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ABSTRACT

PRICING US CORPORATE BONDS BY JARROW/TURNBULL (1995) MODEL

Oguz, Hatice Dilek
M.Sc., Department of Financial Mathematics

Supervisor: As;sis;c. Prof. Dr. Seza Damigogin

December 2008, 76 pages

In this study Jarrow Turnbull (1995) Model, which is a reduced form approach for credit risk
models, is employed to estimate the default intensity of US corporate bonds conditionally
based on a fixed recovery rate. The estimations are performed with respect to the ratings of
the bonds and the results were consistent with the ratings. ‘US Treasury Bills are also used to
since zero coupon default free prices, modeled by Svensson (1994) are necessary for pricing

the defaunlt risky coupon bonds.

Key Words: Credit Risk, Corporate Bond, Reduced form Models, Default Intensity, Jarrow-
Turnbull (1995) Model
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AMERIKAN OZEL SIRKET TAHVILLERININ JARROW/TURNBULL (1995) MODELI
ILE FIYATLANMASI

Oguz, Hatice Dilek
Yitksek Lisans, Finansal Matemat_ik Boltimit

Tez Yineticisi: Yar. Dog. Dr. Seza Damg;oéiu’

December 2008, 76 sayfa

Bu ¢ahsmada, ABD Ozel sirket tahvillerinin fiyatlanmas: igin reduced form modellerden
birisi olan Jarrow-Turnbuli(1995) kullanilmis ve recovery rate sabit tutularak, default
intensity tahmini yaptlmustir. Jarrow-Turnbull (1995) modeline gore, default risky kuponlu
tahvilin fiyatlanmas: icin default free zero coupon bond fiyati gerektigi icin, Amerikan
Hazine bonolari da Svensson (1994) modeli ile ﬁy;tlandmimlg,nr. Default intensity
tahminleri yapilirken, bonolar derecelendirmelerine gore degerlendirilmis ve ¢ikan

sonugianm bu derecelendirmeler ile uyumlu olduklan gdzlenmistir.

Anahtar Kelimeler: Kredi Riski, Ozel Sirker Tahvilieri, Reduced Form Models, Default
Intensity, Jarrow-Turnbull (1995) Modeli
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CHAPTER 1

INTRODUCTION

Credit risk occurs when the issuer of a bond f@lmeet its contractual obligations,
repaying the principal and the interests on time=d@ risk is also defined as “The
degree of value fluctuations in debt instruments @erivatives due to changes in the
underlying credit quality of borrowers and countetigs” (Lopez and Saidenberg,
2000). Default risk, which relates the possibitityat the counterparty will not fulfill
its contractual commitments, is one of the issuegrowing importance both in
academia and in industry. Numerous credit risk neotave been developed by the
academicians and by the industry in order to mdlgeldefault risk during the last

decade.

Extensions have been made to the early Merton md®4) on the “structural”
modeling side, to refine the model while alternativariations for the intensity
process are proposed on the “reduced-form” side miodeling. However, a
consensus on a model could not be reached. Comdgraveesults yielded from
different empirical studies for the validation dfet theories is one of the main

reasons for this deficit.

On the industry side, numerous developments arerebs in the field of credit risk
modeling, as evidenced by the public release oh smodels by a number of
financial institutions such as J.P. Morgan (19984 &Credit Suisse Financial
Products (1997).

Credit risk models are expected to be used to filyndetermine risk-adjusted,

regulatory capital requirements by the InternatioBavap Dealers Association



(ISDA) and the Institute of International Financeoiing Group on Capital
Adequacy (IIF) (Lopez and Saidenberg, 2000).

Although the lending institutions developed thek rimanagement tools, default
frequency has been observed to increase for thedeaades. Thus, mathematical
models have been implemented to quantify and viamations in the risk profile of

the creditor and losses related to these changeertectly price and manage the
credit risk since correct measurement and valuaifacredit risk and especially the
likelihood of default and the loss given defaulofgyreat importance for the lending

institutions.

In this thesis, the ratings of the corporate boselected are accepted as the main
indicators of their risk. However, it is seen thhese ratings given by S&P and
Moody'’s are judged during the recent crisis.

There are only two corporate bonds issued in Turfée main reason is the high
yields provided by the treasury bills and therefdhe impossibility of the
competitiveness. Consequently US corporate boralsedected for the estimation of
the Jarrow Turnbull (1995) model. However, US cogp® bond data are not
publicly available, thus the data employed in stisdy is scarce. Nevertheless, this
thesis will provide a basis for the pricing of therporate bonds in Turkey, if
corporate issue bonds.

The goal of this thesis is the estimation of thiadk intensity in the Jarrow/Turnbull

(1995) model. Estimations of the default intensitgsed on default-free term
structure data are performed. The thesis congdigisbapters including introduction.

The rest of the paper evolves as follows: Chapteprdsents introduction, and
followed by the literature review chapter. Chafepresents the preliminaries that
are necessary for the theory to be well understGbdpter 4 gives the details of the
original Jarrow-Turnbull (J/T) (1995) model. In @Qiter 5 the estimation technique



of the corporate bond pricing with J/T (1995) iegented with the technique of the
Svensson method that is utilized for the pricinghef default free bonds. Data issues
and estimation results are also explained in chd&pt€inally, in chapter 6 the main

results are summarized in the conclusion part.



CHAPTER 2

LITERATURE REVIEW

There are two well-known approaches to the modedingredit risk. First model is
the “structural-form approach” which can be invgated as first generation and
second generation models. Structural form modeobriginated with Black and
Scholes (1973), proposed by Merton (1974) usingpttireciples of option pricing.
They endogenize the bankruptcy process by explicitbdeling the asset and
liability structure of the company (Merton 1974hi3 approach views equity shares
and debts as derivatives on the firm’'s assbefault risk of a firm is explicitly
connected to the variation in the asset value effitm which conducts the default
process. Merton Model proposes that default takasepwhen the liabilities of the
firm is greater than the market value of the fifAltman et al, 2004). This model
derives the price of default risk by modeling theue of the firm relative to the
firm’s debt. The face value of the bond, whichheught as the strike price, minus a
put option on the value of the firm yields the pHf-at maturity, equal to the
maturity of the bond, to the bondholder (Altmanagt 2004) Merton used this
approach to derive an explicit formula for riskynbis by which probability of
default and the yield differential between a rislkond and a default-free bond can be
estimated. Merton model states that the probalwlitgefault and the recovery rate ,
which are the functions of structural featureshaf irm, are related inversely. Black
and Cox (1976), Geske (1977) and Vasicek (1984)atsm be included in the first
generation structural form modelshere Black and Cox (1976) presents the
possibility of more complex capital structures,wstubordinated debt; Geske (1977)
suggests interest-paying debt and Vasicek (1984pkshes the distinction between
short- and long-term liabilities in order to impeothe basic Merton Model.



In practice structural form approach has some sborings. First, under Merton’s
model, default occurs only at maturity of the dehich contradicts with the real life.
Second, the priority/seniority structures of vagaiebts have to be specified in case
of complex capital structures. Moreover, debtsam®imed to be paid with respect to
their seniority orders in this model. However, Fsuand Torous (1994) empirically
proved that the absolute-priority rules are ofteslated. Basic Merton model utilizes
the lognormal distribution which tends to amplifiezovery of rate in the event of
default (Altman, et al, 2004). Second generatianicstiral form models tried to
remove the unrealistic assumptions by adoptind#sec Merton model. For instance
default is allowed to occur at any time betweenisseance and maturity of the debt
when the value of the firm’s assets reaches a ldlmshold level. These models
include Kim et al. (1993), Hull and White (1995)iedden et al. (1993), Longstaff
and Schwartz (1995) and othelRecovery rate at default is taken as exogenous and
is assumed to be independent from the firm’s asdee.Being generally defined as
a fixed ratio of the outstanding debt, Recoveryer& independent from the
probability of default. Longstaff and Schwartz (59%rgue that, the recovery rate
can be estimated utilizing the history of defa@ltsl the recovery ratios for various
classes of debt of comparable firms. They allowdostochastic term structure of
interest rates and they let defaults correlate withinterest rates and conclude that
this correlation plays a significant role on thedit spread. Nonetheless three main
drawbacks, explaining the relatively poor empirigagrformance of the structural
models, remain unsolved by the second generatiatelsoFirst problem is the need
of estimates of the firm's asset value which is observable. Secondly the credit
rating changes are not incorporated into structimath models which are observed
to decrease before the firms’ default. Besidessdhmodels postulates that the value
of the firm is continuous and thus default time dsnanticipated just before the
default takes place (Altman et al, 2005). Thereftdfie and Lando (2001) argue

that this continuity assumption implies that thare no sudden surprises.



Structural models assume complete knowledge ofrg detailed information set
generated by continuous observations of both tine'diasset value and the default
barrier, which means that modeler has continuodsdatailed information about all
of the firm’s assets and liabilities. This infornaat set is similar to that held by the
firm’s managers and regulators. Generally, complgtamation assumption means
that the default time can be predicted which doashold when the firm’s asset

value follows a continuous time jump diffusion pess (Jarrow and Protter, 2004).

To overcome these shortcomings reduced form madelemployed by Litterman
and Iben (1991), Jarrow and Turnbull (1992), Madad Unal (1998), Jarrow and
Turnbull(1995), Duffie and Singleton (1997), Jawrd.ando and Turnbull (1997),
Lando (1998), Duffie and Singleton (1999). Redufdh models takes market into
account as the only source of information and floeeedefault probabilities and
credit risk dependencies are inferred by means roérket prices of the firms’
defaultable instruments (such as bonds or crediautte swaps) (Abel, 2006).
Reduced-form models do not condition default on Waue of the firm, and
parameters related to the firm’s value need noe$temated to implement them
unlike structural-form modelsMoreover, reduced-form models present separate
explicit assumptions on probability of default anedovery rate dynamics which are
modeled independently from the structural featw&gshe firm such as its asset
volatility and leverage Recovery rate at default is generally supposed @0 b
exogenous and thereby independent from the protyabfl default. Reduced form
models take the term structure of default-freerade rates, the recovery rate of
defaultable bonds at default and stochastic promesgefault intensity as primitives
(Altman et al., 2005).

Jarrow and Turnbull (1995) study the simplest daasehich the default was driven
by a Poisson process with constant intensity andnawn payoff at default.
Stochastic interest rates are incorporated, buy theecify the processes for
bankruptcy and the payoff on the risky debt cood@i on default exogenously.



They make use of foreign currency analogy and gaytof the risky security are
made in nominal terms in a risky currency, 'XYZiddd'. Default risky bond price is
formulated in terms of default free bond and a excfe rate implying the analogy of
foreign currency by no-arbitrage conditions. Bamitey is modeled as a jump
process in the continuous time case (Cooper andirMa©96). This model is built
on arbitrary Heath et al. (1992) term structure elpdemaining analytically
tractable. The Jarrow/Turnbull model, assuming that stochastic process driving
the default-free term structure and the defaultgss are independent, is especially
functional when data is scarce. This assumptioeggihe opportunity to study term
structure issues and default issues separaiedplicit pricing formulas for risky
bonds and for options on interest rate sensitiveckst which facilitate
implementation and calibration are also derivethisa model (Fruhwirth and Ségner,
2006). Empirical study of Houweling and Vorst (2003) showtkat, in spite of its
simplicity, the Jarrow and Turnbull model provesmork well in some situations.

Duffie and Singleton (1997) used a similar methichey assume a multi-factor
square-root process for the riskless interest aatk a Poisson process for default
with state dependent values for the hazard ratefadbss in default” (Cooper and
Martin, 1996). Valuation under the martingale phlubsy measure is done by
discounting the default-free payoff on the debalgiscount rate that is edited for the
default process parameters. The valuation procebdasmmes same for riskless
claims, with an adjustment to the interest ratethar effect of default risk by this
discounting procedure. This argument gave inspinatd those that simply assume a
process for the spread and then use this in a iva@lasto that derived by Duffie and

Singleton (Cooper and Martin, 1996).

The parameterization of the recovery rate formshtage on which the reduced-form
models differ.Jarrow and Turnbull (1995) assumed that a the mamee of a bond
at default is equal to an exogenously given fractban equivalent default-free bond
whereas Duffie and Singleton (1999) allow for chb$erm solutions for the term-



structure of credit spreads when market value faulte recovery rate, is exogenously
specified. This model also allows for a random vecy rate depending on the pre-
default value of the bond his model lets default hazard-rate process andvesy
rate correlate and assumes that expected los$aatiidgrocess is exogenous implying
that the recovery rate does not depend on the ltdsiiéei claim valueThe correlation
Is modeled by combining independent Poisson presdsg pre-specifying the sign of

the correlation which is a handicap of the model.

Coupon level or maturity is taken as irrespectivéhthe recovery rate and thus bond
holder gets a fixed payment, at default accordm®uffie (1998. This amount is the

same fraction of face value as any other bond efsdime seniority since the model
assumes that bonds of the same issuer, senionty,face value have the same
recovery rate at default, regardless of the remgimhaturity. Recovery parameters
based on statistics and withdrawn from defaultspao®ided by rating agencies such
as Moody’s and they can be utilized with this agstiom. Jarrow, Lando and Turnbull

(1997) mainly concentrates on the migrations betwaedit rating classes and make
use of transition matrices (historical probabistief credit rating changes) to price
defaultable bonds allowing for different debt seities to translate into different

recovery rates for a given firm.

Empirical work on reduced form is rather limitecese.g. Duffie and Singleton
(1997), Duffee (1999), Tauren (1999), Dullmann a&vichdfuhr (2000), Bihler et al.
(2001), Bakshi et al. (2001), Houweling and Vor20@3) or Duffie et al. (2003)).
The articles using intensity-based models generailljd the cross-sections and
specify them exogenously, frequently based on tratings, to derive the estimates.
Daily data is used to extract the parameters basdtie pre-specified cross-sections
(Frihwirth, 2004). Duffee (1999) finds that thesedwmls have some problems in
explaining the observed term structure of credreags across firms of different

credit risk qualities using the Duffie and Single{d999) approach.



The relationship between the probability of defaantl recovery rate has been the
subject of the research for recent years (Frye@@0p@000b), Jokivuolle and Peura
(2003), and Jarrow (2001 )yrye uses the conditional approach suggested lgeFin
(1999) and Gordy (2000). The state of the economnes the default in these
models. The same economic conditions are suppasbdritg about the probability
of default to rise and recovery rates to fall. Hfiere the correlation between
recovery rate and default is caused by the comneperitience on the state variable.
Frye found that default rates and recovery ratesragatively correlated-rye’s
(2000) concluded that bond recoveries might deck@e€5 percentage points from
their normal-year average whereas loan recoverasdacline by a similar amount,

but from a higher level in a severe economic downtu

Jarrow (2001) proposed a new methodology for ttienasion of recovery rates and
probability of default benefiting from the debt aeqluity prices which are ignored by
the reduced form models and connected reduced foodels with the structural
models. The equity prices are incorporated in gtemation procedure allowing the
separate identification of the recovery rates amubgbility of default which are
assumed to be correlated and depend on the statbeoimacroeconomy. He

incorporated the liquidity premium and price bubsttects in his method.

Jokivuolle and Peura (2003) proposed a model fok daans in which collateral
value is correlated with the probability of defautt their method the borrowing
firm’s total asset value determines the event ¢hule However, the recovery rate is
not determined by the firm's asset value, but deiteed by the collateral value
which is stochasticBakshi et al. (2001) allowed for a flexible corteda between

the risk-free rate, the default probability and ttezovery rate and empirically
showed thatrecovery rates are negatively associated with digbaobability through

the analysis of a sample of BBB-rated corporatedsdAltman et al.,2005).



Zhou (2001) tried to associate the structural-fonodel and reduced-form model to

benefit from the clear economic mechanism behirddéfault process in structural

models and surprise of default in reduced-form neddée modeled the evolution of

the firm as a jump-diffusion process linking theaeery rate to the firm value at

default so that the variation in recovery ratesemlogenously generated and the
correlation between recovery rates and credit gatieported in Altman (1989) and

Gupton, Gates and Carty (2000) is verified (Altnedal., 2005).

10



CHAPTER 3

PRELIMINARIES

Before explaining the details of the reduced-fomadd risk model of Jarrow and
Turnbull (1995), the following definitions are pided as useful reminders:

A complete probability spacéQ, F,P) and a filtration{Gt: t > 0} of sube-
algebras of’, which represents the investors’ information aet,fixed. LetP denote
the physical probability measure observed in tharfcial markets an@ denotes the
risk neutral (pseudo) probability. These paramedessused to define a market model

which is free of arbitrage.

Definition 3.1: A risk-neutral probability is a probability measuwnder which the

discounted expected value of tomorrow’s asset psiegual to today’s asset price in
an arbitrage-free world.

The significance of calculating the arbitrage-frpeces with the risk neutral
probabilities is that these prices are applicabledl investors regardless of their

attitudes towards risk.

Definition 3.2:Let (Q, F, P) be a probability space with = P(Q) and for allw in

Q, P{w}) > 0 with a filtration (F,)o<n<y- Let M,, be an adapted sequence with
0 <n <N of real random variables. TheM,, is martingale ifE (M,;4|F,) =
M, foralln <N —1.

Within the finance context, if the price of an dség is martingale withd <n < N,

then the best estimate 4f,,;obtained by the least squares estimation at adash

A,. That is, the best forecast of the future valuarofsset is its last observed value.

11



Definition 3.3: Arbitrage is the possibility of earning a positiv@netary return with

zero equity investment and with a probability dd.1An arbitrage profit is a riskless
profit. The assumption of no arbitrage is necessamalculate a unique risk neutral
price for financial assets since the risk neutrabpbilities only exist in the absence

of arbitrage. The existence of arbitrage is refetoeas “mispricing” in the market.

Definition 3.4:The market is said to be “viable” if there is mbikage opportunity.

3.1 Bond Mar ket

The aim of this study is pricing the default riskgrporate bonds employing Jarrow-
Turnbull (1995) model. For the pricing issues atiee pricing approach is needed.
Zero coupon bonds are the basic instruments tleatised in the following sections
for developing a relative pricing approach since timderlying structure of Jarrow
Turnbull (1995) model is the Heath Jarrow and Mor(@992) Model which has a

zero coupon bond with maturify.

Definition 3.1.1:A zero coupon bond with maturifly is a contract guaranteeing to

pay 1 dollar to the investor at tinfe The timet price of a zero coupon bond with

maturity T is denoted by (¢, T).

Definition 3.1.2: A coupon bond with maturity T delivers payments[nT] and

provides the holder of the bond with a deterministish flow.

After defining the zero-coupon and coupon bonds, ftillowing assumptions are

made in order to assure the existence of a bonkentrat is sufficiently deep:

1- There exists a frictionless market for all bondslbfmaturities.

2- p(t,t) = 1 holds in order to avoid arbitrage.

12



3- p(t,T) is differentiable with respect ®for all fixedt (Bjork, 1998).

The first assumption guarantees that the marketacen all possible bonds. The
price of the bond is strictly positive for alland the price process is adapted. The
price of the bond(t,T) is a stochastic object with two variableandT. If t is
fixed, p(t,T) gives the prices of the bonds with different miéies at a fixed time.
The graph of this function is the term structureha bond and it is smooth, meaning
that p(t,T) is differentiable with respect © for all t. If the maturityT is fixed,
p(t,T) becomes a scalar stochastic process and its tbwjebecomes irregular.
Next, some interest rates are defined based oaltbee market conditions. While a
simple interest notation is used in the market,citinuously-compounded interest
notation is used in theoretical contexts. These tejresentations are logically

equivalent. The interest rates are constructedrdicgpto the following scenario:

Assume that < S < T.

Table 3.1.1: Scenario for the Construction of les¢Rates

Time t S T
Sell S bonds Pay out 1 Receiven(t,S)/
Buyp(t,5)/p(t,T) p(t,T)
T bonds

Net investment 0 -1 +p(t,S)/p(t,T)

The above transactions can be summarized as follaveeal is made at timg to
make an investment of one unit of money at tfne¢hat is guaranteeing a yield of
p(t,S)/p(t, T) at tim&'. Therefore, Deal is made at riskless rate at tinvehich is
valid on the future perioff, T]. This rate is called as a forward rate.

The following definitions are implied by the abos@nstruction.

13



Definition 3.1.3:The simple spot rate f¢§, T'] is defined as:

p(S,T)—1

L(S,T) = — (T —S)p(S,T)

(3.1.1)

Definition 3.1.4:The simple forward rate ¢, T] contracted at t is defined as:

L(t; S, T) = (T—-9S)p(S,T)

(3.1.2)

Definition 3.1.5:The continuously compounded spot rate[§f'] is defined as:

logp(S,T)

R(ST) = ———

(3.1.3)

Definition 3.1.6:The continuously compounded forward rate [§T] contracted at

t is defined as:

logp(t,T) — logp(t,S)
T—S

R(;S,T) = — (3.1.4)

Definition 3.1.7:The instantaneous forward rate with matufitycontracted at t is

defined as:

f@&T)=- alo%;t’m (3.1.5)
Definition 3.1.8:The instantaneous short rate at tine defined as:

r(t) = f(t0) (3.1.6)

If the limit of the continuously compounded forwaate whenS goes tarl is taken,

the instantaneous forward rate is obtained. THescan be interpreted as the riskless
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rate of interest, contracted at t over the infsit@al interval[T,T + dT] (Bjork,
1998)

Definition 3.1.9:The money market account process is defined as:

B, = exp {fotr(s)ds} (3.1.7)

Money market account can be interpreted as a gyrateinstantaneously reinvesting

at the current short rate (Kiesel and Bingham, 1998
Definitions 3.1.3 through 3.1.9 imply the followitgmma:

Lemma 3.1.1Fort < s < T, the following are true:

p(t,T) = p(t,s).exp {— fsTf(t, u)du } (3.1.8)
and
p(t,T) = exp {— ftTf(t, s)ds} (3.1.9)

Proof: Continuously compounded forward rait;S,T) is the solution of the

following equation and therefore by solving thisuation equation3.1.11 is

obtained:
R(T-S) _ P(s)
e = (3.1.10)
Thus,
p(t, T) =p(t,s)exp (—R(T —5)) (3.1.11)
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can be written.

ReplacingrR with definition 3.1.6, the following equation is obtained:

p(ET) = p(t, 5). exp (“gp“'”‘l"g“'” (T — 5)) (3.1.12)

T-S

Using the definition of the instantaneous forwaater the following result is

obtained:

= p(t,s).exp {— fSTf(t,u)du} (3.1.13)

The lemma puts forward the relationship betweenféineard rate and the price of
the bond.

The bond market can be modeled by specifying ettileedynamics of the short rate,
or the dynamics of all possible bonds or the dyranoif all possible forward rates.
According to the above formulation, in order to rabd bond market, specifying the
dynamics of all possible forward rates and themgidiemma3.1.1 to obtain the
price of the bond is sufficient. Thus, once thenanrd rate dynamics are specified,
then the price of the bond can be determined. Alhe approaches used to model a
bond market are related to each other; hence thlaitionship is of importance. The
short rate, bond price and forward rate dynamidkhei stated and then proposition
3.2.1. which provides an equation for the derivativehad bond price process under

the assumption of the forward rate dynamics wilghesn.
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3.2. Relationship between the forward rate, bond price and short rate dynamics
df(t,T),dp(t,T) and dr(t):

Short Rate Dynamics : dr(t) = a(t)dt + b(t)dW(t)
Bond Price Dynamics : dp(t,T) = p(t,T)m(t, T)dt + p(t, T)v(t, T)dW (t)

Forward Rate Dynamics:  df(t,T) = a(t,T)dt + o(t, T)dW (t)

Proposition 3.2.1:

a) If p(t,T) satisfiesdp(t,T) = p(t, T)m(t,T)dt + p(t,T)v(t,T)dW(t) then

for the forward rate dynamics the following equatimlds:

df (t,T) = a(t,T)dt + a(t, T)dW(t)

wherea(t,T) anda(t,T) are given by
a(t,T) = vy (t, T)v(t, T) — mp(t,T)
o(t,T) = —vp(t,T)

and they denote the drift and the volatility partene

b) If f(t,T) satisfiesdf(t,T) = a(t,T)dt + a(t,T)dW (t) then the short rate

satisfies

dr(t) = a(t)dt + b(t)dW (t)

wherea(t) andb(t) are given by

a(t) = fr(t,t) + a(t,t)
b(t) =o(t,t)

wheref;(t, t) is the derivative of forward rate process withpexs toT .
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C) If f(t,T) satisfies df(t,T) =a(t,T)dt+ a(t,T)dW(t) then p(t,T)

satisfies

dp(t,T) = p(t,T) {r(t) + A(t,T) +% Il S(t, T IIZ} dt + p(t, T)S(t, T)dW (t)

where]l. || denotes the Euclidean norm and

T

A(t, T) = —f a(t,s)ds

t

St T) =-— ftT a(t,s)ds

Proof:

By lemma3.1.1 it is known thap(t,T) = exp (— ftTf(t, s) ds) and
r(t) = f(t,0).

Sincef (t,T) satisfiedf (t,T) = a(t,T)dt + a(t, T)dW (t)
f@t,T)=f(,T)+ fota(u, T)du + fot o(u,T)dW, can be written by taking the
integral ofdf (t,T).

To facilitate the notation lef, = — ftTf(t, s) ds then,p(t, T) = e*t

Applying Ito formula toX, for g(x) = e*, equatior3.1.1.14 is obtained;
p(t, T) = eXt = eXo + foteXS dX; +%f0texs d<X,X> (3.2.1)

Derivative of equatiorB.2.1 is taken since the proposition asserts the relship
between the derivative of the bond price procesktha dynamics of the forward
rate process.
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dp(t,T) = eXtdX, +-e¥td < X,X >, (3.2.2)

Thus in order to reach the required equatidX, should be found out. For the
derivation ofd X; following trick will be used.

. T
Let us writeX, = [, (=f(s,s) + f(s,s) = f(t,s))ds

- s, 5)ds — | ' F0,5)ds | ' | e, 5)cluds — | ' | o s)dW, ds

+ ftTf(O' s)ds + ftT f:a(u, s)duds + J;T fosa(u, s)dW,ds

Then, by Fubini's theorem, an interchange of ireésyyields the following equation;

= — ij(s, s)ds + ijTa(u, s)dsdu +ijTa(u, s) dsdW,

Xo = —fOTf(S, s)ds + fOT fuTa(u, s)dsdu +fOT fuT o(u,s) dsdW,.

Thus,

t t T t T
Xi=Xo+ f f(s,s)ds — f f a(u,s)dsdu — f f o(u,s) dsdW,
0 0 Ju 0 Ju

The above equation allows us writi} by the parameters of the forward rate

process. Taking the derivative of both sidé&s is obtained.

T T

a(t, s)dsdt —J o(t,s) dsdW;

t

dX, = f(t, t)dt +f

t

Thus, substituting X; in the relevant equation the following equationli¢ained,;

19



T T

a(t,s)dsdt — f

t

dp(t,T) = eXe (f(t, Ddt + j o(t,s) ddet>

L1
+eXod <X, X >,

2
whered < X, X >,= %(ftT a(t,s)ds) dt

Finally; by writinge*t = p(t, T) the equation below is reached:

T T

a(t,s)dsdt —f o(t,s) ddet>

t

dp(t,T) =p(t,T) (f(t, t)dt + f

2

1 T
+p(t,T)E(J- o(t,s)ds) dt

Given, A(t,T) = —ftToc(t, s)ds
S(t,T) =~ [ o(t,s)ds
r(t) = f(t, 1),

the equation can be written as required.

Proposisitor3.2.1. c asserts the relationship between the forward rat@ardics and

the bond price dynamics. After constructing thesiehship between the forward
rates, bond prices and the short rate dynamicsldnew Turnbull (1995) model
which accepts the Heath, Jarrow and Turnbull (1968yard rate model imposing
the exogenous stochastic structure upon the forweates instead of zero coupon

bond prices as a basis will be constructed.
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CHAPTER 4

THE JARROW-TURNBULL (1995) MODEL

The Jarrow-Turnbull (JT) model introduces a reduimech approach to the pricing

of derivatives that involve credit-risk. This modakes the stochastic term structure
of interest rates and the stochastic maturity-$pexiedit-risk spread as given. Once
these term structures are determined, the optijp@-tsecurities are priced by a
martingale measure under the no-arbitrage assumptidhis thesis, the JT model is

used to price corporate bonds that are subjectfeud.

The JT model is built on the Heath-Jarrow-MortonJ¥H model which was
introduced in a 1992 study. The HIM model is anroapment of short-term interest
rate models. Working with short-term interest ratedels has some advantages.
First, these models specify the short-term ratethes solution of a stochastic
differential equation. These stochastic equatiol@wvathe Markov process and
partial differential equations to be used whichthar makes it possible to derive
analytical formulas for the price of bonds. Howewlese models also have some
drawbacks. First, the models attempt to explainettenomy by means of only one
variable (the short-term interest rate). Seconthafshort-term interest rate model is
made more realistic, then the inversion of thedymirve within the model becomes
problematic since such an inversion would requueihcorporation of all available
information into the yield curve and would rely tre markets being dynamically
complete. With these models, maturity preferendeseestors are embedded into
the observable term structure, and, thereby, rag®stopportunities among bonds of

different maturities are precluded (Kijima and Muonachi, 2000) .
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4.1 The Heath- Jarrow-Morton (HIM) Modédl (1992)

Heath, Jarrow and Morton use the entire forward cafrve as the state variable in
their model. The HIM model generalizes the Ho aed model (1986) which takes
the initial bond price as a given and the bondeppmcess as exogenous in a discrete
trading economy. The Ho and Lee model is a singi¢of model causing the bonds
of all maturities to become perfectly correlatedsdi during parameter estimation,
as the step sizes get larger, the parameters bedependent on each other. The
generalization of this model into continuous timemaates this estimation
difficulty.

The HIM model takes the initial forward rate curmed a family of potential

stochastic processes for its subsequent movemenés gaven. Typically, in such

models, zero-coupon bond prices with a fixed matuand thereby a time-varying
volatility are used to back out the yield curve wéwer, the HIM model imposes an
exogenous stochastic structure upon forward ragesdans of which forward rate
volatilities become constant. These constant Jlas are consistent with a fixed
value for a zero coupon bond as well (Heath etl8B2). The model does not require
an inversion of the term structure in order to baakthe market prices of risk from
contingent claim values since such a requiremenilavbe highly demanding due to

the nonlinearity of the bond pricing formulae.

The HIM model is based on an equivalent martingad@surement technique. In
order to understand the framework of the modelfially all parameters are
considered under an objective probability meagurdt is also necessary to make

some assumptions:
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Assumption 4.1.1:

For every fixedl' > 0, the forward ratef (., T) whereT denotes the maturity has a
stochastic differential with respect to t whichgisen by the following under the

objective measureg:

df (t,T) = a(t,T)dt + o(t, T)dW (t) (4.1.1)
f(0,T) =f"(0,T) (4.1.2)

In this equation}¥ is a (d-dimensional) P-Wiener process,,T) ando(.,T) are
adapted processes.

The above equation is a stochastic differentighait variable for each fixed choice
of T which serves as a parametef.*0,T); T > 0} is the initial condition which

provides a perfect fit between the observed anorétieal bond prices at t=0.

Here the problem is characteriziadt, T) anda(t, T) in such a way that there is no
arbitrage opportunity. The following theorem makas possible by means of the
HJIM drift condition:

Theorem 4.1.1Assume that the family is given by

df(t,T) = a(t,T)dt + o(t, T)dW (¢t)

and the bond market is free of arbitrage. In tteste, there exists a d-dimensional

z

column -vector proces&(t)=[1(t),... A4(t)] with the property that for alf > 0 and
forallt < T, thereis

a(t,T) =o(t,T) ftT o(t,s)ds — a(t, T)A(Y) (4.1.3)

In this equation, the symbol prime (‘) denotesttia@spose.
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Proof: In proposition3.2.1, it is proven that the bond dynamics satisfies the

following equation iff (t, T) satisfiesdf (t,T) = a(t, T)dt + o(t, T)dW (t)
dp(t,T) = p(t, T) {r(t) + A(t, T) +% Il St T) IIZ} dt + p(t, T)S(t, T)dW (¢t)

where

AL, T) = —ftTa(t,s)ds

St T) =— ftT a(t,s)ds

Thus the risk premium is given by

1
A(t,T) + > Il S(t, T) I

In an arbitrage free market, there exists a market of risk process,(t), which is

common to all assets in the market and satisfying

ag(t) —r =o;(®)A(t) P a.s

when the price process satisfies

dri(t) = N(t)ay(t)dt + 1 (t) o (t) AW (t)

Therefore d-dimensional column vector proceexists such that
AET) + 21 S(ET) I3, Si(8,T) A4(t)

Taking the derivative of the above equation witspet to T the following result is

obtained.
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—a(t,T) —o(t,T).S(t,T) =—a(t,T)A(t)
Rearranging the above equation the result is obdain

Now for risk neutral modeling, forward rates wi#t hssumed to be driven by the

martingale measure Q as:

df (t,T) = a(t,T)dt + o(t, T)dW(t)
f(0,T) =f"(0,T)

where W is a d- dimensional Q Wiener process. Sweeare studying with

martingale probability measures, we no longer htaveorry about the arbitrage as
martingale probabilities directly provide the arage free prices. However, we now
have two equations for the bond prices one of wiiscihelated to the short rate

process and the other one is related to the forvededprocess.

T
p(0,T) = exp {—f f(0,s)ds }

T
p(0,T) = E9exp {—f r(s)ds }]
0

where the short rate and the forward rate areeglt each other by(t) = f(¢t,t).
For the above formulae to hold simultaneously, Hiloses a consistency relation

betweern ando in the forward rate dynamics.

Proposition 4.1.1Under the martingale measure Q, the proceasesd ¢ must

satisfy the following relation, for evetyand everyl’ > t.

a(t,T) =o(t,T) [ o(t,s)ds
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Proof: From proposition 3.2.1 it is known that
1 _
dp(t,T) = p(t,T) {r(t) FA@T) +5 1 SET) ||2} dt + p(t, T)S(t, T)AW (£)

Under martingale measure, the local rate of rethould be equal the short rate

leading the following equation.
1
r(t) + A(t,T) + 2 I S(t, T) 7= r(t)

ThusA(t, T) +§ IS(ET)I?P=1=0

The result is obtained by theorem 4.1.1.

Proposition 4.1.1 implies that if forward rate dgmes can be specified, then the
volatility structure can be specified. Then theftdpgarameters will be uniquely

determined. Below is an algorithm to use the HIMieho

1- Specify, by your own choice, the volatilities

2- The drift parameters are now given by

T
a(t,T) = o(t, T)J- o(t,s)ds

3- Observe the today’s forward rate structure formntiaeket.
{r (0, T); T = 0}

4- Integrate in order to get the forward rates as

t

F6T) = F0,T) + f a(s, T)ds + j o (s, T) dW (s)

t
0 0

26



5- Compute the bond prices using the formula

T
P =exp (- | £(65)ds)

4.2 Description of the economy of JT(1995) M odel

The economy is assumed to be frictionless. Tharngaborizon is set to b, 7]
which can be either discrete or continuous. Deférelk zero coupon bonds of all

maturities and ABC zero coupon bonds of all maesiare traded.

Let po(t, T) be the time t dollar value of the default-freeazeoupon bond paying a

certain dollar af" > ¢.

pO(tl T) >0
po(t,t) = 1 (in order to be default free)

Let v, (¢t,T) be the time t value of the ABC zero coupon borahpsing a dollar at
T>t.

v,(t, T) > 0 (to avoid dividing by zeros)

Now p, (t, T) ande, (t) will be defined in order to be to used in the deposition of
v,(t, T) into two hypothetical quantities, namely a zeropmubond denominated in
a hypothetical currency, a promised ABC dollar hedeafter called as ABC and a
price in dollars of ABC, which can be interpretedspot exchange rate of dollar per
ABC. Let thep, (t, T)ande, (t) denote the following:

p.(t,T) : is the time t value in units of ABCs of one ABI€livered at T.

e;(t) :isthetime t dollar value of one promise@@dollar delivered at t.
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e () = (L 0)

In order to decompose, (t,T) the spot exchange rate analogy will be used. ICAB
is not in default, the exchange rate will be 1, nieg that each promised ABC dollar
will exactly be worth a dollar; but if ABC defaultten the exchange rate will be
smaller than 1, meaning that each promised ABCadaliay be worth less than a

dollar.
Therefore the ABC dollar paying zero coupon boncbisstructed as:
_ vl(tr T)

pl(tf T) = el(t)

By rearranging, the following equation is obtained:

Ul(t, T) = pl(tr T) el(t)

The equation displays that dollar value of an ABfdbis the ABC dollar value of

the bond times the spot exchange rate of dollar®\B€. In their paper, Jarrow and
Turnbull prefers using the foreign currency analsmgce the foreign currency option
pricing techniques are well understood and theytwarapply these techniques to

price the derivatives involving credit risk.

Furthermore, by definition of; (t); ABC dollar paying zero coupon bond is default
free in ABC.

vy (T,T) vy (T, T) _
er(T) vy (T, T)

pl (T, T) =
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e;(t) can be interpreted a pay off ratio. The decommosiwill be used to
characterize the term structure of ABC bond in &aofp,(t, T) and the pay off ratio
e, (t) separately.

The following table presents a summary of the bpmcks and their riskiness

Table4.2.1: Summary of Bond Prices

v(t,T) Promises a dollar Risky
p1(t, T) Pays an ABC dollar Default free in ABC
po(t,T) Pays a certain dollar Default free in dollar

4.3 Two- Period Discrete Trading Economy

After defining the relevant bond prices, the studlf continue with the two period
discrete trading economy to clarify the bond pidgmamics. In this economy there
are two time periods with trading dates {0, 1, 2}. This section will include the
term structure of the default free zero coupon Boadd the ABC zero coupon

bonds.

4.3.1 Term Structur e of the Default Free Zero Coupon Bonds

The default free zero coupon’s bond pripg(t,T), is assumed to depend only on
the spot interest rate. The definitions and theiapsions will be asserted in the
following items. These items will include the feisi related to the default free zero
coupon bond price, the current, up state and ddate Spot interest rate, the risk
neutral or the pseudo probability of a rise in #p®ot interest rate and the money

market account.
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a- The current one period spot interest rate is ddflme

T(O) B Po (Orl)

wherep,(0,1) is the time 0 price of a default free zero coupond with maturity 1.

b- If the interest rate rises at time 1, then the pagod spot interest rate is
defined by;

r(Dy = 1/po(1,2)y

wherep,(1,2) is the time 1 price of a default free zero coupond with maturity 2.

c- If the interest rate decreases at time 1, themtieeperiod spot interest rate is
defined by;

r(Da =1/po(1,2)q

p0(1,2), < po(1,2), is assumed to hold without loss of generality.

d- The risk neutral probability of a rise of the spuerest rate is denoted bk

e- It is assumed that the investor invests an amadub$ahus

i) B(0) = 1. (Initial amount of money)

i) B(1) = r(0). (Time t=1 amount of money invested at time t=fcei1$ is
invested with an interest rate 10f0))

i)  B(2), =r(0)r(1),

iv)  B(2)y =7(0)r(1),
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The following graph demonstrates the stochastidutom of the spot interest rates
and thereby the default free zero coupon bond jiceess at time t = {0, 1, 2}.

Graph 4.3.1.1: The Default Free Zero Coupon Bond Price Process For Two
Period Economy

[ 1 1)

Pu(l,z)u_| 1

Ty

Po(0,1)]
r(0)
I_pU(O,Z)

4.3.2 TheTerm Structure of ABC Bond

This section includes the stochastic evolutionhef default-risky zero coupon bond.
If the ABC bond has not defaulted, the payoff is thce value of the bond, meaning
that the pay off ratio is equal to 1. However, he tdefault has occurred then the
payoff is less than the face value of the bonddymngl a pay off ratio smaller than 1.

Since the absolute priority rule is often violaisl Eberhart, Moore and Roenfeldt
(1990) asserted and the payoff is affected by warfactors, modeling the payoff at
default becomes complicated. Consequently, JarmvTairnbull preferred to take

the payoff ratio at default as an exogenously gieemstant as a first approximation
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and pay off per unit of face value is denotedlwhich is assumed to be same for all

instruments in a given credit risk class.

The spot exchange rate has been defined, to utiizdoreign currency analogy, at
timet = 0ase(0) and the equality is set to l@€0) = 1. Since the ABC bond is
default risky, at = 1 andt = 2, the spot exchange rate takes different values. Du
to the relation between the binomial process ardPthisson process, J/T decided to
choose the discrete time binomial process for odugion of the spot exchange rate.
Poisson random variable may be used to approxithatbinomial random variable

when the binomial parameteris large and thg is small (Ross, 2007).

The pseudo- probability of default at=1 is denoted bw,. Consequently, the
pseudo-probability that the default does not tdkegatt = 1 is (1 — Ayy).

The model is constructed in a way that if the difaacurs att = 1 then the ABC
bond maintains default at= 2. Thus the pay off ratio at= 2 is fixed at§ per unit
of face value. If the default does not occut at 1, the pseudo probability of default

att = 2 i1s Ay,.
The following graph demonstrates the stochasticlutiom of the pay off ratio

process for ABC debt in the two- period economye Playoff ratio depends on the

seniority of the debt.
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Graph 4.3.2.1: The Stochastic Evolution of the Pay off Ratio for ABC Zero
Coupon Bond in Two-Period Economy.

& 3
Ang
1
1-Ap,
1 My 5
1-Ap,
1
time 0 1 2

ABC bond has been constructed in a hypotheticaleaay and it is default risky.
Therefore the term structure of the ABC Bond wil etermined by bankruptcy
cases as well as the spot interest rate.

The following graph shows the stochastic evolutdrthe ABC zero- coupon bond
in the hypothetical currency ABC. The similaritytlveen the graph 4.3.1.1 and the
graph 4.3.2.2 can be noticed. However, in the dmaph it can be seen that the
bankruptcy cases are added since the ABC bond faultlerisky in dollar.
Nevertheless as the ABC bond is default free inhyy@othetical currency ABC, at
maturity the investor gets 1 ABC dollar in eachecdsthe ABC Bond defaults then
1ABC dollar is worth less than 1 dollar whereadéafault does not take place then 1

ABC dollar worth is worth exactly 1 dollar.
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Graph 4.3.2.2: The stochastic evolution of the ABC zero coupon bond price
process for the two-period economy in terms of the hypothetical currency ABC
dollar.
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Jarrow and Turnbull (1995) assume that the spdadrest rate process and the
bankruptcy process are independent under the psewadh@bilities to simplify the
analysis. If the market prices of risk are nonranda an economy, then the spot
interest rate process and the bankruptcy processndependent under the true
probabilities. Therefore the graph demonstratingCABero coupon bond price
process for the two-period economy in dollars (noABC dollars since this type of
bond is default free in ABC dollars) is constructed multiplying the pseudo
probabilities in Graph 4.3.2.2 and Graph 4.3.2.3.
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Graph 4.3.2.3: The ABC zero coupon bond price process for the two period
economy in dollars
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4.3.3 Arbitragefreerestrictions

Definition 4.3.3.1The market is viable if there is no arbitrage opaity.

Theorem 4.3.3.1The market is viable if and only if there existspeobability

measure Q equivalent to P such that the discoynrieés of assets are Q martingales
(Harrison and Pliska, 1981).

Propositon 4.3.3:1Assume that the general binomial model is freerbiti@age, then

it is complete.
Consequently, the theorem implies that the nonexcst of arbitrage opportunities is

equivalent to the existence of pseudo probabilitjesiy, and Au; such that the

discounted prices;
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pO(tll) pO(tlz) Vl(t,l) Vz(t,l)
B(t) ' B(®) ' B() ' B(t)

are Q martingales, meaning that the expected saue

equal to the equal current values. That is, therates of arbitrage opportunities is
guaranteed by the existence of an equivalent ngattnmeasure. As Harrison and
Pliska asserted in 1981, the market is completenwthe equivalent martingale
measure is unique. In this case, all claims canrdpicated by dynamic self
financing trading strategies in the primary tradadsets with unique prices
determined by the cost of the replication strat@gyrow and Madan, 1995).

Therefore necessary and sufficient conditions e absence of arbitrage and the
existence of the complete market and thereby thstesmce of unique pseudo
probabilities are given in this section.

To obtain the pseudo probabiliti€g,, Ay, andAu, the default free bond market and
the default risky bond markets need to be invagtd separatelyll, being the risk
neutral probability of a rise of the spot intereste is determined from the
characteristics of the default-free bond market re¢de theiAy, and Ap; are
determined in the default risky bond market sinbeyt indicate the pseudo

probability of default at = 1 andt = 2 respectively.

Proposition 4.3.3.2f the binomial model is free of arbitrage, thee #rbitrage free

price of a contingent claim is its discounted expéw/alue calculated by the unique

pseudo probability.

Graph 4.3.1.1 showing the default free zero coupond price process for two-
period economy shows that;

p0(0,2) — [T, Po(l,z)u"'r((lo—) p) po(1,2)4] (4.3.3.1)
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This equation demonstrates the fact that the tinom@ term zero coupon bond price

is its time 1 discounted expected value calculatedseudo probabilityl,.

If I, is calculated from the above formula, followingpeassion forl, is obtained

[ pO(lJz)d_r(O)pO(Oﬁz)]
[ Po(1,2)a— Po(1,2)4]

M, = (4.3.3.2)

According to the equatiotil, can exist and be unique and 0k < 1 if and only if

Po(1,2), <71(0)po(0,2) < po(1,2)4 (4.3.3.3)

This equation states that the long term zero colgoor should not be dominated by

the short term zero coupon bond.

The conditions for the existence and uniqueneskugfandAu, will be determined
investigating the default risky bond market. Theref Graph 4.3.2.3 should be
investigated.

If the spot interest rates rise and bankruptcy et time 1e(t) turns out to be
6 by Graph4.3.2.1 and thus»;(1,2),, = 0p1(1,2) 4

)
v1(1,2)yp = 5p1(1,2)u,b=m (4.3.3.4)

If the spot interest rates rise but the bankruptmgs not occur at time 1, then the pay

off ratio becomes 1. Thus;

[Ap16+(1-2Apuq)]
r(Dy

v1(1,2)yn = P1(1,2)yn = (4.3.3.5)
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If the spot interest rates decrease and the batdyrtgkes place at time 1, the pay off

ratio becomes$ and thus;

5
v1(1,2)gp = 5P1(1;2)d,b:m (4.3.3.6)

If both the spot interest rates decrease and th&rbptcy occurs then the payoff

ratio becomes 1 and thus;

Ap6+(1—Auq)
vl(lrz)u,n = pl(lrz)u,nz% (4-3-3-7)

Equation4.3.3.7 indicates that, the time 1 long term ABC bond @rnis its time 2
discounted expected value calculated by the pspumlzabilities. From equations
4.1.3.3.5 and4.1.3.3.7, Ay, is derived and it is;

_ 1211 Dunr W] _ [1-p1(1,2)gnr (1) 4]
Ay = s s (4.3.3.8)

Thus,Au, exists, is unique and satisfies Qg5 <1 if and only if

p1(1,2)yp = ﬁ (from equatiort.1.3.3.4) (4.3.3.9)
p1(1,2)qp = % (from equation.1.3.3.6) (4.3.3.10)
d

In order tha) < Au; < 1 equatiord.3.3.8 implies that

1

)
. < p1(1,2)u’n < D (4.3.3.11)
2 (1,2) gy < — 4.3.3.12
rg  PrbHan S tay (4:3.3.12)
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For Au; to be unique, two sides of the equations shouldedpgal implying the

following equation:

T(Dup1(1,2)yn = 1(Dap1(1,2)an (4.3.3.13)

Equation4.3.3.9 and 4.3.3.10 can be interpreted as the equality of the price of
default free bond in units of dollars and the ABéndminated ABC bonds if the
bankruptcy occurs. This equality is because ofahgence of the uncertainty after
the default. However, if the bankruptcy does nauo@tt = 1 then the dollar value
of the ABC zero coupon bond is less than the dolidue of a default free zero
coupon bond price and is greater than a claim ga¥idollars for sure which is

asserted by equatieh3.3.11 and equatiod.3.3.12.

The independence of the pseudo probability from the spot interest rate process is

guaranteed by Equatieh3.3.13.

The default risky bond market will also be analysedas to determinai, by using
time 0 default risky bond market singg, is the pseudo- probability of default
att = 1. Graph4.3.2.3 is consulted again.

ApoS+(1—Aug)
v,(0,1) = py(0,1) = W (4.3.3.14)

1 (0'2) =D (0'2)

_ [HO(AHO)6PI(1'2)u,b + Ho(1 — Apg)p1(1,2)yn + (1 = o) ApeSp1(1,2) g p + (1 — Mp)(1 — luo)m(l.Z)d,n]
- r(0)

(4.3.3.15)

These conditions ensure that time O prices arg timae 1 discounted expected

values calculated by the pseudo probabilities. ukisn of equatior4.3.3.2 and
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equation4.3.3.8 into equatiort.3.3.15 and then simplification gives us the equation
4.3.3.16.

v1(0,2) = p1(0,2) = pe(0,2)[Aped + (1 — Au)r(1)gp1(1,2) g ] (4.3.3.16)
By equationst.3.3.14, 4.3.3.15 and4.3.3.16 Ay, is obtained as follows:

= [-r©@p, (0 D)]
Mo = [1-6]
[T(l)dp1(1,2)d -p1(02)
= " po(0,2)
[r(Dap1(1.2)gn-5] o

Thus,Au, exists, is unique and satisfieés Ay, < 1 if and only if;

1)

oy < p1(0,1) <1/r(0) (4.3.3.18)
6p0(0,2) <p1(0,1) < po(0,2)r(1)ap1(1,2) g (4.3.3.19)
(0,2)
[r(l)dm(1,2)d,n——53(g;) _ [1=r@pi0,1] (433.20)
[r(1)ap1(1,2)gn—6] [1-4] A

Equation 4.3.3.18 asserts that the dollar value of the ABC zero ooupond
maturing att = 1 must be worth less than receiving a dollar foesand greater than
receivingé dollars for sure. Equatiof3.3.19 states that the ABC zero coupon bond
maturing att = 2 must be worth more than receividgiollars for sure and less than
receivingr(1)4p1(1,2)4, dollars for sure at = 2. Equation4.3.3.20 guarantees
that under the pseudo probabilities, the bankrupi@cess is independent of the

default free spot interest rate process which @oised for analytical convenience.
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From now on, Jarrow and Turnbull assume that tmalitions for the existence and
uniqueness conditions for the pseudo probabilitjedu, andAu, hold. That is the

market is assumed to be arbitrage free and complete
4.3.4 ABC Zero Coupon Bonds

With the assumption of the existence and uniqueokt®e pseudo probabilities and
thereby the market completeness and absence dfagedyi ABC zero coupon bond
prices can be stated in an equivalent form by mednthe discounted expected

values.

Expected pay off ratios at future dates can beutatled by time t conditional
expected value under the pseudo probabilities. Mani(.) denotes the time t

conditional expected value under the pseudo prébabi

Thus, the expected pay off ratios at future dadeshe calculated by means of Graph

4.3.2.1 as follows:

g ( (2)) _ { 6 if bankruptatt=1
161 ~ Ay + (1 — Apy)if not bankrupt att = 1

(4.3.4.1)
Equation4.3.4.1 expresses that the expected pay off ratio of2 att =1, is§ if
the bankruptcy occurs since it was assumed th#teifbankruptcy occurs, it will
remain until maturity;Au,6 + (1 — Auy) if the bankruptcy does not take place at

t=1.

Eo(e1(2)) = Apob + (1 — 2up) [Ap1 6 + (1 — Auy)] (4.3.4.2)
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Equation4.3.4.2 signifies that the expected pay off ratiotat 2 as viewed from
t = 0. Tracking Graph4.3.2.1, it can be seen that the two states of the world,
bankruptcy and nonbankruptcy are taken into acceunct the expected value is

calculated.
Eo(e1(1)) = ApoS + (1 — Apg) (4.3.4.3)

Equation4.3.4.3 specifies the expected pay off ratiotat 1 when looked at = 0.
What must be noticed in these equations is thaifahem are less than 1 since all of

them are related to bankruptcy in any state ofatbed.

The equations referred imply equatibi.4.4

v, (£, T) = po(t, T) Er(e,(T)) (4.3.4.4)

The decomposition can be imposed because of tlepamilence assumption under
the pseudo probabilities. In an arbitrage free mtarthe ABC zero coupon bond
price is its discounted expected payoff at timendlar pseudo probabilities. Equation
4.3.4.4 makes evident that the discount factor is the Wlefeee zero coupon bond

price.

By Equation4.3.4.4 expected pay off ratio at= T can be estimated if, (t, T)and
po(t, T) are known. On the other hand, if someone is gilierestimation of the pay
off ratio §, one can estimate the pseudo probabilities realysiNamely Au, can be
estimated if the default free zero coupon bondgsrie, (0,1) and the time 0 value of
the ABC zero coupon bond promising a dollarTat 1, v,(0,1) are given by
equatiord.3.4.4 and equatiod.3.4.3. Then, having,(0,2) andv,(0,2), Au,; can be
estimated by equatiof3.4.4 and equatiort.3.4.2. The following graph shows the

estimation procedure of the pseudo probabilities:
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Graph 4.3.4.1: Estimation procedure of the pseudo probabilities

p0(0,1) andv,(0,1)

I — p0(0,2) andv,(0,2)

Equation4.3.3.4 shows that the ABC zero coupon bond is stricthg lealuable than
a default free zero coupon bond of equal matuiityest, (e, (T)) is strictly less than

1. Consequently, the credit spread must be positigebankruptcy.

4.3.5 ABC Coupon Bonds

In this section the coupon payments will be inctidethe computations. Jarrow and
Turnbull assume that ABC coupon bearing bond prestts dollars att = 1 and
k, dollars att = 2 wherek, coupon includes the principal payment too. Thepoou
bearing bond can be considered as a portfolio stingi of k; zero coupon bonds

with maturity 1 andc, zero coupon bonds with maturity 2.

Let D(t) denote the time dollar value of the ABC coupon bond. As stated, pihice
of ABC coupon bond is the discounted expected gagtaé to the risk neutral
valuation using the pseudo probabilities. Consetiyetine following result is

obtained:
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_ 5 (kie1(1) | kzei(2)
D(0) = EO( L 2 ) (4.3.5.1)

~ (1) ~ (2)
= D(O) = klEO (;1(_1)) + szo(;l(z))

= D(0) = k,v,(0,1) + k,v,(0,2) (by equation4.3.4.4) (4.3.5.2)

Equation4.3.5.2 offers the advantage of deducing the prices ofABE zero coupon
bonds,v,(t,T) from the traded prices of only a few issues of ABftipon bearing

bonds, wherd (t) is the money market account.

4.4. The Continuous Trading Economy

4.4.1 Derivation of the stochastic processes for the default free zero coupon
bond, the ABC bond and the money market account

So far, the two period discrete time economy ha likescribed so as to extend it to
its multi period, continuous time limit. Under thpseudo probabilities, the
bankruptcy process for ABC bond and the defaulte fiferm structure are

independent.
The trading is assumed to take place over the imeeval [Og]. Let;

71 the time of the bankruptcy for ABC firm. It issasned to be exponentially
distributed over [Bp) with parameterl; with the fact that alternative distributions
may be utilized. In this section the basic defoms of forward rate, spot rate and the
money market account will be used The indices OJamndll differentiate the default
free and the default risky bonds. Namelgy(t,T),r(t, T)and By(t,T) will
characterize the default free bond where&$t,T),r (t,T)and B.(t,T) will

characterize the default risky bond.
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The exogenous stochastic structure will be impdsethe proceeding assumptions
on the forward rateg, (¢, T), f;(t, T) and the payoff ratie, (t) to be consistent with
HJIM.

Assumption 4.4.1.1Default free forward rates

dfe(t,T) = ay(t, T)dt + a(t, T)dW,(t)

whereW, (t) refers to a Brownian motion, which is a real vdl@entinuous process
with independent and stationary incremenig, T) is a random shock with volatility
and it is deterministica,(t, T) is the drift. ¢,(t,T),o(t,T)) satisfy the following

smoothness and boundedness conditions:

1- ao(t,T),0%(t, T) arelt int
2- ao(t, T) is inL&V in (¢, T)
3- o(t,T)isL@YV

The assumption on the stochastic movement of tFeutldree forward rates, imply
that the default free forward rates change is etualdrift plus a random shock with
volatility. The volatility function is assumed te ldeterministic in order to facilitate
the derivation of the closed form solution.

The second assumption is for the ABC bonds.

Assumption 4.4.1.2ABC Forward rates

[a,(t,T) — 0,(t, T)A ]dt + o(t, T)dW,(t) ift<rt]
dfi(t,T) = [a (t, T) — 0,(t, T)A )dt + a(t, T)dW;(t) + 6,(t, T) ift=r1;
a,(t, T)dt + o(t, T)dW,(t) ift>rt;
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where a,(t,T) and 6, (¢, T)satisfy the following measurability and integratyili

conditions.

1- ao(t, T),0(t, T) andd,(t,T)A, areLl int
2-  ay(t,T) andd,(t, THA, in LYY in (¢, T)

As seen from the equation, the process for the A@@ard rates is very similar to
the default free forward rates. Before the bantayphe drift is adjusted downward
to reflect the expected chan@g(t, T)A,. This term is added to the equation at the
bankruptcy. After the bankruptcy the forward rategess is the same as the default
free forward rate process except the subscripts.

Assumption 4.4.1.3The ABC payoff ratio

(1 ift<tg
el(t)‘{sl ift>1

where 04;<1.

As described before, the payoff ratio before thekibaptcy is 1 and it is equal &

at the time of the bankruptcy. This equation is doatinuous time limit of the
bankruptcy process in Graph 4.3.2.1. The payoib riatdetermined by the seniority
of the debt likewise in the two period discretedimconomy. For the simplicity of
the estimation and the computation the payoff riat@ssumed to be constant, though
this assumption can be relaxed and the payoff catiobe random and dependent on
an additional Brownian motion representing the candess generating the value of
the firm.

Once given the forward rate and payoff ratio preesghe stochastic processes of the

default free bond price, default risky ABC bondcprand the money market account
can be derived. These are the continuous timediafithe graph4.3.1.1 and4.3.2.3
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4.4.1.1. Derivation of the stochastic processfor po(t, T)

Proposition 4.1.1.c asserts thatfjt, T) satisfies

dfo(t,T) = ay(t, T)dt + o(t, T)dW, (t) thenp,(t,T) satisfies

dpy(t,T) = po(t,T) {ro(t) FAT) + % ISt T ||2} dt + po(t, T)S(t, TYAW, (£)

where]l. || denotes the Euclidean norm and

AL, T) = —ftT ay(t,s)ds

St T) =— ftT a(t,s)ds
Dividing by p, (t, T), the following result is obtained;

————=r(®) + A, T)+= 1S t,TIIZ}dt+ S(t, T)dW, (t
Ty~ @ AT 5 1SC (&, T)AW; (1)
The equation can be simplified by denoting;

T

Bo(t,T) = — j ao(t, )ds + 3 1 S(LT) I

t

Thus the equation turns out to be;

WolbD) _ e (¢) + By (t, T)}dt + S(t, T)dW, (£)
po(t,T)

(4.4.1.1.1)

Eqn4.4.1.1.1 is the return process followed by the default fzeeo coupon bond.

The return equals to the default free interest phis a risk premium plus a random

shock with volatilityS(t, T). The volatility function goes to zero asapproaches to

T, i.e as the bond matures.
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4.4.1.2. Derivation of the stochastic processfor v4(t,T)

The return process of the ABC zero coupon bondatest the return process of the
default free zero coupon bond. Before the bankgyptee return equals to a drift
adjusted for a change at the time of the bankruplicyg a random shock with

volatility S(t, T). At the bankruptcy, the return varies @y e®:(¢-1).

Assumption 4.4.1.2 imposes the following processtfe forward rate before the
bankruptcy.
dfi(t,T) = [a;(t, T) — 6,(t, T)A,]dt + a(t, T)dW,(t) ift<rty

T
py(6,T) = exp (~ f £, (t,5)ds)

£ T) = £,0,T) + j [y (u, T) — 6, (1, Tyl + f o (u, T)AW; ()

Let X, beftT —f1(s,s) + fi(s,s) — f1(t,s) ds

wherep, (t,T) = exp (X;)

Letg(x) = e* then,g'(x) = e* andg'(x) = e*

p1(t, T) = exp(X;) = exp(Xy) + fOteXS dX,+1/2 fOteXSd <X, X >

1
dpl(t; T) = eXtht +§€Xtd < X,X >t

Then,

T T rt
X, = —j fl(s,s)ds—f j a,(u,s) duds
t t 0
T ft T rt
—f f@l(u,s)llduds—f fa(u,s) dW;(u)ds
t Jo t Jo
T rs
+ j f a,(u, s)duds
t 0

T rs T rs
+] f 0, (u,s)A,duds +f j o(u,s)dW,(u)ds
t Jo t Jo
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By Fubini Theorem and interchanging the integrdle following equation is
obtained.

T T (T
X = —j fi(s,s)ds +f j a,(u,s) dsdu
t t u
T (T T (T
+f f 0, (u,s)A,;dsdu +f f o(u,s) dsdW;(u)
t u t u
T T (T
Xy = —f fi(s,s)ds +f f a,(u,s) dsdu
0 0 Ju
T (T T (T
+] f 0, (u,s)A,dsdu +f j o(u,s) dsdW; (u)
0 Yu 0 Yu
t t T
X =X, +f fi(s,s)ds —f f a,(u,s) dsdu
0 0 Ju

t (T t T
— j j 0, (u,s)A,dsdu +f f o(u,s) dsdW; (u)
0 Ju 0 Yu

T T

T
dX, = f;(t, t)dt — f a,(t,s)dsdt — j 0,(t,s)A,dsdt + j o(t,s)dsdW,(t)
t t

t

T T

a,(t,s) dsdt —f 0,(t,s)A,dsdt

t

dpy(t,T) = py (6, T) (L (t, Dt — f

t
2

T 1 T
+f a(t,s) ddel(t))+§p1(t,T)(f o(t,s)ds) dt

2
sinced < X, X >,= %(ftT o(t,s)ds) dt.

Let,

T

B.(t,T) = —j a, (t,u) du+%5(t,T)2

t
T

0.(t,T) = —f 0,(t,u)du

t

Thendp,(t,T)/p.(t, T) can be written as follows;
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dpl (t, T) _

o (6T) [r.(©) + B1(t, T) — 01(¢, T)A]dt + S(t, T)dW; (¢)

Sincee;(t) is 1 and since there is no jump making(t,T) = v,(t_T) before

bankruptcy, the equation can be written as follows;

dv,(t,T)

o~ @+ AT = 0,6 A ]de + S THawi (6)

Since the bankruptcy process follows a Poissongsgahe jump process should be

taken into account. Therefore, Ito-Doeblin formiglapplied toh(x) = e*.

To derive the equation for v, (t,T) at the bankruptcy

p1(t, T) = exp (— ftT f1 (t,s)ds) is set. Then

= —logp,(t,T) = [ fi(t.s)ds

= fo(O,s)ds + fotal(t,s)duds + fotel(t,s)duds
t t 0 t 0

X=X+ [0,tT)dN(t) = X + 0,(t, T)N(t) whereX°¢is the continuous part.
Thenf(X,) =

t 1 t
FO)+ [ £ OS43| 1RO < XX >+ D D = FOHD
0 0 0<s<t

= F(X,) + f e%5 (r(s) + By (s, T}t + S(s, T)AW,(s) — 4,0, (s, T)ds

1 t
+ E_[ e*sS(s, T)?ds + Z eX(S) — gX(s)
0

0<s<t

eX(s) _ oX(s) = exp(XC + 0,(s, T)N(s)) — exp(XC + 0,(s, T)N(s_))
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Let S(u) denotee*®) . Thene*(-) = K(u_)

At bankruptcy, a single jump is observed. THi(s_) is multiplied bys,. Moreover,

since N(s) is 1 at jumpsk (u) = K(u_)(e®:®1§,). Then,

K(u)(e®*®D§, — 1) at jumps
0 if there is no jump

Kw —-K@u) = {
Thus, Ku) — K(u_) can be written asK (u_)(e®*®1§; — 1)AN(w), therefore,

Z eX(S) — eX() = XM g, — 1)

o<s<t

Finally, for the ABC zeros,
dvy(t,T)/vi(t=,T)

[r () + B1(t, T) — 0,(t, T)A]dt + S(¢t, T)dW, (t) ift<rt]
= [r(8) + B (6, T) — 61(t, THA]1de + S(t, T)dW, (¢) + (e®2ED§, — 1) if t =75
[r1(t) + B.(t, T)]dt + S(t, T)dW,(t) ift>rt]
(4.4.1.2.1)

Equation4.4.1.2.1 expresses the return process of the ABC zeroseés before the

bankruptcy, the return has a drift which is adjddta the change at bankruptcy and
a random shock with volatilit§ (¢, T). At the time of bankruptcy, the return process
has an additional tern{e‘al(t'T)cS1 — 1) due to the jump process occurring at

bankruptcy.
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4.4.2 Arbitrage- Free Restrictions

In discrete time economy, the absence of the adm®tis guaranteed by means of the
existence of the unique equivalent pseudo proligsiliunder which the relative

po(t'l) pO(t!Z) vl(t'l) Uz(t,l)
B(®) ' B(t) ' B@®) ' B(t)

prices are Q martingales which means that the expected

values are equal to the equal current values sihee absence of arbitrage
opportunities is guaranteed by the existence acivalent martingale measure. As
Harrison and Pliska asserted in 1981, the markebmsplete when the equivalent

martingale measure is unique. In a similar wayensure that there is no arbitrage

opportunity, the relative price%,% and% should be proved to be

Q martingales. These conditions are analogous todhditions in discrete time case.

In order to get these conditions, Assumption 4nigased.

Assumption 4.4.2.1(e®1*D§, — 1) # 0 for all t < 7} andT € [0, 7]

Equation4.4.1.2.1 states that the bankruptcy process has an impathe return

process bye®: 1§, — 1). Therefore this coefficient should be differentifraero.

Under assumption 4.4.2.1, the system of equati@ewbhas a unique solution

(Y1(®), uy ().
Bo(t,T) +Y1(£)S(t,T) =0 (4.4.2.1)

r1(t) —ro(®) + Bt T) + Y1 (£)S(t, T) — 0,(t, T)A; +

(91N — 1)1, (t) = 0 ift <t (4.4.2.2)
@) —r@®)+ gt T)+Y,()SET)=0 ift=>1 (4.4.2.3)
r(t) =r,(t) + (1 —6)A 4 (2) ift<tg (4.4.2.4)
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r (t) = 1y(t) ift>t (4.4.2.5)

The unique solution of the above equatiofis;(t), 1, (t)) denote the market prices
of risk. B,(t,T) denotes the excess expected return on the T nyatlefault free
zero coupon bond and the equatd.2.3 indicates that it is proportional to its
volatility S(t, T) by the risk premiunY; (t).

If equation4.4.2.2 is rewritten, equation.4.2.6 is obtained.

B (6, T) — 0,(t, T)Ay = Bo(t, T) — 51(391(t'T) — 1)1, (8) ift <ty
(4.4.2.6)

Before the bankruptcy, the excess expected retuthewABC zero coupon bond;
B.(t, T) — 0,(t,T)A, is equal to the excess expected return on theulddfae zero

coupon bondg,(t, T) plus an adjustment for the default risk whichrisgortional to

the bankruptcy shock, (e®+™) — 1) by the risk premiuni, p, (t).

In order to analyze the case after the bankruptey,equationg.4.2.1,3 and5 are

combined and the following equation is obtained.

B1(t,T) = Bo(t, T) ift>1; (4.4.2.7)

Since after the bankruptcy, the default risk vagsshthe excess expected return on
ABC zeros and the default free zeros are idenkbgadquatiord.4.2.7. Thus after the
bankruptcy takes place the term structures of gfault free and the ABC zeros are
identical like in the discrete time setting, inding that

pl (t, T) = pO (t, T)
and
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vl(t, T) = 61p0(tr T)

For simplicity Assumption 4.4.2.2 which implies thtistical independence of the
bankruptcy process under the martingale probaslits imposed. This assumption
makes the time of the bankruptcy process an exp@ahatistribution under the

martingale probabilities with parametgn,.

Assumption 4.4.2.2:

w (t) = uy > 0 is a positive constant
4.4.3 The ABC Bonds

Assumptions 4.4.1.1, 4.4.1.2, 4.4.1.3, 4.4.2.14A®.2are used to simplity, (¢, T)

to

- T -
v, (t,T) = E; (%) B(t) = E1(e1(T)po(t, T)

B {e—/llul(T_t)J,al (1 _ e—/11ll1(T—t)pO(t, T)) if t < TI
0100 (¢, T) ift>rt

(4.43.1)

Equation4.4.3.1 reveals the fact thatd;u; andé; are the only parameters that are
needed to compute the stochastic process @{T). It is also noticed tha®, (¢, T)
does not included in the equation since the maatengestrictions under assumption
4.4.2.2 specifyp,(t,T) in terms of the bankruptcy parameters. This casgiges
easiness for the empirical estimations. Lemma & potward the relationship of

0,(t, T) with the default risk parameters.
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Lemma 4.4.3.1

51(391(13,7") — 1) = (e—/hlh(T—t) (6, — 1))/(3—/11l11(T—t) +6,(1— 3—11H1(T—t)))

fort <]
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CHAPTER 5

ESTIMATION METHODOLOGY

In order to implement the Jarrow Turnbull Modek tstimates of default intensity,
A called by Fruhwirth and Sdégner (2006) correspogpdion 4,1, in the original
equation and the recovery ratg, parameters need to be estimated. Moreover as
equation (4.1.4.3.1) demonstrates that default-feem structure, default intensity
and recovery rate are necessary and sufficienomapate default risky bond price.
The term structure dynamiaegt, T), drift parameter, ando(t,T), volatility
parameter, are not needed to be estimated for #fauld risky bond price
(v(t, T)) since their effect is restricted to the defauleft®nd pricepy(¢t, T). This is
because of the independence assumption of theastiiciprocess driving the default-
free term structure and the default process ansl @n advantage of the model in
implementation issue. As a result, to implementa¥arTurnbull modelp,(t, T) and
the estimates of default risk parameters defawdinsity 4 and recovery raté are
required. Default intensity is determined by the issuer’s long term senioeansd
credit rating while recovery rate depends on theasity of the bond (Guptoset al
(1997), Lando(1994), Altman and Kishore (1996)).

5.1 Estimation of the parameters

5.1.1 Estimation of the default-free zero coupon bond prices

Default free bond price process is assumed to violtbe Heath-Jarrow-Morton
Model. However, as the default risky bond price etefs only on the default free
bond price, the estimation of the term structuneashyics is decided to be waived and

Svensson (1994) model is decided to be used. Tfaltddéree zero coupon bond
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prices are the estimated firstly of since for tlséineation of the default risky bond
prices, the default free zero coupon bond pricesequired.

Default-free zero coupon bond prices are infertemugh default-free spot rates
which are computed by means of Svensson paramatetsSvensson Function.
Thereforea(t,T) anda(t, T) are not required fop, (t, T).

For maturities smaller than 12 months spot ratesagailable in the form of rates as
Treasury bills which are zero-coupon bonds. Howefar longer maturities, zero
coupon bonds are usually not available for suffitie many maturities and in
sufficiently large issues to be sufficiently liquitherefore spot rates will have to be

estimated from yields on coupon bonds (Svenssd¥)19

Let r(t,T) be continuously compounded spot interest rate feera coupon bond
traded at time t with a maturily > t. DenoteT — t with m, which is interpreted as
the time to maturity. Leti(t,T) be the price of a zero coupon bond at tintkeat
pays 1$ at maturityf’. Thend(t,T)is called as the discount function. The following
formula gives the relation between the spot rate T) and discount function
d(t,T).

d(t,T) = exp(—r(t,T) /100.(T —1t)) (5.1.1.1)

Let us consider a coupon bond with a coupon%ateper year with a face valueat

maturityT. Then the time price of the bond with time to maturity is;

m

p(t,t +m) = Z cd(t,t + k) + Rd(t, t + m) (5.1.1.2)
k=1

57



Since yield to maturity is the internal rate ofuret for the coupon bong(t,t + m)

satisfies the following equation.

m

p(t,t+m) = Z cexp(

k=1

(—y(t,t + m)

100 M

y(t, t+m)

+ Rexp((— 100

)m) (5.1.1.3)

Continuously compounded forward rate is
ft;S,T) = [(T—Ort,T)—(S—Or(t,S)]/(T-S5) (5.1.1.4)

wheret is the trade date, is the settlement date afids the maturity. This equation
gives us the relation between the spot rgteT) and the continuously compounded
forward ratef (t; S,T). The instantaneous forward rate which can be intéed as

the riskless rate of interest is defined as thet lohthe continuously compounded
forward ratef (t;S,T) asT goes toS. It is the forward rate for a forward contract

with an infinitesimal investment period after tledtement date.

f&.5)=limf(&S,T) (5.1.1.5)

The spot rater(t,T) at t with maturity T is identical to the average of the

instantaneous forward rates with settlement dagbsdent and maturityr'.

T
r(t, T) =f ft, D) dt /(T -0 (5.1.1.6)

T=

By multiplyingr(t,T) with T —t and taking the derivatives of both sides with
respect td’, equatiorb.1.1.7. is obtained;
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Ft,T) = rt,T) + (T — )dr(t, T)/dT (5.1.1.7)

The above equation is the relation between the sges and the instantaneous
forward rates.

Nelson and Siegel assume that instantaneous fomatgds the solution to a second
order differential equation with to equal rootseBsson simplified the notation by
replacing f(t,t + m) with f(m) and added new terms to the Nelson Siegel’s

forward rate and obtained the following equation.

f(m;b) =
B o+ Biexp(—m/t1) + B, (m/ t1) exp(—m/7y) +Ps(m 73) exp(—m/7,)

where b = [Bo, B1, Ba» Ta, Bar T2 (5.1.1.8)

Here;

Bo: constant

B, exp(—m/t;) : is monotonically decreasing f@f > 0 or increasing;<0 towards

0 as a function of time to settlement

B, (m/ 1) exp(—m/ty) : is a function of time to settlement and it genevatee
hump- shape whef, > 0 and U- shape whep, < 0

Bs(m/ t,) exp(—m/T;) : second hump-shape or U-shape parametermith 0

When 7 goes to «, f(m,b) approaches tof, and whent goes to O,
f(m,b) approaches 8, + B;

59



As indicated before the spot rate can be derivednbgrating the forward rate.

Therefore equatiof.1.1.9 is obtained;

_ _m _ _m
g (1m0
T T
exp (- ﬂ) + M(fﬁ) — exp (ﬂz)) (5.1.1.9)

The discount function is given by

d(m; b) = exp ((— %) m) (5.1.1.10)

The following algorithm is used to estimate the tspates for n coupon bonds
(cj,m;,y;,pj) Wherec; is the coupon ratem; is the time to maturityy; is the
observed yield to maturity andis the observed price of the bondith a face value

RS$,j=12..,n

1- A trade date is fixed.

2- A vector of starting parametess= [S,, 51, 82, T1, B3, T2] IS selected.

3- The discount function is determined by meansthié parameter vector and
(5.1.1.10)

4- The discount function is used to find the staytmodel price of each bond by the

following formula.
K;
P.(b) = Z ¢ d(ty; b) + Rd(tys )  j =12, ..,n (5.1.1.11)

k=1

Kj=m]+1
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[m;] denotes the largest integer that is strictly $endhan {n;]

5- Numerical optimization procedures are perfornted estimate the set of
parameters that minimizes the sum of squared aidrs. The estimated yield to
maturity for bondj, Y;(b), is computed from the estimated bond prig€b) by

5.1.1.3 The observed yield to maturity is allowed to d¢®ifrom the estimated yield

to maturity.

y; = Y;(b)+e; (5.1.1.12)
6-Finally the estimated set of parameters are tse@termine the spot rate function
r(m; b) given by(5.1.1.9).

5.1.2. Estimation of the Default Risk Parameters
5.1.2.1 Non-linear L east Squares Estimation of the Parameters

The main objective of this part is evaluating tlaerdw Turnbull model for default
risky bond pricing purposes. Implementing the nhateressitates estimating the
required parameters, default intensity and the wemgorate which determine the
bond price. Default risk parameters can be deribgdmeans of either separate
estimation or joint estimation. Frihwirth and Sdagrmiilt the joint estimation

procedure and used the following non linear legetges estimation:

(1,4 6,¢) = argmin f(4,8) (5.1.2.1.1)
18
where
T
FA8) =D Y [BIET) - Bit, )Y (5.1.2.1.2)
T
and
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T

B(t,T) = Z v (6, 1) Cy (1) (5.1.2.1.3)

u=t

The usual method to estimate non-linear regressimalels is to minimize the

squared sum of residuals. The above equation caspbe pricing error for all

bondsi € I between the observed priaad the Jarrow- Turnbull model price. Then
the equation computes the sum of squared pricimgrsertherefore the above
equation defines a contrast function. After commytihe contrast function, the
parameters are estimated by minimizing the confresttion with differentt and &

which are restricted to be positive.

A non-linear regression model must be identifiedyéd unique parameter estimates.
However, Frihwirth and Ségner showed that joinhesion is numerically unstable
and poorly identified which means that the Hessmatrix of the contrast function is

nearly singular by means of a simulation study.

They therefore employ separate estimation whickedatne parameter as fixed in
(5.1.2.1.1) and estimate the other parameter conditionalltherfixed parameter. To
decide which parameter is going to be fixed thegrd®ed the literature and they
decided on the recovery rate parameter since tleegleeady recovery rate estimates
drawn from actual defaults provided in Moody’s (2R9Altman and Kishore (1996),
Standard & Poor’s (2000) and Moody’s (2000). Thetglies propose a recovery
rate of (approximately) 50% for unsecured seniardso Moreover default intensity

estimates are scarce especially under the equivalaringale measurg.
Following Fruhwirth and Sdgner (2005), recoveryeratill be fixed and default

intensityA will be estimated. The estimate of the defaukmsity will be denoted by

1,.- The corresponding non linear estimation will béfalows:
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(A1) = arg)rllqin s (5.1.2.1.4)

where
fs(O) = Liat[BP* (6, Ty) — Byt T)]? (5.1.2.1.5)

Checking for the poor identification and stabildf/the estimation is again required.
For poor identification problem, the Hessian f3{1) should be computed The

Hessian of the contrast function is as follows:

aBi(t,Ti)
hi1 = Zier 2t 2[—5;1? (5.1.2.1.6)

First of the results is that;, is stictly positive and the number of bonds. Poor
identification can be met only at the maturity sirexp (—A(T — t)) is close to 1 for
A sufficiently small which makes sense since the abdlly of default is zero at

maturity for any default intensity.

As a second step whether the minimization procemunemerically stable should be

checked. Therefore values are assignetland/ initially and these values are called

true values. The]ili,t the noisy default intensity is modelad follows:

Aie = Aexp (=0,5¢3)exp (Ca&yie) (5.1.2.1.7)

where ¢, > 0is the distortion factor between the noisy defantensity and the

Jarrow Turnbull default intensity angj ;. is standard normally distributed noise

term.exp(—0,5¢Z) is used to guarantee that the expectation@fis \.
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E(7;) = E(Aexp(—0,5¢f) exp(ca&pit)) = Aexp(—0,5¢;) exp(—0,5¢%) = 2
(5.1.2.1.8)

sinceE (1 exp(ca&ric)) = exp(—0,5¢7) (5.1.2.1.9)
WhenEM,t ~ N(O,l)

The simulated coupon bonds are used in the estimptiocedure for fixed recovery
rates and various default intensity starting valff@&’ to obtain an estimate for the
default intensity. Frihwirth and Sdgner (2006) stigated the impact of the starting
values of the default intensities on the defauiensity estimate and concluded that
this impact is minor, and indicated that the estiomaprocedure based on a fixed

recovery rate is numerically stable.
5.2 Data

The data set used in this study consists of twispgare of which is the default free

zero coupon bond prices and the other part iséfeutt risky bond prices.

Default free bond prices comprise the daily cloginges over the period 19.06.2008
through 21.11.2008 consisting of 3365 observatiomsd obtained from

WWW.WSj.COm

Default risky bond data comprises 34 dollar denatad fixed-rate senior unsecured
bonds without sinking fund provisions or embeddetiams. Issuers are banks and
non-bank corporates from the rating classes AAnAd B. Thus the data is grouped
into six clusters as AA bank bonds: i = 1,...,5, A@nnbank bonds: i=6,...,11, A
bank bonds : i=12,...,18, A non bank bonds: i=126 .bank bonds: i=27,...,30, and
B non bank bonds: i=31,...,34, with different matest The default risky data is

obtained from Reuters Information System Database.
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5.3 Results of the Default I ntensity Estimation

The purpose of this part of the thesis is estinmatibdefault intensity from empirical
data by5.1.1.16.

The default intensity parameter is estimated fréma twhole data by MATLAB
according by making a cross section with respetheg ratings assuming that these

rati ngs are correct.

The algorithm for the estimation of default intépgian be described as follows:

1- A certain type of a bond class with the same ra#ind type of corporation
(with the discrimination of bank or non bank) itested.

2- A trade date is fixed

3- For a bond € I, for the fixed date t, default free zero coupomda@rice is
computed by Svensson (1994) method.

4- The recovery rate is taken as 0,5 in consistentte Moody’s report (2000).

5- The equatiorb.1.2.1.5 computes the pricing error between the observieg pr
and model price for observation date and for afidsoin the same rating and
corporation class.

6- Finally equation5.1.2.1.4 yields the default intensity estimate which makes

the pricing error minimum.

The estimation procedure yielded the following fessu
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Table5.3.1: results of the default intensity estimation

Rating and type Estimated
default intensity

AA rated bank bonds Aan»=0,0047

AA rated non- bank bondsj, , ., = 0,0052

A rated bank bonds A4=0,0057

A rated non-bank bonds | 1, .., = 0,0064

B rated bank bonds Agp =0,0136

B rated non-bank bonds | 1, ., = 0,0289

The results presented in Table 5.3.1 are consigtghtrespect to the rating classes,
since as the rating falls, the default intensitgxpected to increase. However, these

results involve estimation errors due to the fixecbvery rate assumption.
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CHAPTER 6

CONCLUSION

This thesis presents the Jarrow Turnbull (1995) ehodnd the estimation
methodology employed in the Fruhwirth and Ségneaper which used German
data. In the first chapter, introduction is givemieh is followed by a literature
survey in which structural and reduced form modmis compared. In the third
chapter, preliminaries for the corporate bond pgcissues are explained with the
underlying Heath, Jarrow and Morton (1992) Modédha@ter 4 gave the details of
the Jarrow Turnbull (1995) Model starting from thiecrete time model extending to
the continuous time model utilizing the analogytleé foreign exchange rate. In
chapter 5, estimation methods are explained anbrpged based on the Svensson
(1994) term structure procedure for the defauk-frierm structure since for
maturities smaller than 12 months spot rates aedladle in the form of rates as
Treasury bills which are zero-coupon bonds whileléager maturities, zero coupon
bonds are usually not available for sufficientlynypanaturities and in sufficiently
large issues to be sufficiently liquid. Therefopoisrates are estimated from yields
on coupon bonds (Svensson, 1994).

In order to find out the default risky bond prigejs shown that default free zero
coupon bond price, default intensity and the reppvate are sufficient. Thus the
aim of this thesis is the estimation of the defénélé bond price and default intensity
since Fruhwirth and Sogner proposed analyticaljyrteans of a simulation study
and using empirical data, that it is not possibl@intly estimate the default intensity
and the recovery rate implicitly and thus suggesstiilmating the default intensity
conditionally on a fixed recovery rate drawn fromgerical studies in literature. The
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joint estimation of the default risk parameterdadé intensity and the recovery rate
iIs proven to be numerically unstable and purelyniified. Therefore the default
intensity is estimated based on recovery rate hnsg tecovery rate is assumed to be
fixed. The recovery rate estimates are availaldevd from actual defaults provided
in Moody’'s (1992), Altman and Kishore (1996), Stardl & Poor’s (2000) and
Moody’s (2000). These studies propose a recovegyah(approximately) 50% for
unsecured senior bonds. Estimated default intessitepend on the default-free term
structure estimation since the term structure déwle risky bonds involve default

free zero coupon bond price.

Due to lack of Turkish corporate bond data, US omte bonds, namely bank and
non bank bonds form different rating classes ardethy US Treasury bill data are

employed in the estimation procedure by means off MXB.

The estimated default intensities are proposedainlel'5.3.1 and they are consistent
with the rating classes, thereby their risk classdsthe bonds employed in the

estimation procedure.
For further study, pooling of data, which is shotenyield better estimates of the

parameters with term structure models by De Muramé Schotman (1994), can be

investigated whether it can improve the estimalss @ith credit risk models.
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