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Abstract

THE FINITE ELEMENT METHOD SOLUTION OF

REACTION-DIFFUSION-ADVECTION EQUATIONS IN AIR POLLUTION

Önder Türk

M.Sc., Department of Scientific Computing

Institute of Applied Mathematics

Advisor: Prof. Dr. Münevver Tezer-Sezgin

September 2008, 71 pages

We consider the reaction-diffusion-advection (RDA) equations resulting in air pollution mod-

eling problems. We employ the finite element method (FEM) for solving the RDA equations

in two dimensions. Linear triangular finite elements are used in the discretization of problem

domains. The instabilities occuring in the solution when the standard Galerkin finite element

method is used, in advection or reaction dominated cases, are eliminated by using an adap-

tive stabilized finite element method. In transient problems the unconditionally stable Crank-

Nicolson scheme is used for the temporal discretization. The stabilization is also applied for

reaction or advection dominant case in the time dependent problems.

It is found that the stabilization in FEM makes it possible to solve RDA problems for very

small diffusivity constants. However, for transient RDA problems, although the stabilization

improves the solution for the case of reaction or advection dominance, it is not that pronounced

as in the steady problems. Numerical results are presented in terms of graphics for some test

steady and unsteady RDA problems. Solution of an air pollution model problem is also provided.

Keywords: FEM, Stabilized FEM, Reaction-diffusion-advection equations, Air pollution model-

ing.
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Öz

HAVA KİRLİLİĞİNDE REAKSİYON-DİFÜZYON-ADVEKSİYON

DENKLEMLERİNİN SONLU ELEMANLAR YÖNTEMİ İLE ÇÖZÜMÜ

Önder Türk

Yüksek Lisans, Bilimsel Hesaplamalar Bölümü

Uygulamalı Matematik Enstitüsü

Tez Danışmanı: Prof. Dr. Münevver Tezer-Sezgin

Eylül 2008, 71 sayfa

Bu tezde, hava kirliliği modelleme problemlerinde ortaya çıkan reaksiyon-difüzyon-adveksiyon

(reaction-diffusion-advection (RDA)) denklemleri ele alınmaktadır. İki boyutlu uzayda RDA

denklemlerinin çözümü için sonlu elemanlar yöntemi kullanılmaktadır. Problem tanım bölgesinin

ayrıklaştırılmasında doğrusal üçgen elemanlar kullanılmaktadır. Reaksiyon veya adveksiyon

baskınlığı olan durumlarda standart Galerkin sonlu elemanlar yöntemi çözümünde oluşan karar-

sızlıklar, uyarlanabilir stabilize edilmiş sonlu elemanlar yöntemi kullanılarak giderilmektedir.

Zaman bağımlı denklemlerin çözümünde şartsız kararlı Crank-Nicolson metodu zaman boyu-

tunda ayrık-laştırma için kullanılmaktadır. Stabilize etme yöntemi, zaman bağımlı problemlerin

reaksiyon veya adveksiyon baskınlığı durumunda da kullanılmaktadır.

Stabilize edilmiş sonlu elemanlar yönteminin, çok küçük difüzyon katsayılı RDA denklem-

lerinin çözümünü mümkün kıldığı bulgusu elde edilmektedir. Ancak, zaman bağımlı RDA

denklemlerinde stabilize etme, reaksiyon veya adveksiyon baskınlığında, çözümü iyileştirmesine

rağmen zaman bağımsız problemlerdeki kadar etkili olmamaktadır. Sayısal sonuçlar zaman

bağımsız ve zaman bağımlı test problemleri için grafikler yoluyla verilmektedir. Bir hava kirliliği

model problemi de çözülmektedir.
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Anahtar Kelimeler : Sonlu elemanlar yöntemi, Stabilize sonlu elemanlar yöntemi, Reaksiyon-

difüzyon-adveksiyon denklemleri, Hava kirliliği modellemesi.
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Chapter 1

Introduction

The importance of the quality of atmosphere on which life exists has been recognized for

the past few decades. One of the most important ways to increase the air quality is to solve

the air pollution problem, mainly an optimal reduction of the air pollutants. This problem can

successfully be solved with the aid of mathematical models [50]. The governing equations used

in these models are reaction-diffusion-advection (RDA) equations. A non-dimensional time-

independent (steady) RDA equation is written as

−ε∇2u + a · ∇u + bu = f. (1.1)

and a non-dimensional time-dependent (transient) RDA equation is written as

∂u

∂t
− ε∇2u + a · ∇u + bu = f (1.2)

Here u is the solution (unknown) of the equation, ε > 0 is the diffusion constant, a is the

advection vector, b ≥ 0 is the reaction constant and f is the source term. Special cases of an

RDA equation are listed below

1. If a = ~0 it is called reaction-diffusion equation

2. If b = 0 it is called diffusion-advection equation

3. If a = ~0 and b = 0 it is called diffusion equation.

Used in many fields (such as physics, chemistry, biology, geology, migration and epidemiology

[20, 24]) the RDA equations have been a subject of active research and study for the last four

decades and will seemingly be even more important in the next decades. However, the RDA

equations and especially the systems of RDA equations cannot be solved analytically (unless

some unrealistic assumptions are imposed). Therefore it is essential to solve these equations

numerically. Many different methods have been proposed in the literature to solve the RDA

equations numerically.
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1.1 The air pollution models

The air pollution problem, particularly the reduction of air pollution to a certain level is

a very important environmental problem. Air pollutants are mainly transported by advection

due to the wind, diffusion and chemical reaction phenomena are also important. Therefore,

this problem is not restricted to the regions where the emission sources exist, the atmosphere

is polluted in the surrounding areas too. It is well known that the pollutants are dangerous for

humans, plants and animals when they are over critical amounts. It is essential to reduce the

air pollution to a harmless level. However, this can be a very expensive task. The critical levels

are to be determined and the optimal work must be to reduce the pollution to these levels but

not more as this can be very expensive. The optimal reduction of the pollutants to the desired

level is a problem which can only be solved if there is a reliable mathematical model provided.

The physical phenomenon of the transport of air pollution consists of three major stages which

are; emission, transport of pollutants and transformations during the transport. There are both

man-made and natural sources which emit different pollutants in the atmosphere. After the

emission, the transport takes place. The pollutants are transported by wind. Transportation of

the pollutants by wind is called advection. There are three physical processes take place during

the transport of pollutants in the atmosphere.

Diffusion: The air pollutants are widely dispersed in the atmosphere in horizontal and

vertical directions.

Deposition: Some of the pollutants are deposited to the various surfaces of the Earth like

water, soil and plants. Usually there are two different kinds of depositions as dry deposition

which is continuous and wet deposition which occurs only when it rains.

Chemical Reactions: Many different chemical reactions take place during the transport

of pollutants. As a result of these reactions, many secondary pollutants are created. (The air

pollutants which are emitted directly from the emission sources are called primary pollutants

and the ones which come out of the reactions are called secondary pollutants). On the other

hand, there are also some chemical reactions which produce harmless species. Developing a

reliable mathematical model is required to be able to study the effects of the emission sources

to the surrounding areas and the influence of reducing emission sources in a certain region on

the pollution in the surrounding regions.

Mathematical models are essential tools to study transport of air pollutants and efficient

ways of reducing the air pollution to a critical level. The most important part of modeling

this transport is the mathematical description of the chemical and physical properties of the air

pollutants. Therefore modeling air pollution problem needs reliable mechanisms to describe the

physical and chemical properties mathematically, mathematical tools–mainly partial differential

2



equations–and good working numerical methods. Mathematical models of air pollution are vital

tools in studying this problem. The analytical description of these large models is made by

systems of partial differential equations. To begin this study one must consider the physical

processes and the interactions of these processes which are emission, advection, diffusion, de-

position and chemical reactions. These processes and many other important physical processes

are described by a system of partial differential equations (PDE). The number of equations in

such systems will be equal to the number of the species involved in the model. So, the system

is huge when there are many species involved. Even when the number of the species is not very

large, the discretization of the system of PDE leads to very large system of ordinary differential

equations (ODE) which will be solved over a long time interval. This makes it difficult to treat

these models numerically.

1.1.1 Modelling advection

The transport of various air pollutants over a long distance in the atmosphere is one of the

most important physical processes that take place in long range transport of air pollution (LR-

TAP). It is quite sufficient to consider a single partial differential equation to express everything

concerning the advection process. Obviously, the advection part of a LRTAP model does not

depend on the particular air pollutants. So, we can describe the transport of any pollutants in

the system by means of the same partial differential equation.

Let u = u(x, y, z, t) denote the concentration of a given air pollutant at the point (x, y, z) ∈
D ⊂ R3 and at a time interval [0,T] for some T > 0. Let a1 = a1(x, y, z, t), a2 = a2(x, y, z, t)

and a3 = a3(x, y, z, t) denote the wind velocities along the three coordinate axes respectively.

These are assumed to be known functions defined in the whole domain D and on the whole time

interval [0,T]. Now, we can describe the LRTAP pure advection by the three-dimensional PDE

below

∂u

∂t
= −∂(a1u)

∂x
− ∂(a2u)

∂y
− ∂(a3u)

∂z
(1.3)

for all (x, y, z) ∈ D and for all t ∈ [0, T ].

Assuming that conservation law is satisfied for the wind velocities in the lower parts of the

atmosphere as

∂a1

∂x
+

∂a2

∂y
+

∂a3

∂z
= 0 (1.4)

we have

3



∂u

∂t
= −a1

∂u

∂x
− a2

∂u

∂y
− a3

∂u

∂z
(1.5)

for all (x, y, z) ∈ D and for all t ∈ [0, T ].

The two-dimensional (2-D) and one-dimensional (1-D) forms of advection equations are

∂u

∂t
= −a1

∂u

∂x
− a2

∂u

∂y
(1.6)

and
∂u

∂t
= −a1

∂u

∂x
(1.7)

respectively.

The advection equation is supplied with an initial condition for having a unique solution

u(x, y, z, 0) = p(x, y, z) in 3−D

u(x, y, 0) = p(x, y) in 2−D

u(x, 0) = p(x) in 1−D.

(1.8)

The advection equations stated above can generally not be solved exactly (analytically).

Therefore a numerical method must be used.

1.1.2 Modelling diffusion

The other important process is the diffusion phenomenon which is the dispersion of the air

pollutants in the atmosphere. To model diffusion without advection or any other process it can

be assumed that the diffusion process does not depend on the pollutants so we can use the same

PDE for all of the species involved in the system. It is quite sufficient here again to consider a

single PDE to explain everything concerning the diffusion process as

∂u

∂t
=

∂

∂x
(Kx

∂u

∂x
) +

∂

∂y
(Ky

∂u

∂y
) +

∂

∂z
(Kz

∂u

∂z
) (1.9)

for all (x, y, z) ∈ D and for all t ∈ [0, T ].

The diffusivity coefficients along the three coordinate axes are Kx = Kx(x, y, z, t), Ky =

Ky(x, y, z, t) and Kz = Kz(x, y, z, t). Kx and Ky are often assumed to be non-negative constants

(e.g. Kx = Ky = 30000m2/s). Kz is more difficult to treat. (Some suggestions are on page 37

of [50]). The two-dimensional case is

∂u

∂t
=

∂

∂x
(Kx

∂u

∂x
) +

∂

∂y
(Ky

∂u

∂y
) (1.10)
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for all (x, y) ∈ D and for all t ∈ [0, T ].

1.1.3 Modelling deposition

It is quite sufficient to consider a single ordinary differential equation (ODE) to describe the

deposition processes. Let us = us(x, y, z, t) denote the concentration of the given air pollutant

at the point (x, y, z) and time t. Here s = 1, 2, ..., n and n is the number of pollutants studied in

the model. Moreover, let k1s(x, y, t) denote the dry deposition coefficient and k2s(x, y, z, t) the

wet deposition coefficient (the dry deposition does not depend on z).

The LRTAP model normally considered on space domain which is parallelepiped in the

three-dimensional Euclidean space R3. Under these assumptions made, we can describe the

deposition process by the following linear ordinary differential equation (we should note here

that this equation will be different in the transition from one air pollutant to another, but when

the pollutant is fixed it depends only on the pollutant itself not on the others)

∂us

∂t
= −(k1s + k2s)us. (1.11)

In this equation k1s and k2s generally depend on spatial and time variables but for some

species these coefficients could be assumed to be constants. However, in each case this equation

is linear and can be solved analytically. When the deposition of a given pollutant depends on

the concentrations of other pollutants too, the process becomes more complicated. When this

is the case, a system of ordinary differential equations must be solved. Such a system can be

stated as
∂us

∂t
= Ss(u1, u2, ..., un) (1.12)

where s = 1, 2, ..., n.

1.1.4 Modelling chemical reactions

One of the most important processes that take place during the long range transport of

air pollutants in the atmosphere is the chemistry: chemical transformations take place during

the long range transport of air pollutants. Therefore the chemical reactions should be treated

carefully. It is essential and highly desirable to find an optimal set which can be implemented

in the model. Most of the main pollutants as sulphur pollutants, ozone, nitrogen pollutants and

hydro-carbons can be used successfully in the large air pollution model. The chemical reactions

involved in the long-range transport of air pollutants are listed on page 42 of [50].

5



1.1.5 Introduction of emissions in the model

Assume a two-dimensional model for simplicity. Let ui(x, y, t) denote the concentration of

some primary air pollutants. The positions of a point (x, y) at time t are located and the

emission is described by a function Ei(x, y, t). The Ei functions are non-negative in general if

the source of the primary pollutant exists. However, the function can sometimes be zero even

when the source exists. This is the case when some sources stop emitting during the night.

1.1.6 General mathematical description of an air pollution model

A general mathematical model can easily be obtained now by combining the mathematical

expressions for the five physical processes (advection, diffusion, deposition, chemical reaction

and emission).

∂us

∂t
= − ∂

∂x(a1us)− ∂
∂y (a2us)− ∂

∂z (a3us) (advection)

+ ∂
∂x(Kx

∂u
∂x) + ∂

∂y (Ky
∂u
∂y ) + ∂

∂z (Kz
∂u
∂z ) (diffusion)

− (k1s + k2s)us(x, y, z, t) (deposition)

+ Es(x, y, z, t) (emission)

+ Qs(u1, u2, ..., un) (chemistry)

where (x, y, z) ∈ D , t ∈ [0, T ], s = 1, 2, ..., n and n is the number of the pollutants in the model.

Any LRTAP model can be described mathematically by the system above. The number

of equations in the system is equal to the number of species studied by the model. Thus,

more species included in the model leads to an increase of the size of the problem. The more

important fact is that the system of PDE in general cannot be solved exactly and has to be

treated numerically.

There are many different numerical methods used in the treatment of large air pollution

models. The system of PDE can be split into sub-systems. It is natural to split the system into

parts that correspond to the physical process involved in the model. It is also natural to select

the best method or the best numerical scheme for each sub-system. There are different splitting

procedures that have been used in the literature [41].

If the model is three-dimensional it is convenient to perform first the computations for every

horizontal plane and then to perform modifications in the vertical direction. In other words, the
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first task is to split the air pollution model according to the physical processes and the second is

to perform the horizontal planes computations and finally to carry out the computations along

the vertical direction.

1.1.7 Horizontal planes computations

Let z0 be fixed in [0, Z] ⊂ R, then, when the model described above is discretized, the set

of points (x, y, z0) defines a horizontal plane within the space domain of the model. Then, the

computations on this horizontal plane are carried out by treating numerically the four systems

∂u
(1)
s

∂t
= −∂(a1u

(1)
s )

∂x
− ∂(a2u

(1)
s )

∂y

∂u
(2)
s

∂t
=

∂

∂x
(Kx

∂u
(2)
s

∂x
) +

∂

∂y
(Ky

∂u
(2)
s

∂y
)

∂u
(3)
s

∂t
= −(k1s + k2s)u(3)

s (x, y, z0, t)

∂u
(4)
s

∂t
= Es(x, y, z0, t) + Qs(u

(4)
1 , u

(4)
2 , ..., u(4)

n )

(1.13)

where s = 1, 2, ..., n.

1.1.8 Vertical lines computations

Assume that (x0, y0) is a fixed point with x0 in [0, X] ⊂ R and y0 in [0, Y ] ⊂ R. When

the model is discretized, the set of points (x0, y0, z) defines a vertical grid-line within the space

domain of the model. Then the computations for (x, y) can be carried out by treating the

following system numerically

∂u
(5)
s

∂t
= − ∂

∂z
(a3u

(5)
s ) +

∂

∂z
(Kz

∂u
(5)
s

∂z
) (1.14)

where again s = 1, 2, ..., n. We see that the system of PDE’s can be split into five PDE systems

and solved separately at every time step. Then the five systems must be coupled. The process of

coupling the systems arising after the splitting of the model can be carried out in the following

way. At each time step, the five systems are solved successively. When the concentrations us

at time t are found, the first system is solved using the approximations of us as starting values.

The solution found is used as a starting vector in the treatment of the second system. This
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process is continued by taking the solution of the third system is used as a starting vector in the

treatment of the fourth system and the solution of the fourth system is used in the treatment

of the fifth system. Finally, the approximated solution of the fifth system is accepted as an

approximation to the solution of the global model at time t + ∆t (where ∆t is the time step

size) and thus, the next time step starts in the same way.

1.2 A review of methods used to solve reaction-diffusion-advection

(RDA) equation

Solving the RDA equation has attracted much interest for long time. There are many

approaches and studies in the literature. We give a review of them in the historical order

below. Molenkamp [42] calculated numerical solutions to the advection equation in 1967 using

finite-difference approximations and has shown that Roberts-Weiss approximation worked well

but requires 10-40 times more time than any other schemes considered (Upstream, Leap-frog,

Lax-Wendroff, Arakawa-Euler and Arakawa-Adams-Bashforth).

Long and Pepper [40] analyzed the donor cell, fully implicit, Crank-Nicolson, quasi-Lagrangian,

second moment and linear finite element methods for calculation of scalar advection equation

and summarized that each scheme exhibited certain disadvantages.

It has been recognized that when advection or reaction dominates diffusion, some physical

effects take place in the problem on a scale which is very small but having a strong impact on

the larger scales. Therefore, they cause an unfeasible solution when a standard Galerkin finite

element method (SGFEM) is used. The streamline upwind Petrov-Galerkin (SUPG) method,

proposed by Brooks and Hughes [12], was the first variationally consistent, stable and accurate

finite element model for advection-dominated problems. This method initialized the development

of stabilization techniques for advection-dominated problems and the theory has been developed

over the years. The stabilized finite element methods are formed by adding variational mesh-

dependent, consistent and numerically stabilizing terms to the standard Galerkin method. These

methods have the desirable properties of improving the numerical stability of the Galerkin

method and of preserving good accuracy. Tezduyar and Park [46] presented formulations which

complement the SUPG method to minimize the oscillations about sharp internal and boundary

layers in advection-dominated and reaction-dominated flows. Later on, the Galerkin-Least-

Squares (GLS) version was introduced [34] and a few years later, an unusual version of the

stabilized methods was introduced by Franca and Farhat [26].

The Galerkin method using low-order piecewise polynomials perform poorly for advection-

dominated equations. Adding terms to the variational formulation is a well accepted practice,

as it is done using stabilized methods. It was rather unexpected that the Galerkin method
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without additional terms can be used as a starting point for these problems as well. In [10] a

relationship is established between the Galerkin method enriched with bubble functions and the

stabilized method described in [25] for diffusion-advection equations. If inappropriate choices

of bubbles are taken, then the Galerkin method performs as a disguised stabilized method

with the wrong selection of the stability parameter. To treat this pathology, special bubble

designs were suggested [10, 11, 27, 44]. Among them, residual-free bubbles take into account the

partial differential equation being approximated, in the generation of the enrichment space being

added to the finite element piecewise polynomial space. Although residual-free bubbles form a

framework to derive improved discretizations, it was still needed to compute residual-free basis

functions by solving partial differential equations at the element level. Some progress has been

made in approximating these computations and furthermore Franca and Valentin [30] avoided

these difficulties by pursuing an improved unusual stabilized method (USFEM) given in [26].

Herein, they used a mesh parameter inspired by residual-free bubbles, as part of the new stability

parameter design. They demonstrated that improved numerical results can be attained with the

USFEM for RDA equations, by carefully revisiting the definition of the stability parameter.

They took USFEM as the starting point and by looking at three asymptotic limits (for high

advection, diffusion and reaction), they designed a newer parameter that has superior numerical

performance and preserving the global convergence error estimating rates that were obtained

earlier.

Cannon and Lin [15] studied finite element method approximations to the nonlinear diffusion

equations using the so called priori L2-Error-Estimates method.

Lanser and Verwer [37] analyzed the operator or time splitting in the numerical solution of

initial boundary value problems for differential equations to study computational air pollution

modelling. They concluded that in most applications splitting errors would occur and in air pol-

lution models the splitting error would oscillate and would not grow beyond bound for evolving

time.

Franca, Nesliturk and Stynes [28] considered the application of residual-free bubble functions

to solve diffusion-advection problems in two dimensions and showed that the method is as stable

as the streamline diffusion method (SDFEM/SUPG). They also studied an application of the

two-level finite element method for the diffusion-advection equation which was introduced in

[29] for the Helmholtz equation.

Chawla, Al-Zanaidi and Al-Aslab [16] described a one-parameter family of unconditionally

stable third-order time integration schemes based on the extended trapezoidal formulas for the

diffusion-advection equation.

Baumann and Oden [7] presented a new method called discontinuous hp finite element

method for diffusion-advection problems.
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Verwer, Hundsdorfer and Blom [49] reported that due to the large number of chemical

species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for

the numerical time integration of stiff systems of RDA equations from the field of air pollu-

tion modelling. They performed a survey of special time integration techniques, encompassing

stiff chemistry solvers, positive advection schemes, time or operator splitting, implicit-explicit

methods and approximate matrix factorization solutions. They also reported on experiences

with vector/parallel shared memory and massively parallel distributed memory architectures

and clusters of workstations for solving huge problem scales.

Recently Franca, Hauke and Masud [31] revisited the stabilized finite element methods and

illustrated the development of the methods applied to diffusion-advection problems.

Fang [23] solved initial and boundary value problems of diffusion-advection equations in a

square region by using finite difference approximations with respect to spatial variables and an

implicit method with respect to the time variable. It was shown that the numerical solution

is convergent if the derivatives go to infinity under proper conditions and the convergence of

numerical solution can be accelerated if the mesh points are some functions of equidistant mesh

points.

Alexandrov and Zlatev [1] stated that large-scale air pollution models can successfully be

used in different environmental studies. These models are described mathematically by systems

of partial differential equations. Splitting procedures followed by discretization of the spatial

derivatives lead to several large systems of ordinary differential equations of order up to 80

millions. They added that many scenarios are often to be run in order to study the dependence

of the model results on the variation of some key parameters (as, for example, the emissions).

Such huge computational tasks can successfully be treated only if fast and sufficiently accurate

numerical methods are used and the models can efficiently be run on parallel computers. They

presented efficient Monte Carlo methods for some subproblems and showed applications of the

model in the solution of some environmental tasks. A similar study was performed in [2, 21].

Caliari, Vianello and Bergamaschi [14] implemented a second-order exponential integrator

for semidiscretized RDA equations, obtained by coupling exponential-like Euler and Midpoint

integrators. They did numerical tests on two-dimensional models discretized in space by Finite

Differences or Finite Elements and showed that their method can be up to 5 times faster than

a classical second-order implicit solver.

Knobloch [36] considered the Mizukami-Hughes method for the numerical solution of scalar

two-dimensional steady diffusion-advection equations using conforming triangular piecewise lin-

ear finite elements and proposed several modifications of this method to eliminate its short-

comings. It was reported that this method gives very accurate discrete solutions in advection-

dominated problems and showed how the Mizukami-Hughes method can be applied to RDA
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equations and to three-dimensional problems.

Tian and Dai [47] proposed a class of high-order compact (HOC) exponential finite difference

(FD) methods for solving one-dimensional and two-dimensional steady-state diffusion-advection

problems. They stated that the newly proposed HOC exponential FD schemes have nonoscilla-

tion property and yield high accuracy approximation solution. They also compared analytical

solutions and numerical results for the proposed HOC exponential FD methods and some pre-

viously published HOC methods.

Bozkaya [9] used least-squares differential quadrature method (DQM) for solving the ordi-

nary differential equations in time, obtained from the application of dual reciprocity boundary

element method (DRBEM) for the spatial partial derivatives in diffusion-advection problems.

The DRBEM enabled the use of fundamental solution of Laplace equation, which is easy to

implement computationally. The terms except the Laplacian were considered as the nonho-

mogeneity in the equation, which are approximated in terms of radial basis functions. The

application of DQM for time derivative discretization when it was combined with the DRBEM

gave an overdetermined system of linear equations since both boundary and initial conditions

were imposed. The least squares approximation was used for solving the overdetermined system.

Thus, the solution is obtained at any time level without using an iterative scheme and numeri-

cal results in good agreement with the theoretical solutions of the diffusion-advection problems

obtained.

John, Kaya and Layton [35] studied the error in the efficient implementation of time stepping

methods for a variational multiscale method (VMS) for solving advection-dominated problems.

They observed that the global accuracy of the most straightforward VMS implementation was

much better than the artificial diffusion stabilization and comparable to a streamline-diffusion

finite element method in the tests.

Asensio, Ayuso and Sangalli [5] presented some numerical schemes for the unsteady RDA

linear problems, investigated two possible different ways of combining the discretization in time

and in space. Discretization in time was performed by using the Crank-Nicolson finite difference

scheme, while for the space discretization they considered classical stabilized finite element

schemes.

Chou, Zhang, Zhao and Nie [18] studied a linearly unconditionally stable method that

approximates both diffusions and reactions implicitly using a second order Crank-Nicholson

scheme. The nonlinear system resulted from the implicit approximation at each time step was

solved using a multi-grid method. Numerical simulations performed in this study demonstrated

that the method is accurate and robust with convergence using even very large size of time steps.

Gravemeier and Wall [33] proposed a multiscale method for the numerical solution of tran-

sient RDA equations. A particular feature of the method was that no large matrix system has
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to be solved. Numerical tests performed in the study showed that for both problematic flow

regimes (the regime of dominant advection and the regime of dominant advection and absorp-

tion) the presented method provided completely stable solutions, which were not achieved by

standard stabilized methods. A shortcoming of the proposed method was noted which is that

the method revealed itself in a too smooth resolution of regions with a sharp gradient in the

solution field

Gracia and Lisbona [32] considered a system of two parabolic singularly perturbed equations

of reaction-diffusion. The asymptotic behaviour of the solution and its partial derivatives was

given. A decomposition of the solution in its regular and singular parts used for the asymptotic

analysis of the spatial derivatives. To approximate the solution they considered the implicit

Euler method for time stepping and the central difference scheme for spatial discretization on a

special piecewise uniform Shishkin mesh. They proved that this scheme is uniformly convergent,

with respect to the diffusion parameters, having first-order convergence in time and almost

second-order convergence in space, in the discrete maximum norm. Numerical experiments are

illustrated and the order of convergence is proved theoretically.

Bermejo and Carpio [8] introduced an adaptive method that combines a semi-Lagrangian

scheme with a second order implicit-explicit Runge-Kutta-Chebyshev (IMEX-RKC) method to

calculate the numerical solution of advection dominated reaction-diffusion problems. The ad-

vection terms were integrated via the semi-Lagrangian scheme, whereas the IMEX-RKC treated

the diffusion terms explicitly and the highly stiff reaction terms implicitly in this study. The

space adaptation was done in the framework of finite elements and the criterion for adaptation

was derived from the information supplied by the semi-Lagrangian step.

In this thesis we have considered the reaction-diffusion-advection problems which are in

general resulting from the air pollution problems. The method employed is the finite element

method with linear triangular elements. The stabilization techniques from [4] are used when-

ever necessary for small diffusivity constants. For transient RDA equations the Crank-Nicolson

scheme is made use of for time integration. Numerical results are obtained for some test prob-

lems in steady and transient cases. It has been found that the stabilization in FEM application

is more effective in the steady problems for very small diffusivity constant. In the transient

problems the effect of stability is not that pronounced. A test problem is included from the air

pollution problems which is defined with the diffusion-reaction equation.
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Chapter 2

Finite Element Method Solution

of Reaction-Diffusion-Advection

Equations

In this chapter, we describe the finite element method and a stabilized finite element method

introduced in [4] for solving the reaction-diffusion-advection (RDA) equation. The methods are

described for a two-dimensional model problem.

The finite element method (FEM) is a powerful numerical tool for solving algebraic, differ-

ential and integral equations. It is more general and more powerful then the finite difference

method. The method has three important features which make it superior over other competi-

tive methods. First, a domain which is geometrically complex of the problem can be represented

as a collection of simpler subdomains which are called finite elements. Second, the algebraic

equations developed using the governing equations of the problem are solved over each finite

element. Third, the equations and relationships from all elements are assembled so as to be put

back into their original positions in the whole domain of the problem. Therefore this method

is more powerful in its application to real world problems that involve physics geometry and

boundary conditions. In the finite element method, we seek an approximation uh to the solution

u in the form

u ≈ uh =
n∑

j=1

ujψj (2.1)

where uj are the values of uh at the element nodes, ψj are the interpolation functions and n is

the number of the nodes in one element. Direct substitution of such approximations into the

governing differential equations does not generally result in a necessary and sufficient number

of equations for the undetermined coefficients uj . Therefore a weighted-integral form of the

governing equation is used to obtain a necessary and sufficient number of equations.
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2.1 FEM for two dimensional (RDA) problems

We consider the model equation

−ε∇2u + a · ∇u + bu = f in Ω (2.2)

with some specified boundary conditions on the boundary Γ of the domain Ω.

Here ∇2u =
∂2u

∂x2
+

∂2u

∂y2
, a = (a1, a2) and a · ∇u = a1

∂u

∂x
+ a1

∂u

∂y
.

The major steps developing the finite element model are [43]

1. Discretization of the domain into a set of finite elements.

2. Weak or weighted-integral formulation of the governing equation.

3. Derivation of finite element interpolating functions.

4. Development of the finite element method via the weak form.

5. Assembly of finite elements.

6. Imposition of boundary conditions.

7. Solution of the system of algebraic equations obtained.

Discretization

In two dimensional problems there are many geometric shapes that can be used as finite

elements as it can be seen in Figure 2.1.

In such irregular domains, the discretization of the domain into simpler subdomains brings

an error from the approximation of the domain. In our present study, however, we used a square

as the domain of the problem and therefore, the error coming from approximation of the domain

is annihilated. We used identical linear triangle elements (triangles with three nodes as vertices)

in all of the problems we study in this thesis.

Weak or weighted-integral formulation

We are going to consider only a typical element in developing the weak form. We take Ωe

as a typical element and will develop the finite element model of (2.2) over Ωe. First, multiply

(2.2) with a weight function w (which is assumed to be differentiable once with respect to x and

y) then integrate the equation over the element Ωe

∫

Ωe

w(−ε∇2u + a · ∇u + bu− f)dxdy = 0. (2.3)
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Figure 2.1: Discretization

Applying the divergence theorem we obtain

∫

Ωe

(ε∇w∇u + w(a · ∇u) + bwu− wf)dxdy −
∮

Γe

εw(n · ∇u)ds = 0. (2.4)

where n = (nx, ny) is the unit normal vector on the boundary Γe.

From the boundary integral in (2.4) one can see that the specification of u comprises the

necessary boundary conditions, and thus u is the main variable.

The coefficient of the weight function in the boundary expression is

qn = ε(n · ∇u) = nx(ε
∂u

∂x
) + ny(ε

∂u

∂y
). (2.5)

The specification of qn constitutes the natural boundary condition, therefore qn is the sec-

ondary variable. The normal n is taken positive outward from the surface on the boundary of

the element, namely on Γe.

Finally, from (2.4) and (2.5) we obtain the weak form of (2.2)
∫

Ωe

(ε∇w∇u + w(a · ∇u) + bwu− wf)dxdy −
∮

Γe

wqnds = 0. (2.6)

Using bilinear form Be(·, ·) and linear form le(·) we can write (2.6) equivalently as

Be(w, u) = le(w) (2.7)

where

Be(w, u) =
∫

Ωe

(ε∇w∇u + w(a · ∇u) + bwu)dxdy (2.8)
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and

le(w) =
∫

Ωe

wfdxdy +
∮

Γe

wqnds. (2.9)

Finite Element Model

The weak form in equation (2.6) requires that the approximation for u should be at least

linear in x and y so that the terms in (2.4) are nonzero. The Lagrange interpolating functions

are admissible as the primary variable is the function itself.

Let u be approximated over a finite element Ωe by [43]

u(x, y) ≈ ue
h(x, y) =

n∑

j=1

ue
jψ

e
j (x, y) (2.10)

where ue
j is the value of ue

h at the jth node (xj , yj) of the element and ψe
j are the Lagrange

interpolation functions with the following property

ψe
i (xj , yj) = δij =

{
1 if i = j

0 if i 6= j

where i, j = 1, 2, ..., n.

Deriving the finite element equations in algebraic form does not depend on the shape of the

element Ωe or on the form of ψe
i (xj , yj). Later on we are going to derive the specific form of

ψe
i (xj , yj) for linear triangular elements in our study. (Once again we note that higher order

elements and other shapes can also be used).

Now substituting the finite element approximation (2.10) of u into the weak form in equation

(2.6) we obtain

∫

Ωe



ε


∂w

∂x

n∑

j=1

ue
j

∂ψe
j

∂x
+

∂w

∂y

n∑

j=1

ue
j

∂ψe
j

∂y


 + a1w

n∑

j=1

ue
j

∂ψe
j

∂x
+ a2w

n∑

j=1

ue
j

∂ψe
j

∂y

+bw
n∑

j=1

ue
jψ

e
j − wf



 dxdy −

∮

Γe

wqnds = 0.

(2.11)

This equation must hold for every admissible weight function w. We need n linearly inde-

pendent algebraic equations to solve for the n unknowns, ue
1, u

e
2, ..., u

e
n, so we choose the same

linearly independent interpolation functions for w as ψe
1, ψ

e
2, ..., ψ

e
n which gives the Galerkin

method.

The ith algebraic equation obtained by substituting w = ψe
i into (2.11) is
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n∑

j=1

[
∫

Ωe

{
ε

(
∂ψe

i

∂x

∂ψe
j

∂x
+

∂ψe
i

∂y

∂ψe
j

∂y

)
+ a1ψ

e
i

∂ψe
j

∂x

+a2ψ
e
i

∂ψe
j

∂y
+ bψe

i ψ
e
j

}
dxdy]uj −

∫

Ωe

fψe
i dxdy −

∮

Γe

ψe
i qnds = 0

(2.12)

where i = 1, 2, ..., n.

Observe that (2.12) can be put into the form

n∑

j=1

Ke
iju

e
j = fe

i + Qe
i i = 1, 2, ..., n (2.13)

where

Ke
ij =

∫

Ωe

{
ε

(
∂ψe

i

∂x

∂ψe
j

∂x
+

∂ψe
i

∂y

∂ψe
j

∂y

)
+ a1ψ

e
i

∂ψe
j

∂x
+ a2ψ

e
i

∂ψe
j

∂y
+ bψe

i ψ
e
j

}
dxdy

fe
i =

∫

Ωe

fψe
i dxdy

Qe
i =

∮

Γe

ψe
i qnds.

(2.14)

In matrix notation, equation (2.13) takes the form

[Ke]{ue} = {fe}+ {Qe}. (2.15)

This equation represents the finite element model of (2.2) where [Ke] is an n × n element

symmetric matrix, {fe} and {Qe} are n× 1 element vectors.

Interpolating Functions

The finite element approximation ue
h(x, y) over a typical element Ωe converges to the true

solution if the following conditions are satisfied:

1. ue
h must be continuous.

2. The polynomials used to represent ue
h must be complete (i.e., all terms up to the highest-

order should be included in ue
h).

3. All the terms of the polynomials should be linearly independent.

The number of linearly independent terms in the ue
h representation designates the number

of degrees of freedom and the shape of the element.
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Triangular Element

As we mentioned before, ψe
i should be at least linear in x and y. Therefore, the complete

linear polynomial in the element Ωe must be of the form [43]

ue
h(x, y) = ce

1 + ce
2x + ce

3y (2.16)

where ce
i are constants. In a typical linear triangular element, the nodes are the vertices of the

triangle. However, this is not necessary, and the nodes can also be located on the sides of the

triangle.

The equation (2.16) defines a unique plane which means that if u(x, y) is a curved surface,

ue
h(x, y) approximates the surface by a plane. ue

h(x, y) is uniquely defined on a triangle by the

three values at the vertices of the triangle.

The three constants ce
1, c

e
2 and ce

3 can be expressed in terms of nodal values ue
1, u

e
2 and ue

3.

Therefore the polynomial in (2.16) correlated with the triangle element and there are three nodes

identified which are the vertices of the triangle. Equations take the form

ue
1 = ue

h(x1, y1) = c1 + c2x1 + c3y1

ue
2 = ue

h(x2, y2) = c1 + c2x2 + c3y2

ue
3 = ue

h(x3, y3) = c1 + c2x3 + c3y3

(2.17)

dropping the superscript ’e’ for simplicity. Solving these equations for c1, c2 and c3 we obtain

c1 =
1

2A
(α1u1 + α2u2 + α3u3)

c2 =
1

2A
(β1u1 + β2u2 + β3u3)

c2 =
1

2A
(γ1u1 + γ2u2 + γ3u3)

(2.18)
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where A is the area of the element with vertices (xi, yi) (i = 1, 2, 3) and αi, βi, γi are as follows

α1 = x2y3 − x3y2 β1 = y2 − y3 γ1 = x3 − x2

α2 = x3y1 − x1y3 β2 = y3 − y1 γ2 = x1 − x3

α3 = x1y2 − x2y1 β3 = y1 − y2 γ3 = x2 − x1.

(2.19)

Substituting ci into (2.16) we obtain

ue
h(x, y) =

∑3
i=1 ue

iψ
e
i (x, y) (2.20)

where ψe
i are the linear interpolating functions for the triangular element

ψe
i = 1

2Ae
(αe

i + βe
i x + γe

i y) i = 1, 2, 3 (2.21)

and Ae is the area of the triangle element Ωe.

Evaluation of Element Matrices for a Linear Triangular Element

The matrices [Ke] and {fe} given in equation (2.15) generally cannot be evaluated exactly

and thus they have to be calculated numerically. However, when ε, a1, a2 and b are constants

elementwise, it’s possible to evaluate the integrals exactly over the triangular element. The

boundary integral {Qe} can be evaluated when qn is known. For the interior elements which

don’t have any of its sides on the boundary of the problem, the contribution from the boundary

integral cancels with similar contributions from adjoining elements.

When ε, a1, a2 and b are constants elementwise, we can rewrite Ke
ij in (2.14) as

Ke
ij = ε[Se

ij ] + a1[P1e
ij ] + a2[P2e

ij ] + b[M e
ij ] i, j = 1, 2, 3 (2.22)

where

Se
ij =

∫

Ωe

(
∂ψe

i

∂x

∂ψe
j

∂x
+

∂ψe
i

∂y

∂ψe
j

∂y

)
dxdy

P1e
ij =

∫

Ωe

ψe
i

∂ψe
j

∂x
dxdy

P2e
ij =

∫

Ωe

ψe
i

∂ψe
j

∂y
dxdy

M e
ij =

∫

Ωe

ψe
i ψ

e
jdxdy.

(2.23)
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The integrals of polynomials can be evaluated exactly over triangular domains and given by

the formulae below

Se
ij =

1
4Ae

(βiβj + γiγj)

P1e
ij =

βj

6

P2e
ij =

γj

6

M e
ij =

1
4Ae

{
αiαj +

1
3

(αiβj + αjβi) (x1 + x2 + x3) +
1
3

(αiγj + αjγi) (y1 + y2 + y3) + I

}

(2.24)

where

I =
1
Ae

[I1βiβj + I2(γiβj + γjβi) + I3γiγj ] (2.25)

and
I1 =

Ae

12

[(
x2

1 + x2
2 + x2

3

)
+ (x1 + x2 + x3)

2
]

I2 =
Ae

12
[x1y1 + x2y2 + x3y3 + (x1 + x2 + x3) (y1 + y2 + y3)]

I3 =
Ae

12

[(
y2
1 + y2

2 + y2
3

)
+ (y1 + y2 + y3)

2
]
.

(2.26)

In addition, if f = fe is constant on the element Ωe then

fe
i =

∫

Ωe

feψ
e
i dxdy =

1
3
feAe. (2.27)

The next step after the evaluation of all element matrices is the assembly of elements. The

assembly of finite elements is carried out by imposing interelement continuity of primary variable

and balance of secondary variable. Finally, the boundary conditions are imposed to the system

and the final algebraic system

K∗U = Q∗ (2.28)

is solved for U to obtain the unknown values of the problem on the nodes. U is the vector

containing nodal values of uh, and K∗ and Q∗ are the global matrices assembled from the

matrix Ke
ij and vectors fe

i + Qe
i respectively.
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2.1.1 An adaptive stabilized finite element method

The standard Galerkin approximation usually introduces nonphysical oscillations when the

problem is either advection or reaction dominated. One way to solve this problem is to add some

numerical diffusion terms to the variational formulation. These terms stabilize the finite element

solution and therefore, a stabilized finite element method is obtained. There are many possible

choices of such terms. We use the adaptive scheme introduced in [4]. The scheme is obtained by

combining the stabilized finite element method introduced in [30] and an error estimator using

constants which only depends on the mesh. It is reported that this scheme attains an optimal

order of convergence (see [4] for details).

The variational formulation of the RDA equation in (2.2) is given in (2.7) as

Be(w, u) = le(w). (2.29)

The stabilized formulation now is [4]

Be
τ (w, u) = leτ (w) (2.30)

where

Be
τ (w, u) = Be(w, u) +

∑∫

Ωe

τK(−ε∇2w − a · ∇w + bw)(−ε∇2u + a · ∇u + bu)dxdy

(2.31)

and

leτ (w) = le(w)−
∑∫

Ωe

τKf(−ε∇2w − a · ∇w + bw)dxdy. (2.32)

Here summations are all over Ωe.

The stabilization parameter τK is defined as follows [4]

τK =
h2

K

bh2
Kmax

{
1, P eR

K

}
+ (2ε/mk) max

{
1, P eA

K

} (2.33)

where

PeR
K =

2ε

mkbh
2
K

and PeA
K =

mk|a|hK

ε
(2.34)

with |a| =
√

a2
1 + a2

2.

The τK formula has a form that is suggested by static condensation along with two switches

for the asymptotic behavior of the reaction, diffusion coefficients and the norm of the advection

vector, [30]. The comparison between these coefficients is performed by PeR
K and PeA

K . The

final parameter τK reflects the asymptotic behavior under any limiting case. In our study, we

take mk = 1/3. The parameter hK is a measure of the element size. It is reported that under

the presence of advection, the element parameter hK that yields the best numerical results is
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computed using the largest streamline distance in the element. The computation of hK using

this idea is suggested by residual-free-bubbles. (Detailed information about mk and hK can be

obtained from [4, 30]).

We note that since we use linear elements we have ∇2uh = 0 and ∇2w = 0. Therefore,

equations in (2.31) and (2.32) now become simpler as

Be
τ (w, u) = Be(w, u) +

∑∫

Ωe

τK(−a · ∇w + bw)(a · ∇u + bu)dxdy (2.35)

and

leτ (w) = le(w)−
∑∫

Ωe

τKf(−a · ∇w + bw)dxdy (2.36)

respectively.

2.2 Numerical Results

In this section we present some test problems and solve them by using finite element method

or the stabilized finite element method described above. We work on four test problems (1)

Reaction-diffusion problem, (2) Diffusion-advection problem, (3) Reaction-diffusion-advection

problem I and (4) Reaction-diffusion-advection problem II. All of the computations and plottings

are carried by using MATLAB. We perform our experiments for various values of ε and N where

ε and N are the diffusivity constant and the number of linear elements respectively. Numerical

solutions are presented in terms of contours and level (surface) plots comparing with the exact

solution. In the figures the maximum absolute errors are also marked. Some plots are drawn at

the center line y = 0.5 to observe the behavior of the numerical solution compared to the exact

solution.

2.2.1 Problem 1 : Reaction-diffusion problem

The reaction-diffusion problem given in [4] is obtained by taking a = (0, 0), b = 1, f = 1 in

equation (2.2). The problem is therefore




−ε∇2u + u = 1 in 0 ≤ x, y ≤ 1

u = 1 on x = 0, 0 < y < 1

u = 0 on x = 1, 0 < y < 1
∂u

∂n
= 0 on y = 0, y = 1.

(2.37)

The exact solution to this problem is given as [4]

u(x, y) = 1− sinh(ε−1/2x)/ sinh(ε−1/2). (2.38)
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 N = 32  N = 128

 N = 512  N = 2048

Figure 2.2: Linear triangle elements used in discretization of the problem domain

First, we take ε = 1, 0.1, 0.01, 0.001 and 0.0001 with N=32, 128, 512 and 2048 to observe

how the diffusion effects the standard finite element solution when diffusion constant ε gets

smaller. Thus, we observe that when ε gets smaller we need to take more elements in FEM.

From Figures 2.3, 2.4, 2.5 and 2.6 we can see that when ε gets smaller the standard finite

element method fails to agree with the exact solution. When ε is greater than 0.001 the method

provides accurate solution with increasing number of elements. However, for smaller values,

although the method proves better with increasing N we see that there are still oscillations and

a relatively large error occurs due to these oscillations. Therefore it is useful here to introduce

the stabilized finite element method described in Section 2.1.1. Since the results obtained for

ε=1, 0.1 and 0.01 are already suitable with the exact solution we will only print the plots of the

stabilized method for ε=0.001 and 0.0001. For small values of ε, the contour curves accumulate

along the x = 1 boundary of the domain and hence the contour plots does not give a sufficient
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sight for observation. So, we only print the surface plots of the corresponding standard solution,

the stabilized solution and the exact solution respectively to compare the standard method and

the stabilized method.

As it is seen from Figures 2.7, 2.8, 2.9 and 2.10 stabilization removes the oscillations pro-

duced by the standard method. Especially when ε = 0.0001, the solution obtained by using

the standard method is not smooth even when 2048 elements are used while the stabilization

produces a smoother solution with the same number of elements.
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Figure 2.3: Contour plots of problem 1 for ε=1 and ε=0.1 with various values of N
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Figure 2.4: Contour plots of problem 1 for ε=0.01 with various values of N
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Figure 2.5: Contour plots of problem 1 for ε=0.001 with various values of N
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Figure 2.6: Contour plots of problem 1 for ε=0.0001 with various values of N
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Figure 2.7: Surface plots of problem 1 for ε = 0.001 and N=512
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Figure 2.8: Surface plots of problem 1 for ε = 0.001 and N=2048
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Figure 2.9: Surface plots of problem 1 for ε = 0.0001 and N=512

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

x

Numeric solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

x

Numeric solution with stabilization

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

x

Exact solution

y

u
(x

,y
)

Figure 2.10: Surface plots of problem1 for ε = 0.0001 and N=2048
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2.2.2 Problem 2 : Diffusion-advection problem

The diffusion-advection problem given in [4] is obtained by taking a = (1, 0), b = 0 and

f = 1 in equation (2.2). The problem now turns to be




−ε∇2u + ux = 1 in 0 ≤ x, y ≤ 1

u = 0 on x = 0, x = 1, 0 ≤ y ≤ 1
∂u

∂n
= 0 on y = 0, y = 1, 0 ≤ x ≤ 1.

(2.39)

The exact solution to this problem is given as [4]

u(x, y) = x− (e−
1−x

ε − e−
1
ε )/(1− e−

1
ε ). (2.40)

For this problem, the plots of the solutions for several values of ε and N are presented. We

will test methods for ε = 1, 0.1, 0.01, 0.001 and 0.0001 in the given order. The existence of

advection term in this problem causes a decrease in the performance of the standard method

and increases the need to use stabilization. For example, when ε = 1 we need 512 elements to

obtain a very well agreement of the numerical solution obtained with the standard method and

the exact solution. This was obtained with 128 elements for problem 1 in which there was no

advection. In Figure 2.11 we display the contours of the solutions for ε=1 with the standard

method and the stabilized method. From these plots it can be seen that when ε is not small that

is when the problem is not advection dominated, increasing number of elements increases the

accuracy of the method much more than the stabilization effects. However, from Figure 2.12 it

is seen that stabilization starts to prove accuracy when ε is small. The maximum error decreases

and the lines are getting smoother. As before, for smaller values of ε we print the surface plots

of the solutions obtained by the standard method, stabilized method and the exact solution for

a better sight. Figure 2.13 shows the importance of the stabilization for ε = 0.01 more clearly.

From Figure 2.14 and Figure 2.15 we observe that when ε = 0.001 and 0.0001 the standard

method fails to produce smooth solutions. Increasing number of elements does not help the

solution get better. However, the stabilized method obviously removes the oscillations even

with N=128. Moreover, we see that the need of the stabilization increases and the effect of

increasing the number of elements decreases as ε gets smaller. For a closer look, we also display

the horizontal cuts at y = 0.5 of the standard solution, stabilized solution and the exact solution

in Figure 2.16 with N= 32, 128 and 512 for ε = 0.0001. From this figure as well, we can see that

there is no significant oscillation in the stabilized method solution whereas the standard method

solution is far away from the exact solution. Figure 2.17 shows horizontal cuts at y = 0.5 of the

stabilized solution and the exact solution. Here again we only print the results for ε = 0.0001

with N=32, 128, and 512 and we see that the stabilized solution agrees well with the exact

solution for small number of elements. Moreover the accuracy of the method increases as the
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Figure 2.11: Contour plots of problem 2 with the standard method (top) and the stabilized

method (bottom) for ε = 1 with N=32, 128 and 512

number of elements increases. Note that using 128 elements provides an accurate solution in

the stabilized method.
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Figure 2.12: Contour plots of problem 2 with the standard method (top) and the stabilized

method (bottom) for ε = 0.1 with N= 128 and 512

32



0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

x

Numeric solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

x

Numeric solution with stabilization

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

x

Exact solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

x

Numeric solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

x

Numeric solution with stabilization

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

x

Exact solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

x

Numeric solution

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

x

Numeric solution with stabilization

y

u
(x

,y
)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

x

Exact solution

y

u
(x

,y
)

Figure 2.13: Surface plots of problem 2. The standard method, the stabilized method and the

exact solution respectively for ε = 0.01 with N=128 (top), 512 (middle) and 2048 (bottom)
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Figure 2.14: Surface plots of problem 2. The standard method, the stabilized method and the

exact solution respectively for ε = 0.001 with N=128 (top), 512 (middle) and 2048 (bottom)
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Figure 2.15: Surface plots of problem 2. The standard method, the stabilized method and the

exact solution respectively for ε = 0.0001 with N=128 (top), 512 (middle) and 2048 (bottom)
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Figure 2.16: Horizontal cuts at y=0.5 of problem 2 for ε = 0.0001 with N=32, 128 and 512.
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Figure 2.17: Horizontal cuts at y=0.5 of problem 2 for ε = 0.0001 with N=32, 128 and 512.
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2.2.3 Problem 3 : Reaction-diffusion-advection problem I

Our first RDA equation is taken from [13]. In equation (2.2) we take ε = 10−5, a = (1, 0)

and b = 1. The source function f and Dirichlet boundary conditions are taken from the exact

solution

u(x, y) = exp(−(x− 0.5)2

aw
− 3(y − 0.5)2

aw
) (2.41)

with aw = 0.2.
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Figure 2.18: Contour plots of problem 3 for ε = 10−5 with N=32, 128, 512 and 2048.

We solve this problem to test the reliability of the standard method to solve the RDA

equations described earlier. Although the problem is advection and reaction dominated since

ε = 10−5, that is very small compared to advection and reaction paramaters, it has a smooth

solution. Note that the solution does not depend on the diffusion parameter. We can see from

Figure 2.18 that the solution of this problem obtained by the standard FEM agrees well with the
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exact solution. Accuracy obtained increases with the increase of N as expected. The standard

solution does not produce oscillations and hence, there is no need to apply the stabilized method

for this problem.

2.2.4 Problem 4 : Reaction-diffusion-advection problem II

Our second steady-state RDA equation is taken from [38]. This problem is obtained by taking

a = (−1,−1) and b = 2 in equation (2.2) with homogeneous Dirichlet boundary conditions. The

source function f is taken to satisfy the exact solution which is given as

u(x, y) = (1− e−x/ε)(1− e−y/ε)(1− x)(1− y). (2.42)

We have already tested, in the previous problem, the standard method solution for RDA

equation. However, in this problem, we concentrate on the case when ε is very small and the

standard solution produces oscillations unless the solution is smooth. We will consider the case

ε = 10−8, the smallest value of ε tested in [38]. To observe the behavior of the solutions we choose

to plot the horizontal cuts at y = 0.5 again. We first show the standard solution and the exact

solution for various values of N in Figure 2.19. We see that for this problem the standard FEM

fails to produce a reasonable solution even when N = 2048. Hence, the need for stabilization

is obvious. The next plot, Figure 2.20 shows the standard FEM solution, the stabilized method

solution and the exact solution along y = 0.5 to be able to compare the methods. It can be seen

from the figure that the stabilized method reveals the oscillations produced by the standard

FEM. Hence, the reaction-advection dominated RDA equation is solved properly for ε = 10−8

by using 2048 elements.

These test problems show that as ε gets smaller the standard FEM needs more elements to

obtain accurate solution. For smaller values of ε however, increasing the number of elements

does not reveal the nonphysical oscillations in the standard FEM solution and in this case

the stabilized FEM is used. The stabilized FEM produces more accurate solutions with less

number of elements compared to standard Galerkin FEM. Moreover, it avoids those nonphysical

oscillations.
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Figure 2.19: Horizontal cuts of the standard method solution and the exact solution of problem

4 at y = 0.5 with N=32, 128, 512 and 2048.
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Figure 2.20: Horizontal cuts of the standard method solution, stabilized method solution and

the exact solution of problem 4 at y = 0.5 for N=32, 128, 512 and 2048.

40



Chapter 3

Finite Element Method Solution

of Time-Dependent

Reaction-Diffusion-Advection

Equations

In this chapter, we describe the FEM analysis for time-dependent RDA equations using a two-

dimensional model problem. The finite element model for time-dependent problems involves two

main steps. The first step, called semidiscretization, is to obtain the weak form of the equation

on an element to find the spatial approximation. As a result of the semidiscretization a set of

ordinary differential equations in time with nodal values is obtained. The second step is the

time approximation of these ordinary differential equations. Using a finite difference scheme, the

set of differential equations is transformed into a set of algebraic equations involving the nodal

values at the time level tk+1 in terms of known values from the previous time level tk. The time

discretization can be done using Runge-Kutta method, least squares method, finite difference

method or finite element method for time direction, details can be found in [43, 19, 6]. In this

study, we use the generalized trapezoidal rule, also called as α− family approximation, which

is described within the next section.
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3.1 Finite Element Method in Space, Finite Difference Method

in Time

Consider the non-dimensional time-dependent RDA equation given together with boundary

conditions and initial condition




∂u

∂t
− ε∇2u + a · ∇u + bu = f in Ω× [0, T ]

u(x, t) = uD on ΓD

∂u

∂n
= qN = g on ΓN

u(x, 0) = u0 at t = 0

(3.1)

where ΓD and ΓN are the boundaries on which the Dirichlet (or first type) boundary condition

and the Neumann (or second type) boundary condition defined respectively, with ΓD∪ΓN = ∂Ω.

In the two-dimensional case, x = (x, y) and hence, the boundary conditions are u(x, y, t) =

uD(x, y, t) , qN = ε∂u
∂xnx + ε∂u

∂y ny = g(x, y, t), and similarly the initial condition is u(x, y, 0) =

u0(x, y). The source function f in this case is of the form f = f(x, y, t).

The weak form of (3.1) over an element Ωe can be obtained by a similar procedure used in

Section 2.1. Multiply the differential equation in (3.1) with the weight function w(x, y) (which

is a function of position only) and integrate over the element to obtain
∫

Ωe

w(
∂u

∂t
− ε∇2u + a · ∇u + bu− f)dxdy = 0. (3.2)

Then we integrate by parts with respect to position variables only using the divergence

theorem. Replacing the coefficient of w in the boundary integral with the secondary variable

using qN = ε∂u
∂xnx + ε∂u

∂y ny we obtain
∫

Ωe

[w(
∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
+ bu− f) + ε

∂w

∂x

∂u

∂x
+ ε

∂w

∂y

∂u

∂y
]dxdy −

∮

Γe

wqnds = 0. (3.3)

Now, to obtain the semidiscrete finite element model we substitute a finite model approxi-

mation for u. To select an approximation for u we assume that the time dependence and space

variation can be separated, that is, we use the approximation

u(x, y, t) ≈
n∑

j=1

ue
j(t)ψ

e
j (x, y) (3.4)

where ue
j are the values of u(x, y, t) at the spatial location (xj , yj) at time t and n is the number

of nodes of element ’e’. We now, substitute w = ψe
i (x, y) and replace u in equation (3.3) by

(3.4) to obtain the ith differential equation in time

n∑

j=1

(
M e

ij

due
j

dt
+ Ke

iju
e
j

)
− fe

i −Qe
i = 0 i = 1, 2, ..., n (3.5)
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where

M e
ij =

∫

Ωe

ψe
i ψ

e
jdxdy

Ke
ij =

∫

Ωe

{
ε

(
∂ψe

i

∂x

∂ψe
j

∂x
+

∂ψe
i

∂y

∂ψe
j

∂y

)
+ a1ψ

e
i

∂ψe
j

∂x
+ a2ψ

e
i

∂ψe
j

∂y
+ bψe

i ψ
e
j

}
dxdy

fe
i =

∫

Ωe

f(x, y, t)ψe
i dxdy

Qe
i =

∮

Γe

ψe
i qnds.

(3.6)

The equation (3.5) can be written in matrix form as

[M e] {u̇e}+ [Ke] {ue} = {fe}+ {Qe} (3.7)

where u̇ =
∂u

∂t
.

After the assembly procedure the system

[M ] {u̇}+ [K] {u} = {f}+ {Q} (3.8)

is obtained, where the matrices are of sizes n× n.

We should note, once again, that we used linear triangular elements in this study and there-

fore the matrices in (3.6) can be computed exactly using the formulas given in Section 2.1.

This completes the semidiscretization step. We now describe the α− family approximation, in

which a weighted average of the time derivative of the dependent variable is approximated at

two consecutive time steps by linear interpolation of the values of the variable at the two steps

(1− α) {u̇}s + α {u̇}s+1 =
{u}s+1 − {u}s

∆ts+1
for α ∈ [0, 1]. (3.9)

The α− family approximation is [43]

{u}k+1 = {u}k + ∆t
[
(1− α) {u̇}k + α {u̇}k+1

]
. (3.10)

For different values of α ∈ [0, 1] we obtain the following approximation schemes

α =





0, the forward difference scheme

1/2, the Crank-Nicolson scheme

2/3, the Galerkin scheme

1, the backward difference scheme.

(3.11)
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Among these, the Crank-Nicolson scheme, the Galerkin scheme and the backward difference

scheme are unconditionally stable. However, the forward difference scheme is conditionally stable

and the stability requirement is

∆t < ∆tcr =
2

(1− 2α) λmax
(3.12)

where α < 1
2 and λmax is the largest eigenvalue of the finite element equations

(−λ [M e] + [Ke]) {ue}={Qe} . (3.13)

Details can be found also in [43].

Using the approximation (3.10) we transform the differential equations (3.8) into a set of

algebraic equations at time tk+1

[K̂]k+1{u}k+1 = {F̂} (3.14)

where

[K̂]k+1 = [M ] + α∆t [K]k+1
(3.15)

and

{F̂} = ∆t
(
α {F}k+1 + (1− α) {F}k

)
+ ([M ]− (1− α) ∆t [K]k) {u}k . (3.16)

Finally, equation (3.14) is solved for the nodal values uj at time tk+1 = ∆t(k +1). Note that

{F} is the sum of the source vector {f} and internal flux vector {Q} which are known for both

time levels tk and tk+1 at all nodes where we seek a solution because f is a known function and

the sum of Qe
j is zero at these nodes. Therefore, at time t = 0 , {F̂} can be computed using the

initial value of u (that is u0). Then the solution can be obtained iteratively for any time level

from equation 3.14.

3.1.1 The Stabilized finite element method for transient problems

The stabilized method for steady problems was given in Section 2.1.1. The extension to the

transient problems is based on a previous discretization in time of the equation (3.1) and adding

stabilizing terms to equation (3.14). The method, in each discrete time, on each element has

now the form [19, 35]
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(uk, w) +
∑

τK(uk,a · ∇w)+

α∆t
[
(ε∇uk,∇w) + (a · ∇uk + buk, w) +

∑
τK(a · ∇uk + buk,a · ∇w)

]
=

(uk−1, w) +
∑

τK(uk−1,a · ∇w)−

α∆t
[
(ε∇uk−1,∇w) + (a · ∇uk + buk−1, w) +

∑
τK(a · ∇uk−1 + buk−1,a · ∇w)

]
+

α∆t
[
(fk−1, w) +

∑
τK(fk−1,a · ∇w) + (fk, w) +

∑
τK(fk,a · ∇w)

]

(3.17)

where (·, ·) denotes the usual inner product, τK is the stabilization parameter defined in (2.33)

and α =0.5 (Crank-Nicolson scheme) is used in the computations.

3.2 Numerical Results

In this section we present the solutions of time dependent problems. We use the uncondition-

ally stable Crank-Nicolson scheme (α = 0.5 in equation (3.10)) for the temporal discretization

with different ∆t and different N values. Several values of ∆t and N are tested to find the

best solution in each test problem. The problems we solve are (1) Heat conduction problem, (2)

Diffusion problem, (3) Reaction-diffusion problem, (4) Diffusion-advection problem, (5) System

of reaction-diffusion equations , (6) Reaction-diffusion system (7) Reaction-diffusion Brusselator

system, (8) Reaction-diffusion-advection problem and (9) A basic air pollution model.

3.2.1 Problem 1 : Heat conduction problem

We first consider the transient heat conduction equation from [43]

∂u

∂t
−∇2u = 1 on Ω× [0, T ] (3.18)

where Ω = [0, 1]× [0, 1] with initial condition

u(x, y, 0) = 0 for all (x,y) in Ω (3.19)

and subject to the boundary conditions,

u(1, y, t) = u(x, 1, t) = 0 and

∂u

∂x
(0, y, t) =

∂u

∂y
(x, 0, t) = 0.

(3.20)
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The exact solution is not given explicitly to this problem. However, it is reported that the

steady state is reached at t = 1 and some of the nodal values of the exact solution at t = 1 are

listed in [43]. For experiments we pick the middle node, (0.5, 0.5), of the the problem domain to

compare the given exact value and the computed value using finite element method. It is known

that u(0.5, 0.5, 1) = 0.1811. We take N = 32 and test the method for several ∆t values and the

results are given in Table 3.1.

Table 3.1: Maximum absolute errors of problem 1 for several ∆t values with N = 32

∆t u(0.5,0.5,1) Maximum absolute error

0.1 0.1794 0.0017

0.05 0.1791 0.0020

0.01 0.1790 0.0021

0.001 0.1790 0.0021

The table shows that the unconditionally stable scheme produces close results but ∆t = 0.1

obtains the smallest error. Hence, we use ∆t = 0.1 for the following computations. Next we

take ∆t = 0.1 and now seek the steady state solution using several number of elements. To find

the steady state solution to this problem we terminate when |uk − uk−1| is less then a given

tolerance. We set the tolerance to 10−4 and obtained the results in Table 3.2.

Table 3.2: Maximum absolute errors of problem 1 for several N values with ∆t = 0.1

N FEM solution Reached time Maximum absolute error

32 0.1794 1.1 0.0017

128 0.1804 1.2 6.8846e-004

512 0.1809 1.4 2.0581e-004

2048 0.1810 1.4 1.4980e-004

We can see from Table 3.2 that the steady solution at the middle node is already obtained

for ∆t = 0.1 with N = 128. Now, we can proceed to have a look at the solution on the whole

domain. We plot the contours of the steady solution in Figure 3.1. We see from the plot that the

finite element solution is consistent with the boundary conditions. The solution vanishes along

the x = 1 and y = 1 boundaries and level curves are perpendicular to the boundaries x = 0 and

y = 0 and this validates the given homogenous Neumann boundary conditions of the problem.
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Figure 3.1: Contour plot of problem 1 at steady state with ∆t = 0.1 and N=128

3.2.2 Problem 2 : Diffusion problem

We consider the time dependent linear diffusion equation from [17]. The problem is

∂u

∂t
−∇2u = 0 on Ω× [0, T ] (3.21)

where Ω = [0, 1]× [0, 1] with initial condition

u(x, y, 0) = sin(πx) sin(2πy) (3.22)

and the Dirichlet boundary conditions are

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0. (3.23)

The exact solution to this problem is given as [17]

u(x, y, t) = e−5π2t sin(πx) sin(2πy). (3.24)

Figure 3.2 shows the exact solution at the point (0.5, 0.5) that is u(0.5, 0.5) in the time

interval t = [0, 1]. We see that the exact solution to this problem goes to zero after a short time.

To compare the exact solution and the FEM solution we print the results for t = 0.05 in Figure

3.3. These results show that for solving the transient diffusion problem, N = 32 and N = 128

are not enough, however, when N = 512 the solution agrees well with the exact solution and

the best accuracy is obtained when N = 2048.
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Figure 3.2: Plot of exact solution of problem 2 at (0.5,0.5)

3.2.3 Problem 3 : Reaction-diffusion problem

We consider now the nonlinear reaction-diffusion equation

∂u

∂t
− 1

2

(
∂2u

∂x2
+

∂2u

∂y2

)
= u2 (1− u) in Ω× [0, T ] (3.25)

where Ω = [0, 1] × [0, 1] and Dirichlet boundary conditions together with the initial condition

are taken to be consistent with the exact solution which is given in [17] as

u(x, y, t) = 1
1+ep(x+y−pt) where p = 1√

2
. (3.26)

For this problem, we first fix N = 32 to experiment the best value for ∆t. We take ∆t= 0.1,

0.01, 0.001 and 0.0001 to reach the time level t = 1 and compare by looking at the maximum

error between the calculated solution and the exact solution. The results are listed in Table 3.3.

Table 3.3: Maximum absolute errors of problem 3 for several ∆t values with N = 32

∆t Maximum absolute error

0.1 0.0024

0.01 0.0025

0.001 0.0025

0.0001 0.0025

It can be seen from the table that there is no significant difference between the choice of ∆t

but ∆t=0.1 is slightly better. Therefore in the proceeding computations of this problem we use
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Figure 3.3: Contour plots of the exact solution and the finite element solution of problem 2 at

t = 0.05

∆t = 0.1. Next, we take N = 32, 128, 512 and 2048. Once again we compare the maximum

absolute error at time t = 1. The results are given in Table 3.4.

Table 3.4: Maximum absolute errors of problem 3 for several N values with ∆t = 0.1

N Maximum absolute error

32 0.0024

128 5.5757e-004

512 1.1761e-004

2048 2.3340e-004
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Figure 3.4: The exact solution and the finite element solution of problem 3 at t=1 using ∆t = 0.1

and N=32 and 128

We see that increasing N from 32 to 128 decreases the error considerably. However, there

is no significant difference between N=128 and N=512. Moreover, using 2048 elements cause

a loss of accuracy compared to 512 for this problem. Figure 3.4 compares the contour plots of

the exact solution and finite element solution at t = 1 using N = 32 and 128. We see from the

figure that N = 32 is not enough, however when N = 128 the levels of the exact solution and

the finite element solution coincide. We can conclude from these results that this problem is

solved accurately with ∆t = 0.1 and N = 128 for t = 1.

Now, we proceed to investigate the steady state solution of this problem. We take the middle

point of the problem domain and check where the absolute difference between two solution values

at consecutive time levels is less than the specified tolerance. The steady state time is t = 13.9

when tolerance is set to 10−4. Therefore, we plot the exact solution and the finite element

solution at the point (0.5, 0.5) in the time interval [0,20] in Figure 3.5. The numerical solution

is obtained using ∆t = 0.1 and N = 128. We observe from this figure that the finite element

solution agrees very well with the exact solution. It can also be deduced that the steady state

is reached about t = 14 and the steady state solution of u(0.5, 0.5, t) is 1.

3.2.4 Problem 4 : Diffusion-advection problem

The time-dependent diffusion-advection equation is

∂u

∂t
− 1

2

(
∂2u

∂x2
+

∂2u

∂y2

)
+

1
2

(
∂u

∂x
+

∂u

∂y

)
= 0 in Ω× [0, T ] (3.27)
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Figure 3.5: The exact solution and the finite element solution of problem 3 at (0.5,0.5) using

∆t = 0.1 and N=128

where Ω = [0, 1] × [0, 1]. Dirichlet boundary conditions together with the initial condition are

taken to be consistent with the exact solution which is given as [17]

u(x, y, t) =
1√
s
e−50(x+y−t)2/s where s = 1 + 200t. (3.28)

As it was done before, we first fix N = 32 to seek for the best value of ∆t. We take ∆t= 0.1,

0.01, 0.001 and 0.0001 to test the solution at t = 1 and compare by looking at the maximum

absolute error between the calculated solution and the exact solution. These maximum absolute

errors are given in Table 3.5.

Table 3.5: Maximum absolute errors of problem 4 for several ∆t values with N = 32

∆t Maximum absolute error

0.1 0.0011

0.01 8.4182e-004

0.001 8.4184e-004

0.0001 8.4184e-004

It can be observed from this table that using ∆t = 0.01 provides a considerable decrease in

the error compared to using ∆t = 0.1. There is not much of a difference in the errors when 0.01,

0.001 and 0.0001 are used for ∆t. Therefore we conclude that it is convenient to take ∆t = 0.01

for this problem. Next, we fix ∆t = 0.01 and take N = 32, 128, 512 and 2048 to see how the
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error changes with the number of elements used. Table 3.6 shows the maximum absolute errors

between the exact solution and the finite element solution at t = 1.

Table 3.6: Maximum absolute errors of problem 4 for several N = 32 values with ∆t = 0.01

N Maximum absolute error

32 8.4182e-004

128 2.4401e-004

512 6.4659e-005

2048 2.1182e-005

This table shows that when N is increased the maximum absolute error is decreased. For a

closer look, we print the contour plots of the exact solution and the numerical solution at t = 1

with several number of elements namely, 32, 128, 512 and 2048 in Figure 3.6.

It can be seen from this figure that N = 32 does not produce a good solution, N = 128 gives

better result than N = 32. However, N = 512, N = 2048 improve the solution as it can be seen

from Table 3.6 and Figure 3.6.

Figure 3.7 shows the plot of the exact solution and the finite element solution at the point

(0.5, 0.5) using N = 128 and ∆t = 0.01 in the time interval [0, 25]. We see from this plot that

the steady state solution is reached, which is u = 0, at t = 20. Finally, Figure 3.8 shows the

contour curves of the exact solution and the numerical solution at the steady state about t = 20

with ∆t = 0.01 and several number of elements. We see from these figure plots that the steady

state solution of this problem is obtained accurate enough with N = 128.

3.2.5 Problem 5 : System of reaction-diffusion equations

We now consider a system of reaction-diffusion equations in which the reaction terms are

nonlinear functions. The equations are

{
ut −∇2u− u2(1− v2) = f(x, y, t)

vt −∇2v − v2(1− u2) = g(x, y, t)
(3.29)

in Ω× [0, T ] where Ω = [0, 1]× [0, 1].

The functions f(x; y; t), g(x; y; t) and the boundary and initial conditions are selected to
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Figure 3.6: Contours of the exact solution and the finite element solution of problem 4 using

∆t = 0.01

accommodate the exact solution which is given in [39]
{

u(x, y, t) = e−t sin(x) sin(y)

v(x, y, t) = e−2t sin(2x) sin(2y).
(3.30)

The system (3.29) contains two nonlinear reaction diffusion equations each of which is similar

to the equation in problem 3. To find the solution to this system using finite element method,

starting from the initial conditions given, we first obtain the solutions uk and vk at tk then using

uk and vk we compute uk+1 and vk+1 and so on.

As in [39] we compute the solution at t = 1 to compare the finite element method solution

with the exact solution to this system. It can be observed from the exact solution that both u

and v approach to 0 as t increases. First we take N = 32 and let ∆t vary from 0.1 to 0.0001,
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Figure 3.7: Plot of the exact solution and the finite element solution of problem 4, N = 128 and

∆t = 0.01

the maximum errors are given in Table 3.7.

Table 3.7: Maximum absolute errors of problem 5 for several ∆t values with N = 32

∆t Maximum error of u Maximum error of v

0.1 7.7399e-004 0.0072

0.01 0.0015 0.0026

0.001 0.0016 0.0032

0.0001 0.0016 0.0032

We see from this table that the smallest error occurs when ∆t = 0.1 for u, however, for v it

is when ∆t = 0.01. As a second test, we take N = 128 and test the cases when ∆t = 0.1, 0.01

and 0.001. The following table lists the results obtained.

Table 3.8: Maximum absolute errors of problem 5 for several ∆t values with N = 128

∆t Maximum error of u Maximum error of v

0.1 7.9074e-004 0.0099

0.01 4.5196e-004 3.7530e-004

0.001 4.8957e-004 8.3550e-004
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Figure 3.8: Contours of the exact solution and the finite element solution of problem 4 at steady

state using ∆t = 0.01

In Table 3.8, we see that the smallest error both for u and v occurs when ∆t=0.01. Therefore

to solve this problem we take ∆t=0.01 and N = 128. Figure 3.9 and Figure 3.10 show the

solutions at t = 1 using N = 32 and N = 128 respectively. It can be seen that N = 128 solves

the system accurately, both u and v solutions which are obtained using finite element method,

agree very well with the exact solution.
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Figure 3.9: Contours of the exact solution and the finite element solution of problem 5 at t = 1,

∆t = 0.01 and N = 32

3.2.6 Problem 6 : Reaction-diffusion system

The nonlinear reaction-diffusion system considered is




∂u

∂t
=

1
500

∇2u + 1 + u2v − 3
2
u

∂v

∂t
=

1
500

∇2v +
1
2
u− u2v

(3.31)

in Ω× [0, T ] where Ω = [0, 1]× [0, 1].

The initial conditions are u(x, y, 0) =
1
2
x2− 1

3
x3 and v(x, y, 0) =

1
2
y2− 1

3
y3 and the boundary

conditions are

(
∂u

∂x
,
∂v

∂x

)
= (0, 0) on x = 0, 1 , 0 < y < 1,

(
∂u

∂y
,
∂v

∂y

)
= (0, 0) on y = 0, 1 , 0 < x < 1.

There is no exact solution given to this problem. However, it is reported in [3] that the

solution (u, v) to this system approaches to (1, 1/2) as t increases. Therefore, to observe this

consistency, we print the surface plots of u and v at t = 0, 1, 2 and 5. The finite element

solutions are obtained taking ∆t = 0.01 and N = 128. Figure 3.11 shows u and Figure 3.12

shows v level curves. We can easily see from these figures that (u, v) → (1, 1/2) as t increases

which is expected and which shows this system is solved properly using finite element method.

Additionally, for a closer look, we once again pick the middle node, that is (0.5, 0.5) to observe
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Figure 3.10: Contours of the exact solution and the finite element solution of problem 5 at t = 1,

∆t = 0.01 and N = 128

the solutions on this node. In Figure 3.13 we plot u and v in the time interval [0, 10]. We see

that (u, v) at the middle node approach to (1, 1/2).

3.2.7 Problem 7 : Reaction-diffusion Brusselator system

The chemical system
Bin −→ X

Ain + X −→ Y + D

2X + Y −→ 3X

X −→ E

(3.32)

considered in [48] is known as Brusselator system. Ain and Bin are input chemicals, D and E

are output chemicals and X and Y are intermediates. The kinetic equations associated with

(3.32) are given by

∂X

∂t
= k1B + k2X

2Y − k3AX − k4X + Dx∇2X

∂Y

∂t
= k3AX − k2X

2Y + Dy∇2Y

(3.33)

where k1, k2, k3 and k4 are rate constants.

Letting u = u(x, y, t) and v = v(x, y, t) represent the concentrations of two reaction products

at time t, A and B are constant concentrations of two input reactants and Dx = Dy = α. The

nonlinear partial differential equations associated with the Brusselator system are given by (see,

[48])
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Figure 3.11: u at t=0, 1, 2 and 5 using ∆t = 0.01 and N = 128 for problem 6

∂u

∂t
= B + u2v − (A + 1)u + α∇2u

∂v

∂t
= Au− u2v + α∇2v

(3.34)

in 0 < x, y < L where L is the reactor length. The equations are subject to Neumann boundary

conditions given by

(
∂u

∂x
,
∂v

∂x

)
= (0, 0) on x = 0, L where 0 < y < L,

(
∂u

∂y
,
∂v

∂y

)
= (0, 0) on y = 0, L where 0 < x < L.

The initial conditions are given as u(x, y, 0) = 2 + 0.25y and v(x, y, 0) = 1 + 0.8x. We take
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Figure 3.12: v at t=0, 1, 2 and 5 using ∆t = 0.01 and N = 128 for problem 6

L = 1, A = 1, B = 2 and α = 0.002, same as in [48], and compute the solution at t = 5

to compare the profiles of u and v given there. We have used the finite element method with

N = 128 and ∆t = 0.01. Figure 3.14 shows u obtained by finite element method proposed in

the thesis and the behavior of u is in well accordance with the behavior given on pages 313

and 314 in [48]. And similarly Figure 3.15 shows v. It is reported in [48] that for the selected

parameters of this system, the concentration profiles of u and v converge to (u, v) = (2, 1/2). In

Figure 3.16 we plot u and v at t=10 and it can be seen from this figure that u and v converge

to (u, v) = (2, 1/2) on the whole domain of the problem. This shows that the finite element

method solved this system accurately with N = 128 and ∆t = 0.01. Finally, the last figure of

this problem, Figure 3.17, depicts u and v at the middle point in the time interval [0,10]. From

these plots too we see that u converges to 2 and v converges to 0.5 as t increases.
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Figure 3.13: u(0.5, 0.5, t) and v(0.5, 0.5, t) in the time interval [0,10] for problem 6

3.2.8 Problem 8 : Reaction-diffusion-advection problem

The reaction-diffusion-advection equation is

∂u

∂t
− 10−8

(
∂2u

∂x2
+

∂2u

∂y2

)
+ 2

∂u

∂x
− ∂u

∂y
+ u = f in Ω× [0, T ] (3.35)

where Ω = [0, 1] × [0, 1]. Dirichlet boundary conditions, the initial condition and the source

function f are taken to be consistent with the exact solution which is given as [35]

u(x, y, t) = t2 cos(xy2). (3.36)

The diffusion constant of this problem is ε = 10−8 and hence the problem is reaction and

advection dominated. Therefore, we solve this problem using the stabilized FEM described in

Section 3.1.1. We present the contour plots of the numerical solution obtained from stabilized

FEM and the exact solution using N = 128 and N = 512 at time t = 10 in Figure 3.18. It

can be seen from the figure that the stabilized FEM solution agrees well with the exact solution

with N = 512. The problem does not have a steady state solution as the solution increases with

time.

3.2.9 Problem 9 : A basic air pollution model

We consider the following reactions, which constitute a basic air pollution model [22, 49]

NO2 + hν
k1−→ NO + O(3P )

O(3P ) + O2
k2−→ O3

NO + O3
k3−→ O2 + NO2.

(3.37)
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Figure 3.14: u at t = 5 of problem 7

In this reaction system, NO2 is nitrogen dioxide, NO is nitrogen oxide, O(3P ) is atomic

oxygen, O2 is molecular oxygen and O3 is ozone [45]. The term hν in the first reaction indicates

that this reaction is photochemical, that is, it depends on light. The constants k1, k2 and k3 are

the reaction coefficients.

Putting now u1 = [O(3P )], u2 = [NO], u3 = [NO2] and u4 = [O3] to denote the concentra-

tions, the associated ODE system reads [49]

du1

dt
= k1u3 − k2u1

du2

dt
= k1u3 − k3u2u4 + s2

du3

dt
= k3u2u4 − k1u3

du4

dt
= k2u1 − k3u2u4.

(3.38)

The unit for time here is seconds and for concentrations number of molecules per cm3. As a

natural assumption, oxygen concentration is taken to be constant, and a source s2 is added for

NO in the second equation. The initial concentrations are

u1 = 0

u2 = 1.3× 108

u3 = 5.0× 1011

u4 = 8.0× 1011

(3.39)
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Figure 3.15: v at t = 5 of problem 7

and s2 = 106. The reaction coefficients are given as

k3 = 10−16

k2 = 105

k1 = 10−40 (night time) , k1 = 10−5e7sec(t) (day time)

(3.40)

where

sec(t) =
(
sin

( π

16
(th − 4)

))0.2
, th = th− 24bth/24c, th = t/3600. (3.41)

The daytime is taken to be between 4 o’clock in the morning and 8 o’clock in the evening.

The concentration values and reaction coefficients more or less approximate their counterparts

used in real models. Because oxygen is held constant, k2 contains the total number of O2

molecules per cm3 and is therefore much larger than k1 and k3, [49].

Introducing spatial diffusion effect to the system (3.38) on a domain (x, y) ∈ (−L,L)2 and a

source term S(x, y) = s2e
−40(x2+y2)/L2

with homogeneous Neumann boundary conditions where

L = 400, the system [22]

∂u1

∂t
= ∇2u1 + k1u3 − k2u1 + S(x, y)

∂u2

∂t
= ∇2u2 + k1u3 − k3u2u4 + s2 + S(x, y)

∂u3

∂t
= ∇2u3 + k3u2u4 − k1u3 + S(x, y)

∂u4

∂t
= ∇2u4 + k2u1 − k3u2u4 + S(x, y)

(3.42)

is obtained.

62



0 0.2 0.4 0.6 0.8 1

0

0.5

1

0.5

1

1.5

2

x

u  at   t = 10

y

u
(x

,y
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0.5

1

1.5

2

x

v  at   t = 10

y

v
(x

,y
)

Figure 3.16: Solution to problem 7, u and v at t = 10 obtained by finite element method with

N = 128 and ∆t = 0.01

We solve this problem using the stabilized FEM with N = 2048 to obtain an observation of

the concentrations of the model on the problem domain. We present the solution at t = 3×105 as

in [22] in Figure 3.19. We see from the figure that u1, u2 and u4 are increasing , u3 is decreasing

by time. The peaks are at the center due to the source S(x, y) added to the model for u1, u2,

u3 and u4. Note that u4 has a minimum at the center. As time increases the concentrations

increase from the center to the boundaries.

From the test problems considered in this chapter we see that there is no need to use very

small ∆t in the computations. Similar to time-independent problems, for transient problems

too, as ε gets smaller the FEM needs more elements to obtain accurate solutions. The solutions

to the problems (1)-(7) are obtained by the standard FEM making use of Crank-Nicolson scheme

for the temporal discretization. The solution to the problems (8) and (9) are obtained by the

stabilized FEM because of the advection and/or reaction dominance.
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Figure 3.17: u(0.5, 0.5, t) and v(0.5, 0.5, t) of problem 7 where t ∈ [0, 10]
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Figure 3.18: Contour plots of problem 8 at t = 10 with N = 128 and N = 512
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Chapter 4

Conclusion

In this thesis, general mathematical description of an air pollution model is given.

Reaction-diffusion-advection (RDA) equations which are the governing equations of some air

pollution models are described. The finite element method (FEM) is applied for solving RDA

equations. The domain is discretized by using linear triangular elements. Numerical experiments

presented in the study show that the standard FEM introduces nonphysical oscillations in the

solution for reaction or advection dominated problems. An adaptive scheme which is based

on adding to the variational formulation some numerical diffusion terms to stabilize the finite

element solution is described. The stabilized FEM is shown to avoid the oscillations in the

solution produced by the standard FEM. The unconditionally stable Crank-Nicolson scheme is

used for temporal dicsretization in transient RDA problems. Thus, the use of very small time

increment is avoided. The stabilization for transient RDA problems improves the solution too,

however it is not that effective as in the steady case.

Numerical results are obtained for some steady and transient RDA problems. As the diffu-

sivity constant (advection or reaction dominance) gets smaller, standard Galerkin FEM method

needs more finite elements to take for steady and unsteady problems. For very small diffusiv-

ity constant stabilization is necessary to solve the RDA equations. Solutions of the problems

are visualized in terms of graphics comparing with the exact solutions whenever possible. One

application in the air pollution modeling is also given. It is found that the pollution source

introduces peaks at the center region and these peaks are spread as time increases.

Air pollution models containing large number of pollutants result in mathematical models

with large number of equations. In fact, in many cases the large air pollution models are not

tractable at all unless the numerical algorithms are sufficiently fast. Generally, one is advised

to use parallel computation for large air pollution problems.
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