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ABSTRACT 
 
 

COMPLETION OF A LEVY MARKET MODEL 
AND PORTFOLIO OPTIMIZATION 

 
 

Aysun Türkvatan 

M.Sc., Department of Financial Mathematics 

Supervisor: Assoc. Prof. Dr. Azize Hayfavi 

 
 

September 2008, 75 pages 
 
 
 

In this study, general geometric Levy market models are considered. Since these 

models are, in general, incomplete, that is, all contingent claims cannot be replicated 

by a self-financing portfolio consisting of investments in a risk-free bond and in the 

stock, it is suggested that the market should be enlarged by artificial assets based on 

the power-jump processes of the underlying Levy process. Then it is shown that the 

enlarged market is complete and the explicit hedging portfolios for claims whose 

payoff function depends on the prices of the stock and the artificial assets at maturity 

are derived. Furthermore, the portfolio optimization problem is considered in the 

enlarged market. The problem consists of choosing an optimal portfolio in such a 

way that the largest expected utility of the terminal wealth is obtained. It is shown 

that for particular choices of the equivalent martingale measure in the market, the 

optimal portfolio only consists of bonds and stocks. This corresponds to completing 

the market with additional assets in such a way that they are superfluous in the sense 
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that the terminal expected utility is not improved by including these assets in the 

portfolio. 

Keywords: Levy processes, Power-jump processes, Complete markets, Martingale 

Representation Property, Hedging portfolio, Portfolio optimization, Martingale 

method 
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ÖZ 
 
 

LEVY PİYASASI TAMLAMASI VE PORTFÖY 
OPTİMİZASYONU  

 
 

Aysun Türkvatan 

Yüksek Lisans, Finansal Matematik Bölümü 

Tez Yöneticisi: Doç. Dr. Azize Hayfavi 

 
 

Eylül 2008, 75 sayfa 
 
 
 

Bu çalışmada, genel geometrik Levy piyasa modelleri incelenmiştir. Bu modeller, 

genellikle, tam değillerdir, yani, tüm şarta bağlı alacak hakları, tahvil ve hisse 

senetlerine yatırım yapılarak kendi kendini finanse eden portföy tarafından 

yinelenemezler. Bu sebepten piyasanın, söz konusu Levy süreçlerinin kuvvet-

sıçrama süreçlerine dayalı yapay varlıklar tarafından genişletilmesi önerilmiştir. Bu 

durumda piyasanın tam olduğu gösterilmiş ve alacak hakkına ait ödeme 

fonksiyonunun hisse senedi ve yapay varlıkların vade sonu değerlerine bağlı riskten 

korunma portföyü açık olarak ifade edilmiştir. Ayrıca, genişletilen piyasada portföy 

optimizasyon problemi incelenmiştir. Problem, optimal portföyün, nihai servete ait 

beklenen faydasının maksimum olacak şekilde, seçiminden ibarettir. Piyasadaki denk 

martingale ölçüsünün özel seçimleri için, optimal portföyün sadece tahvil ve hisse 

senetlerinden oluştuğu gösterilmiştir. Bu durum piyasanın yeni varlıkları gereksiz 

kılacak şekilde tamlanmasına karşılık gelmektedir. 
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Anahtar Kelimeler: Levy süreçleri, Kuvvet-sıçrama süreçleri, Tam piyasalar, 

Martingale Temsili Özelliği, Riskten korunma portföyü, Portföy optimizasyonu, 

Martingale metodu 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

In recent years more and more attention has been given to stochastic models of 

financial markets which depart from the famous Black-Scholes model [9]. Some of 

the most popular and still tractable models are the Lévy models. These models are 

able to take into account different important stylized features of financial time series. 

An accessible introduction, together with theoretical motivations to Lévy markets, 

can be found in Geman (2002) [20], as well as [24]. For an overview of the theory 

and the applications of Lévy processes in finance see [32] and [12]. 

It is well-known that the famous Black-Scholes model is complete, that is, all 

contingent claims can be replicated by a self-financing portfolio consisting of 

investments in a risk-free bond and in the stock. However, when the sources of 

randomness are more than the number of assets available for investment the 

incompleteness arises. In incomplete markets a perfect replication of a claim is, in 

general, not possible and most Lévy market models are incomplete. There are 

different approaches to hedging in incomplete markets, see Cont and Tankov (2004) 

[12]. 

A market model is said to be complete if for every integrable contingent claim there 

exists an admissible self-financing strategy replicating the claim. The question of 

market completeness is linked with the Predictable Representation Property (PRP) of 



2 

 

a martingale. A martingale M is said to have the PRP if, for any square-integrable 

random variable X � �T, we have X � E�X	 
 � h
dM
,T�  for some predictable 

process h � �h
, 0 � s � T� (see [32] (p.18)). If we have such a representation, the 

predictable process h gives us the admissible self-financing strategy replicating the 

claim. Unfortunately, this kind of PRP is a rather delicate and exceptional property, 

which is only possessed by a few martingales. Examples include Brownian motion, 

the compensated Poisson process and the Azéma martingale, see Dritschel and 

Protter (1999) [18]. The PRP for Brownian motion states that every square integrable 

random variable adapted to the filtration generated by a Brownian motion can be 

represented as a sum of its mean and a stochastic integral with respect to the 

Brownian motion, where the integrand is a predictable process. The PRP of 

Brownian motion implies the completeness of the Black-Scholes model [9] and gives 

the admissible self-financing strategy replicating a contingent claim whose price only 

depends on the time to maturity and the current stock price.  

When the underlying asset is driven by a Lévy process, perfect hedging using only a 

risk-free bond (or a bank account) and the underlying asset is, in general, not 

possible and the market is said to be incomplete. However, further developments are 

possible. Nualart and Schoutens (2000) [26] proved the PRP for Lévy processes 

which satisfy some exponential moment conditions, see also [25]. This PRP states 

that every square integrable random variable adapted to the filtration generated by a 

Lévy process can be represented as an infinite sum of iterated stochastic integrals 

with respect to the orthogonalized compensated power-jump processes of the 

underlying Lévy process. In the light of [26] and [25], Corcuera et al. (2005) [14] 

suggested that the market should be enlarged by a series of very special assets 

(power-jump assets) so that perfect hedging can be achieved. Corcuera et al. (2006) 

[13] used this completeness to solve the portfolio optimization problem using the 

martingale method. 
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In this study, we work under a market which consists of one riskless asset (the bond) 

and one non-dividend paying risky asset (the stock) with price process formulated by 

a geometric Lévy model. Since general geometric Lévy market models are 

incomplete, except for the geometric Brownian and the geometric Poissonian 

models, the market is completed by following the approach suggested by [14], that 

is, the market is equipped with certain additional assets so that any final wealth is 

actually attainable by trading in the complete market. First the market is enlarged by 

artificial assets based on the power-jump processes of the underlying Lévy process 

[26, 25]. For pure jump processes the power-jump process of order two is the 

quadratic variation process and is related with the realized variance, see Barndorff-

Nielsen and Shephard (2002), (2003) [5, 6]. Higher order power-jump processes can 

be related with realized skewness and realized kurtosis. These new assets can be 

related with options on the stock Balland (2002) [4] and with contracts on realized 

variance Carr and Madan (1998) [10], Demeterfi et al. (1999) [17] that are traded in 

OTC markets regulary. These new assets are strongly related to the realized higher 

moments and in a discrete time framework, they mainly coincide Corcuera et al. 

(2005a) [15], see also Schoutens (2005) [33]. These assets give you protection 

against different kinds of market shocks. Completeness of the enlarged market is 

shown by the Martingale Representation Property [26, 25]. The notion of 

completeness used is equivalent to the notion of approximate completeness of Björk 

et al. (1997) [8]. Also by giving the explicit hedging portfolios for claims whose 

payoff function depends on the prices of the stock and the artificial assets at maturity, 

the portfolio optimization problem is considered in the enlarged market [13]. The 

problem consists of choosing an optimal portfolio in such a way that the largest 

expected utility of the terminal wealth is obtained. A class of utility functions, 

including HARA, logarithmic and exponential utilities as special cases, is 

considered. Then, the optimal portfolio which maximizes the terminal expected 

utility is obtained by the martingale method: First, the optimal wealth is found and 

then the hedging portfolio replicating this wealth is obtained [22]. It is shown that for 
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particular choices of the equivalent martingale measure in the market, the optimal 

portfolio only consists of bonds and stocks [21, 31]. This corresponds to completing 

the market with additional assets in such a way that they are superfluous in the sense 

that the terminal expected utility is not improved by including these assets in the 

portfolio. This in turn provides the solution to the problem of utility maximization in 

the real market, consisting only of the bond and the stock. 

The organization of this study is as follows. In Chapter 2, basic definitions and 

concepts related to Lévy processes are given. In Chapter 3, the geometric Lévy 

market model is introduced. In Chapter 4, the power-jump processes are introduced 

and the Lévy market model is completed by artificial assets constructed from them. 

In Chapter 5, the hedging portfolio for the claims whose payoff function depends on 

the prices of the stock and the new assets at maturity is given. In Chapter 6, the 

portfolio optimization problem in the complete Lévy market is considered. And 

finally, in Chapter 7, the conclusion follows. 
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CHAPTER 2 
 
 

PRELIMINARIES 
 
 
 

Definitions and theorems given in this part are mainly taken from [12, 27, 28]. 

Assume that we are given a filtered, complete probability space �Ω, �, �, �	, where � � ���	�����, satisfying the usual hypotheses, that is, 

(i) �� contains all the �-null sets of �; 

(ii) �� � � ��,� !   for all t, 0 � t < ∞; i.e. the filtration � is right continuous. 

2.1 Basic Tools 

Definition 2.1.1 Two stochastic processes X and Y are modifications if  X� � Y� 
almost surely (a.s.) for each t. 
Definition 2.1.2 A function f : [0,T] → ℝ is said to be càdlàg if it is right continuous 

with left limits. 

Of course, any continuous function is càdlàg but càdlàg functions can have 

discontinuities. If t is a discontinuity point we denote by ∆f�t	 � f�t	 . f�t.	  the 

"jump" of f at t. However, càdlàg functions cannot jump aroud too wildly.  A càdlàg 

function f can have at most a countable number of discontinuities: �t � [0, T],   f�t	 /f�t.	� is finite or countable. Also, for any ε > 0, the number of discontinuities 

("jumps") on [0,T] larger than ε should be finite. So a càdlàg function on [0,T] has a 
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finite number of "large jumps" (larger than ε) and posssibly infinite, but countable 

number of small jumps. 

Definition 2.1.3 A stochastic process X is said to be càdlàg if it a.s. has sample paths 

which are right continuous, with left limits. 

Definition 2.1.4 A family of random variables �U3	3�A is uniformly integrable if lim8→� sup3 � |U3|d� � 0.�|U>|?8�   

Theorem 2.1.1 Let X be a martingale. Then �X�	�?� is uniformly integrable if and 

only if  Y � lim�→� X� exists a.s.,  E�|Y|� < ∞, and �X�	����� is a martingale, where X� � Y. 
If X is a uniformly integrable martingale, then  X� converges to X� � Y in LA as well 

as a.s.. 

2.2 Lévy Processes 

Definition 2.2.1 An adapted process Z � �Z�	�?� with  Z� � 0 a.s. is a Lévy process 

if 

(i) Z has increments independent of the past; that is, Z�.Z
 is independent of �
, 0 � s < t < ∞; and 

(ii) Z has stationary increments; that is, Z�.Z
 has the same distribution as  Z�C
,  0 � s < t < ∞; and 

(iii) Z� is continuous in probability; that is, lim�→
 Z� � Z
, where the limit is 

taken in probability; i.e.  Dt E 0 Dε > 0,  lim
→� ��|Z
 . Z�| > F	 � 0. 

The simplest Lévy process is the linear drift, a deterministic process. Brownian 

motion is the only (non-deterministic) Lévy process with continuous sample paths. 

Other examples of Lévy processes are the Poisson and compound Poisson processes. 
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Notice that the sum of a linear drift, a Brownian motion and a compound Poisson 

process is again a Lévy process; it is often called a “Lévy jump-diffusion” process. 

Theorem 2.2.1 Let Z be a Lévy process. There exists a unique modification Y of Z 

which is càdlàg and which is also a Lévy process. 

We will henceforth always assume that we are using the (unique) càdlàg version of 

any given Lévy process. Lévy processes provide us with examples of filtrations that 

satisfy the ‘usual hypotheses’, as the next theorem shows. 

Theorem 2.2.2 Let Z be a Lévy process and let G� � ���HI, where ����	���J∞ is the 

natural filtration of Z, and I are the �-null sets of �. Then �G�	���J� is right 

continuous. 

There is a strong interplay between Lévy processes and infinitely divisible 

distributions. We first define infinitely divisible distributions and give some 

examples, and then describe their relationship to Lévy processes. 

Definition 2.2.2 The law �X of a random variable X is infinitely divisible, if for all n 
� ℕ there exist i.i.d. random variables XA�A 8⁄ 	, … , X8�A 8⁄ 	 such that 

X �P XA�A 8⁄ 	 
 Q 
 X8�A 8⁄ 	. 
Alternatively, we can characterize an infinitely divisible random variable X using its 

characteristic function φX. The law of a random variable X is infinitely divisible, if 

for all n�ℕ, there exists a random variable X�A 8⁄ 	, such that 

φX�u	 � SφX�T U⁄ 	�u	V8.  
Some examples of infinitely divisible distributions are the Normal distribution, the 

Poisson distribution, the compound Poisson distribution, the exponential, the Γ-
distribution, the geometric, the negative binomial, the Cauchy distributions and the 
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strictly stable distribution. On the other hand, the uniform and the binomial 

distributions are not infinitely divisible. 

The next theorem provides a complete characterization of random variables with 

infinitely divisible distributions via their characteristic functions; this is the 

celebrated Lévy-Khintchine formula. 

Theorem 2.2.3 (Lévy-Khintchine Formula) The law �X of a random variable X is 

infinitely divisible if and only if there exists a triplet �α, σZ, ν	, with α � ℝ, σ � ℝ\ 

and ν is a measure satisfying ν��0�	 � 0 and � �1 ^ |x|Z	ℝ ν�dx	 < ∞, such that 

E`eb�Xc � exp diuα . uZσZ2 
 f geb�h . 1 . iux1�|h|JA�iν�dx	ℝ j, 
 where u � ℝ.  

The triplet �α, σZ, ν	 is called the Lévy or characteristic triplet and 

ψ�u	 � iuα . uZσZ2 
 f geb�h . 1 . iux1�|h|JA�iν�dx	ℝ  
is called the Lévy or characteristic exponent. Moreover, α � ℝ is called the drift 

term, σZ is the Gaussian or diffusion coefficient and ν is the Lévy measure. 

Theorem 2.2.4 For every Lévy process �Z�	�?�, we have that 

E`eb�Zmc � e�n��	 � exp dt oiuα . uZσZ2 
 f geb�h . 1 . iux1�|h|JA�iν�dx	ℝ pj , 
where  ψ�u	  is the characteristic exponent of  ZA, a random variable with an 

infinitely divisible distribution. 

Therefore, any Lévy process can be associated with the law of an infinitely divisible 

distribution. The opposite, i.e., given any random variable X, whose law is infinitely 

divisible, we can construct a Lévy process �Z�	�?� such that q�ZA	 r q�X	, where  
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q�X	 denotes the law of X,  is also true. This will be the subject of the Lévy-Itô 

decomposition. We prepare this result with an analysis of the jumps of a Lévy 

process and the introduction of Poisson random measures. 

The jump process  ∆Z � �∆Z�	�?� associated to the Lévy process Z is defined, for 

each t E 0, via ∆Z� � Z� . Z�C, where Z�C � lim
s� Z
, the left limit at t. The 

condition of stochastic continuity of a Lévy process yields immediately that for any 

Lévy process Z and any fixed t > 0, ∆Z� � 0 a.s.; hence, a Lévy process has no fixed 

times of discontinuity. 

A convenient tool for analyzing the jumps of a Lévy process is the random measure 

of jumps of the process. Consider a set Λ � u�ℝ\�0�	 such that 0 ∉ Λx and let 0 � t � T, where T � [0,∞]; define the random measure of the jumps of the process Z by 

yZ�ω; t, Λ 	 � #�0 � s � t;  ∆Z
�ω	 � Λ� � } 1~g∆Z
�ω	i ;
��  
hence, the measure yZ�ω; t, Λ	 counts the jumps of the process Z of size in Λ  up to 

time t. yZ�·, Λ	 is a Poisson process and yZ is a Poisson random measure. The 

intensity of this Poisson process is ν�Λ	 � E[yZ�1, Λ 	]. 
Theorem 2.2.5 The set function Λ → yZ�ω; t, Λ	 defines a σ-finite measure on ℝ\�0� for each �ω,t	. The set function ν�Λ	 � E[yZ�1, Λ 	] defines a σ-finite 

measure on ℝ\�0�. 

Definition 2.2.3 The measure ν defined by 

ν�Λ	 � E[yZ�1, Λ 	] � E �} 1~g∆Z
�ω	i�J��A � 

is the Lévy measure of the Lévy process Z. 

The Lévy measure ν is a measure on ℝ that satisfies ν��0�	 � 0 and  � �1 ^ℝ|x|Z	 ν�dx	 < ∞. The Lévy measure describes the expected number of jumps of a 
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certain height in a time interval of length 1. The Lévy measure has no mass at the 

origin, while singularities (i.e. infinitely many jumps) can occur around the origin 

(i.e. small jumps). Moreover, the mass away from the origin is bounded (i.e. only a 

finite number of big jumps can occur). 

Now, using that yZ�t, Λ	  is a counting measure we can define an integral with 

respect to the Poisson random measure yZ. Consider a set Λ � u�ℝ\�0�	 such that 0 ∉ Λx and a function f : ℝ→ℝ, Borel measurable and finite on Λ. Then, the integral 

with respect to a Poisson random measure is defined as follows: 

f f�x	yZ�ω; t, dx	~ � } f�∆Z
	
�� 1~g∆Z
�ω	i. 
Note that each � f�x	yZ�t, dx	~  is a real-valued random variable and generates a 

càdlàg stochastic process. The stochastic process 

f f f�x	yZ�ds, dx	 � of f f�x	yZ�ds, dx	~
�

� p����T~
·

�  

is a compound Poisson process. 

Theorem 2.2.6 Let Λ be a Borel set of ℝ, 0 ∉ Λx. Let ν be the Lévy measure of Z. 

(i) If  f1~ �  LA�dν	, then 

E df f f�x	yZ�ds, dx	~
�

� j � t f f�x	ν�dx	~ . 
(ii) If  f1~ �  LZ�dν	, then 

E �of f f�x	yZ�ds, dx	~
�

� . t ff�x	ν�dx	~ pZ� � t fgf�x	iZν�dx	~ . 
Corollary 2.2.1 Let f : ℝ→ℝ be bounded and vanish in a neighborhood of 0. Then 

E � } f�∆Z
	�J��� � � t f f�x	ν�dx	.�
C�  
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Theorem 2.2.7 (Lévy- Itô Decomposition) Consider a triplet �α, σZ, ν	, where α � ℝ, σ � ℝ\ and ν is a measure satisfying ν��0�	 � 0 and � �1 ^ |x|Z	ℝ ν�dx	 <
∞. Then, there exists a probability space �Ω, �, �	, on which four independent Lévy 

processes Z�A	, Z�Z	, Z��	 and Z��	 exist, where Z�A	 is a constant drift, Z�Z	 is a 

Brownian motion, Z��	 is a compound Poisson process and Z��	 is a square integrable 

(pure jump) martingale with an a.s. countable number of jumps of magnitude less 

than 1 on each finite time interval. Taking Z � Z�A	 
 Z�Z	 
 Z��	 
 Z��	, we have 

that there exists a probability space on which a Lévy process Z � �Z�	����T with 

characteristic exponent 

ψ�u	 � iuα . uZσZ2 
 f geb�h . 1 . iux1�|h|JA�iν�dx	ℝ  
for all u � ℝ, is defined. 

We can decompose any Lévy processes Z into these four independent Lévy processes Z � Z�A	 
 Z�Z	 
 Z��	 
 Z��	, as follows: 

Z� � αt 
 σW� 
 f f xyZ�ds, dx	 
�|h|?A�
�

� f f x�yZ�ds, dx	 . ν�dx	ds	�|h|JA�
�

� . 
Here  Z�A	  is a constant drift, Z�Z	 is a Brownian motion, Z��	 is a compound Poisson 

process and  Z��	 is a pure jump martingale. 

The Lévy measure is responsible for the richness of the class of Lévy processes and 

carries useful information about the structure of the process. Path properties can be 

read from the Lévy measure. For example, the compound Poisson process has a finite 

number of jumps on every time interval, while the NIG and α-stable processes have 

an infinite one; we then speak of an infinite activity Lévy process. 

Proposition 2.2.1 Let Z be a Lévy process with triplet �α, σZ, ν	. 
(i) If ν�ℝ	 < ∞, then almost all paths of Z have a finite number of jumps on 

every compact interval. In that case, the Lévy process has finite activity. 
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(ii) If ν�ℝ	 � ∞, then almost all paths of Z have an infinite number of jumps 

on every compact interval. In that case, the Lévy process has infinite 

activity. 

Whether a Lévy process has finite variation or not also depends on the Lévy measure 

(and on the presence or absence of a Brownian part). 

Proposition 2.2.2 Let Z be a Lévy process with triplet �α, σZ, ν	. 

(i) If σZ � 0 and � |x|ν�dx	 < ∞,�|h|�A�  then almost all paths of Z have finite 

variation. 

(ii) If σZ /  0 or  � |x|ν�dx	 � ∞,�|h|�A�  then almost all paths of Z have infinite 

variation. 

The compound Poisson process has finite measure, hence it has finite variation as 

well; on the contrary, the NIG Lévy process has an infinite measure and has infinite 

variation. In addition, the CGMY Lévy process for 0 < Y < 1 has infinite activity, 

but the paths have finite variation. 

The Lévy measure also carries information about the finiteness of the moments of a 

Lévy process. The finiteness of the moments of a Lévy process is related to the 

finiteness of an integral over the Lévy measure (more precisely, the restriction of the 

Lévy measure to jumps larger than 1 in absolute value, i.e. big jumps). 

Proposition 2.2.3 Let Z be a Lévy process with triplet �α, σZ, ν	. 
(i) Z� has finite p-th moment for p � ℝ\ � E|Z�|� < ∞ 	 if and only if � |x|��|h|?A� ν�dx	 < ∞. 
(ii) Z� has finite p-th exponential moment for p � ℝ � E[e�Zm] < ∞ 	 if and 

only if  � e�h�|h|?A� ν�dx	 < ∞. 
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Actually, the conclusion of this proposition holds for a general class of 

submultiplicative functions, which contains e�h and |x|� � 1 as special cases (see 

Theorem 25.3 in [30]). 

Note that the variation of a Lévy process depends on the small jumps (and the 

Brownian motion), the moment properties depend on the big jumps, while the 

activity of a Lévy process depends on all the jumps of the process. 

Basic reference texts on Lévy processes are [3, 7, 23, 28] and [30]. For applications 

in finance see [12] and [32]. 

2.3 Elements from Semimartingale Theory 

Definition 2.3.1 A semimartingale is a stochastic process X � �X�	����T, which 

admits the decomposition X� � X� 
 �� 
 ��,                                                         �2.1	 

where X� is finite and ��-measurable, � is a local martingale with �� � 0 and � is 

a finite variation process with �� � 0.  
Definition 2.3.2 An adapted, càdlàg process Y is a classical semimartingale if there 

exist processes �, � with �� � �� � 0 such that  Y� � Y� 
 �� 
 ��, where  � 

is a local martingale and � is a finite variation process. 

Theorem 2.3.1 A classical semimartingale is a semimartingale. 

Definition 2.3.3 Let X be a semimartingale. If X has a decomposition X� � X� 
�� 
 ��, with �� � �� � 0, � a local martingale, � a finite variation process 

and with � predictable, then X is said to be a special semimartingale. 

Theorem 2.3.2 If X is a special semimartingale, then its decomposition X � � 
 �, 
with � predictable, is unique (it is assumed that X� � 0). 
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Every Lévy process is also a semimartingale; this follows easily from �2.1	 and 

Lévy–Itô decomposition of a Lévy process. Every Lévy process with finite first 

moment is also a special semimartingale; conversely, every Lévy process that is a 

special semimartingale, has a finite first moment. This is the subject of the next 

result. 

Lemma 2.3.1 Let Z be a Lévy process with triplet �α, σZ, ν	. The following 

conditions are equivalent: 

(i)  Z is a special semimartingale, 

(ii)  � �|x| ^ |x|Z	ℝ ν�dx	 < ∞, 
�iii	  � |x|1�|h|?A�ℝ ν�dx	 < ∞.  

Definition 2.3.4 Let X, Y be semimartingales. The quadratic variation process of X, 

denoted by [X, X] � �[X, X]�	�?�, is defined by 

[X, X] � XZ . 2 f XCdX 

where  X�C � 0. The quadratic covariation of X and Y is defined by 

[X, Y] � XY . f XCdY . f YCdX. 
Definition 2.3.5 For a semimartingale X, the process [X, X]� denotes the path-by-path 

continuous part of [X, X]. 
We can then write 

[X, X]� � [X, X]�� 
 X�Z 
 } �∆X
	Z�J��� � [X, X]�� 
 } �∆X
	Z��
�� . 
Analogously, [X, Y]� denotes the path-by-path continuous part of [X, Y], where Y is 

also a semimartingale. 

For every finite variation process X, we have [X, X]� � ∑ �∆X
	Z.��
��  
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Example 2.3.1 (Quadratic variation of a Lévy process) If Z is a Lévy process with 

characteristic triplet �α, σZ, ν	, its quadratic variation process is given by 

[Z, Z]� � σZt 
 f f xZyZ�ds, dx	ℝ
�

� . 
Example 2.3.2 (Quadratic variation of a Poisson integral) Consider a Poisson 

random measure I on [0, T] � ℝP with intensity μ�ds�dy	 and a simple predictable 

random function ψ: [0, T] � ℝP → ℝ . If  

X� � f f ψ�s, y	ℝ�
�

� I�ds, dy	, 
then the quadratic variation of X is given by 

[X, X]� � f f �ψ�s, y		Z
ℝ�

�
� I�ds, dy	. 

Example 2.3.3 Let I be a Poisson random measure on [0, T] � ℝP and �W�	��[�,T]  
be a Wiener process, independent from I. If 

X�b � X�b 
 f �
b dW

�

� 
 f f ψb�s, y	I�ds, dy	, i � 1,2,ℝ�
�

�  
then the quadratic covariation [XA, XZ] is given by 

[XA, XZ]� � f �
A�
Zds�
� 
 f f ψA�s, y	ψZ�s, y	I�ds, dy	.ℝ�

�
�  

Definition 2.3.6 A semimartingale X is called quadratic pure jump if [X, X]� � 0. 
If X is quadratic pure jump, then [X, X]� � X�Z 
 ∑ �∆X
	Z�J��� . Note that the trivial 

continuous process X� � t is a quadratic pure jump since [X, X]�� � [X, X]� � 0. The 

Poisson process is an obvious example of a quadratic pure jump semimartingale. 
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More generally, if Z is a Lévy process with a Lévy decomposition Z� � B� 
 X�, 
where B is a Brownian motion and  

X� � αt 
 f f xyZ�ds, dx	 
�|h|?A�
�

� f f x�yZ�ds, dx	 . ν�dx	ds	,�|h|JA�
�

�  
then X is a quadratic pure jump semimartingale.  

Theorem 2.3.3 (Itô’s Formula) Let X � �XA, … , X8	 be an n-tuple of 

semimartingales, and let f �  ℝ8  → ℝ have continuous second order partial 

derivatives. Then f�X	 is a semimartingale and the following formula holds: 

f�X�	 . f�X�	 � } f ∂f∂xb
�

��
8
b�A �X
C	dX
b 
 12 } f ∂Zf∂xb ∂x�

�
��A�b,��8 �X
C	d`Xb, X�c
�


 } �f�X
	 . f�X
C	 . } ∂f∂xb
8
b�A �X
C	∆X
b � .�J���  
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CHAPTER 3 
 
 

THE LÉVY MARKET MODEL 
 
 
 

 3.1 The Model 

We will consider a market model consisting of one riskless asset (the bond) and one 

risky asset (the stock). In this market model, denoted by �, the value of the bond B � �B�, t E 0� is given by 

B� � exp�rt	,                                                                                       �3.1	 

where the risk-free interest rate r is constant; and the stock price process  S � �S�,t E 0� follows a geometric Lévy process 

dS�S�C � bdt 
  dZ� ,        S� > 0,                                                         �3.2	 

where b is a constant. Here  Z � �Z�, t E 0� is a Lévy process defined on a complete 

filtered probability space �Ω, �, �, �	, where � � ���, t E 0�, �� � σ�S�: 0 � u � t	, 
is the natural filtration generated by the stock price process completed with the �-
null sets. Since any Lévy process Z has a càdlàg modification, we will always 

assume that we are dealing with the càdlàg version. 
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If the process Z has the Lévy triplet �α, σZ, ν	, where α � ℝ , σ E 0 and ν on ℝ\�0� 

with  � �1 ^ xZ	�C� ν�dx	 < ∞ is the Lévy measure of Z, then Z satisfies the following 

Lévy- Itô decomposition: 

Z� � σW� 
 X�,       t E 0,                                                               �3.3	 
where W � �W�, t E 0� is a standard Brownian motion, X � �X�, t E 0� is a pure 

jump Lévy process and W is independent of X. Moreover,                                   

   

X� � f xgNg�0, t], dxi . tν�dx	i�|h|JA� 
 f xNg�0, t], dxi�|h|?A� 
 αt,           �3.4	 

where N�dt, dx	 is a Poisson random measure on �0,
∞	�ℝ\�0� with intensity 

dt�ν, dt denotes the Lebesgue measure and α � E ¤ZA . � xN�|h|?A� g�0,1], dxi¥. 
In this model, it is required that the Lévy measure satisfies, for some  ε > 0 and λ > 0,         

f exp�λ|x|	�C§,§	¨ ν�dx	 < ∞.                                                            �3.5	 

This will ensure the existence of the predictable representation property, see [26] and 

[25], which will be used later. In particular, this assumption implies that 

f |x|bν �dx	 < ∞�
C� ,      i E 2, 

and there exist 0 < hA, hZ � ∞ such that 

E�exp �.hZA		 < ∞,   for all  h � �. hA, hZ	.                     �3.6	 

Hence, all moments of  Z� and X� exist (see Theorem 25.3 of [30]). Furthermore, X�, 
given by �3.4	, can be written as (see [28] (p.27)) 
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X� � f x�Ng�0, t], dxi . tν�dx	�
C� 	 
 of xν�dx	�|h|?A� 
 αp t,                  �3.7	 

where  

α � E�XA	 . f xν�dx	�|h|?A� .                                                                            �3.8	 

Note that M�dt, dx	 r N�dt, dx	–  dtν�dx	                                                                   �3.9	 
is the compensated Poisson random measure on �0,
∞	�ℝ\�0�. Therefore, the 

Doob decomposition of X, in terms of a martingale part and a predictable process of 

finite variation, is given by X� � L� 
 at,                                                                                            �3.10	 

where L � �L�, t E 0� defined by 

L� � f xMg�0, t], dxi�
C�                                                                        �3.11	 

is a martingale and  a � E�XA	.                                                                                            �3.12	 

Notice that  E�X�	 � at. 
Consequently, by �3.3	 and �3.10	, Z has the decomposition 

Z� � σW� 
 L� 
 at � σW� 
 at 
 f xMg�0, t], dxi.�
C�               �3.13	 

3.2 The Stock Price Formula 

We will use Itô’s formula for semimartingales to obtain the solution of �3.2	. By �3.2	 and �3.13	, the stock price process has dynamics 

dS� � S�Cg�a 
 b	dt 
 σdW� 
 dL�i                                                        
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dS� � S�C °�a 
 b	dt 
 σdW� 
 f xM�dt, dx	�
C� ±.                  �3.14	 

Apply Itô’s formula to  f�S�	 �  logS� : 

f�S�	 �  f�S�	 
 f f³�S
C	�
� dS
 
 12 f f³³�S
C	�

� d[S, S]
�


 } �f�S
	 . f�S
C	 . f³�S
C	∆S
	�J��! .                                       �3.15	 
Note that d[S, S]
� � S
CZ σZds and ∆S
 � S
C∆L
, where ∆S
 � S
 . S
C. Hence, S
 � S
C�1 
 ∆L
	 and f�S
	 . f�S
C	 � log�1 
 ∆L
	. Therefore, �3.2	 has the 

explicit solution 

S� � S� exp oσW� 
 L� 
 oa 
 b . σZ2 p tp
� ´ �1 
 ∆L
	 exp�.∆L
	.�J��!                                                      �3.16	 

We must ensure that S� > 0 for all t E 0 almost surely, and hence it is required that ∆L � > .1 for all t. Therefore, it is assumed that the Lévy measure ν is supported on [δ,
∞	 with δ >.1. 
Note that, by using �3.11	, the stock price process can also be written as  

S� � S� exp oσW� 
 f xMg�0, t], dxi�
C� 
 oa 
 b . σZ2 p t


 f �log�1 
 x	 . x	Ng�0, t], dxi�
C� p,             

                       S� � S� exp oσW� 
 f log�1 
 x	 Mg�0, t], dxi�
C�


 oa 
 b . σZ2 
 f �log�1 
 x	 . x	ν�dx	�
C� p tp .                        �3.17	 
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Therefore, the stock price process can also be represented as an usual exponential 
S� � S�exp¶�,                                                                                              �3.18	 

where 

¶� r σW� 
 f log�1 
 x	 Mg�0, t], dxi�
C�

 oa 
 b . σZ2 
 f �log�1 
 x	 . x	ν�dx	�

C� p t                             �3.19	 

is also a Lévy process. 

Proposition 3.2.1 Let F�x	 and f�x	 be Borel functions satisfying the following 

assumptions: 

(i) F�x	 > 0 for all x in support of the Lévy measure ν and there are 

constants μ, η > 0 such that 0 < μ � F�x	 for all x � �.η, η	. 

(ii) � ¹F�x	–  1 –  f�x	¹ν�dx	�C� < ∞. 
(iii) � |f�x	|Zν�dx	�C� < ∞. 
(iv) There is an ε > 0 such that  � ¹F�x	–  1¹Zν�dx	 < ∞.§C§  

Then, the process � defined by 

�� � exp of f�x	Mg�0, t], dxi . t f gF�x	–  1 –  f�x	iν�dx	�
C�

�
C� p

� ´ F�∆X
	ex�J��! p�.f�∆X
		                                                       �3.20	 

does not depend on f�x	 and it is a local martingale. 

Proof: First consider the process 

º� r f f�x	Mg�0, t], dxi . t f gF�x	–  1 –  f�x	iν�dx	�
C�

�
C� .               �3.21	 
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Note that the integral � SF�x	–  1 –  f �x	V ν�dx	�C�  is well defined. Also note that, by 

definition, the compensated Poisson random measure Mg�0, t], Λi is a martingale, 

where Λ  is a Borel set in ℝ. Thus, by assumption (iii), � f�x	Mg�0, t], dxi�C�  is a 

martingale. Therefore, º� is a semimartingale. 

Now consider the process 

»� r ´ F�∆X
	ex�J��! p�.f�∆X
		,                                               �3.22	 
which has càdlàg paths and is adapted.  By càdlàg property, the set �s:  |∆X
| E ε� is 

finite, where we choose ε > 0 such that ε < η and the condition (iv) is satisfied. 

Therefore, in order to show that »� is a semimartingale, it is enough to show that 

�� r ´ F�∆X
	ex�J��! � |∆X¼|J½ p�.f�∆X
		 

has paths of finite variation. To do this, consider the process 

log�� � } �log �F�∆X
		 . f�∆X
		�J��! � |∆X¼|J½ . 
Then, 

Var�log��	 � } |log �F�∆X
		— f�∆X
	�J��! � |∆X¼|J½ |. 
Note that by assumption (i) and using the fact that log x � x . 1,   for  x > 0, we 

have 

f |log �F�x		 . f�x	|Zν�dx	§
C§ � c f |F�x	–  1|Zν�dx	 
 2 f |f �x	|Zν�dx	§

C§
§

C§ , 
where c is a constant.  

Thus, by assumptions (iii) and (iv),  � ¹loggF�x	i . f�x	¹Zν�dx	§C§ < ∞, and hence 

log�� is a process with paths of finite variation. Therefore, �� has paths of finite 

variation and thus,  »� is a semimartingale. 
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Consequently, we can apply Itô’s formula for semimartingales to �� r Á�º�, »�	, 

where Á�x, y	 � ehy. Thus, we have  

�� � 1 
 f f �
Cf�x	�
C�

�
� M�ds, dx	 . f f �
CgF�x	–  1 –  f �x	iν�dx	ds�

C�
�

�

 } ��
.�
C . �
Cf�∆L
		�J��! ,                                              �3.23	 

since d[º, º]
� � d[º, »]
� � d[», »]
� � d»
� � 0 and ∆º
 � f�∆L
	. Moreover, by 

using the facts that  �
 � �
CF�∆L
	  and  M�ds, dx	 � N�ds, dx	–  dsν�dx	, the 

equation �3.23	 becomes 

�� � 1 
 f f �
Cf�x	�
C�

�
� M�ds, dx	 
 f f �
CgF�x	–  1 –  f �x	i�

C�
�

� M�ds, dx	
� 1 
 f f �
C�F�x	–  1 	�

C�
�

� M�ds, dx	. 
Since the compensated Poisson random measure Mg�0, t], Λi is a martingale, where Λ  is a Borel set in ℝ,  by assumption (iv) � is a local martingale. 

Q.E.D. 

3.3 Equivalent Martingale Measures 

In this section we will characterize all structure-preserving �-equivalent martingale 

measures ℚ under which Z remains a Lévy process and the discounted stock price 

process Š � ÄŠ� � S� B�⁄ ,    0 � t � TÅ is an ����-martingale. 

We have the following well-known result (see Theorem 33.1 and 33.2 in [30]). 

Theorem 3.3.1 Let Z � �Z�, 0 � t � T� be a Lévy process with Lévy triplet �α, σZ, ν	 under some probability measure �. 

1)  Then the following two conditions are equivalent: 
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(a) There is a probability measure ℚ equivalent to � such that Z is a ℚ-Lévy process 

with triplet �αÆ, σÆZ, νÇ	. 
(b) The triplet  �αÆ, σÆZ, νÇ	  satisfies 

(i)  νÇ�dx	 �  H�x	ν�dx	 for some Borel function H: ℝ → �0,∞	.           �3.24	 

(ii)  αÆ � α 
 � xgH�x	–  1iν�dx	�|h|JA� 
 Gσ,  for some G � ℝ .             �3.25	 

(iii) σÆ � σ.                             �3.26	 

(iv)� S1 . ÊH�x	VZ ν�dx	 < ∞.�C�                                                           �3.27	 

2) Suppose that any of the equivalent conditions above is satisfied. Then, the density 

process �dℚ� d��⁄ � ξ�, 0 � t � T� is given by 

ξ� � exp oGW� . 12 GZt

 lim§→� of logH�x	Ng�0, t], dxi . t f �H�x	 . 1	ν�dx	�|h| ½��|h| ½� pp,  

                  �3.28	                        

with E�ξ�	 � 1, for every t � [0,T] and the convergence is uniform in t on any 

bounded interval, �-a.s. 

Moreover, the process J � �J�, 0 � t � T� given by 

J� � GW� . 12 GZt 
 lim§→� of logH�x	Ng�0, t], dxi . t f �H�x	 . 1	ν�dx	�|h| ½��|h| ½� p, 
is a �-Lévy process with triplet gαJ, σJZ, νJi given by 

αJ � . AZ GZ . � geÎ . 1 . y1�|Î|�A�iℝ �νÏCA	�dy	,  
σJZ � GZ,  
νJ � [νÏCA]ℝ\��� ,  
where Ï�x	 r logH�x	. 
Remark 3.3.1 Assume that the equivalent conditions in the previous theorem holds. 

If Z has Lévy triplet �αÆ, σZ, νÇ	 under ℚ, then we have the following: 
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1) N�dt, dx	 is a Poisson random measure on �0,
∞	�ℝ\�0� with intensity dt �
νÇ�dx	 under ℚ  and  MÐ �dt, dx	 r N�dt, dx	– dtνÇ�dx	 is the compensated  Poisson 

random measure. 

2) By Lévy-Itô decomposition, we can write 

Z� � σWÐ � 
 XÐ�,       t E 0, 
where  σWÐ � Z– XÐ  is a ℚ-Brownian motion with coefficient σZ and  XÐ is defined by 

  XÐ� � � x�Ng�0, t], dxi . t�|h|JA� νÇ�dx		 
 � xNg�0, t], dxi�|h|?A� 
 αÆt, 
where  αÆ � Eℚ ¤ZA . � xN�|h|?A� g�0,1], dxi¥. 
Moreover, by using �3.3	 and �3.4	, we have 

Z� . XÐ� � σW� 
 X� . XÐ� � σ�W� . Gt	,  
which means that  ℚ-Brownian motion is defined by  

σWÐ � � σ�W� . Gt	. 
3) Moreover, if  νÇ verifies the condition �3.5	, then 

XÐ� � f x�Ng�0, t], dxi . t�
C� νÇ�dx		 
 of x�|h|?A� νÇ�dx	 
 αÆp t, 

where  αÆ � Eℚg XÐAi . � x�|h|?A� νÇ�dx	. 
Thus, the Doob-Meyer decomposition of  XÐ  is given by 

XÐ� � LÑ� 
 aÇt, 
where LÑ � �LÑ �, t E 0� defined by 

LÑ � � f xMÐ g�0, t], dxi�
C�  
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is a ℚ-martingale and  aÇ � � x�|h|?A� νÇ�dx	 
 αÆ. 
Using the above remark, we see that the equivalent conditions in the previous 

theorem imply that the process  WÐ � ÄWÐ �, 0 � t � TÅ defined by 

WÐ � � W� . Gt                                                                                     �3.29	 

is a standard Brownian motion under ℚ. 

Moreover, if ν and νÇ  verify the condition �3.5	, the process X is a quadratic pure 

jump Lévy process with Doob-Meyer decomposition (with respect to ℚ) 

X� � LÑ� 
 oa 
 f x�H�x	 . 1	ν�dx	�
C� p t,                             �3.30	 

where LÑ � �LÑ �, 0 � t � T� is a ℚ-martingale and 

LÑ� � L� . t f x�H�x	 . 1	ν�dx	,�
C�                                           �3.31	 

and the new Lévy measure is given by 

νÇ�dx	 � H�x	ν�dx	.            �eqn. �3.24		 

This implies that the compensated Poisson random measure (with respect to ℚ) on �0,
∞	�ℝ\�0� is given by 

MÐ �dt, dx	 � N�dt, dx	– νÇ�dx	dt � M�dt, dx	 . �H�x	 . 1	ν�dx	dt.            �3.32	 

Now we want to find an equivalent martingale measure ℚ under which the 

discounted stock price process Š is a martingale. Using �3.16	, �3.29	 and �3.31	, 

discounted price process can be written as 
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Š� � S� exp ¤σWÐ � 
 LÑ � 
 ¤a 
 b . r 
 σG . 12 σZ¥ t¥
� exp ot f x�H�x	 . 1	ν�dx	�

C� p ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��! .  
                  �3.33	 
Note that, by Proposition 3.2.1, the process 

exp ¤σWÐ � 
 LÑ� . 12 σZt¥ ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��!                                 �3.34	 

is a martingale. Hence, a necessary and sufficient condition for Š to be a ℚ-
martingale is the existence of G and H�x	, with 

f S1 . ÊH�x	VZ ν�dx	 < ∞�
C� ,       �eqn. �3.27		 

for which the process ξ is a positive martingale, and such that  

a 
 b . r 
 σG 
 f x�H�x	 . 1	ν�dx	�
C� � 0.                                  �3.35	 

Thus, by �3.3	, �3.29	, �3.30	 and �3.35	, we have 

Z� � σWÐ � 
 LÑ� 
 �r . b	t,                                                                   �3.36	 

where WÐ  is a ℚ-Brownian motion and LÑ  is a ℚ-martingale. Therefore, the process ZÑ � �ZÑ�,    0 � t � T �, where 

ZÑ� � Z� 
 �b . r	t,                                                                               �3.37	 

 is a ℚ-martingale. 

Note that ZÑ� � σWÐ � 
 LÑ �                                                                                      �3.38	 
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and  EℚgZÑ�i � 0. Moreover, the dynamics of Š under ℚ is given by 

dŠ� � Š�CgσdWÐ � 
 dLÑ�i � Š�CdZÑ�,                                                                      �3.39	 

 or, 

Š� � S� exp ¤σWÐ � 
 LÑ � . 12 σZt¥ ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��! .                       �3.40	 

Note that the dynamics of S under ℚ is given by 

dS� � S�Cgrdt 
 σdWÐ � 
 dLÑ�i � S�Cgrdt 
 dZÑ�i,                                           �3.41	 

or, 

S� � S� exp oσWÐ � 
 LÑ� 
 or . σZ2 p tp ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��! .            �3.42	 

Remark 3.3.2 If there exists a (non-structure preserving) equivalent martingale 

measure ℚA under which Z is not a Lévy process, there always exists a (structure 

preserving) equivalent martingale measure ℚZ under which Z is a Lévy process (see 

Eberlein and Jacod (1997) [19]). 
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CHAPTER 4 
 
 

COMPLETION OF THE LÉVY MARKET 
MODEL 

 
 
 

4.1 Power-Jump Processes 

The following processes, introduced in Nualart and Schoutens (2000) [26], are 

considered: 

Z��b	 � } �∆Z
	b�J��! ,    i E 2,                                                    �4.1	 

and for convenience we put Z��A	 � Z�  ,where  ∆Z
 � Z
 . Z
C. Note that not 

necessarily Z� � ∑ ∆Z
�J��!  holds; it is only true in the bounded variation case with σZ � 0. 
If we define X��A	 � X�  and 

X��b	 � } �∆X
	b,�J��!    i E 2,                                                    �4.2	 

then we have 

X��b	 � Z��b	,   i E 2.                                                                         �4.3	 

Notice that  [X, X]� � X��Z	. 
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The processes X�b	 � ÓX��b	,   t E 0Ô, i E 2, are again Lévy processes and are called 

the ith-power-jump processes. They have jumps at the same points as the original 

Lévy process, but the jump sizes are equal to the ith power of the jump sizes of the 

original Lévy process. We have 

E�X�	 � E�X��A		 � at r mAt < ∞,                                                                             �4.4	 

and (see [28] (p.29)) 

E�X��b		 � E ¤ } �∆X
	b�J��! ¥ � t f xbν �dx	 r mbt < ∞�
C� ,    i E 2.                �4.5	 

Therefore, for every i E 1, the compensated ith-power-jump processes Y�b	 �
ÓY��b	, t E 0Ô can be denoted by 

Y��b	 � Z��b	 . E�Z��b		 � Z��b	 . mbt, i E 1.                                          �4.6	 

Y�b	 is also called as Teugels martingale of order i. Moreover, a set of pairwise 

strongly orthonormal martingales Ä Yx�b	, i E 1Å  can be constructed such that 

Yx�b	 � cb,bY�b	 
 cb,bCAY�bCA	 
 Q 
 cb,AY�A	,       i E 1.                            �4.7	 

 Yx�b	 � ÓYx��b	, t E 0Ô are called the orthonormalized ith-power-jump processes. It was 

shown in [26] that the constants cb,� correspond to the coefficients of the 

orthonormalization of the polynomials 1, x, xZ, … with respect to the measure 

μ�dx	 � xZν�dx	 
 σZδ��dx	. 
Hence, we consider the orthogonalization with respect to the scalar product 

< P�x	, Q�x	 > �  f P�x	Q�x�
C� 	xZν�dx	 
 σZP�0	Q�0	, 

where P�x	 and Q�x	 are real polynomials on the positive real line. 
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Notice that in the case of a Brownian motion, all power-jump processes of order i > 1 are zero. In the case of a Poisson process, all power-jump processes are equal to 

the original Poisson process and all compensated power-jump processes are equal to 

the compensated Poisson process. 

4.2 Enlarging the Lévy Market 

In this section, we fix a time interval [0,T]. Suppose we have an equivalent 

martingale measure ℚ under which Z remains a Lévy process on [0,T] with triplet �αÆ, σÆZ, νÇ	. We know that under this measure ℚ, the discounted stock price process 

Š � ÄŠ� � S�/B�, 0 � t � TÅ is a martingale. Moreover, the process ZÑ ��ZÑ�,   0 � t � T � defined by 

ZÑ� � Z� 
 �b . r	t,      �eqn. �3.37		 

is a ℚ-Lévy process with Lévy measure νÇ and a ℚ-martingale, by �3.38	. 

Now consider the ith-power-jump processes based on ZÑ � �ZÑ�,   0 � t � T �. Clearly, 

we have ∆ZÑ� � ∆Z� and ZÑ��b	 � Z��b	, i E 2. Under ℚ, we construct the compensated 

ith-power-jump processes Y�b	 � ÓY��b	, 0 � t � TÔ and their orthonormalized 

version Yx�b	 � ÓYx��b	 , 0 � t � TÔ based on ZÑ, that is, the compensators are 

mbt r tEℚSZÑA�b	V,    i E  1,                                                               �4.8	  
   and the orthonormalization procedure is performed under ℚ. Note that 

mb � f xb�
C� νÇ�dx	,     i E 2,                                                                 �4.9	 

where νÇ�dx	 is the Lévy measure of Z (and ZÑ ) under ℚ and it is required that  νÇ 

verifies �3.5	. Notice that 
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Y��A	 � ZÑ� . tEℚgZÑAi � ZÑ�,                                                                               �4.10	 

Y��b	 � Z��b	 . t EℚSZA�b	V �  Z��b	 . t f xb�
C� νÇ�dx	, i E 2.                    �4.11	 

The Lévy market � is enlarged with a series of artificial assets based on the above 

processes. Actually, in the enlarged market, the trade in assets with price processes  

H�b	 � ÓH��b	, t E 0Ô, where 

H��b	 � exp�rt	 Y��b	, i E 2,                                                           �4.12	 

is allowed. Although H�b	, i E 2,  are the price processes of new assets, for simplicity, 

they are called the ith-power-jump assets. The orthonormalized version of these 

assets Hx �b	 � ÓHx��b	, t E 0Ô are defined by 

Hx��b	 � exp�rt	 Yx��b	, i E 2.                                                        �4.13	 

These new assets give you protection against different kinds of market shocks. For 

example, the 2nd-power-jump asset, in some sense, measures the volatility of the 

stock and thus, it can be useful to cover possible losses due to the changes in the 

volatility regime. Similary, to protect against a wrongly estimated skewness or 

kurtosis power-jump-assets of higher order can be useful. 

Notice that when the original Lévy market � is enlarged for different, structure-

preserving equivalent martingale measures ℚ, different Lévy markets �ℚ are 

obtained, in the sense that the new assets available in each �ℚ are different for each ℚ. 

Clearly, by construction, the discounted versions of the power-jump assets H�b	and 

the orthonormalized power-jump assets  Hx �b	 are ℚ-martingales: 

EℚØexp�.rt	 H��b	|�
Ù � EℚØY��b	|�
Ù � Y
�b	, 0 � s � t � T                 �4.14	 
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and 

EℚØexp�.rt	 Hx��b	|�
Ù � EℚØYx��b	|�
Ù � Yx
�b	, 0 � s � t � T.                �4.15	 

Therefore, the enlarged Lévy market �ℚ, allowing trade in the bond, the stock and 

the power-jump assets, remains arbitrage-free. 

Remark 4.2.1 Assume that the original Lévy market � is enlarged with the ith-

power-jump assets with price processes H��b	 � exp�rt	 Y��b	 � exp�rt	 �X��b	 . nbt	,i E 2. The question is whether this enlargement leads to arbitrage or not. A sufficient 

condition to guarantee that the enlarged market is free of arbitrage is the existence of 

an equivalent martingale measure ℚ under which all the discounted prices of the 

traded assets are martingales [16]. We have seen that if ℚ is structure-preserving �-
equivalent martingale measure, by Theorem 3.3.1, the condition that the discounted 

stock price must be a martingale simplifies to the existence of G and H�x	 > 0 with 

f S1 . ÊH�x	VZ ν�dx	 < ∞�
C� ,       �eqn. �3.27		 

such that 

a 
 b . r 
 σG 
 f x�H�x	 . 1	ν�dx	�
C� � 0          geqn. �3.35	i 

holds. Moreover, the condition that the discounted H�b	, i E 2, must be a martingale 

simplifies to the condition 

f xbH�x	ν�
C� �dx	 � nb, i E 2.                                                  �4.16	 

The question is whether there exist G and H�x	 such that �3.35	 and �4.16	 hold 

simultaneously. This is related with the moment problem: given a series of numbers �μ8�, find a necessary and sufficient condition for the existence of a measure with μ8 

as the nth moment. Uniqueness of such a measure is the another point, see [1] and 

[34]. 
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4.3 Market Completeness 

In this section, it will be shown that the market enlarged with the ith-power-jump 

assets is complete in the sense that for every square-integrable contingent claim Ú 

(i.e. a non-negative square-integrable �T-measurable random variable) one can 

construct a sequence of self-financing portfolios whose values, at time T, converge in LZ�ℚ	 to Ú. These portfolios will consist of a finite number of bonds, stocks and ith-

power-jump assets. It will be said, for short, that Ú can be replicated. This notion of 

completeness is equivalent to the notion of approximate completeness of Björk et al. 

(1997) [8]. 

Definition 4.3.1 A portfolio π � �π8� is a sequence of finite-dimensional predictable 

processes 

Óπ�8 � Sα�8, β�8, β��Z	,8, β���	,8, … , β��ÝU	,8V , 0 � t � T, n E 2Ô, 
                  �4.17	 

where  α�8 represents the number of bonds at time t,  β�8 represents the number of 

stocks at time t, β��b	,8  represents the number of ith-power-jump assets H�b	 at time t 
and k8  is an integer which depends on n. 

A portfolio π � �π8� is self-financing if each  π8 is self-financing. 

Definition 4.3.2 Fix p E 1. A contingent claim Ú � L��Ω, �T, ℚ	 is called replicable 

in L��ℚ	 if there exists a self-financing portfolio whose values, at time T, converge 

to Ú in L��ℚ	. 

Definition 4.3.3 A contingent claim Ú � LA�Ω, �T, ℚ	 is called strongly replicable in LA�ℚ	 if it is replicable in LA�ℚ	 by a portfolio π � �π8� of the form 

Óπ�8 � Sα�, β�, β��Z	, β���	, … , β��8	V, 0 � t � T, n E 2Ô, 
                  �4.18	 
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where the number of assets  α�, β�, β��Z	, … do not depend on n and if the series 

f α
dB
 
�
� f β
dS
 
 } f β
�b	dH
�b	�

�
�
b�Z

�
�                                                        �4.19	 

converges absolutely in LA�ℚ	 for each t � [0,T]. 
In order to show that the enlarged market is complete we need the following 

theorem, see Nualart and Schoutens (2000), (2001) [26, 25]. 

Theorem 4.3.1 (Martingale Representation Property) Every square integrable ℚ-
martingale � � ���, 0 � t � T�  has a representation in the form 

�� � �� 
 } f h
�b	dYx
�b	�
�

�
b�A , 

where h
�b	, i E 1, are predictable processes such that  Eℚ S� ∑ |h
�b	|Z�b�A ds�� V < ∞.  

The martingale representation property (MRP) allows the representation of any 

square integrable ℚ-martingale as an orthogonal sum of stochastic integrals with 

respect to the orthonormalized power-jump processes ÄYx�b	,   i E 1Å. In other words, 

any square-integrable ℚ-martingale � � ���, 0 � t � T� can be represented as 

follows: 

�� � �� 
 f h

�

� dZÑ
 
 } f h
�b	dYx
�b	�
�

�
b�Z ,                                                   �4.20	 

where h
 and  h
�b	, i E 2, are predictable processes such that Eℚ S� |h
|Zds�� V < ∞ 

and Eℚ S� ∑ |h
�b	|Z�b�Z ds�� V < ∞. Remember that Yx�b	,   i E 1, are the orthonormalized 

versions of Y�b	, where 

Y��A	 � ZÑ� . tEℚgZÑAi � ZÑ�,    �eqn. �4.10		 

Y��b	 � Z��b	 . t EℚSZA�b	V �  Z��b	 . t f xb�
C� νÇ�dx	, i E 2,      �eqn. �4.11		 
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with 

ZÑ� � Z� 
 �b . r	t     geqn. �3.37	i 

being a ℚ-martingale. Also remember that the dynamics of Š under ℚ is given by 

dŠ� � Š�CdZÑ� .        �eqn. �3.39		 

Therefore, the MRP implies that the enlarged market is complete. In fact, we have 

the following theorem.  

Theorem 4.3.2 The Lévy market model �ℚ, enlarged with the ith-power-jump 

assets, is complete in the sense that any square-integrable contingent claim Ú �LZ�Ω, �T, ℚ	 can be replicated in LZ�ℚ	. 

Proof: Consider a square-integrable (with respect to ℚ) contingent claim Ú with 

maturity T and let �� � Eℚ�exp�.rT	 Ú|��	. By the MRP, we have 

�� � �� 
 f h

�

� dZÑ
 
 } f h
�b	dYx
�b	�
�

�
b�Z .       �eqn. �4.20		 

If we define 

��N r �� 
 f h

�

� dZÑ
 
 } f h
�b	dYx
�b	�
�

N
b�Z ,                                 �4.21	 

we have  limN→� ��N � �� in LZ�ℚ	. 
Define the sequence of portfolios (in terms of the orthonormalized ith-power-jump 

assets) 

�N � Ó��N � Sα�N, β�, β��Z	, β���	, … , β��N	V, t E 0Ô , N E 2, 
by   

α�N � ��CN . β�S�CeCà� . eCà� } β��b	Hx�C�b	N
b�Z ,                                              �4.22	 

β� � eà�h�S�CCA,                                                                                                      �4.23	 
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β��b	 � h��b	, i � 2,3, … N.                                                                             �4.24	 

Here α�N represents the number of bonds, β� represents the number of stocks and β��b	 
represents the number of orthonormalized ith-power-jump assets at time t. Then, the 

value V�N of the portfolio �N at time t is given by 

V�N � α�Neà� 
 β�S� 
 } β��b	N
b�Z Hx��b	 � eà���N,                            �4.25	 

which implies that the sequence of portfolios ��N, N E  2� replicates the claim Ú. 

Thus, to complete the proof, it is enough to show that the portfolio  �N is self-

financing. That is, 

G�N 
 �� � eà���N,                                                                             �4.26	 

where  G�N is the gain process corresponding to �N at time t, given by 

G�N � r f α
N
�

� eà
ds 
 f β
dS

�

� 
 } f β
�b	dHx
�b	�
�

N
b�Z .                  �4.27	 

By �4.22	, �4.23	 and �4.24	, we can write �4.27	 as 

G�N � r f �
CN
�

� eà
ds . r f h
eà
ds�
� . r } f h
�b	Hx
C�b	�

� dsN
b�Z 
 f h
eà
S
CCAdS


�
�


 } f h
�b	dHx
�b	�
�

N
b�Z .                                                                            �4.28	 

Note that integration by parts follows  

r f �
N
�

� eà
ds � eà���N . �� . f h
eà
�
� dZÑ
 . } f h
�b	eà
dYx
�b	�

�
N
b�Z .             �4.29	 

Moreover, using 

Hx��b	 � exp�rt	 Yx��b	, i E 2, geqn. �4.13	i 
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and 

dS� � S�Cgrdt 
 dZÑ�i, geqn. �3.41	i 

we can write �4.29	 as 

r f �
N
�

� eà
ds � eà���N . �� . f h
eà
�
� S
CCAdS
 
 r f h
eà
ds�

�
. } f h
�b	dHx
�b	�

�
N
b�Z  
 r } f h
�b	Hx
C�b	�

� dsN
b�Z .                                �4.30	 

Thus, by substituting �4.30	 into �4.28	, we obtain 

G�N � eà���N . ��. 
Therefore, ��N, N E 2� is the sequence of self-financing portfolios replicating the 

claim Ú. 

Q.E.D. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39 

 

 
 
 
 

CHAPTER 5 
 
 

HEDGING PORTFOLIOS 
 
 
 

5.1 Pricing Formula 

Consider a contingent claim Ú whose payoff is only a function of the value, at 

maturity, of the stock price S, that is, the payoff is a function of the form ��ST	. The 

value at time t of the contingent claim with payoff  Ú � ��ST	 is given by 

F�t, S�	 � eCà�TC�	Eℚ[Ú|��] � eCà�TC�	Eℚ[��ST	|��].                                  �5.1	 

Remember that the dynamics of S under ℚ is given by 

dS� � S�Cgrdt 
 σdWÐ � 
 dLÑ�i.           �eqn. �3.41		 

By Itô’s formula, it can easily be shown that 

ST � S�exp oσgWÐT . WÐ �i 
 �LÑT 
 LÑ�	 
 or . σZ2 p �T . t	p
� ´ g1 
 ∆LÑ
i expg.∆LÑ
i .�J��á                                                       �5.2	 

Thus, the price function is given by 

F�t, x	 � eCà�TC�	Eℚ d� oxexp oσgWÐT . WÐ �i 
 �LÑT 
 LÑ�	 
 or . σZ2 p �T . t	p
� ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��á pj.                                                   �5.3	 
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F�t, x	 � eCà�TC�	Eℚ �� oxexp °σWÐTC� 
 LÑTC� 
 or . σZ2 p �T . t	±
� ´ g1 
 ∆LÑ
i expg.∆LÑ
i�J��áC! p�.                                              �5.4	 

Remember that in the Black-Scholes model the price of the option with volatility σ is 

given by 

FBS�t, x	 � eCà�TC�	Eℚ ä� åxexp °σWÐTC� 
 or . σZ2 p �T . t	±æç.                      �5.5	 

5.2 Hedging Portfolios  

In this section, we will obtain the hedging portfolio of a contingent claim Ú whose 

payoff is a function of the value, at maturity, of the stock price S and a pure jump 

process K � �K�, 0 � t � T�. The jump process is defined by 

K� � f g�x	�
C� MÐ g�0, t], dxi,                                                                �5.6	 

where g � C�, g�0	 � gê�0	 � 0 such that  � |g�x	|νÇ�dx	 < ∞�C�  and 

MÐ �dt, dx	 � N�dt, dx	– νÇ�dx	dt          �eqn. �3.32		 

is the compensated Poisson random measure. Thus, the payoff is a function of the 

form ��ST, KT	. Note that the jump process K will enable us to consider the portfolio 

optimization problem, which is to be discussed later. 

The value of the contingent claim with payoff Ú � ��ST, KT	  at time t is given by 

F�t, S�, K�	 � eCà�TC�	Eℚ[��ST, KT	|��] � eCà�TC�	Eℚ �� ¤STS� S�, KT . K�
K�¥ |���
� eCà�TC�	Eℚ �� ¤STS� xA, KT . K�
xZ¥�ëhT�Sm , hì�Km

. 
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Here we used the independence of  
STSm   and  KT.K� with respect to  ��. 

Now consider the following operators: 

ïf�t, x	 � D�f�t, x	 
 rxADAf�t, x	 . rf�t, x	 
 12 σZxAZDAZf�t, x	
. DZf�t, x	 f g�y	νÇ�dy	,ℝ                                                                         �5.7	 

                      

ñf�t, x	 � f h�t, x, y	νÇ�dy	,�
C�                                                                       �5.8	 

where  x r �xA, xZ	,  D� r ∂ ∂t⁄ ,  DÝ r ∂ ∂xÝ,⁄  DAb r ∂b ∂xAb⁄                        �5.9	 

 and h�t, x, y	 r fgt, xA�1 
 y	, xZ 
 g�y	i . f�t, x	 . xAyDAf�t, x	.                     �5.10	 

We will show that the price function F�t, xA, xZ	 satisfies a Partial Differential 

Integral Equation (PDIE). In order to do this, we need the following lemma. 

Lemma 5.2.1 Consider a real function h�s, x, y	: ℝ\ � ℝò � ℝ → ℝ which is 

analytic in the y variable and such that h�s, x, 0	 � 0 and �∂h/∂y	�s, x, 0	 � 0. Set 

ab�s, x	 r 1i! ∂b∂yb h�s, x, 0	.                                                 �5.11	 

Let Y r �Y�, 0 � t � T� be an adapted process with left continuous paths and with 

values on ℝò and set 

|m|b r f |y|bνÇ�dy	.�
C�                                                       �5.12	 

If we assume that 

} |m|b f Eℚ[|ab�s, Y
	|]T
�

�
b�Z ds < ∞,                                                                   �5.13	 

then 
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} h�s, Y
, ∆X
	�J��á � } f ab�s, Y
	dY
�b	 
 f f h�s, Y
, y	νÇ�dy	ds�
C�

T
�

T
�

�
b�Z  

                  �5.14	 
a.s.  and in the LA�ℚ	-sense. 

Proof: Since the function h�s,x,y	 is analytic in the y variable, it can be expanded as 

h�s, x, y	 � } ab�s, x	�
b�Z yb. 

Then we have 

} h�s, Y
, ∆X
	�J��á � } } ab�s, Y
	�∆X
	b�
b�Z�J��á .                            �5.15	 

Now we will show that ∑ ∑ |ab�s, Y
	||∆X
|b�J��á�b�Z < ∞. Notice that, since ∑ ∑ |ab�s, Y
	||∆X
|b�J��á�b�Z  is a nonnegative random variable, if 

Eℚ` ∑ ∑ |ab�s, Y
	||∆X
|b�J��á�b�Z c < ∞, then ∑ ∑ |ab�s, Y
	||∆X
|b�J��á�b�Z < ∞ a.s.. 

Given ε > 0, and denote  B§ r ℝ\�.ε, ε	. Notice that 

} |ab�s, Y
	||∆X
|b�J��á 1�|∆X¼| ½� � f f |ab�s, Y
	||y|b
Bô

T
� N�ds, dy	. 

It can be shown that 

Eℚ df f |ab�s, Y
	||y|b
Bô

T
� N�ds, dy	j � Eℚ df f |ab�s, Y
	||y|b

Bô
T

� νÇ�dy	dsj
� |m|b f Eℚ[|ab�s, Y
	|]dsT

� . 
Thus, by monotone convergence, as ε → 0 we have 

Eℚ � } |ab�s, Y
	||∆X
|b�J��á � � |m|b f Eℚ[|ab�s, Y
	|]dsT
� , 

and hence, by assumption �5.13	, we have 
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Eℚ � } } |ab�s, Y
	||∆X
|b�J��á
�
b�Z � � } |m|b f Eℚ[|ab�s, Y
	|]ds < ∞T

�
�
b�Z . 

Therefore, by the above argument, we have ∑ ∑ |ab�s, Y
	||∆X
|b�J��á�b�Z < ∞ a.s. 

Consequently, by Fubini’s Theorem and assumption �5.13	, we can write �5.15	 as 

} h�s, Y
, ∆X
	�J��á � } } ab�s, Y
	�∆X
	b�J��á
�
b�Z

� } f ab�s, Y
	dY
�b	T
�

�
b�Z 
 } f ab�s, Y
	mbdsT

�
�
b�Z

� } f ab�s, Y
	dY
�b	T
�

�
b�Z 
 f f } ab�s, Y
	�

b�Z yb�
C�

T
� νÇ�dy	ds

� } f ab�s, Y
	dY
�b	T
�

�
b�Z 
 f f h�s, Y
, y	νÇ�dy	ds�

C�
T

�  

a.s. and in LA�ℚ	. Here we used the fact that  Y��b	 � X��b	 . mbt,   i E 2, where 

mb � f yb�
C� νÇ�dy	, i E 2.    �eqn. �4.9		 

Q.E.D. 

Theorem 5.2.1 Let  F�t, S�, K�	 � eCà�TC�	Eℚ[Ú|��] be the value of the contingent 

claim Ú � ��ST, KT	 at time t, where Ú � LA�Ω, �T, ℚ	. Let x r �xA, xZ	 and 

assume that F�t, x	 � CA,�,�. Set ab�s, x	 r Ab! õö
õÎö h�s, x, 0	  and  Y� r �S�, K�	, where 

K� � f g�x	�
C� MÐ g�0, t], dxi.  �eqn. �5.6		 

Assume that 

(i) The function h given by 

h�t, x, y	 r Fgt, xA�1 
 y	, xZ 
 g�y	i . F�t, x	 . xAyDAF�t, x	        �5.16	 

is analytic in y. 

(ii) ∑ |m|b � Eℚ[|ab�s, Y
	|]T��b�Z ds < ∞.                                                   �5.17	 



44 

 

Then, F�t, S�, K�	 is the solution of the following PDIE: 

�ïF�t, x	 
 ñF�t, x	 � 0,F�T, x	 � ��x	.                                                                 �5.18	÷ 
Proof: By assumption, the discounted price process  eCà�F�t, Y�	  is a ℚ-martingale. 

Hence, for any decomposition eCà�F�t, Y�	 � F�0, Y�	 
 �� 
 ��, where � is a 

local martingale and � is a finite variation process, we must have  �� ø 0. In the 

following we derive such a representation. By applying Itô’s formula for 

semimartingales to f�t, Y�	 � eCà�F�t, Y�	, where Y� � �S�, K�	, we have 

f�t, Y�	 � f�0, Y�	 
 f D�f�s, Y
C	ds�
� 
 f DAf�s, Y
C	�

� dS
 
 f DZf�s, Y
C	�
� dK
�


 12 f DAZ
�

� f�s, Y
C	d[S, S]
�

 } �f�s, Y
	 . f�s, Y
C	 . DAf�s, Y
C	∆S
	�J��! , 

since [S, K]
� � [K, K]
� � 0. Thus, 

eCà�F�t, Y�	 � F�0, Y�	 
 f g.reCà
F�s, Y
C	 
 eCà
D�F�s, Y
C	ids�
�


 f eCà
DAF�s, Y
C	�
� dS
 . f eCà
DZF�s, Y
C	�

� f g�y	νÇ�dy	ℝ ds

 12 σZ f eCà
S
CZ DAZ

�
� F�s, Y
C	ds


 } eCà
�F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
	�J��! .             �5.19	 

                      

Note that  ∆S
 � S
C∆X
  and  ∆K
 � g�∆X
	 imply that 

Y
 � �S
, K
	 � gS
C�1 
 ∆X
	, K
C 
 g�∆X
	i, 
so we have F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
 � h�s, Y
C, ∆X
	.                               �5.20	 
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Thus, by Lemma 5.2.1, 

} eCà
�F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
	�J��!
� } f eCà
i!�

�
�
b�Z

∂b∂yb h�s, Y
C, 0	dY
�b	


 f f eCà
h�s, Y
C, y	νÇ�dy	ds�
C�

�
� .                                                                                  �5.21	 

Moreover, the dynamics of S under ℚ is given by 

dS� � S�Cgrdt 
 σdWÐ � 
 dLÑ�i, �eqn. �3.41		 

where WÐ  is a ℚ-Brownian motion and  LÑ  is a ℚ-martingale. 

Therefore, by substituting �3.41	 and �5.21	 into �5.19	 and making necessary 

arrangements, we obtain eCà�F�t, Y�	 � F�0, Y�	 
 �� 
 ��, 
where 

�� r } f eCà
i!�
�

∂b∂yb h�s, Y
C, 0	dY
�b	�
b�Z 
 σ f eCà
S
CDAF�s, Y
C	dWÐ


�
�


 f eCà
S
CDAF�s, Y
C	dLÑ

�

�  

and 

�� r f eCà
 o.rF�s, Y
C	 
 D�F�s, Y
C	 
 12 σZS
CZ DAZF�s, Y
C	�
�

. DZF�s, Y
C	 f g�y	νÇ�dy	ℝ 
 rS
CDAF�s, Y
C	

 f h�s, Y
C, y	νÇ�dy	�

C� p ds. 
The process � is a ℚ-local martingale, since by �5.17	 the series 

∑ � ùúû¼
b!���b�Z õö

õÎö h�s, Y
C, 0	dY
�b	 converges in LA�ℚ	 and the processes 
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 � ùúû¼
b!�� õö

õÎö h�s, Y
C, 0	dY
�b	 are martingales. The process � is a predictable finite 

variation process. Thus, the condition �� ø 0 yields 

D�F�s, Y
C	 
 rS
CDAF�s, Y
C	 . rF�s, Y
C	 
 12 σZS
CZ DAZF�s, Y
C	
. DZF�s, Y
C	 f g�y	νÇ�dy	ℝ 
 f h�s, Y
C, y	νÇ�dy	 � 0�

C� . 
Therefore, by �5.7	 and �5.8	, F�t, x	 satisfies the PDIE given by �5.18	. 

Q.E.D. 

Theorem 5.2.2 Consider the value F�t, S�, K�	, at time t, of a contingent claim Ú � ��ST, KT	, satisfying the conditions of the previous theorem, where 

K� � f g�x	�
C� MÐ g�0, t], dxi.        �eqn. �5.6		 

Then, Ú is strongly replicable in LA�ℚ	 and its replicating portfolio at time t is given 

by 

α� � 1B� oF�t, S�C, K�C	 . S�CDAF�t, S�C, K�C	 . } 1i! B�
∂b∂yb h�t, S�C, K�C, 0	H�C�b	�

b�Z p, 
        �5.22	  β� � DAF�t, S�C, K�C	,                                                                                                      �5.23	 

β��b	 � 1i! B�
∂b∂yb h�t, S�C, K�C, 0	,     i � 2,3, …,                                                             �5.24	 

where h�t, xA, xZ, y	 r Fgt, xA�1 
 y	, xZ 
 g�y	i . F�t, xA, xZ	 . xAyDAF�t, xA, xZ	, α� represents the number of bonds at time t,  β� represents the number of stocks at 

time t and  β��b	  represents the number of ith-power-jump assets H�b	 at time t. 
Proof: By applying Itô’s formula for semimartingales to F�t, Y�	, where  Y� ��S�, K�	, we have 
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F�T, YT	 � F�t, Y�	 
 f D�F�s, Y
C	dsT
� 
 f DAF�s, Y
C	T

� dS

. f DZF�s, Y
C	 f g�y	νÇ�dy	ℝ

T
� ds 
 12 σZ f S
CZ DAZ

T
� F�s, Y
C	ds


 } �F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
	�J��á .                      �5.25	 

As in the proof of the previous theorem, we have 

F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
 � h�s, Y
C, ∆X
	.        �eqn. �5.20		 

Thus, by Lemma 5.2.1, 

} �F�s, Y
	 . F�s, Y
C	 . DAF�s, Y
C	∆S
	�J��á
� } f 1i!T

�
�
b�Z

∂b∂yb h�s, Y
C, 0	dY
�b	 
 f f h�s, Y
C, y	νÇ�dy	ds�
C�

T
� .  

                  �5.26	 
Therefore, by substituting �5.26	 into �5.25	 and using �5.7	 and �5.8	, we have 

F�T, YT	 � F�t, Y�	

 f gïF�s, Y
C	 
 ñF�s, Y
C	 . rS
CDAF�s, Y
C	 
 rF�s, Y
C	iT

� ds

 f DAF�s, Y
C	T

� dS
 
 } f 1i!T
�

�
b�Z

∂b∂yb h�s, Y
C, 0	dY
�b	.           �5.27	 

Note that by the previous theorem, F satisfies the PDIE �5.18	. Also using 

H��b	 � exp�rt	 Y��b	, i E 2,           �eqn. �4.12		 

and making necessary arrangements, we write �5.27	 as 
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F�T, YT	 � F�t, Y�	

 f 1B
 oF�s, Y
C	 . S
CDAF�s, Y
C	T

�
. } 1i! B


�
b�Z

∂b∂yb h�s, Y
C, 0	H
C�b	p dB
 
 f DAF�s, Y
C	dS

T

�

  } f 1i! B


∂b∂yb h�s, Y
C, 0	dH
�b	T
�

�
b�Z .                                      �5.28	 

Therefore, we have 

F�T, YT	 � F�t, Y�	 
 f α
dB

T

� 
 f β
dS

T

� 
 } f β
�b	dH
�b	T
�

�
b�Z , 

where α
 is the number of bonds, β
 is the number of stocks and  β
�b	  is the number 

of ith-power-jump assets, given by �5.22	, �5.23	 and �5.24	, one should have in his 

portfolio at time s to hedge the contingent claim Ú. 

Q.E.D. 

Remark 5.2.1 If a contingent claim Ú with a payoff depending only on the value, at 

maturity, of the stock price is considered, i.e. Ú � ��ST	, then 

F � F�t, S�	  and   h�t, x, y	 � Fgt, x�1 
 y	i . F�t, x	 . xyDAF�t, x	. 
The price function F�t,x	 satisfies  (see also [11] and [29])  

D�F�t, x	 
 rxDAF�t, x	 
 12 σZxZDAZF�t, x	 
 ñF�t, x	 � rF�t, x	 

with F�T, ST	 � ��ST	, where 

ñF�t, x	 � f SFgt, x�1 
 y	i . F�t, x	.xyDAF�t, x	V�
C� νÇ�dy	 

and D� r ∂ ∂t⁄ , DA r ∂ ∂x,⁄  DA8 r ∂8 ∂x8⁄ . 
Notice that 
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h�t, x, 0	 � 0, ∂∂y h�t, x, 0	 � 0, ∂8∂y8 h�t, x, 0	 � x8DA8F�t, x	, n E 2, 
and thus, by equation �5.28	, we have 

F�T, ST	 � F�t, S�	

 f 1B
 oF�s, S
C	 . S
CDAF�s, S
C	T

�
. } S
Cbi! B
 DAb F�s, S
C	�

b�Z H
C�b	p dB
 
 f DAF�s, S
C	dS

T

�

  } f S
Cbi! B
 DAb F�s, S
C	dH
�b	T

�
�
b�Z .                                                 �5.29	 

That is, the hedging portfolio at time t is given by 

α� � 1B� oF�t, S�C	 . S�CDAF�t, S�C	 . } S�Cbi! B� DAb F�t, S�C	H�C�b	�
b�Z p, 

    β� � DAF�t, S�C	, 
    

β��b	 � S�Cbi! B� DAb F�t, S�C	,    i � 2,3, …. 
Remark 5.2.2 If the Black-Scholes model is considered, the risk-neutral dynamics of 

the stock price is given by dS�S� � rdt 
 σdWÐ � ,        S� > 0, 
where  WÐ � �WÐ �, t E 0�  is a standard Brownian motion. Notice that the market is 

already complete and hence, an enlargement is not necessary, that is, all processes 

H�b	 � ÓH��b	, t E 0Ô,   i E 1,  are zero. Therefore, by the above remark, the hedging 

portfolio at time t is given by 



50 

 

α� � ABm gF�t, S�	 . S�DAF�t, S�	i,            
β� � DAF�t, S�	,                     

β��b	 � 0,    i � 2,3, …. 
Remark 5.2.3 In the case of the geometric Poisson model, the risk-neutral dynamics 

of the stock price is given by dS�S�C � �r . λ	dt 
 dI� ,        S� > 0, 
where I � �I�, t E 0�  is a Poisson process with intensity parameter λ > 0. Notice 

that all the compensated power-jump processes are equal to the compensated Poisson 

process, that is, Y��b	 � I� . λt, i E 1.  Remember that 

H��b	 � exp�rt	 Y��b	, i E 2.           �eqn. �4.12		 

By Itô’s formula, it can easily be shown that 

S� � S� expg�r . λ	ti 2Im , 
which implies that if  f�T, IT	 � F�T, ST	 is set, we have  f�T, IT 
 1	 � F�T, 2ST	. 

Thus, by using 

} S
Cbi! DAb F�s, S
C	�
b�Z � F�s, 2S
C	 . F�s, S
C	 . S
CDAF�s, S
C	 

                                                � f�s, I
C 
 1	 . f�s, I
C	 . S
CDAF�s, S
C	, 
we can write �5.29	 as         

F�T, ST	 . F�t, S�	 � f α
dB

T

� 
 f β
dS

T

� , 
where 

α
 � AB¼ g2f�s, I
C	 . f�s, I
C 
 1	i,            



51 

 

β
 � AS¼ú gf�s, I
C 
 1	 . f�s, I
C	i.  

This means that β
�b	 � 0,    i � 2,3, …, and hence, an enlargement is not necessary.  
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CHAPTER 6 
 
 

PORTFOLIO OPTIMIZATION 
 
 
 

In this part, the portfolio optimization problem in the complete Lévy market, that is, 

the market enlarged with the power-jump-assets, is considered. The problem consists 

of choosing an optimal portfolio in such a way that the largest expected utility of the 

terminal wealth is obtained. 

A class of utility functions, including HARA, logarithmic and exponential utilities as 

special cases, is considered. Then, the optimal portfolio which maximizes the 

terminal expected utility is obtained by the martingale method: First, the optimal 

wealth is found and then the hedging portfolio replicating this wealth is obtained. 

It is shown that for particular choices of the equivalent martingale measure in the 

market, the optimal portfolio only consists of bonds and stocks. This corresponds to 

completing the market with new assets in such a way that they are superfluous in the 

sense that the terminal expected utility is not improved by including these assets in 

the portfolio. 

6.1 The Optimal Wealth 

Let us fix a structure-preserving �-equivalent martingale measure ℚ. The aim is to 

solve the portfolio optimization problem in the enlarged market �ℚ. Given an initial 

wealth ü� > 0 and a utility function U, we want to find the optimal terminal wealth 
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ýT, that is, the value of  ýT that maximizes  E�U�ýT		 and which can be strongly 

replicated in LA�ℚ	 by a portfolio with initial value ü�. 

Let us begin with some basic definitons. 

Definition 6.1.1 A utility functon is a mapping U : ℝ → ℝ∪�-∞� which is strictly 

increasing, continuous on �U > -∞�, of class C�, strictly concave on the interior of �U > -∞� and satisfies Uê�∞	 r limh→� Uê�x	 � 0, that is, marginal utility tends to zero 

when wealth tends to infinity. 

Denoting the interior of �U > -∞� by dom�U	, only the following cases are 

considered: 

Case 1. dom�U	 � �0,∞	, in which case U satisfies 

Uê�0	 r limh→�� Uê�x	 � ∞. 
Case 2. dom�U	 � ℝ, in which case U satisfies 

Uê�.∞	 r limh→C� Uê�x	 � ∞. 
The HARA utility functions U�x	 � hTú�

AC�  for p � ℝ\\�0,1� and the logarithmic 

utility function  U�x	 � log�x	 are typical examples for Case 1, and the exponential 

utility function U�x	 � . A� eC�h, p � �0, ∞	, is a typical example for Case 2. 

Definition 6.1.2 A self-financing portfolio π � �π8� of the form 

Óπ�8 � Sα�, β�, β��Z	, β���	, … , β��8	V, 0 � t � T, n E 2Ô 

                  �eqn. �4.18		 
is called admissible if its value process is bounded from below. 

The set of all admissible portfolios is denoted by �. 
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Definition 6.1.3 ýT � LA�Ω, �T, ℚ	 is called an attainable wealth if it can be 

strongly replicated in LA� ℚ	 by a portfolio in �. 

Proposition 6.1.1 For any π � �, its discounted value process is a ℚ-
supermartingale. 

Proof: The discounted value process of π is a sum of bounded below stochastic 

integrals of predictable processes with respect to martingales. This process is a ℚ-
local martingale, see [2], and since it is bounded from below, by Fatou’s lemma, it is 

a ℚ-supermartingale. 

Q.E.D. 

If the initial wealth is ü� and ýT � LA�Ω, �T, ℚ	 is attainable, then we have 

Eℚ SýTBT V � ü�, by the previous proposition. Thus, the following optimization 

problem is considered: 

maxýT�LT�ℚ	 �EgU�ýT	i:   Eℚ ¤ýTBT ¥ � ü� �, 
which has the same solution as 

 maxýT�LT�ℚ	 �EgU�ýT	i:   Eℚ ¤ýTBT ¥ � ü� � ,                                    �6.1	 

since U is an increasing function. The Lagrangian for this optimization problem is 

given by 

E�U�ýT		 . λTEℚ ¤ýTBT . ü�¥ � E °U�ýT	 . λT ¤dℚTd�T
ýTBT . ü�¥±. 

Definition 6.1.4 ýT is called the optimal terminal wealth if it is a solution to the 

optimization problem given by �6.1	. 

The optimal terminal wealth is given by 

ýT � �Uê	CA ¤λTBT
dℚTd�T¥,                                                      �6.2	 
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where  λT is the solution of the equation 

Eℚ ° 1BT �Uê	CA ¤λTBT
dℚTd�T¥± � ü�.                                      �6.3	 

Remark 6.1.1 Suppose that ℚ is such that H�x	 is positive and of class C� on the 

support of the Lévy measure ν. Moreover, assume that H�0	 � 1, Hê�0	 � G σ�  , σ > 0 and that there are constants ε > 0, λ > 0 such that 

1. � e�|h|H�x	ν�dx	 < ∞�C§,§	¨ . 
2. � |logH�x	|ν�dx	 < ∞.�C§,§	¨  

3. � |logH�x	|νÇ�dx	 � � |logH�x	|H�x	ν�dx	�C§,§	¨ < ∞.�C§,§	¨  

Then, the condition � S1 . ÊH�x	VZ ν�dx	 < ∞�C�  of Theorem 3.3.1 is satisfied and 

the density process �dℚ� d��⁄ � ξ�, 0 � t � T� given by 

ξ� � exp oGW� . 12 GZt

 lim§→� of logH�x	Ng�0, t], dxi . t f �H�x	 . 1	ν�dx	�|h| ½��|h| ½� pp 

              �eqn.�3.28		 
can be written simply as 

ξ� � exp oGW� . 12 GZt 
 f logH�x	Mg�0, t], dxi�
C�

. t f gH�x	 . 1 . logH�x	iν�dx	�
C� p ,                                                �6.4	 

where 

M�dt, dx	 � N�dt, dx	–  dtν�dx	.          geqn. �3.9	i 

 

With the assumptions of the above remark, we have that 



56 

 

ξT � dℚTd�T � exp oGWT . 12 GZT 
 f logH�x	Mg�0, T], dxi�
C�

. T f gH�x	 . 1 . logH�x	iν�dx	�
C� p .                                              �6.5	 

Moreover, by �3.17	, we have 

exp �GWT	 � STG �⁄ S�CG �⁄ exp °. Gσ f log�1 
 x	 Mg�0, T], dxi�
C�

. TGσ oa 
 b . σZ2 
 f �log�1 
 x	 . x	ν�dx	�
C� p± .                      �6.6	 

Hence, by substituting �6.6	 into �6.5	 and making necessary arrangements we have 

ξT � dℚTd�T � STG �⁄ S�CG �⁄ exp o. 12 GZT . Gσ oa 
 b . σZ2 p T

 T f ¤logH�x	 . Gσ log�1 
 x	 . H�x	 
 1 
 Gσ x¥ ν�dx	�

C�

 f ¤logH�x	 . Gσ log�1 
 x	¥ Mg�0, T], dxi�

C� p .                           �6.7	 

Note that by equation �3.32	 we have 

M��0, t], dx	 
 tν�dx	 � MÐ ��0, t], dx	 
 tH�x	ν�dx	.           �6.8	 

Thus, by using �6.7	 and �6.8	, we can write �6.2	 as 

ýT � �Uê	CA oλTBT STG �⁄ S�CG �⁄ exp o. 12 GZT . Gσ oa 
 b . σZ2 p T

 T f o¤logH�x	 . Gσ log�1 
 x	¥ H�x	 . H�x	 
 1 
 Gσ xp ν�dx	�

C�

 f ¤logH�x	 . Gσ log�1 
 x	¥ MÐ g�0, T], dxi�

C� pp.                         �6.9	 
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Therefore, the optimal terminal wealth is 

ýT � �Uê	CAg��T	STG �⁄ eKTi,                                          �6.10	 

where 

��t	 r λ�B� S�CG �⁄ exp o. 12 GZt . Gσ oa 
 b . σZ2 p t

 t f o¤logH�x	 . Gσ log�1 
 x	¥ H�x	 . H�x	 
 1 
 Gσ xp ν�dx	�

C� p 

        �6.11	 
and 

K� � f g�x	�
C� MÐ g�0, t], dxi,                                                  �6.12	 

with 

g�x	 r logH�x	 . Gσ log�1 
 x	.                                          �6.13	 

Note that H�0	 � 1 and Hê�0	 � G σ�  yields gê�0	 � 0, since gê�x	 � H
�h	
H�h	 . G

�
AA\h. 

In order to replicate the optimal terminal wealth ýT, we need to know its price 

process, and this depends on the utility function considered. 

Now suppose that the utility function satisfies 

�Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	,                                     �6.14	 

for any x, y � �0,∞	, for certain C� functions kA�x	,  kZ�x	. Then, the price function 

of  ýT can be written as 

Eℚ �B�BT ýT|��� � Eℚ �B�BT �Uê	CA ¤λTBT
dℚTd�T¥ |���

� B�BT Eℚ °kA oλT,�BT,�
dℚT,�d�T,�p± �Uê	CA ¤λ�B�

dℚ�d��¥

 B�BT Eℚ °kZ oλT,�BT,�

dℚT,�d�T,�p±. 
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Here we used the fact that �dℚ� d��⁄ � ξ�, 0 � t � T�  is a �-exponential Lévy 

process, by Theorem 3.3.1 and equation �6.5	, with 
PℚT,mP�T,m � PℚT P�T⁄Pℚm P�m⁄  and 

�T,mBT,m � �T BT⁄
�m Bm⁄ . 

Thus, we have 

Eℚ �B�BT ýT|��� � φ�t, T	ý� 
 ψ�t, T	,                               �6.15	 

where 

ý� � �Uê	CAg��t	S�G �⁄ eKmi,                                                �6.16	 

with ��t	  and  K� are given by �6.11	 and �6.12	, respectively. 

The following lemma shows the structure of the utility functions that satisfy �6.14	. 

Lemma 6.1.1 �Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	, for any x, y � �0,∞	, for 

certain C� functions kA�x	,  kZ�x	 if and only if  
U
�h	U

�h	 � �x 
 �, for any x � 

dom�U	, for some �, � � ℝ. 

Proof: First suppose that �Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	. If we write Á�x	 � �Uê	CA�x	, then we have Á�xy	 � kA�x	Á�y	 
  kZ�x	. Thus, by 

differentiating with respect to x, we have that 

yÁê�xy	 � kAê �x	Á�y	 
 kZê �x	.                                               �6.17	 

Note that Áê�x	 � AU

��U
	úT�h		 � AU

�Á�h		 . 
Thus, by taking y � ÁCA�z	 and x � 1, the equation �6.17	 becomes 

ÁCA�z	Áê�ÁCA�z		 � Uê�z	Uêê�z	 � kAê �1	z
 kZê �1	. 
Now suppose that  

U
�h	U

�h	 � �x 
 �. Then, by integration of the differential equation, 

we have 
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U�x	 � CAlog�x . �	 
 CZ, if  � � .1,                       �6.18	 

U�x	 � CA
� S1 
 1�V ��x 
�	A\ A� 
 CZ, if  � ∉ �.1,0�,                �6.19	 

U�x	 � CA�eh �⁄ 
CZ, if  � � 0,                          �6.20	 

where  CA  and  CZ are integration constants. 

Therefore, we have 

�Uê	CA�x	 � cx� . �
� , if � / 0,                           �6.21	 

implying that equation �6.14	 holds with 

kA�x	 � x� and kZ�x	 � �
� x� . �

� ;                                                  �6.22	 

and �Uê	CA�x	 � �logx 
 c, if � � 0,                         �6.23	 

implying that equation �6.14	 holds with kA�x	 � 1 and kZ�x	 � �logx,                                                                �6.24	 

where c � ℝ. 

Q.E.D. 

From now on we only consider the class of utility funtions of the form 

�Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	.     �eqn. �6.14		 

This will ensure that the optimal portfolio consisting only of bonds and stocks can be 

constructed. 

In order to solve the optimization problem in the complete market �ℚ, it is required 

that  ýT � LA�Ω, �T, ℚ	. Thus, we need the following proposition. 

Proposition 6.1.2  ýT � LA�Ω, �T, ℚ	 if and only if there is an ε > 0 such that 

f ¹�Uê	CAgH�x	i¹ν�dx	 < ∞�C§,§	¨ .                                    �6.25	 
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Proof: The optimal terminal wealth is given by 

ýT � �Uê	CA ¤λTBT
dℚTd�T¥.           �eqn. �6.2		 

Remember that we only consider the class of utility funtions of the form 

�Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	.     �eqn. �6.14		 

Thus, we can write ýT  as 

ýT � kA ¤λTBT¥ �Uê	CA�ξT	 
 kZ ¤λTBT¥.  
Since  λT BT⁄   is deterministic, to show  ýT � LA�Ω, �T, ℚ	 it is enough to prove that Eℚ[|�Uê	CA�ξT	|] < ∞. 
Moreover, the utility functions we consider are such that (recall the proof of Lemma 

6.1.1) 

�Uê	CA�x	 � cx� . �
� , if � / 0,         �eqn. �6.21		 

or �Uê	CA�x	 � �logx 
 c, if � � 0.        �eqn. �6.23		 

First consider the case where �Uê	CA�x	 � cx� . �
� , for � > 0.  We have 

Eℚ[|�Uê	CA�ξT	|] � Eℚ Ø�c�ξT	� . �
��Ù. 

By Theorem 3.3.1 and Remark 6.1.1, we have ξ� � exp �J�	, where the process J � �J�, 0 � t � T� given by 

J� � GW� . 12 GZt 
 f logH�x	Mg�0, t], dxi�
C� . t f gH�x	 . 1 . logH�x	iν�dx	�

C�  
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is a �-Lévy process with Lévy measure νJ�du	 � �νÏCA	�du	. Here, u � Ï�x	 r
logH�x	. 
Thus, we have Eℚ[|ξT|�] � Eℚ[exp ��JT	]. 
Notice that Eℚ[exp ��JT	] < ∞ if and only if Eℚ[exp ���JT � 0		] < ∞. 
Moreover, by Proposition 25.4 in [30], Eℚ`expg��JT � 0	ic < ∞ if and only if 

f expg��u � 0	i�|�| A� νJ�du	 < ∞, 
which is equivalent to 

f gH�x	i��C§,§	¨ ν�dx	 < ∞ 

for some ε > 0, since logH�0	 � 0 and H�x	 is of class C�.  

The case where �Uê	CA�x	 � cx� . �
� , for � < 0,  can be treated analogously. 

Now consider the second case where �Uê	CA�x	 � �logx 
 c. We have Eℚ[|�Uê	CA�ξT	|] � Eℚ[|�logξT 
 c|] 
and  Eℚ[|logξT|] � Eℚ[|JT|]. 
Notice that Eℚ[|JT|] < ∞ if and only if Eℚ[|JT| � 1] < ∞. Moreover, again by 

Proposition 25.4 in [30], Eℚ[|JT| � 1] < ∞  if and only if 

f �|u| � 1	�|�| A� νJ�du	 < ∞, 
which is equivalent to 

f |logH�x	|�C§,§	¨ ν�dx	 < ∞, 
for some ε > 0.  

Q.E.D. 
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6.2 The Optimal Portfolio 

Remember that, by �6.15	 and �6.16	, the price function of the optimal terminal 

wealth is given by 

Eℚ �B�BT ýT|��� � F�t, S�, K�	 

with 

F�t, xA, xZ	 r φ�t, T	�Uê	CAg��t	xAG �⁄ ehìi 
 ψ�t, T	.               �6.26	 

Also, the function h defined in Theorem 5.2.2 is given by 

h�t, xA, xZ, y	 r Fgt, xA�1 
 y	, xZ 
 g�y	i . F�t, xA, xZ	 . xAyDAF�t, xA, xZ	. 
                  �6.27	 
Note that Fgt, xA�1 
 y	, xZ 
 g�y	i � φ�t, T	�Uê	CAg��t	�xA�1 
 y		G �⁄ ehì\��Î	i 
 ψ�t, T	

� φ�t, T	�Uê	CAg��t	xAG �⁄ ehìH�y	i 
 ψ�t, T	
� φ�t, T	kAg��t	xAG �⁄ ehìi�Uê	CAgH�y	i 
 φ�t, T	kZg��t	xAG �⁄ ehìi
 ψ�t, T	. 

                  �6.28	 
Here we used the fact that 

g�x	 r logH�x	 . Gσ log�1 
 x	    �eqn. �6.13		 

and �Uê	CA�xy	 � kA�x	�Uê	CA�y	 
 kZ�x	        geqn. �6.14	i 

with x � ��t	xAG �⁄ ehì   and  y � H�y	.  
Also note that 

DAF�t, xA, xZ	 �  Gσ φ�t, T	��t	xA
G�CAehì

Uêê S�Uê	CAg��t	xAG �⁄ ehìiV.                            �6.29	 

Here we used the fact that ��Uê	CA�x		ê � AU

g�U
	úT�h	i. 
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Thus, by substituting �6.26	, �6.28	 and �6.29	 into �6.27	 and making necessary 

arrangements, we have that 

h�t, xA, xZ, y	 � φ�t, T	kAg��t	xAG �⁄ ehìi�Uê	CAgH�y	i 
 φ�t, T	kZg��t	xAG �⁄ ehìi
. φ�t, T	�Uê	CAg��t	xAG �⁄ ehìi . Gσ φ�t, T	��t	xAG �⁄ ehì

Uêê S�Uê	CAg��t	xAG �⁄ ehìiV y. 
                  �6.30	 
Therefore, by applying Theorem 5.2.2, the following result is obtained. 

Theorem 6.2.1 Let H be a positive function that satisfies the conditions of Remark 

6.1.1 and let G � ℝ be a solution of 

a 
 b . r 
 σG 
 f x�H�x	 . 1	ν�dx	�
C� � 0.        geqn.  �3.35	i 

Moreover, assume that 

(i) �Uê	CA�H�y		 is an analytic function. 

(ii) ∑ |ò|öb! | Pö
PÎö �Uê	CA�H�y		|ëÎ���b�Z < ∞,  where  |m|b r � |y|bνÇ�dy	�C� . 

Then, the optimal terminal wealth ýT is strongly replicable in LA�ℚ	 and the number 

of stocks and power-jump assets of the replicating portfolio is given by 

β� � Gσ φ�t, T	��t	S�C
G�CAeKmú

Uêê S�Uê	CAg��t	S�CG �⁄ eKmúiV � Gφ�t, T	��ý�C 
 �	σS�C                        �6.31	 

and 

β��b	 � 1i! B� φ�t, T	kA�Uê�ý�C		 dbdyb �Uê	CA�H�y		ëÎ��,   i � 2,3, …,           �6.32	 

respectively, where the constants � and � depend on the utility function (see 

Lemma 6.1.1). 

Proof: Clearly,  assumptions (i) and (ii) imply that �6.25	 is satisfied, and hence ýT � LA�Ω, �T, ℚ	, by Proposition 6.1.2. Note that in order to apply Theorem 5.2.2 

to the function h given by �6.30	, the following must be satisfied: 
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} |m|b f Eℚ[|ab�s, Y
	|]T
�

�
b�Z ds < ∞, �eqn. �5.17		 

where ab�s, Y
	 � Ab! õö
õÎö h�s, S
, K
, 0	. That is, we should have 

} |m|bi! | dbdyb �Uê	CA�H�y		||Î�� �
b�Z f |φ�t, T	|Eℚ`|kAg��t	S�CG �⁄ eKmúi|cT

� dt < ∞, 
which means, by assumption (ii), that  

f |φ�t, T	|Eℚ
T

� `|kAg��t	S�CG �⁄ eKmúi|cdt < ∞                               �6.33	 

must hold. Note that in order to have a bounded price function 

Eℚ �B�BT ýT|��� � φ�t, T	ý� 
 ψ�t, T	, �eqn. �6.15		 

|φ�t, T	| must be finite for all t and bounded in [0,T]. Also note that kA�x	 is a linear 

function of �Uê	CA�x	, (see proof of Lemma 6.1.1), and Uê�ý�	 � ��t	S�G �⁄ eKm . 
Thus, we have that  kAg��t	S�CG �⁄ eKmúi is a linear function of  ý�C and ý�C � LA�ℚ	 

for all t � [0,T], and therefore Eℚ`|kAg��t	S�CG �⁄ eKmúi|c is bounded in [0,T]. 
Consequently, �6.33	 holds and thus, with assumptions (i) and (ii), we can apply 

Theorem 5.2.2 to the function h given by �6.30	. 

Therefore, by Theorem 5.2.2, the optimal terminal wealth ýT is strongly replicable 

in LA�ℚ	 and the number of stocks and power-jump assets of the replicating portfolio 

is given by β� � DAF�t, S�C, K�C	,      �eqn.  �5.23		  
and 

β��b	 � 1i! B�
∂b∂yb h�t, S�C, K�C, 0	, i � 2,3, …,        geqn.  �5.24	i 

respectively. 
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Note that, by using �6.29	, we have that 

β� �  Gσ φ�t, T	��t	S�C
G�CAeKmú

Uêê S�Uê	CAg��t	S�CG �⁄ eKmúiV � Gσ φ�t, T	Uê�ý�C	Uêê�ý�C	 S�CCA

� Gσ φ�t, T	��ý�C 
 �	S�C . 
Here we used the fact that Uê�ý�C	 � ��t	S�CG �⁄ eKmú and  

U
�ýmú	U

�ýmú	 � �ý�C 
 �. 

Also note that, by using �6.30	, we have that 

β��b	 � 1i! B� φ�t, T	kA�Uê�ý�C		 dbdyb �Uê	CA�H�y		ëÎ��,    i � 2 ,3, …. 
Q.E.D. 

Corollary 6.2.1 Let H be a positive function that satisfies the conditions of Remark 

6.1.1 and let G � ℝ be a solution of 

a 
 b . r 
 σG 
 f x�H�x	 . 1	ν�dx	�
C� � 0.        geqn.  �3.35	i  

Moreover, assume that 

(i) �Uê	CA�H�y		 is a polynomial function of degree n. 

(ii) ýT E 0. 

Then, the optimal terminal wealth ýT is attainable and the number of stocks and 

power-jump assets of the replicating portfolio is given by 

β� � Gσ φ�t, T	��t	S�C
G�CAeKmú

Uêê S�Uê	CAg��t	S�CG �⁄ eKmúiV � Gφ�t, T	��ý�C 
 �	σS�C                        �6.34	 

and 

β��b	 � 1i! B� φ�t, T	kA�Uê�ý�C		 dbdyb �Uê	CA�H�y		ëÎ��,   i � 2,3, … , n,      �6.35	 

respectively, where the constants � and � depend on the utility function (see 

Lemma 6.1.1). 
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Proof: Clearly, the conditions of the previous theorem are satisfied and thus, the 

number of stocks and power-jump assets of the replicating portfolio is given by �6.31	 and �6.32	, respectively. Note that the replicating portfolio involves only a 

finite number of power-jump assets since, by assumption, �Uê	CA�H�y		 is a 

polynomial function of degree n. Also note that the replicating portfolio is 

admissible, since its value process is bounded from below. Therefore, the optimal 

terminal wealth ýT is attainable with replicating portfolio given by �6.34	 and �6.35	. 

Q.E.D. 

Notice that we have the following result: If it is required that the optimal portfolio 

involves only stocks and bonds ℚ must be chosen so that 

�Uê	CA�H�y		 � � 
 �y, 
where �, � � ℝ.  

It can be easily shown that  H�0	 � 1 and Hê�0	 � G σ�   imply that 

H�y	 �
��
�
��¤1 
 �Gσ y¥A �� ,                if  � / 0                            �6.36	

    exp ¤Gσ y¥ ,                        if  � � 0                            �6.37	÷ 

where the constant � depends on the utility function (see Lemma 6.1.1). Remember 

that G must satisfy the equation �3.35	. Moreover, if G is such that H�y	 > 0 on the 

support of the Lévy measure ν and ýT E 0, the conditions of the above corollary are 

satisfied and  β��b	 � 0, for all i E 2. Equivalently, if ℚ is chosen so that either �6.36	 

or �6.37	 holds, then the optimal portfolio in the Lévy market �ℚ involves only 

stocks and bonds. 
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6.3 Application  

Example 6.3.1 Consider the logarithmic utility function U�x	 � log�x	. Then 

�Uê	CA�x	 � Ah  and by solving 

Eℚ ° 1BT �Uê	CA ¤λTBT
dℚTd�T¥± � ü�, �eqn. �6.3		 

we have  

ýT � ü�BT d�TdℚT � g��T	STG �⁄ eKTiCA. 
Moreover, the price function of  ýT at time t is given by 

Eℚ �B�BT ýT|��� � ü�B�Eℚ �d�TdℚT |��� � ü�B� d��dℚ� � ý�, 
which implies that φ�t, T	 � 1 and ψ�t, T	 � 0 in  

Eℚ �B�BT ýT|��� � φ�t, T	ý� 
 ψ�t, T	.       �eqn.  �6.15		 

It follows from the proof of Lemma 6.1.1 that � � .1, � � 0, kA�x	 �
xCA   and  kZ�x	 � 0. Note that  Uê�x	 � Ah   and Uêê�x	 � . Ahì. 
Therefore, it follows from Theorem 6.2.1 that the relative wealth invested in stocks, 

at time t, is constant and given by 

β�S�Cý�C � . Gσ ; 
and the number of power-jump assets in the optimal portfolio, at time t, is 

β��b	 � ý�Ci! B�
dbdyb 1H�y	ëÎ�� ,   i � 2,3, …. 
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Moreover, if it is desired to have the optimal portfolio that consists of only stocks 

and bonds, then an equivalent martingale measure ℚ must be chosen so that �6.36	 

and �3.35	 hold, that is 

H�y	 � ¤1 . Gσ y¥CA, 
where G satisfies the equation 

a 
 b . r 
 σG 
 Gσ f xZ
1 . Gσ x ν�dx	�

C� � 0. 
The existence and the uniqueness of the solution is considered in the next example. 

Example 6.3.2 Consider the HARA utilities U�x	 � hTú�
AC�  for p � ℝ\\�0,1�. Then 

�Uê	CA�x	 � xCA �⁄  and by solving 

Eℚ ° 1BT �Uê	CA ¤λTBT
dℚTd�T¥± � ü�, �eqn. �6.3		 

we have  

ýT � ü�BT �d�T dℚT⁄ 	A �⁄
Eℚ��d�T dℚT⁄ 	A �⁄ 	 � g��T	STG �⁄ eKTiCA �⁄ . 

Moreover, the price function of  ýT at time t is given by 

Eℚ �B�BT ýT|��� � ü�B� Eℚ`�d�T dℚT⁄ 	A �⁄ |��cEℚ��d�T dℚT⁄ 	A �⁄ 	
�  ü�B� Eℚ Øgd�T,� dℚT,�⁄ iA �⁄ �d�� dℚ�⁄ 	A �⁄ |��Ù

Eℚ Sgd�T,� dℚT,�⁄ iA �⁄ �d�� dℚ�⁄ 	A �⁄ V
� ü�B� �d�� dℚ�⁄ 	A �⁄

Eℚ��d�� dℚ�⁄ 	A �⁄ 	 � ý�, 
which implies that φ�t, T	 � 1 and ψ�t, T	 � 0 in  
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Eℚ �B�BT ýT|��� � φ�t, T	ý� 
 ψ�t, T	.       �eqn.  �6.15		 

It follows from the proof of Lemma 6.1.1 that � � . A� ,� � 0, kA�x	 �
xCA �⁄  and kZ�x	 � 0. Note that  Uê�x	 � xC�  and Uêê�x	 � .pxC�CA. 
Therefore, it follows from Theorem 6.2.1 that the relative wealth invested in stocks, 

at time t, is constant and given by 

β�S�Cý�C � . Gσp ; 
and the number of power-jump assets in the optimal portfolio, at time t, is 

β��b	 � ý�Ci! B�
dbdyb �H�y		CA �⁄ ëÎ�� , i � 2,3, …. 

Moreover, if it is desired to have the optimal portfolio that consists of only stocks 

and bonds, then an equivalent martingale measure ℚ must be chosen so that (6.36) 

and (3.35) hold, that is 

H�y	 � ¤1 . Gσp y¥C�  , 
where G satisfies the equation 

a 
 b . r 
 σG 
 f x o¤1 . Gσp x¥C� . 1p ν�dx	�
C� � 0. 

It is required that H�y	 > 0 for all y on the support of the Lévy measure ν in order to 

obtain an equivalent measure  ℚ (see Theorem 3.3.1). Remember that the support of 

the Lévy measure is given by [δ,θ], where δ > .1 and θ is a positive constant. Thus, 

we must have 1 . G
�� y > 0  for all y � [δ,θ], which implies that 

σpδ < G < σp
θ  , if . 1 < δ < 0 
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and 

G < σp
θ  , if    δ E 0. 

Moreover, if G is a solution of the equation 

a 
 b . r 
 σG 
 f y o¤1 . Gσp y¥C� . 1p ν�dy	�
C� � 0, 

then the probability measure ℚ is an equivalent martingale measure. 

Notice that the function 

f�G	 r σG 
 f y o¤1 . Gσp y¥C� . 1p ν�dy	�
C�  

is strictly increasing. This means that we have at most one solution of the equation a 
 b . r 
 f�G	 � 0, 
and this solution exists only if σZpδ 
 f y ¤S1 . yδVC� . 1¥�

C� ν�dy	 < r . a . b
< σZp

θ 
 f y ¤S1 . y
θVC� . 1¥�

C� ν�dy	. 
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CHAPTER 7 
 
 

CONCLUSION 
 
 
 

In this study, general geometric Lévy market models are considered. Since these 

models are, in general, incomplete, that is, all contingent claims cannot be replicated 

by a self-financing portfolio consisting of investments in a risk-free bond and in the 

stock, it is suggested that the market should be enlarged by artificial assets based on 

the power-jump processes of the underlying Lévy process. These artificial assets can 

be related with options on the stock and contracts on realized variance that are traded 

in OTC markets regulary. By making use of the Predictable Representation Property 

for Lévy processes, it is shown that the enlarged market is complete. Then the 

explicit hedging portfolios for claims whose payoff function depends on the prices of 

the stock and the artificial assets at maturity are derived. 

Moreover, the portfolio optimization problem is considered in the enlarged market. 

The problem consists of choosing an optimal portfolio in such a way that the largest 

expected utility of the terminal wealth is obtained. A class of utility functions, 

including HARA, logarithmic and exponential utilities as special cases, is 

considered. Then, the optimal portfolio which maximizes the terminal expected 

utility is obtained by the martingale method. It is shown that for particular choices of 

the equivalent martingale measure in the market, the optimal portfolio consists only 

of bonds and stocks. This corresponds to completing the market with additional 

assets in such a way that they are superfluous in the sense that the terminal expected 
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utility is not improved by including these assets in the portfolio. This in turn provides 

a solution to the problem of utility maximization in the real market, consisting only 

of the bond and the stock. 

The new assets, by which the market is completed, are not traded in the market and 

thus, considering the portfolio optimization in the enlarged market does not seem to 

be realistic. However, the replication formula for these artificial assets in terms of 

call options with the same maturity and with a continuum of strikes can be derived, 

which is the subject of another study. 
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