
ON THE NTRU PUBLIC KEY CRYPTOSYSTEM

CANAN ÇİMEN

September 2008

ON THE NTRU PUBLIC KEY CRYPTOSYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANAN ÇİMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CRYPTOGRAPHY

September 2008

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Ersan AKYILDIZ

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ferruh ÖZBUDAK

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Emrah ÇAKÇAK

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Emrah ÇAKÇAK

Assoc. Prof. Dr. Ali DOĞANAKSOY

Prof. Dr. Ali Bülent EKİN

Assist. Prof. Dr. Hakan ÖKTEM

Inst. Dr. Muhiddin UĞUZ

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct,

I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name : Canan ÇİMEN

Signature :

iii

Abstract

ON THE NTRU PUBLIC KEY CRYPTOSYSTEM

ÇİMEN CANAN

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Emrah Çakçak

September 2008, 51 pages

NTRU is a public key cryptosystem, which was first introduced in 1996. It is a

ring-based cryptosystem and its security relies on the complexity of a well-known

lattice problem, i.e. shortest vector problem (SVP). There is no efficient algorithm

known to solve SVP exactly in arbitrary high dimensional lattices. However,

approximate solutions to SVP can be found by lattice reduction algorithms. LLL

is the first polynomial time algorithm that finds reasonable short vectors of a

lattice.

The best known attacks on the NTRU cryptosystem are lattice attacks. In

these attacks, the lattice constructed by the public key of the system is used to

find the private key. The target vector, which includes private key of the system

is one of the short vectors of the NTRU lattice.

In this thesis, we study NTRU cryptosystem and lattice attacks on NTRU.

Also, we applied an attack to a small dimensional NTRU lattice.

Keywords: Lattice Based Cryptography, Lattice Problems, Lattice Reduction

Algorithms, NTRU, Lattice Attacks.

iv

öz

AÇIK ANAHTAR KRİPTOSİSTEMİ NTRU ÜZERİNE

ÇİMEN Canan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Emrah Çakçak

Eylül 2008, 51 sayfa

Açık anahtar kriptosistemi NTRU ilk olarak 1996 yılında tanıtıldı. Halka

tabanlı bir kriptosistem olan NTRU’nun güvenliği, iyi bilinen bir kafes problemi

olan en kısa vektör problemine dayanır. En kısa vektör problemini yüksek boyutlu

kafesler için tam olarak çözen bir algoritma yoktur. Ancak, yaklaşık sonuçlar

kafes indirgeme algoritmalarıyla bulunabilir. LLL algoritması, makul kısalıkta

kafes vektörlerini bulan, polinom zamanlı ilk algoritmadır.

NTRU kriptosistemi üzerine düzenlenen, bilinen en iyi saldırılar kafes saldırılarıdır.

Bu saldırılarda, gizli anahtarı bulmak için sistemin açık anahtarıyla oluşturulan

kafes kullanılır. Gizli anahtarı içeren hedef vektör, kafesin kısa vektörlerinden

biridir. NTRU kafesine, hedef vektörü bulmak için, kafes indirgeme algoritması

uygulanır.

Bu tezde, NTRU kriptosistemi ve NTRU’ya uygulanan kafes saldırıları üzerinde

çalıştık. Ayrıca, küçük boyutlu bir NTRU kafesine saldırı uyguladık.

Anahtar Kelimeler: Kafes Tabanlı Kriptografi, Kafes problemleri, Kafes İndirgeme

Algoritmaları, NTRU, Kafes saldırıları

v

To Onur and my family

vi

Acknowledgments

I would like to express my sincere appreciation to my supervisor, Assoc. Prof.

Dr. Emrah Çakçak for his interest and guidance throughout the work. I also

thank to him for his great advices in the writing period of the thesis.

To my dear Onur, I offer special thanks for his love, patience, and support. I

am also greatful to my lovely parents for their unwavering support and encour-

agement during my whole life.

I am also so thankful to my sister Yasemin, my brother Serdar Yorulmaz and

our little Defne for their support and love, even though they are far away.

I wish to thank to my friend Turgut Hanoymak for introducing this subject

to me, for his cooperation and support at all times I need.

I also would like to thank to all my friends for their help and moral support

during the preparation of the thesis.

vii

Table of Contents

Plagiarism . iii

Abstract . iv

Öz . v

Dedication . vi

Acknowledgments . vii

Table of Contents . viii

CHAPTER

1 Introduction . 1

2 Lattice Theory . 5

2.1 Introduction . 5

2.2 Basic definitions and properties 5

2.3 Lattice Problems . 8

2.4 Lattice Basis Reduction . 11

2.5 LLL Algorithm . 14

3 NTRU . 20

3.1 Lattice Based Cryptography . 20

3.2 NTRU Cryptosystem . 21

3.2.1 Notation . 21

3.2.2 Key Generation . 22

viii

3.2.3 Encryption . 23

3.2.4 Decryption . 23

3.2.5 Parameter selection . 26

3.2.6 Comparison with other PKCS’s 26

4 Attacks on NTRU . 28

4.1 Brute Force Attack . 28

4.2 Meet in the Middle Attacks . 29

4.3 Lattice Attacks . 32

4.3.1 The Standart NTRU Lattice 33

4.3.2 Zero Run Lattice . 36

4.3.3 Zero Forced Lattice . 37

4.3.4 Dimension Reduced Lattice 39

5 Analyzing the Security of NTRU 41

5.1 Combinatorial Security . 42

5.2 Lattice Security . 42

5.3 An Example on Lattice Security of NTRU 44

6 Conclusion . 47

References . 48

ix

Chapter 1

Introduction

Until 1970’s, cryptography was concerned only with message confidentiality.

The security of the cryptosystems relied on the protection of the private key which

was used in both encryption and decryption. Today, they are called symmetric

key cryptosystems. In these systems, sender and receiver shares the same key in

order to encrypt and decrypt messages. The encryption and decryption schemes

are fast in practice, but key management is a big deal in the implementation of

large user networks where communication flow is encrypted.

In 1976, Diffie and Hellman introduced the notion of public key cryptography

in which two different keys are used [32]. This was a breaktrough in cryptography,

because the key exchange problem would be avoided by using a pair of keys,

a public key and a private key. The public key is accessible to everyone, but

the private key is only known by the sender. This remarkable idea provided

cryptography to be used by large networks of users in an unsecure channel. After

this idea, several public key cryptosystems have been presented. In 1978, RSA

was introduced by Rivest, Shamir and Adleman which is still the most widely used

public key cryptosystem [30]. Its security relies on the difficulty of factoring big

integers which is one of the hardest computational problem of mathematics. The

other well known public key cryptosystem is Elliptic Curve Cryptography(ECC)

which was introduced independently by Neal Koblitz and Victor Miller in 1985.

1

The security of the ECC comes from the elliptic curve logarithm, which is the

discrete logarithm problem in a group defined by points on an elliptic curve over a

finite field. The idea of public key cryptography depends on the one way functions

that are easy to compute but hard to invert. More explicitly, the encryption is

performed easily by using the public key but the knowledge of the public key

does not help to decrypt the message and the eavesdropper is encountered to

solve a hard computational problem in mathematics. There are many other such

problems that might be used in public key cryptography. In this thesis, we

investigate lattice problems which are potentially appropriate to be the base of a

public key cryptosystem.

In the past twenty years, lattices have played an extremely important role in

cryptology. Prior to 1996, lattices and in particular the lattice basis reduction

algorithms were used in cryptanalysis to prove the insecurity of some cryptosys-

tems. By Ajtai’s paper which was published in 1996 [22], some progress was

made on the complexity of lattice problems. In [22], Ajtai showed a connection

between the worst case complexity and the average case complexity of some well

known lattice problems. Then in 1997, he proved the NP-hardness of the most

famous lattice problem, the shortest vector problem [23]. These results attracted

cryptographers and after Ajtai’s ideas, several cryptographic schemes based on

the lattice problems were proposed.

We are interested in a relatively new public key cryptosystem, NTRU whose

security relies on the complexity of the shortest vector problem. Actually, NTRU

is a ring-based cryptosystem that was first introduced in a rump session at Crypto’

96 [13]. Its encryption and decryption schemes are constructed on the algebraic

structures of certain polynomial rings. Recently, it has received quite atten-

2

tion since it appears to be more efficient than the current and more widely used

public-key cryptosystems. The advantages of NTRU than other public key cryp-

tosystems are that the generation of public and private key pairs is easy and

quick; encryption and decryption are very fast and key sizes are relatively small.

As already noted, the underlying hard problem that the security of NTRU relies

on is the shortest vector problem. Finding the shortest vector of a lattice is a

problem that is proved to be NP-hard and lattice reduction algorithms aim to

find very short vectors in a lattice. The best attack known against NTRU cryp-

tosytem is lattice attack which basically uses lattice reduction algorithms. The

most famous reduction algorithm LLL is a polynomial time algorithm that was

presented by Lenstra, Lenstra and Lovasz in 1982 [3]. Therefore LLL and its

versions constitute a significant part in the security of NTRU.

In this study, we shall analyze the lattice attacks on NTRU and give an exam-

ple in small dimensional lattices. We will use LLL reduction and BKZ reduction

which is an improvement of LLL and we will compare these two reduction algo-

rithms.

The thesis is organized as follows:

In chapter 2, we give a brief introduction to lattice theory. We state the basic

definitions and notations related to lattices. We present the lattice reduction

algorithms LLL and BKZ.

Chapter 3 is devoted to NTRU and we describe the classical NTRU cryp-

tosystem. There have been several improvements of NTRU after the succesful

attacks, but the main principles remain the same. Therefore we discuss the first

version presented in the original paper. In the last section, we give a comparison

of NTRU with the other public key cryptosystems.

3

In Chapter 4, we introduce two important attacks that have been applied

on NTRU, i.e. meet in the middle attack and lattice attacks. We describe how

lattices can be used to attack NTRU and different versions of lattice attacks.

Finally, in chapter 5 we analyze the complexities of the attacks given in the

previous chapter. We give an example of lattice attack in small dimensional lattice

by using two different lattice reduction algorithms and compare the results.

4

Chapter 2

Lattice Theory

2.1 Introduction

The basic idea underlying the public key cryptography relies on the complex-

ity of some computational problems in number theory. Factorizing big integers

and computing discrete logarithms in certain groups are problems that are most

commonly used in public key cryptography. In 1996, certain lattice problems are

proved as NP-hard by Ajtai [23]. This paper provided lattices to attract consid-

erable attention to be used in public key cryptosystems. Afterwards, new public

key cryptosystems, i.e. lattice based cryptosystems started to be introduced.

In order to study the lattice based cryptosystems and NTRU, we shall intro-

duce basic properties of lattices, the important lattice problems and lattice basis

reduction algorithms in this chapter. For a detailed study about lattice theory,

we recommend the lecture notes of Cyntia Dwork [6].

2.2 Basic definitions and properties

In this section, we introduce basic definitions and results of lattice theory. We

first give the definition of the inner product of two vectors.

5

Let v = (v1, v2, ..., vm) and w = (w1, w2, ..., wm) be two vectors in Rm. The

expression

(v, w) =
m∑
i=1

viwi

is called the inner product of v and w. These are called orthogonal if (v, w) = 0.

For v = (v1, v2, ..., vm), we denote by

||v|| =
√

(v, v) =

√√√√ m∑
i=1

v2
i

the length or Euclidean norm of v.

Definition 2.2.1. Let B be a set of linearly independent vectors v1, v2, ..., vn ∈

Rm. The lattice generated by the set of vectors B is the set

L(B) =

{
n∑
i=1

aivi | ai ∈ Z

}
(2.2.1)

We say that the set B is a basis of the lattice L and the dimension of the

lattice is n, i.e. dim(L(B)) = n. If m = n the lattice is called full-dimensional.

Alternatively, we can define B as a matrix in Rn×m with v1, v2, ..., vn as rows.

Then B is called the basis matrix of the lattice L(B) in 2.2.1 and dim(L(B)) =

rank(B).

A lattice is just like a vector space except that it is generated by all linear

combinations of its basis vectors with integer coefficients, rather than real coeffi-

cients. Two different bases for a lattice L are related to each other in almost the

same way that two different bases for a vector space V are related to each other.

That is, if B = {v1, v2, ..., vn} is a basis for a lattice L then B′ = {w1, w2, ..., wn}

6

is another basis for L if and only if there exist ai,j ∈ Z such that

a1,1v1 + a1,2v2 + ...+ a1,nvn = w1

a2,1v1 + a2,2v2 + ...+ a2,nvn = w2

...

an,1v1 + an,2v2 + ...+ an,nvn = wn

and the determinant of the basis transformation matrix



a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...

an,1 an,2 . . . an,n


is equal to 1 or -1. This matrix is a unimodular matrix in Rn×m, i.e. an integer

matrix with determinant ∓1.

Definition 2.2.2. Let L be a lattice of dimension n with basisB = {v1, v2, ..., vn}.

A fundamental domain or fundamental parallelepiped associated with B is the set

of points:

P (B) =

{
n∑
i=1

tivi | 0 ≤ ti < 1

}

We observe that v + P (B) where v ∈ L(B) forms a partition of the vector

space spanned by B. In other words, for any x ∈ span(B) there exists a unique

lattice point v ∈ L(B) such that x ∈ v + P (B).

Definition 2.2.3. Let B ∈ Rm×n be the basis matrix of a lattice L. The volume

of the fundamental domain associated to the basis B is called the determinant of

the lattice L and denoted by det(L).

7

For a full dimensional lattice, the determinant of the lattice is equal to the

absolute value of the determinant of the basis matrix, i.e. det(L(B)) = |det(B)|.

Remark 2.2.4. The determinant of a lattice is an invariant of the lattice, i.e.

independent of the choice of basis. In the case of a full dimensional lattice, this

can be easily proven by using the unimodularity of the basis transformation matrix.

2.3 Lattice Problems

In this section, we shall introduce the main computational problems on lat-

tices. The most famous problem is the shortest vector problem which has been

studied by mathematicians for centuries since the time of Gauss and it has re-

mained one of the most important open problems in this area. Another long

standing open problem is closest vector problem which is a version of the short-

est vector problem.

Shortest Vector Problem(SVP): Given a lattice L, find the shortest nonzero

vector v in L.

Closest Vector Problem (CVP): Given a vector w ∈ Rn, find a vector

v ∈ L that is closest to w.

If the dimension of the lattice L is large, both SVP and CVP are NP- hard

problems. Ajtai [23] recently proved that SVP is NP-hard under randomized

reductions. CVP seems to be a more difficult problem. In [28] it is proven that

CVP cannot be easier than SVP. We refer to Cai [12] for a detailed survey of

complexity results of these problems. There is also one more important problem

in lattice theory which is called minimum basis problem.

Minimum Basis Problem: Given a lattice L, find a basis B = (v1, v2, ..., vn)

8

such that the product of the lengths of its vectors, which we call the weigth of

the basis B,
n∏
i=1

||vi||

is minimum.

This problem is also an NP-hard problem that was proved by Lovasz [21].

There is a general lower bound for the weight of any basis of a lattice and in a

given lattice, the weight of all bases are at most a constant multiple of a general

upper bound. These bounds are given as follows:

Hadamard’s Inequality: Let v1, v2, ..., vn be any basis for L. Then

det(L) ≤
n∏
i=1

||vi|| (2.3.2)

In general, Hadamard’s inequality amounts to say that the volume of a paral-

lelepiped can never be greater than the product of the lengths of its sides. In

this case, it means that the determinant of the lattice constitutes a lower bound

for the product of the lengths of any basis vectors. We have equality in 2.3.2 if

and only if the basis vectors are pairwise orthogonal. On the other hand, the

following result which was introduced by Hermite in 1850, gives an upper bound

for the weight of a basis of a lattice.

Theorem 2.3.1. Let L be the lattice with basis v1, v2, ..., vn. There is a number

γn, depending only on n such that

n∏
i=1

||vi|| ≤ γn/2n det(L)

The value γn is called Hermite’s constant. The exact value of γn is known

9

only for n ≤ 8 and for large n, it is proved that

√
n

2πe
≤ γn ≤

√
n

πe

Hadamard’s inequality and Hermite’s constant are given as lower and upper

bounds for the weight of a basis for a lattice which are relevant to the minimum

basis problem. Now, we will introduce a theorem that gives an upper bound for

the shortest vector of a lattice.

Theorem 2.3.2. (Minkowski) Let L be a lattice of dimension n. Let σ(L) denote

the length of the expected shortest nonzero vector in the lattice L. Then

σ(L) ≤ γn det(L)1/n (2.3.3)

where γn is the Hermite constant.

The exact bounds for the size of the shortest vector of a lattice are unknown

for large n in 2.3.3. There is also a result which gives an estimate for the length

of a shortest vector in a random lattice. The Gaussian Heuristic says that the

length of the shortest nonzero vector in a random lattice with dimension n is

approximately

σ(L) ≈
√

n

2πe
det(L)1/n (2.3.4)

Up to now, we gave some important definitions and theorems about lattices

and lattice problems. Now we will introduce the lattice reduction methods which

are useful to solve certain instances of lattice problems.

10

2.4 Lattice Basis Reduction

A lattice has infinitely many bases, but some are more significant than others,

e.g. the bases that contain reasonably short and almost orthogonal vectors. A

basis where the basis vectors are short is considered an interesting representa-

tion of a lattice. The goal of lattice basis reduction algorithms is to find this

representation of a given lattice and the shortest vector in that basis.

When the lattice dimension is sufficiently low, the shortest vector of a lattice

can be found by using exhaustive search by enumeration techniques [9]. However,

in high dimensional lattices, e.g. beyond dimension 100, the running time of

exhaustive search is exponential. Until 1982, no algorithm were known to find

reasonable short vectors in high dimensional lattices. In 1982, by the paper of

Lenstra, Lenstra and Lovasz the best lattice reduction method LLL Algorithm

was introduced [3]. LLL is still the only algorithm that finds reasonable short

lattice vectors in polynomial time.

One approach to finding short vectors in lattices is to obtain a basis that is

close to orthogonal. Besides, if a lattice has an orthogonal basis, then its shortest

vector is one of the basis vectors.

Proposition 2.4.1. Let L be a lattice with an orthogonal basis B = {v1, v2, ..., vn}

then the shortest vector of the lattice is one of the basis vectors.

Proof. Let v ∈ L be any given vector and B = {v1, v2, ..., vn} be an orthogonal

basis of L. Then v = c1v1 + ...+ cnvn where ci ∈ Z. Therefore

||v|| = ||c1v1 + ...+ cnvn||

11

Since the basis B is orthogonal, we deduce:

||v||2 = c21||v1||2 + ...+ c2n||vn||2

||v||2 ≥ ||vi||2 for any i ∈ {1, 2, .., n}

||v|| ≥ ||vi|| ≥ min1≤i≤n||vi||

We have shown that a shortest lattice vector is always contained by orthogonal

bases. Any basis of a vector space can be transformed into an orthogonal basis

for the same vector space using the Gram-Schmidt orthogonalization process.

Definition 2.4.2. Let B = {v1, v2, ..., vn} be any set of vectors in Rn. We can

calculate the Gram-Schmidt orthogonalization:

v∗1 = v1

v∗i = vi −
i−1∑
j=1

µi,jv
∗
j , i = 2, ..., n

µi,j =
(vi, v

∗
j)

(v∗j , v
∗
j)

Let’s denote the set of the vectors {v∗1, v∗2, .., v∗n} by B∗. Here, each v∗i is

explained as the projection of vi onto the orthogonal complement of the subspace

spanned by {v1, .., vi−1}. Now, let P (B) be the parallellepiped associated with

B. When n = 2, P (B) is a parallelogram and the area of P (B) is ||v∗1||||v∗2||. It

12

follows by induction on n that, for any n ≥ 1, the volume of P (B) is:

V (P (B)) =
n∏
i=1

||v∗i ||

which is also the determinant value of the lattice L(B).

Although B∗ is a basis of the vector space spanned by B, in general it will

not be a basis for the lattice L(B), because some µi,j may be non-integral. Now,

we give the definition of the LLL reduced basis.

Definition 2.4.3. A basis B = (v1, v2, .., vn) of a lattice L is said to be LLL

Reduced if:

1. it is size reduced, i.e.

|µi,j| ≤
1

2
1 ≤ i < j ≤ n (2.4.5)

2. for all 1 < i ≤ n, the following holds

||v∗i+1 + µi+1,iv
∗
i ||2 ≥

3

4
||v∗i ||2 (2.4.6)

The constant 3
4

may be replaced with any δ satisfying 1
4
< δ < 1, in which

case the basis is said to be LLL reduced with respect to the parameter δ. If δ

is close to 1, the resulting basis may have shorter vectors but it will take more

swaps and time to find them.

To better understand the properties of an LLL reduced basis, we give the

following theorem which has a detailed proof in [11].

Theorem 2.4.4. Let B = (v1, v2, .., vn) be an LLL-reduced basis of a lattice L

13

with a δ-value 3/4. This basis will satisfy

1.

detL ≤
n∏
i=1

||vi|| ≤ 2n(n−1)/4|detL|

2.

||vi|| ≤ 2(j−1)/2||v∗j || for all 1 ≤ i ≤ j ≤ n

3.

||v1|| ≤ 2(n−1)/4|detL|1/n

In property 1, the first inequality is the Hadamard’s inequality that does

not require the basis to be reduced, but in the second inequality the Hermite

constant replaces with a valid constant for LLL reduced basis. By property 3,

we can deduce that finding an LLL reduced basis of a lattice provides us an

approximate solution of the shortest vector problem.

2.5 LLL Algorithm

The history of lattice reduction goes back to the 19th century. There were

many reduction algorithms introduced by different mathematicians like Lagrange[20],

Gauss[7], Hermite, Korkine and Zolotarev [4]. However, the breaktrough on this

subject was LLL reduction algorithm. LLL algorithm is a polynomial time al-

gorithm which takes a basis of a lattice as input and returns an LLL reduced

basis [3]. As already noted, the first vector of the basis returned by LLL is within

a factor of the shortest vector. In practice, LLL often performs much better than

the theoretical bound.

14

Definition 2.5.1. LLL Algorithm

Input A lattice basis B = (v1, v2, .., vn), δ ∈ (1
4
, 1)

Output An LLL-reduced basis of L(B).

k = 2

While k ≤ n do

size reduce the vector vk and recompute µkj for j = 1, .., k − 1

If ||v∗k + µk,k−1v
∗
k−1||2 < δ||v∗k−1||2

Then swap (vk, vk−1)

k = max(k − 1, 2)

Else k = k + 1

Return v1, ..., vn

The first part of the algorithm is performed to get a size reduced basis. If

µk,j where 1 ≤ j < k does not satisfy the inequality 2.4.5 then the size of vk is

reduced as follows:

v̂k = vk −
∑
j<k

bµk,je v̂j

where bµk,je denotes the integer closest to µk,j. Second part of the algorithm

tests if the inequality 2.4.6 is satisfied. If it does not hold then the basis vectors

vk−1 and vk are swapped. This changes the µk−1,j and µk,j values, so first part is

performed again. These iterations continues untill k = n + 1. It is obvious that

if the algorithm terminates the output basis will be LLL reduced. We now show

that indeed the algorithm terminates.

There is a bound for the number of iterations performed by the algorithm.

The termination of the LLL algorithm will be proven by using a positive integer

associated to the determinant of the lattice and by showing that this integer

15

decreases at least by a factor at each time we swap two vectors.

Definition 2.5.2. Let L be a lattice with a basis (v1, ..., vn). Then

D =
n∏
i=1

det(L(v1, .., vi))
2

where det(L(v1, .., vi)) =
∏i

k=1 ||v∗k||.

We want to show that D decreases at least by a factor δ at each iteration. Dur-

ing the size reducing step D does not change, because new basis B′ = (v′1, ..., v
′
n)

obtained by size reducing and B are bases of the same lattice. Also they have

the same orthogonalized basis B∗ and lastly their determinants and D values are

equal. So we should show that swap step affects D, actually it decreases D at

least by δ.

First we look at the change in a single swap between vk−1 and vk. Let D be

the integer before the swap, D′ be the integer after the swap.Then

D

D′
=

∏k−1
i=1 det(L(v1, .., vi))

2

(
∏k−2

i=1 det(L(v1, .., vi))2)det(L(v1, .., vk−2, vk))2

=
det(L(v1, .., vk−2, vk−1))

2

det(L(v1, .., vk−2, vk))2

=

∏k−1
j=1 ||v∗j ||2∏k−2

j=1 ||v∗j ||2||µk,k−1v∗k−1 + v∗k||2

=
||v∗k−1||2

||µk,k−1v∗k−1 + v∗k||2
≥ δ−1

The last result comes from the second condition of the LLL reduced basis with

16

respect to the parameter δ, (see equation 2.4.6). Notice that the inequality does

not satisfy, since we are performing a swap between vk−1 and vk. Then the proof

follows as

D′ ≤ δD

As shown here, in each iteration D decreases by a factor δ. After l swaps, 1 ≤

D(l) ≤ δlD. So l ≤ log1/δD

This proves that there is an upper bound for the number of iterations, so

theoretically we have shown that LLL algorithm terminates. In order to show

that the algorithm is polynomial time, we have to prove that each iteration takes

polynomial time. For the running time analysis of the algorithm, see the lecture

notes of Micciancio [25].

We have mentioned that for high dimensional lattices, lattice reduction algo-

rithms cannot find the exact shortest vector of the lattice which is denoted by

σ(L). Actually, they find a lattice vector whose length is smaller or equal to

an α factor of the shortest vector, where α is called approximation factor and

α ≥ 1. Therefore such algorithms find reduced basis B = {v1, v2, .., vn} with the

approximate shortest vector v1 such that ||v1|| ≤ α ·σ(L). LLL [3] provably finds

a vector in an n dimensional lattice at most (4/3)(n−1)/2 times the length of the

shortest vector.

Several improvements of LLL have been proposed over the years. Schnorr [8]

has extended the LLL reduction to a hierarchy of polynomial time reduction

algorithms that finds a nonzero vector of a lattice with a smaller approxima-

tion factor. Later, Schnorr and Euchner presented practical algorithms [9]. One

of them is called LLL with deep insertions. It is a variant of LLL with poten-

17

tially superexponential complexity that improves again the approximation factor.

Another important algorithm is BKZ reduction algorithm which is a blockwise

generalization of LLL [9]. The basis that BKZ algorithm gives as an output is

block Korkin-Zolotarev reduced basis. Before introducing the algorithm, we give

some useful definitions.

With a basis v1, v2, .., vn of the lattice L we associate the orthogonal projec-

tions:

πi : span(v1, ..., vn)→ span(v1, ..., vi−1)
⊥ i = 1, ..., n

where span(v1, ..., vi−1)
⊥ is the orthogonal complement of span(v1, ..., vi−1). We

let Li denote the lattice

Li = πi(L)

which has dimension n− i+ 1 and basis πi(vi), πi(vi+1), ..., πi(vn), where πi(vj) is

defined as

πi(vj) =
n∑
k=i

µj,kv
∗
k

so that πi(vj) is the part of vj perpendicular to v1, v2, ..., vi−1.

Hence, we can also write Li = L(πi(vi), πi(vi+1), ..., πi(vn)). Then we define

the lattice Li(k) = L(πi(vi), πi(vi+1), ..., πi(vi+k−1)).

Definition 2.5.3. A basis B = {v1, v2, .., vn} is Korkin-Zolotarev reduced (KZ-

reduced), if:

1. it is size reduced (see 2.4.5)

2. v∗i is the shortest nonzero vector of the lattice Li for 1 ≤ i ≤ n.

This definition is given by Korkin and Zolotarev in 1873. Schnorr [8] intro-

duced the following type of the KZ-reduced bases.

18

Definition 2.5.4. Let k be an integer, 2 ≤ k ≤ n. A basis B is block Korkin-

Zolotarev reduced with block size k or in other words k-BKZ reduced if:

1. it is size reduced (see 2.4.5),

2. Li(k) is KZ-reduced, for 1 ≤ k ≤ n− k + 1.

Definition 2.5.5. Block Reduction Algorithm(BKZ-LLL)

Input A lattice basis B = (v1, v2, .., vn) and an integer k, 2 ≤ k ≤ n

Output A k-BKZ reduced basis of L(B).

size reduce B

if there exists an i such that Li(k) is not KZ-reduced then

KZ-reduce Li(k), applying any vector operations made in Li(k)

to vi, .., vi+k−1

Return B

As we have seen, in LLL algorithm the basis vectors are considered pairwise

and in swapping step each vi is required to be shorter than each vector in the

two-dimensional projected lattice generated by vi and vi+1. But BKZ reduction

replaces the swapping step with a more complicated procedure. Therefore BKZ

runs in time exponential in k. However it works well in practice and finds shorter

vectors than LLL algoritm.

We have used these two algorithms experimentally in our examples about

lattice attacks to NTRU. The results will be given in the last chapter. Now, we

introduce the NTRU cryptosytem which is the main subject of the thesis.

19

Chapter 3

NTRU

3.1 Lattice Based Cryptography

As already mentioned, Ajtai presented some ideas about the complexity of

the lattice problems and proved the NP-hardness of the shortest vector problem.

After Ajtai’s discoveries, several cryptographic schemes were proposed.

Ajtai and Dwork proposed a cryptosystem related to Ajtai’s work [24]. It is

not related to lattices explicitly, but in the security proof of the system there

are some connections to lattice problems. Its security is based on a variant of

SVP. The system is secure unless the worst case of a particular lattice problem

can be solved in polynomial time. Nguyen and Stern [29] presented an attack by

approximating CVP sufficiently well and showed the insecurity of the system.

Another system based on the complexity of lattice problems is presented by

Goldreich, Goldwasser and Halevi [27]. The security of GGH rests on the difficulty

of solving CVP using highly nonorthogonal bases. GGH is currently secure, when

the key size is very large. So it is proven impractical.

In this thesis, we work on the NTRU cryptosystem which is another important

lattice based cryptosystem. Actually NTRU is based on the algebraic structures

of certain polynomial rings. It does not work explicitly with lattices but its

security relies on the fact that for most lattices it is very difficult to find short

20

vectors. So, we shall make a connection with lattices in the security analysis of

NTRU in the next chapter. Now, we introduce NTRU cryptosystem.

3.2 NTRU Cryptosystem

NTRU is a ring based public key cryptosystem which was first presented at

the rump session of Crypto’96 by J.Hoffstein, J.Piper and J.H.Silverman [13].

It has been changed and optimized several times after its first version but the

underlying principles remain the same. Here we introduce the encryption and

decryption schemes as in the original paper [13].

By the invention of NTRU, it has been a promising alternative to the widely

used public key cryptosystems. It has advantages on the subjects including speed,

key generation and system requirements. We will give the comparison results of

NTRU with other sytems in the next sections. Now, we introduce notations and

definitions that will be used to describe the system.

3.2.1 Notation

The NTRU cryptosytem is built on polynomial algebra. The principal objects

used by the system are polynomials with integer coefficients in the ring R =

Z[X]/(XN − 1) where N is an integer parameter. The basic tool of the system

is the reduction of the polynomials with respect to two relatively prime integers.

These integer parameters that are denoted by p and q need not be prime, but q

is always considerably larger than p.

The computations in NTRU are made in the ring R. An element a ∈ R will

21

be represented as a polynomial or a vector

a =
N−1∑
i=0

aix
i = [a0, a1, ..., aN−1]

The multiplication in R is called cyclic convolution product and defined as

a ∗ b = c with ck =
k∑
i=0

aibk−i +
N−1∑
i=k+1

aibN+k−i =
∑

i+j≡k(modN)

aibj

When this multiplication is done modulo q, it means to reduce the coefficients

of the polynomials modulo q. The ring that the operations are done modulo

q will be denoted by Z[X]/(q,XN − 1). The computation of a product of two

polynomials with degree N requires N2 multiplication. Therefore NTRU uses

polynomials with small coefficients to compute the multiplications rapidly.

Another operation used in encryption scheme is taking inverse of a poly-

nomial. The inverse of a polynomial a in Z[X]/(q,XN − 1) is a polynomial

a−1 ∈ Z[X]/(q,XN − 1) such that a ∗ a−1 = a−1 ∗ a = 1. Note that some polyno-

mials are not invertible in the ring Z[X]/(q,XN − 1). But it is proven that with

high probability a randomly chosen polynomial f ∈ Z[X]/(q,XN − 1) which is

required to satisfy f(1) = 1 is invertible in Z[X]/(q,XN − 1) [15].

3.2.2 Key Generation

To create the public key, a private key f is chosen randomly from the set Lf

which is a subset of R. The polynomial f should have inverses modulo q and

modulo p which are denoted by f−1
q and f−1

p , respectively. As we said, with high

probabilty f has inverses [15] and the actual computation of these inverses is

22

easy [17]. If the inverses of f does not exist, we choose a new f and try again.

Then we choose a random polynomial g from the set Lg which is a subset of R

and the corresponding public key h is computed as:

h ≡ f−1
q ∗ g (mod q) (3.2.1)

Thus, we have h as the public key and f as the private key, also the polynomials

f−1
p , f−1

q , g are kept secret.

3.2.3 Encryption

A message m is choosen from a set of plaintexts Lm, a subset of R. Then a

random polynomial r is picked from a set Lr which is again a subset of R and

the message is encrypted as follows:

e ≡ pr ∗ h+m (mod q) (3.2.2)

where e is the ciphertext of the message. Since a random polynomial is used in

encryption, the message m can be encrypted into many different ciphertexts.

3.2.4 Decryption

After receiving the ciphertext, we use the private key f and f−1
p to recover

the message:

a ≡ f ∗ e (mod q) (3.2.3)

23

If the coefficients of a are not in the interval (−q/2, q/2] then we change each of

them as to be in this interval. Now, we compute

c ≡ f−1
p ∗ a (mod p)

For appropriate parameters, there is a high probability that decryption works and

c will be equal to the message m [13]. The reason of the change of the coefficients

ai’s after the equation 3.2.3 is to prevent the decryption failures. The designers

of NTRU have noticed these decryption failures and recommended some sets of

parameters that we give later.

Why Decryption Works

If we elaborate the computations above, we see that:

a ≡ f ∗ e (mod q)

≡ f ∗ (pr ∗ h+m) (mod q)

≡ f ∗ [pr ∗ (f−1
q ∗ g) +m] (mod q)

≡ pr ∗ g + f ∗m (mod q)

Now consider the last equivalence. If the appropriate polynomials, that will be

explained soon, are choosen in the encryption, the coefficients of a will lie in an

interval of length less than q, so the coefficients will not change when they are

reduced modulo q. Hence a will be exactly equal to (pr ∗ g + f ∗m). When we

24

reduce a modulo p we obtain:

a ≡ pr ∗ g + f ∗m ≡ f ∗m (mod p)

Lastly, multiplication of f ∗ m with f−1
p in modulo p retrieves the message m

(mod p).

The designers of NTRU defined sample spaces, that already denoted as Lf ,Lg,Lm

and Lr, for the corresponding polynomials to avoid the failures in decryption [13].

First, the space of messages consisting of polynomials modulo q is defined as:

Lm =

{
m ∈ R : m has coefficients lying between

−1

2
(p− 1) and

1

2
(p− 1)

}

To describe the other sample spaces, the following representation of the sets is

used:

L (d1, d2) = {f ∈ R : f has d1 coefficients equal 1, d2 coefficients equal− 1, the rest 0}

With this notation, the sample spaces of f ,g and r are defined by choosing

three integers df , dg and dr respectively.

Lf = L(df , df − 1), Lg = L(dg, dg) and Lr = L(dr, dr)

The polynomial f do not have the same number of coefficients equal to 1 and

−1, because a polynomial satisfying f(1) = 0 can never be invertible.

When we choose the polynomials to be used in encryption from sample spaces

defined as above, the coefficients of the polynomial a will be small enough, so

that they will lie between −q/2 and q/2. In other words the polynomial a will be

25

exactly equal to the polynomial pr ∗ g + f ∗m. This will thwart the decryption

failures.

3.2.5 Parameter selection

As we have seen, NTRU has three integer parameters N, p, q and four sets

Lf , Lg, Lr, Lm which depend on integers df , dg, dr and p. The norms of f and g or

the parameters df and dg related to norms are chosen by considering decryption

failures. If proper parameters are chosen, the probability of decryption failures is

less than 10−5 [16]. The suggested parameters for different security levels are in

the following table [13].

Table 3.1: Parameter sets of the first version of NTRU.

N q p df dg dr

Moderate 167 128 3 61 20 18
Standart 263 128 3 50 24 16
Highest 503 256 3 216 72 55

3.2.6 Comparison with other PKCS’s

According to the results of the experiments performed by the NTRU com-

pany, the following table gives the comparison of NTRU with other public key

cryptosystems, RSA and ECC. The security level N = 251 is comparable to RSA

security level 1024 and ECC security level 163. Key lengths, encryption and

decryption speeds of the systems are considered.

Due to the results in Table 3.2, we can observe that the encryption of NTRU

is faster than RSA and ECC, because the underlying operation used by NTRU

26

Table 3.2: Comparison of NTRU with RSA and ECC.

NTRU251 RSA1024 ECC163

public key bits 2008 1024 164
secret key bits 251 1024 163

plaintext block bits 160 702 163
ciphertext block bits 2008 1024 163
encrypt speed blocks/sec 22727 1280 458
decrypt speed blocks/sec 10869 110 702

can be performed much more rapidly than the underlying operations of RSA and

ECC. Also NTRU involves small numbers where others use large numbers with

hundred of digits.

The key sizes of NTRU are about the same as with RSA and ECC. However

the public key of NTRU is twice the length of the public key of RSA. When we

consider the size of plaintext and ciphertext blocks, NTRU has a big difference

between them. Its ciphertext size is much more greater than the plaintext size,

because the ciphertext polynomial has coefficients as large as q where the message

representative is a binary string.

27

Chapter 4

Attacks on NTRU

There have been several attacks based on different aspects of NTRU since its

presentation. NTRU has been modified and improved many times due to these

attacks, but the main principals remained the same. The security parameters are

determined after experiments performed by NTRU company to defend the system

from the most effective attacks which we shall present in this chapter. At the

moment, NTRU is proven as secure against these attacks and it is standardized

as Efficient Embedded Security Standards(EESS#1) [1]. This standard includes

relevant information to assist in the development and interoperable implementa-

tion of NTRUEncrypt and NTRUSign, including security considerations. See [1]

for supported parameter choices for the current version of NTRU.

Now we introduce the brute force attack which is the most general attack for

a cryptosytem.

4.1 Brute Force Attack

As given in chapter 3, the key generation of NTRU is performed by choosing

two polynomials f and g from the sets Lf and Lg with parameters df and dg which

are known publicly. An attacker apply brute force attack on an NTRU private

key by enumerating all possible f ∈ Lf and computing f ∗ h mod q which gives

28

the polynomial g. Since he knows the parameter dg, he tests if the polynomial

retrieved by the multiplication has small entries. In other way, he may try all

possible g ∈ Lg and check if the coefficients of g ∗ h−1 (mod q) are small. When

we look into the parameter sets of NTRU, we notice that dg is smaller than df (see

Table 3.1). The search space Lg will be smaller than Lf . Therefore, in practice

it is more reasonable to test all g ∈ Lg.

If we enumerate all g’s and compute g ∗ h−1 then the search time will be

computed as |Lg| =
(
N
dg

)
.

Similarly, one can also apply the brute force attack on the message. As we

know, the message is equal to e− r ∗ h mod q. By trying all possible r ∈ Lr and

testing if the given equation has small coefficients, we can get the message. The

search time will be equal to |Lr| =
(
N
dr

)
.

When N is chosen as a large number, this attack will not be efficient because

of the large search spaces. Now, we describe the meet in the middle attack which

decreases the search time of the brute force attack by taking its square root.

4.2 Meet in the Middle Attacks

First Andrew Odylzko pointed out that a meet in the middle attack can be

applied by using the random polynomial r of NTRU. Then the designers of NTRU

observed that this attack can be also used against the private key f [14]. Before

explaining the attack, let us give these useful remarks.

Remark 4.2.1. In section 3.2.1, we have represented an element a ∈ R as a

polynomial a0 + a1x + ... + aN−1x
N−1 and a vector [a0, a1, ..., aN−1]. Then, the

29

ith-rotation of a in R is given as a ∗ xi and

ai = [aN−i , aN−i+1 , ..., aN−1 , a0 , a1 , ..., aN−i−1]

Remark 4.2.2. In the key generation of NTRU, if f ∗h ≡ g mod q (it is equal to

h ≡ f−1
q ∗g mod q), then the ith-rotations of f and g also satisfies the equivalence,

i.e. f ∗ xi ∗ h ≡ g ∗ xi mod q. So, if we find an (f, g) pair satisfying f ∗ h ≡ g

mod q and including the same number of df and dg with the original key, then it

can be one of the rotations of the original key pair. In other words, once we have

found one rotation of f , we have only N possibilities left for the private key f .

We shall describe the attack in the case f and g contains binary coefficients

and N and df are even. The modifications for odd values are easy. The idea is to

divide f into two pieces f1||f2, where the symbol || denotes concatenation. Each

f1 and f2 has length N/2 with d/2 ones. An important point here is the fact that

the number of ones of f may not spread into two parts equally, but it is easy

to show that at least one of the rotations of f has this property [14]. Then, the

attack continues as follows:

f ∗ h ≡ g (mod q)

(f1||f2) ∗ h ≡ g (mod q)

f1 ∗ h+ f2 ∗ h ≡ g (mod q)

As the ith coordinate of g is 0 or 1, we have the following equivalence at the ith

30

coordinates of f1 ∗ h and f2 ∗ h

(f1 ∗ h)i ≡ {0, 1} − (f2 ∗ h)i (mod q)

The attacker first enumerates f1’s. There will be
(
N/2
d/2

)
different choices for

the polynomial f1. Then he computes f1 ∗h (mod q) and uses first k coordinates

of this polynomial to store each f1 into an array, which will be called a bin,

labelled by binary numbers based on these coordinates. For each entry of the k

coordinates, the following is done: If the value of the coefficient is between 0 and

q/2 then the corresponding entry of the bin will be 0, if the value of the coefficient

is between q/2 and q then the corresponding entry will be 1. Once all the k bits

are computed, the polynomial f1 is stored in the bin labelled by this k-bit string.

There can be 2k bins at most and the attacker has
(
N/2
d/2

)
possible f1’s. Hence, at

the beginning he should choose k such that
(
N/2
d/2

)
< 2k for a sufficient number of

bins to store maximum possible polynomials.

In the second step, the attacker enumerates f2’s and computes f2 ∗ h. There

are again
(
N/2
d/2

)
different f2’s. The attacker will search the correct (f1, f2) pair

satisfying (f1 ∗ h)i ≡ {0, 1}−(f2 ∗ h)i (mod q) for 0 ≤ i < k. But the polynomials

f1’s are stored in the bins, so he searches for the correct bins. For any polynomial

f2, he computes the bin value of −f2∗h by using the rule that is used to determine

the entries of the bin in the first step and then goes to the same bin that contains

f1’s. But for each coefficient of −f2 ∗ h there is a possibility of being added by

1. So if there is a critical coefficient that the bin value can be changed by adding

1 to the corresponding coefficient of − (f2 ∗ h) (mod q), then the attacker also

goes to that possible bin. Finally he takes f1’s from those bins and checks if

31

(f1||f2) ∗ h mod q is binary or not. If it is a polynomial with binary cefficients

then the private key f is found. This is repeated for each f1 contained in the bin.

The attacker searches over all f2’s untill he finds the private key.

The search space of this attack is smaller than the search space of brute force

attack, since f is divided into two parts. By storing f1’s in the bins, the attacker

need not to check all f1’s, he checks only the ones in the corresponding bins. As

we have mentioned, at least one rotation of f has d/2 ones in the first N/2 entries

and d/2 ones in the second half. By the experiments it is shown that there are

more than
√
N rotations of f having this property. By this observation and some

improvements, the running time and the storage requirement of the meet in the

middle attack is given as follows:

(
N/2
d/2

)
√
N

See the technical report [14] for the detailed computation of the running time.

4.3 Lattice Attacks

As we mentioned before, NTRU is a lattice based cryptosytem and its secu-

rity relies on the lattice problem, SVP(see chapter 2). The designers of NTRU

showed that the secret key could not be found by computing the shortest vec-

tor of the lattice with the LLL algorithm, since it was surrounded by a cloud of

exponentially many unrelated lattice vectors. However, after the presentation of

NTRU, Coppersmith and Shamir presented another lattice-based attack, which

either finds the original secret key f or an alternative key f ′ which can be used

32

in place of f to decrypt ciphertexts [10]. The goal of the attack is to find the

private key by constructing a lattice using public key h and applying lattice re-

duction algorithms to this lattice. After this attack, NTRU changed the security

parameters and improved the system against lattice attacks. We will analyze the

lattice security of the system in the next chapter. Now, we give the construction

of the NTRU lattice.

4.3.1 The Standart NTRU Lattice

One knows the public informations N, p, q, df , dg and h. By using public key

h, a set of vectors L can be described as follows:

L =
{

(a, b) ∈ Z2N : a ∗ h = b mod q
}

It is obvious that L is a lattice and the vector (f, g) is contained in L. The length

of this vector due to the proposed parameters of NTRU will be
√

2df − 1 + 2dg

which is relatively small compared to N . Therefore this vector will be a short

vector of the lattice L.

Coppersmith and Shamir found a basis which is shown by the rows of a 2N ×

2N matrix composed of four blocks and constructed a lattice generated by this

basis [10]. The lattice is called NTRU lattice and the basis matrix generating the

33

lattice is denoted by LNT .

LNT =



λ 0 . . . 0 h0 h1 . . . hn − 1

0 λ . . . 0 hn − 1 h0 . . . hn − 2

...
...

. . .
...

...
...

. . .
...

0 0 . . . λ h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0

0 0 . . . 0 0 q . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . q



In this matrix, hi’s are the ith coefficients of the polynomial h. λ is a small

constant that is chosen to make the lattice reduction more efficient. It is obvious

that NTRU lattice contains all the elements of the set

L =
{

(λa, b) ∈ Z2N : a ∗ h = b mod q
}

and so (λf, g) is in the NTRU lattice. The length of this vector is
√

(2df − 1)λ2 + 2dg.

Since df , dg and λ are small numbers, then (λf, g) is a short vector of the NTRU

lattice. Now, a natural question is what happens if there are short vectors other

than the private key in the NTRU lattice. Is it true that a sufficiently short

vector (a, b) in the NTRU lattice, i.e. a ∗h ≡ b mod q can be used to decrypt the

messages? Coppersmith and Shamir showed that it is not necessary to find the

private key. If we find a vector (a, b) of NTRU lattice which is not longer than 2.5

times the length of the private key, we can also use it to decrypt the messages.

34

However, the designers of the NTRU performed experiments and implemented

lattice basis reductions to the NTRU lattice and they never found any vector

possible to be used for decryption other than the private key [13]. Therefore

lattice reduction algorithm has no chance except finding the actual private key.

As we discussed in section two, Gaussian heuristic gives the shortest vector of

a lattice as approximately
√
n/2πe(detL)1/n. In our NTRU lattice, the dimension

is 2N and the determinant is qNλN . If we substitute these into the equation, the

length of the shortest vector of the NTRU lattice will be approximately

σ(L) =

√
Nλq

πe
(4.3.1)

where λ is the constant chosen when constructing the NTRU lattice, so the at-

tacker should decide the value of λ.

Now, let τ denote the vector (λf, g), which will be called the target vector

and we try to find it by using the lattice reduction. We define a lattice constant

ch as the ratio of the length of the expected shortest vector to the length of the

target vector, i.e. ch = ||σ(L)||/||τ ||. By substituting lengths of the vectors in

NTRU lattice, the constant ch is

ch =

√
Nλq
πe√

λ2||f ||2 + ||g||2
(4.3.2)

Practical experiments have shown that as this constant gets smaller, lattice reduc-

tion methods are observed to work best. Therefore the attacker tries to make this

constant as small as possible by choosing λ. It is easily checked that to maximize

the search efficiency for τ , the choice for this constant shold be λ = ||g||/||f ||.

35

Since the attacker knows df and dg values, he can compute λ and makes the

lattice reduction to find the target vector easier [19].

Although reducing the lattice constant makes LLL work easier, the time re-

quired to find a short vector is still exponential in N . Therefore after the ideas

of Coppersmith and Shamir, other attacks have been proposed. Now we will give

the remarkable ones.

4.3.2 Zero Run Lattice

Since we know df and dg, we can make a guess about the components of target

vector (λf, g). Alexander May introduced new results in the cryptanalysis of

NTRU by lattice reduction [5]. He observed that there are many zero coefficients

in polynomials f and g and this can be used as an advantage in lattice attack. He

assumes that the polynomial g has r consecutive coefficients which are equal to

zero, in other words he defines this as r length zero run. The places of these zeros

are not important, since all rotations of the private key are in the lattice. The

idea of May is basicly to multiply r consecutive columns of LNT by some large

number θ. This lattice is called zero run lattice and the basis matrix is denoted

36

as Lrθ.

Lr
θ =



λ 0 . . . 0 h0θ . . . hr−1θ hr . . . hn−1

0 λ . . . 0 hn−1θ . . . hr−2θ hr−1 . . . hn−2

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . λ h1θ . . . hrθ hr+1 . . . h0

0 0 . . . 0 qθ . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0 0 . . . q



The effect of multiplying the columns by θ is to force the lattice reduction

algorithm to find the shortest vector which has zero coefficients in those r coordi-

nates. Otherwise in a lattice vector if any of those r coordinates is nonzero than

then in the length of the vector there will be a θ multiple, so the vector cannot be

a short vector of the lattice. This idea reduces the search space of short vectors.

After this idea, by a technical report Silverman suggested that rather than

multiplying r consecutive columns with a θ multiple, multiplying r random columns

by θ will be more adventageous [18].

4.3.3 Zero Forced Lattice

Silverman [18] generalized May’s idea and introduced zero-forced lattices that

has better performance than zero-run lattices. He basically aims encouraging

the lattice reduction to find short vectors with zeros in choosen coordinates like

May. But he tries to create a smaller dimensional lattice instead of multiplying

37

coordinates with a large number.

In this attack, the first step is to choose a random set of indices for coefficients

of g. Let J = {j1, ..., jr} denote the set of indices of the r randomly chosen

coefficients in g. Then these randomly chosen coefficients are assumed to be zero

and corresponding r congruences in f∗h ≡ g mod q, involving only the coefficients

of f and h, will be forced to equal zero. But, initially we write the N original

congruences hold for the vectors in LNT

gj ≡
∑
i+k≡j

hkfi (mod q) for 0 ≤ j < N,

By assuming gj = 0, where j ∈ J , we get r linear relations modulo q. We solve

these r congruences for fN−r, ..., fN−1 in terms of f0, ..., fN−r−1 and substitute

back in the remaining N − r congruences. We get the following system.

a0jf0 + a1jf1 + ...+ aN−1−r,jfN−1−r ≡ gj (mod q) for 0 ≤ j < N, j /∈ J

Here the aij’s are known quantities, and the f0, ..., fN−r−1’s and gj’s are the

unknown quantities. This is a system of N−r congruences in 2(N−r) unknowns,

so we can construct a lattice defined as Zero-Forced Lattice with dimension 2(N−

38

r). The basis matrix of the lattice which is denoted by LZFJ is in the following.

LZF
J =



λ 0 . . . 0

0 λ . . . 0

...
...

. . .
... aij

0 0 . . . λ

0 0 . . . 0 q 0 . . . 0

0 0 . . . 0 0 q . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . q


The last step of the attack is applying the lattice reduction algorithm to this

lattice and trying to find the target vector (f, g) where the j ∈ J coordinates of

g are equal zero. Since the dimension of this lattice is smaller than the standart

NTRU lattice, the running time of the lattice reduction algorithm will decrease.

4.3.4 Dimension Reduced Lattice

Alternative to zero forced lattices, May also suggested discarding a number of

columns from the basis matrix [5]. This reduces the dimension of the lattice and

speeds up the lattice reduction. In this attack the coordinates are again chosen

randomly and a new lattice is constructed from the lattice LNT by discarding

those randomly chosen coordinates. By applying lattice reduction to the new

lattice, we don’t get the whole target vector since the coordinates that are dis-

carded at the beginning are unknown. Hence the length of the target vector will

be smaller than its actual length. Silverman [18] claims that by this attack the

39

length of the target vector gets closer to the expected shortest vector’s length,

theoretically lattice constant ch gets closer to 1. This means that the lattice

reduction algorithm will have difficulty to pick out the target vector from other

short vectors which has a length approximately expected shortest vector. In the

experiments performed by May [5], the speed of reduction algorithm increases in

low dimensions, but as N exceeds 100 the speed of the reduction algorithm is not

substential enough to break the system by applying this attack.

These were the methods of improving the NTRU lattice to speed up the

lattice reduction algorithms to find the target vector. These methods works

properly in low dimensional lattices. By the experiments performed, it is shown

that when N exceeds 100, the lattice reduction algorithms get slower and the

breaking of the system gets harder. In the next chapter, we analyze the security

of NTRU and investigate the running times of the two primary attacks given in

this chapter,i.e.meet in the middle attack and lattice attacks.

40

Chapter 5

Analyzing the Security of

NTRU

To determine the security of a public key cryptosystem, first the trapdoor

function underlying the system should be investigated. For instance in RSA [30],

the security of the system relies on the complexity of the integer factorization

problem and the modulus of RSA is chosen as an integer big enough that can not

be factorized in the amount of time required by the desired level of security. In the

case of NTRU, there are two main attacks that try to invert the trapdoor function:

meet in the middle attack and lattice attacks. So the NTRU parameters should

be chosen in such a way that neither of these attacks is successful for the security

level determined before. In 2005, NTRU company published a paper that presents

an algorithm to generate all required parameters for the last version of NTRU

[26]. This paper specifies the parameter bounds implied by the effectiveness of

the attacks and generates an algorithm by considering these bounds for different

levels of security. Now, we introduce two security types of NTRU that are defined

after the attacks given in the previous chapter.

41

5.1 Combinatorial Security

This is the security of the cryptosystem due to the combinatorial attacks that

we have presented as brute force and meet in the middle attacks for NTRU. In

chapter 3, it is given that private key polynomials are drawn from a known space

Lf . So an attacker can use a combinatorial technique to search this space like

brute force attack or meet in the middle attack. As already noted, the meet in

the middle attack has a better running time than the brute force attack. Hence,

the combinatorial security of NTRU is defined as greater than or equal to the

running time of the meet in the middle attack which is given as
(
N/2
d/2

)
/
√
N in the

chapter 4.

5.2 Lattice Security

In chapter 4, we introduced the NTRU lattice and we showed how the lattice

reduction algorithms can be used to find the private key. When analyzing the

lattice security, it is indispensable to say that these algorithms often behave better

than the theoretically proven results. Therefore, to see the running time of lattice

reduction algorithms applied to NTRU lattices, a series of tests and experiments

have been done by NTRU company. These are published as a technical report in

NTRU website [33] and the details of the results can be found in [19]. Now we

will give a brief summary about the lattice security.

There are two lattice constants defined, which are relevant to the shortest

vector problem. These are:

a =
N

q

42

c =

√
4πe||f ||||g||

q

where the parameters N , q and the polynomials f , g are as given in chapter 3.

After introducing the NTRU lattice, we have given a constant ch which is the

ratio of the length of the expected shortest vector to the length of the target

vector and given by equation 4.3.2. By experiments, it is seen to be used in

determining the performance of LLL reduction. Recall that as it gets smaller,

LLL finds the target vector easier. Now we will write c in terms of ch and explain

the observations about these constants.

c =

√
2N

ch

By the various experiments about the NTRU lattice done over the years, some

results related to a and c are found. If we hold a and c constant, while increasing

N then the logarithm of the time for LLL to find the target vector grows at least

linearly with N . Let T denote the time and A, B be constants then

log T ≥ AN +B

It is not quantified yet but by the experiments it is enounced that A and B depend

on c and a such that as either c or a or both increase the constant A increase.

This means that if these constants increase, the time to find the target vector

will increase. Thus, c, a and N provide a measure of the difficulty of finding the

target vector.

These are all experimental results and accurate mathematical models for esti-

43

mating the time of the lattice reduction algorithms are still not found. Therefore,

this analysis has been accepted for the lattice security of the NTRU. As a result,

by using suggested parameters, NTRU seems secure against the lattice attacks

unless there are new ideas in lattice reduction algorithms.

5.3 An Example on Lattice Security of NTRU

In this section, our aim is to perform some implementations on the small

dimensional NTRU lattices by using LLL and BKZ reduction algorithms. We

shall try to find out the target vector τ = (λf, g) of an NTRU lattice when N is

not too big. Also, we shall give the estimated times of the algorithms to break

the NTRU lattice. We have used Maple computer algebra package [2] to compute

NTRU polynomials. Then to perform the reduction algorithms, we have worked

on C++ that includes Victor Shoup’s NTL(Number Theory Library) package [31].

We first choose the NTRU parameteres {N, p, q, df , dg} and the polynomials

{f, g} from the sets Lf and Lg. Then we compute the public key h and try to find

the private key by using the polynomial h. We will use the vector representations

of the polynomials in the following example.

Example 5.3.1. Let us use the following parameters:

N = 51

q = 64

p = 3

df = 9

dg = 8

We choose randomly a polynomial f from L(9, 8) as the private key and a

44

polynomial g from L(8, 8). When we are choosing the polynomial f , we should

beware of it to have inverses in modulo 64 and modulo 3.

f = [0,−1, 0, 1, 0, 0, 0,−1, 0, 1, 0, 0, 0,−1, 0, 1, 0, 0, 0, 1,−1, 0, 1, 0, 0, 0,−1, 0, 0,

1, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0,−1, 0, 1, 0, 0, 1, 0, 0, 0, 0,−1]

g = [0, 1,−1, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0,−1, 0, 1, 0, 0, 0,−1, 1, 0,−1, 0, 0, 0, 0,−1,

0, 1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,−1, 0, 0]

The public key polynomial is computed as h = f−1
q ∗ g (mod q) and this gives

the following coefficient vector:

h = [53, 9, 0, 10, 27, 2, 44, 30, 62, 23, 45, 2, 35, 53, 55, 21, 0, 5, 60, 38, 52, 40, 14, 2,

21, 23, 50, 2, 46, 1, 54, 27, 5, 60, 16, 40, 62, 49, 42, 46, 8, 0, 4, 36, 26, 11, 27, 52, 30, 36, 16]

Now, suppose we do not know polynomials f and g. We only have the public

information h, p, q, df and dg. To find the private key, we first construct the

NTRU lattice by using the coefficients of h as given in the matrix LNT in chapter

4. In our case, the dimension of the matrix is 102 and we take the λ value as 1

since ||g||/||f || is approximately 1.

Now we try to find the target vector of the lattice, then we can get the private

key, i.e. τ = (f ||g). We have run the lattice reduction algorithms LLL and BKZ

with a block size 2, to compare the results with each other. We take the basis

matrix of NTRU lattice as an input and we get the following vector as output

from the both reduction algorithms. Let’s denote this vector as τ ′ = (f ′||g′). :

τ ′ = [0, 0, 0, 1, 0,−1, 0, 0, 0,−1, 1, 0,−1, 0, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 1,

0,−1, 0, 0,−1, 0, 0, 0, 0, 1, 0, 1, 0,−1, 0, 0, 0, 1, 0,−1 || 1, 0, 0, 1, 0,−1, 0, 0, 0, 1,−1, 0, 1,

0, 0, 0, 0, 1, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1, 0,−1, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0,−1, 1, 0, 0, 0,

0, 0,−1, 0]

Observe that f 6= f ′ and g 6= g′, but if we examine carefully, each f ′ and g′ is

45

the negative of the rotation of f and g vectors where each rotates 10 components

left. We checked that f ′ has inverses in modulo q and modulo p. This means that

the attacker can use this vector as the private key of the system and decrypt the

messages.

An attacker, who will apply a lattice attack to an NTRU private key, performs

these computations and finds a small vector of the lattice; but he cannot verify

if the vector is the exact target vector or not. However he gets some idea by

checking d′f and d′g values. If these match with the exact values, then he tries to

find the inverses of f ′ in modulo q and modulo p.

In our example, it did not take too much time to find the target vector, since

the N value is small. We got the same results from the reduction algorithms LLL

and BKZ after a running time of 3.79 and 3.92 seconds, respectively.

In this example, we have chosen N as a small value to succeed in the attack

and to be able to find the target vector. According to the parameters given in

chapter 3, for the moderate security, the N value should be 107 and due to the

standart EESS#1 [1], the recommended parameter sets are given as ees251ep4

and ees251ep5 both of which have N = 251 and q = 259.

46

Chapter 6

Conclusion

In this thesis, we studied the NTRU public key cryptosytem. After the presen-

tation of basic properties of lattices, we introduced the well known lattice prob-

lems and lattice reduction algorithms. We focused on the NTRU cryptosytem

and studied key generation, encryption and decryption schemes. We investigated

the most severe attacks against the system. We showed the connection between

the lattice problems and the NTRU lattice.

In the implementation part of this work, we applied an attack to a small

dimensional NTRU lattice and found a rotation of the target vector which can

also be used as a private vector.

47

References

[1] Efficient Embedded Security Standard (EESS) version 2. Consortium for

Efficient Embedded Security, June 2003.

[2] Maple 9.01. www.maplesoft.com.

[3] L.Lovasz A.K.Lenstra, H.W.Lenstra. Factoring polynomials with rational

coefficients. Math.Ann., 261, 1982.

[4] A.Korkine and G.Zolotarev. Sur les formes quadratiques. Math.Ann., pages

336–383, 1873.

[5] A.May. Cryptanalysis of NTRU. Unpublished preprint, available at

http://informatik.uni-frankfurt.de/ alex/ntru.ps, 1999.

[6] C.Dwork. Lattices and Their Application to Cryptography. Lecture Notes,

Stanford University, 1998.

[7] C.F.Gauss. Disquisitiones arithmeticae. 1801.

[8] C.P.Schnorr. A hierarchy of polynomial time lattice basis reduction algo-

rithms. Therotical Computer Science, 53:201–224, 1987.

[9] C.P.Schnorr and M.Euchner. Lattice basis reduction: Improved practical

algorithms and solving subset sum problems. Math.Prog., 66:181–199, 1994.

[10] D.Coppersmith and A.Shamir. Lattice attacks on NTRU. In Proc. of Euro-

crypt’97, volume 1233 of LNCS. Springer Verlag, 1997.

48

[11] H.Cohen. A Course in Computational Algebraic Number Theory. Springer-

Verlag, New York, 1995.

[12] J.-Y.Cai. The complexity of some lattice problems. In Proc. of ANTS-IV,

volume 1838 of LNCS. Springer-Verlag, 2000.

[13] J.H.Silverman J.Hoffstein, J.Piper. NTRU: A ring based public key cryp-

tosystem. Lecture Notes in Computer Science, Springer-Verlag, pages 267–

288, 1998.

[14] J.H.Silverman. A meet in the middle attack on an NTRU private key. Tech-

nical Report 4, NTRU cryptosystems, Available at [33], 1997.

[15] J.H.Silverman. Invertibility in truncated polynomial rings. Technical Report

9, NTRU cryptosystems, Available at [33], 1998.

[16] J.H.Silverman. Wraps, gaps, and lattice constants. Technical Report 11,

NTRU cryptosystems, Available at [33], 1998.

[17] J.H.Silverman. Almost inverses and fast ntru key creation. Technical Report

14, NTRU cryptosystems, Available at [33], 1999.

[18] J.H.Silverman. Dimension-reduced lattices, zero-forced lattices and the

NTRU public key cryptosystem. Technical Report 13, NTRU cryptosystem,

Available at [33], 1999.

[19] J.H.Silverman. Estimated breaking times for NTRU lattices. Technical Re-

port 12, NTRU cryptosystems, Available at [33], 1999.

[20] L.Lagrange. Recherches d’arithmetique. Mem. Acad, 1773.

49

[21] L. Lovasz M. Grotschel and A. Schrijver. Geometric algorithms and combi-

natorial optimization. pages 139–156. Springer-Verlag, 1991.

[22] M.Ajtai. Generating hard instances of lattice problems. ECCC, TR96-007,

1996.

[23] M.Ajtai. The shortest vector problem in L2 is NP-hard for randomized

reductions. In Proc. of 30th STOC. ACM, 1998.

[24] C.Dwork M.Ajtai. A public key cryptosystem with worst-case/average-case

equivalance. In Proc. of 29th STOC, pages 284–293, 1997.

[25] D. Micciancio. Lattices in cryptography and cryptanalysis. World Scientific,

1995.

[26] W. Whyte N. Howgrave-Graham, J. H. Silverman. Choosing parameter sets

for NTRUEncrypt with NAEP and SVES-3. Topics in cryptologyCT-RSA,

2005.

[27] S.Halevi. O.Goldreich, S.Goldwasser. Public key cryptosystems from lattice

reduction problems. In Proc. of Crypto 97, volume 1294 of LNCS, pages

112–131. Springer-Verlag, 1997.

[28] S.Safra O.Goldreich, D.Micciancio and J.-P.Seifert. Approximating short-

est lattice vectors is not harder than approximating closest lattice vectors.

Available at http://www.eccc.uni-trier.de/eccc/.

[29] J.Stern P.Nguyen. Cryptanalysis of the Ajtai-Dwork cryptosystem. In Ad-

vances in Cryptology – Proceedings of CRYPTO ’98, pages 223–242. vol.

1462 of LNCS, Springer-Verlag, 1998.

50

[30] L. M. Adleman R. Rivest, A. Shamir. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM 21, pages

120–126, 1978.

[31] V.Shoup. Number Theory C++ Library (NTL) version 5.4.2. available at

http://shoup.net/ntl/, last visited in August, 2008.

[32] M.Hellman W.Diffie. New directions in cryptography. IEEE Transactions

on Information Theory IT-22, pages 644–654, 1976.

[33] www.ntru.com. Last visited in August, 2008.

51

