŴ n(t) +

n∑
i=1

(
e−δ̂

n
i (t,T ) − 1

)
dN̂n

i (t).
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2

vi) The real zero coupon bond price equation has been derived beforehand as

(6.2.21). From Proposition (6.2.1)

αr(t, T ) = σr(t, T )σ̂r(t, T )− σr(t, T )σI(t)ρrI − σn(t, T )φr(t)

+
n∑
i=1

δri (t, T )
(
λri + e−δ̂

r
i (t,T )ψri (t)

)
.

If we integrate both sides of the above equation from t to T ,

α̂r(t, T ) =
1

2
σ̂r(t, T )2 − σ̂r(t, T )σI(t)ρrI − σ̂r(t, T )φr(t)

+
n∑
i=1

δ̂ri (t, T )λri −
n∑
i=1

ψri (t)e
−δ̂r

i (t,T ).

Under the martingale measure φr(t) and ρri (t) are equal to zero. Using the ex-

pression α̂r(t, T ) in equation (6.2.21), the final result is obtained after some sim-

plifications:

dP r(t, T )

P r(t, T )
=

(
rr(t)− σr(t, T )σI(t)ρrI

)
dt− σ̂r(t, T )dŴ r(t)

+
n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t).

2

v)By equation (5.0.6)

P TIPS(t, T ) = I(t)P r(t, T ).

Then by the Ito’s integration by parts formula

dP TIPS(t, T ) = d (I(t)P r(t, T ))

= d(I(t))P r(t, T ) + I(t)dP r(t, T ) + d〈I, P r〉t,

70



which is equal to

dP TIPS(t, T ) = I(t)P r(t, T )
[
(rn(t)− rr(t)) dt+ σI(t)dŴ I(t)

]

+I(t)P r(t, T )

[
n∑
i=1

δIi (t, T )dN̂ I
i (t)

]

+I(t)P r(t, T )
[(
rr(t)− σ̂r(t, T )σI(t)ρrI

)
dt
]

+I(t)P r(t, T )

[
−σ̂r(t, T )dŴ r(t) +

n∑
i=1

(
e−δ̂

r
i (t,T ) − 1

)
dN̂ r

i (t)

]

+σI(t)σ̂r(t, T )ρrIdt.

Under the martingale measure φr(t), ρri (t), φ
I(t) and ρrI(t) are equal to zero. After

some simplifications:

dP TIPS(t, T )

P TIPS(t, T )
= rn(t)dt+ σI(t)dŴ I(t)− σ̂r(t, T )dŴ r(t)

+
n∑
i=1

δIi (t, T )dN̂ I
i (t) +

n∑
i=1

(
e−δ

r
i (t,T ) − 1

)
dN̂ r

i (t).

2
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chapter 7

PRICING EUROPEAN CALL

OPTION ON THE INFLATION

INDEX

In this chapter, a pricing formula for a European call option on an inflation

index is derived, based on Jarrow-Yıldırım [31] model. At time T, the price of a

European call option on inflation index is

CT = max[I(T )−K, 0]. (7.0.1)

Each unit of the option is written on one CPI unit. This means I(T ) behaves

like the nominal value of the one unit of CPI at time T. We know that real zero

coupon bond pays 1 unit of CPI at maturity. Thus we can think of the payoff of

the above option as

CT = max[P r(T, T )I(T )−K, 0]. (7.0.2)

Let

Z(t) =
P r(t, T )I(t)

P n(t, T )
.

By applying Ito’s integration by parts formula, the dynamics of Z(t) under risk

neutral measure P̂ can easily be obtained. By equation (5.0.3), (5.0.10), (5.0.17),

dI(t)

I(t)
= [rn(t)− rr(t)]dt+ σI(t)dŴ I(t), (7.0.3)
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dP n(t, T )

P n(t, T )
= rn(t)dt− σ̂n(t, T )dŴ n(t), (7.0.4)

dP r(t, T )

P r(t, T )
= [rr(t)− ρrIσI(t)σ̂r(t, T )]dt− σ̂r(t, T )dŴ r(t). (7.0.5)

Firstly, we will find the dynamics of 1
Pn(t,T )

. Let us apply Ito’s formula with

f(x) = 1
x
. Then,

d(
1

P n(t, T )
) =

1

P n(t, T )
[(−rn(t)− σ̂n(t, T )2)dt+ σ̂n(t, T )dŴ n(t)].

(7.0.6)

Secondly, let’s obtain the dynamics of P r(t, T )I(t) by Ito’s integration by parts

formula,

d(P r(t, T )I(t)) = P r(t, T )I(t)[(rn(t)− rr(t))dt+ σI(t)dŴ I(t)]

+I(t)P r(t, T )[(rr(t)− ρrIσI(t)σ̂r(t, T ))dt

−σ̂r(t, T )dŴ r(t)] + ρrI σ̂
r(t, T )σI(t))dt.

After some simplifications

d(P r(t, T )I(t)) = P r(t, T )I(t)[(rn(t)dt+ σI(t)dŴ I(t)− σ̂r(t, T )dŴ r(t)].

(7.0.7)

Finally, let’s apply Ito’s integration by parts formula to obtain the dynamics of

Z(t),

d(
I(t)P r(t, T )

P n(t, T )
) =

P r(t, T )I(t)

P n(t, T )
[(rn(t)dt+ σI(t)dW I(t)− σ̂I(t)dŴ I(t)]

+
P r(t, T )I(t)

P n(t, T )
[(−rn(t)− σ̂n(t, T )2)dt+ σ̂n(t, T )dŴ n(t)]

+
P r(t, T )I(t)

P n(t, T )
[ρnIσ

I(t)σ̂n(t, T )− ρrI σ̂I(t, T )σ̂n(t, T )]dt.
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Then, after some small algebra

d(Z(t)) = Z(t)[(σ̂n(t, T )2 + ρnIσ
I(t)σ̂n(t, T )− ρrI σ̂I(t, T )σ̂n(t, T ))dt

+σ̂n(t, T )dŴ n(t)− σ̂r(t, T )dŴ r(t) + σI(t)dW I(t)). (7.0.8)

The P̂ - dynamics of Z(t) is obtained in the above discussion. Also since Z is

an asset price, normalized by the nominal price of a T-bond, it has zero drift

(see Björk [4]) and under P̂T ( nominal T-forward measure), its P̂T dynamics are

given by

dZ(t) = Z(t)σZ(t)dŴ T (t), (7.0.9)

where σZ(t) is deterministic. This is basically a geometric Brownian motion,

driven by multidimensional Brownian motion and the solution is given by

Z(T ) = Z(t) exp(−1

2

∫ T

t

‖σZ(s)‖2ds+

∫ T

t

σZ(s)dŴ T (s)). (7.0.10)

Then the stochastic integral in the above equation has a zero mean and variance

ε2(T ) =

∫ T

t

‖σZ(s)‖2ds

and it is known that a volatility process is not affected by change of measure.

Therefore in the P̂T dynamics of Z(t), we have

σZ(t) = (σ̂n(t, T ),−σ̂r(t, T ), σ̂I(t)).

So we know that under P̂T

lnZ(t) ∈ N(lnZ(t)− 1

2
ε2, ε2),
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where

ε2 =

∫ T

t

‖σn(s)− σr(s) + σI(s)‖2ds

=

∫ T

t

σ̂n(s, T )2ds− 2

∫ T

t

ρnrσ̂
n(s, T )σ̂r(s, T )ds

+

∫ T

t

σ̂r(s, T )2ds+ 2ρnIσ
I(t)

∫ T

t

σ̂n(s, T )ds

−2ρrIσ
I(t)

∫ T

t

σ̂r(s, T )ds+ (σI(t))2(T − t). (7.0.11)

Now let’s return to our main problem.

CT = max[P r(T, T )I(T )−K]+ = [Z(T )−K]+

then under nominal T-forward measure P̂T , the value at time t is

Ct = EP̂T

t [(Z(T )−K)+ e−
∫ T

t rn(s)ds].

Then by using equation (7.0.10)

Ct = EP̂T

t [(Z(t) e−
1
2

∫ T
t ‖σ

Z(s)‖2ds+
∫ T

t σZ(s)dŴT (s) −K)+ e−
∫ T

t rn(s)ds],

which is equal in distribution to the right hand side of the following formula:

Ct =d EP̂T

t [(Z(t) e−
1
2

∫ T
t ‖σ

Z(s)‖2ds+εY −K)+ e−
∫ T

t rn(s)ds],

where Y ∈ N(0, 1). Now let’s find the region where the above P̂T - expectation is

defined:

Z(t)e−
1
2

∫ T
t ‖σ

Z(s)‖2ds+εY > K.

By taking the logarithm of both sides of the above inequality we get

logZ(t)− 1

2

∫ T

t

‖σZ(s)‖2ds+ εY > logK,
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then

log
Z(t)

K
− 1

2
ε2 + εY > 0.

Thus

Y >
log Z(t)

K
− 1

2
ε2

ε
= −d2.

Hence

Ct =d EP̂T

t [(Z(t) e−
1
2
ε2+εY −K)1(Y+d2>0) e

−
∫ T

t rn(s)ds]

=d EP̂T

t [(Z(t) e−
1
2
ε2+εY−

∫ T
t rn(s)ds −K) e−

∫ T
t rn(s)ds1(Y >−d2)].

Let us write the above P̂T - expectation in Riemann integral form;

Ct =

∫ ∞
−d2

(Z(t) e−
1
2
ε2+εY−

∫ T
t rn(s)ds −K e−

∫ T
t rn(s)ds)

e−
Y 2

2

√
2Π

dy.

By a small change of variable procedure, we can change the bounds of the above

integral and we get

Ct =

∫ d2

−∞
(Z(t) e−

1
2
ε2+εY−

∫ T
t rn(s)ds −K e−

∫ T
t rn(s)ds)

e−
Y 2

2

√
2Π

dy.

Let us define

I1 =

∫ d2

−∞

Z(t)√
2Π

e−
Y 2

2 e−
1
2
ε2+εY−

∫ T
t rn(s)dsdy

and

I2 = K e−
∫ T

t rn(s)ds N(d2).

Then the price of the option at time t is

Ct = I1 − I2. (7.0.12)

Since e−
∫ T

t rn(s)ds = P n(t, T ),

I2 = KP n(t, T )N(d2)

76



where N denotes a normal distribution. To find I1, let us define Y ′= Y + ε. Then

dY = dY ′. By using this transformation we obtain

I1 =
Z(t)√

2Π
e−

∫ T
t rn(s)ds

∫ d2+ε

−∞
e−

(Y ′−ε)2

2
− 1

2
ε2+ε(Y ′−ε)dy′.

Substituting the definition of Z(t) into above equation and after some simplifica-

tions we have

I1 =
I(t)P r(t, T )√

2Π

∫ d2+ε

−∞
e−

Y ′2
2 dy′.

Defining d1 = d2 + ε gives

I1 = P r(t, T )I(t)N(d1).

Finally by substituting the definitions of I1 and I2 into the equation (7.0.12) we

end up with

Ct = I(t)P r(t, T )N(
log I(t)P r(t,T )

KPn(t,T )
+ 1

2
ε2

ε
)

−KP n(t, T )N(
log I(t)P r(t,T )

KPn(t,T )
+ 1

2
ε2

ε
), (7.0.13)

where

ε2 =

∫ T

t

‖σn(s)− σr(s) + σI(s)‖2ds

=

∫ T

t

σ̂n(s, T )2ds− 2

∫ T

t

ρnrσ̂
n(s, T )σ̂r(s, T )ds

+

∫ T

t

σ̂r(s, T )2ds+ 2ρnIσ
I(t)

∫ T

t

σ̂n(s, T )ds

−2ρrIσ
I(t)

∫ T

t

σ̂r(s, T )ds+ (σI(t))2(T − t).
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chapter 8

CONCLUSION

Inflation indexed instruments has become increasingly popular in financial mar-

kets during the last decade. Therefore, importance of the pricing of these instru-

ments has increased significantly. In the finance literature, there exist certain

works on this subject. However when we look at the Turkish financial literature,

rare studies stand out. To close this gap, we focus on pricing of inflation indexed

bonds which are the unique inflation-indexed instruments traded in the Turkish

bond market.

Firstly, we analysed the history of indexation and the existing literature on

inflation indexed instruments. Then, we reviewed the HJM-framework and the

Jarrow-Yıldırım model in detail. After that we proposed extensions of the HJM-

framework [22] and the Jarrow-Yıldırım [31] models within the framework of

Shirakawa [43]. Our models differ from the Jarrow-Yıldırım model in that, the

instantaneous forward rates, inflation index and bond price processes are driven

by both the standard Brownian motion and the finite number of Poisson noises.

Volatility functions of these processes are both time-deterministic. We assumed

there exists a sufficient number of traded bonds to hedge away all of the jump

risks in the market that ensures market completeness. Finally, we derived a

closed-form pricing formula for the European call option on the inflation index.

Our future reseach will be on pricing of the inflation indexed swaps, swaptions,

caps and floors which are relatively more liquid inflation indexed instruments in

financial markets. Another idea we may use in our future research is that, the

instantaneous forward rates, inflation index and bond price processes may have

stochastic volatility functions.
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