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ABSTRACT

COMPLETION OF A LEVY MARKET MODEL
AND PORTFOLIO OPTIMIZATION

Aysun Tiirkvatan
M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

September 2008, 75 pages

In this study, general geometric Levy market models are considered. Since these
models are, in general, incomplete, that is, all contingent claims cannot be replicated
by a self-financing portfolio consisting of investments in a risk-free bond and in the
stock, it is suggested that the market should be enlarged by artificial assets based on
the power-jump processes of the underlying Levy process. Then it is shown that the
enlarged market is complete and the explicit hedging portfolios for claims whose
payoff function depends on the prices of the stock and the artificial assets at maturity
are derived. Furthermore, the portfolio optimization problem is considered in the
enlarged market. The problem consists of choosing an optimal portfolio in such a
way that the largest expected utility of the terminal wealth is obtained. It is shown
that for particular choices of the equivalent martingale measure in the market, the
optimal portfolio only consists of bonds and stocks. This corresponds to completing

the market with additional assets in such a way that they are superfluous in the sense



that the terminal expected utility is not improved by including these assets in the

portfolio.

Keywords: Levy processes, Power-jump processes, Complete markets, Martingale
Representation Property, Hedging portfolio, Portfolio optimization, Martingale
method



OZ

LEVY PIYASASI TAMLAMASI VE PORTFOY
OPTIMIZASYONU

Aysun Tirkvatan
Yiiksek Lisans, Finansal Matematik Bolumii

Tez Yoneticisi: Dog. Dr. Azize Hayfavi

Eyliil 2008, 75 sayfa

Bu calismada, genel geometrik Levy piyasa modelleri incelenmistir. Bu modeller,
genellikle, tam degillerdir, yani, tiim sarta bagli alacak haklari, tahvil ve hisse
senetlerine yatirim yapilarak kendi kendini finanse eden portfoy tarafindan
yinelenemezler. Bu sebepten piyasanin, sz konusu Levy siireglerinin kuvvet-
sigcrama siireclerine dayali yapay varliklar tarafindan genisletilmesi Onerilmistir. Bu
durumda piyasanin tam oldugu gosterilmis ve alacak hakkina ait Odeme
fonksiyonunun hisse senedi ve yapay varliklarin vade sonu degerlerine bagl riskten
korunma portfoyii acik olarak ifade edilmistir. Ayrica, genisletilen piyasada portfoy
optimizasyon problemi incelenmistir. Problem, optimal portfoyiin, nihai servete ait
beklenen faydasinin maksimum olacak sekilde, seciminden ibarettir. Piyasadaki denk
martingale Ol¢iisiiniin 6zel se¢imleri i¢in, optimal portfGyiin sadece tahvil ve hisse
senetlerinden olustugu gosterilmistir. Bu durum piyasanin yeni varliklar1 gereksiz

kilacak sekilde tamlanmasina karsilik gelmektedir.

vi



Anahtar Kelimeler: Levy siirecleri, Kuvvet-sicrama siirecleri, Tam piyasalar,
Martingale Temsili Ozelligi, Riskten korunma portfdyii, Portfdy optimizasyonu,

Martingale metodu
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CHAPTER 1

INTRODUCTION

In recent years more and more attention has been given to stochastic models of
financial markets which depart from the famous Black-Scholes model [9]. Some of
the most popular and still tractable models are the Lévy models. These models are
able to take into account different important stylized features of financial time series.
An accessible introduction, together with theoretical motivations to Lévy markets,
can be found in Geman (2002) [20], as well as [24]. For an overview of the theory

and the applications of Lévy processes in finance see [32] and [12].

It is well-known that the famous Black-Scholes model is complete, that is, all
contingent claims can be replicated by a self-financing portfolio consisting of
investments in a risk-free bond and in the stock. However, when the sources of
randomness are more than the number of assets available for investment the
incompleteness arises. In incomplete markets a perfect replication of a claim is, in
general, not possible and most Lévy market models are incomplete. There are
different approaches to hedging in incomplete markets, see Cont and Tankov (2004)

[12].

A market model is said to be complete if for every integrable contingent claim there
exists an admissible self-financing strategy replicating the claim. The question of

market completeness is linked with the Predictable Representation Property (PRP) of



a martingale. A martingale M is said to have the PRP if, for any square-integrable
random variable X € Fp, we have X = E(X) + fOT hgdMg, for some predictable

process h = {hs, 0 < s < T} (see [32] (p.18)). If we have such a representation, the
predictable process h gives us the admissible self-financing strategy replicating the
claim. Unfortunately, this kind of PRP is a rather delicate and exceptional property,
which is only possessed by a few martingales. Examples include Brownian motion,
the compensated Poisson process and the Azéma martingale, see Dritschel and
Protter (1999) [18]. The PRP for Brownian motion states that every square integrable
random variable adapted to the filtration generated by a Brownian motion can be
represented as a sum of its mean and a stochastic integral with respect to the
Brownian motion, where the integrand is a predictable process. The PRP of
Brownian motion implies the completeness of the Black-Scholes model [9] and gives
the admissible self-financing strategy replicating a contingent claim whose price only

depends on the time to maturity and the current stock price.

When the underlying asset is driven by a Lévy process, perfect hedging using only a
risk-free bond (or a bank account) and the underlying asset is, in general, not
possible and the market is said to be incomplete. However, further developments are
possible. Nualart and Schoutens (2000) [26] proved the PRP for Lévy processes
which satisfy some exponential moment conditions, see also [25]. This PRP states
that every square integrable random variable adapted to the filtration generated by a
Lévy process can be represented as an infinite sum of iterated stochastic integrals
with respect to the orthogonalized compensated power-jump processes of the
underlying Lévy process. In the light of [26] and [25], Corcuera et al. (2005) [14]
suggested that the market should be enlarged by a series of very special assets
(power-jump assets) so that perfect hedging can be achieved. Corcuera et al. (2006)
[13] used this completeness to solve the portfolio optimization problem using the

martingale method.



In this study, we work under a market which consists of one riskless asset (the bond)
and one non-dividend paying risky asset (the stock) with price process formulated by
a geometric Lévy model. Since general geometric Lévy market models are
incomplete, except for the geometric Brownian and the geometric Poissonian
models, the market is completed by following the approach suggested by [14], that
is, the market is equipped with certain additional assets so that any final wealth is
actually attainable by trading in the complete market. First the market is enlarged by
artificial assets based on the power-jump processes of the underlying Lévy process
[26, 25]. For pure jump processes the power-jump process of order two is the
quadratic variation process and is related with the realized variance, see Barndorff-
Nielsen and Shephard (2002), (2003) [S, 6]. Higher order power-jump processes can
be related with realized skewness and realized kurtosis. These new assets can be
related with options on the stock Balland (2002) [4] and with contracts on realized
variance Carr and Madan (1998) [10], Demeterfi et al. (1999) [17] that are traded in
OTC markets regulary. These new assets are strongly related to the realized higher
moments and in a discrete time framework, they mainly coincide Corcuera et al.
(2005a) [15], see also Schoutens (2005) [33]. These assets give you protection
against different kinds of market shocks. Completeness of the enlarged market is
shown by the Martingale Representation Property [26, 25]. The notion of
completeness used is equivalent to the notion of approximate completeness of Bjork
et al. (1997) [8]. Also by giving the explicit hedging portfolios for claims whose
payoff function depends on the prices of the stock and the artificial assets at maturity,
the portfolio optimization problem is considered in the enlarged market [13]. The
problem consists of choosing an optimal portfolio in such a way that the largest
expected utility of the terminal wealth is obtained. A class of utility functions,
including HARA, logarithmic and exponential utilities as special cases, is
considered. Then, the optimal portfolio which maximizes the terminal expected
utility is obtained by the martingale method: First, the optimal wealth is found and

then the hedging portfolio replicating this wealth is obtained [22]. It is shown that for



particular choices of the equivalent martingale measure in the market, the optimal
portfolio only consists of bonds and stocks [21, 31]. This corresponds to completing
the market with additional assets in such a way that they are superfluous in the sense
that the terminal expected utility is not improved by including these assets in the
portfolio. This in turn provides the solution to the problem of utility maximization in

the real market, consisting only of the bond and the stock.

The organization of this study is as follows. In Chapter 2, basic definitions and
concepts related to Lévy processes are given. In Chapter 3, the geometric Lévy
market model is introduced. In Chapter 4, the power-jump processes are introduced
and the Lévy market model is completed by artificial assets constructed from them.
In Chapter 5, the hedging portfolio for the claims whose payoff function depends on
the prices of the stock and the new assets at maturity is given. In Chapter 6, the
portfolio optimization problem in the complete Lévy market is considered. And

finally, in Chapter 7, the conclusion follows.



CHAPTER 2

PRELIMINARIES

Definitions and theorems given in this part are mainly taken from [12, 27, 28].

Assume that we are given a filtered, complete probability space (£, F, F,P), where
F = (Fp)o<t<wo, satisfying the usual hypotheses, that is,
(1) F, contains all the P-null sets of F;

(ii) Fi = Ny>t Fy, forallt, 0 <t < oo;i.e. the filtration F is right continuous.
2.1 Basic Tools

Definition 2.1.1 Two stochastic processes X and Y are modifications if X; =Y

almost surely (a.s.) for each t.

Definition 2.1.2 A function f: [0,T] = R is said to be cadlag if it is right continuous

with left limits.

Of course, any continuous function is cadlag but cadlag functions can have
discontinuities. If t is a discontinuity point we denote by Af(t) = f(t) — f(t—) the
"jump" of f at t. However, cadlag functions cannot jump aroud too wildly. A cadlag
function f can have at most a countable number of discontinuities: {t € [0, T], f(t) #
f(t—)} is finite or countable. Also, for any € > 0, the number of discontinuities

("jumps") on [0,T] larger than € should be finite. So a cadlag function on [0,T] has a



finite number of "large jumps" (larger than €) and posssibly infinite, but countable

number of small jumps.

Definition 2.1.3 A stochastic process X is said to be cadlag if it a.s. has sample paths

which are right continuous, with left limits.

Definition 2.1.4 A family of random variables (Uy)qea is uniformly integrable if

lim, o SUpP f{anlzn} |U,|dP = 0.

Theorem 2.1.1 Let X be a martingale. Then (X()¢s( is uniformly integrable if and
only if Y = lim_,. X; exists a.s., E{|Y|} < o0, and (X{)o<t<eo s @ martingale, where

Xo =Y.

If X is a uniformly integrable martingale, then X converges to X, = Y in L! as well

as a.s..
2.2 Lévy Processes

Definition 2.2.1 An adapted process Z = (Z)so With Zy = 0 a.s. is a Lévy process
if
(1) Z has increments independent of the past; that is, Z;—Zs is independent of
F, 0 <s<t< o;and
(i1) Z has stationary increments; that is, Z—Zs has the same distribution as
Zi—s, 0 <s<t<oo;and
(iii))  Z; is continuous in probability; that is, lim,_¢ Z; = Zg, where the limit is

taken in probability; i.e. Vt >0 Ve > 0, lir{ﬂP’(lZS —Z{ >¢)=0.
S—

The simplest Lévy process is the linear drift, a deterministic process. Brownian
motion is the only (non-deterministic) Lévy process with continuous sample paths.

Other examples of Lévy processes are the Poisson and compound Poisson processes.



Notice that the sum of a linear drift, a Brownian motion and a compound Poisson

process is again a Lévy process; it is often called a “Lévy jump-diffusion” process.

Theorem 2.2.1 Let Z be a Lévy process. There exists a unique modification Y of Z

which is cadlag and which is also a Lévy process.

We will henceforth always assume that we are using the (unique) cadlag version of
any given Lévy process. Lévy processes provide us with examples of filtrations that

satisfy the ‘usual hypotheses’, as the next theorem shows.

Theorem 2.2.2 Let Z be a Lévy process and let G, = FOVNV, where (F2)g<t<w is the
natural filtration of Z, and )V are the P-null sets of F. Then (Gi)o<t<oo i right

continuous.

There is a strong interplay between Lévy processes and infinitely divisible
distributions. We first define infinitely divisible distributions and give some

examples, and then describe their relationship to Lévy processes.

Definition 2.2.2 The law P of a random variable X is infinitely divisible, if for all n

€ N there exist 1.i.d. random variables Xgl/ n), e Xl(ll/ ) such that
X =4 XM 4 x

Alternatively, we can characterize an infinitely divisible random variable X using its
characteristic function @g. The law of a random variable X is infinitely divisible, if

for all n€N, there exists a random variable x@/ "), such that

px(u) = ((px(l/n) (u))n.

Some examples of infinitely divisible distributions are the Normal distribution, the
Poisson distribution, the compound Poisson distribution, the exponential, the I'-

distribution, the geometric, the negative binomial, the Cauchy distributions and the



strictly stable distribution. On the other hand, the uniform and the binomial

distributions are not infinitely divisible.

The next theorem provides a complete characterization of random variables with
infinitely divisible distributions via their characteristic functions; this is the

celebrated Lévy-Khintchine formula.

Theorem 2.2.3 (Lévy-Khintchine Formula) The law Py of a random variable X is
infinitely divisible if and only if there exists a triplet (@, 02,v), with a € R, o € R*

and v is a measure satisfying v({0}) = 0 and fR(l A x]?) v(dx) < oo, such that

_ u?o? ,
E[elux] = exp [iua - + f (elux -1- iUX1{|X|<1})V(dX) )
R

where u € R.

The triplet (o, 62, V) is called the Lévy or characteristic triplet and
u?o?
2

Y(u) = iua — + f (eiux -1- iux1{|x|<1})v(dx)
R

is called the Lévy or characteristic exponent. Moreover, a € R is called the drift

term, o2 is the Gaussian or diffusion coefficient and v is the Lévy measure.

Theorem 2.2.4 For every Lévy process (Z)so, we have that

. u?o? .
E[e!Zt] = e = exp [t <iuot - + f (el —1— iux1{|x|<1})v(dx))] ,
R

where (u) is the characteristic exponent of Z;, a random variable with an

infinitely divisible distribution.

Therefore, any Lévy process can be associated with the law of an infinitely divisible
distribution. The opposite, i.e., given any random variable X, whose law is infinitely

divisible, we can construct a Lévy process (Z;)»o such that £(Z,) = £(X), where



£(X) denotes the law of X, is also true. This will be the subject of the Lévy-Itd
decomposition. We prepare this result with an analysis of the jumps of a Lévy

process and the introduction of Poisson random measures.

The jump process AZ = (AZ;)so associated to the Lévy process Z is defined, for
each t > 0, via AZ; = Z; — Z_, where Z;_ = limgy Zs, the left limit at t. The
condition of stochastic continuity of a Lévy process yields immediately that for any
Lévy process Z and any fixed t > 0, AZ; = 0 a.s.; hence, a Lévy process has no fixed

times of discontinuity.

A convenient tool for analyzing the jumps of a Lévy process is the random measure
of jumps of the process. Consider a set A € B(R\{0}) such that 0 ¢ Aand let 0 <t <

T, where T € [0,00]; define the random measure of the jumps of the process Z by
JH@;tA) = #{0 < s <t AZy(w) € A} = Z 14(AZs(@)) ;
s<t

hence, the measure J%(w;t,A) counts the jumps of the process Z of size in A up to
time t. J%(-,A) is a Poisson process and J% is a Poisson random measure. The

intensity of this Poisson process is v(A) = E[J%(1,A)].

Theorem 2.2.5 The set function A = J%(w;t,A) defines a o-finite measure on
R\{0} for each (w,t). The set function v(A) = E[J%(1,A)] defines a o-finite

measure on R\{0}.

Definition 2.2.3 The measure v defined by

V) = B = B[ 1,(82,()]

0<s<1

is the Lévy measure of the Lévy process Z.

The Lévy measure v is a measure on R that satisfies v({0}) =0 and fR(l A

|x|?) v(dx) < . The Lévy measure describes the expected number of jumps of a



certain height in a time interval of length 1. The Lévy measure has no mass at the
origin, while singularities (i.e. infinitely many jumps) can occur around the origin
(i.e. small jumps). Moreover, the mass away from the origin is bounded (i.e. only a

finite number of big jumps can occur).

Now, using that J%(t,A) is a counting measure we can define an integral with
respect to the Poisson random measure J%. Consider a set A € B(R\{0}) such that 0
¢ A and a function f : R—>R, Borel measurable and finite on A. Then, the integral

with respect to a Poisson random measure is defined as follows:
f f(x)J%(w; t, dx) = Z f(AZs) 17 (AZs(w)).
A s<t

Note that each fA f(x)J%(t,dx) is a real-valued random variable and generates a

cadlag stochastic process. The stochastic process

fo.fAf(X)JZ(ds, dx) = <f0t_fAf(X)JZ(ds' dx)>

is a compound Poisson process.

0s<t<T

Theorem 2.2.6 Let A be a Borel set of R, 0 & A. Let v be the Lévy measure of Z.
(1) If f1, € L'(dv), then

t
E Uo fAf(X)JZ(ds, dx)] = thf(x)v(dx).

(i) If f1, € [2(dv), then

t 2
E [(-fo fAf(X)JZ(ds, dx) — thf(X)v(dX)) ] _ t_fA(f(X))zv(dx).

Corollary 2.2.1 Let f: R—R be bounded and vanish in a neighborhood of 0. Then
E [ Z f(AZS)] —t f £V (dx).
0<s<t —»

10



Theorem 2.2.7 (Lévy- Itd Decomposition) Consider a triplet (a,c?,Vv), where
a €R, 0 € R* and v is a measure satisfying v({0}) = 0 and [, (1 A [x|*) v(dx) <
oo, Then, there exists a probability space (Q, F, P), on which four independent Lévy
processes Z(W,Z(2),7() and Z*) exist, where Z(1) is a constant drift, Z® is a
Brownian motion, Z®) is a compound Poisson process and Z® is a square integrable
(pure jump) martingale with an a.s. countable number of jumps of magnitude less
than 1 on each finite time interval. Taking Z = ZMW) + Z® + 72() + 7 we have
that there exists a probability space on which a Lévy process Z = (Z)o<t<T With

characteristic exponent

; u’o? iux ;
Y(u) = iua — + | (™ — 1 — iux1y<qy)v(dx)
R

2
for all u € R, is defined.

We can decompose any Lévy processes Z into these four independent Lévy processes

Z=7W +7@ 4703 4 7H a5 follows:

t t
Z. = at + oW, + f f xJ%(ds, dx) +f f x(J%(ds, dx) — v(dx)ds).
0 Y{Ix|=1} 0 J{|x|<1}

Here Z™ is a constant drift, Z(® is a Brownian motion, Z®) is a compound Poisson

process and Z™ is a pure jump martingale.

The Lévy measure is responsible for the richness of the class of Lévy processes and
carries useful information about the structure of the process. Path properties can be
read from the Lévy measure. For example, the compound Poisson process has a finite
number of jumps on every time interval, while the NIG and a-stable processes have

an infinite one; we then speak of an infinite activity Lévy process.

Proposition 2.2.1 Let Z be a Lévy process with triplet (a, 02, v).

(1) If v(R) < oo, then almost all paths of Z have a finite number of jumps on

every compact interval. In that case, the Lévy process has finite activity.

11



(i1) If v(R) = oo, then almost all paths of Z have an infinite number of jumps
on every compact interval. In that case, the Lévy process has infinite

activity.

Whether a Lévy process has finite variation or not also depends on the Lévy measure

(and on the presence or absence of a Brownian part).
Proposition 2.2.2 Let Z be a Lévy process with triplet (a, 62, V).

@i) If 6> = 0 and f{IXIs 1}|X|V(dX) < oo, then almost all paths of Z have finite
variation.
(i) Ifo?=# Oor f{IXIs 1}|X|\)(dx) = oo, then almost all paths of Z have infinite

variation.

The compound Poisson process has finite measure, hence it has finite variation as
well; on the contrary, the NIG Lévy process has an infinite measure and has infinite
variation. In addition, the CGMY Lévy process for 0 <Y < 1 has infinite activity,

but the paths have finite variation.

The Lévy measure also carries information about the finiteness of the moments of a
Lévy process. The finiteness of the moments of a Lévy process is related to the
finiteness of an integral over the Lévy measure (more precisely, the restriction of the

Lévy measure to jumps larger than 1 in absolute value, i.e. big jumps).

Proposition 2.2.3 Let Z be a Lévy process with triplet (a, 62, V).

i) Z; has finite p-th moment for p € R* (E|Z|P < o) if and only if
p
f{|X|21} |x|P v(dx) < oo.
(i)  Z has finite p-th exponential moment for p € R ( E[eP%t] < o0 ) if and
: px
only if f{|x|z1}e v(dx) < oo.

12



Actually, the conclusion of this proposition holds for a general class of
submultiplicative functions, which contains eP* and |x|P V1 as special cases (see

Theorem 25.3 in [30]).

Note that the variation of a Lévy process depends on the small jumps (and the
Brownian motion), the moment properties depend on the big jumps, while the

activity of a Lévy process depends on all the jumps of the process.

Basic reference texts on Lévy processes are [3, 7, 23, 28] and [30]. For applications

in finance see [12] and [32].
2.3 Elements from Semimartingale Theory

Definition 2.3.1 A semimartingale is a stochastic process X = (X()o<t<, Which
admits the decomposition

X, = Xo + M, + AL, (2.1)

where X is finite and Fy-measurable, M is a local martingale with My = 0 and A is

a finite variation process with Ay = 0.

Definition 2.3.2 An adapted, cadlag process Y is a classical semimartingale if there
exist processes M, A with My = Ay = 0 such that Y, = Yy + M; + A, where M

is a local martingale and <A is a finite variation process.
Theorem 2.3.1 A classical semimartingale is a semimartingale.

Definition 2.3.3 Let X be a semimartingale. If X has a decomposition X; = X, +
M + Ay, with My = Ay = 0, M a local martingale, A a finite variation process

and with A predictable, then X is said to be a special semimartingale.

Theorem 2.3.2 If X is a special semimartingale, then its decomposition X = M + A,

with A predictable, is unique (it is assumed that X, = 0).

13



Every Lévy process is also a semimartingale; this follows easily from (2.1) and
Lévy-Itd decomposition of a Lévy process. Every Lévy process with finite first
moment is also a special semimartingale; conversely, every Lévy process that is a
special semimartingale, has a finite first moment. This is the subject of the next

result.

Lemma 2.3.1 Let Z be a Lévy process with triplet (a,o?,v). The following

conditions are equivalent:

(1) Z is a special semimartingale,
i) J(0xI A X2 v(dx) < oo,
(i) [ X 1gxz1y v(dx) < o

Definition 2.3.4 Let X, Y be semimartingales. The quadratic variation process of X,

denoted by [X, X] = ([X, X]t)ts0, is defined by

[X,X] = X% — zfx_dx

where X,_ = 0. The quadratic covariation of X and Y is defined by
X, Y] = XY — f X_dY — f Y_dX.

Definition 2.3.5 For a semimartingale X, the process [X, X]¢ denotes the path-by-path

continuous part of [X, X].

We can then write

XXIo= XX+ XE+ ) (AX)? = XX+ ) (X%

0<s<t O<s=<t

Analogously, [X,Y]¢ denotes the path-by-path continuous part of [X,Y], where Y is

also a semimartingale.

For every finite variation process X, we have [X, X]; = Yo<s<t(AXs)?.
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Example 2.3.1 (Quadratic variation of a Lévy process) If Z is a Lévy process with

characteristic triplet («, 62, v), its quadratic variation process is given by

t
[Z,Z], = 02t+f fxzdz(ds, dx).
0 /R

Example 2.3.2 (Quadratic variation of a Poisson integral) Consider a Poisson
random measure V" on [0, T] x RY with intensity p(dsxdy) and a simple predictable
random function : [0, T] Xx RY - R . If

Xy = fo t fRde(s. y) V' (ds, dy),

then the quadratic variation of X is given by

[X,X]; = fo fRd(‘“(S' 9)2 N (ds, dy).

Example 2.3.3 Let V' be a Poisson random measure on [0, T] X R¢ and (Wotero,m)

be a Wiener process, independent from . If
. . t . t .
Xi =Xy + f bsdW + f f Y (s, y) NV (ds, dy), i=1,2,
0 0 JRd
then the quadratic covariation [X?, X?] is given by
t t
7 = [ @iads+ [ [ Wi y)N s dy).
0 0o /R

Definition 2.3.6 A semimartingale X is called quadratic pure jump if [X, X]¢ = 0.

If X is quadratic pure jump, then [X,X]; = X2 + Y o<s<t(AXs)?. Note that the trivial
continuous process X; = t is a quadratic pure jump since [X, X]f = [X, X]; = 0. The

Poisson process is an obvious example of a quadratic pure jump semimartingale.
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More generally, if Z is a Lévy process with a Lévy decomposition Z; = By + X,

where B is a Brownian motion and

t t
X, =at+ f f xJ%(ds, dx) +f f x(J%(ds, dx) — v(dx)ds),
{Ix|z1} 0 Y{|x|<1}

then X is a quadratic pure jump semimartingale.

Theorem 2.3.3 (Itd0’s Formula) Let X =(X!,..,X") be an n-tuple of
semimartingales, and let f: R™ — R have continuous second order partial

derivatives. Then f(X) is a semimartingale and the following formula holds:

t 2

o°f .
fXp) — f(X Z —X dXi + Z Xs-)d| XL X
( t) ( 0) i=1 0+ ( ) 2 1<i ]'Sn 0+ aXl aX ( S ) [ ]S

+Zo<s<t{f(x)—f(x - Z 1a—(x )AX‘}
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CHAPTER 3

THE LEVY MARKET MODEL

3.1 The Model

We will consider a market model consisting of one riskless asset (the bond) and one
risky asset (the stock). In this market model, denoted by Mt, the value of the bond
B = {B, t > 0} is given by

B; = exp(rt), (3.1)

where the risk-free interest rate r is constant; and the stock price process S = {S,,

t > 0} follows a geometric Lévy process

ds,
g =bdt+ dZ,,  S>0, (3.2)

t_

where b is a constant. Here Z = {Z,, t > 0} is a Lévy process defined on a complete
filtered probability space (€, F,F, P), where F = {F,t = 0}, F, = 0(S;:0 <u<t),
is the natural filtration generated by the stock price process completed with the P-
null sets. Since any Lévy process Z has a cadlag modification, we will always

assume that we are dealing with the cadlag version.
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If the process Z has the Lévy triplet (a, 6%,v), where a € R, 6 = 0 and v on R\{0}
with fjom(l A x?)v(dx) < o is the Lévy measure of Z, then Z satisfies the following

Lévy- It6 decomposition:
Zy = oW, +X;, t=0, (3.3)

where W = {W,, t > 0} is a standard Brownian motion, X = {X;, t > 0} is a pure

jump Lévy process and W is independent of X. Moreover,
X; = f x(N((0,t],dx) — tv(dx)) + f xN((0,t], dx) + at, (3.4)
{Ix|<1} {Ix]z1}

where N(dt,dx) is a Poisson random measure on (0,+00)xR\{0} with intensity

dtxv, dt denotes the Lebesgue measure and a = E (21 — f{|x|z1}XN ((0,1], dx)).

In this model, it is required that the Lévy measure satisfies, for some € > 0 and A >

0,

f exp(A|x]) v(dx) < oo. (3.5)
(-g8)°

This will ensure the existence of the predictable representation property, see [26] and

[25], which will be used later. In particular, this assumption implies that
f Ix|'v(dx) < o0, i>2,

and there exist 0 < hq, h, < oo such that
E(exp (—hZ;)) < oo, forall h € (— hy, hy). 3.6)

Hence, all moments of Z; and X; exist (see Theorem 25.3 of [30]). Furthermore, X;,

given by (3.4), can be written as (see [28] (p.27))
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X¢ = foox(N((O, t], dx) — tv(dx)) + (f xv(dx) + 0() t, 3.7
-0 {Ix|z1}
where
a=EX,) - f xv(dx). 3.8)
{Ix|z1}
Note that
M(dt, dx) :== N(dt, dx)- dtv(dx) 3.9

is the compensated Poisson random measure on (0,+00)XR\{0}. Therefore, the
Doob decomposition of X, in terms of a martingale part and a predictable process of
finite variation, is given by

X, = L + at, (3.10)

where L = {L;, t > 0} defined by

L =f xM((0, ], dx) (3.11)

is a martingale and
a = EXy). (3.12)
Notice that E(X;) = at.

Consequently, by (3.3) and (3.10), Z has the decomposition

[oe]

Z. = oW, + Ly + at = oW, + at + f xM((0, t], dx). (3.13)

3.2 The Stock Price Formula

We will use 1t6’s formula for semimartingales to obtain the solution of (3.2). By

(3.2) and (3.13), the stock price process has dynamics

dS; = Si_((a + b)dt + ocdW, + dL,)
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dS; = S¢_ ((a + b)dt + odW, + f xM(dt, dx)). (3.14)
Apply Itd’s formula to f(S¢) = logS;:

f(Sp) = f(Sy) + ftf'(S )dS +lftf”(S )d[S, S]S
t 0 0 S— S 2 0 S— ) S
+ stt(f(ss) — £(Ss-) — £'(Ss_)ASy). (3.15)

Note that d[S,S]S = S2_o%ds and ASg = Sq_ALg, where AS; =S¢ —S._. Hence,
Ss = Sg_(1 + ALg) and f(Ss) — f(Ss_) = log(1 + ALg). Therefore, (3.2) has the

explicit solution
o2
S; = Soexp<0Wt+Lt+ <a+b—7>t>

x nmstu + AL,) exp(—ALy). (3.16)

We must ensure that Sy > 0 for all t > 0 almost surely, and hence it is required that
AL > —1 for all t. Therefore, it is assumed that the Lévy measure v is supported on

[6,400) with § >—1.

Note that, by using (3.11), the stock price process can also be written as

oo 02
S = Sg exp <cswt + f xM((0,t], dx) + <a +b-— 7) t

+ fm (log(1 + x) — x)N((0, t]'dx)>'

St = Sy exp <0Wt + f log(1 + x) M((0, t], dx)

o? ®
+ (a +b-— > + f (log(1 +x) — X)V(dX)) t> . (3.17)
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Therefore, the stock price process can also be represented as an usual exponential

St = SpexpZ;, (3.18)

where

[oe]

Z, == oW, + f log(1 + x) M((0,t], dx)

[ee]

52
+ <a +b-— £l + f (log(1 +x) — X)V(dX)) t (3.19)

is also a Lévy process.

Proposition 3.2.1 Let F(x) and f(x) be Borel functions satisfying the following
assumptions:
(1) F(x) > 0 for all x in support of the Lévy measure v and there are

constants 1, 1 > 0 such that 0 < p < F(x) for all x € (—, 1).
i) [ |Fx)- 1- fx)|v(dx) < oo.
i) J7_IfG)12v(dx) < oo

(iv)  There is an € > 0 such that f_ES|F(X)— 1|2V(dX) < oo.

Then, the process M defined by

M, = exp (fw f(x)M((O, t], dx) —t foo (F(x)— 1- f(x))v(dx))

x n0<sstF(AXS)ex p(—f(AX,)) (3.20)

does not depend on f(x) and it is a local martingale.

Proof: First consider the process

R, = fm f(X)M((O, t],dx) —t f_oo (F(x)— 1- f(x))v(dx). (3.21)
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Note that the integral fjooo (F(X)— 1-f (X)) v(dx) is well defined. Also note that, by

definition, the compensated Poisson random measure M((O, t],A) is a martingale,
where A is a Borel set in R. Thus, by assumption (iii), fjooo f(X)M((O, t],dx) is a

martingale. Therefore, R, is a semimartingale.

Now consider the process

S, = n0<sstF(AXS)ex p(—f(AX,)), (3.22)

which has cadlag paths and is adapted. By cadlag property, the set {s: |AXg| = €} is
finite, where we choose € > 0 such that € < 1 and the condition (iv) is satisfied.

Therefore, in order to show that S; is a semimartingale, it is enough to show that

A= | F(AX,)ex p(—f(8X,))
0<ss<t:|AXg|<e
has paths of finite variation. To do this, consider the process
logA, = ) (log (F(AX,)) — F(AX,).
0<sst: |AXg|<e
Then,

Var(logA,) < Z |log (F(AXs))— f(AXS) |.

0<sst: |AXg|<e

Note that by assumption (i) and using the fact that logx < x—1, for x > 0, we

have

fs llog (F(x)) — f(x)|?v(dx) < cfs [F(x)- 1]?v(dx) + 2 fs If x)|?v(dx),

—& —& —&

where c is a constant.
Thus, by assumptions (iii) and (iv), f_€8|log(F(x)) - f(x)|2\)(dx) < oo, and hence
logcA, is a process with paths of finite variation. Therefore, A; has paths of finite

variation and thus, §; is a semimartingale.
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Consequently, we can apply Itd’s formula for semimartingales to M; = A(R, Sp),

where £A(x,y) = e*y. Thus, we have

M, =1+ fotf_m]v[s_f(x) M(ds, dx) — J: j;mMS_(F(X)— 1- f(x))v(dx)ds
+ Z(K _ V=M, = I _f(AL), (3.23)

since d[R, R]S = d[R,S]S = d[S,S]S = dSS = 0 and AR = f(ALg). Moreover, by
using the facts that My = M,_F(AL;) and M(ds, dx) = N(ds, dx)- dsv(dx), the

equation (3.23) becomes
t oo t oo
M. =1 +f f M,_f(x) M(ds, dx) +f f MS_(F(X)— 1- f(x)) M(ds, dx)
0 /-0 0 J—oo

=1+ -[)tf_o:oMs_(F(x)— 1) M(ds, dx).

Since the compensated Poisson random measure M((O, t],A) is a martingale, where

A is a Borel setin R, by assumption (iv) M is a local martingale.

QED.
3.3 Equivalent Martingale Measures

In this section we will characterize all structure-preserving P-equivalent martingale

measures Q under which Z remains a Lévy process and the discounted stock price

process S = {§t =S/B;, 0<t< T] is an {F}-martingale.
We have the following well-known result (see Theorem 33.1 and 33.2 in [30]).

Theorem 3.3.1 Let Z={Z, 0 <t<T} be a Lévy process with Lévy triplet
(a, 62, v) under some probability measure P.

1) Then the following two conditions are equivalent:
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(a) There is a probability measure Q equivalent to [P such that Z is a Q-Lévy process
with triplet (&, 32, V).

(b) The triplet (&,32,V) satisfies

(i) ¥(dx) = H(x)v(dx) for some Borel function H: R — (0,00). (3.24)
(i) & = o+ f{|x|<1} x(H(x)- 1)v(dx) + Go, for some GER. (3.25)
(iii) § = o. (3.26)
G~ (1 - \/%)2 v(dx) < oo, (3.27)

2) Suppose that any of the equivalent conditions above is satisfied. Then, the density

process {dQ./dP; = §, 0 <t < T}is given by

1
& = exp <GWt -5 G2t

-0

+ lim <f logH(x)N((O, t], dx) — tf (H(x) — l)v(dx))),
{Ix|>e} {Ix|>€}

(3.28)
with E(§;) = 1, for every t € [0,T] and the convergence is uniform in t on any
bounded interval, P-a.s.

Moreover, the process ] = {J;, 0 < t < T} given by

J; = GW, —%Gzt + lim ( f logH(x)N((0,t],dx) — t f (H(x) — 1)v(dx)>,
{Ix[>¢}

&0 {IxI>¢}

is a P-Lévy process with triplet (0(], 012, v]) given by
1 -
o = —>G* = fo(¢¥ = 1 = ylyyen) (VO7H(dy),
2 _ (2
oj =G*,

v = V0 Iryoy »
where 9(x) := logH(x).

Remark 3.3.1 Assume that the equivalent conditions in the previous theorem holds.

If Z has Lévy triplet (&, 62, V) under Q, then we have the following:

24



1) N(dt,dx) is a Poisson random measure on (0,400)XR\{0} with intensity dt x
U(dx) under Q and M(dt, dx) := N(dt, dx)- dt¥(dx) is the compensated Poisson
random measure.

2) By Lévy-Itd decomposition, we can write
Zt=GWt +§Zt' tZO,

where oW = Z-X is a Q-Brownian motion with coefficient 6> and X is defined by

Xt = Ju<y XAN((0, 8], dx) — t9(dx)) + [, ., XN((0, 8], dx) + 3,
where @ = E (21 = Jixisny XN ((0,1],dx)>.
Moreover, by using (3.3) and (3.4), we have
Z — Xy = oW, + X, — X; = o(W; — Gt),
which means that Q-Brownian motion is defined by
oW, = o(W, — Gt).

3) Moreover, if ¥ verifies the condition (3.5), then
X, :f x(N((0,t],dx) — t¥(dx)) + U x U(dx) +a> t,
-0 {Ix|z1}

where @ = E¢(X;) — f{|X|21}X\7(dx).
Thus, the Doob-Meyer decomposition of X is given by
X, =L+ 4t

where L = {I;, t > 0} defined by

L, =f Xl\7l((0,t],dx)
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is a Q-martingale and 3 = xV(dx) + @.

f{IXIzl}

Using the above remark, we see that the equivalent conditions in the previous

theorem imply that the process W = {V~Vt, 0<t< T} defined by
W, = W, — Gt (3.29)
is a standard Brownian motion under Q.

Moreover, if v and V verify the condition (3.5), the process X is a quadratic pure

jump Lévy process with Doob-Meyer decomposition (with respect to Q)

X, =L+ <a + f_oo x(H(x) — l)v(dx)) t, (3.30)
where L = {I;, 0 <t < T}is a Q-martingale and

Le=L— tf_OOX(H(X) — 1Dv(dx), (3.31)

and the new Lévy measure is given by
V(dx) = Hx)v(dx). (eqn. (3.24))

This implies that the compensated Poisson random measure (with respect to Q) on

(0,40)xR\{0} is given by
M(dt, dx) = N(dt, dx)-¥(dx)dt = M(dt, dx) — (H(x) — 1)v(dx)dt. (3.32)

Now we want to find an equivalent martingale measure Q under which the
discounted stock price process S is a martingale. Using (3.16), (3.29) and (3.31),

discounted price process can be written as
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. L 1
St=Soexp(th+Lt+(a+b—r+0G—§02>t)

X exp (t foox(H(x) - l)v(dx)) 1_[ (1 + ALg) exp(—AL).
—o0 0<ss<t

(3.33)

Note that, by Proposition 3.2.1, the process

1 _ _
exp (owt + L — Eozt) H(K t(1 + ALg) exp(—ALy) (3.34)
S<

is a martingale. Hence, a necessary and sufficient condition for S to be a Q-

martingale is the existence of G and H(x), with

f_oo (1 — m)z v(dx) < o, (eqn. (3.27))

for which the process ¢ is a positive martingale, and such that
a+b-r+oG+ f x(H(x) — 1)v(dx) = 0. (3.35)

Thus, by (3.3), (3.29), (3.30) and (3.35), we have
Z. = oW, + Ly + (r — b)t, (3.36)

where W is a Q-Brownian motion and L is a Q-martingale. Therefore, the process

Z={Z, 0<t<T} where
Z,=Z.+ (b—n)t, (3.37)
is a Q-martingale.

Note that
Z. = oW, + L; (3.38)
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and Egq (zt) = 0. Moreover, the dynamics of S under Q is given by

dS; = Si_(cdW, + dL,) = S;_dZ, (3.39)

or,
- . 1 - -
St = Sy exp (cht + L — 502t> 1_[ (1 + ALg) exp(—AL). (3.40)
0<ss<t
Note that the dynamics of S under Q is given by
dS; = Si_(rdt + cdW, + dL;) = S;_(rdt + dZ,), (3.41)

or,
2

o o - -
S¢ = Sp exp <GWt + L + (r — 7) t) 1_[ (1 + ALg) exp(—AL). (3.42)
0<sst

Remark 3.3.2 If there exists a (non-structure preserving) equivalent martingale
measure Q; under which Z is not a Lévy process, there always exists a (structure
preserving) equivalent martingale measure Q, under which Z is a Lévy process (see

Eberlein and Jacod (1997) [19]).
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CHAPTER 4

COMPLETION OF THE LEVY MARKET
MODEL

4.1 Power-Jump Processes

The following processes, introduced in Nualart and Schoutens (2000) [26], are

considered:
zt“)=z (AZ)', i=2, 4.1)
0<sst

and for convenience we put Zél) =17, ,where AZg=7;—Zs_. Note that not
necessarily Z; = Y,g<s<t AZg holds; it is only true in the bounded variation case with
o2 =0.

If we define XEI) = X; and

x® = Z (X)), i>2, (4.2)
0<sst
then we have

XV =70 i>2 (4.3)

Notice that [X,X]; = X{?.
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The processes XD = {Xgi), t= 0},1 => 2, are again Lévy processes and are called

the ith-power-jump processes. They have jumps at the same points as the original
Lévy process, but the jump sizes are equal to the ith power of the jump sizes of the

original Lévy process. We have
E(X) = E(X(") = at = myt < o, (4.4)

and (see [28] (p.29))

[ee]

EX?) =E ( ZO ) (AXS)i> = tf_ xv(dx) =mt < oo, i>2. (4.5)

Therefore, for every i > 1, the compensated ith-power-jump processes YW =

{Yt(i), t> O} can be denoted by

YO =720z =z® —mt, iz 1 (4.6)

Y® s also called as Teugels martingale of order i. Moreover, a set of pairwise

strongly orthonormal martingales {?(i),i > 1} can be constructed such that

?(1) = Ci_iY(i) + Ci_i_lY(i_l) + -+ Ci_lY(l), i > 1. (47)

YO = {?t(i), t> 0} are called the orthonormalized ith-power-jump processes. It was

shown in [26] that the constants c;; correspond to the coefficients of the

orthonormalization of the polynomials 1, x, x2, ... with respect to the measure
n(dx) = x?v(dx) + 028, (dx).

Hence, we consider the orthogonalization with respect to the scalar product

<PXx),Qx) >= f ) P(x)Q(x)x*v(dx) + 6*P(0)Q(0),

where P(x) and Q(x) are real polynomials on the positive real line.
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Notice that in the case of a Brownian motion, all power-jump processes of order i >
1 are zero. In the case of a Poisson process, all power-jump processes are equal to
the original Poisson process and all compensated power-jump processes are equal to

the compensated Poisson process.
4.2 Enlarging the Lévy Market

In this section, we fix a time interval [0,T]. Suppose we have an equivalent
martingale measure Q under which Z remains a Lévy process on [0,T] with triplet
(& 32,7V). We know that under this measure Q, the discounted stock price process
S= {§t =S5;/B, 05t< T} is a martingale. Moreover, the process Z =

{Z,, 0 <t < T} defined by
Ze=Zc+ (-1t (eqn. (3.37))
is a Q-Lévy process with Lévy measure V and a Q-martingale, by (3.38).

Now consider the ith-power-jump processes based on Z = {Z;, 0 <t < T }. Clearly,

we have Azt = AZ; and Zt(i) = Zt(i), i = 2. Under Q, we construct the compensated

ith-power-jump processes Y@ = {Yt(i), 0<t< T} and their orthonormalized

version YO = {Yt(i) ,0<5t< T} based on Z, that is, the compensators are

mit = tEg(ZY), i > 1, (4.8)

and the orthonormalization procedure is performed under Q. Note that

m; =f x'U(dx), i>2, (4.9)

where V(dx) is the Lévy measure of Z (and Z ) under Q and it is required that ¥

verifies (3.5). Notice that

31



Y = 7, —tEg(Zy) = Zo, (4.10)

YO =207 —tEg(z) = 20" -t f x9(dx), i=2 (4.11)

The Lévy market I is enlarged with a series of artificial assets based on the above
processes. Actually, in the enlarged market, the trade in assets with price processes
HO = {Ht(i),t > 0}, where

HY =expr) Y,  iz2, (4.12)

is allowed. Although HV,i > 2, are the price processes of new assets, for simplicity,

they are called the ith-power-jump assets. The orthonormalized version of these

assets HD = {Ht(i),t > 0} are defined by

AY =exp(r) 70,  i=2. (4.13)

These new assets give you protection against different kinds of market shocks. For
example, the 2nd-power-jump asset, in some sense, measures the volatility of the
stock and thus, it can be useful to cover possible losses due to the changes in the
volatility regime. Similary, to protect against a wrongly estimated skewness or

kurtosis power-jump-assets of higher order can be useful.

Notice that when the original Lévy market It is enlarged for different, structure-
preserving equivalent martingale measures Q, different Lévy markets Mg are

obtained, in the sense that the new assets available in each EIRQ are different for each

Q.

Clearly, by construction, the discounted versions of the power-jump assets H®and

the orthonormalized power-jump assets HW are Q-martingales:

Eglexp(-rt) H|| = Bo[Y"I1%] = v,  o0s<s<t<T (4.14)
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and

Eglexp(—rt) A”|| = Bo[Y"17]| =V,  0<s<t<T (4.15)

Therefore, the enlarged Lévy market Mg, allowing trade in the bond, the stock and

the power-jump assets, remains arbitrage-free.

Remark 4.2.1 Assume that the original Lévy market It is enlarged with the ith-
power-jump assets with price processes Ht(i) = exp(rt) Yt(i) = exp(rt) (XS) —n;t),
i = 2. The question is whether this enlargement leads to arbitrage or not. A sufficient
condition to guarantee that the enlarged market is free of arbitrage is the existence of
an equivalent martingale measure Q under which all the discounted prices of the
traded assets are martingales [16]. We have seen that if Q is structure-preserving P-
equivalent martingale measure, by Theorem 3.3.1, the condition that the discounted
stock price must be a martingale simplifies to the existence of G and H(x) > 0 with

foo (1 — M)z v(dx) < 0, (eqn.(3.27))

—00
such that

a+b—-—r+oG+ foox(H(x) —1Dv(dx) =0 (eqn. (3.35))

holds. Moreover, the condition that the discounted H(i),i = 2, must be a martingale

simplifies to the condition
f x'H(x)v (dx) = n,, i>2. (4.16)

The question is whether there exist G and H(x) such that (3.35) and (4.16) hold
simultaneously. This is related with the moment problem: given a series of numbers
{1, }, find a necessary and sufficient condition for the existence of a measure with p,

as the nth moment. Uniqueness of such a measure is the another point, see [1] and

[34].
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4.3 Market Completeness

In this section, it will be shown that the market enlarged with the ith-power-jump
assets is complete in the sense that for every square-integrable contingent claim X
(i.e. a non-negative square-integrable Fr-measurable random variable) one can
construct a sequence of self-financing portfolios whose values, at time T, converge in
L2(Q) to X. These portfolios will consist of a finite number of bonds, stocks and ith-
power-jump assets. It will be said, for short, that X can be replicated. This notion of
completeness is equivalent to the notion of approximate completeness of Bjork et al.

(1997) [8].

Definition 4.3.1 A portfolio m = {n"} is a sequence of finite-dimensional predictable

processes
{ng - (ag, BE, BB, L B),  0<t<T, nx 2},

(4.17)

where af represents the number of bonds at time t, Bf represents the number of

stocks at time t, Bgi)’n represents the number of ith-power-jump assets H® at time t
and k;, is an integer which depends on n.

A portfolio m = {mn"} is self-financing if each m" is self-financing.

Definition 4.3.2 Fix p > 1. A contingent claim X € LP(Q, Fr, Q) is called replicable
in LP(Q) if there exists a self-financing portfolio whose values, at time T, converge

to X in LP(Q).

Definition 4.3.3 A contingent claim X € L'(Q, Fr, Q) is called strongly replicable in
L1(Q) if it is replicable in L!(Q) by a portfolio T = {m"} of the form

{n{‘ = (at, Bt EZ), E‘?’), . En)), 0<t<T, n > 2},

(4.18)
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where the number of assets oy, B¢, EZ), ... do not depend on n and if the series

t t o [t .
f o dBg + f B.dS, +Z f ORI (4.19)
0 0 i=2Jg

converges absolutely in L' (Q) for each t € [0,T].

In order to show that the enlarged market is complete we need the following

theorem, see Nualart and Schoutens (2000), (2001) [26, 25].

Theorem 4.3.1 (Martingale Representation Property) Every square integrable Q-

martingale M’ = {M;, 0 <t < T} has a representation in the form
o) t .
M, = M, + Z f hQay®,
i=1Jg
@) . . tyoo {2
where hg”,i = 1, are predictable processes such that Eq fo Yieq [hg’|?ds ) < oo.

The martingale representation property (MRP) allows the representation of any

square integrable Q-martingale as an orthogonal sum of stochastic integrals with
respect to the orthonormalized power-jump processes {?(i), i= 1}. In other words,
any square-integrable Q-martingale M = {M;, 0 < t < T} can be represented as

follows:

t o t . [
M, = M, + f he dZ, + Z f hOay e, (4.20)
0 i=2Jo
where hg and hgi),i = 2, are predictable processes such that Eq ( fot |hS|2ds) < oo

and Eq ( ) Ot >2, |hgi) E ds) < oo. Remember that Y®, i > 1, are the orthonormalized
versions of Y(i), where

Yt(l) =7, —tEq(Z1) =7y, (eqn.(4.10))

Y0 = 20— tEg(20) = 20— ¢ f X, =2, (eqn. (411))

— 00
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with
Zc=Z.+ (-0t (eqn. (3.37))

being a Q-martingale. Also remember that the dynamics of S under Q is given by
dS; = S;_dZ,. (eqn.(3.39))

Therefore, the MRP implies that the enlarged market is complete. In fact, we have

the following theorem.

Theorem 4.3.2 The Lévy market model Mg, enlarged with the ith-power-jump

assets, is complete in the sense that any square-integrable contingent claim X €

L2(Q, Fr, Q) can be replicated in L2 (Q).

Proof: Consider a square-integrable (with respect to Q) contingent claim X with

maturity T and let My = Eq(exp(—rT) X|Fy). By the MRP, we have

t w [t
M, = My + f hg dZ + Z f haY?.  (eqn. (4.20))
0 i=2Jg

If we define

t N ot
MY = M, + f h dZ, + Z f hQay®, (4.21)
0 i=2Jo

we have limy_e M\ = M, in L2(Q).

Define the sequence of portfolios (in terms of the orthonormalized ith-power-jump

assets)
OV = {9l = (.8, B8P, .. BY),  t=20}, N=22
by
N
oaf = MY —BS,_e™ — e—”z. 2 BVHY, (4.22)
i=
Be = e"hSc?, (4.23)
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W—p®  i=23..N (4.24)

Here a} represents the number of bonds, B; represents the number of stocks and B(l)
represents the number of orthonormalized ith-power-jump assets at time t. Then, the

value VN of the portfolio N at time t is given by
N
V= a'e™ + BeSe + Z BUHY = ey, (4.25)
i=2

which implies that the sequence of portfolios {¢pN, N > 2} replicates the claim X.

Thus, to complete the proof, it is enough to show that the portfolio ¢N is self-

financing. That is,
GN + M, = et M, (4.26)

where GY is the gain process corresponding to ¢pN at time t, given by
t t N ot
GN =1 f ol ersds + f B.dS, +Z f BVAAY. (4.27)
0 0 i=2Jg
By (4.22), (4.23) and (4.24), we can write (4.27) as
N t o t
= rf MN ersds — rf hee™ds —r f hYEY s +f hee’sS;1dS,
i=2Jo 0

+Z 2 f hOda®. (4.28)
i=

Note that integration by parts follows

t t N t e
r f MNersds = etMN — M, — f hges dZ, — Z f h@ersqy®. (4.29)
0 0 i=2Jo

Moreover, using

HY =exp() Y, 122, (eqn.(4.13))
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and
dS; = Se—(rdt+ dZ;),  (eqn.(3.41))

we can write (4.29) as

f]v[N e'Sds = e""MN — M, — fh e's S;1dS, +rfh e'Sds

Z f h®qF +rz f hOHD ds (4.30)
i=2 i=2

Thus, by substituting (4.30) into (4.28), we obtain
GN = e"'MN — M.

Therefore, {¢pN, N > 2} is the sequence of self-financing portfolios replicating the
claim X.

Q.E.D.
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CHAPTER 5

HEDGING PORTFOLIOS

5.1 Pricing Formula

Consider a contingent claim X whose payoff is only a function of the value, at
maturity, of the stock price S, that is, the payoff is a function of the form ¢(St). The

value at time t of the contingent claim with payoff X = ¢(St) is given by
F(t,So) = e T VEQ[X|F] = e T IEg[p(S)|Fel. (5.1)
Remember that the dynamics of S under Q is given by
ds; = S¢_(rdt + odW, + dL,). (eqn. (3.41))
By It6’s formula, it can easily be shown that
o - o?
St = Siexp (O‘(WT — Wt) + (Lt + L) + (r — 7) (T - t)>
x 1_[ (1+ AL) exp(—ALy). (5.2)
t<ss<T
Thus, the price function is given by

F(t,x) = e_r(T_t)EQ [d) <Xexp <G(WT -W,)+ (Lr+ L)+ <r — 072) (T— t))

x 1_[ (1+AL) exp(—AES)>]. (5.3)
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2
F(t,x) = e—r(T—t)EQ [q) (Xexp (GWT_t + Lpe + (r — %) (T - t))

X 1_[0<SST_t(1 + AL) exp(—ALS)>]. (5.4)

Remember that in the Black-Scholes model the price of the option with volatility o is

given by

2
Fps(t x) = e—r(T—t)EQ ¢ | xexp <GWT_t + (r — %) (T - t)) . (5.5)

5.2 Hedging Portfolios

In this section, we will obtain the hedging portfolio of a contingent claim X whose
payoff is a function of the value, at maturity, of the stock price S and a pure jump

process K = {K;, 0 <t < T}. The jump process is defined by

K = f g(x) M((0,t], dx), (5.6)

where g € C®,g(0) = g’(0) = 0 such that fjooolg(x)IV(dx) < o and

M(dt, dx) = N(dt, dx)-v(dx)dt (eqn. (3.32))
is the compensated Poisson random measure. Thus, the payoff is a function of the
form ¢ (St, Kt). Note that the jump process K will enable us to consider the portfolio

optimization problem, which is to be discussed later.

The value of the contingent claim with payoff X = ¢(St, Kt) at time t is given by
S
F(t 0 K0 = e T Eg[p(Sn, Kn)IF = T 0Eq [ (215, Kr = KetK,) 17
t

S
= e_r(T_t)EQ [¢ (S_T X1, KT - Kt+X2>]
t

X1=St’ X2=Kt
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. S .
Here we used the independence of S—T and Kt—K; with respect to F;.
t

Now consider the following operators:

1
Lf(t, x) = Dyf(t, x) + rx, D, f(t,x) — rf(t,x) + Eozfoff(t, X)

=D, %) [ g@)7Ce) 7
R
DIt = [ (% y)v(ay), 58)
where
x = (X1,Xp), Do i= 8/0t, Dy := 0/0xy, D} := 0'/0x} (5.9)
and
h(t,x,y) = f(t x; (1 +y),x; +g(y)) — f(t, X) — x1yD,f(t, ). (5.10)

We will show that the price function F(t,x;,x,) satisfies a Partial Differential

Integral Equation (PDIE). In order to do this, we need the following lemma.

Lemma 5.2.1 Consider a real function h(s,x,y):R* X R™ x R - R which is

analytic in the y variable and such that h(s, x, 0) = 0 and (dh/dy)(s, x, 0) = 0. Set

10
ai(s,x) == ﬁa_yih(s' x,0). (5.11)
Let Y :={Y, 0 <t < T} be an adapted process with left continuous paths and with

values on R™ and set

[ee]

Iml; = f Iyl (dy). (5.12)

If we assume that
T

> Il | Egllaits Yl ds < e, (513)
i=2 0

then
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o T ) T ,o0
Z h(s, Y, AX) =Z f ai(s,YS)dYs(l) +f f h(s, Ys, y)V(dy)ds
t<s<T i=2J¢ t —0o0
(5.14)

a.s. and in the L'(Q)-sense.

Proof: Since the function h(s,x,y) is analytic in the y variable, it can be expanded as

[oe]

h(s,x,y) = Z a;(s,x) y'.
i=2

Then we have

2 h(s,YS,AXS):z Z ai(s, Y) (AX)'. (5.15)
t<s<T t<s<T i=2

Now we will show that Y2, ¥ ..rlaj(s, Ys)||AXs|! < oo. Notice that, since
Y, Yies<r |ai(s, Ys)||AXg|! is a  nonnegative  random  variable, if

EQ[ 222 Dieser |ai(s, Y5)| |AXs|i] < oo, then X2, <ser [ai (s, Ys)||AXs|i < ©as..

Given € > 0, and denote B, := R\ (—¢, €). Notice that

T
Z |ai(s'YS)”AXS|l1{|AXs|>£}=f f lai (s, Ys)|ly|' N(ds, dy).
t<ss<T t /B

It can be shown that

T T
EQ [J; fBglai(S, Ys)“Yll N(dS, dY)] = EQ |:J; leai(sl Ys)llyll\'-'}(dy)ds
T
= |m|if Egllai(s, Ys)|]ds.
0

Thus, by monotone convergence, as € = 0 we have

T
Eq [Z |ai(S'Ys)||AXs|i] < |m|if Eqllai(s, Ys)|1ds,
t<s<T 0

and hence, by assumption (5.13), we have
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T

B[ D D s ol < T mli | Eqllaits Yllds < e
i=2 t<s<T i=2 0

Therefore, by the above argument, we have Y2, Ycc<r [ai(s, Ys) || AXg|! < o0 aus.

Consequently, by Fubini’s Theorem and assumption (5.13), we can write (5.15) as

z h(5: Ys, AXS) = z Z ai(S: Ys)(AXs)i
t<s<T i=2 t<s<T
:Z f ai(s,YS)dYS(') +Z f a;(s, Ys)m;ds
i=2J¢ i=2J¢
> [ aewals [ [ av)yeads
i=2J¢ t J—o i=2

[oe) T . T 0
Z f a; (s, YS)dYS(I) + f f h(s, Y, y)V(dy)ds
i=2J¢ t Y-

a.s. and in Lt (Q). Here we used the fact that Yt(i) = Xgi) —m;t, i > 2, where

m; = fooyiv(dy), i>2. (eqn.(4.9))

Q.E.D.

Theorem 5.2.1 Let F(t, S, K,) = e'r(T't)EQ[X |F¢] be the value of the contingent
claim X = ¢(S1,Kp) at time t, where X € L}(Q, Fr, Q). Let x:= (X,X,) and

assume that F(t,x) € C1*®. Set a;(s,x) = %aa—};h(s, x,0) and Y; := (S, K¢), where

K, =f g(x) 1\71((0,t],dx). (eqn. (5.6))

Assume that

(6)) The function h given by
h(t, x,y) = F(t, x,(1+y),x, + g(y)) — F(t,x) — x,yD,F(t, x) (5.16)

is analytic in y.

() T.Iml; [ Egllai(s, Ys)[l ds < o. (5.17)
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Then, F(t, Si, K¢) is the solution of the following PDIE:

{LF(t, x) + DF(t,x) = 0,

F(T,x) = o). (5.18)

Proof: By assumption, the discounted price process e "F(t,Y,) is a Q-martingale.
Hence, for any decomposition e "™ F(t,Y,) = F(0,Y,) + M; + A;, where M is a
local martingale and A is a finite variation process, we must have A; = 0. In the
following we derive such a representation. By applying It6’s formula for

semimartingales to f(t, Y,) = e "'F(t,Y,), where Y; = (S, Ky), we have
t t t
f(t, Yt) = f(O, Yo) + f Dof(s, YS_)dS + f le(S, YS—) dss + f sz(S, YS—) dK(S:
0 0 0
1 t
+3 [ 038G, s,
0
D (05 Y) ~ (5 Ys) ~ Dif(5, Y AS)),
0<sst
since [S,K]§ = [K, K]S = 0. Thus,
t
e "'F(t, Yy) = F(0,Y,) +f (—I‘e'rSF(S, Ys_) + e "SD,F(s, YS_))ds
0
t t
+f e "D, F(s, Ys_) dSg —f e‘rSDzF(s,YS_)fg(y)ﬁ(dy) ds
0 0 R
1, f 2 N2
+-o0 fe 'SSZ_Df F(s, Ys_)ds
0

2

+ Z e"TS(F(s,Y,) — F(s, Ys_) — DyF(s, Y,_)AS,). (5.19)
0<ss<t

Note that ASg = Sg_AX; and AKg = g(AX,) imply that
Ys = (Ss:Ks) = (Ss—(l + AXS): Ks_ + g(AXs)):
so we have

F(s,Ys) — F(s, Ys_) — D;F(s, Ys_)AS, = h(s, Ys_, AX,). (5.20)
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Thus, by Lemma 5.2.1,

Z e~TS(F(s, Y,) — F(s, Ys_) — Dy F(s, Y,_)AS,)
0<sst

© te—rs ai .

(®

= E —h(s, Ys_, 0)dY,
i:z_I;) il ay‘ (S’ s ) S

+ ftfme_rsh(s, Ys_,y)V(dy)ds. (5.21)
0 Y—o0

Moreover, the dynamics of S under @ is given by
dS; = Si_(rdt + cdW, + dL;),  (eqn.(3.41))
where W is a Q-Brownian motion and L is a Q-martingale.

Therefore, by substituting (3.41) and (5.21) into (5.19) and making necessary
arrangements, we obtain

e "'F(t, Y) = F(0,Yy) + M + Ay,

where

t

o ta-rs pi ) _
M, = E f — —h(s, Ys_, 0)dY + o f eSS, _D, F(s, Ys_)dW,
i=2Jp il ay 0

t
+ f e "SS,_D;F(s, Ys_)dLs
0
and

t
1
A, = f e s (—rF(s, Y,_) + DoF(s, Y_) +§ozs§_D§F(s,Ys_)
0
— D,F(s, Ys_) f g(y)V(dy) + rSs_D,F(s, Ys_)
R

+f h(S:Ys—:Y)V(dY)> dS'
The process M is a Q-local martingale, since by (5.17) the series

Yies fot %:Saa—);h(s,Ys_,O)dYs(i) converges in L!(Q) and the processes
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te rs

0 I 3y 1h(s Y- ,O)dY() are martingales. The process A is a predictable finite

variation process. Thus, the condition A; = 0 yields

1
DoF(s, Ys_) + rSs_D;F(s,Ys_) — rF(s, Ys_) + EGZSSZ_D%F(S, Ys_)
= DR ¥, [ gV + | hGs Yo y)¥Ce) =0,
R —00

Therefore, by (5.7) and (5.8), F(t, x) satisfies the PDIE given by (5.18).
Q.E.D.

Theorem 5.2.2 Consider the value F(t,S,K;), at time t, of a contingent claim

X = ¢(St,Kr), satisfying the conditions of the previous theorem, where

K = f_ g(x) M((0,t],dx).  (eqn.(5.6))

Then, X is strongly replicable in L!(Q) and its replicating portfolio at time t is given

by
i

1
F(t,S¢—, K-) — S¢-Dy F(t, Se—, Ke-) — Z —h(t, ¢, Ko .O)H(l)
i= 21' Bta i

o = Bt
(5.22)
B: = D;F(t, S, K¢2), (5.23)
1 9 _
O 5.3y —h(t S, K, 0), i=23,.., (5.24)
where

h(t, xq,Xp,y) = F(t, x1(1+y),x; + g(y)) — F(t, %1, %) — x1yD1F(t, x4, X3),

a; represents the number of bonds at time t, [3; represents the number of stocks at

time t and BED represents the number of ith-power-jump assets H® at time t.

Proof: By applying Itd’s formula for semimartingales to F(t,Y.), where Y=
(St, Ky), we have
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T T
F(T,Yr) = F(t, Y, + f DyF(s, Y, )ds + f D,F(s, Y,_) dS,
t t

T 1 T
— | DR [geC@y) ds+ 50 [ S2DERG Y, )ds
t R t
+ Z (F(s,Y,) — F(s, Yo_) — DyF(s, Y,_)AS,). (5.25)
t<s<T
As in the proof of the previous theorem, we have

F(s,Ys) — F(s,Ys_) — D;F(s, Ys_)AS, = h(s, Y;_,AX,).  (eqn.(5.20))

Thus, by Lemma 5.2.1,

D (FGY) —F(5,Ys) = DiF(s, Y, )AS,)
t<s<T

T 00
Z 2 f 1_';h(s Y,_, 0)dY® + f f h(s, Ys_, y)(dy)ds.
i= t Yo

(5.26)
Therefore, by substituting (5.26) into (5.25) and using (5.7) and (5.8), we have

F(T, YT) = F(t! Yt)

T
+ f (LF(s,Ys_) + DF(s, Ys_) — rS_D;F(s, Ys_) + rF(s, Ys_)) ds
f D,F(s,Y,_) dS, + Z f —|$h(s Y, 0dvy®.  (527)
i=2

Note that by the previous theorem, F satisfies the PDIE (5.18). Also using
HED = exp(rt) YD, i>2, (eqn. (4.12))

and making necessary arrangements, we write (5.27) as
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F(T! YT) = F(t! Yt)

T1
+ f —( F(s, Ys_) — Ss_D;F(s, Ys_)
t BS

i

® 1 0 T
_Z B3y —h(s, Ys_ ,O)Hgl_)> dBg +f D, F(s, Ys_)dSq
t

2 e

Therefore, we have

(5.28)

T T w T
BT Y) = PO YD) + [ B+ [ Buas,+ ) [ plany,
t i=2J¢

t

where oy is the number of bonds, B is the number of stocks and Bgi) is the number
of ith-power-jump assets, given by (5.22), (5.23) and (5.24), one should have in his
portfolio at time s to hedge the contingent claim X.

Q.E.D.

Remark 5.2.1 If a contingent claim X with a payoff depending only on the value, at
maturity, of the stock price is considered, i.e. X’ = ¢(St), then
F=F(tS;) and h(txy) = F(t,x(l + y)) — F(t,x) — xyD, F(t, x).

The price function F(t,x) satisfies (see also [11] and [29])
1
DoF(t,x) + rxD, F(t, x) + EGZXZD%F(t, x) + DF(t,x) = rF(t, x)
with F(T, St) = ¢(St), where

DF(t, %) = f : (F(t.x(1 +y)) — F(t, x)=xyDF(t,x) ) (dy)

and

Dy :==d/dt,D; == 0/0x, D} = d"/ox".

Notice that
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n

ay"

0
h(t,x,0) = 0, 6_yh(t' x,0) =0, h(t,x,0) = x"DTF(t, x), n=2,

and thus, by equation (5.28), we have

F(T! ST) = F(t, St)

T1
+ f —(F(s,S,) — S,_D;F(s,S,)
t BS

&%) Si_ ) . T
_Z_ _é DiF(s, Ss_) HSB) dBS+f D, F(s, S;_)dS,
i=21: Dg t

T i
[ee] S _ . )
+ Z f 5 DiR(s, S, )dHY, (5.29)
i=2J¢ il Bs
That is, the hedging portfolio at time t is given by

1 [o] Si_ i :
af=§<wu&J—shDﬁash)—25,ﬁﬁ;Dwﬁﬁpﬂﬁﬁl
¢ j=21: B¢

t = DIF(ti St—):

S SL _
O = TpDIFESL), i=23,.

Remark 5.2.2 If the Black-Scholes model is considered, the risk-neutral dynamics of

the stock price is given by

ds, _
S—=I‘dt+ odW,, So >0,
t

where W = {W,, t > 0} is a standard Brownian motion. Notice that the market is

already complete and hence, an enlargement is not necessary, that is, all processes
HO = {Héi),t = 0}, i>1, are zero. Therefore, by the above remark, the hedging

portfolio at time t is given by
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1
oy = B: (F(t: Se) — S¢D;F(t, St)):

Be = D1F(t, S,
D=9, i=23,..

Remark 5.2.3 In the case of the geometric Poisson model, the risk-neutral dynamics

of the stock price is given by

ds,
gz(r—k)dt+ dng, So >0,

where V' = {)V;, t > 0} is a Poisson process with intensity parameter A > 0. Notice

that all the compensated power-jump processes are equal to the compensated Poisson
process, that is, Yt(i) = N; — At, i = 1. Remember that

HED = exp(rt) Yt(i), i>2. (eqn. (4.12))
By Itd’s formula, it can easily be shown that
St = Sg exp((r — Mt) 2%%,

which implies that if f(T, Nt) = F(T, St) is set, we have f(T, Nt + 1) = F(T, 2St).
Thus, by using
o gl
Z 2 DYR(s,5,-) = F(5,28,.) = F(5, ;) = S3_DyF(s, 5. )
i=2 I
= f(s, Ny_ + 1) — (s, NV;_) — Ss_D;F(s, Ss_),

we can write (5.29) as

T

T
F(T,$0) — F(650 = [ audB, + [ Buds,
t

t

where

o = 5 (26(s, M) = s, Ny + D),
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Bs = — (f(s, Vy_ + 1) — £(s, V).

Ss-

This means that Bgi) =0, i=2,3,.., and hence, an enlargement is not necessary.
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CHAPTER 6

PORTFOLIO OPTIMIZATION

In this part, the portfolio optimization problem in the complete Lévy market, that is,
the market enlarged with the power-jump-assets, is considered. The problem consists
of choosing an optimal portfolio in such a way that the largest expected utility of the

terminal wealth is obtained.

A class of utility functions, including HARA, logarithmic and exponential utilities as
special cases, is considered. Then, the optimal portfolio which maximizes the
terminal expected utility is obtained by the martingale method: First, the optimal

wealth is found and then the hedging portfolio replicating this wealth is obtained.

It is shown that for particular choices of the equivalent martingale measure in the
market, the optimal portfolio only consists of bonds and stocks. This corresponds to
completing the market with new assets in such a way that they are superfluous in the
sense that the terminal expected utility is not improved by including these assets in

the portfolio.
6.1 The Optimal Wealth

Let us fix a structure-preserving P-equivalent martingale measure Q. The aim is to
solve the portfolio optimization problem in the enlarged market M. Given an initial

wealth 2y > 0 and a utility function U, we want to find the optimal terminal wealth

52



Wi, that is, the value of Wy that maximizes E(U(Wr)) and which can be strongly

replicated in L1 (Q) by a portfolio with initial value u,.
Let us begin with some basic definitons.

Definition 6.1.1 A utility functon is a mapping U : R = RU{-00} which is strictly
increasing, continuous on {U > -0}, of class C*, strictly concave on the interior of

{U > -00} and satisfies U’ (c0) := lim U’(x) = 0, that is, marginal utility tends to zero
X—00

when wealth tends to infinity.

Denoting the interior of {U > -} by dom(U), only the following cases are

considered:
Case 1. dom(U) = (0,90), in which case U satisfies
U’(0) := Xll)r(r)'nJrU (x) = oo,
Case 2. dom(U) = R, in which case U satisfies
U'(—) := lim U'(x) = .
X——00
-
The HARA utility functions U(x) = % forp € R*\{0,1} and the logarithmic

utility function U(x) = log(x) are typical examples for Case 1, and the exponential

utility function U(x) = — i e PX p € (0, ), is a typical example for Case 2.
Definition 6.1.2 A self-financing portfolio T = {mn"} of the form

{T[{‘ = (at, Bt Ez)’ E3), . En)), 0<t<T, n > 2}

(eqn. (4.18))

is called admissible if its value process is bounded from below.

The set of all admissible portfolios is denoted by .
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Definition 6.1.3 Wy € L'(Q, Fr, Q) is called an attainable wealth if it can be
strongly replicated in L'( Q) by a portfolio in 2.

Proposition 6.1.1 For any m € 2, its discounted value process is a Q-

supermartingale.

Proof: The discounted value process of m is a sum of bounded below stochastic
integrals of predictable processes with respect to martingales. This process is a Q-
local martingale, see [2], and since it is bounded from below, by Fatou’s lemma, it is
a Q-supermartingale.

Q.E.D.

If the initial wealth is w, and Wy € L}(Q, Fr, Q) is attainable, then we have
Eq (?) < wy, by the previous proposition. Thus, the following optimization
T

problem is considered:

Wi
: —) <
Wl (FCUOP): o () < o
which has the same solution as
Wi
w2 (EUOD): Eo () = wn 6.1

since U is an increasing function. The Lagrangian for this optimization problem is
given by
WT dQT WT

E(U(WT)) - )\TEQ (B_T - ’bl)’()) =E <U(WT) - )\T (dTPTB—T - ’DU’O) .
Definition 6.1.4 Wr is called the optimal terminal wealth if it is a solution to the
optimization problem given by (6.1).
The optimal terminal wealth is given by
7\_T dQT)

Wr = (U)" (BT aP; (6.2)
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where Ar is the solution of the equation

L onen (A dQry )

Remark 6.1.1 Suppose that Q is such that H(x) is positive and of class C* on the

support of the Lévy measure v. Moreover, assume that H(0) = 1,H'(0) = G/G ,

o > 0 and that there are constants £ > 0, A > 0 such that
1. f(—s,s)c e H(x)v(dx) < oo.
2. f(_sls)cllogH(x)lv(dx) < oo,

3. Ji_eeellogHEIF(dx) = [ _, . c[logHE)HE)V(dx) < oo,

—£,6)C
o 2
Then, the condition f_oo (1 — w/H(x)) v(dx) < oo of Theorem 3.3.1 is satisfied and

the density process {dQ;/dP; = &, 0 <t < T} given by

1
& = exp <GWt ) G%t

+ lim <f logH(x)N((O, t], dx) — tf (Hx) — 1)v(dx))>
{IxI>&}

e—0

{Ix|>¢}
(eqn.(3.28))
can be written simply as
1 (00}
£, = exp (th - E(;2t + f logH(x)M((0, t], dx)
- tf (H(x) -1- logH(x))v(dx)), (6.4)

where

M(dt, dx) = N(dt, dx)- dtv(dx). (eqn. (3.9))

With the assumptions of the above remark, we have that
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der _

§r = aP;

exp <GWT - %GZT + f logH(x)M((0, T], dx)
— Tf (H(X) -1- logH(X))v(dx)). (6.5)

Moreover, by (3.17), we have

exp (GWy) = sg/csgc/ﬁexp <—gfoolog(1 +x) M((0, T], dx)
TG
5 <a +b—— + f (log(1 +x) — X)v(dx))) (6.6)

Hence, by substituting (6.6) into (6.5) and making necessary arrangements we have
=== -= - = b——|T
&t dIP’T =875, " "exp 2GT S a+ >
@ G G
+ Tf (logH(x) — Elog(l +x)—H&) +1+ EX) v(dx)

+ f_ O; (1ogH(x) — glog(l + x)> M((0, T], dx)) . (6.7)

Note that by equation (3.32) we have
M((0,t], dx) + tv(dx) = M((0, t], dx) + tH(x)v(dx). (6.8)

Thus, by using (6.7) and (6.8), we can write (6.2) as

)LT 1 G 02
_ n-1[ 2T «G/oc—G/o vl o
Wr = (U") <BTST So exp( 2GT G<a+b Z)T
*© G G
+ Tf ((logH(x) — Elog(l + x)) Hx)—Hx) +1+ EX) v(dx)

*© G ~
+ f_m (logH(x) — Elog(l + X)) M((O, T], dx))). (6.9)
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Therefore, the optimal terminal wealth is

Wr = (U) " (w(T)SY k1), (6.10)
where
2
w(t) = g—iSEG/cexp (—%Gzt —§<a +b —%)t
+ tf_(: <<logH(x) - glog(l + X)) H(x) —HX) + 1+ gx) v(dx)>
6.11)
and
K = f g(x) M((0,], dx), (6.12)
with
g(x) = logH(x) — glog(l +x). (6.13)
He G 1

Note that H(0) = 1 and H'(0) = G/G yields g’(0) = 0, since g'(x) =

H(x) o 1+x

In order to replicate the optimal terminal wealth Wy, we need to know its price

process, and this depends on the utility function considered.

Now suppose that the utility function satisfies

U xy) =k, R U)(H) + k(x), (6.14)
for any x, y € (0,00), for certain C* functions K, (x), k,(x). Then, the price function

of Wi can be written as

By _ At dQT) ]
Eq [BTWTm]—EQ 2ty (BT ) 17

B Ared A d
= B (g (R 8% ) gy (;&)
Bt Bt dPry B; dIP;

Bt )\Tt dQTt
T3, e <k2 <BTt dPr,
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Here we used the fact that {dQ./dP, =&, 0 <t<T} is a P-exponential Lévy

process, by Theorem 3.3.1 and equation (6.5), with Qs _ dQr/dPr g Are _ Ar/Br

dPry  dQi/dP; Brt  At/Bt
Thus, we have
By
Eq [ WriF] = o TIWL + 46 T), (6.15)
T
where
W, = (U) Y (w(t)SE/ eKr), (6.16)

with @w(t) and K are given by (6.11) and (6.12), respectively.
The following lemma shows the structure of the utility functions that satisfy (6.14).
Lemma 6.1.1 (U)"!(xy) = k;(x)(U")"1(y) + k,(x), for any %, y € (0,9), for

U'(x)
U”(X)

certain C* functions k;(x), k,(x) if and only if = mx + n, for any x €

dom(U), for some m, n € R.

Proof: First suppose that (U')"1(xy) = k;X)(U')"1(y) +k,(x). If we write
A(x) = (U)1(x), then we have A(xy) =k, x)A() + k,(x). Thus, by
differentiating with respect to x, we have that

yA (xy) = ki () A(y) + k3 (). (6.17)

1 _ 1
U(UNix) U7 (AX)

Note that A’ (x) =

Thus, by taking y = £~ 1(z) and x = 1, the equation (6.17) becomes

U'(z
R @R (@) = 02 = G (D)2 + K (D).
U 144 (Z)
Now suppose that 3,,((1)) = mx + n. Then, by integration of the differential equation,

we have
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U(x) = Cylog(x — n) + C,, if m =—1, (6.18)

Gy
m(l +%)

U(x) = Cne¥"+C,, if m=0, (6.20)

1
U(x) = (mx+n)"m+C,,  if me{—1,0}, (6.19)

where C; and C, are integration constants.

Therefore, we have

(U)1(x) = cx™ — % ifm % 0, (6.21)
implying that equation (6.14) holds with
k;(x) = x™and k,(x) = %xm - %; (6.22)
and
(U)1(x) = nlogx + c, ifm =0, (6.23)
implying that equation (6.14) holds with
k;(x) = 1 and k, (x) = nlogx, (6.24)
where ¢ € R.
Q.E.D.

From now on we only consider the class of utility funtions of the form

(UDxy) =k (OUDT () + ko (x). (eqn. (6.14))
This will ensure that the optimal portfolio consisting only of bonds and stocks can be

constructed.

In order to solve the optimization problem in the complete market Mg, it is required

that Wy € L1(Q, Fr, Q). Thus, we need the following proposition.

Proposition 6.1.2 Wy € L1(Q, Fr, Q) if and only if there is an € > 0 such that

f( )C|(U’)‘1(H(x))|v(dx) < oo. (6.25)
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Proof: The optimal terminal wealth is given by

i dy

= n-1
Wr = (U) (BTdIPT

(eqn. (6.2))
Remember that we only consider the class of utility funtions of the form

(UDxy) =k (UDT(Y) + k(x).  (eqn. (6.14))
Thus, we can write Wy as

Wy =k, (g—:) U E) +k, (2—1)

Since Ar/Br is deterministic, to show Wr € L1(Q, Fr, Q) it is enough to prove that
Eq[I(UNT'GpI] < oo

Moreover, the utility functions we consider are such that (recall the proof of Lemma

6.1.1)
UN)"(x) = cx™ — %, ifm # 0, (eqn. (6.21))

or

(U)1(x) = nlogx + ¢, ifm=0. (eqn.(6.23))

First consider the case where (U)™1(x) = cx™ — %, for m > 0. We have

EolI(U) &I = Eq [[eCn)™ — ]

By Theorem 3.3.1 and Remark 6.1.1, we have & = exp (J;), where the process
J]={, 0 <t< T} given by

Je = GW, — %Gzt + foologH(x)M((O, t], dx) — tfoo (H(x) — 1 — logH(x))v(dx)
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is a P-Lévy process with Lévy measure vj(du) = (vO~')(du). Here, u = 9(x) :=
logH(x).
Thus, we have

Eqll&r1™] = Eqlexp (m]r)].
Notice that Eglexp (m]r)] < oo if and only if Eglexp (m(JrV 0))] < co.
Moreover, by Proposition 25.4 in [30], EQ[exp (m(]T v O))] < oo if and only if
f exp(m(u Y O)) v;(du) < oo,
{lul>1}
which is equivalent to
f (H(x))mv(dx) < o
(-&8)°

for some € > 0, since logH(0) = 0 and H(X) is of class C*.
The case where (U’)1(x) = cx™ — %, for m < 0, can be treated analogously.

Now consider the second case where (U')"1(x) = nlogx + c. We have

EqlI(U)™* (&)l = Eqllnlogtr + cl]

and

EQ[llogETl] = EQ[UT”-
Notice that Egl[|Jr|] < oo if and only if Eg[[Jr|V 1] < oo. Moreover, again by

Proposition 25.4 in [30], Eg[|Jr| V 1] < oo if and only if
f (lu] v 1) vj(du) < oo,
{lul>1}
which is equivalent to
f [logH(x)| v(dx) < oo,
(-&9)¢

for some € > 0.

Q.E.D.
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6.2 The Optimal Portfolio

Remember that, by (6.15) and (6.16), the price function of the optimal terminal

wealth is given by
B¢
o [5oWrlF = F(t5uK)
T
with
F(t,x1,%;) = @t T)(U) " (w()xeX2) + Y(t, T). (6.26)
Also, the function h defined in Theorem 5.2.2 is given by

h(t, x4, X5, y) = F(t, X, (1 +y),x, + g(y)) — F(t,xq,%x3) — x,yD; F(t, X4, X3).
(6.27)

Note that
F(t,x,(1+y), %, +2() = @t T)(U) Y@ (0) (x4 (1 + y)) ¢/ eX2*80) + yi(t, T)
= @(t, (U (w®x;/ e*2H(y)) + Y(t, T)

= @(t, Dk, (@(®Ox{°e2) (U (H)) + ot Tk, (w(D)x/e*

+ Pt T).
(6.28)
Here we used the fact that
g(x) = logH(x) — glog(l +x) (eqn.(6.13))
and
U 6y) =k OUN ') + k() (eqn. (6.14))
with x = w(t)x/°e*2 and y = H(y).
Also note that
&4
D,F(t,x;,%X,) = G__otDolxy e (6.29)

ou ((U) Y (w(O)x{/ )

1

Here we used the fact that (U")"1(x))' = THCIE)
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Thus, by substituting (6.26), (6.28) and (6.29) into (6.27) and making necessary
arrangements, we have that
h(t, x4, %5, y) = @(t, Tk, (m(t)xf/GeXZ)(U’)‘l(H(y)) + @(t, Tk, (m(t)xf/GeXZ
,_ G ot TDw)x%ex
— ot MU (w(D)x;" ") — = e Y
oU” (U (w(O)x{%e))

(6.30)

Therefore, by applying Theorem 5.2.2, the following result is obtained.

Theorem 6.2.1 Let H be a positive function that satisfies the conditions of Remark

6.1.1 and let G € R be a solution of
a+b—-r+oG+ f x(H(x) — 1)v(dx) = 0. (eqn. (3.35))

Moreover, assume that
(i) (U)~1(H(y)) is an analytic function.

o Imlj, d!

(i) X250 g DT HED| < o where [ml; = [ y['V(dy).

Then, the optimal terminal wealth Wy is strongly replicable in L!(Q) and the number

of stocks and power-jump assets of the replicating portfolio is given by

G oot T)w(t)Stg__leKt— _ Go(t, T)(mW,_ +n)
e EUH ((U’)_l(w(t)st(;_/GeKt_)) B 0S;_ (631)
and
__1 , d o .
¢ = E‘P(tl Tk, (U (Wt—))d_yi(U )THHE)) gm0’ 17 2,3,.., (6.32)

respectively, where the constants 7 and 7 depend on the utility function (see

Lemma 6.1.1).

Proof: Clearly, assumptions (i) and (ii) imply that (6.25) is satisfied, and hence
Wy € L1(Q, Fr, Q), by Proposition 6.1.2. Note that in order to apply Theorem 5.2.2

to the function h given by (6.30), the following must be satisfied:
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T

Z:mh | Eallaits llds <o, ean. (517)

where a;(s,Ys) = h(s S., K, 0). That is, we should have
*© |m|1 1 k SG/Q‘ Ki_ d
T | (U) (H@)Ijy=o |(P(t T)lEQ[l 1(w(®) )|] dt < oo,
which means, by assumption (ii), that

T
f lo(t, T)|Eq [[k; (w(®)SE/ eKe-)|]dt < oo (6.33)
0

must hold. Note that in order to have a bounded price function
B¢
Eo [g-WrlF] = @ W+ 4T, (ean. (615))

| (t, T)| must be finite for all t and bounded in [0,T]. Also note that k; (x) is a linear
function of (U")71(x), (see proof of Lemma 6.1.1), and U'(W,) = w(t)SS/ceKt.
Thus, we have that k; (115(t)S:.3 i/ creKt—) is a linear function of W;_ and W;_ € L}(Q)
for all t € [0,T], and therefore Eg[|k, (m(t)Sf i/ eKe-)|] is bounded in [0,T].

Consequently, (6.33) holds and thus, with assumptions (i) and (ii), we can apply
Theorem 5.2.2 to the function h given by (6.30).

Therefore, by Theorem 5.2.2, the optimal terminal wealth Wr is strongly replicable

in L'(Q) and the number of stocks and power-jump assets of the replicating portfolio

is given by
Bt = DlF(tl St—l Kt—); (eqn' (523))
and
U =UBay 1h(t Se—, K, 0),  i=23,.., (eqn. (5.24))
respectively.
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Note that, by using (6.29), we have that
G
21
_ G ot Tw(D)S, et B Got, THU' (W)
oy ((U’)_l(m(t)Sf_/"eKt—)) o U”(Wt_)

_ Got, DH(mW,_ +n)
"o Se_ )

Sit

U’ W)
U (W)

Here we used the fact that U'(W,_) = @(t) StG /9Kt~ and =mW,_ + n.

Also note that, by using (6.30), we have that
d

FUNTTHED) .y 1=23.

: 1
@ _ ’
t =R B, @(t, Dk, (U' (W) dy

Q.E.D.

Corollary 6.2.1 Let H be a positive function that satisfies the conditions of Remark

6.1.1 and let G € R be a solution of
a+b—-r+oG+ f x(H(x) — Dv(dx) = 0. (eqn. (3.35))

Moreover, assume that
(1) (U)~1(H(y)) is a polynomial function of degree n.
i) Wp>0.

Then, the optimal terminal wealth Wi is attainable and the number of stocks and
power-jump assets of the replicating portfolio is given by
G
Z1
G etDwMSL e~ G, T)(mW,_ +n)

=8 _ 6.34
oyr ((U’)_l(ﬁf(t)Sf_/ceKt_)) 0S;_ ( )

and

- 1 d!
@ _ ’ "n—-1 L
O = I DI (U W) g (U HO) 123,000, (635)

respectively, where the constants 7 and 7 depend on the utility function (see

Lemma 6.1.1).
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Proof: Clearly, the conditions of the previous theorem are satisfied and thus, the
number of stocks and power-jump assets of the replicating portfolio is given by
(6.31) and (6.32), respectively. Note that the replicating portfolio involves only a
finite number of power-jump assets since, by assumption, (U")"1(H(y)) is a
polynomial function of degree n. Also note that the replicating portfolio is
admissible, since its value process is bounded from below. Therefore, the optimal
terminal wealth Wr is attainable with replicating portfolio given by (6.34) and
(6.35).

Q.E.D.

Notice that we have the following result: If it is required that the optimal portfolio

involves only stocks and bonds @ must be chosen so that

(UNT'HE) =2 + gy,
where p, g € R.

It can be easily shown that H(0) = 1 and H'(0) = G/ o imply that
| mG \/m .
(1 + —y) , it m %0 (6.36)
H(y) = o

G
exp (Ey>, ifm=20 (6.37)

where the constant 7 depends on the utility function (see Lemma 6.1.1). Remember
that G must satisfy the equation (3.35). Moreover, if G is such that H(y) > 0 on the
support of the Lévy measure v and Wr > 0, the conditions of the above corollary are
satisfied and BS) = 0, for all i > 2. Equivalently, if Q is chosen so that either (6.36)
or (6.37) holds, then the optimal portfolio in the Lévy market i involves only

stocks and bonds.
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6.3 Application

Example 6.3.1 Consider the logarithmic utility function U(x) = log(x). Then

(UNx) = i and by solving

1 N )LT dQT _
Eq <B_T un-t (B_TdT”T>> =w,,  (eqn.(6.3))

we have

dP -1
Wy = wOBTdTQrTT = (w(T)Sg/GeKT) :

Moreover, the price function of Wr at time t is given by

dP,

— =W,
dQ, "

B, dP;
which implies that @(t,T) = 1 and y(t, T) = 0 in
By
Eg [B—TWTm] = TDW:+ Yt T). (eqn. (6.15))

It follows from the proof of Lemma 6.1.1 that m =—-1, n =0, k;(x) =

x~! and k,(x) = 0. Note that U’(x) =§ and U’ (x) = —Xlz.

Therefore, it follows from Theorem 6.2.1 that the relative wealth invested in stocks,

at time t, is constant and given by

BeSe- _ G

W o’

and the number of power-jump assets in the optimal portfolio, at time t, is

W _ W d 1

- -—— , 1i=2,3, ..
t i! By dy' H(y))| y=0
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Moreover, if it is desired to have the optimal portfolio that consists of only stocks
and bonds, then an equivalent martingale measure Q must be chosen so that (6.36)

and (3.35) hold, that is
-1

H(y) = (1 —§y> )

where G satisfies the equation

G (% 2
a+b—r+GG+—f v(dx) = 0.
G —Ool_gx
o

The existence and the uniqueness of the solution is considered in the next example.

1_
Example 6.3.2 Consider the HARA utilities U(x) = % for p € R*\{0,1}. Then

(U)~1(x) = x"P and by solving

1 Arden)
Eq <B—T " 1(B—TdT,T)> =wy  (eqn.(6.3))

we have

(dPr/dQq)Y/P

— G/o Kt -1/p
EQ((d]PT/dQT)up) = (m(T)ST ek ) '

W = wBr

Moreover, the price function of Wr at time t is given by

By
Br

EQ[(d]PT/dQT)l/pth]
Eq((dPy/dQr)1/P)

Eq [(dPr./dQr,)
t
Eq ((dPr./dQr,)

_ g, (dP/dQY
~ O R (AP /dQ0 P

(dP,/dQ)"?|F]
P (dP,/dQ)Y/?)

=w0

= th

which implies that @(t, T) = 1 and ¢(t, T) = 0 in
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Eq [s—;wﬂfﬂ] — ot TW, + ¢ T). (eqn. (6.15))

It follows from the proof of Lemma 6.1.1 that m = —%,fn =0k, x) =
x~ /P and k,(x) = 0. Note that U’(x) = x P and U"(x) = —px~P~L.

Therefore, it follows from Theorem 6.2.1 that the relative wealth invested in stocks,

at time t, is constant and given by

BtSt- _ G
W,_ op’

and the number of power-jump assets in the optimal portfolio, at time t, is

a _ Wt—

¢ =B, dyl & - e =23

Moreover, if it is desired to have the optimal portfolio that consists of only stocks
and bonds, then an equivalent martingale measure Q must be chosen so that (6.36)
and (3.35) hold, that is
G -p
H(y) = (1 —G—py> :

where G satisfies the equation

[ee] G -p
a+b—r+GG+f X((l_c_px> —1)v(dx)=

It is required that H(y) > 0 for all y on the support of the Lévy measure v in order to
obtain an equivalent measure Q (see Theorem 3.3.1). Remember that the support of

the Lévy measure is given by [6,0], where § > —1 and 0 is a positive constant. Thus,

we must have 1 — Gipy > 0 forally € [§, 0], which implies that

op op .
—<G<— f—-1<6<0
s <G<g5, i <8<
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and

Moreover, if G is a solution of the equation

co G -p
a+b—r+GG+f y((l—c—py> —1)v(dy)=0,

then the probability measure Q is an equivalent martingale measure.

Notice that the function

f(G) == oG + f_iy((l —G—(i)y> ’ — 1> v(dy)

is strictly increasing. This means that we have at most one solution of the equation
a+b—-r+f(G) =0,

and this solution exists only if

Gz—p+f_ooy((1—§)_p—1>v(dy)<r—a—b

)
< (r;_p+ J;O:Oy((l - %)—p - 1) v(dy).
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CHAPTER 7

CONCLUSION

In this study, general geometric Lévy market models are considered. Since these
models are, in general, incomplete, that is, all contingent claims cannot be replicated
by a self-financing portfolio consisting of investments in a risk-free bond and in the
stock, it is suggested that the market should be enlarged by artificial assets based on
the power-jump processes of the underlying Lévy process. These artificial assets can
be related with options on the stock and contracts on realized variance that are traded
in OTC markets regulary. By making use of the Predictable Representation Property
for Lévy processes, it is shown that the enlarged market is complete. Then the
explicit hedging portfolios for claims whose payoff function depends on the prices of

the stock and the artificial assets at maturity are derived.

Moreover, the portfolio optimization problem is considered in the enlarged market.
The problem consists of choosing an optimal portfolio in such a way that the largest
expected utility of the terminal wealth is obtained. A class of utility functions,
including HARA, logarithmic and exponential utilities as special cases, is
considered. Then, the optimal portfolio which maximizes the terminal expected
utility is obtained by the martingale method. It is shown that for particular choices of
the equivalent martingale measure in the market, the optimal portfolio consists only
of bonds and stocks. This corresponds to completing the market with additional

assets in such a way that they are superfluous in the sense that the terminal expected
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utility is not improved by including these assets in the portfolio. This in turn provides
a solution to the problem of utility maximization in the real market, consisting only

of the bond and the stock.

The new assets, by which the market is completed, are not traded in the market and
thus, considering the portfolio optimization in the enlarged market does not seem to
be realistic. However, the replication formula for these artificial assets in terms of
call options with the same maturity and with a continuum of strikes can be derived,

which is the subject of another study.
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