
PRICING US CORPORATE BONDS BY JARROW/TURNBULL (1995) MODEL 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS 

OF 
 MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

HATİCE DİLEK OĞUZ 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
 FOR  

THE DEGREE OFMASTER OF SCIENCE 
IN 

 FINANCIAL MATHEMATICS 

DECEMBER 2008 



Approval of the thesis: 

PRICING US CORPORATE BONDS BY JARROW/TURNBULL (1995) MODEL 

submitted by HATİCE DİLEK OĞUZ in partial fulfillment of the requirements for the 
degree of Master of Science in Financial Mathematics  Department, Middle East 
Technical University by, 

Prof. Dr. Ersan AKYILDIZ 
Dean, Graduate School of Applied Mathematics

Assist. Prof. Dr. Işıl EROL 
Head of Department, Financial Mathematics 

Assist. Prof. Dr. Seza DANIŞOĞLU 
Supervisor, Business Administration Department, METU                                                                             

Examining Committee Members: 

Assoc. Prof. Dr. Z.Nuray GÜNER 
Business Administration, METU 

Assist. Prof. Dr. Seza DANIŞOĞLU 
Business Administration, METU 

Associate Prof. Dr. Burak GÜNALP 
Economics, HACETTEPE 

Date: 



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained and presented 

in accordance with academic rules and ethical conduct. I also declare that, as required 

by these rules and conduct, I have fully cited and referenced all material and results 

that are not original to this work. 

 

Name, Last name: Hatice Dilek OĞUZ 

                                                                                      Signature             : 

 







vi 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
To my family 

 
 
 
 
 
 
 
 

                                      
 
 

 
 
 
 
 



vii 
 

ACKNOWLEDGEMENT 
 
 
 
I am grateful to my parents for their continuous, unfailing support, encourage and motivation 

throughout my life. 

 

I would like to express my sincere gratitude to my supervisor, Assist. Prof. Dr. Seza 

DANIŞOĞLU for her invaluable and patient guidance, suggestions and motivation 

throughout this study. 

 

I am also grateful to Dr. Coşkun KÜÇÜKÖZMEN for his precious lectures which 

enlightened my mind and his endless, friendly support. 

 

I want to thank the members of my committee, Assoc. Prof. Dr. Z. Nuray GÜNER and 

Assoc. Prof. Dr. Burak GÜNALP for their support and valuable suggestions. 

 

I have been fortunate to have the support of my great friends and colleagues throughout my 

study. I want to thank my friends, especially Sibel KORKMAZ, Özlem DURSUN, Mehmet 

Ali KARADA Ğ, Mustafa ERATA, Đlkay Sümer ERATA and Aytaç TURHAN for their 

encouragement and presence in my life. I am also grateful to Gülçin MANZAK and Đlknur 

PULAK for their support in difficult times. 

 

My endless thanks are to Deniz Umut EKER, for his continuous support, valuable 

encouragement and extraordinary patience during the preparation of this thesis. 

 
 
 
 
 
 
 
                                

 

 

 



viii 
 

TABLE OF CONTENTS 

 

 

PLAGIARISM…………………………………………………………………………         iii 

ABSTRACT……………………………………………………………………………         iv 

ÖZ………………………………………………………………………………………          v 

DEDICATION………………………………………………………………….............        vi 

ACKNOWLEDGEMENTS…………………………………………………….............       vii 

TABLE OF CONTENTS……………………………………………………………….      viii 

LIST OF TABLES……………………………………………………………………...         x 

LIST OF FIGURES…………………………………………………………………….        xi 

 

CHAPTER 

1. INTRODUCTION……………………………………………………………..         1 

2. LITERATURE REVIEW……………………………………...........................         4 

3. PRELIMINARIES……………………………………………………………..       11 

 3.1    BOND MARKET…………………………………………………………….       12 

 3.2    RELATIONSHIP BETWEEN THE FORWARD RATE, BOND PRICE AND 

SHORT RATE DYNAMICS…………………………………………………………..        17 

4. THE JARROW TURNBULL MODEL(1995)………………... ……………..        21 

4.1 THE HEATH-JARROW AND MORTON MODEL (1992)…………………       22 

4.2 DESCRIPTION OF THE ECONOMY OF JT(1995) MODEL……………….      27 

4.3 TWO- PERIOD DISCRETE TRADING ECONOMY……………………….      29 

4.3.1 TERM STRUCTURE OF THE DEFAULT FREE ZERO COUPON 

BONDS………………………………………………………………………       29 

4.3.2 THE TERM STRUCTURE OF ABC BOND…………………………..      31 

4.3.3 ARBITRAGE FREE RESTRICTIONS………………………………..       35 

4.3.4 ABC ZERO COUPON BONDS……………………………………….       41 

4.3.5 ABC COUPON BONDS………………………………………………       44 

      4.4   THE CONTINUOUS TRADING ECONOMY………………………………..      45 

               4.4.1 DERIVATION OF THE STOCHASTIC PROCESSES FOR THE DEFAULT 

FREE ZERO COUPON BOND, THE ABC BOND AND THE MONEY MARKET 

ACCOUNT…………………………...............................................................................      45 



ix 
 

                     4.4.1.1 DERIVATION OF THE STOCHASTIC PROCESS FOR 

����, ��…………………………………………………………………………………        47 

                     4.4.1.2 DERIVATION OF THE STOCHASTIC PROCESS FOR 

�	��, ��………………………………………………………………………………….       48 

               4.4.2 ARBITRAGE- FREE RESTRICTIONS………………………………...      52 

               4.4.3 THE ABC BONDS………………………………………………………     55 

5.          ESTIMATION…………………………………………………………………...     56 

    5.1    ESTIMATION OF THE PARAMETERS……………………………………...      56 

              5.1.1   ESTIMATION OF THE DEFAULT-FREE ZERO COUPON BOND 

PRICES….........................................................................................................................      56 

              5.1.2   ESTIMATION OF THE DEFAULT RISK PARAMETERS………….       61 

                     5.1.2.1 NON-LINEAR LEAST SQUARES ESTIMATION OF THE 

PARAMETERS.……………………………………………………………….…………     61 

    5.2      DATA……………………………………………………………………..........     64 

    5.3      RESULTS OF THE DEFAULT INTENSITY ESTIMATION…………..........     65 

6.         CONCLUSION…………………………………………………………………..     67 

7.          REFERENCES……………………………………………..................................     69 

 

               
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



x 
 

LIST OF TABLES 
 
 
 

Table 3.1.1: Scenario for the Construction of Interest Rates………………………..13 

Table 4.2.1: Summary of the Bond Prices…………………………………………..29 

Table 5.3.1: Results of the Default Intensity Estimation……………………………66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 
 

LIST OF FIGURES 
 
 
 

Graph 4.3.1.1: The Default Free Zero Coupon Bond Price Process for the Two                                                                                    

Period Economy……………………………………………………………………..31 

 

Graph 4.3.2.1: The Stochastic Evolution of the Pay-off ratio for ABC Zero Coupon 

Bond in Two Period Economy………………………………………………………33 

 

Graph 4.3.2.2: The Stochastic Evolution of the ABC Zero Coupon Bond Price 

Process for the Two Period Economy in terms of Hypothetical Currency ABC 

Dollar………………………………………………………………………………..34 

 

Graph 4.3.2.3: The ABC Zero Coupon Bond Price Process for the Two Period 

Economy in Dollars…………………………………………………………………35 

 

Graph 4.3.4.1: Estimation Procedure of the Pseudo Probabilities………………….43 

 



1 
 

CHAPTER 1 
 

                                                     

                                                     INTRODUCTION 

 

 

Credit risk occurs when the issuer of a bond fails to meet its contractual obligations, 

repaying the principal and the interests on time. Credit risk is also defined as “The 

degree of value fluctuations in debt instruments and derivatives due to changes in the 

underlying credit quality of borrowers and counterparties” (Lopez and Saidenberg, 

2000). Default risk, which relates the possibility that the counterparty will not fulfill 

its contractual commitments, is one of the issues of growing importance both in 

academia and in industry. Numerous credit risk models have been developed by the 

academicians and by the industry in order to model the default risk during the last 

decade.  

 

Extensions have been made to the early Merton model (1974) on the “structural” 

modeling side, to refine the model while alternative variations for the intensity 

process are proposed on the “reduced-form” side, in modeling. However, a 

consensus on a model could not be reached. Controversial results yielded from 

different empirical studies for the validation of the theories is one of the main 

reasons for this deficit.  

 

On the industry side, numerous developments are observed in the field of credit risk 

modeling, as evidenced by the public release of such models by a number of 

financial institutions such as J.P. Morgan (1998) and Credit Suisse Financial 

Products (1997).  

 

Credit risk models are expected to be used to formally determine risk-adjusted, 

regulatory capital requirements by the International Swap Dealers Association 
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(ISDA) and the Institute of International Finance Working Group on Capital 

Adequacy (IIF) (Lopez and Saidenberg, 2000). 

 

Although the lending institutions developed the risk management tools, default 

frequency has been observed to increase for the past decades. Thus, mathematical 

models have been implemented to quantify and view variations in the risk profile of 

the creditor and losses related to these changes to correctly price and manage the 

credit risk since correct measurement and valuation of credit risk and especially the 

likelihood of default and the loss given default is of great importance for the lending 

institutions. 

 

In this thesis, the ratings of the corporate bonds selected are accepted as the main 

indicators of their risk. However, it is seen that these ratings given by S&P and 

Moody’s are judged during the recent crisis. 

 

There are only two corporate bonds issued in Turkey. The main reason is the high 

yields provided by the treasury bills and therefore the impossibility of the 

competitiveness. Consequently US corporate bonds are selected for the estimation of 

the Jarrow Turnbull (1995) model. However, US corporate bond data are not 

publicly available, thus the data employed in this study is scarce. Nevertheless, this 

thesis will provide a basis for the pricing of the corporate bonds in Turkey, if 

corporate issue bonds. 

 

The goal of this thesis is the estimation of the default intensity in the Jarrow/Turnbull 

(1995) model. Estimations of the default intensity based on default-free term 

structure data are performed. The thesis consists of 6 chapters including introduction. 

The rest of the paper evolves as follows: Chapter 1 presents introduction, and 

followed by the literature review chapter. Chapter 3 presents the preliminaries that 

are necessary for the theory to be well understood. Chapter 4 gives the details of the 

original Jarrow-Turnbull (J/T) (1995) model. In Chapter 5 the estimation technique 
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of the corporate bond pricing with J/T (1995) is presented with the technique of the 

Svensson method that is utilized for the pricing of the default free bonds. Data issues 

and estimation results are also explained in chapter 5. Finally, in chapter 6 the main 

results are summarized in the conclusion part. 
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                                                       CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

There are two well-known approaches to the modeling of credit risk. First model is 

the “structural-form approach” which can be investigated as first generation and 

second generation models. Structural form model is originated with Black and 

Scholes (1973), proposed by Merton (1974) using the principles of option pricing. 

They endogenize the bankruptcy process by explicitly modeling the asset and 

liability structure of the company (Merton 1974). This approach views equity shares 

and debts as derivatives on the firm’s assets. Default risk of a firm is explicitly 

connected to the variation in the asset value of the firm which conducts the default 

process. Merton Model proposes that default takes place when the liabilities of the 

firm is greater than the market value of the firm (Altman et al, 2004). This model 

derives the price of default risk by modeling the value of the firm relative to the 

firm’s debt. The face value of the bond, which is thought as the strike price,  minus a 

put option on the value of the firm yields the pay-off at maturity, equal to the 

maturity of the bond, to the bondholder (Altman et al, 2004). Merton used this 

approach to derive an explicit formula for risky bonds by which probability of 

default and the yield differential between a risky bond and a default-free bond can be 

estimated. Merton model states that the probability of default and the recovery rate , 

which are the functions of structural features of the firm, are related inversely. Black 

and Cox (1976), Geske (1977) and Vasicek (1984) can also be included in the first 

generation structural form models where Black and Cox (1976) presents the 

possibility of more complex capital structures, with subordinated debt; Geske (1977) 

suggests interest-paying debt and Vasicek (1984) establishes the distinction between 

short- and long-term liabilities in order to improve the basic Merton Model. 
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In practice structural form approach has some shortcomings. First, under Merton’s 

model, default occurs only at maturity of the debt which contradicts with the real life. 

Second, the priority/seniority structures of various debts have to be specified in case 

of complex capital structures. Moreover, debts are assumed to be paid with respect to 

their seniority orders in this model. However, Franks and Torous (1994) empirically 

proved that the absolute-priority rules are often violated. Basic Merton model utilizes 

the lognormal distribution which tends to amplifies recovery of rate in the event of 

default (Altman, et al, 2004). Second generation structural form models tried to 

remove the unrealistic assumptions by adopting the basic Merton model. For instance 

default is allowed to occur at any time between the issuance and maturity of the debt 

when the value of the firm’s assets reaches a lower threshold level. These models 

include Kim et al. (1993), Hull and White (1995), Nielsen et al. (1993), Longstaff 

and Schwartz (1995) and others. Recovery rate at default is taken as exogenous and 

is assumed to be independent from the firm’s asset value. Being generally defined as 

a fixed ratio of the outstanding debt, Recovery rate is independent from the 

probability of default. Longstaff and Schwartz (1995) argue that, the recovery rate 

can be estimated utilizing the history of defaults and the recovery ratios for various 

classes of debt of comparable firms. They allow for a stochastic term structure of 

interest rates and they let defaults correlate with the interest rates and conclude that 

this correlation plays a significant role on the credit spread. Nonetheless three main 

drawbacks, explaining the relatively poor empirical performance of the structural 

models, remain unsolved by the second generation models.  First problem is the need 

of estimates of the firm’s asset value which is not observable. Secondly the credit 

rating changes are not incorporated into structural form models which are observed 

to decrease before the firms’ default. Besides, these models postulates that the value 

of the firm is continuous and thus default time can be anticipated just before the 

default takes place (Altman et al, 2005). Therefore Duffie and Lando (2001) argue 

that this continuity assumption implies that there are no sudden surprises. 
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Structural models assume complete knowledge of a very detailed information set 

generated by continuous observations of both the firm’s asset value and the default 

barrier, which means that modeler has continuous and detailed information about all 

of the firm’s assets and liabilities. This information set is similar to that held by the 

firm’s managers and regulators. Generally, complete information assumption means  

that the default time can be predicted which does not hold when the firm’s asset 

value follows a continuous time jump diffusion process (Jarrow and Protter, 2004). 

 

To overcome these shortcomings reduced form models are employed by Litterman 

and Iben (1991), Jarrow and Turnbull (1992), Madan and Unal (1998), Jarrow and 

Turnbull(1995), Duffie and Singleton (1997),  Jarrow, Lando and Turnbull (1997), 

Lando (1998), Duffie and Singleton (1999). Reduced form models takes market into 

account as the only source of information and therefore default probabilities and 

credit risk dependencies are inferred by means of  market prices of the firms’ 

defaultable instruments (such as bonds or credit default swaps) (Abel, 2006). 

Reduced-form models do not condition default on the value of the firm, and 

parameters related to the firm’s value need not be estimated to implement them 

unlike structural-form models. Moreover, reduced-form models present separate 

explicit assumptions on probability of default and recovery rate dynamics which are 

modeled independently from the structural features of the firm such as its asset 

volatility and leverage. Recovery rate at default is generally supposed to be 

exogenous and thereby independent from the probability of default. Reduced form 

models take the term structure of default-free interest rates, the recovery rate of 

defaultable bonds at default and stochastic process for default intensity as primitives 

(Altman et al., 2005).  

 

Jarrow and Turnbull (1995) study the simplest case in which the default was driven 

by a Poisson process with constant intensity and a known payoff at default. 

Stochastic interest rates are incorporated, but they specify the processes for 

bankruptcy and the payoff on the risky debt conditional on default exogenously. 
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They make use of foreign currency analogy and payoffs to the risky security are 

made in nominal terms in a risky currency, 'XYZ-dollars'. Default risky bond price is 

formulated in terms of default free bond and a exchange rate implying the analogy of 

foreign currency by no-arbitrage conditions. Bankruptcy is modeled as a jump 

process in the continuous time case (Cooper and Martin, 1996). This model is built 

on arbitrary Heath et al. (1992) term structure model, remaining analytically 

tractable. The Jarrow/Turnbull model, assuming that the stochastic process driving 

the default-free term structure and the default process are independent,  is especially 

functional when data is scarce. This assumption gives the opportunity to study term 

structure issues and default issues separately. Explicit pricing formulas for risky 

bonds and for options on interest rate sensitive stocks which facilitate 

implementation and calibration are also derived in this model (Frühwirth and Sögner, 

2006). Empirical study of Houweling and Vorst (2003) showed that, in spite of its 

simplicity, the Jarrow and Turnbull model proves to work well in some situations. 

 

Duffie and Singleton (1997) used a similar method. “They assume a multi-factor 

square-root process for the riskless interest rate and a Poisson process for default 

with state dependent values for the hazard rate and the loss in default” (Cooper and 

Martin, 1996). Valuation under the martingale probability measure is done by 

discounting the default-free payoff on the debt by a discount rate that is edited for the 

default process parameters. The valuation procedure becomes same for riskless 

claims, with an adjustment to the interest rate for the effect of default risk by this 

discounting procedure. This argument gave inspiration to those that simply assume a 

process for the spread and then use this in a way similar to that derived by Duffie and 

Singleton (Cooper and Martin, 1996). 

 

The parameterization of the recovery rate forms the base on which the reduced-form 

models differ. Jarrow and Turnbull (1995) assumed that a the market value of a bond 

at default is equal to an exogenously given fraction of an equivalent default-free bond 

whereas Duffie and Singleton (1999) allow for closed-form solutions for the term-
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structure of credit spreads when market value at default, recovery rate, is exogenously 

specified. This model also allows for a random recovery rate depending on the pre-

default value of the bond. This model lets default hazard-rate process and recovery 

rate correlate and assumes that expected loss at default process is exogenous implying 

that the recovery rate does not depend on the defaultable claim value. The correlation 

is modeled by combining independent Poisson processes by pre-specifying the sign of 

the correlation which is a handicap of the model.  

 

Coupon level or maturity is taken as irrespective with the recovery rate and thus bond 

holder gets a fixed payment, at default according to Duffie (1998. This amount is the 

same fraction of face value as any other bond of the same seniority since the model 

assumes that bonds of the same issuer, seniority, and face value have the same 

recovery rate at default, regardless of the remaining maturity. Recovery parameters 

based on statistics and withdrawn from defaults are provided by rating agencies such 

as Moody’s and they can be utilized with this assumption. Jarrow, Lando and Turnbull 

(1997) mainly concentrates on the migrations between credit rating classes and make 

use of transition matrices (historical probabilities of credit rating changes) to price 

defaultable bonds allowing for different debt seniorities to translate into different 

recovery rates for a given firm.  

 

Empirical work on reduced form is rather limited (see e.g. Duffie and Singleton 

(1997), Duffee (1999), Tauren (1999), Düllmann and Windfuhr (2000), Bühler et al. 

(2001), Bakshi et al. (2001), Houweling and Vorst (2003) or Duffie et al. (2003)). 

The articles using intensity-based models generally build the cross-sections and 

specify them exogenously, frequently based on credit ratings, to derive the estimates. 

Daily data is used to extract the parameters based on the pre-specified cross-sections 

(Frühwirth, 2004). Duffee (1999) finds that these models have some problems in 

explaining the observed term structure of credit spreads across firms of different 

credit risk qualities using the Duffie and Singleton (1999) approach.  
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The relationship between the probability of default and recovery rate has been the 

subject of the research for recent years (Frye (2000a, 2000b), Jokivuolle and Peura 

(2003), and Jarrow (2001)). Frye uses the conditional approach suggested by Finger 

(1999) and Gordy (2000). The state of the economy drives the default in these 

models. The same economic conditions are supposed to bring about the probability 

of default to rise and recovery rates to fall. Therefore the correlation between 

recovery rate and default is caused by the common dependence on the state variable. 

Frye found that default rates and recovery rates are negatively correlated. Frye’s 

(2000) concluded that bond recoveries might decline 20-25 percentage points from 

their normal-year average whereas loan recoveries may decline by a similar amount, 

but from a higher level in a severe economic downturn.  

 

Jarrow (2001) proposed a new methodology for the estimation of recovery rates and 

probability of default benefiting from the debt and equity prices which are ignored by 

the reduced form models and connected reduced form models with the structural 

models. The equity prices are incorporated in the estimation procedure allowing the 

separate identification of the recovery rates and probability of default which are 

assumed to be correlated and depend on the state of the macroeconomy. He 

incorporated the liquidity premium and price bubble effects in his method.  

 

Jokivuolle and Peura (2003) proposed a model for bank loans in which collateral 

value is correlated with the probability of default. In their method the borrowing 

firm’s total asset value determines the event of default. However, the recovery rate is 

not determined by the firm’s asset value, but determined by the collateral value 

which is stochastic. Bakshi et al. (2001) allowed for a flexible correlation between 

the risk-free rate, the default probability and the recovery rate and empirically 

showed that  recovery rates are negatively associated with default probability through 

the analysis of a sample of BBB-rated corporate bonds (Altman et al.,2005). 
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Zhou (2001) tried to associate the structural-form model and reduced-form model to 

benefit from the clear economic mechanism behind the default process in structural 

models and surprise of default in reduced-form models. He modeled the evolution of 

the firm as a jump-diffusion process linking the recovery rate to the firm value at 

default so that the variation in recovery rates is endogenously generated and the 

correlation between recovery rates and credit ratings reported in Altman (1989) and 

Gupton, Gates and Carty (2000) is verified (Altman et al., 2005). 
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CHAPTER 3 

 

 

PRELIMINARIES 

 

 

Before explaining the details of the reduced-form credit risk model of Jarrow and 

Turnbull (1995), the following definitions are provided as useful reminders: 

A complete probability space �Ω, �, �� and a filtration ��	 
  	 � 0� of sub-σ-

algebras of �, which represents the investors’ information set, are fixed. Let � denote 

the physical probability measure observed in the financial markets and � denotes the 

risk neutral (pseudo) probability. These parameters are used to define a market model 

which is free of arbitrage. 

 

Definition 3.1: A risk-neutral probability is a probability measure under which the 

discounted expected value of tomorrow’s asset price is equal to today’s asset price in 

an arbitrage-free world. 

 

The significance of calculating the arbitrage-free prices with the risk neutral 

probabilities is that these prices are applicable for all investors regardless of their 

attitudes towards risk.  

Definition 3.2: Let �Ω, �, �� be a probability space with � �  ��Ω� and for all � in 

Ω, ���� �� � 0 with a filtration ��������� .  Let �� be an adapted sequence with 0 � � � � of real random variables. Then ��  is martingale if � �����|��� � �� for all � � �  1. 

 

Within the finance context, if the price of an asset "� is martingale with 0 � � � �, 

then the best estimate of "���obtained by the least squares estimation at each � is "�. That is, the best forecast of the future value of an asset is its last observed value. 
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Definition 3.3: Arbitrage is the possibility of earning a positive monetary return with 

zero equity investment and with a probability of 1.0. An arbitrage profit is a riskless 

profit. The assumption of no arbitrage is necessary to calculate a unique risk neutral 

price for financial assets since the risk neutral probabilities only exist in the absence 

of arbitrage. The existence of arbitrage is referred to as “mispricing” in the market.  

 

Definition 3.4: The market is said to be “viable” if there is no arbitrage opportunity. 

 

3.1 Bond Market 

 

The aim of this study is pricing the default risky corporate bonds employing Jarrow-

Turnbull (1995) model. For the pricing issues a relative pricing approach is needed. 

Zero coupon bonds are the basic instruments that are used in the following sections 

for developing a relative pricing approach since the underlying structure of Jarrow 

Turnbull (1995) model is the Heath Jarrow and Morton (1992) Model which has a 

zero coupon bond with maturity #. 

 

Definition 3.1.1: A zero coupon bond with maturity # is a contract guaranteeing to 

pay 1 dollar to the investor at time #. The time 	 price of a zero coupon bond with 

maturity # is denoted by $�	, #�.  
 

Definition 3.1.2: A coupon bond with maturity T delivers payments in %0, #& and 

provides the holder of the bond with a deterministic cash flow. 

 

After defining the zero-coupon and coupon bonds, the following assumptions are 

made in order to assure the existence of a bond market that is sufficiently deep: 

 

1- There exists a frictionless market for all bonds of all maturities. 

2- $�	, 	� � 1 holds in order to avoid arbitrage. 
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3- $�	, #� is differentiable with respect to # for all fixed 	 (Björk, 1998). 

 

The first assumption guarantees that the market contains all possible bonds. The 

price of the bond is strictly positive for all 	 and the price process is adapted. The 

price of the bond $�	, #� is a stochastic object with two variables 	 and #. If t is 

fixed, $�	, #� gives the prices of the bonds with different maturities at a fixed time. 

The graph of this function is the term structure of the bond and it is smooth, meaning 

that $�	, #� is differentiable with respect to # for all 	. If the maturity # is fixed, $�	, #� becomes a scalar stochastic process and its trajectory becomes irregular.  

Next, some interest rates are defined based on the above market conditions. While a 

simple interest notation is used in the market, the continuously-compounded interest 

notation is used in theoretical contexts. These two representations are logically 

equivalent. The interest rates are constructed according to the following scenario: 

 

Assume that 	 ' ( ' #. 

 

Table 3.1.1: Scenario for the Construction of Interest Rates  

Time 	 ( # 

 Sell ( bonds 

Buy $�	, (�/$�	, #� # bonds 

Pay out 1 Receive $�	, (�/$�	, #� 

Net investment 0 -1 *$�	, (�/$�	, #� 

 

The above transactions can be summarized as follows: A deal is made at time 	, to 

make an investment of one unit of money at time (, that is guaranteeing a yield of $�	, (�/$�	, #� at time#. Therefore, Deal is made at riskless rate at time 	, which is 

valid on the future period %(, #&. This rate is called as a forward rate. 

The following definitions are implied by the above construction.  
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Definition 3.1.3: The simple spot rate for %(, #& is defined as: 

 

+�(, #� �  $�(, #�  1�#  (�$�(, #�                                                                                          �3.1.1� 

                                                                                                                         

Definition 3.1.4: The simple forward rate for %(, #& contracted at t is defined as: 

 

+�	; (, #� �  .$�	, #�  $�	, (�/�T  S�p�S, T�                                                                                �3.1.2� 

                                                                                                                            

Definition 3.1.5: The continuously compounded spot rate for %(, #& is defined as: 

 

4�(, #� �  567$�(, #�#  (                                                                                                  �3.1.3� 

                                                                                                                       

Definition 3.1.6: The continuously compounded forward rate for %(, #& contracted at 	 is defined as: 

4�	; (, #� �  567$�	, #�  567$�	, (�#  (                                                                       �3.1.4� 

                                                                                                                          

Definition 3.1.7: The instantaneous forward rate with maturity #, contracted at t is 

defined as: 

9�	, #� �  :567$�	, #�:#                                                                                                 �3.1.5� 

                                                                                                                           

Definition 3.1.8: The instantaneous short rate at time 	 is defined as: 

 <�	� � 9�	, 	�                                                                                                                    �3.1.6� 

                                                                                                                           
If the limit of the continuously compounded forward rate when ( goes to # is taken, 

the instantaneous forward rate is obtained. This rate can be interpreted as the riskless 
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rate of interest, contracted at t over the infinitesimal interval %#, # * >#& (Björk, 

1998) 

 

Definition 3.1.9: The money market account process is defined as: 

 

?@ � exp �C <�D�>D �@�                                                                                          �3.1.7� 

 

Money market account can be interpreted as a strategy of instantaneously reinvesting 

at the current short rate (Kiesel and Bingham, 1998). 

 

Definitions 3.1.3 through 3.1.9 imply the following lemma: 

 

Lemma 3.1.1: For 	 � D � #, the following are true:  

 

$�	, #� � $�	, D�. exp � C 9�	, F�>F �GH                                                              �3.1.8� 

and  

$�	, #� � exp � C 9�	, D�>D �G@                                                                                 �3.1.9� 

 

Proof: Continuously compounded forward rate 4�	; (, #� is the solution of the 

following equation and therefore by solving this equation equation 3.1.11 is 

obtained:  

 

 KL�GMN� � O�@,H�O�@,G�                                                                                                         �3.1.10� 
 

Thus,  

 $�	, #� � $�	, D�exp � 4�#  (��      �3.1.11�                                                                                                                     
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can be written.  

 

Replacing 4 with definition 3.1.6, the following equation is obtained: 

                           

$�	, #� � $�	, D�. exp PQRS O�@,G�MQRS�@,H�GMN . �#  (�T                                            �3.1.12� 

 

Using the definition of the instantaneous forward rate, the following result is 

obtained: 

 

� $�	, D�. exp � C 9�	, F�>F �GH                                                                         �3.1.13� 

 

The lemma puts forward the relationship between the forward rate and the price of 

the bond. 

 

The bond market can be modeled by specifying either the dynamics of the short rate, 

or the dynamics of all possible bonds or the dynamics of all possible forward rates. 

According to the above formulation, in order to model a bond market, specifying the 

dynamics of all possible forward rates and then using Lemma 3.1.1  to obtain the 

price of the bond is sufficient. Thus, once the forward rate dynamics are specified, 

then the price of the bond can be determined. All of the approaches used to model a 

bond market are related to each other; hence their relationship is of importance. The 

short rate, bond price and forward rate dynamics will be stated and then proposition 3.2.1. which provides an equation for the derivative of the bond price process under 

the assumption of the forward rate dynamics will be given. 
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3.2. Relationship between the forward rate, bond price and short rate dynamics UV�W, X�, UY�W, X� Z[U U\�W�: 
 

Short Rate Dynamics     :          ><�	� � ^�	�>	 * _�	�>`�	�                       

Bond Price Dynamics    :          >$�	, #� � $�	, #�a�	, #�>	 * $�	, #�b�	, #�>`�	� 

Forward Rate Dynamics:          >9�	, #� � ^�	, #�>	 * c�	, #�>`�	� 

 

Proposition 3.2.1: 

 

a) If $�	, #� satisfies >$�	, #� � $�	, #�a�	, #�>	 * $�	, #�b�	, #�>`�	� then 

for the forward rate dynamics the following equation holds: 

 >9�	, #� � ^�	, #�>	 * c�	, #�>`�	� 

where ̂ �	, #� and c�	, #� are given by 

 ^�	, #� � bG�	, #�b�	, #�  aG�	, #� c�	, #� �  bG�	, #�  
and they denote the drift and the volatility parameters. 

 

b) If 9�	, #� satisfies >9�	, #� � ^�	, #�>	 * c�	, #�>`�	� then the short rate 

satisfies 

  ><�	� � ^�	�>	 * _�	�>`�	�           

             

where ̂ �	� and _�	� are given by  

 ^�	� � 9G�	, 	� * ^�	, 	�                                         

 _�	� � c�	, 	� 

 

 where 9G�	, 	� is the derivative of forward rate process with respect to #. 
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c) If 9�	, #� satisfies >9�	, #� � ^�	, #�>	 * c�	, #�>`�	� then $�	, #� 

satisfies 

>$�	, #� � $�	, #� d<�	� * "�	, #� * 12 e (�	, # efg >	 * $�	, #�(�	, #�>`�	� 

 where e. e denotes the Euclidean norm and 

       

"�	, #� �  h i�	, D�>DG
@  

(�	, #� �   C c�	, D�>DG@  

 

Proof:  

By lemma 3.1.1 it is known that $�	, #� � exp j C 9�	, D�G@ >Dk and  

<�	� � 9�	, 	�. 

 

Since 9�	, #� satisfies >9�	, #� � ^�	, #�>	 * c�	, #�>`�	�  

9�	, #� � 9�0, #� * C i�F, #�>F@� * C c�F, #�> l̀@�   can be written by taking the 

integral of >9�	, #�. 
 

To facilitate the notation let m@ �  C 9�	, D�G@ >D then, $�	, #� � Kno  
Applying Ito formula to m@ for 7�p� � Kq, equation 3.1.1.14 is obtained; 

 

$�	, #� � Kno � Knr * C Kns@� >mH * �f C Kns@� > ' m, m �H                                   �3.2.1� 

 

Derivative of equation 3.2.1 is taken since the proposition asserts the relationship 

between the derivative of the bond price process and the dynamics of the forward 

rate process.  
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>$�	, #� � Kno>m@ * �f Kno > ' m, m �@                                                                   �3.2.2� 

 

Thus in order to reach the required equation, >m@ should be found out. For the 

derivation of >m@ following trick will be used. 

 

Let us write m@ � C . 9�D, D� * 9�D, D�  9�	, D�/>DG@  

�  h 9�D, D�>D  h 9�0, D�>D  G
@ h h i�F, D�>F>D  h h c�F, D�> l̀

@
�

G
@

@
�

G
@

G
@ >D

* h 9�0, D�>D * h h i�F, D�>FH
�

G
@

G
@ >D * h h c�F, D�> l̀>DH

�
G

@  

 

Then, by Fubini’s theorem, an interchange of integrals yields the following equation;  

 

�  h 9�D, D�>D * h h i�F, D�>D>F *G
l

G
@

G
@ h h c�F, D�G

l
G

@ >D> l̀ 

m� �  C 9�D, D�>D * C C i�F, D�>D>F *GlG�G� C C c�F, D�GlG� >D> l̀. 

 

Thus,  

m@ � m� * h 9�D, D�>D  h h i�F, D�>D>F  h h c�F, D�G
l

@
�

G
l

@
�

@
� >D> l̀ 

 

The above equation allows us writing m@ by the parameters of the forward rate 

process. Taking the derivative of both sides >m@ is obtained. 

 

>m@ � 9�	, 	�>	 * h i�	, D�>D>	  h c�	, D�G
@

G
@ >D> @̀ 

Thus, substituting >m@ in the relevant equation the following equation is obtained; 
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>$�	, #� � Kno t9�	, 	�>	 * h i�	, D�>D>	  h c�	, D�G
@

G
@ >D> @̀u

* Kno 12 > ' m, m �@ 
where > ' m, m �@� �f �C c�	, D�>D�G@ f >	 
 

Finally; by writing Kno � $�	, #� the equation below is reached: 

 

>$�	, #� � $�	, #� t9�	, 	�>	 * h i�	, D�>D>	  h c�	, D�G
@

G
@ >D> @̀u

* $�	, #� 12 �h c�	, D�>D�G
@

f >	 

 

Given,   "�	, #� �  C i�	, D�>DG@  

(�	, #� �   C c�	, D�>DG@  

<�	� � 9�	, 	�,            

 

the equation can be written as required. 

 

Proposisiton 3.2.1. v asserts the relationship between the forward rate dynamics and 

the bond price dynamics. After constructing the relationship between the forward 

rates, bond prices and the short rate dynamics the Jarrow Turnbull (1995) model 

which accepts the Heath, Jarrow and Turnbull (1992) forward rate model imposing 

the exogenous stochastic structure upon the forward rates instead of zero coupon 

bond prices as a basis will be constructed.  
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CHAPTER 4 

 

 

THE JARROW-TURNBULL (1995) MODEL 

 

 

 

The Jarrow-Turnbull (JT) model introduces a reduced form approach to the pricing 

of derivatives that involve credit-risk. This model takes the stochastic term structure 

of interest rates and the stochastic maturity-specific credit-risk spread as given. Once 

these term structures are determined, the option-type securities are priced by a 

martingale measure under the no-arbitrage assumption. In this thesis, the JT model is 

used to price corporate bonds that are subject to default.  

 

The JT model is built on the Heath-Jarrow-Morton (HJM) model which was 

introduced in a 1992 study. The HJM model is an improvement of short-term interest 

rate models. Working with short-term interest rate models has some advantages. 

First, these models specify the short-term rate as the solution of a stochastic 

differential equation. These stochastic equations allow the Markov process and 

partial differential equations to be used which further makes it possible to derive 

analytical formulas for the price of bonds. However, these models also have some 

drawbacks. First, the models attempt to explain the economy by means of only one 

variable (the short-term interest rate). Second, if the short-term interest rate model is 

made more realistic, then the inversion of the yield curve within the model becomes 

problematic since such an inversion would require the incorporation of all available 

information into the yield curve and would rely on the markets being dynamically 

complete. With these models, maturity preferences of investors are embedded into 

the observable term structure, and, thereby,  arbitrage opportunities among bonds of 

different maturities are precluded (Kijima and Muromachi, 2000) . 
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4.1 The Heath- Jarrow-Morton (HJM) Model (1992) 

 

Heath, Jarrow and Morton use the entire forward rate curve as the state variable in 

their model. The HJM model generalizes the Ho and Lee model (1986) which takes 

the initial bond price as a given and the bond price process as exogenous in a discrete 

trading economy. The Ho and Lee model is a single factor model causing the bonds 

of all maturities to become perfectly correlated. Also, during parameter estimation, 

as the step sizes get larger, the parameters become dependent on each other. The 

generalization of this model into continuous time eliminates this estimation 

difficulty.  

 

The HJM model takes the initial forward rate curve and a family of potential 

stochastic processes for its subsequent movements as a given. Typically, in such 

models, zero-coupon bond prices with a fixed maturity and thereby a time-varying 

volatility are used to back out the yield curve. However, the HJM model imposes an 

exogenous stochastic structure upon forward rates by means of which forward rate 

volatilities become constant. These constant volatilities are consistent with a fixed 

value for a zero coupon bond as well (Heath et al., 1992). The model does not require 

an inversion of the term structure in order to back out the market prices of risk from 

contingent claim values since such a requirement would be highly demanding due to 

the nonlinearity of the bond pricing formulae.  

 

The HJM model is based on an equivalent martingale measurement technique. In 

order to understand the framework of the model, initially all parameters are 

considered under an objective probability measure �. It is also necessary to make 

some assumptions: 
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Assumption 4.1.1:  

For every fixed # � 0, the forward rate 9�. , #� where # denotes the maturity has a 

stochastic differential with respect to t which is given by the following under the 

objective measure �: 

 >9�	, #� � i�	, #�>	 * c�	, #�> ẁ �	�                                                                       �4.1.1� 9�0, #� � 9x�0, #�                                                                                                          �4.1.2� 

 

In this equation, ̀w  is a (d-dimensional) P-Wiener process, i�. , #� and c�. , #� are 

adapted processes. 

 

The above equation is a stochastic differential in the 	 variable for each fixed choice 

of # which serves as a parameter. {9x�0, #�; # � 0� is the initial condition which 

provides a perfect fit between the observed and theoretical bond prices at t=0. 

 

Here the problem is characterizing i�	, #� and c�	, #� in such a way that there is no 

arbitrage opportunity. The following theorem makes this possible by means of the 

HJM drift condition: 

 

Theorem 4.1.1: Assume that the family is given by  

 >9�	, #� � i�	, #�>	 * c�	, #�> ẁ �	�  

 

 and the bond market is free of arbitrage. In that case, there exists a d-dimensional 

column -vector process  λ(t)=[y�(t),… yz(t)&{  with the property that for all # � 0 and 

for all 	 � #, there is 

 

 i�	, #� � c�	, #� C c�	, D�{G@ >D  c�	, #�λ�t�                                                    �4.1.3� 

In this equation, the symbol prime (‘) denotes the transpose. 
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Proof:  In proposition 3.2.1, it is proven that the bond dynamics satisfies the 

following equation if 9�	, #� satisfies >9�	, #� � ^�	, #�>	 * c�	, #�> ẁ �	� 

>$�	, #� � $�	, #� d<�	� * "�	, #� * 12 e (�	, #� efg >	 * $�	, #�(�	, #�> ẁ �	� 

     where  

 

     "�	, #� �  C i�	, D�>DG@  

     (�	, #� �   C c�	, D�>DG@  

 

Thus the risk premium is given by 

"�	, #� * 12 e (�	, #� ef 

 

In an arbitrage free market, there exists a market price of risk process, λ(t), which is 

common to all assets in the market and satisfying  

 i~�	�  < � c~�	�y�	� P a.s 

 

when the price process satisfies 

 >��	� � ��	�i~�	�>	 * ��	� c~�	� > ẁ �	� 

 

Therefore d-dimensional column vector process y exists such that 
     

"�	, #� * �f e (�	, #� ef=∑ (��	, #�z��� y��	� 

 

Taking the derivative of the above equation with respect to T the following result is 

obtained. 
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 i�	, #�  c�	, #�. (�	, #� �  c�	, #�y�	� 

 

Rearranging the above equation the result is obtained.  

 

Now for risk neutral modeling, forward rates will be assumed to be driven by the 

martingale measure Q as: 

 >9�	, #� � ^�	, #�>	 * c�	, #�>`�	� 9�0, #� � 9x�0, #� 

 

where W is a d- dimensional Q Wiener process. Since we are studying with 

martingale probability measures, we no longer have to worry about the arbitrage as 

martingale probabilities directly provide the arbitrage free prices. However, we now 

have two equations for the bond prices one of which is related to the short rate 

process and the other one is related to the forward rate process.  

 

$�0, #� � Kp$ � h 9�0, D�>D  �G
�  

$�0, #� � ��%Kp$ � h <�D�>D �G
� & 

 

where the short rate and the forward rate are related to each other by <�	� �  9�	, 	�. 

For the above formulae to hold simultaneously, HJM imposes a consistency relation 

between α and σ in the forward rate dynamics. 

 

Proposition 4.1.1: Under the martingale measure Q, the processes i and c must 

satisfy the following relation, for every 	 and every # � 	. 

 

i�	, #� � c�	, #� C c�	, D�{G@ >D  
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Proof:  From proposition 3.2.1 it is known that  

 

>$�	, #� � $�	, #� d<�	� * "�	, #� * 12 e (�	, #� efg >	 * $�	, #�(�	, #�> ẁ �	� 

 

Under martingale measure, the local rate of return should be equal the short rate <, 

leading the following equation. 

<�	� * "�	, #� * 12 e (�	, #� ef� <�	� 

Thus "�	, #� * �f e (�	, #� ef� y � 0  
 

The result is obtained by theorem 4.1.1.  

 

Proposition 4.1.1 implies that if forward rate dynamics can be specified, then the 

volatility structure can be specified. Then the drift parameters will be uniquely 

determined. Below is an algorithm to use the HJM model. 

 

1- Specify, by your own choice, the volatilities  

2- The drift parameters are now given by  

i�	, #� � c�	, #� h c�	, D�{G
@ >D 

3- Observe the today’s forward rate structure form the market. 

 

{ 9x�0, #�; # � 0� 
 

4- Integrate in order to get the forward rates as  

 

9�	, #� � 9x�0, #� * h i�D, #�>D * h c�D, #�@
�

@
� >`�D� 
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5- Compute the bond prices using the formula 

$�	, #� � exp � h 9�	, D�>DG
@ � 

 

4.2 Description of the economy of JT(1995) Model 

 

The economy is assumed to be frictionless. The trading horizon is set to be %0, �& 
which can be either discrete or continuous. Default free zero coupon bonds of all 

maturities and ABC zero coupon bonds of all maturities are traded. 

 

Let $��	, #� be the time t dollar value of the default-free zero coupon bond paying a 

certain dollar at # � 	. 

 

 $��	, #� > 0 

 $��	, 	� � 1 (in order to be default free) 

 

Let b��	, #� be the time t value of the ABC zero coupon bond promising a dollar at 

T≥t. 

 b��	, #� > 0 (to avoid dividing by zeros) 

 

Now $��	, #� and K��	� will be defined in order to be to used in the decomposition of b��	, #� into two hypothetical quantities, namely a zero coupon bond denominated in 

a hypothetical currency, a promised ABC dollar and hereafter called as ABC and a 

price in dollars of ABC, which can be interpreted as spot exchange rate of dollar per 

ABC. Let the $��	, #�and K��	� denote the following:     

 $��	, #� : is the time t value in units of ABCs of one ABC delivered at T.  K��	�     : is the time t dollar value of one promised ABC dollar delivered at t. 
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K��	� �   b��	, 	�    
 

In order to decompose b��	, #� the spot exchange rate analogy will be used. If ABC 

is not in default, the exchange rate will be 1, meaning that each promised ABC dollar 

will exactly be worth a dollar; but if ABC defaults then the exchange rate will be 

smaller than 1, meaning that each promised ABC dollar may be worth less than a 

dollar. 

 

Therefore the ABC dollar paying zero coupon bond is constructed as: 

 

$��	, #� � b��	, #�K��	�  

By rearranging, the following equation is obtained: 

      b��	, #� �  $��	, #�. K��	� 

 

The equation displays that dollar value of an ABC bond is the ABC dollar value of 

the bond times the spot exchange rate of dollars per ABC. In their paper, Jarrow and 

Turnbull prefers using the foreign currency analogy since the foreign currency option 

pricing techniques are well understood and they want to apply these techniques to 

price the derivatives involving credit risk. 

 

Furthermore, by definition of K��	�; ABC dollar paying zero coupon bond is default 

free in ABC. 

 

$��#, #� � b��#, #�K��#� � b��#, #�b��#, #� � 1 
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K��	� can be interpreted a pay off ratio. The decomposition will be used to 

characterize the term structure of ABC bond in terms of $��	, #� and the pay off ratio  K��	� separately. 

 

The following table presents a summary of the bond prices and their riskiness 

 

Table 4.2.1: Summary of Bond Prices    b��	, #� Promises a dollar Risky 

$��	, #� Pays  an ABC dollar Default free in ABC 

$��	, #� Pays a certain dollar Default free in dollar 

   

4.3 Two- Period Discrete Trading Economy 

 

After defining the relevant bond prices, the study will continue with the two period 

discrete trading economy to clarify the bond price dynamics. In this economy there 

are two time periods with trading dates t � {0, 1, 2}. This section will include the 

term structure of the default free zero coupon bonds and the ABC zero coupon 

bonds. 

 

4.3.1 Term Structure of the Default Free Zero Coupon Bonds 

 

The default free zero coupon’s bond price, $��	, #�, is assumed to depend only on 

the spot interest rate. The definitions and the assumptions will be asserted in the 

following items. These items will include the features related to the default free zero 

coupon bond price, the current, up state and down state spot interest rate, the risk 

neutral or the pseudo probability of a rise in the spot interest rate and the money 

market account. 
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a- The current one period spot interest rate is defined by;  

 

<�0� � 1$��0,1� 

 

where $��0,1� is the time 0 price of a default free zero coupon bond with maturity 1. 

 

b- If the interest rate rises at time 1, then the one period spot interest rate is 

defined by; 

 <�1�l � 1/$��1,2�l  

 

where $��1,2� is the time 1 price of a default free zero coupon bond with maturity 2. 

 

c-  If the interest rate decreases at time 1, then the one period spot interest rate is 

defined by; 

 <�1�z � 1/$��1,2�z 

 $��1,2�l ' $��1,2�z is assumed to hold without loss of generality. 

 

d- The risk neutral probability of a rise of the spot interest rate is denoted by �� 

e- It is assumed that the investor invests an amount of 1$, thus  

 

i) ?�0� �  1. (Initial amount of money) 

ii)  ?�1� �  <�0�. (Time t=1 amount of money invested at time t=0 since 1$ is 

invested with an interest rate of <�0�) 

iii)  ?�2�l � <�0�<�1�l  

iv) ?�2�z � <�0�<�1�z  
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The following graph demonstrates the stochastic evolution of the spot interest rates 

and thereby the default free zero coupon bond price process at time t = {0, 1, 2}. 

 

Graph 4.3.1.1: The Default Free Zero Coupon Bond Price Process For Two 

Period Economy 

 

 

 

 

4.3.2 The Term Structure of ABC Bond 

 

This section includes the stochastic evolution of the default-risky zero coupon bond. 

If the ABC bond has not defaulted, the payoff is the face value of the bond, meaning 

that the pay off ratio is equal to 1. However, if the default has occurred then the 

payoff is less than the face value of the bond yielding a pay off ratio smaller than 1. 

 

Since the absolute priority rule is often violated as Eberhart, Moore and Roenfeldt 

(1990) asserted and the payoff is affected by various factors, modeling the payoff at 

default becomes complicated. Consequently, Jarrow and Turnbull preferred to take 

the payoff ratio at default as an exogenously given constant as a first approximation 
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and pay off per unit of face value is denoted by δ which is assumed to be same for all 

instruments in a given credit risk class. 

 

The spot exchange rate has been defined, to utilize the foreign currency analogy, at 

time 	 �  0 as K�0� and the equality is set to be K�0� � 1. Since the ABC bond is 

default risky, at 	 � 1 and 	 � 2, the spot exchange rate takes different values. Due 

to the relation between the binomial process and the Poisson process, J/T decided to 

choose the discrete time binomial process for the evolution of the spot exchange rate. 

Poisson random variable may be used to approximate the binomial random variable 

when the binomial parameter � is large and the $ is small (Ross, 2007). 

 

The pseudo- probability of default at 	 � 1 is denoted by λµ�. Consequently, the 

pseudo-probability that the default does not take place at 	 � 1 is (1  λµ�). 

The model is constructed in a way that if the default occurs at 	 � 1 then the ABC 

bond maintains default at 	 � 2. Thus the pay off ratio at 	 � 2 is fixed at � per unit 

of face value. If the default does not occur at 	 � 1, the pseudo probability of default 

at 	 � 2 is y��. 

 

The following graph demonstrates the stochastic evolution of the pay off ratio 

process for ABC debt in the two- period economy. The payoff ratio depends on the 

seniority of the debt. 
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Graph 4.3.2.1: The Stochastic Evolution of the Pay off Ratio for ABC Zero 

Coupon Bond in Two-Period Economy. 

 

 

ABC bond has been constructed in a hypothetical currency and it is default risky. 

Therefore the term structure of the ABC Bond will be determined by bankruptcy 

cases as well as the spot interest rate. 

 

The following graph shows the stochastic evolution of the ABC zero- coupon bond 

in the hypothetical currency ABC. The similarity between the graph 4.3.1.1 and the 

graph 4.3.2.2 can be noticed. However, in the last graph it can be seen that the 

bankruptcy cases are added since the ABC bond is default risky in dollar. 

Nevertheless as the ABC bond is default free in the hypothetical currency ABC, at 

maturity the investor gets 1 ABC dollar in each case. If the ABC Bond defaults then 

1ABC dollar is worth less than 1 dollar whereas if default does not take place then 1 

ABC dollar worth is worth exactly 1 dollar. 

 

 

 

 



34 
 

Graph 4.3.2.2:  The stochastic evolution of the ABC zero coupon bond price 

process for the two-period economy in terms of the hypothetical currency ABC 

dollar. 

 

 

 

 

  

Jarrow and Turnbull (1995) assume that the spot interest rate process and the 

bankruptcy process are independent under the pseudo probabilities to simplify the 

analysis. If the market prices of risk are nonrandom in an economy, then the spot 

interest rate process and the bankruptcy process are independent under the true 

probabilities. Therefore the graph demonstrating ABC zero coupon bond price 

process for the two-period economy in dollars (not in ABC dollars since this type of 

bond is default free in ABC dollars) is constructed by multiplying the pseudo 

probabilities in Graph 4.3.2.2 and Graph 4.3.2.3.                                                  
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Graph 4.3.2.3: The ABC zero coupon bond price process for the two period 

economy in dollars 

 

  

  

4.3.3 Arbitrage free restrictions  

 

Definition 4.3.3.1: The market is viable if there is no arbitrage opportunity. 

 

Theorem 4.3.3.1: The market is viable if and only if there exists a probability 

measure Q equivalent to P such that the discounted prices of assets are Q martingales 

(Harrison and Pliska, 1981). 

 

Propositon 4.3.3.1: Assume that the general binomial model is free of arbitrage, then 

it is complete. 

 

Consequently, the theorem implies that the nonexistence of arbitrage opportunities is 

equivalent to the existence of pseudo probabilities��, y�� and y�� such that the 

discounted prices; 
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Or�@,����@� , 

Or�@,f���@� , 
���@,����@� , 

���@,����@�  are Q martingales, meaning that the expected values are 

equal to the equal current values. That is, the absence of arbitrage opportunities is 

guaranteed by the existence of an equivalent martingale measure. As Harrison and 

Pliska asserted in 1981, the market is complete when the equivalent martingale 

measure is unique. In this case, all claims can be replicated by dynamic self 

financing trading strategies in the primary traded assets with unique prices 

determined by the cost of the replication strategy (Jarrow and Madan, 1995).  

 

Therefore necessary and sufficient conditions for the absence of arbitrage and the 

existence of the complete market and thereby the existence of unique pseudo 

probabilities are given in this section. 

 

To obtain the pseudo probabilities, ��, y�� and y�� the default free bond market and 

the default risky bond markets  need to be investigated separately.  �� being the risk 

neutral probability of a rise of the spot interest rate is determined from the 

characteristics of the default-free bond market whereas the y�� and y�� are 

determined in the default risky bond market since they indicate the pseudo 

probability of default at 	 � 1 and 	 � 2 respectively.  

 

Proposition 4.3.3.2: If the binomial model is free of arbitrage, then the arbitrage free 

price of a contingent claim is its discounted expected value calculated by the unique 

pseudo probability. 

 

Graph 4.3.1.1 showing the default free zero coupon bond price process for two- 

period economy shows that; 

 

$��0,2� � % ~r  Or��,f�����M ~r�  Or��,f��&����                                                                   �4.3.3.1�                                              
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This equation demonstrates the fact that the time 0 long term zero coupon bond price 

is its time 1 discounted expected value calculated by pseudo probability  ��.  

 

If  �� is calculated from the above formula, following expression for �� is obtained 

  

 �� � %  Or��,f��M����Or��,f�&%  Or��,f��M  Or��,f��&                                                                                �4.3.3.2� 

 

According to the equation  �� can exist and be unique and 0 <  �� ' 1 if and only if  

 $��1,2�l ' <�0�$��0,2� '   $��1,2�z                                                                    �4.3.3.3� 

 

This equation states that the long term zero coupon bond should not be dominated by 

the short term zero coupon bond. 

 

The conditions for the existence and uniqueness of y�� and y�� will be determined 

investigating the default risky bond market. Therefore Graph 4.3.2.3  should be 

investigated.  

 

If the spot interest rates rise and bankruptcy occurs at time 1, K�	� turns out to be � by Graph 4.3.2.1 and thus b��1,2�l,� �  �$��1,2�l,�  

b��1,2�l,� �  �$��1,2�l,�=
������                                                                      �4.3.3.4� 

 

If the spot interest rates rise but the bankruptcy does not occur at time 1, then the pay 

off ratio becomes 1. Thus; 

 

b��1,2�l,� �  $��1,2�l,� � %�������M����&�����                                                        �4.3.3.5� 
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If the spot interest rates decrease and the bankruptcy takes place at time 1, the pay off 

ratio becomes δ and thus; 

b��1,2�z,� �  �$��1,2�z,�=
������                                                                      �4.3.3.6� 

 

If both the spot interest rates decrease and the bankruptcy occurs then the payoff 

ratio becomes 1 and thus; 

 

b��1,2�l,� �  $��1,2�l,�=
%�������M����&�����                                                           �4.3.3.7� 

 

Equation 4.3.3.7 indicates that, the time 1 long term ABC bond price is its time 2 

discounted expected value calculated by the pseudo-probabilities. From equations 4.1.3.3.5 and 4.1.3.3.7, y�� is derived and it is; 

 

y�� � ��MO���,f��,�������%�M�& � ��MO���,f��,�������%�M�&                                                      �4.3.3.8� 

 

Thus, y�� exists, is unique and satisfies 0 < y��<1 if and only if 

 

$��1,2�l,� � ������       (from equation 4.1.3.3.4)                                              �4.3.3.9� 

$��1,2�z,� � ������       (from equation 4.1.3.3.6)                                           �4.3.3.10�  

 

In order that 0 ' y�� ' 1 equation 4.3.3.8 implies that  

 

������ ' $��1,2�l,� ' ������                                                                              �4.3.3.11� 

 

������ ' $��1,2�z,� ' ������                                                                              �4.3.3.12� 
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For y�� to be unique, two sides of the equations should be equal implying the 

following equation: 

 <�1�l$��1,2�l,� � <�1�z$��1,2�z,�                                                              �4.3.3.13� 

 

Equation 4.3.3.9 and 4.3.3.10 can be interpreted as the equality of the price of a 

default free bond in units of dollars and the ABC denominated ABC bonds if the 

bankruptcy occurs. This equality is because of the absence of the uncertainty after 

the default. However, if the bankruptcy does not occur at 	 � 1 then the dollar value 

of the ABC zero coupon bond is less than the dollar value of a default free zero 

coupon bond price and is greater than a claim paying δ dollars for sure which is 

asserted by equation 4.3.3.11 and equation 4.3.3.12. 

 

The independence of the pseudo probability y�� from the spot interest rate process is 

guaranteed by Equation 4.3.3.13.  

The default risky bond market will also be analyzed so as to determine yμ� by using 

time 0 default risky bond market since yμ� is the pseudo- probability of default 

at 	 � 1. Graph 4.3.2.3 is consulted again.  

 

b��0,1� � $��0,1� � %��r����M��r�&����                                                                �4.3.3.14� 

 

b��0,2� � $��0,2�
� ����y����$��1,2�l,� * ���1  y���$��1,2�l,� * �1  ���y���$��1,2�z,� * �1  ����1  y���$��1,2�z,��<�0�  

                                                                          �4.3.3.15� 

 

These conditions ensure that time 0 prices are their time 1 discounted expected 

values calculated by the pseudo probabilities. Substitution of equation 4.3.3.2 and 
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equation 4.3.3.8 into equation 4.3.3.15 and then simplification gives us the equation 4.3.3.16. 

 b��0,2� � $��0,2� �  $��0,2�%y��� * �1  y���<�1�z$��1,2�z,�&            �4.3.3.16� 

 

By equations 4.3.3.14, 4.3.3.15 and 4.3.3.16 y�� is obtained as follows: 

 

y�� � %�M����O���,��&%�M�&                                                                      

        � ������O���,f��,�M���r,���r�r,���
������O���,f��,�M��                                                                               �4.3.3.17� 

 

Thus, y�� exists, is unique and satisfies 0<  y�� ' 1 if and only if; 

 

����� ' $��0,1� ' 1/<�0�                                                                               �4.3.3.18� 

 �$��0,2� ' $��0,1� ' $��0,2�<�1�z$��1,2�z,�                                           �4.3.3.19� 

 

������O���,f��,�M���r,���r�r,���
������O���,f��,�M�� � %�M����O���,��&%�M�&                                                                 �4.3.3.20� 

 

Equation 4.3.3.18 asserts that the dollar value of the ABC zero coupon bond 

maturing at 	 � 1 must be worth less than receiving a dollar for sure and greater than 

receiving � dollars for sure. Equation 4.3.3.19 states that the ABC zero coupon bond 

maturing at 	 � 2 must be worth more than receiving � dollars for sure and less than 

receiving <�1�z$��1,2�z,� dollars for sure at 	 � 2. Equation 4.3.3.20 guarantees 

that under the pseudo probabilities, the bankruptcy process is independent of the 

default free spot interest rate process which is imposed for analytical convenience.  
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From now on, Jarrow and Turnbull assume that the conditions for the existence and 

uniqueness conditions for the pseudo probabilities��, y�� and y�� hold. That is the 

market is assumed to be arbitrage free and complete. 

 

4.3.4 ABC Zero Coupon Bonds 

 

With the assumption of the existence and uniqueness of the pseudo probabilities and 

thereby the market completeness and absence of arbitrage; ABC zero coupon bond 

prices can be stated in an equivalent form by means of the discounted expected 

values. 

 

Expected pay off ratios at future dates can be calculated by time t conditional 

expected value under the pseudo probabilities. Namely, ��@�. � denotes the time t 

conditional expected value under the pseudo probability. 

 

Thus, the expected pay off ratios at future dates can be calculated by means of Graph 4.3.2.1 as follows: 

 

���.K��2�/ � d � �9 _^��<F$	 ^	 	 � 1y��� * �1  y����9 �6	 _^��<F$	 ^	 	 � 1�                          
                                                                                                                                             �4.3.4.1� 
 

Equation 4.3.4.1 expresses that the expected pay off ratio of 	 � 2 at 	 � 1, is � if 
the bankruptcy occurs since it was assumed that if the bankruptcy occurs, it will 

remain until maturity; y��� * �1  y��� if the bankruptcy does not take place at 	 � 1. 

 ���.K��2�/ � y��� * �1  y���%y��� * �1  y���&                                       �4.3.4.2� 
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Equation 4.3.4.2 signifies that the expected pay off ratio at 	 � 2 as viewed from 	 � 0. Tracking Graph 4.3.2.1, it can be seen that the two states of the world, 

bankruptcy and nonbankruptcy are taken into account and the expected value is 

calculated. 

 ���.K��1�/ � y��� * �1  y���                                                                       �4.3.4.3� 

 

Equation 4.3.4.3 specifies the expected pay off ratio at 	 � 1 when looked at 	 � 0. 

What must be noticed in these equations is that all of them are less than 1 since all of 

them are related to bankruptcy in any state of the world.  

 

The equations referred imply equation 4.3.4.4 

 b��	, #� � $��	, #� ��@.K��#�/                                                                          �4.3.4.4� 

 

The decomposition can be imposed because of the independence assumption under 

the pseudo probabilities. In an arbitrage free market, the ABC zero coupon bond 

price is its discounted expected payoff at time T under pseudo probabilities. Equation 4.3.4.4 makes evident that the discount factor is the default free zero coupon bond 

price. 

 

By Equation 4.3.4.4 expected pay off ratio at 	 � # can be estimated if b��	, #�and $��	, #� are known. On the other hand, if someone is given the estimation of the pay 

off ratio �, one can estimate the pseudo probabilities recursively. Namely, y�� can be 

estimated if the default free zero coupon bond prices, $��0,1� and the time 0 value of 

the ABC zero coupon bond promising a dollar at # � 1, b��0,1� are given by 

equation 4.3.4.4 and equation 4.3.4.3. Then, having $��0,2� and b��0,2�,  y�� can be 

estimated by equation 4.3.4.4 and equation 4.3.4.2. The following graph shows the 

estimation procedure of the pseudo probabilities: 
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Graph 4.3.4.1: Estimation procedure of the pseudo probabilities 

                                                     

 

 

 

 

 

 

 

 

 

 

 

Equation 4.3.3.4 shows that the ABC zero coupon bond is strictly less valuable than 

a default free zero coupon bond of equal maturity since ��@.K��#�/ is strictly less than 

1. Consequently, the credit spread must be positive in a bankruptcy. 

 

4.3.5 ABC Coupon Bonds 

 

In this section the coupon payments will be included in the computations. Jarrow and 

Turnbull assume that ABC coupon bearing bond promises �� dollars at 	 � 1 and �f dollars at 	 � 2 where �f coupon includes the principal payment too. The coupon 

bearing bond can be considered as a portfolio consisting of �� zero coupon bonds 

with maturity 1 and �f zero coupon bonds with maturity 2. 

 

Let  �	� denote the time 	 dollar value of the ABC coupon bond. As stated, the price 

of ABC coupon bond is the discounted expected payoff due to the risk neutral 

valuation using the pseudo probabilities. Consequently the following result is 

obtained: 

$��0,1� and b��0,1� 

y�� 

$��0,2� and b��0,2� 

 y�� 
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 �0� �  ��� j¡�¢�������� * ¡�¢��f���f� k                                                                          �4.3.5.1� 

�  �0� �  ����� j¢�������� � * �f����¢��f���f� k  

�  �0� � ��b��0,1� * �fb��0,2� (by equation  4.3.4.4)                       �4.3.5.2� 

 

Equation 4.3.5.2 offers the advantage of deducing the prices of the ABC zero coupon 

bonds, b��	, #� from the traded prices of only a few issues of ABC coupon bearing 

bonds, where ?�	� is the money market account. 

 

4.4. The Continuous Trading Economy 

4.4.1 Derivation of the stochastic processes for the default free zero coupon 

bond, the ABC bond and the money market account 

 

So far, the two period discrete time economy has been described so as to extend it to 

its multi period, continuous time limit. Under the pseudo probabilities, the 

bankruptcy process for ABC bond and the default free term structure are 

independent. 

 

The trading is assumed to take place over the time interval [0,τ]. Let; 

 ��x: the time of the bankruptcy for ABC firm. It is assumed to be exponentially 

distributed over [0,∞) with parameter y� with the fact that alternative distributions 

may be utilized. In this section the basic definitions of forward rate, spot rate and the 

money market account will be used The indices 0 and 1 will differentiate the default 

free and the default risky bonds. Namely, 9��	, #�, <��	, #�^�> ?��	, #� will 

characterize the default free bond whereas 9��	, #�, <��	, #�^�> ?��	, #� will 

characterize the default risky bond. 
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The exogenous stochastic structure will be imposed by the proceeding assumptions 

on the forward rates 9��	, #�, 9��	, #� and the payoff ratio K��	� to be consistent with 

HJM. 

 

Assumption 4.4.1.1: Default free forward rates 

 >9��	, #� � i��	, #�>	 * c�	, #�> �̀�	� 

 

where ̀ ��	� refers to a Brownian motion, which is a real valued continuous process 

with independent and stationary increments. c�	, #� is a random shock with volatility 

and it is deterministic. i��	, #� is the drift. (i��	, #�, c�	, #�) satisfy the following 

smoothness and boundedness conditions:  

 

1- i��	, #�, cf�	, #� are +� in 	 

2- i��	, #� is in +��,�� in (	, #� 

3- c�	, #� is +�f,�� 
 

The assumption on the stochastic movement of the default free forward rates, imply 

that the default free forward rates change is equal to a drift plus a random shock with 

volatility. The volatility function is assumed to be deterministic in order to facilitate 

the derivation of the closed form solution.  

The second assumption is for the ABC bonds. 

 

Assumption 4.4.1.2: ABC Forward rates 

 

>9��	, #� � £%i��	, #�  ¤��	, #�y�&>	 * c�	, #�> �̀�	�                            �9 	 ' ��x     %i��	, #�  ¤��	, #�y�&>	 * c�	, #�> �̀�	� * ¤��	, #�    �9 	 � ��xi��	, #�>	 * c�	, #�> �̀�	�                                                        �9 	 � ��x
� 
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where i��	, #� and ¤��	, #�satisfy the following measurability and integrability 

conditions.  

1- i��	, #�, cf�	, #� and ¤��	, #�y� are +� in 	 

2- i��	, #�  and ¤��	, #�y� in +��,�� in (	, #� 

 

As seen from the equation, the process for the ABC forward rates is very similar to 

the default free forward rates.  Before the bankruptcy, the drift is adjusted downward 

to reflect the expected change ¤��	, #�y�. This term is added to the equation at the 

bankruptcy. After the bankruptcy the forward rate process is the same as the default 

free forward rate process except the subscripts. 

 

Assumption 4.4.1.3: The ABC payoff ratio 

 

K��	� � d1    �9 	 ' ��x��   �9 	 � ��x � 
where 0<��<1. 

 

As described before, the payoff ratio before the bankruptcy is 1 and it is equal to �� 

at the time of the bankruptcy. This equation is the continuous time limit of the 

bankruptcy process in Graph 4.3.2.1. The payoff ratio is determined by the seniority 

of the debt likewise in the two period discrete time economy. For the simplicity of 

the estimation and the computation the payoff ratio is assumed to be constant, though 

this assumption can be relaxed and the payoff ratio can be random and dependent on 

an additional Brownian motion representing the randomness generating the value of 

the firm.  

 

Once given the forward rate and payoff ratio processes the stochastic processes of the 

default free bond price, default risky ABC bond price and the money market account 

can be derived. These are the continuous time limits of the graphs 4.3.1.1 and 4.3.2.3 
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4.4.1.1. Derivation of the stochastic process for Y¥�W, X� 

 

Proposition 4.1.1.c asserts that, if 9��	, #� satisfies  

  >9��	, #� � i��	, #�>	 * c�	, #�> �̀�	� then $��	, #�  satisfies 

>$��	, #� � $��	, #� d<��	� * "�	, #� * 12 e (�	, # efg >	 * $��	, #�(�	, #�> �̀�	� 

  where e. e denotes the Euclidean norm and 

 

 "�	, #� �  C i��	, D�>DG@  

 (�	, #� �   C c�	, D�>DG@  

 

Dividing by $��	, #�, the following result is obtained; 

 >$��	, #�$��	, #� � d<�	� * "�	, #� * 12 e (�	, # efg >	 *  (�	, #�> �̀�	� 

The equation can be simplified by denoting; 

¦��	, #� �  h i��	, D�>DG
@ *  12 e (�	, #� ef 

 

Thus the equation turns out to be; 

 

zOr�@,G�Or�@,G� � �<�	� * ¦��	, #��>	 *  (�	, #�> �̀�	�                                        �4.4.1.1.1� 

 

Eqn.4.4.1.1.1 is the return process followed by the default free zero coupon bond. 

The return equals to the default free interest rate plus a risk premium plus a random 

shock with volatility (�	, #�. The volatility function goes to zero as 	 approaches to #, i.e as the bond matures. 
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4.4.1.2. Derivation of the stochastic process for §¨�W, X� 

 

The return process of the ABC zero coupon bond imitates the return process of the 

default free zero coupon bond. Before the bankruptcy, the return equals to a drift 

adjusted for a change at the time of the bankruptcy plus a random shock with 

volatility (�	, #�. At the bankruptcy, the return varies by ���K©��@,G�-1).  

 

Assumption 4.4.1.2 imposes the following process for the forward rate before the 

bankruptcy. >9��	, #� � %i��	, #�  ¤��	, #�y�&>	 * c�	, #�> �̀�	�                            �9 	 ' ��x 

$��	, #� � exp � h 9�
G

@ �	, D�>D� 

9��	, #� � 9��0, #� * h %i��F, #�  ¤��F, #�y�&>F@
� * h c�F, #�> �̀

@
� �F� 

Let m@ be C  9��D, D� * 9��D, D�  9��	, D�G@ >D     

where $��	, #� � exp �m@�     
Let 7�p� �  Kq then, 7ª�p� � Kq  and 7ªª�p� � Kq 

$��	, #� � exp�m@� � exp�m�� * C Kns@� >mH * 1/2 C Kns> ' m, m �H@�        

>$��	, #� � Kno>m@ * 12 Kno> ' m, m �@ 
Then, 

m@ �  h 9��D, D�>D  h h i��F, D�@
�

G
@

G
@ >F>D

 h h ¤��F, D�y�>F>D  @
�

G
@ h h c�F, D�@

�
G

@ > �̀�F�>D
* h h i��F, D�>F>DH

�
G

@
* h h ¤��F, D�y�>F>D *H

�
G

@ h h c�F, D�H
�

G
@ > �̀�F�>D 
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By Fubini Theorem and interchanging the integrals, the following equation is 

obtained. 

m@ �  h 9��D, D�>D * h h i��F, D�G
l

G
@

G
@ >D>F

* h h ¤��F, D�y�>D>F *G
l

G
@ h h c�F, D�G

l
G

@ >D> �̀�F� 
m� �  h 9��D, D�>D * h h i��F, D�G

l
G

�
G

� >D>F
* h h ¤��F, D�y�>D>F *G

l
G

� h h c�F, D�G
l

G
� >D> �̀�F� 

m@ � m� * h 9��D, D�>D  h h i��F, D�G
l

@
�

@
� >D>F

 h h ¤��F, D�y�>D>F *G
l

@
� h h c�F, D�G

l
@

� >D> �̀�F� 
>m@ � 9��	, 	�>	  h i��	, D�G

@ >D>	  h ¤��	, D�y�>D>	G
@ * h c�	, D�G

@ >D> �̀�	� 

>$��	, #� � $��	, #��9��	, 	�>	  h i��	, D�G
@ >D>	  h ¤��	, D�y�>D>	G

@
* h c�	, D�G

@ >D> �̀�	�� * 12 $��	, #��h c�	, D�>D�G
@

f >	 

since > ' m, m �@� �f �C c�	, D�>D�G@ f >	. 

 

 

Let, 

¦��	, #� �  h i��	, F�G
@ >F * 12 (�	, #�f 

«��	, #� �  h ¤��	, F�>FG
@  

 

Then >$��	, #�/$��	, #� can be written as follows; 



50 
 

 >$��	, #�$��	, #� � %<��	� * ¦��	, #�  «��	, #�y�&>	 * (�	, #�> �̀�	� 

 

Since K��	� is 1 and since there is no jump making b��	, #� �  b��	_, #� before 

bankruptcy, the equation can be written as follows; 

 >b��	, #�b��	_, #� � %<��	� * ¦��	, #�  «��	, #�y�&>	 * (�	, #�> �̀�	� 

 

Since the bankruptcy process follows a Poisson process, the jump process should be 

taken into account. Therefore, Ito-Doeblin formula is applied to �p� � Kq. 
 

To derive the equation for b��	, #� at the bankruptcy  
$��	, #� � exp � C 9�G@ �	, D�>D� is set. Then 

 

�  567$��	, #� � C 9�
G

@ (t,s)ds 

� h 9�0, D�>D * h h i��	, D�>F>D * h h ¤��	, D�>F>D
@

�

G

@

@

�

G

@

G

@
 

 

m � m° * C «��	, #� >��	� � m° * «��	, #���	� where m°is the continuous part. 

 Then 9�m@� � 

9�m�� * h 9ª
@

�
�mH�>mH° * 1

2 h 9ªª
@

�
�mH�> ' m° , m° � * ± 9�mH�  9�mH_�

�²H²@
 

� 9�m�� * h Kns
@

�
�<�D� * ¦��D, #��>	 *  (�D, #�> �̀�D�  y�«��D, #�>D

* 1
2 h Kns(�D, #�f

@

�
>D * ± Kn�H�  en�H_�

�²H²@
 

Kn�H�  en�H_� � exp.m° * «��D, #���D�/  exp.m° * «��D, #���D_�/ 
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Let S�F� denote Kn�H� . Then en�H_� � K�u_�  

 

At bankruptcy, a single jump is observed. Thus µ�F_� is multiplied by ��. Moreover, 

since N(s) is 1 at jumps,  µ�F� � µ�F_��K©��@,G����. Then,  

 

µ�F�  µ�F_� � ¶µ�F_�.K©��l,G���  1/ ^	 ·Fa$D0          �9 	K<K �D �6 ·Fa$ � 
 

Thus, K�F�  µ�F_� can be written as   µ�F_�.K©��l,G���  1/∆��F�, therefore, 

 

± Kn�H�  en�H_�
�²H²@ � Kn�@�.K©��H,G���  1/ 

 

Finally, for the ABC zeros, >b��	, #�/b��	 , #�
� £ %<��	� * ¦��	, #�  «��	, #�y�&>	 * (�	, #�> �̀�	�                          �9 	 ' ��x%<��	� * ¦��	, #�  «��	, #�y�&>	 * (�	, #�> �̀�	� * .K©��@,G���  1/   �9 	 � ��x%<��	� * ¦��	, #�&>	 * (�	, #�> �̀�	�                                                    �9 	 � ��x

� 
 �4.4.1.2.1� 

 

Equation 4.4.1.2.1 expresses the return process of the ABC zeros. As seen before the 

bankruptcy, the return has a drift which is adjusted for the change at bankruptcy and 

a random shock with volatility (�	, #�. At the time of bankruptcy, the return process 

has an additional term .K©��@,G���  1/ due to the jump process occurring at 

bankruptcy. 
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4.4.2 Arbitrage- Free Restrictions 

In discrete time economy, the absence of the arbitrage is guaranteed by means of the 

existence of the unique equivalent pseudo probabilities under which the relative 

prices 
Or�@,����@� , 

Or�@,f���@� , 
���@,����@� , 

���@,����@�  are Q martingales which means that the expected 

values are equal to the equal current values since the absence of arbitrage 

opportunities is guaranteed by the existence of an equivalent martingale measure. As 

Harrison and Pliska asserted in 1981, the market is complete when the equivalent 

martingale measure is unique. In a similar way, to ensure that there is no arbitrage 

opportunity, the relative prices;  
Or�@,G���@� , ���@,G���@�  and 

���@�¢��@���@�   should be proved to be 

� martingales. These conditions are analogous to the conditions in discrete time case. 

In order to get these conditions, Assumption 4 is imposed. 

 

Assumption 4.4.2.1: .K©��@,G���  1/ ¹ 0 for all 	 � ��x and # � %0, �& 
Equation 4.4.1.2.1 states that the bankruptcy process has an impact on the return 

process by .K©��@,G���  1/. Therefore this coefficient should be different from zero. 

 

Under assumption 4.4.2.1, the system of equations below has a unique solution �º��	�, μ��	��. 
 ¦��	, #� * º��	�(�	, #� � 0                                                                             �4.4.2.1� 

 <��	�  <��	� * ¦��	, #� * º��	�(�	, #�  «��	, #�y� * .K©��@,G���  1/y�μ��	� � 0                                  �9 	 ' ��x                                   �4.4.2.2� 

 <��	�  <��	� *  ¦��	, #� * º��	�(�	, #� � 0       �9 	 � ��x                                �4.4.2.3�                                                                         <��	� � <��	� * �1  ���y�μ��	�                            �9 	 ' ��x                                 �4.4.2.4� 
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<��	� � <��	�                                                                �9 	 � ��x                               �4.4.2.5�                                                                                                                       
The unique solution of the above equations; �º��	�, μ��	�� denote the market prices 

of risk. ¦��	, #� denotes the excess expected return on the T maturity default free 

zero coupon bond and the equation 4.4.2.3 indicates that it is proportional to its 

volatility (�	, #� by the risk premium º��	�. 

 

If equation 4.4.2.2 is rewritten, equation 4.4.2.6 is obtained. 

 ¦��	, #�  «��	, #�y� � ¦��	, #�  ��.K©��@,G�  1/y�μ��	�            �9 	 ' ��x  �4.4.2.6� 

 

Before the bankruptcy, the excess expected return on the ABC zero coupon bond; 

 ¦��	, #�  «��	, #�y� is equal to the excess expected return on the default free zero 

coupon bond  ¦��	, #� plus an adjustment for the default risk which is proportional to 

the bankruptcy shock ��.K©��@,G�  1/ by the risk premium y�μ��	�. 

 

In order to analyze the case after the bankruptcy, the equations 4.4.2.1,3 and 5 are 

combined and the following equation is obtained. 

 ¦��	, #� � ¦��	, #�                            �9 	 � ��x                                                    �4.4.2.7� 
 

Since after the bankruptcy, the default risk vanishes, the excess expected return on 

ABC zeros and the default free zeros are identical by equation 4.4.2.7. Thus after the 

bankruptcy takes place the term structures of the default free and the ABC zeros are 

identical like in the discrete time setting, indicating that  

 $��	, #� � $��	, #� 

and 
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b��	, #� � ��$��	, #� 

 

For simplicity Assumption 4.4.2.2 which implies the statistical independence of the 

bankruptcy process under the martingale probabilities is imposed. This assumption 

makes the time of the bankruptcy process an exponential distribution under the 

martingale probabilities with parameter y�μ�. 
 

Assumption 4.4.2.2:  μ��	� � μ� � 0  is a positive constant 

 

4.4.3 The ABC Bonds 

 

Assumptions 4.4.1.1, 4.4.1.2, 4.4.1.3, 4.4.2.1 and 4.4.2.2are used to simplify b��	, #� 

to  

b��	, #� � ��@ tK��#�?�#�u ?�	� � ����K��#��$��	, #� 

� ¶KM��»��¼½o�¾�� j1  KM��»��¼½o�$��	, #�k      �9 	 ' ��x��$��	, #�                                                           �9 	 � ��x
� 

 �4.4.3.1� 

 

Equation 4.4.3.1 reveals the fact that,  y�μ� and �� are the only parameters that are 

needed to compute the stochastic process of b��	, #�.  It is also noticed that «��	, #� 

does not included in the equation since the martingale restrictions under assumption 

4.4.2.2 specify «��	, #� in terms of the bankruptcy parameters. This case provides 

easiness for the empirical estimations. Lemma 1 puts forward the relationship of «��	, #� with the default risk parameters. 
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Lemma 4.4.3.1: 

 

��.K©��@,G�  1/ � �KM��»��¼½o����  1��/�KM��»��¼½o� * ���1  KM��»��¼½o��� 

for 	 ' ��x 

 

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

CHAPTER 5 

 

 

ESTIMATION METHODOLOGY 

 

 

In order to implement the Jarrow Turnbull Model, the estimates of default intensity, 

λ called by Frühwirth and Sögner (2006) corresponding to y�μ� in the original 

equation and the recovery rate, δ, parameters need to be estimated. Moreover as 

equation (4.1.4.3.1) demonstrates that default-free term structure, default intensity 

and recovery rate are necessary and sufficient to compute default risky bond price. 

The term structure dynamics i�	, #�, drift parameter, and c�	, #�, volatility 

parameter, are not needed to be estimated for the default risky bond price �b�	, #�� since their effect is restricted to the default free bond price $��	, #�. This is 

because of the independence assumption of the stochastic process driving the default-

free term structure and the default process and it is an advantage of the model in 

implementation issue. As a result, to implement Jarrow Turnbull model, $��	, #� and 

the estimates of default risk parameters default intensity λ and recovery rate δ are 

required. Default intensity λ is determined by the issuer’s long term senior unsecured 

credit rating while recovery rate depends on the seniority of the bond (Gupton et al 

(1997), Lando(1994), Altman and Kishore (1996)). 

 

5.1 Estimation of the parameters 

5.1.1 Estimation of the default-free zero coupon bond prices 

 

Default free bond price process is assumed to follow the Heath-Jarrow-Morton 

Model. However, as the default risky bond price depends only on the default free 

bond price, the estimation of the term structure dynamics is decided to be waived and 

Svensson (1994) model is decided to be used. The default free zero coupon bond 
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prices are the estimated firstly of since for the estimation of the default risky bond 

prices, the default free zero coupon bond prices are required.    

 

Default-free zero coupon bond prices are inferred through default-free spot rates 

which are computed by means of Svensson parameters and Svensson Function. 

Therefore i�	, #� and c�	, #� are not required for  $��	, #�. 
 

For maturities smaller than 12 months spot rates are available in the form of rates as 

Treasury bills which are zero-coupon bonds. However, for longer maturities, zero 

coupon bonds are usually not available for sufficiently many maturities and in 

sufficiently large issues to be sufficiently liquid. Therefore spot rates will have to be 

estimated from yields on coupon bonds (Svensson, 1994). 

 

Let <�	, #� be continuously compounded spot interest rate for a zero coupon bond 

traded at time t with a maturity # � 	. Denote #  	 with a, which is interpreted as 

the time to maturity. Let >�	, #� be the price of a zero coupon bond at time t that 

pays 1$ at maturity #. Then >�	, #�is called as the discount function. The following 

formula gives the relation between the spot rate <�	, #� and discount function >�	, #�. 

 >�	, #�  �  Kp$� <�	, #� /100. �#  	��                                                               �5.1.1.1� 

 

Let us consider a coupon bond with a coupon rate % v per year with a face value 4 at 

maturity #. Then the time 	 price of the bond with time to maturity a is; 

 

 $�	, 	 * a� � ± v>�	, 	 * �� * 4>�	, 	 * a�À
¡��                                                   �5.1.1.2� 
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Since yield to maturity is the internal rate of return for the coupon bond, Á�	, 	 * a� 

satisfies the following equation. 

 

   $�	, 	 * a� � ± vKp$�� Á�	, 	 * a�100 ���À
¡��

* 4Kp$�� Á�	, 	 * a�100 �a�                                                         �5.1.1.3� 
 

Continuously compounded forward rate is  

 9�	; (, #�  �  %�#  	�<�	, #�  �(  	�<�	, (�&/�#  (�                                    �5.1.1.4� 

 

where 	 is the trade date, ( is the settlement date and # is the maturity. This equation 

gives us the relation between the spot rate <�	, #� and the continuously compounded 

forward rate 9�	; (, #�. The instantaneous forward rate which can be interpreted as 

the riskless rate of interest is defined as the limit of the continuously compounded 

forward rate 9�	; (, #� as # goes to (. It is the forward rate for a forward contract 

with an infinitesimal investment period after the settlement date. 

 9�	, ( � �  limGÄN 9�	; (, #�                                                                                             �5.1.1.5� 
                                        

The spot rate <�	, #� at 	 with maturity # is identical to the average of the 

instantaneous forward rates with settlement dates between 	 and maturity #. 

 

<�	, #� � h 9�	, �� >�G
Å�@  /�#  	�                                                                             �5.1.1.6� 

                                     

By multiplying <�	, #� with #  	 and taking the derivatives of both sides with 

respect to #, equation 5.1.1.7. is obtained; 
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9�	, #� �  <�	, #� * �#  	�:<�	, #�/:#                                                                �5.1.1.7� 
 

The above equation is the relation between the spot rates and the instantaneous 

forward rates. 

Nelson and Siegel assume that instantaneous forward rate is the solution to a second 

order differential equation with to equal roots. Svensson simplified the notation by 

replacing 9�	, 	 * a� with 9�a� and added new terms to the Nelson Siegel’s 

forward rate and obtained the following equation. 

 9�a; _�  � ¦ � * ¦ �Kp$� a/��� * ¦f �a/ ��� Kp$� a/��� *β3�a �f� Kp$� a/�f�  
where _ � %¦�, ¦�, ¦f, ��, ¦É, �f&                                                                               �5.1.1.8� 

 

Here; 

β� :  constant 

 

β� exp� m/τ�� : is monotonically decreasing for β� � 0 or increasing β�<0 towards 

0 as a function of time to settlement. 

 

βf �m/ τ�� exp� m/τ�� : is a function of time to settlement and it generates the 

hump- shape when βf � 0 and U- shape when βf ' 0 

 

βÉ�m/ τf� exp� m/τf� : second hump-shape or U-shape parameter with �f � 0 

 

When � goes to ∞, 9�a, _� approaches to β�  and when τ  goes to 0, 

9�a, _�  approaches     to β� * β�  
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As indicated before the spot rate can be derived by integrating the forward rate. 

Therefore equation 5.1.1.9 is obtained; 

 

<�a; _� � ¦� * ¦� Ì1  exp j a��ka��
Í * ¦f�Ì1  exp j a��ka��

Í   

exp j ÀÅ�k * ¦É�t �MÎÏÐjÑÒ�kÑÒ� u  exp jÀÅ�k�                                                       �5.1.1.9� 

The discount function is given by  

 

>�a; _� � exp �j ��@,G���� k a�                                                                             �5.1.1.10� 

 

The following algorithm is used to estimate the spot rates for n coupon bonds �vÓ, aÓ , ÁÓ , $Ó� where vÓ is the coupon rate,  is the time to maturity,  is the 

observed yield to maturity and is the observed price of the bond j with a face value 

R $, · � 1,2, … , �. 

 

1- A trade date is fixed. 

2- A vector of starting parameters _ � %¦�, ¦�, ¦f, ��, ¦É, �f&  is selected. 

3- The discount function is determined by means of this parameter vector and 

 

4- The discount function is used to find the starting model price of each bond by the 

following formula.  

 

�Ó�_� � ± vÓ
ÕÖ

¡�� >���¡; _� * 4>���¡; _�        · � 1,2, … , �                                    �5.1.1.11� 

 

         �Ó¡ aÓ aÓ  
        µÓ aÓ  
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[aÓ] denotes the largest integer that is strictly smaller than [aÓ] 

 

5- Numerical optimization procedures are performed to estimate the set of 

parameters that minimizes the sum of squared yield errors. The estimated yield to 

maturity for bond ·, ×Ó�_�, is computed from the estimated bond price �Ó�_� by 

5.1.1.3  The observed yield to maturity is allowed to deviate from the estimated yield 

to maturity.  

 ÁÓ � ×Ó�_�+KÓ                                                                                                               �5.1.1.12�              

6-Finally the estimated set of parameters are used to determine the spot rate function <�a; _� given by             

 

5.1.2. Estimation of the Default Risk Parameters 

5.1.2.1 Non-linear Least Squares Estimation of the Parameters 

 

The main objective of this part is evaluating the Jarrow Turnbull model for default 

risky bond pricing purposes.  Implementing the model necessitates estimating the 

required parameters, default intensity and the recovery rate which determine the 

bond price. Default risk parameters can be derived by means of either separate 

estimation or joint estimation. Frühwirth and Sögner built the joint estimation 

procedure and used the following non linear least squares estimation: 

 .yØÙ,@, �ØÙ,@/ � argmin�,� 9�y, ��                                                                                  �5.1.2.1.1� 

where  

 

9�y, �� Ý ± ± %?�Þ�H�	, #��  ?��	, #��&fG
@����Ù                                                   �5.1.2.1.2� 

 

and                                           
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?�	, #� � ± b��	, F�ß�
G

l�@
�F�                                                                                  �5.1.2.1.3� 

 

The usual method to estimate non-linear regression models is to minimize the 

squared sum of residuals. The above equation computes the pricing error for all 

bonds  between the observed price and the Jarrow- Turnbull model price. Then 

the equation computes the sum of squared pricing errors, therefore the above 

equation defines a contrast function. After computing the contrast function, the 

parameters are estimated by minimizing the contrast function with different y and  �  

which are restricted to be positive. 

 

A non-linear regression model must be identified to get unique parameter estimates. 

However, Frühwirth and Sögner showed that joint estimation is numerically unstable 

and poorly identified which means that the Hessian matrix of the contrast function is 

nearly singular by means of a simulation study.  

 

They therefore employ separate estimation which takes one parameter as fixed in �5.1.2.1.1� and estimate the other parameter conditionally on the fixed parameter. To 

decide which parameter is going to be fixed they searched the literature and they 

decided on the recovery rate parameter since they are already recovery rate estimates 

drawn from actual defaults provided in Moody’s (1992), Altman and Kishore (1996), 

Standard & Poor’s (2000) and Moody’s (2000). These studies propose a recovery 

rate of (approximately) 50% for unsecured senior bonds. Moreover default intensity 

estimates are scarce especially under the equivalent martingale measure .  

 

Following Frühwirth and Sögner (2005), recovery rate will be fixed and default 

intensity y will be estimated. The estimate of the default intensity will be denoted by 

. The corresponding non linear estimation will be as follows: 
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.yØÙ,@/ � argmin� 9��y�                                                                                              �5.1.2.1.4� 

                                                               

where  

 9��y� � ∑ %?�Þ�H�	, #��  ?��	, #��&f��Ù                                                              �5.1.2.1.5� 

                                              

Checking for the poor identification and stability of the estimation is again required. 

For poor identification problem, the Hessian of 9��y� should be computed The 

Hessian of the contrast function is as follows: 

 

�� � ∑ ∑ 2%à�Ö�@,GÖ�à� &f G@��Ù                                                                                    �5.1.2.1.6� 
 

First of the results is that �� is stictly positive and the number of bonds. Poor 

identification can be met only at the maturity since  exp � y�#  	�� is close to 1 for y sufficiently small which makes sense since the probability of default is zero at 

maturity for any default intensity. 

 

As a second step whether the minimization procedure is numerically stable should be 

checked. Therefore values are assigned to δ and λ initially and these values are called 

true values. Then yá �,@  the noisy default intensity is modeled as follows: 

  yá �,@ � λexp � 0,5cãf�exp �cãξã,å,æ�                                                                    �5.1.2.1.7� 

 

where cã � 0 is the distortion factor between the noisy default intensity and the 

Jarrow Turnbull default intensity and ξã,å,æ is standard normally distributed noise 

term. exp. 0,5cãf/ is used to guarantee that the expectation of  yá �,@ is λ. 
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�. yá �,@/ � �.y exp. 0,5cãf/ exp.cãξã,å,æ// � y exp. 0,5cãf/ K xp. 0,5cãf/ � y  

                                                                                                                       �5.1.2.1.8� 

 

since �.y exp.cãξã,å,æ// � exp. 0,5cãf/                                                        �5.1.2.1.9�     

when ξã,å,æ ~ N�0,1�  

 

The simulated coupon bonds are used in the estimation procedure for fixed recovery 

rates and various default intensity starting valuesyH@é�@ to obtain an estimate for the 

default intensity. Frühwirth and Sögner (2006) investigated the impact of the starting 

values of the default intensities on the default intensity estimate and concluded that 

this impact is minor, and indicated that the estimation procedure based on a fixed 

recovery rate is numerically stable. 

 

5.2 Data 

 

The data set used in this study consists of two parts one of which is the default free 

zero coupon bond prices and the other part is the default risky bond prices.  

 

Default free bond prices comprise the daily closing prices over the period 19.06.2008 

through 21.11.2008 consisting of 3365 observations and obtained from 

www.wsj.com. 

 

Default risky bond data comprises 34 dollar denominated fixed-rate senior unsecured 

bonds without sinking fund provisions or embedded options. Issuers are banks and 

non-bank corporates from the rating classes AA, A and B. Thus the data is grouped 

into six clusters as AA bank bonds: i = 1,…,5, AA non bank bonds: i=6,…,11,  A 

bank bonds : i=12,…,18, A non bank bonds: i=19,…,26 bank bonds: i=27,…,30, and 

B non bank bonds: i=31,…,34, with different maturities. The default risky data is 

obtained from Reuters Information System Database.  
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5.3 Results of the Default Intensity Estimation 

 

The purpose of this part of the thesis is estimation of default intensity from empirical 

data by 5.1.1.16.  

 

The default intensity parameter is estimated from the whole data by MATLAB 

according by making a cross section with respect to their ratings assuming that these 

ratings are correct.   

 

The algorithm for the estimation of default intensity can be described as follows: 

1- A certain type of a bond class with the same rating and type of corporation 

(with the discrimination of bank or non bank) is selected. 

2- A trade date is fixed 

3- For a bond i� ê, for the fixed date t, default free zero coupon bond price is 

computed by Svensson (1994) method. 

4- The recovery rate is taken as 0,5 in consistence with Moody’s report (2000). 

5- The equation 5.1.2.1.5 computes the pricing error between the observed price 

and model price for observation date and for all bonds in the same rating and 

corporation class. 

6- Finally equation 5.1.2.1.4 yields the default intensity estimate which makes 

the pricing error minimum. 

 

The estimation procedure yielded the following results: 
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Table 5.3.1: results of the default intensity estimation 

Rating and type Estimated  
default intensity 

AA rated bank bonds yØëë,�=0,0047 

AA rated non- bank bonds yØëë,�� � 0,0052 

A rated bank bonds yØë,�=0,0057 

A rated non-bank bonds yØë,�� � 0,0064 

B rated bank bonds yØ�,� � 0,0136 

B rated non-bank bonds yØ�,�� � 0,0289 
 

The results presented in Table 5.3.1 are consistent with respect to the rating classes, 

since as the rating falls, the default intensity is expected to increase. However, these 

results involve estimation errors due to the fixed recovery rate assumption.  
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

This thesis presents the Jarrow Turnbull (1995) model and the estimation 

methodology employed in the Frühwirth and Sögner’s paper which used German 

data. In the first chapter, introduction is given which is followed by a literature 

survey in which structural and reduced form models are compared. In the third 

chapter, preliminaries for the corporate bond pricing issues are explained with the 

underlying Heath, Jarrow and Morton (1992) Model. Chapter 4 gave the details of 

the Jarrow Turnbull (1995) Model starting from the discrete time model extending to 

the continuous time model utilizing the analogy of the foreign exchange rate. In 

chapter 5, estimation methods are explained and performed based on the Svensson 

(1994) term structure procedure for the default-free term structure since for 

maturities smaller than 12 months spot rates are available in the form of rates as 

Treasury bills which are zero-coupon bonds while for longer maturities, zero coupon 

bonds are usually not available for sufficiently many maturities and in sufficiently 

large issues to be sufficiently liquid. Therefore spot rates are estimated from yields 

on coupon bonds (Svensson, 1994).  

 

In order to find out the default risky bond price, it is shown that default free zero 

coupon bond price, default intensity and the recovery rate are sufficient. Thus the 

aim of this thesis is the estimation of the default free bond price and default intensity 

since Frühwirth and Sögner proposed analytically, by means of a simulation study 

and using empirical data, that it is not possible to jointly estimate the default intensity 

and the recovery rate implicitly and thus suggested estimating the default intensity 

conditionally on a fixed recovery rate drawn from empirical studies in literature. The 
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joint estimation of the default risk parameters, default intensity and the recovery rate 

is proven to be numerically unstable and purely identified. Therefore the default 

intensity is estimated based on recovery rate and thus recovery rate is assumed to be 

fixed.  The recovery rate estimates are available drawn from actual defaults provided 

in Moody’s (1992), Altman and Kishore (1996), Standard & Poor’s (2000) and 

Moody’s (2000). These studies propose a recovery rate of (approximately) 50% for 

unsecured senior bonds. Estimated default intensities depend on the default-free term 

structure estimation since the term structure of default risky bonds involve default 

free zero coupon bond price.  

 

Due to lack of Turkish corporate bond data, US corporate bonds, namely bank and 

non bank bonds form different rating classes and thereby US Treasury bill data are 

employed in the estimation procedure by means of MATLAB. 

 

The estimated default intensities are proposed in Table 5.3.1 and they are consistent 

with the rating classes, thereby their risk classes, of the bonds employed in the 

estimation procedure. 

 

For further study, pooling of data, which is shown to yield better estimates of the 

parameters with term structure models by De Munnik and Schotman (1994), can be 

investigated whether it can improve the estimates also with credit risk models. 
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