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ABSTRACT 
 
 

DYNAMIC COMPLEX HEDGING AND PORTFOLIO 
OPTIMIZATION IN ADDITIVE MARKETS 

 
 

Polat, Onur 

M.Sc., Department of Financial Mathematics 

Supervisor: Assoc. Prof. Dr. Azize Hayfavi 

February 2009, 65 pages 

 

In this study, the geometric Additive market models are considered. In general, these market 

models are incomplete, that means: the perfect replication of derivatives, in the usual sense, 

is not possible. In this study,  it is shown that the market can be completed by new artificial 

assets which are called “power-jump assets” based on the power-jump processes of the 

underlying Additive process. Then, the hedging portfolio for claims whose payoff function 

depends on the prices of the stock and the power-jump assets at maturity is derived. In 

addition to the previous completion strategy, it is also shown that, using a static hedging 

formula, the market can also be completed by considering portfolios with a continuum of call 

options with different strikes and the same maturity. What is more, the portfolio optimization 

problem is considered in the enlarged market. The optimization problem consists of choosing 

an optimal portfolio in such a way that the largest expected utility of the terminal wealth is 

obtained. For particular choices of the equivalent martingale measure, it is shown that the 

optimal portfolio consists only of bonds and stocks.  

 

Keywords: Additive processes, Power-jump processes, Martingale Representation Property, 

Replicating Portfolio, Portfolio optimization. 
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ÖZ 

 
ADDITIVE PĐYASALARDA DĐNAMĐK KOMPLEKS RĐSK 

MĐNĐMĐZASYONU VE PORTFÖY OPTĐMĐZASYONU 

                                       
                                  

Polat, Onur 

Yüksek Lisans, Finansal Matematik Bölümü 

Tez Yöneticisi: Doç. Dr. Azize Hayfavi 

 

Şubat 2009, 65 sayfa 

 

Bu çalışmada, geometrik Additive piyasa modelleri incelenmiştir. Genellikle, bu piyasa 

modelleri tam olmayıp, bu durum şu anlama gelmektedir: Türev ürünlerinin, bilinen haliyle, 

mükemmel bir şekilde riski minimize etmesi mümkün değildir. Bu çalışmada, piyasanın 

Additive süreçlerine bağlı kuvvet sıçrama süreçlerini içeren ve kuvvet sıçrama varlıkları 

olarak adlandırılan yapay varlıklarla tamamlanabileceği gösterilmiştir. Daha sonra alacak 

hakkına ait ödeme fonksiyonunun hisse senedi ve kuvvet varlıklarının vade sonu değerlerine 

bağlı riskten korunma portföyü ifade edilmiştir. Önceki tamamlama stratejisine ek olarak, 

dinamik risk minimizasyonu formülü kullanılarak, piyasanın aynı vadesonu ve farklı 

vadesonu fiyatına sahip satın alma hakkı veren sürekli opsiyonları içeren porföyleri göz 

önünde bulundurarak ta tamamlanabileceği gösterilmiştir. Ek olarak, genişletilmiş olan 

piyasada portföy optimizasyon problemi incelenmiştir. Problem; Optimal portföyün, nihai 

servete ait beklenen faydasının maksimum olarak belirlenmesini ifade etmektedir. Denk 

martengale ölçüsünün özel seçimlerinde, optimal porföyün sadece tahvil ve hisse senetlerini 

içerdiği gösterilmiştir.  

 

Anahtar kelimeler: Toplama süreçleri, Üstel olarak sıçrama özelliği gösteren süreçler, 

Martingale Temsili Özelliği, Yineleme Portföyü, Potföy optimizasyonu. 
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CHAPTER 1 
                           

INTRODUCTION 
         

In a complete market, any contingent claim can be valued on the basis of the unique 

equivalent martingale measure. This means that, any contingent claim can be replicated by 

an admissible self-financing portfolio. For instance, Black-Scholes model is a known 

complete market model, where the stock prices evolve according to a geometric Brownian 

motion. This model can be seen more detailed in Black and Scholes [3]. However, when the 

sources of randomness are more than the number of investment assets, the completeness 

vanishes.  

In the real world, there are a lot of incomplete market models and specially most Additive 

market models are incomplete. In these type of markets, a general claim is not necessarily a 

stochastic integral of a stochastic process based in the model. This means that, the claim has 

an intrinsic risk. So, a risk minimising strategy must be used in these type of models.  

There are some techniques to minimise risk. Mean-variance hedging strategy is one of them. 

This strategy can be seen in the study of Föllmer and Schweizer [14]. Quantile hedging is 

another risk minimising strategy that is studied in Föllmer and Leukert [15]. Main 

characteristic of this strategy is that, this strategy requires a large amount of initial capital. In 

our work, we prefer the previous strategy to minimize risk.  

We still use superhedging strategy in incomplete market models, but the cost of these 

strategies in many cases are too high. For instance, superhedging cost of the call option is the 

price of the underlying asset in the call. 

In this study, the geometric Additive market models are considered and these market models 

are based on additive processes. These market models are generally incomplete, so a 

contingent claim can not be replicated by a self-financing portfolio in the usual sense. In our 

study, we define some new artificial assets, so called  “power-jump assets”. Then, by using 

these new artificial assets, we complete the market. This type of a completion strategy for the 

Lévy case was done by Corcuera, Nualart and Schoutens [9]. We show that the enlarged 

market, where trading instruments are bond, stock and power jump assets, is complete.  

In our study, it is also shown that the market can be completed by considering porfolios with 

a continuum of Europian call options with the same maturity and different strikes.  

Other authors try to replicate complex derivatives by using liquid and non-redundant assets. 

For example, Balland [1] uses short-dated vanilla options, because of their liquid enough 
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prices. Carr and Madan [5] uses self-decomposible laws at unit time and the associated self-

similar additive processes. They show that the models based on these processes describe the 

option price surface equally well. Jacod and Protter [16] also try to complete incomplete 

markets. In their study, it is shown that the market can be completed by adding some new 

trading assets. 

By giving the explicit hedging portfolios for claims whose payoff function depends on the 

prices of the stock and power jump processes at maturity, the portfolio optimization problem 

is considered. This problem includes choosing an optimal portfolio in such a way that the 

largest expected utility of the terminal wealth is obtained. In this thesis, a class of special 

utility functions, including HARA, logarithmic and exponential utilities, are considered. 

Then the optimal portfolio that maximizes the terminal expected utility is obtained by the 

martingale method. It is shown that for particular choices of the equivalent martingale 

measure, the optimal portfolio consists of only bonds and stocks.  

The organization of this study is as follows. In chapter 2, basic definitions and theorems 

related to the Lévy processes and Additive processes are given. In chapter 3, geometric 

Additive market model and power-jump processes are given. In chapter 4, power-jump 

assets are considered and geometric Additive market is completed by these artificial assets. 

In chapter 4, the hedging portfolio whose payoff is a function of time, stock price and the 

new assets at maturity is given. In chapter 4, it is also shown that the market can be 

completed by considering portfolios with a continuum of call options with different strikes 

and the same maturity. In chapter 5, portfolio optimization problem in the enlarged Additive 

market is considered. Chapter 6, concludes the thesis. 
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CHAPTER 2 
 

PRELIMINARIES 
 

2.1 SOME DEFINITIONS AND EXAMPLES 
 

Definitions and theorems in this part are mainly taken from [8], [22] and [23]. 
 

Assume that we are given in a complete, filtered probability space ),,,( PFtFΩ  in which 

∞<≤= ttF 0)(F satisfies the usual hypothesis, i.e. : 

(i) 0F  contains all the −P null sets .F  

(ii) ,u
tu

t FF
>
∩=  all ,t  ;0 ∞<≤ t  that is, the filtration F  is right continuous. 

 

Definition 2.1.1 A stochastic process tXX {= , }0≥t  on 
dR (d-dimensional Euclidean 

space) is stochastically continuous or continuous in probability if, for every 0≥t  and 

0>ε , [ ] .0lim =>−
→

εts
ts

XXP  

 

Definition 2.1.2 A filtration or information flow on ),,( PFΩ  is an increasing family of σ -

algebras )( tF ],0[ Tt∈  ,0: ≥≥∀ st  sF ⊆ tF .F⊆                   

 

Definition 2.1.3 A contingent claim is any stochastic variable )(zX Φ= , where z is a 

stochastic variable drived by a stock price process. 

 

Definition 2.1.4 A set is called Borel, if it can be constructed from open or closed sets by 
repeatedly taking countable unions and intersections. 

 

Definition 2.1.5 A function dRTf →],0[:  is said to be cádlág if it is right-continuous 

with left limits: for each ],0[ Tt∈  the limits 

                                 ),(lim)(
,

sftf
tsts <→

=−                     )(lim)(
,

sftf
tsts >→

=+  

 exist and )()( += tftf . 

Similarly, a function 
dRTf →],0[:  is said to be cádlád if it is left-continuous with right 

limits: for each ],0[ Tt∈  the limits 

                                 ),(lim)(
,

sftf
tsts <→

=−                   )(lim)(
,

sftf
tsts >→

=+  

 exist and ).()( −= tftf  
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Definition 2.1.6 A probability measure µ  on 
dR  is called infinitely divisible if, for any 

positive integer n,there is a probability measure nµ  on 
dR  such that .*n

nµµ = (
*nµ is the 

n-fold convolution of probability measure µ  i.e. µµµµ ***
* ...=n

) 

 

Definition 2.1.7 A real-valued, adapted process ∞<≤= ttXX 0)(  is called martingale (resp. 

Supermartingale, submartingale) with respect to the filtration }0,{ ∞<≤= tF tF  if 

 

(i) );(1 dPLX t =  that is, .}{ ∞<tXE  

(ii) if ts ≤ , then ,}{ sst XXE =F  a.s. (resp. sst XXE ≤}{ F , resp. sst XXE ≥}{ F ) 

 

Definition 2.1.8 A family of random variables AU ∈αα )(  is uniformly integrable if 

0suplim
}{

=∫
≥

∞→
dPU

nU
n

α

α
α

 

 

Definition 2.1.9 A random variable T  is nonanticipating random time )(( tF -stopping time) 

if  

,0≥∀t  .}{ ttT F∈≤  

 

Definition 2.1.10 Let .dRE ⊂  A radon measure on ),( εE  is a measure µ  such that for 

every compact measurable set ,ε∈B   .)( ∞<Bµ  

 
Definition 2.1.11 An adapted, càdlàg process X is a local martingale if there exists a 
sequence of increasing stopping times ,nT  

with ∞=
∞→

n
n

Tlim  a.s. such that }0{ >∧ Ι
nn TTtX  is an 

uniformly integrable martingale for each n.  

 

Definition 2.1.12 Let ),,( PFΩ  
 
be a probability space, 

dRE ⊂ and µ  is a given 

(positive) Radan measure on ).,( εE  A poisson random measure on E with intensity measure 

µ  is an integer valued random measure: 

NQ →×Ω ε:  

),(),( AwQAw →  

such that 

1. For (almost all) Ω∈w , ,.)(wQ is an integer-valued Radon measure on E: for any 

bounded measurable ,EA ⊂  ∞<)(AQ is an integer valued random variable. 

2. For each measurable EA ⊂ , )()(., AQAQ =  is a Poisson random variable with 

parameter :)(Aµ  

Nk ∈∀ ,   .
!

))((
))(( )(

k

A
ekAQP

k
A µµ−==  
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3. For disjoint measurable sets ε∈nAA ,...,1 , the variables )(),...,( 1 nAQAQ  are 

independent. 

 
Definition 2.1.13 A process H is said to be simple predictable if H has a representation 

0HH = )(}0{ tΙ + )(],(
1

1
tH

iTT

n

i

i +
Ι∑

=

 

 where 10 T= ∞<≤≤ +1... nT  is a finite sequence of stopping times, iH ∈
iiT

F  with 

∞<iH  a.s., .0 ni ≤≤ The collection of simple predictable processes is denoted S. We can 

topologize S by uniform convergence },{ wt , and we denote S endowed with this topology by 

.uS   

 

Definition 2.1.14 A process X is a total martingale if X is cádlág, adapted and 
0: LSX →Ι  is continuous. The linear mapping 0: LSX →Ι  is defined for a given process 

X and for a given simple predictable process H as follows: 

)(HI X = 00XH + ).(
1

1
ii TT

n

i

i XXH −
+∑

=

 

               

Definition 2.1.15 A process ]},0[,{ TtXX t ∈=  is called a semimartingale if, for each 

],,0[ ∞∈t tX is a total martingale. The notation 
tX denotes the process .)( 0≥∧ stsX  

 

Corollary 2.1.1 A semimartingale ]},0[,{ TtXX t ∈=  admits the decomposition 

ttt MAXX ++= 0  

where 0X   is finite and tF -measurable, ]},0[,{ TtMM t ∈=  is a local martingale with 

00 =M  and A is a finite variation process with .00 =A  

 

Definition 2.1.16 Let X be semimartingale. The quadratic variation process of X, denoted 

0)],([],[ ≥= ttXXXX is defined by  

.],[ 2 dXXXXX ∫ −−=  

 

Definition 2.1.17 An adapted process ∞<≤= ttBB 0)( taking values in 
nR  is called n-

dimensional Brownian motion if 

 

(i) for ∞<<≤ ts0 , st BB −  is independent of .sF  

(ii) for ts <≤0 , st BB −  is a Gaussian random variable with mean zero and 

variance matrix (t-s)C, for a given, non-random matrix C. 
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Definition 2.1.18 Let 1)( ≥iiτ  be a sequence of independent exponential random variables 

with parameter λ  and .
1
∑
=

=
n

i

inT τ  The process }0,{ ≥tN t defined by 

∑
≥

≥Ι=
1n

Ttt n
N  

is called Poisson process with intensity .λ  

 

Definition 2.1.19 An adapted process 0)( ≥= ttXX  with 00 =X  a.s. is a Lévy process if 

 

(1) X has increments independent of the past; that is, st XX −  is independent of  ,sF  

;0 ∞<<≤ ts  and, 

(2) X has stationary increments; that is, st XX −  has the same distribution as stX − , 

;0 ∞<<≤ ts  and, 

(3) tX  is continuous in probability; that is, ,lim st
st

XX =
→

 where the limit is taken in 

probability. 

 

Definition 2.1.20 Let Λ be a Borel set in R bounded away from 0  and let 
−

Λ∉0 . Define the 

random variables as following: 

}:0inf{1 Λ∈∆>=Λ tXtT  

. 

. 

. 

}:inf{1 Λ∈∆>= Λ
+

Λ t

nn XTtT
 

 

Define   

∑∑
∞

=
≤

≤<
Λ

Λ

Λ
Ι=∆Ι=

1
}{

0

)(
n

tTs

ts

t nXN
 

Then the masure ,ν  defined by 

)}({}{)(
10

1 s

s

XENE ∆Ι==Λ ∑
≤<

Λ
Λν  

 is called the Lévy measure of the Lévy process X. 

 

Definition 2.1.21 Let tXX {= , ]},0[ Tt∈  be a stochastic process on 
dR and consider the 

following properties: 
 

(1) For any choice of 1≥m  and ≤0 0t ≤ 1t ≤…≤ mt  , the random variables 

,
0t X

1 t
X - 

0 t
X ,

2t
X -

1t X , … ,
mt

X -
1−mt

X  are independent. 

 

    (2) 00 =X  almost surely. 
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   (3) The process tX  is stochastically continuous. 

 

  (4) There is a 0π ∈F with 1][ 0 =πP  such that for every ,0π∈w )(wX t  is right 

continuous in 0≥t  and has left limits in 0≥t  
 

If X satisfies the properties (1),(2) and (3), then it is called Additive in law. If the properties 

(1),(2),(3) and (4) are satisfied by X, then the process X is called Additive process. 

 

Some known Additive processes can be seen in following examples: 

 
 
Example 2.1.1 Brownian motion with time dependent volatility: 

Let )( tW 0≥t  be a standart Brownian motion on ,R ++ → RRt :)(σ  be a measurable 

function such that ∞<∫ dss

t

)(
0

2σ  for all 0>t  and RRtb →+:)(  be a continuous 

function. Then the process  

       

)(tbX t = ∫+
t

sdWs
0

)(σ  

is an Additive process. 

       
Example 2.1.2 Cox process with deterministic intensity: 

Let 
++ → RRt :)(λ  be a positive measurable function such that ∫ ∞<=Λ

t

dsst
0

)()( λ  for 

all t  and let Q be Poisson random measure on +R  with intensity measure ∫=
A

dssA )()( λµ  

for all ).( +∈ RA B Then the process )( tX 0≥t  defined path by path via   

∫=
t

t dswQwX
0

),()(  is an Additive process. 

       
Example 2.1.3 Time inhomogeneous jump-diffusion: 
 

Given positive functions 
++++ →→ RRRR : ,: λσ  as above and a sequence of 

independent random variables ( iY ) with distribution F the process defined by 

tX = ∑∫
Λ

=

+
)(

10

)(
tN

i

i

t

s YdWsσ  

is an Additive process and 0)( ≥ttN is a standart Poisson process. 

Example 2.1.4 Lévy process with deterministic volatility: 
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Extending (Example 2.1.1), we now consider Lévy processes with time dependent volatility. 

Consider a continuous function .:)( ++ → RRtσ
 
Let  0)( ≥ttL  be a Lévy process on .R  

Then 

tX ∫=
t

sdLs
0

)(σ  

is an Additive process. 

 
Example 2.1.5 Time changed Lévy process: 

Let 0)( ≥ttL  be a Lévy process on 
dR  and let 

++ → RRt :)(ν  be a continuous increasing 

function such that .0)0( =ν Then the process )( tX 0≥t  defined path by path via 

)(wX t = )()( wL tν  
 is an Additive process. 

 

Definition 2.1.22 A strategy Φ  is called self-financing if the following equation is satisfied 

for all }1,...,1,0{ −∈ Nn   

nnSΦ  .1 nn S+Φ=  

 

Definition 2.1.23 For a given filtration :F 0F , ,...,1F NF   an adapted sequence NnnH ≤<0)(  

of random variables is predictable if,  for all ,1≥n nH  is 1−nF  measurable. 

 
Definition 2.1.24 An adapted, càdlàg process X is a potential if it is a non-negative 
supermartingale such that .0}{lim =

∞→ t
t

XE   

Definition 2.1.25 Let ,(Ω A, )P be a probability space. A probability measure 
~

P  on ),( AΩ  

is absolutely continuous relative to ,P  if 

,A∈∀A .0)(0)(
~

=⇒= APAP  

 

Definition 2.1.26 A stochastic process tX  is called previsible if it satisfies following two 

properties: 

                   (i) ,00 =X
   
 

                  (ii) tt XXX ],[2 −  is uniformly integrable martingale. 

 
 

Definition 2.1.27 Suppose that τ  is a partition of  ],0[ ∞  and that ,1
LX

it
∈  each 

.τ∈it  Define 

∑
=

+
−=

n

i

ttt iii
XXEXC

0

}{:),(
1

Fτ  

The variation of X along τ  is defined to be 
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)},,({)( ττ XCEXVar =  

The variation of X is defined to be 

)(sup)( XVarXVar τ
τ

= , 

where the supremum is taken over all such partitions.  

 

Definition 2.1.28 Let )( tAA =  be a cádlág process. Then, A is called a finite variation 

process (FV) if almost all of the paths of A of the paths of A are of finite variation on each 

compact interval of +R . 

 

Definition 2.1.29 Let }0,{ ≥tX t  be a stochastic process on .dR  It is called self-similar if, 

for any a>0 there is b>0 such that 

}0:{ ≥tX at

d

= }0:{ ≥tbX t  

Definition 2.1.30 Let p  
be a probability measure on .dR  It is called selfdecomposable, or 

of class L, if for any b>1,there is a probability measure bρ  on R
d
such that 

)(z
∧

µ  =  )( 1zb−
∧

µ ).(zb

∧

ρ  

 
Definition 2.1.31 A function ),0[: ∞→Rg is called submultiplicative if there exists a 

constant 0>c  such that )()()( ygxcgyxg ≤+  for all ., Ryx ∈  

 

Definition 2.1.32 A semimartingale X is called quadratic pure jump if  .0],[ =CXX  
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2.2 SOME THEOREMS 

 
Theorem 2.2.1 (Lévy-Khintchine formula) Let X  be Lévy process with Lévy measure 

.ν Then 

=}{ iiuX
eE  ,)(ute Ψ−

 

                where  

∫∫
<≥

+−+−+−=Ψ
}1{}1{

2
2

)()1()()1(
2

)(
x

iux

x

iux dxiuxedxeuiuu ννα
σ

. 

Moreover given ,,, 2 ασν
 
the corresponding Lévy process is unique in distribution. 

 

Theorem 2.2.2 (Lévy Decomposition Theorem) Let ]},0[,{ TtXX t ∈=  be a Lévy 

process. Then X has a decomposition 

tX tB= ))()(.,(
}1{

dxtdxNx
x

t ν−+ ∫
<

 

                         1{XtE+ )(.,)}(.,
}1{}1{

1 dxxNdxxN
x

t

x

∫∫
≥≥

+−  

                                             tB= ++−+ ∫
<

tdxtdxNx
x

t αν ))()(.,(
}1{

,}1{
0

≥∆
≤<

Ι∆∑
sX

ts

sX  

                                          

where B is a Brownian motion; for any set ,Λ  

−

Λ∉0 , )(.,dxNN tt ∫
Λ

Λ =  is a Poissson 

process independent of B; 
Λ
tN  is independent of 

Γ
tN if Λ and Γ  are disjoint; 

Λ
tN  has 

parameter );(Λν  and )(dxν  is a measure on R \ }0{  such that .)(),1min( 2∫ ∞<dxx ν  

 

Theorem 2.2.3 Let ]},0[,{ TtXX t ∈=  be a Lévy process with triplet ).,,( ttt D νλ   

(i) If ∞<)(Rν , then almost all paths of X have a finite number of jumps on every 

compact interval. In that case, the Lévy process has finite activity. 
(ii) If ∞=)(Rν , then almost all paths of X have an infinite number of jumps on every 

compact interval. In that case, the Lévy process has infinite activity. 
 

Theorem 2.2.4 Let X be a Lévy process and let tG Nt ∨= 0
F  where )( 0

tF ∞<≤t0 is the 

natural filtration of ,X  and N   are the P-null sets of .F  Then ∞<≤tt 0)(G
 
is right continuous. 

Theorem 2.2.5 Let Λ be Borel with .0
−

Λ∉  Let ν  be the Lévy measure of ,X  and let 

).(2 νdLf ∈ΙΛ Then 

∫∫
ΛΛ

=








)()()(.,)( dxxftdxNxfE t ν  

and also ∫∫∫
ΛΛΛ

=− ).()(}))()()(.,)({( 22 dxxftdxxftdxNxfE t νν  
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Theorem 2.2.6 (Doob Decomposition) A potential NnnX ∈)(  has a decomposition 

,nnn AMX −=  where nn AA >+1  a.s. ,00 =A  ∈nA ,1−nF  and }.{
n

F∞= AEM n  Such a 

decomposition is unique. 
 

Theorem 2.2.7 (Girsanov theorem) Let Ttt ≤≤0)(θ  be an adapted process satisfying 

∞<∫ ds

T

s

0

2
θ  a.s. and such that the process  )( tL Tt≤≤0  defined by  











−−= ∫ ∫

t t

sst dsdBsL
0 0

2

2

1
)(exp θθ  

 is a martingale. Then, under the probability 
)(LP  with density TL  relative to ,P  the 

process )( tW Tt≤≤0   defined by tW  = tB + ds

t

s∫
0

θ  is a standart Brownian motion.           

 
Theorem 2.2.8 (Itô’s formula for continuous semimartingales) Let X be a continuous 

semimartingale and let f be a C
2
real function. Then f(X) is again a semimartingale and the 

following formula holds: 

−)( tXf )( 0Xf  = .],[)(
2

1
)(

0

''

0

'
ss

t

ss

t

XXdXfdXXf ∫∫
++

+  

 
Theorem 2.2.9 (Itô’s formula for semimartingales that have jumps) Let X be a 

semimartingale and let f be a 
2C  real function. Then )(Xf  is again a semimartingale and 

the following formula holds: 

}.)()()({                             

],[)(
2

1
)()()(

'

0

0

''

0

'
0

sss

ts

s

C

ss

t

ss

t

t

XXfXfXf

XXdXfdXXfXfXf

∆−−+

+=−

−−

−

+

−

+

∑

∫∫

≤<

 

                                    

Theorem 2.2.10 (Lévy-Itô Decomposition) Let }0,{ ≥= tXX t be an additive process on 

R
d
defined on a probability space ),,,( PFΩ  with system of generating triplets 

)},,{( ttt D νλ  and define the measure 
~

ν  on H (exponent of the 

non-trivial broad-sense self similar process X ) by )),0((
~

Bt ×ν  for ).( dRB B∈ Using 0Ω  

from definition 2.1.21, define,  for ),(HB B∈  

                                              

=),( wBQ




Ω∉

Ω∈∈

                                                                   0    

                       } B(w))X-(w)X(s, :{s#   

0

0ss -

wfor

wfor
 

                                         

 Then the following holds: 
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  (i) )}(:)({ HBBQ B∈  is a Poisson random measure on H with intensity measure   

.
~

ν  

 (ii) There is F∈Ω1  with 1][ 1 =ΩP  such that, for any 1Ω∈w  

 

.)),,((               

))},(()),,((({lim:)(

),1(],0(

]1,(],0(

~

0

1

∫

∫

∞×

×
↓

+

−=

Dt

Dt

t

wxsdxQ

xsdxwxsdQxwX
ε

ε
ν

 

is defined for all ),0[ ∞∈t  and the the convergence is uniform in t on any bounded interval. 

The process }{ 1
tX  is an additive process on 

dR with )},0,0{( tν  as the system of generating 

triplets. 

 

(iii)    Define )()(:)( 12 wXwXwX ttt −=    for 1Ω∈w  

There is F∈Ω2  with 1][ 2 =ΩP  such that, for any ∈w ,2Ω  )(2 wX t is continuous in .t  

The process }{ 2
tX  is an additive process on R

d
with )}0,,{( tt Dλ  as the system of 

generating triplets. 

 (iv)    The two processes }{ 1
tX  and }{ 2

tX are independent. 

 
Theorem 2.2.11 Let ϕ  be a characteristic function, and let F be the corresponding 

distribution function. Then ϕ  is analytic if and only if the following conditions hold: 
  

(i) F has moments kα  of all orders k. 

(ii)      There exists a positive number γ  such that  k

k k γα !≤     for all 1≥k .                               

 
Theorem 2.2.12 Let β R∈ , and let Π  be a Lévy measure. Then 

∞<)( tXeE
β

 for all 0≥t  if and only if .)(
1

∞<Π∫
≥

dxe
x

xβ
 

 

Theorem 2.2.13 Suppose that g is measurable, submultiplicative and bounded on compacts 
and let Π  be a Lévy measure. Then 

    

∫
≥

∞<Π
1

)()(
x

dxxg  if and only if ∞<))(( tXgE  for all .0>t  
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CHAPTER 3 
 

THE GEOMETRIC ADDITIVE MARKET MODEL AND THE 

POWER JUMP PROCESSES 

 
 
3.1 THE GEOMETRIC ADDITIVE MARKET MODEL 

 
Consider a market model where the stock price process ]},0[,{ TtSS t ∈=  is a geometric 

additive process and satisfies the stochastic differential equation 
 

 

,t
t

t dX
S

dS
=

−

        00 >S                                   (3.1) 

 

where ]},0[,{ TtXX t ∈=  is an additive process. 

 
      
In our market model, we will consider that we have a riskless asset or bond   











= ∫

t

st dsrB
0

exp                                                 (3.2) 

where tr  is deterministic spot interest rate. 

 
We know the theory of integration and stochastic differential equations for semimartingales. 
In our study, this theory is considered for Additive processes. 
We consider that our additive process is defined on a complete, filtered-probability space 

).,,,( PFtFΩ  

The filtration F  is the natural filtration generated by the stock price process S  completed 
with P null sets N  ie: 

tF F{= , ]},0[ Tt ∈ ∪  N  where tF  }.0,{ tsS s ≤≤=σ  

tX  has a cádlág modification. That means that the process tX  is right continuous with left 

limits. 

tX  has an infinitely divisible distribution for all t . It’s distribution is determined by 

generating triplets  ).,,( ttt D νλ  

In above, tλ  is called as location parameter of tX  which is a continuous function. 

tD  is called as Gaussian covariance. tD  is nonnegative and increasing continuous function. 
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tν  is called as Lévy measure. tν  
is an increasing(in t ) positive measure on R  such that 

0})0({ =tν  and )()( CC ts νν →  as ts→  for all measurable sets },{ δ≥⊂ xxC  for 

some 0>δ and 

 
                                                 

∫ ∧
R

x )1( 2 ∞<)(dxtν                                             (3.3) 

for all ].,0[ Tt∈  

 
The occurence of the generating triplets for Lévy and Additive processes is granted by the 
following theorem in Sato [23]: 
 

Theorem 3.1.1 If ϕ  is an infinitely divisible distribution on ,dR  then       

)(z
∧

ϕ











Ι〉〈−−+〉〈+〉〈−= ∫ 〉〈 )()(,1(,,

2

1
exp , dxxxzieziAzz

dR

D

xzi νγ )( dRz∈          (3.4) 

                      

where A is a symmetric, nonnegative-definite dd ×  matrix; ν  is a measure on 
dR  

satisfying 

 

0})0({ =ν  and  ∞<∧∫ )()1(
2

dxx
dR

ν  and 
dR∈ν  

The representation of  )(z
∧

ϕ   in (i)  by A,ν  andγ  are unique. 
 

Conversely, if A is a symmetric, nonnegative definite dd ×  matrix; ν  is a measure 

satisfying properties given above and ,dR∈γ  then there exists an infinitely divisible 

distribution ϕ  whose characteristic function is given by (3.4). 

 

Proof of this theorem can be seen in Sato [23]. 
 

Definition 3.1.1 We call ),,,( νγ A  in the above theorem, generating triplet of .ϕ  

 A is called Gaussian covariance matrix and ν  is called Levy measure of ϕ  and γ  is called 
location parameter. 
  
By Theorem (2.2.10), Additive processes can be written as following decomposition: 
 

.21
ttt XXX +=                                                (3.5) 

       

The process 2X 2{ tX= , ]},0[ Tt∈  is the continuous part of tX  and the process 

1X = ]},0[ ,{ 1 TtX t ∈ is defined as: 
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1
tX :=

( ]
∫

<∈<∈
∈↓

−
}1,,0{

0
),((lim

xts

dxdsQx  )),(
~

dxdsµ +

( ]
,),(

}1,,0{
∫

≥∈ xts

dxdsxQ               (3.6) 

 

where ),( dxdsQ  is a Poisson Random measure on RT (],0[ × \ })0{  with intensity 

measure )).,((
~

xsdµ  )),(((
~

xsdµ  is defined by )(:)],0((
~

CCT µµ =×  for all measurable 

)).(RC B⊂  

 
 

The process 2X = 2{ tX ,t ]},0[ T∈  is defined as: 

 

2
tX := .1

tt XX −                                              (3.7) 

                  

Here, the processes 1
tX  and 2

tX  are also additive processes. Generating triplets for these 

additive processes are respectively  ),0,0( tν  and tλ( , )0,tD . 

We know the theory of stochastic integration for semimartingales and all Additive processes 
are not semimartingale. 
So, in our study we work only with Additive processes which are semimartingale. By doing 
this, we are working with a subclass of additive processes (the set of natural additive 
processes as they are called in Sato [24]). By the definition given in Sato [24] we can say 
that an additive process is natural, if it’s location parameter has bounded variation.             
By Theorem 2.6 in Sato [24], an Additive process is natural if and only if it has a factoring. 
And, an Additive process is semimartingale if and only if it is natural. 
Thus, to make an additive process natural, we must define a factoring. A factoring is defined 

as follows: A factoring is a pair ,({ tc )]},,0[ ρTt ∈ , where ρ  is a continuous (atomless) 

finite measure on [0,T] and tc  are family of infinitely divisible distributions such that 

characteristic function of tX  is equal to )()(log(exp
0

duuc

t

s ρ∫
∧

 

∧

tc(  corresponds the characteristic function of .)tc            

Denote the generating triplets of tc  as  tη( , 2
tχ , ).tσ  By the theorem 2.6 and lemma 2.7 in 

Sato [24] , we can write these generating triplets as following:                            
 

tλ ,)(
0
∫=
t

s dsρη                                                    (3.8) 

 

tD ,)( 
0

2∫=
t

s dsρχ                                                   (3.9) 
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)(Ctν  ),()(
0

dsC

t

s ρσ∫=    )(RC B∈∀                             (3.10) 

By the above definitions, it is clear that ∞<







∧∫ ∫

T

R

t dsdxx
0

2 )()()1( ρσ  for all ].,0[ Tt∈  

The elements of  ),,( 2
ttt σχη

 
are called the local characteristics of tX . We consider natural 

additive processes with these local characteristics. 
         
               
Generalized version of Lévy -Itô Formula gives us: 
 

tX = t

t

ss JdW +∫
0

χ                                           (3.11) 

where ]},0[,{ TtWW t ∈= is a standart Brownian motion and ]},0[,{ TtJJ t ∈=  is a 

jump process independent of  .W  And the process ]},0[,{ TtJJ t ∈=  satisfies 

 

tJ
( ] ( ]

.)()),(())(),((
}1,,0{ 0}1,,0{

∫ ∫∫
≥∈<∈

++−=
xts

t

xts

s dssdxdsQxdsdxdxdsQx ησ   (3.12) 

 

In the above equation ),( dxdsQ is a Poisson Random measure on RT ×],0[ \{0} with 

intensity measure .)( dtdxtσ ( We consider that dtdt =)(ρ  is the Lebesque measure.) 

 

Decomposition (3.11) gives us the process tXX {= , ]},0[ Tt∈ is a semimartingale with a 

quadratic variation  
 

tXX ],[ ds

t

s∫=
0

2χ  +
( ]

.
2

,0
∑
∈

∆
ts

sX                               (3.13) 

 

Suppose that the family of Lévy measures ( ]Ttt ,0}{ ∈σ  satisfies the following property, for 

some  δ >0 and ,0>τ  

                                                                                                         

( ]
∞<∫

−
∈

)()exp(sup
),(

,0

dxx t
Tt C

στ
δδ

                                  (3.14) 

 

By the theorems 2.2.11 and 2.2.12, we can write that .)( ∞<x
eE
τ

 

By Taylor series expansion, we can write )(exp xτ = xτ ...
!2

22

++
xτ

  ......
!

+++
kk

k

xτ
                               

Since, the previous series is converging, each term in the sum must be finite. So, the integral 
of each term in the sum must be finite. 
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Therefore, we obtain ∞<∫
∞

∞−

)(dxx t

j

σ  for all 2≥j  and all ].,0[ Tt∈  Thus, all moments 

of tX  and tJ  exist and we can define following functions:                           

=:)(tm j ),(dxx t

j

σ∫
∞

∞−

,2≥j                                     (3.15) 

=:)(tM j ,)(
0

dssm

t

j∫ .2≥j                                        (3.16) 

Moreover, the Doob decomposition of J  in terms of a martingale part and a predictable 
process of finite variation, is given by 

dsaNJ

t

stt ∫+=
0

 

where  

∫ ∫
+∞

∞−

=
t

t dxdsxMN
0

),(:  

is a martingale and −= ),(:),( dxdtQdxdtM dtdxt )(σ  is the compensated Poisson random 

measure on RT (],0[ × \ }).0{  
               
Now, if we use the Itô formula for cádlág semimartingales, then we will find the solution of 
stochastic differential equation (3.1) as follows: 
 

Take )log()( tt SSf =  

       

It is clear that =tdS tt dXS
− -

=
−t

S .
0











+∫

t

tss JdWd χ  

By Itô’s Formula, we can write:  
 

=)( tSf )( 0Sf + ∫ −−

t

ss dSSf
0

)(' + C

s

t

s SSdSf ],[)(
2

1

0

''∫ −

}.)( -)S(-)S({ '

0
ss - ss

ts

SSfff ∆+
−∑

≤<

 

 

We also have  =−
−ss SS =∆ sS .ss JS ∆

−
 

 

                               :⇒ sS  ).1( ss JS ∆+=
−

 

Thus, 
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)
1

)1(log(               

1

2

11
)log()log(

0

22

0
2

00

0

ss

sts

s

ss

t

s

ts

t

ss

t

s

t

XS
S

X

dsS
S

JdWdS
S

SS

∆−∆++

−+







++=

−

−

−

−

−

−

∑

∫∫∫

≤<

χχ

 

)log( tS = )log( 0S + ))()1(log(
2

1

00

2
s

ts

s

t

st XXdsX ∆−∆++









− ∑∫

≤<

χ  

Finally, if we use property of Logarithm function then we will find the solution  (3.1) as 
                   
 

tS = 0S 









− ∫

t

st dsX
0

2

2

1
exp χ )exp()1(

0
s

ts

s XX ∆−∆+∏
≤<

 .            (3.17) 

 

By the decomposition of  ,tJ  this decomposition can be written as follows: 

                     

tS = 0S exp 

















−++∫ ∫

t t

s

stss dsaNdW
0 0

2

2

χ
χ )exp()1(

0
s

ts

s JJ ∆−∆+∏
≤<

 

with dynamics   

.),( dtaSdxdtxMSdWSdS ttttttt −−−
++= ∫

+∞

∞−

χ  

 

In order to ensure that 0>tS  for all 0≥t  a.s., we require that 1−>∆ tX  for all .t  

Thus,we shall assume that the family of Lévy measures [ ]Ttt ,0}{ ∈σ  is supported on  

(-1,+∞ ). 
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3.2 THE POWER JUMP PROCESSES 
 
 Now, let us define  “The Power Jump Processes” as follows: 

 
)1(

tX  := ,tX  

 
)( j

tX  := ,)(
0

j

ts

sX∑
≤<

∆  2≥j  where sX∆ = sX -
−s

X                   (3.18) 

 and 
 

)1(
tJ  := ,tJ  

 

  
=:)( j

tJ  ,)(
0

j

ts

sJ∑
≤<

∆ 2≥j .                                     (3.19) 

 
     
 

Definition 3.2.1 The process )( jJ  as defined above are called j-th power jump process. 

 

By definition, it is clear that )( j
tX .)( j

tJ=     

These processes have jumps at the same point as the original additive process, but the size of 

the jump of )( j
tX  is equal to the size of the original jumps to the power .j  

 
 
Let us find expectation of Power Jump Processes by recalling (3.15) and (3.16): 
 

][ )1(
tXE  = ds

t

s∫
0

η + ∫ ∫
≥

t

x

s dsdxx
0 }1{

)(σ := ∫
t

dssm
0

1 )( := ),(1 tM  

 

][ )( j
tXE  = 








∆∑

≤<

j

ts

sXE )(
0

= dsdxx s

t

j )(
0

σ∫ ∫
∞

∞−

:= ds (s) m

t

j∫
0

),(: tM j=
 

2≥j  

       
 Now, let us define compensated Power Jump Processes: 
 

 

                                    
=:)( j

tZ
)( j

tX ][ )( j
tXE− = ),()( tMX j

j

t −  .1≥j                          (3.20) 

  
By the definition, compensated Power Jump Processes are martingales. These processes are 
called Teugel Martingales. 
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From the Orthonormalization procedure described in (Balland. P [1] and Nualart. D and 
Schoutens W. [9] , we can define the following sequence of strongly orthonormal 

martingales ,{ )( jY  :}1≥j  

)( j
tY  := )(

0

, )( j

s

t

jj dZsb∫ + )1(

0

1, )( −
−∫ j

s

t

jj dZsb  + … + ,)( )1(

0

1, s

t

j dZsb∫  1≥j        (3.21) 

 

Here, ijb ,  are the coefficients of the orthonormalization of the following polynomials with 

time dependent coefficients, 
 

}{{ ts<Ι , xts }{ <Ι , 2
}{ xts<Ι , … ,

 
},1

}{
−

<Ι j

ts x  

   

with respect to the measure  =dsdxs )(ψ dsdxdxx ss ))()(( 22 δχσ +  defined in .],0[ RT ×  

Here, the orthogonalization is considered with respect to the following inner product: 
 

〉〈 nm, = dsdxdxxxnxm sss

T

s ))()()(()( 22

0

δχσ +∫ ∫
∞

∞−

 

Here, the coefficients )(xmt  and )(xnt are real polynomials with time dependent 

coefficients and δ  is dirac delta. 

By the Martingale Representation Property(MRP), we can say that any square integrable Q-
martingale can be represented as an orthogonal sum of stochastic integrals with respect to the 

orthonormalized power jump processes )({ jY , }1≥j . 

This means that, any square integrable martingale tMM {= , ]},0[ Tt∈  submits the 

representation: 
 

                                                         

.
1 0

)()(
0 ∑∫

∞

=

+=
j

t

j

s

j

st dYhMM                                     (3.22) 

 

In the above equation ,)( j
sh  

1≥j  are predictable and .
0

2

1

)( ∞<











∫∑

∞

=

t

j

j

s dshE  
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CHAPTER 4 

 
MARKET COMPLETENESS AND THE HEDGING 

PORTFOLIOS 
 

4.1 MARKET COMPLETENESS 
 
Assume that there exists at least one equivalent martingale measure Q such that X  remains 
a natural additive process under Q. If Q satisfies previous property, then it is called structure 
preserving. Now, let us see the theorem 3.2 in Chan [7]. This theorem is given for Lévy 
market models, but we can apply the results in these theorems for our geometric Additive 
market model. 
 

Theorem 4.1.1 Let 
~

P  be a measure which is absolutely continuous with respect to P on .tF
 

Then  

 

,

~

TT Z
dP

Pd
=F  

 

where the process ]},0[,{ TtZZ t ∈=  is defined as follows: 

 

 

[ )

)),(exp(),(         

)()],(1),([),(),(
2

1
 exp:

0

0 0 ,0

2

0

s

ts

s

t t

R Rt

s

t

sst

XshXsH

dsdxxshxsHdxdsMxshdsGdBGZ

∆−∆×












−−−+−=

∏

∫ ∫ ∫ ∫∫

≤<

×

ν

  . 

 

 Here tG and ),( xtH  are previsible and Borel previsable processes respectively and 

),( dxdsM = ),( dxdsQ - ),(dxdsν where Q is a poisson random measure.  

0≥H , 1)0,( =tH  for all 0≥t  and ),( xth  is another Borel previsible process such that  

[ ] .)( ),(1),( ∞<−−∫ dxxthxtH
R

ν  

  

Moreover, under ,
~

P  the process 

 

 

~

tB ∫−=
t

st dsGB
0
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 is a Brownian motion and the process X is a quadratic pure jump process with compensator 

measure by ),(
~

dxdtν = )(
~

dxdt tν  where )(
~

dxtν = )(),( dxxtH ν  and previsable part is 

given by 

 

=
~

tα  =][~ t
P

XE  ∫ ∫ −+
t

R

dsdxxsHxt
0

)()1),(( να   



























−= ∫

≥ }1{

1 )(
x

dxxXE να . 

 

Suppose that ∞<







∫
t

s dsGE
0

2
 and 0≥H  where 1)0,( =tH  for all 0≥t . ),( xth  is Borel 

previsible process such that  

 

.)(),(1),( ∞<−−∫ dxxthxtH
R

ν  

 

Proposition 4.1.1 Let ),( xtF  and ),( xtf be Borel functions satisfying the following 

assumptions: 

(a) 0),( >xtF  for all x in the support of the Lévy measure tσ  and all 

],0[ Tt∈ and assume that there exist constants 0, >βα  such that 

0),( >≥αxtF for all ),( ββ−∈x and ],.0[ Tt∈  

(b) ,)(),(1),(
0

∞<−−∫ ∫
T

t

R

dtdxxtfxtF σ       

(c) ,)(),(

2

0

∞<∫ ∫
∞+

∞−

dtdxxtf t

T

σ  

(d) There is an 0>ε  such that  

               .)(1),(
0

2
∞<−∫ ∫

+

−

dtdxxtF t

T

σ
ε

ε

 

Then, the process ]},0[,{ TtUU t ∈=  is defined by 

)),(exp(),(        

)()),(1),((),(),(exp

0

0 0

s

ts

s

t t

st

JsfJsF

dsdxxsfxsFdxdsMxsfU

∆−∆×









−−−=

∏

∫ ∫ ∫ ∫

≤<

+∞

∞−

+∞

∞−

σ
 

and does not depend on f and it is a local martingale. 

 

Theorem 4.1.2 Let tXX (= , }0 Tt ≤≤  be a non-homogeneous Lévy process(Additive 

process) with local characteristics ),,( 2
ttt σχη  under some probability measure .P  Then, 
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if exists a probability measure Q equivalent to P, such that X is also a Q non-homogeneous 

Lévy process with local characteristics ),,,(
~

2~~

tt σχη   then the followings are hold: 

(i) )(
~

dxtσ )(),( dxxtH tσ=  for some Borel function ,: ++ →× RRRH   

 for some Borel function  

        (ii) ,)()1),(( 2
}1{

~

tttxtt GdxxtHx χσηη +−Ι+= <

+∞

∞−
∫   

++ → RRGt :  such 

that ,2

0

2 ∞<∫ dsGs

t

sχ   

                (iii)     ,
~

tt χχ =  

       (iv)      The density process
t

t

t
dP

dQ
:=ς    is given by 










































−−×









−

∫ ∫ ∫

∫ ∫

> >
→

t

x x

s

t t

sssss

dsdxxsHdxsQxsH

dsGdWG

0
0

0 0

22

)()1),(()],,0((),(loglimexp

2

1
exp

τ τ
ε

σ

χχ

 

 

with 1][ =tpE ς , for every ].,0[ Tt∈  

  

 
The above theorems imply following results: 
 

         
}0,{

~~

TtWW t ≤≤=  with dsGWW s

t

stt ∫−=
0

~

χ                          (4.1) 

is a Brownian motion under Q. 

                    

                              (4.2)                          )()1),((                                   
0

~

dsdxxsHxaNJ

t

sstt ∫ ∫ 









−++=

∞+

∞−

σ

                                                            
 

where 
~

N =
~

{ tN , ]},0[ Tt∈ is a Q-martingale and 

,)()1),((
0

~

dsdxxsHxNN

t

stt ∫ ∫
+∞

∞−

−−= σ  

and                    dtdxdxdtQdxdtM t )(),(),(
~~

σ−=  
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                                          = ).()1),((),( dxxsHdxdtM sσ−+                                         (4.3) 

The discounted price process 
~

S can be written as: 

).exp()1()()1),((exp        

2
exp

~

0

~

0

0 0

2
2

~~

0

~

s

ts

s

t

s

t t

s

sssstsst

NNdsdxxsHx

dsGraNWdSS

∆−∆+







−×

























−+−++=

∏∫ ∫

∫ ∫

≤<

∞+

∞−

σ

χ
χχ

 

By Proposition 4.1.1, the process 

)exp()1(
2

exp
~

0

~

0 0

2~~

s

ts

s

t t

s
tss NNdsNWd ∆−∆+










−+ ∏∫ ∫

≤<

χ
χ  

is a Martingale. Thus, a necessary and sufficient condition for 
~

S  to be a Q-martingale is the 

existence of tG  and ),,( xtH  for which the process tς  is a positive martingale such that 

                                       0)()1),((2 =−+−+ ∫
+∞

∞−

dxxsHxraG stttt σχ                            (4.4) 

Thus, by (4.1), (4.2) and (4.4), we have: 

.
0

~~

0

dsrNWdX

t

sts

t

st ∫∫ ++= χ  

Therefore dsrX

t

st ∫−
0

 is a martingale. Also, the dynamics of 
~

S  under Q is given by: 

).exp()1(
2

1
exp

~

0

~

0

2
~~

0

0

~

s

ts

s

t

sts

t

st NNdsNWdSS ∆−∆+









−+= ∏∫∫

≤<

χχ             (4.5) 

Here the new generalized Lévy measure is ).(),()(
~

dxxtHdx tt σσ =  

Under Q, the discounted stock price process 
~

S ={
~

tS = tS / tB ,0 Tt ≤≤ } and the process                                                               

}0 ,{
0

~

TtdsrXX

t

st ≤≤−= ∫  are both Q-martingales. It is clear that 
~

tt XX ∆=∆ and  

)(
~

)( j

t

j

t XX =  for .2≥j  

We have that for 2≥j , ∫=
R

t

j

j dxxm )(
~~

σ
 

where }{
~

tσ ],0[ Tt∈  is the family of Lévy 

measures of X   (and 
~

X ) under Q. 
Let us now define the new artificial assets for completing the market: the Power jump assets   
 



25 
 

)( j

Z
−

={ ,
)( j

tZ
−

]},0[ Tt∈   given by ,: )(
)(

j

tt

j

t ZBZ =
−

.2≥j               (4.6) 

And, we can also introduce the othonormalized power-jump assets: 
 

                                ]},0[ ,{
)()(

TtYY
j

t

j

∈=
−−

  given by  
)( j

tY
−

:= tB
)( j

tY , .2≥j               (4.7) 

   

By definition, the processes 
)(

{
j

Z
−

, }1≥j  and  
)(

{
j

Y
−

, }1≥j are both Q-martingales. 

An attainable contingent claim is a non-negative random variable ∈X
2L ( ,Ω , ,tF Q)  in 

),Q(2L  if there exists a self-financing portfolio whose values, at time T, converges in 

)Q(2L  to X . In our market, a portfolio Ψ = mΨ{ , }1≥m  is a sequence of finite-

dimensional predictable processes. 
 

m

tΨ{ = m

tω( , m

tα , m

t

),2(α , … , )),( mc

t
mα , Tt ≤≤0 , }2≥m  

 

Here, m

tω  corresponds the number of bonds at time ,t  m

tα  corresponds the number of 

stocks at time ,t  and mj

t

),(α  is the jth-power jump assets )( jY  and mc  is an integer depends 

on .m  This portfolio Ψ = mΨ{ , }1≥m  is self financing if  mΨ  is self financing for each 

finite m. 
 

Theorem 4.1.3 Consider that our market model is QM ,where traded assets are a bond with 

price process is given by (3.2) a stock with dynamics given by (3.1) and the Power jump 

assets }.2,{
)(

≥
−

jZ
j

 If the additive process X satisfies  (3.14) and if there is at least one 

equivalent martingale measure Q that is sructure preserving, then the market QM  is 

complete in the sense that any square integrable contingent claim ∈C ,(2 ΩL )Q,tF  can be 

replicated in .2L  

 
Proof: 
 

Let us take a square integrable contingent claim C  with maturity .T  Let 

 

tM = .exp
0

Q



















− ∫ t

T

s CdsrE F  

  
 
By using Martingale Representation Property, we know that 
 

.)(

2 0

)(
~

0

)1(
0

j

s

j

t

j

ss

t

st dYhXdhMM ∑∫∫
∞

=

++=  
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Now, let us define the following process as: 

N

tM := 0M + ∫
t

ss Xdh
0

~
)1( + .

2 0

)()(∑∫
=

N

j

t

j

s

j

s dYh  

 

Then we have that t

N

t
N

MM =
∞→

lim  in ).Q(2L  Now, let us define sequence of portfolios as 

follows:  
                            
                             
 

                            
NΨ :={ =Ψ N

t

N

tω( , tα , )2(
tα , )3(

tα ,…, ))(N
tα , }2,0 ≥≥ Nt  given by   

                              

N

tω = N

tM
− tα− −t

S exp −









− ∫

t

sdsr
0











− ∫

t

sdsr
0

exp ,
2

)(
)(∑

=

−N

j

j

t

j

t Yα  

tα = 









∫ dsr

t

s

0

exp )1(
th ,1−

−t
S  

 
)( j

tα = .)( j
th        .,...,3,2 Nj =  

 

In the above ,
 

N

tω  corresponds to the number of bonds at time ,t  tα  corresponds to the 

number of stocks at time t  and )( j
tα  corresponds to the number of power jump assets .

)( j

tY
−

 

Firstly, we must show that the sequence of portfolios NΨ := N

tΨ{ , ]},0[ Tt∈ is self 

financing that replicates .C  If we look at the values N

tV  at time ,t  then we will find 

 

N

tV =
N

tω exp 









∫ dsr

t

s

0

+ tα tS + =
−

=
∑

)(

2

)(
j

t

N

j

j

t Yα exp .
0

N

t

t

s Mdsr 









∫  

Thus, we can say that the sequence of portfolios NΨ{ , }2≥N  is replicating the claim .C  

Denote the Gain process by: 
                           

dserD sr

t

N

st

N

t ∫=
0

ω  + s

t

sdS∫
0

α + .
2 0

)(
)(∑∫

=

−N

j

t j

s

j

s Ydα  

 
If the portfolio is self financing then it must satisfy the following equation:

 
.0

N

tt

N

t MBMD =+  

If we substitute N

tω , tα  and )( j
tα  in ,N

tD  then we will obtain: 
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N

tD = dseMr sr

t

N

st ∫ −

0

∑∫∫
=

−

−
−−

N

j

t j

s

rj

st

t

s

r

t Yehrdsher ss

2 0

)(
)(

0

)1(
ds 

                                   + ∫ −

−

t

sss

r
dSShe s

0

1)1( + .
)(

2 0

)(
j

s

N

j

t

j

s Ydh
−

=
∑∫  

 
Integrating by parts gives us: 
 

dseMr sr

t

N

st ∫
0

= −N

ttMB 0M ∫−
t

s

r

s Xdeh s

0

~
)1( .)(

2 0

)( j

s

r
N

j

t

j

s dYeh s∑∫
=

−  

By using the above equation, and by using the equations )(
)(

j

tt

j

t YBY =
−

 and 

)(
~

ttt XdrdtSdS +=
−

, we will obtain the following result:  

 
 

N

tD  = N

ttMB 0M− −− ∫
~

0

)1(
s

t

r

s Xdeh s

)(

2 0

)(
j

s

r
N

j

t

j

s Ydeh s∑∫
=

 

                                    
t

t

s

r

t rdsher s −− ∫
0

)1(
( )
dsYeh

j

s

r
N

j

t

j

s
s

−

−

=
∑∫

2 0

)(  

                                    
∫ −

−
+

t

sss

r
dSShe s

0

1)1( +∑∫
=

N

j

t

j

sh
2 0

)(
)( j

sYd
−

 

                            

                      = N

ttMB 0M− ss

t

r

s

t

s

r

s

t

r

st dSSehXdehdsehr sss 1

0

)1(

0

~
)1(

0

)1( −

−∫∫∫ +−−  

 

                               = tB
N

tM ,0M−                         Q.E.D. . 
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4.2 HEDGING PORTFOLIOS 
      

Lemma 4.2.1 Consider a real function  ),,( yxsh  on 
+++ ×× RRR  which is infinitely 

differentiable in the y-variable and satisfies 0)0,,( =xsh  and .0)0,,( =
∂
∂

xs
y

h
 

          Set 

),( xsa j )0,,(
!

1
xs

y

h

j j

j

∂

∂
=  

 

         and assume that  

0,

sup
ssKx ≤<

.),(
2

∞<∑
∞

=j

j

j Rxsa  

       For all 0, >RK , .00 =s  Then we have  

.)(),,()0,,(
!

1
),,(

~
)(

2

dsdyySshdZSsh
yj

JSsh

T

t

s

j

ssj

j

j

T

t

s

Tst

s σ∫ ∫∑∫∑
∞

∞−

∞
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−−−

+
∂
∂
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Proof: 
        

The function ),,( yxsh  can be expanded as 

),,( yxsh
j

j

j yxsa ),(
2
∑
∞

=

=  

Then,  we have 
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2
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2
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t
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j
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t

j

j
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j

ssj

j

ss
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=
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Here, )(
~

dyym j

j σ∫
∞

∞−

= . Hence, we have 
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~

2
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dsdyySsadZSsaJSsh j

T

t

s

j

j

j

s

j

T

t

sjs

Ts

s σ∫ ∫∑∑∫∑
∞

∞−

∞

=

∞

=≤<
−−−

+=∆  

                                      = .)(),,(),(
~

)(

2

dsdyySshdZSsa

T

t

s

j

ss

j
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∞

=
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Now, let us compute the hedging portfolio that replicates a contingent claim C  whose 
payoff is a function of the value, at maturity, of the stock price ,S  of an absolutely 

continuous process 1V = 1{ tV , }0 Tt ≤≤  and of a jump process 2V = 2{ tV ,0 }Tt ≤≤  satisfy 

the following definitions: 
                              

1
tV := ,)(

0

dsSf

t

s∫                                            (4.8) 

 

                                                             2
tV := ).,()(

~

0

dxdsMxu

t

∫ ∫
∞

∞−

                                     (4.9) 

In the above )(xf is a continuous function and u  is a smooth function satisying the 

property 0)0()0( ' == uu  and ∞<∫ ∫
∞

∞−

dsdxxu s

t

)()(
~

0

σ  and  

),(
~

dxdsM = ),( dxdsQ - dsdxs )(
~

σ
 

is the compensated Poisson Random measure. The 

payoff is a function of TS , 1
TV  and 2

TV  that is of the form ),,( 21
TTT VVSp . By the 

independence of 
t

T

S

S
 and 2

TV
2
tV−  wrt tF , we obtain the price function of the contingent 

claim ,C  at time t  as follows: 
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In the above equation, the price function ),( xtF  must satisfy a partial differential integral 

equation (PIDE). 

Our notation that we will use in the PIDE is ),,(: 321 xxxx = , 0D := 
t∂
∂

 , iD :=
ix∂
∂

 
                                                  

j

j
j

x
D

1

1 : and
∂

∂
= . 
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The price function ),( xtF  is a solution of the PIDE: 
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(4.10) 

 

).(),( xpxTF =                                            (4.11) 

 
where 

)(),(),())(,),1(,((:),(
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We guarantee the entity of the equtions by the following proof: 
 
Proof:                                          

The discounted process 






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− ∫ dsr
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0

exp ),( tTtF  is a Q-martingale by assumption. 
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 where tM  is a local martingale and tC  is a finite variation process 

 Itô’s formula for semimartingales gives us: 
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Applying Lemma (4.2.1) to ,h  we will find: 
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Thus, we have: 
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By the above equation, we can say that the pricing function satisfies the (PIDE)  

 

,0),(),( =+Φ ytDFytF Q.E.D. . 

For simplification, we will use the notation tV := 1( tV , )2
tV  in the next 

theorem. 
 

Theorem 4.2.1 Let Y∈ Ω[ , Q],tF  be a contingent claim with payoff  ),( TT VSpY =  and a 

price function F of class .,2,,1 ∞∞C  Let us define the function  RRTh →× 3],0[:  given by: 

    ).,(),())(,),1(,(:),,( 11321 xtFyDxxtFyuxxyxtFyxth −−++=       (4.12) 



33 
 

Assume that ),,( yxth  is analytic in y for all 
3Rx∈ , ],0[ Tt∈ . So, we have Taylor series 

representation of h as following: 
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for all y∈R. 

Then Y has a self–financing portfolio, that is given by, at time t: 
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Proposition 4.2.1 Let us denote ),(
)(~

t

m
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Here ),()( TtmΠ  is a deterministic function. If we first apply Itô lemma and then if we apply 
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We now introduce the hedging formula for contingent claims in terms of call options with 
the same maturity and different strikes. In order to persue this goal, let )(xp  be a real 

function of class 2C  in ),0( ∞  and let ])([
1

:)( Q

~

tT
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t KSE
B

KC F+−=
 

be the discounted 

price function of a call option with maturity T  and strike K . )(KCt  denotes one call 

option with strike K  and maturity .T  
 
By (Carr. P. And Madan. D. [6]) we can write this twice differentiable payoff as follows: 
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                      (4.20) 

The first term can be interpreted as the payoff from a static position in )(Kp  pure discound 

bond. The second term can be interpreted as the payoff from )(' Kp calls struck at .K  The 

third term arises from a static position in dKKp )(''   calls at all strikes greater than .K  

 
Proof: 

If we take the Taylor expansion of )( TSp  at K  with the first error remainder term, then we 

have following equation: 
  

                           ).())(()()( 1
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       Q.E.D. . 

Discounting and taking conditional expectation of each side of the above equation for 
∞<≤ K0  will give us following: 
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Theorem 4.2.2 Let U be a contingent claim with payoff ),( TT VSpU =  and a price 
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Then, we have the following representation: 
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Hedging portfolio, in terms of bonds, stocks and call options, is given by 
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where 
)(K

tα  is the number of call options in the hedging portfolio, at time t, with strike .K  
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Proof: 
        

From (4.18), we can obtain the value of the hedging portfolio in the first n  discounted 

power-jump assets )( j
tZ  , nj ≤≤2 . It is given by 
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   (4.25) 

 

If we now consider the representation formula (4.21) with ,)( mxxp = then we have 
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for all ],0[ Tt∈ . By assumption (4.23) we can apply Fubini’s theorem to (4.27). So, we 

obtain 
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By the above equation we can obtain number of bonds, number of stocks and number of call 
options in the hedging portfolio as follows: 
 



41 
 

2

)(

1

0
2

1

1
1

),(

)1,,,(
),,(

,)(
),(

)1,,,(        

)],,(),,([

−

−

−−

−−

−

−

−−

−−−−−

=

−
−=












−−+

−=

∫
∞

−

−

t

K

t

t

tt

ttt

t

t

ttt

ttttttt

S

KtR

S

VSth
VStFD

dKKC
S

KtR
VSthB

VStFDSVStFB

α

α

ω

 

 

In the above, tω  corresponds number of bonds at time ,t  tα  corresponds number of stocks 

at time t  and )( j
tα  corresponds number of call options with the same maturity T  and 

different strikes K . 
 
It is pointed out that, replacing (4.26) in (4.18)  gives us 
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This gives us the replication formula for the power jump assets in terms of call options with 
the same maturity and with a continuum of strikes. (4.24) gives a dynamic hedging portfolio 
in terms of call options and of the discounted stock, that is equivalent to the hedging 
portfolio in terms of power-jump assets. 
    
Remark 4.2.1 Now, let us investigate the relationship between the usual exponential Lévy 
model and the geometric Lévy model( stochastic exponential model). Assume that our stock 

price process tSS {= , ]},0[ Tt∈  is given by the equation 
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0
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where  ]},0[,{
~~

TtXX t ∈=
 
is a Lévy process. We can say that the process can be modelled 

as a stochastic exponential of a Lévy process, that is defined as the solution  

of the linear stochastic differential equation (3.1) and denoted by tS 0S= )( tXΩ ,where 

tXX {= , ]},0[ Tt∈ is a Lévy process related to .
~

X  

Then, the following properties can be written: 

(1)  If  
~

X  is a Lévy process with characteristic triplet 
~

(η , 
~

χ 2
, )

~

σ  then the usual 

exponential  
~

txe is of the form )( tXΩ  for some Lévy process X with characteristic triplet 

given by ),,,( 2 σχη   where 
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(2)  If X is a Lévy process with characteristic triplet given by η( , ),2 σχ then the stochastic 
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By (3.18) and (4.29)  
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where  
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J  is the jump part of 
~

X  and J is the jump part of .X  

 

If the stock dynamics is defined by (4.29)  then we can define the hedging portfolio as 

following. Here the price function ),( xtF  is the solution of the following PIDE: 
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Here, the contingent claim has a payoff that depends only on the stock price at maturity. So 
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Here, the sum is over all partitions of n,that is, over all n-tuples 

1(m , 2m ,…, )nm such that 

11m + 22m + 33m +…+ ,nnmn =  

We have the notation of 1: mm = + 2m +…+ ,nm  

And, the hedging portfolio is given by 
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Until now we supposed that the contingent claims with a price function ),( xtF  satisfying 

the analytic assumptions in Theorem 4.2.2. However, these regularity conditions are strong 
and we would like to obtain hedging formulas for more general contingent claims. For 
getting such formula, we will consider the discounted orthonormalized power jump 

processes )({ jY , }2≥j Recall the orthonormalization coefficients from the 

orthonormalization procedure and consider the orthonormal real polynomial ),()( yp j

t  1≥j  

with these time dependent coefficients. 
 

Lemma 4.2.2 Let RRTf →× 4],0[: be a measurable function such that  
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Theorem 4.2.3 Let Y be a contingent claim with payoff ),( TT VSpY =  and a price function 

),,( tt VStF such that ),( xtF  is of class 
2,2,2,1C in  
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 In addition to this, the hedging portfolio in terms of bonds, stocks and call options is given 
by 
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Proof:  
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Using the Partial Differential equations (4.10) and (4.11) gives the following:  
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This gives us the representation of the hedging portfolio in terms of bonds and stocks.     
 
In addition to this, note that 
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Recalling (4.18) gives us: 



47 
 

).,()1(
),(

)1(lim                       

),(
),(

1
)1()1(lim                       

lim

)(~
),(

0
)(

)(~

)(
1

),(

0

0

)()()(

0

)(

s

mj
j

k

mj

kj

s

k

im

t

s

m

sm

k

s

k

s

k

m
j

m

j
jkj

s

k

ij

t

s
k

k

ij

t

j

s

j

s
k

j

s

ij

t

j

s

SsFdm
SsF

B

SsFd
SsF

mB

dZdY








−−=

−






−=

=

∑∑ ∫

∑∑∫

∑∫∑∫

==

==

=

∞

=

−

−

α

α

αα

 

                         
 
The representation (4.26) yields 
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Combining with the representation (4.31), we obtain the hedging portfolio. 

 

Remark 4.2.3 Take a call option struck at *K  in an additive market with bond price process 
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CHAPTER 5 

 
PORTFOLIO OPTIMIZATION 

 
In this section, the portfolio optimization problem in the complete Additive Market is 
considered. This problem consists of choosing an optimal portfolio in such a way that the 
largest expected utility of the terminal wealth is obtained. 
In this section, a class of utility functions, including HARA, logarithmic and exponential 
utilities, are considered. Then, the optimal portfolio that maximizes the terminal expected 
utility is obtained by the martingale method. Then, the optimal wealth is found and the 
hedging portfolio replicating this wealth is obtained respectively. 
In this section, it is shown that for particular choices of the equivalent martingale measure in 
our market, the optimal portfolio only consists of bonds and stocks. 
 

5.1 THE OPTIMAL WEALTH AND THE OPTIMAL PORTFOLIO 
 
Definition 5.1.1 A utility function is a map }{:)( −∞∪→= RRxU , which is strictly 

increasing and continuous on }{ −∞>U , of class 
∞C   and strictly concave on the interior 

of }{ −∞>U , and such that marginal utility tends to zero when wealth tends to infinity, i.e., 
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Let us denote the interior of }{ −∞>U  by ).(Udom  We will consider only the two 

following cases: 

 
Case 5.1.1 ),0()( ∞=Udom  and U  satisfies 

.)('lim:)0('
0

∞==
+→

xUU
x

 

                   

Case 5.1.2 RUdom =)(  and U  satisfies  

 .)('lim:)(' ∞==−∞
−∞→

xUU
x

 

 

The HARA utility functions 
p

x
xU

p

−
=

−

1
)(

1

 for +∈ Rp \{0,1} and the logarithm utility  

)log()( xxU =  are examples of case 5.1.1 and the exponential utility function 

axe
a

xU −−=
1

)(   is example of case 5.1.2. 

Let us fix a structure preserving martingale Q. Our aim is to solve the optimal investment 
problem in the non-homogeneous Lévy market by using the so called “Martingale method.” 
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We consider that, an initial wealth 0w  and an utility function ,U  that we want to find the 

optimal terminal wealth ,TW  that is, the value of TW  that maximizes ))(( Tp WUE and can 

be replicated by a portfolio with initial value 0w .  

We have the information that, under an equivalent measure Q, which is structure preserving, 

any random variable )Q,,(2
tT LW FΩ∈

 
can be replicated and .Q0 








=

T

T

B

W
Ew  

Thus, we will consider the optimization problem  
 

.:))((max 0Q









=







w

B

W
EWUE

T

T
Tp  

The corresponding Lagrangian is 
 

.
Q

)())(( 00Q 

















−−=








−− w

B

W

dP

d
WUEw

B

W
EWUE

T

T

T

T
TTP

T

T
TP λλ          (5.1) 

 

Definition 5.1.2 TW  is called the optimal terminal wealth if it is a solution to the 

optimization problem (5.1), 
 

The optimal terminal wealth is given by the following equation: 

 









= −

T

T

T
T

B
UW ς

λ1)'(  

 

where Tλ  is the solution of the equation 

 

                                                      .
Q

)'(
1

0
1

Q w
dP

d

B
U

B
E

T

T

T

T

T

=














− λ
                              (5.2) 

 

Remark 5.1.1 In order to hedge the optimal terminal wealth ,TW  we need to know its price 

process: 

 









TT

T

t W
B

B
E FQ .)( 1'

Q 















= −

TT

T

T

T

t

B
U

B

B
E Fς

λ
 

and this depends on the utility function considered. Assume that the utility function satisfies 

)()( 1' xyU − = )()())(( 2
1'

1 xbyUxb +−
, for any Ryx ∈, , for certain 

∞C  functions )(1 xb  

and )(2 xb . 

Then the price function TW  verifies: 
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(5.3)                                                                        ),(),(                        

QQ
)'(

Q
                        

Q
)'(
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d
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T
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

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

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

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
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
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
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
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
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

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So we have 







tT

T

t W
B

B
E FQ ),,(),( TtWTt t ωπ +=  for certain deterministic functions 

),( Ttπ  and ),( Ttω  ( In the above 
tt

TT
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dPd
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/QQ
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, = ) 

with 









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t
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t
B

UW ς
λ1)'(  

where 

.)'(
1

0
1

Q ως
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



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




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Lemma 5.1.1 )()()')(()()'( 2
1

1
1 xbyUxbxyU += −− ,  for any ),0(, ∞∈yx  if and only if 

nmxxUxU +=)(/)(' ''
, for any ),(Udomx∈  and some ., Rnm ∈  

 
Proof: 
 

Suppose first that )()()')(()()'( 2
1

1
1 xbyUxbxyU += −− . Write )()'()( 1 xUxI −= . Then, 

by differentiating with respect to x , we have 
 

)()()()(' '
2

'
1 xbyIxbxyyI +=  

 
 

Thus, by taking )(1 uIy −=  and ,1=x  we obtain 

                       

)1()1(                          

)(''

)('
))((')(

'
2

'
1

11

bub

uU

uU
uIIuI

+=

=−−

 

 

Suppose that nmxxUxU +=)(''/)(' . By integrating the differential equation we have that 

21 )log()( BnxBxU +−=                                        if  ,1≠m  
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        2
/111 )(

)/11(
)( Bnmx

mm

B
xU m ++

+
= +                      if   { },0,1−∉m  

2
/

1)( BneBxU nx +=                                                 if   .0=m  

where 1B  and 2B  are integration constants. Hence, mnkyyU m /)()'( 1 −=− , if 0≠m  and 

kynyU +=− log)()'( 1  if 0=m , where k is constant. 

 

Lemma 5.1.2 Consider a utility function U such that ,
)(''

)('
nmx

xU

xU
+=   for any 

)(Udomx∈ and for some m,n . Then; 

 

                               )()'( 1 yU −
 = 








=+

≠−

0m   if                  kyn

0m   if                    
m

n
kym

log

                               (5.4) 

 
The proof of this lemma has been already done in the above. 
 

In the above  has the following representation: 
 

t

t

t
dP

dQ
=ς  

  )()),(log1),((   /exp

),(),(log
2

1
exp

0

0 00

22









−−









+−=

∫ ∫

∫ ∫ ∫∫
∞+

∞−

+∞

∞−

t

s

t tt

sssss

dsdxxsHxsH

dxdsMxsHdsGdWG

σ

χχ

                                     (5.5) 

 

where G and H verifying following assumptions: 

(i)  ,)(),(log

2

0

∞<∫ ∫
+∞

∞−

dsdxxsH s

T

σ  

(ii) ,)(),(log1),(
0

∞<−−∫ ∫
+∞

∞−

dsdxxsHxsH s

T

σ  

(iii)  .0)()1),((2 =−+++ ∫
+∞

∞−

dxxtHxraG ttttt σχ  

We can express this density process in terms of the Q -Brownian motion 
~

W and the 

compensated random measure ),(
~

dxdtM . From (4.1) and (4.3), we have 
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t
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Theorem 5.1.1 Assume that the utility function U  satisfies nmx
xU

xU
+=

)(''

)('
, for any 

)(Udomx∈  and for some m,n .R∈  Assume also that Q  is a structure preserving 

equivalent martingale measure, the associated function H satisfies the following 
assumptions: 
 

(i)    ,)(),(log

2

0

∞<∫ ∫
+∞

∞−

dsdxxsH s

T

σ  

(ii)   ,)(),(log1),(
0
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+∞

∞−

dsdxxsHxsH s

T

σ  

(iii)  ).(),()exp(sup)()exp(sup
),(],0[

~

),(
.],0[

dxxtHxdxx t
Tt

t
Tt C

σλσλ
εεεε
∫∫

−∈
−

∈
=  

In addition to the assumptions in the above 1)0,( =tH  and t

y

GytH
y

=
∂
∂

=0

),(  for all 

],0[ Tt∈  

 

(a) If 

                                       







==

≠+=
0,   if        , )exp(),(

0,   if                   ,)1(),(

1

mxGxtH

mxmGxtH

t

m
t                       (5.5) 

                                                                                

then the optimal portfolio consists only of bonds and stocks, and the number of shares is 
given by 

                                                        .
))(,(

1

−

−
+

=
t

tt

t
S

GnmWTtπ
φ                                       (5.6)  

(b) If 0≠m  and
mxtH )),((  is an analytic function in the x variable, and does not have the 

form (5.5) then, in general, the optimal portfolio will consist of bonds, stocks and power-

jump assets. The number of shares of these assets is given by 
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                               ,....,3,2  ,)),((
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 +=
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−
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π
φ              (5.7) 

(c) If 0=m  and ),(log xtH  is an analytic function in the x variable, and does not have the 

form (5.5) then, in general, the optimal portfolio will consist of bonds, stocks and power-

jump assets. The number of shares of these assets is given by 

 

                          ,...,3,2  ,)),((log(
!

),(
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)( =
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



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Proof: 
 
Let us define 

,:
~

0

ss

t

st WdGR ∫= χ  

).,(),(log:
0

~

dxdsMxsHK

t

t ∫ ∫
+∞

∞−

=  

which are Q-martingales. The discounted wealth price process, given by 

,
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∧
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is also a martingale and can also be written in terms of the processes tR  and tK . 

∧

tW = ),,,( tt KRtf  
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−++++= σχ  

In this proof, we will consider the two cases in (5.4). 

First, consider 0≠m . Then we have: 

 

( ) .)),,(exp(),,(exp(' 1

m

n
yxtmg

B
yxtg

B
U

m

t

t

t

t −



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Let us now apply the Itô’s Formula for semimartingales to ),,( ttt KRtfW =
∧

. Then we will 

find following result: 
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By definition, tR  is a continuous process (It is an Itô integral) and tK  is a jump process and 

we have that 

0=∆ tR , 

),(log tt JtHK ∆=∆ , 

dtGRRd tt
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0],[ =C
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where tA  is the finite variation part of the process .
∧

W  It is obvious that the Itô integral and 

the integral with respect to the compensated random measure are Q-martingales and in order 

to 
∧

W  be a martingale, the finite variation part ,tA  must be zero. Thus; 
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By (4.5) we can write following equation: 
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Since ,1
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ttt SBS −=  we can write the following: 
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In order to ensure that the optimal portfolio will consists only of bonds and stocks, the jump 

part of of 
∧

tWd  must be zero and, hence, 

 

m
t xmGxtH
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By (4.4) we know that the function tG  must satisfy 
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In addition to the previous equation, the wealth invested in stocks at time t  is then given by  
 

.
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−

−
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=
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Generally, if the function ),( xtH  does not satisfy (5.5) then the structure preserving 

martingale measure, that characterizes the market, is such that the optimal portfolio includes 
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bonds, stocks and derivatives which can be expressed by the power jump assets. Since 
),( xtH  is analytic in ,x  we can expand the integrant function 
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and the number of power-jump assets in the optimal portfolio is given by 
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In the second case of (5.4), when ,0=m  we have  
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Applying to Itô Formula for semimartingales to ),,( ttt KRtfW =
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 gives us following: 
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where tA  is a finite variation process. Similarly to the case ,0≠m  the finite variation part 

tA , must be zero and  
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Thus, 
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In order to ensure that the optimal portfolio will consist only of bonds and stocks, we requare 
that 
 

),exp(),( xGxtH t=  

where,  by  (4.4), the function tG  satisfies  
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The wealth invested in stocks is given by: 
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If ),( xtH does not satisfy (5.5) then the optimal portfolio includes also power jump assets. 

Let us expand the integrant function 
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5.2 APPLICATION 
 
Example 5.2.1 Consider the logarithm utility .log)( xxU =  Then 
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Therefore, 1),( =Ttπ  and .0),( =Ttω  Applying theorem (5.1.1), the optimal portfolio 

consists only of bonds and stocks if 

 

                                                      ,
1

1
),(

xG
xtH

t−
=                                                        (5.9) 

 

and xGt  satisfies 

   

( ) .0)(1)1(
0

12 =−−+−+ ∫ ∫
+∞

∞−

− dxxGxrG s

t

ttttt σηχ  

 

The fraction of wealth invested in stocks, at time ,t  is given by 
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If the function H satisfies the assumptions in Theorem 5.1.1 but is not of the form (5.9) then, 
in general, the optimal portfolio also includes power-jump assets. The number of these assets 
is given by 
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Therefore 1),( =Ttπ  and 0),( =Ttω . Applying theorem (5.1.1), the optimal portfolio 

consists of only of bonds and stocks if 
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The fraction of wealth invested in stocks, at time ,t  is given by 
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If the equivalent martingale measure is such that the optimal portfolio cannot be hedged by 
bonds and stocks, then the number of shares of the power-jump assets is given by     
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Example 5.2.3 Consider exponential utility function is given by 
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Thus, in this case 
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If the optimal portfolio includes power-jump assets, then the number of shares is given by 
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CHAPTER 6 

 
CONCLUSION 

 
In this study, the general geometric Additive market models are considered. These market 

models are generally incomplete, this means that, the perfect replication of derivatives, in the 

usual sense, is not possible. It is offered that the geometric Additive market should be 

enlarged by so called “power-jump assets” based on power-jump processes of the underlying 

Additive process. By using Martingale Representation Property for Additive processes, it is 

shown that the enlarged market is complete. After doing this, the hedging portfolios for 

claims whose payoff function depends on the prices of the stock and the power-jump assets 

at maturity are derived. In addition to the previous completion strategy, it is offered that the 

market should also be completed by considering portfolios with a continuum of call options 

with the same maturity and different strikes. What is more, the portfolio optimization 

problem is considered in the enlarged market. The optimization problem includes choosing 

an optimal portfolio in such a way that the largest expected utility of the terminal wealth is 

obtained. In our study, a class of special utility functions, including the HARA, logarithmic 

and exponential utilities are considered. Then, optimal portfolio that maximizes the terminal 

expected utility is obtained by the martingale method. It is shown that for particular choices 

of the equivalent martingale measure in the market, optimal portfolio consists of only of 

bonds and stocks. This includes the solution to the problem of utility maximization in the 

real market, consisting only of the bond and the stock.  
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