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ABSTRACT

DYNAMIC COMPLEX HEDGING AND PORTFOLIO
OPTIMIZATION IN ADDITIVE MARKETS

Polat, Onur
M.Sc., Department of Financial Mathematics
Supervisor: Assoc. Prof. Dr. Azize Hayfavi

February 2009, 65 pages

In this study, the geometric Additive market models are considered. In general, these market
models are incomplete, that means: the perfect replication of derivatives, in the usual sense,
is not possible. In this study, it is shown that the market can be completed by new artificial
assets which are called “power-jump assets” based on the power-jump processes of the
underlying Additive process. Then, the hedging portfolio for claims whose payoff function
depends on the prices of the stock and the power-jump assets at maturity is derived. In
addition to the previous completion strategy, it is also shown that, using a static hedging
formula, the market can also be completed by considering portfolios with a continuum of call
options with different strikes and the same maturity. What is more, the portfolio optimization
problem is considered in the enlarged market. The optimization problem consists of choosing
an optimal portfolio in such a way that the largest expected utility of the terminal wealth is
obtained. For particular choices of the equivalent martingale measure, it is shown that the

optimal portfolio consists only of bonds and stocks.

Keywords: Additive processes, Power-jump processes, Martingale Representation Property,

Replicating Portfolio, Portfolio optimization.
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ADDITIVE PIYASALARDA DINAMIK KOMPLEKS RiSK
MINIMIZASYONU VE PORTFOY OPTIMIZASYONU

Polat, Onur
Yiiksek Lisans, Finansal Matematik Bolimi

Tez Yoneticisi: Dog. Dr. Azize Hayfavi

Subat 2009, 65 sayfa

Bu calismada, geometrik Additive piyasa modelleri incelenmistir. Genellikle, bu piyasa
modelleri tam olmayip, bu durum su anlama gelmektedir: Tiirev {iriinlerinin, bilinen haliyle,
miikemmel bir sekilde riski minimize etmesi miimkiin degildir. Bu c¢alismada, piyasanin
Additive siireglerine bagli kuvvet sigrama siireclerini iceren ve kuvvet sigrama varliklar
olarak adlandirilan yapay varliklarla tamamlanabilecegi gosterilmistir. Daha sonra alacak
hakkina ait 6deme fonksiyonunun hisse senedi ve kuvvet varliklarinin vade sonu degerlerine
bagl riskten korunma portfdyii ifade edilmistir. Onceki tamamlama stratejisine ek olarak,
dinamik risk minimizasyonu formiilii kullanilarak, piyasanin ayni vadesonu ve farkli
vadesonu fiyatina sahip satin alma hakki veren siirekli opsiyonlar1 igeren porfoyleri goz
oniinde bulundurarak ta tamamlanabilecegi gosterilmistir. Ek olarak, genisletilmis olan
piyasada portfy optimizasyon problemi incelenmistir. Problem; Optimal portfoyiin, nihai
servete ait beklenen faydasinin maksimum olarak belirlenmesini ifade etmektedir. Denk
martengale Olgiisiinlin 6zel segimlerinde, optimal porfoyiin sadece tahvil ve hisse senetlerini

icerdigi gosterilmistir.

Anahtar kelimeler: Toplama siirecleri, Ustel olarak sigrama ozelligi gosteren siiregler,

Martingale Temsili Ozelligi, Yineleme Portfoyii, Potfoy optimizasyonu.
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CHAPTER 1

INTRODUCTION

In a complete market, any contingent claim can be valued on the basis of the unique
equivalent martingale measure. This means that, any contingent claim can be replicated by
an admissible self-financing portfolio. For instance, Black-Scholes model is a known
complete market model, where the stock prices evolve according to a geometric Brownian
motion. This model can be seen more detailed in Black and Scholes [3]. However, when the
sources of randomness are more than the number of investment assets, the completeness
vanishes.

In the real world, there are a lot of incomplete market models and specially most Additive
market models are incomplete. In these type of markets, a general claim is not necessarily a
stochastic integral of a stochastic process based in the model. This means that, the claim has
an intrinsic risk. So, a risk minimising strategy must be used in these type of models.

There are some techniques to minimise risk. Mean-variance hedging strategy is one of them.
This strategy can be seen in the study of Follmer and Schweizer [14]. Quantile hedging is
another risk minimising strategy that is studied in Follmer and Leukert [15]. Main
characteristic of this strategy is that, this strategy requires a large amount of initial capital. In
our work, we prefer the previous strategy to minimize risk.

We still use superhedging strategy in incomplete market models, but the cost of these
strategies in many cases are too high. For instance, superhedging cost of the call option is the
price of the underlying asset in the call.

In this study, the geometric Additive market models are considered and these market models
are based on additive processes. These market models are generally incomplete, so a
contingent claim can not be replicated by a self-financing portfolio in the usual sense. In our
study, we define some new artificial assets, so called “power-jump assets”. Then, by using
these new artificial assets, we complete the market. This type of a completion strategy for the
Lévy case was done by Corcuera, Nualart and Schoutens [9]. We show that the enlarged
market, where trading instruments are bond, stock and power jump assets, is complete.

In our study, it is also shown that the market can be completed by considering porfolios with
a continuum of Europian call options with the same maturity and different strikes.

Other authors try to replicate complex derivatives by using liquid and non-redundant assets.

For example, Balland [1] uses short-dated vanilla options, because of their liquid enough
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prices. Carr and Madan [5] uses self-decomposible laws at unit time and the associated self-
similar additive processes. They show that the models based on these processes describe the
option price surface equally well. Jacod and Protter [16] also try to complete incomplete
markets. In their study, it is shown that the market can be completed by adding some new
trading assets.

By giving the explicit hedging portfolios for claims whose payoff function depends on the
prices of the stock and power jump processes at maturity, the portfolio optimization problem
is considered. This problem includes choosing an optimal portfolio in such a way that the
largest expected utility of the terminal wealth is obtained. In this thesis, a class of special
utility functions, including HARA, logarithmic and exponential utilities, are considered.
Then the optimal portfolio that maximizes the terminal expected utility is obtained by the
martingale method. It is shown that for particular choices of the equivalent martingale
measure, the optimal portfolio consists of only bonds and stocks.

The organization of this study is as follows. In chapter 2, basic definitions and theorems
related to the Lévy processes and Additive processes are given. In chapter 3, geometric
Additive market model and power-jump processes are given. In chapter 4, power-jump
assets are considered and geometric Additive market is completed by these artificial assets.
In chapter 4, the hedging portfolio whose payoff is a function of time, stock price and the
new assets at maturity is given. In chapter 4, it is also shown that the market can be
completed by considering portfolios with a continuum of call options with different strikes
and the same maturity. In chapter 5, portfolio optimization problem in the enlarged Additive

market is considered. Chapter 6, concludes the thesis.



CHAPTER 2

PRELIMINARIES

2.1 SOME DEFINITIONS AND EXAMPLES

Definitions and theorems in this part are mainly taken from [8], [22] and [23].

Assume that we are given in a complete, filtered probability space (Q2,7,,F,P) in which
F' = (7,) <1, satisfies the usual hypothesis, i.e. :
(i) 7, contains all the P —null sets .

(i) 7, =NF,, all ¢, 0 <t < oo; thatis, the filtration / is right continuous.
u>t

Definition 2.1.1 4 stochastic process X ={X,,t >0} on R’ (d-dimensional Euclidean

space) is stochastically continuous or continuous in probability if, for every t >0 and
¢>0, limP[X, - X,|>&|=0.
s—t

Definition 2.1.2 4 filtration or information flow on (Q,F, P) is an increasing family of © -
algebras(F,) qor 1Vt 2520, F. CF 7.

Definition 2.1.3 A contingent claim is any stochastic variable X = ®(z), where z is a
stochastic variable drived by a stock price process.

Definition 2.1.4 A set is called Borel, if it can be constructed from open or closed sets by
repeatedly taking countable unions and intersections.

Definition 2.1.5 4 function f :[0,T]— R is said to be cddldg if it is right-continuous
with left limits: for each t € [0,T] the limits

ft=)= lim f(s), ft+)= Tlim f(s)
existand f(t) = f(t+).

Similarly, a function f :[0,T]— R is said to be cddldd if it is lefi-continuous with right
limits: for each t € [0,T] the limits

ft=)= lim f(s), ft+)= Tim f(s)
exist and f(t)= f(t-).



Definition 2.1.6 A probability measure 1 on R® is called infinitely divisible if, for any
positive integer n,there is a probability measure i, on R? such that H= ,U:*. (1" is the

n-fold convolution of probability measure 1l i.e. ,u"* = Uellsos 1)

Definition 2.1.7 4 real-valued, adapted process X =(X,),.,.., is called martingale (resp.
Supermartingale, submartingale) with respect to the filtration F' = {F,,0 <t < oo} if

(i) X, = L'(dP); thatis, E{X |} < .

(i) if s <t, then E{X,|F .} =X, as. (resp. E{X,

F <X, resp. E{X,

Fi2X,)

Definition 2.1.8 4 family of random variables (U )., is uniformly integrable if
limsup “Ua |dP =0

n—o0
AU |zny

Definition 2.1.9 4 random variable T is nonanticipating random time ((F,) -stopping time)
if
Vt20, {T<t}eF.

Definition 2.1.10 Let E < R?. A radon measure on (E,€) is a measure 1 such that for
every compact measurable set B € &, u(B) < .

Definition 2.1.11 An adapted, cadlag process X is a local martingale if there exists a
with im T, = oo a.s. such that X

n—>0

sequence of increasing stopping times T is an

no tATnI{Tn>O}

uniformly integrable martingale for each n.

Definition 2.1.12 Let (Q,F,P) be a probability space, E < R and u is a given
(positive) Radan measure on (E, ). A poisson random measure on E with intensity measure
M is an integer valued random measure:

0:Qxe—> N
(w, 4) = O(w, 4)
such that
1. For (almost all) we Q, Q(w,.)is an integer-valued Radon measure on E: for any
bounded measurable A c E, Q(A) <o is an integer valued random variable.
2. For each measurable Ac E, O(.,A) = Q(A) is a Poisson random variable with
parameter U(A):

VkeN, P(O(A)=k)=e™*? %“?k).



3. For disjoint measurable sets A,,...,A, € &, the variables Q(A,),...,0(A4,) are
independent.

Definition 2.1.13 4 process H is said to be simple predictable if H has a representation
H=H, 1{0} () +ZH1'I(T,TM](I‘)
i=1

where 0=T, <..<T, <o is a finite sequence of stopping times, H,e F, with

|H i| <00 a.s., 0<i< nThe collection of simple predictable processes is denoted S. We can

topologize S by uniform convergence {t,w}, and we denote S endowed with this topology by
S

u*

Definition 2.1.14 4 process X is a total martingale if X is cadlag, adapted and

[,:5—> L’ is continuous. The linear mapping | v S— L° is defined for a given process
X and for a given simple predictable process H as _follows:

I,(H) =H0X0+ZH,. (X, —X.).

i=1

Definition 2.1.15 4 process X ={X,,t €[0,T]} is called a semimartingale if, for each

t €[0,0], X'is a total martingale. The notation X ' denotes the process (X ,,,) -

Corollary 2.1.1 4 semimartingale X ={X,,t €[0,T]} admits the decomposition
X, =X,+4 +M,
where X, is finite and F,-measurable, M ={M,,t €[0,T]} is a local martingale with

M, =0 and A is a finite variation process with A, = 0.

Definition 2.1.16 Let X be semimartingale. The quadratic variation process of X, denoted
[X,X]=((X,X],),is defined by

[X,X]=X —jX_dX.

Definition 2.1.17 An adapted process B =(B,),.,.,taking values in R" is called n-

dimensional Brownian motion if

(i) for 0<s<t<oo, B, — B, isindependent of F,.

(ii) for 0<s<t, B —B, is a Gaussian random variable with mean zero and

variance matrix (t-s)C, for a given, non-random matrix C.



Definition 2.1.18 Let (7)., be a sequence of independent exponential random variables

with parameter A and T, = ZTi. The process {N,,t = 0} defined by
i=1

N, = lezTn

n=l1

is called Poisson process with intensity A.

Definition 2.1.19 An adapted process X =(X,),, with X, =0 a.s. is a Lévy process if

(1) X has increments independent of the past, that is, X, — X is independent of F_,
0<s<t<oo; and,

(2) X has stationary increments; that is, X, — X has the same distribution as X,__,
0<s<t<w; and,

(3) X, is continuous in probability; that is, lith = X, where the limit is taken in

t—s

probability.

Definition 2.1.20 Let A be a Borel set in R bounded away from 0 and let 0 ¢ A . Define the
random variables as following:

T, =inf{t > 0:AX, € A}

T =inf{t > T : AX, € A}

Define

N,A = ZIA(AXs) = ZI{T,’\’SI}
=1

O<s<t n

Then the masure Vv, defined by
v(A) = E{N} = E{D 1, (AX )}

0<s<1

is called the Lévy measure of the Lévy process X.

Definition 2.1.21 Let X = {X,,t €[0,T]} be a stochastic process on R and consider the
following properties:

(1) For any choice of m=21 and 0<t <t <..<t , the random variables
Xto, th - X,“,th—th, X, - X, | are independent.

(2) X, =0 almost surely.



(3) The process X, is stochastically continuous.

(4) There is a m,€F with Plr,]=1 such that for every we r,, X,(w) is right

continuous in t 2 0 and has left limits in t > 0

If X satisfies the properties (1),(2) and (3), then it is called Additive in law. If the properties
(1),(2),(3) and (4) are satisfied by X, then the process X is called Additive process.

Some known Additive processes can be seen in following examples:

Example 2.1.1 Brownian motion with time dependent volatility:

Let (W) .., be a standart Brownian motion on R, o(t):R" — R* be a measurable
t
function such that jaz(s)ds <o for all t>0 and b(t):R" — R be a continuous

0
function. Then the process

X, =b(t) + jha(s)dWS
is an Additive process. 0
Example 2.1.2 Cox process with deterministic intensity:
Let A(t): R™ — R" be a positive measurable function such that A(t) = j‘/l(s)ds <o for
0
all t and let Q be Poisson random measure on R™ with intensity measure p(A) = J. A(s)ds
Jor all AeB(R").Then the process (X,),., defined path by pjzth via

t
X,(w)= J-Q(W, ds) is an Additive process.
0

Example 2.1.3 Time inhomogeneous jump-diffusion:

Given positive functions o:R™ —> R",A:R" — R" as above and a sequence of
independent random variables (Y, ) with distribution F the process defined by

N

t
X,=[o(s)amw, + 3y,
0 i=1

is an Additive process and (N,) ., is a standart Poisson process.

Example 2.1.4 Lévy process with deterministic volatility:



Extending (Example 2.1.1), we now consider Lévy processes with time dependent volatility.
Consider a continuous function o(t): R* — R". Let (L,),., be a Lévy process on R.

Then
t
X, =[o(s)dL,
0
is an Additive process.

Example 2.1.5 Time changed Lévy process:

Let (L))

Sunction such that v(0) = 0. Then the process (X,) ., defined path by path via
X, () =Ly, ()

o be a Lévy process on R’ and let v(t): R* — R" be a continuous increasing

is an Additive process.

Definition 2.1.22 4 strategy ® is called self-financing if the following equation is satisfied
forall ne{0,1,..,N -1}

q)nSn = q)nHSn :
Definition 2.1.23 For a given filtration F : F,,F,..., 7\, an adapted sequence (H )., .

of random variables is predictable if, for all n 21, H, is F,_, measurable.

Definition 2.1.24 An adapted, cadlag process X is a potential if it is a non-negative
supermartingale such that lim E{X,} = 0.
t—w

Definition 2.1.25 Let (QQ, A P) be a probability space. A probability measure P on (Q,A4)

is absolutely continuous relative to P, if

VA e A, P(4)=0= P(4)=0.

Definition 2.1.26 A stochastic process X, is called previsible if it satisfies following two
properties.

(l) XO = 05
(ii) X tz —[X, X, is uniformly integrable martingale.

Definition 2.1.27 Suppose that T is a partition of [0,0] and that X, € L', each
t, € 7. Define

n

C(X,1)=),

i=0
The variation of X along T is defined to be

E{X’i - X’m

7, }




Var,(X) = E{C(X,7)},
The variation of X is defined to be
Var(X) =supVar, (X),

where the supremum is taken over all such partitions.
Definition 2.1.28 Let A =(A,) be a cadlag process. Then, A is called a finite variation

process (FV) if almost all of the paths of A of the paths of A are of finite variation on each
compact interval of R, .

Definition 2.1.29 Let {X,,t > 0} be a stochastic process on R”. It is called self-similar if,
for any a>0 there is b>0 such that

d
{X,:t20} ={bX, :t 20}

Definition 2.1.30 Let p be a probability measure on R?. Itis called selfdecomposable, or
of class L, if for any b> 1, there is a probability measure p, on R * such that

() = u(b'z) p,(2).

Definition 2.1.31 4 function g:R —[0,0)is called submultiplicative if there exists a
constant ¢ > 0 such that g(x+ y) < cg(x)g(y) forall x,y € R.

Definition 2.1.32 4 semimartingale X is called quadratic pure jump if [X,X]° =0.



2.2 SOME THEOREMS

Theorem 2.2.1 (Lévy-Khintchine formula) Let X be Lévy process with Lévy measure
v.Then

E{eiuX,» } — e—t‘P(u) ,
where
o’ ; ;
W)=’ —iou+ [a—e™w(a+ [(-e™ +iuxyv(dx).
{‘x‘zl} {‘x‘d}

Moreover given v,c°,a, the corresponding Lévy process is unique in distribution.

Theorem 2.2.2 (Lévy Decomposition Theorem) Ler X ={X,,t<[0,T]} be a Lévy
process. Then X has a decomposition
X, =B + j x(N, (., dx) — tv(dx))
{‘x‘<l}
HIELX, — [xN,(dob+ [xN,(,dx)

{|x]=1} {21}

=B + J.x(N,(.,dx)—tv(dx))+at+ > Ax

t sI{‘AXS‘Zl} >
{\x\<1} O<s<t

where B is a Brownian motion; for any set A, 0 ¢ A,N,A = INt(.,dx) is a Poissson
A

process independent of B; N" is independent of Ntr if Aand 1" are disjoint; N tA has

t

parameter v(A); and v(dx) is a measure on R \{0} such that Imin(l,xz)v(dx) < o0,

Theorem 2.2.3 Let X ={X,,t €[0,T]} be a Lévy process with triplet (4,,D,,v,).

(i) If v(R)< oo, then almost all paths of X have a finite number of jumps on every

compact interval. In that case, the Lévy process has finite activity.
(i) If v(R) =0, then almost all paths of X have an infinite number of jumps on every
compact interval. In that case, the Lévy process has infinite activity.

Theorem 2.2.4 Let X be a Lévy process and let G, =F' v N where (F) .. is the
natural filtration of X, and N are the P-null sets of 7. Then (G,),.,.., is right continuous.

Theorem 2.2.5 Let A be Borel with 0 ¢ /7\ Let v be the Lévy measure of X, and let
A, € L*(dV).Then

E{ [f@N, @dx)} =t fw(dv)
and also E{([ f(X)N, (dx)—t[ f(ow(dx))*} =t £ (x)*v(d).

10



Theorem 2.2.6 (Doob Decompeosition) A4 potential (X,),., has a decomposition
X,=M,-A,, where 4,, >4, as. 4,=0, A, €F, , and M, = E{4,|F,}. Sucha

decomposition is unique.

Theorem 2.2.7 (Girsanov theorem) Let (6,),.,., be an adapted process satisfying

oo
'[ 0, ds <o a.s. and such that the process (L,) ,.,.; defined by
0

t t
1
L = exp[— [ocs)aB, - afdsJ
0 2%
is a martingale. Then, under the probability P" with density L, relative to P, the

t
process (W,) o,y definedby W, = B, + J. 0.ds is a standart Brownian motion.
0

Theorem 2.2.8 (It6’s formula for continuous semimartingales) Let X be a continuous

semimartingale and let f be a C* real function. Then f(X) is again a semimartingale and the
following formula holds:

)= £ = [ £/ ()X, +3 [ 17X )X X,

Theorem 2.2.9 (Ito’s formula for semimartingales that have jumps) Let X be a
semimartingale and let fbe a C* real function. Then f(X) is again a semimartingale and
the following formula holds:

FOX) = FO0) = [ (XX, 4 [ XX

+ 2 AS(X) = f(X, )= (X, )AX, .

O<s<t

Theorem 2.2.10 (Lévy-Itd Decomposition) Ler X = {X,,t > 0} be an additive process on
R? defined on a probability space (€,,F,P) with system of generating triplets

{(4,,D,,v,)} and define the measure v on H (exponent of the

non-trivial broad-sense self similar process X ) by 1~/((0, t)x B) for B e B(R").Using Q,
from definition 2.1.21, define, for B € B(H),

Q(B,w)z{ #{s:(s, X, (W)-X (W) eB} forweQ,

forwe Q)

Then the following holds:
11



(1) {O(B):BeB(H)} is a Poisson random measure on H with intensity measure

V.
(ii) Thereis Q, € F with P[Q,]=1 such that, for any w € Q,

X (w)=lim [ {x(O(d(s,x), w) — xv(d(s, X))}

(0,t]xD(&,1]

+ J.xQ(d(s, X), w).

(0,/]xD(1,%0)
is defined for all t € [0,0) and the the convergence is uniform in t on any bounded interval.

The process {X |} is an additive process on R with {(0,0,v,)} as the system of generating
triplets.

(iii) Define X} (w) = X,(w)— X} (w) for weQ,
There is Q, € F with P[Q,1=1 such that, for any we Q,, X (w)is continuous in t.

The process {X}} is an additive process on R with {(A,,D,,0)} as the system of
generating triplets.

(iv) The two processes { X} and {X]} are independent.

Theorem 2.2.11 Let ¢ be a characteristic function, and let F be the corresponding
distribution function. Then @ is analytic if and only if the following conditions hold:

(i) F has moments «, of all orders k.

(ii)  There exists a positive number y such that |a,| < k! " forall k>1.
% Y k Y

Theorem 2.2.12 Let f € R, and let 11 be a Lévy measure. Then
E(e™) <o forall t >0 ifand only if J.eﬁxl—l(dx) < o0,

‘x‘zl

Theorem 2.2.13 Suppose that g is measurable, submultiplicative and bounded on compacts
and let 11 be a Lévy measure. Then

j g()I1(dx) <o ifand only if E(g(X,))< o forall t > 0.

‘x‘zl

12



CHAPTER 3

THE GEOMETRIC ADDITIVE MARKET MODEL AND THE
POWER JUMP PROCESSES

3.1 THE GEOMETRIC ADDITIVE MARKET MODEL

Consider a market model where the stock price process S = {S,,¢ €[0,7]} is a geometric
additive process and satisfies the stochastic differential equation

S, >0 (3.1)
where X ={X,,t €[0,T]} is an additive process.

In our market model, we will consider that we have a riskless asset or bond

B, = exp[ j rsds] (3.2)

0

where 7, is deterministic spot interest rate.

We know the theory of integration and stochastic differential equations for semimartingales.
In our study, this theory is considered for Additive processes.

We consider that our additive process is defined on a complete, filtered-probability space
(Qa\F;aFa P)

The filtration F is the natural filtration generated by the stock price process S completed
with P null sets ¥ ie:

F={F,t€[0,T]} U A where 7 =0c{S,,0<s<t}.

X, has a cadlag modification. That means that the process X, is right continuous with left
limits.

X, has an infinitely divisible distribution for all #. It’s distribution is determined by
generating triplets (4,,D,,v,).

In above, A, is called as location parameter of X, which is a continuous function.

D, is called as Gaussian covariance. D, is nonnegative and increasing continuous function.

13



v, is called as Lévy measure. v, is an increasing(in ¢) positive measure on R such that
x| >0} for

v,({0})=0 and v,(C) > Vv,(C) as s >t for all measurable sets C c {x,

some 6 >0 and

'[(1 AX?) v, (dx) < oo (3.3)
R
forall t €[0,T7].

The occurence of the generating triplets for Lévy and Additive processes is granted by the
following theorem in Sato [23]:

Theorem 3.1.1 If ¢ is an infinitely divisible distribution on R?, then
A 1 .
o(z) = exp —5(2, Az)y +i{y,z) + J-(e“z’)C> —1—i{z,x)I, (x)v(dx) | (z € R?) (3.4)
Rd
where A is a symmetric, nonnegative-definite d xd matrix, v is a measure on R’
satisfying

v(10)=0 and [(x" AV(dx) <o and v € R

The representation of @(z) in (i) by A,v andy are unique.

Conversely, if A is a symmetric, nonnegative definite dxd matrix; v is a measure
satisfying properties given above and y € RY, then there exists an infinitely divisible
distribution @ whose characteristic function is given by (3.4).

Proof of this theorem can be seen in Sato [23].

Definition 3.1.1 We call (y, A,V), in the above theorem, generating triplet of .

A is called Gaussian covariance matrix and V is called Levy measure of @ and y is called
location parameter.

By Theorem (2.2.10), Additive processes can be written as following decomposition:

X, =X +X]. (3.5)

The process X * = {X tz ,t €[0,T]} is the continuous part of X, and the process
X'={X!,t€[0,T]}is defined as:

14



X)=lim  [X(O(ds,dv)- pds.dx)+ [ x0(ds.dx). (3.6)

{se(O,t],e<‘x‘<l} {se(O,t],‘x‘Zl}

where (Q(ds,dx) is a Poisson Random measure on [0,7]x(R\{0}) with intensity

measure ,Zz(d (s,x)). (;z(d (s,x)) is defined by ,Zz((O,T]x C):= u(C) for all measurable
C c B(R)).

The process X >={X te[0,T]} is defined as:
X=X, -X, (3.7)

Here, the processes X ,1 and X ,2 are also additive processes. Generating triplets for these
additive processes are respectively (0,0,v,) and (4,,D,,0).

We know the theory of stochastic integration for semimartingales and all Additive processes
are not semimartingale.

So, in our study we work only with Additive processes which are semimartingale. By doing
this, we are working with a subclass of additive processes (the set of natural additive
processes as they are called in Sato [24]). By the definition given in Sato [24] we can say
that an additive process is natural, if it’s location parameter has bounded variation.

By Theorem 2.6 in Sato [24], an Additive process is natural if and only if it has a factoring.
And, an Additive process is semimartingale if and only if it is natural.

Thus, to make an additive process natural, we must define a factoring. A factoring is defined
as follows: A factoring is a pair ({c,, t €[0,7T]}, p), where p is a continuous (atomless)

finite measure on [0,T] and ¢, are family of infinitely divisible distributions such that

J A
characteristic function of X, is equal to expjlog(cs (u)p(du)
0

(c, corresponds the characteristic function of c,.)

Denote the generating triplets of ¢, as (7,, ;(f ,0,). By the theorem 2.6 and lemma 2.7 in
Sato [24] , we can write these generating triplets as following:

A, = [n,p(ds), (3.8)
0

D, = 2! p(ds), (3.9)
0

15



v.(C) = ja (C)p(ds), VC e B(R) (3.10)

T
By the above definitions, it is clear that J( '[ (1A x%)o, (dx)]p(ds) <oo forall £ €[0,T].
0\ R

The elements of (77,, ¥7,0,) are called the local characteristics of X,. We consider natural
additive processes with these local characteristics.

Generalized version of Lévy -Itdé Formula gives us:

t
X,= [ zaw +J, (3.11)

0
where W ={W,,t €[0,T]}is a standart Brownian motion and J ={J,,t €[0,7]} is a
jump process independent of W. And the process J = {J,,t €[0,T]} satisfies

J, = j x(O(ds, dx) — o (dx)ds) + j x(Q(ds,dx))+j7](s)ds. (3.12)

{se(0,1])x]<1} {s€(0,¢]]x]21}

In the above equation (Q(ds,dx)is a Poisson Random measure on [0,7]x R\{0} with
intensity measure o, (dx)dt.( We consider that p(dt) = dt is the Lebesque measure.)

Decomposition (3.11) gives us the process X = {X,,7 €[0,7]}is a semimartingale with a

quadratic variation

(X, X1, = [ z2ds + ZhAXS‘Z. (3.13)
0

se(O,t

Suppose that the family of Lévy measures {0, } ie(o,r] Satisfies the following property, for

some O0>0and 7 >0,

sup J. exp(z'|x|)0', (dx) <o (3.14)
tE(O,T] (*5,5)6‘

By the theorems 2.2.11 and 2.2.12, we can write that E(er‘x‘ ) < .
k
. . . ol 7t
By Taylor series expansion, we can write exp T(|X|) = Z'|x| + o +... + e
Since, the previous series is converging, each term in the sum must be finite. So, the integral
of each term in the sum must be finite.

i
+..t+.
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w J
Therefore, we obtain J|x| o,(dx) <o forall j>2 and all £ €[0,T]. Thus, all moments

of X, and J, exist and we can define following functions:

J

m,(6):= [ o,(dx), j=2, (3.15)
M ()= Imj (s)ds, j>2. (3.16)
0

Moreover, the Doob decomposition of J in terms of a martingale part and a predictable
process of finite variation, is given by

t
J, =N, +J.asds
0

where

N, = j.TxM (ds,dx)
0 -0

is a martingale and M (dt,dx) = Q(dt,dx) — o,(dx)dt is the compensated Poisson random
measure on [0,7]x (R \{0}).

Now, if we use the [t6 formula for cadlag semimartingales, then we will find the solution of
stochastic differential equation (3.1) as follows:

Take /(S,) = log(S,)
It is clear that dS, = S, dX, =S, d[j;(des +J, J

0
By It6’s Formula, we can write:

F$)= S+ [ (5 )dS, +[ 15, IS5
+ TS f(8,)- 1 (5, )AS, .

O<s<t

Wealsohave S-S, =AS =85 AJ,.

=5 =5, I1+AJ)).
Thus,
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t

t t
log(S,) = log(S,) + [ Sissd[ [z.am, +J,J +% | —Sizsj 22ds
0 = 0

S_ 0 S

+ Z(log(1+AXS)—SLSSAXS)

O<s<t S_

log(S,) ~log(S,) + [Xt - %j 22 dsJ + Y (log(1+ AX )~ (AX,))

O<s<t

Finally, if we use property of Logarithm function then we will find the solution (3.1) as

S.=8, exp[X, —%I;{fds] H(1+AXS)exp(—AXS) . (3.17)
0

0<s<t

By the decomposition of J,, this decomposition can be written as follows:

t t 2
S.=S5, exp[j;(des +N, +I[as —%st} H(1+AJS)eXp(—AJS)
0 0

0<s<t

with dynamics

ds, = 7,8, dW,+5, [xM(dt,dx)+ S, a,dt.

In order to ensure that S, >0 for all >0 a.s., we require that AX, >—1 for all ¢.
Thus,we shall assume that the family of Lévy measures {0, },.|, r] is supported on
(-1,+OO)_
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3.2 THE POWER JUMP PROCESSES

Now, let us define “The Power Jump Processes” as follows:

XV =X,
XD =Y (AX,)’, j=2 where AX = X -X (3.18)
ind 0<s<t
JV =7,
JD = YN =2, (3.19)

O<s<t

Definition 3.2.1 The process J D as defined above are called j-th power jump process.
By definition, it is clear that X" = J /).

These processes have jumps at the same point as the original additive process, but the size of
the jump of X t(j ) is equal to the size of the original jumps to the power J-

Let us find expectation of Power Jump Processes by recalling (3.15) and (3.16):

E[X"] = jnsds+ j j xo, (dx)ds ::jml(s)ds =M, (t),

0 {|x|>1}

E[Xt(./)] - E|:Z(AXY)/:|: j 'ijo's(dX)dSI: jmj (S)dS = Mj(t)7 ]22

O<s<t

Now, let us define compensated Power Jump Processes:
Z(./) — X(./) _E[X(./)]:X(j) -M (t) i>1
¢ ¢ t P ), g2l (3.20)

By the definition, compensated Power Jump Processes are martingales. These processes are
called Teugel Martingales.
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From the Orthonormalization procedure described in (Balland. P [1] and Nualart. D and
Schoutens W. [9] , we can define the following sequence of strongly orthonormal

martingales {Y', j>1}:

Y = [b, ()dZ+ b, ()dZ9 + .+ [b,,()dZ", j=1  (3.21)
0 0 0

Here, b, are the coefficients of the orthonormalization of the following polynomials with

time dependent coefficients,
2 j-1
{I{m} e xs I{s<t}x ) I{s<t}x ¥

with respect to the measure (dx)ds = (x’o,(dx)+ y25(dx))ds definedin [0,T]x R.

Here, the orthogonalization is considered with respect to the following inner product:

(m,n) =J‘ Tms (x)n, (x)(xZO'S (dx)+ ;(f&(dx))ds

Here, the coefficients m,(x) and n,(x)are real polynomials with time dependent

coefficients and O is dirac delta.

By the Martingale Representation Property(MRP), we can say that any square integrable Q-
martingale can be represented as an orthogonal sum of stochastic integrals with respect to the

orthonormalized power jump processes {Y, j > 1} .

This means that, any square integrable martingale M ={M,,t<€[0,T]} submits the
representation:

M, =M+ [hdY?. (3.22)

J=lo

>

J=1

2
In the above equation 4", j >1 are predictable and E { ht )‘ ds} < o0,

o —_—
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CHAPTER 4

MARKET COMPLETENESS AND THE HEDGING
PORTFOLIOS

4.1 MARKET COMPLETENESS

Assume that there exists at least one equivalent martingale measure Q such that X remains
a natural additive process under Q. If Q satisfies previous property, then it is called structure
preserving. Now, let us see the theorem 3.2 in Chan [7]. This theorem is given for Lévy
market models, but we can apply the results in these theorems for our geometric Additive
market model.

Theorem 4.1.1 Let P be a measure which is absolutely continuous with respect to P on F,.
Then

dP
d—P|(FT = ZT’

where the process Z ={Z,,t €[0,T]} is defined as follows:

Z, = exp jG dB, — %j Gds + j j h(s, x)M (ds, dx) — j [H (s, x) — 1 —h(s,x)]v(dx)ds

[0, )R

x [ [H(s,AX ) exp(=h(s,AX )

0<s<t

Here G,and H(t,x) are previsible and Borel previsable processes respectively and
M (ds,dx)=Q(ds,dx) -dsv(dx), where Q is a poisson random measure.
H2>0,H(0)=1 forall t >0 and h(t,x) is another Borel previsible process such that

j [H(1,x) — 1= h(t,x)]v(dx) < .

R

Moreover, under P, the process

B, =B, - stds
0
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is a Brownian motion and the process X is a quadratic pure jump process with compensator

measure by ;(dt,dx) =dt VN[ (dx) where VN[ (dx)=H(t,x)v(dx) and previsable part is
given by

a, = E [X,]= az+j j x(H (s,x) - )v(dx)ds aE[Xl - xv(dx)J .

ﬂﬂzu

Suppose that ED Gszds} <o and H >0 where H(t,0)=1 forall t >0. h(t,x) is Borel
0

previsible process such that

j |H (£, x) =1 h(t, X)) (dx) < 0.

Proposition 4.1.1 Let F(t,x) and f(t,x)be Borel functions satisfying the following
assumptions:
(a) F(t,x)>0 for all x in the support of the Lévy measure o, and all
t €[0,T]and assume that there exist constants o, >0 such that
F(t,x)>a >0forall xe(—=p,0)and t €[0.T],

(b) j j |[F(t,x)~1~ f(t,x)|o, (dx)dt < oo,
() j j £ @t,x)| o,(dx)dt <o,

(d) Thereis ang > 0 such that

T +¢
j j |F(t,x) 1", (dx)dt < .
0

—&

Then, the process U ={U,,t €[0,T']} is defined by
U, = exp(j' Tf(s,x)M(ds, dx) — jT(F(S, x)—1-f(s,x))o, (dx)ds]
X HF(S,AJS)GXp(—f(S,AJS )

O<s<t

and does not depend on f and it is a local martingale.

Theorem 4.1.2 Let X =(X,,0<5¢t<T} be a non-homogeneous Lévy process(Additive

process) with local characteristics (1],, ;(,2,0',) under some probability measure P. Then,
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if exists a probability measure Q equivalent to P, such that X is also a Q non-homogeneous
2

Lévy process with local characteristics (n],, Y ,0,), then the followings are hold:

(i) o:t (dx) = H(t,x)o,(dx) for some Borel function H:R* xR — R",

for some Borel function

(i) n,=n, + j Ay, (H(x) = Do (dx)+ Gz}, G, iR > R" such
t —0

that J.;(SstzdS <0,
0

(iii) Xe=Xi>

d
(iv)  The density process g, = % is given by

t

t t
exp{ [r.Gaw -] szfds}
0 0

0

X exXp lim[j( J‘ log H (s, x)Q((0,s],dx) — J‘(H(S,x) —1)o, (dx) |ds
>0 ‘

A>r |x]>7

with E [¢,]1=1, for every t €[0,T].

The above theorems imply following results:

W= W,0<1<T} with W, =W, - [ 7,G.ds @.1)
0

is a Brownian motion under Q.

J =N+ j[a + jw x(H(s,x) - o, (dx)st (4.2)

where ]1/' = {N, ,t €[0,7T]} is a Q-martingale and
- t +o0
N, =N, - [ [x(H(s,x) - Do (dx)ds,
0

—00

and M (dt,dx) = O(dt, dx) — &, (dx)dt
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— M (dt,dx) + (H(s,x) - 1) o, (dx). 4.3)

The discounted price process S can be written as:

~ t ~ ~ t 2
S, =Syexp| | 2, dW,+ Nﬁ][as -1+ 2.G, —%}ds
0 0

x exp[ij(H(s, x) -1, (dx)ds] [10+AN,)exp(-AN,).

—® O<s<t

By Proposition 4.1.1, the process

t - ot 2 B ~
exp(jzsd WS+N,—VS ds]H(l+ANs)exp(—ANs)
0 0

2 0<s<t

is a Martingale. Thus, a necessary and sufficient condition for S to be a Q-martingale is the
existence of G, and H (¢,x), for which the process ¢, is a positive martingale such that

2G, +a,—r,+ [x(H(s,x)~ o, (dx) = 0 (4.4)
Thus, by (4.1), (4.2) and (4.4), we have:
t ~ ~ t
X, = J.;(SdWS+ Nt+jrsds.
0 0
t ~
Therefore X, — J. r,ds is a martingale. Also, the dynamics of S under Q is given by:
0
- t ~ - 1 t - -
S =85, exp[_[;gsd W+ N[—Ejjgfds]H(l +AN,)exp(-AN,). 4.5)
0 0 O<s<t

Here the new generalized Lévy measure is o, (dx) = H(t,x)o, (dx).

Under Q, the discounted stock price process S‘ ={ 5:[ = §,/B,,0t<T} and the process

t ~
X={X,- J‘rsds, 0 <¢<T} are both Q-martingales. It is clear that AX, = A X, and
0

XV =)~(§j> for j > 2.

~J - ~
We have that for j>2, m, = J. x o,(dx) where {o,} o is the family of Lévy
R

measures of X (and X ) under Q.
Let us now define the new artificial assets for completing the market: the Power jump assets
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SN0 B T) ) _
Z ={Z, ,te[0,T]} givenby Z, =BZY, j>2. (4.6)

And, we can also introduce the othonormalized power-jump assets:

) - G))
Y ={, .,te[0,T]} givenby Y,

t

=B, YV, j>2. 4.7)

- N0))
By definition, the processes {Z ,j>1} and {Y ,j > 1} are both Q-martingales.

An attainable contingent claim is a non-negative random variable X € L*(Q, ,F,Q) in

L*(Q), if there exists a self-financing portfolio whose values, at time 7, converges in

L*(Q) to X. In our market, a portfolio ¥ ={¥"” ,m>1} is a sequence of finite-
dimensional predictable processes.

(=@ e a®" e 0<t<T m>2)

m

Here, ®," corresponds the number of bonds at time ¢, «,

corresponds the number of
stocks at time ¢, and at(j " is the jth-power jump assets Y and ¢,, 1s an integer depends

on m. This portfolio W = {¥",m > 1} is self financing if W" is self financing for each
finite m.

Theorem 4.1.3 Consider that our market model is M Q where traded assets are a bond with

price process is given by (3.2) a stock with dynamics given by (3.1) and the Power jump
)]
assets {Z ,j=2}. If the additive process X satisfies (3.14) and if there is at least one

equivalent martingale measure Q that is sructure preserving, then the market M, is
complete in the sense that any square integrable contingent claim C € L* (Q, %,,Q) can be

replicated in L*.
Proof:

Let us take a square integrable contingent claim C with maturity 7. Let

F |

T
M,=E, exp(—jrsds}C

0

By using Martingale Representation Property, we know that

t ~ w t
M, =My +[h"d X+ [hPdY?.
0 =20
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Now, let us define the following process as:

M) :=M0+jhg”d X, +ﬁ:j.h§”dYs(”.
0

J=20

Then we have that lim M = M, in L*(Q). Now, let us define sequence of portfolios as

N—>o

follows:

Y=Y = (o) a,,a?,a,...a™), t>0,N > 2} givenby

0)]

t t N
w'=M"-a, S, exp(—jrsdsJ —~ exp(—jrsds} dYaly,
0 0

J=2

t
a= exp{ | rst] WS,
0

aP=h?".  j=23..,N.

In the above , @"

. corresponds to the number of bonds at time #, «, corresponds to the

G))
number of stocks at time ¢ and a,(-’ ) corresponds to the number of power jump assets Y,

Firstly, we must show that the sequence of portfolios W™ :={¥",te[0,T]}is self

financing that replicates C. If we look at the values V," at time ¢, then we will find

t N - !
VN =w" exp“rsds] +a, S,+Y alY = exp[J-rstJMtN.
j=2

0 0

Thus, we can say that the sequence of portfolios {¥", N > 2} is replicating the claim C.

Denote the Gain process by:
£ f L))
DY = njw;ve”‘ds +IanSS+ZIa£’)dK :
0 0 Jj=20

If the portfolio is self financing then it must satisfy the following equation:
DY +M,=BM).

If we substitute @, ,@, and @’ in D}, then we will obtain:
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t t N t (i
D= rtJ.M;Ye’}ds —rt.l.e”“hs(”ds—rtZJ‘hs(j)e"* Y(i) ds
0 0 =20
! N Lo )
+ern®sds, + Y [nay, .
0

Jj=20

Integrating by parts gives us:

t t ~ N 1
rt'[MsNer‘ds= BtMtN —MO—J.hS“)er‘dXS —Z'[hs(j)e”‘d)’s(”.
0 0 J=20
o)

By using the above equation, and by using the equations Y,

=BY"Y and

dsS, =S, (rdt +d X,), we will obtain the following result:

t ~ N ¢ )
D) =BMY-M,~[hle"d X ~ Y [he"dY,
0

J=20

! f - ()
—r,J‘er‘hS“)ds—rt ijhﬁj)e”‘ Yi ds

0 J=20

t N L )]
+[ern®s s, +> [n ay,
0

Jj=20
t t

~ t
= BM) ~M,—r,[he"ds— [he"d X, + [h"e" S dS,
0

0 0

=B, M) -M,, QED..
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4.2 HEDGING PORTFOLIOS

Lemma 4.2.1 Consider a real function h(s,x,y) on R*XR" xR which is infinitely
oh
differentiable in the y-variable and satisfies h(s,x,0) =0 and a—(s, x,0)=0.
v

Set
8’11

a;(s,x) = (s x,0)

and assume that

sup Z‘a (s, x)‘RJ < o0,

x<K,s<s0 j=2

Forall K,R >0, s, =0. Then we have

> h(s,S, ,AJ,)= Zj——h(s S, ,00dz" +j Th(s,SS, V) o (dy)ds.

t<s<T ]— t
Proof:

The function /(s, x, y) can be expanded as

h(s,x,p) = Y a,(s,x)y’
j=2
Then, we have

> h(s,S, A)=Y ia, (5,8, )(AJ,) .

t<s<T t<s<T j=2

00

=ZJ.a.(s,SS?)dJ‘§j)

Jj=2 ¢

Il
™Ms T

T w T
Ja (5,8, )dZ7 + ZJ“A/(S,SS, )m ds.
t

j=2 J=2 ¢
Here, m; = I y’ &(dy) . Hence, we have
0 T o o
Zh(S»SS,aAJS):Z a(s,S, )dZ(’)+JJZa (s,S, )y’ a(dy)ds
0<s<T j=2 t —0j=2

Il
M=
S —N S —

a(s,S, )dz +”h(s S, .y)o(dy)ds. QED. .

J

~.
|
[\
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Now, let us compute the hedging portfolio that replicates a contingent claim C whose
payoff is a function of the value, at maturity, of the stock price S, of an absolutely

continuous process V'={V',0 <¢ < T} and of a jump process V2={V,2 ,0<t < T} satisfy
the following definitions:

vl =[ £(S,)ds, 4.8)
0

v} ¢=j TM(X)J\;I (ds, dx). (4.9)

00

In the above f(x)is a continuous function and u is a smooth function satisying the

t oo .
property #(0) = u'(0) = 0 and j j [u(x)| o, (dx)ds < o and
0 -

M (ds,dx)=Q(dS,dx)-ois (dx)ds is the compensated Poisson Random measure. The
payoff is a function of S,, ¥} and V; that is of the form p(S,,V;},V;). By the

: S . : .
independence of —— and VT2 - V,2 wrt 7,, we obtain the price function of the contingent
t

claim C, at time ¢ as follows:

%)

T
exp[_ J-rst]EQ (p(ST > VZ} P VTZ)

t

T T
S
= exp(—jrsdsJEQ{p£i—TSﬂj‘f(Ss St]JS+V[1’VT2 —V? +V;2]
t t

t t

ST f Ss 2 2
=E,| p S—xl, jf S X, |ds+x,,V; =V +x,
t t t

= F(1.S,. V. V).

ﬁ

1 2
0=S,%=V, . x;=V,

In the above equation, the price function F(¢,x) must satisfy a partial differential integral
equation (PIDE).

. . . . 0 0
Our notation that we will use in the PIDE is x:=(x,X,,X;), D,:== — , D,:=—
ot Ox;
. 0’
and D/ =—.
ox;
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The price function F(z,x) is a solution of the PIDE:

DOF(t’x)+f(xl)D2F(tax)+rtxlD1F(t’x)+%Zt2x12D12F(tax)
) (4.10)
— D,F(t,x) [u(y) o, (dy) + DF(t, %) = 1, F (£, )
R

F(T,x) = p(x). 4.11)

where

DF(t,x)i= [(F(t,(1+ )., +u() ~ F(0,3) 59D, F(6,%) 7, (d)

We guarantee the entity of the equtions by the following proof:

Proof:
t

The discounted process exp{—J-rsdsJ F(¢t,T,) is a Q-martingale by assumption.
0

(T, =(S,.V,. V).
t

Therefore, we have following equation exp (— I , dSJ FtT)=F0,T)+M, +C,
0

where M, is a local martingale and C, is a finite variation process

1t6’s formula for semimartingales gives us:

t t
exp(— | rsdsJF(t,Tt) = F(0,T,)+ [ (~r,e " F(s,T, )+ e D,F(s,T, ))ds
0

0

t t
+ [e"DF(s,T, )dS, + [ I(S, D,F(s,T, )ds
0 0

- [u(y)o(ay) &(dy)je‘*~ D,F(s,T, )ds

2t

+ %J‘ e S D}F(s,T, )ds
0

+ > e [F(s,T, )= F(s,T, )~ D,F(s,T, )AS,]

O<s<t

Itisclearthat S, =S, (1+AJ )and V =V, +u(AJ,)
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Applying Lemma (4.2.1) to &, we will find:
D e [F(s,T,)~F(s,T, )= D,F(s,T, )AS, ]

O0<s<t

o -7 J L © ~
=S [ L s T, 0T + [ [e b, T, ) ody)ds
=y JU oy’ 0

—0

(h(t,X,y) = F(t,x1(1+y)7x2’x3+u(y))aF(tax)_xlyDlF(tax)’x:(x15x25x3)’
te[0,T], yeR)

Thus, we have:

exp(— jrst]F(t,ﬂ) =F(0,T,)+ j(e_'7‘ (r,F(s,T, )+ D,F(s,T, )

0

2
+%S§7D12F(S,TS7 )= £(S, )= D,F(s,T, )

- DyF(S, ) [u(y)o(dy) + [h(s.T, . y)o(dy))ds

e 0 -
+Y ———h(s,T, ,0)dT"".
,Z—;‘ Jt oy’ )

Under Q, dynamics of S, is given by:

ds, = 4,8, dW,+S, dN,+rS, dt

where N, =j [x b (s, ).
0 R

(1\~4 (ds,dx) =Q(ds,dx) - &(dx)ds is compensated Poisson random measure on

[0,T]x R/{0}. Hence, we have that Vf/ is a Q brownian motion and N is a Q martingale.
Therefore, we have:

t ! ~ t ¢
[ DyF(s,T,)dS, = 7, [e"S, DF(s,T.)dW, + [eS, DF(s.T, )N,
0 0

0
t
+r, Je‘r‘ S, D\F(s,T, )ds.
0
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Thus; exp (—

S —
oY

dsJ F(t,T)= FO,T))+M, +C,,

—ry

o) fe
M, zzj J —h(sT O)dT“>+;(,je S D,F(s,T. )d W,
Jj=20 * 0

+ j ¢S D,F(s,T.)dN,,
0

C :j (=1, F(s,T, )+ DyF(s,T, )+—S DXF(s,T, )+ f(S, YD,F(s,T, )

= D,F(s,T, )[u(y)o(dy) + 1,5, DF(s,T, )+ [ (s, T, ,y)o(dy)ds.

The process C = {C,,t €[0,T]} is predictable, finite variation process and the process
M ={M, te[0,T]} is Q-local martingale.

The series Zj[

J=20

! J
I [ , j[;} jh(s T, ,0)dT; " are martingales.
o\ J*

j[ ]h(s T, ,0)dT; () converges in L'(Q), and the processes

The condition C, =0 gives

2
—r,F(s,TL)+z)()1V(s,TL)+l7 S? DXF(t,T. )+ f(S. ) D,F(s.T. )

~DiF(s,T, ) [u(y) o) + 1S, DF(s.T,) + [h(s,T, ,y) o(y) =0

By the above equation, we can say that the pricing function satisfies the (PIDE)

OF(t,y)+ DF(t,y)=0, Q.E.D..

For simplification, we will use the notation ¥, :=(V,',¥,?) in the next

theorem.

Theorem 4.2.1 Let Ye [Q, F,,Q] be a contingent claim with payoff Y = p(S;,V;) and a
price function F of class C"**”. Let us define the function h:[0,T]xR® — R given by:
h(tvxvy) = F(tvxl (1 + y)9x27x3 + u(y)) - F(t,X) - xlyDlF(tax)' (412)
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Assume that h(t,x,y) is analytic iny for all x € Rt €[0,T]. So, we have Taylor series
representation of h as following:

© J
Mexy) =3 -0 x0) 7, @.13)
= Jh oy

forallyeR.
Then Y has a self-financing portfolio, that is given by, at time t:

number of bonds= w, = B, (F(1,S,V, ) =S, D\F(t,S, ,V,)), (4.14)
number of stocks = a, = D, F(t,S, ,V, ), (4.15)
a./'
/ h(ti Stf b I/L JO)
number of power jump assets = a,(j) 4 " ,  Jj=2,3,.... (4.16)
J!
Proof:

Applying 1t6’s Formula to F'(z,S,,V,) gives us:

t t
F(1,S,.V,) = F(0,5,,V,) + [ DyF(s,S, .V, )ds + [ D,F(s,S, .V, )dS,
0 0
t t
+ J‘DZF(S’ Ss, > VY, )dVvl + J‘D3F(S’ Ss, 4 I/s, )stz
0 0

1 t
+EIZSZS§,D12F(S»Ss, LV, )ds
0

+ ZF(S, S, V)= F(s,S, .V, )= D,F(s,S, ,V, )AS,

O<s<t

t
= F(0,50,V,)+ [ DyF(s,S, .V, )ds
0
t t
+ [ DF(s.S, .V, )dS, +[ f(S, )D,F(s.S, .V, )ds
0 0
- t 1 t
+ U oW DF(s,S, V. s+ 28! [ DIF(s,S, V. )ds
R 0 0

+ Y F(s,S, ,V5)=F(s,8, ,V, )= D,F(s,S, .V, )AS,

O<s<t
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=F(0,S,.V,)

D,F(s.5, V. )+%sz3 DIF(s,S, .V, )+

+| ) ds+j.DlF(s,SS,VS )dS
| FSID,F(s,S, V)= DF(s,S, V) [ume(n)| °

+ Y F(s,8, V)= F(s,S, ,V, )=D/F(s,S, ,V, )AS,.

O<s<t

Clearly AS =S  AJ . Therefore;

ZF(SJSS ’VS)_F(SiS&’VL)_DIF(SJS‘L’VQ)ASS =h(S’SS,’I/S,’A‘]s)'

O<s<t
Take the following PIDE:

D F(t,x)+ f(x)D,(F(t,x)+rD,F(t,x)+ D,F(t, x)J-u(y) oN't (dy)+ DF(t,x) =rF(t,x),

F(T,x) = p(x).
We will find following:

t
F(taStth):F(05S05V0)+J'D1F(S5Ss,’I/s,)dSS
0

t

J-F(S,SS JV; )_Sv DIF(SiSs ’I/s
+ _ _ _ _ _
0 B

) dB,

N

t ~
+ Y h(s,S, VA )= [[h(s,S, Y, ,v)o,(dy)ds
R

O<s<t 0

+
t

= F(0,8,,V,)+ [ D,F(s,S, .V, )ds,
0

t

a./'

— (s, T. ,0 ,
F(s.S, JV.)-S, DF(s.S,.V,) wf(azf](s 20,
+| S CaB v Y|
0 0

s Jj=2

Q.ED. .
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~ (m)
Proposition 4.2.1 Let us denote F (¢,S,) discounted price function of the contingent
~ M
claims Y, with payoffs Y, = S; where m 22 and set F' (t,S,) = S .Then, we can

write the following representation formula:

~ (m) _ (m) m [F(m) S
F (tS)=F (0,50)+Zj s, )( de“) m>1, (4.17)
0 s

j=1

And, its inverse representation

j j N m 1 _ i
dzY =(-1)’ B, [Z(mj(—l) mdF (t,S[)}, j=1. (4.18)

m=l

Proof:

Since [—Tj is independent with respect to 7,, we have the price function of the

t

derivatives Y, as follows:

F(t,8,)= exp[—j’”sdsl EQ(S}”|7:,)
t

T S m
= exp(—jrsds] S"E, (—TJ
t St

=" (¢, T)S".

Here T1"”(¢,T) is a deterministic function. If we first apply Itd lemma and then if we apply
theorem 4.2.1 to F(t,x) =T1""(¢,T) x™, then we will find:

t t
F™(t,8)=F"(0,8,)+ jDOF“") (5,8, )ds + leF‘”’) (5,8, )dS,
0

+;;(tS jD F™(s,8, )ds

+ Z F™ (5,8, )-F"(s,8,)-S, D" F(s,S, ).

0<s<t

Setting h(t,S, ,V, ,0)= Y F"(s,S, )-F™ (5,8, )-8, D" (s,S, ) and applying
O<s<t

Lemma 4.2.1 will give us following:
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)
rBF(’")(sS )= mr,B.F"™ (s,S, ) - Z(J

F(1,8,)=F™ (0, SOH B, - “
th(m) s, S © /'m )
I ( ) —0dS, +L2(jjdzt .
0 s, Bt Jj=2

Therefore, we have

w\ - ) mF " (¢,S,
dF™ (t,8,)=rF" S, )| 1- m—iz( ) , dt+—(’)dS,
B, = S
1 & m )]

- - - - - t
We have dS,=B,dS, +r, B, S, dt. HereS=[S = {S, = exp[—jrst]St,t € [O,T]B
0

[

and
- (m) Ty m
dF (S ——F'”t,S - F"t,S,)dt
tS,) B, tS,) B, (¢,S,)
and

- )
dZ, =BdZ” +rB,Z"dL.

t t
B ~
If we use these equations and the identity Z" = X ,- J r.ds = J-S—‘d S , then we will find:

0 0 s
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~ (m) m (m\ - ()
dF (1,8)= ’F(’"’(tS Yt — B .S, (jz dt

t t t j=2

t
Sz t t j=2

mF(m) t,S ~ m},.F(m) tS - m (m -
+ 65 45,4 S( )S dt+iz(j)dz

+—Z( }tZ,(”dt—;—‘F(’”)(t,St)dt

t Jj=2 t
mF ™ (t,S F"(t,8, )& (m ()
_MENS) o ( )Z( )d
St, J
m F('”)(t S,) )
=> ( det Q.E.D.. (4.19)
Jj=1

We now introduce the hedging formula for contingent claims in terms of call options with
the same maturity and different strikes. In order to persue this goal, let p(x) be a real

function of class C* in (0,00) and let ét (K):= BLEQ [(S; - K)+|'7-',] be the discounted

T
price function of a call option with maturity 7" and strike K. C,(K) denotes one call

option with strike K and maturity 7.

By (Carr. P. And Madan. D. [6]) we can write this twice differentiable payoff as follows:

p(Sy) = p(K)+ p'(K)(S; —K)' + [ p"(K)(S; —K)" dK. (420)

The first term can be interpreted as the payoff from a static position in p(K') pure discound
bond. The second term can be interpreted as the payoff from p (K)calls struck at K. The

third term arises from a static positionin p (K)dK calls at all strikes greater than K.

Proof:
If we take the Taylor expansion of p(S,) at K with the first error remainder term, then we
have following equation:

p(S;) = p(K)+ p (K)(S; —K)" + E,(K).
P(Sy) = p(K)+p (K)(S; —=K)" + [ p'(K)(S, —K)"dK.  QED..

Discounting and taking conditional expectation of each side of the above equation for
0 < K < oo will give us following:
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Eo|B;' p(SIF] =B, p(0)+ p (0)S, + [ p (K)C,(K)aK.  (421)

Theorem 4.2.2 Let U be a contingent claim with payoff U = p(S;,V;) and a price
function F(t,S,,V,) such that F(t,x) e C"*** and

sy

h(t,x,y)=F(t,x,(1+y),x, x,+u(y))— F(t,x) —x,y D,F(t,x) is analytic in y for all
xe R’ and t €[0,T]. Set

am -1
o am —h(,S, .V, , 1)(
Y
R(t,K) = 4.22
K= 2 =™ 1) L&] @
Assume that
m—-1
- 8 —h(,S, .V, -] m=2
— C.(K)dK < . 4.23
IZ (m—2)I1" (1,T) Ls,] ) @
Then, we have the following representation:
i «B.h(s,S, ,V, ~1) -
Zja“)dZ(” —j K — j .5, )4 S, (4.24)
Jj=20 0 s,

Hedging portfolio, in terms of bonds, stocks and call options, is given by

w, =B'[F(,S, ,V,)-S, D,F(,S, .V, )]
+ B h(t,S, ,V, ~1)- j R(; K)c (K)dK |,
t_

h(t,S, .V, ~1)

az :DIF(t’St sz )_ - - 5
) ) St,
R(t, K

a0 - )

t

where a is the number of call options in the hedging portfolio, at time t, with strike K.
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Proof:

From (4.18), we can obtain the value of the hedging portfolio in the first #n discounted
power-jump assets Z,(j ), 2< j<n.ltis given by

m=1

nooo noo {&(7 1 ~ (m)
aPdz9D =B SN o (=1) (m] -1)"—dF (S|
?_2 dZ, t; S D D m((=D) F™(,8,) .5,

Therefore,
Sz =5y [ g (é&)(—l)wﬂ dF (S
j=2 t t tm:lF(m)(taSL) j=mv2 t t
We know that
J
0 ; h(t,S, .V, ,0)
ol = y .'
J!
So, we have
Za[(j)dzt(j)
j=2
J
| 9 wes . V0
By Sy [ j( &l s,
= _ m |(— t,S. ).
tm:l F(m)(LSL) Jj=mv2 .]' -

Assumption (4.13) implies that ZQ,('i 'dZ t('/ ) converges for every w € Q. Hence,

j=2
i C(t(j)dZt(j)
j=2
aj
A T VRLCLAC ) IR B

. j—m y .

=lim B _ -1)’ dF (,S,)|

o ’;m!F('”)(t,St) ‘,--mzéz( ) (j—m)! 5

If we now consider the representation formula (4.21) with p(x) = x™, then we have
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d F(t,5,)= [ m(m-1DK"2d C,(K)dK. (4.26)
0
Thus,

0 ) ) © B ~ B ~
Z;a,(”dZ,(” = | FRK)AC(K)IK =2 (LS, .V, =S, (427)

I
0 I t
It is obvious that the series

am—l

o0

R(t,K) = mZ: DI kS

htS -1 m-2
( )K

is absolutely convergent for each ¢ and each K. By the definition of IT1"(¢,T) we can
write

0@ @, 7)| < |[T® 2,7 forall 0<¢<T.

We have also that / is analytic in y. Using this fact gives us

aml

o h(,S, 1)‘ 2
X
(m—2)IT1"™ (t,T) ‘[ }

>

m=2

for all £ €[0,7]. By assumption (4.23) we can apply Fubini’s theorem to (4.27). So, we
obtain

o I t oo ~ t B h _1 N
> [atraz = [[ ers,soac,aar - [ P10 - aoy
0 00 0

N
J=2

By the above equation we can obtain number of bonds, number of stocks and number of call
options in the hedging portfolio as follows:
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o, =B'[F(t,S, ,V,)-S, D,F(,S, .V, )]

w8 s, v, - [ 2B e (kax |
0 t
nt,S, .V, 1)
a,=DFS V)-——c——
at(K) _ R(tazK)
s

t

In the above, @, corresponds number of bonds at time ¢, «, corresponds number of stocks
at time ¢ and a;j ) corresponds number of call options with the same maturity 7 and

different strikes K .

It is pointed out that, replacing (4.26) in (4.18) gives us

F™(,8,)%

m=1

dZt(j) — (_1)1’ Bt(i(lj’l](—l)m ;Tm(m — l)Kmizd ét (K)dK

This gives us the replication formula for the power jump assets in terms of call options with
the same maturity and with a continuum of strikes. (4.24) gives a dynamic hedging portfolio
in terms of call options and of the discounted stock, that is equivalent to the hedging
portfolio in terms of power-jump assets.

Remark 4.2.1 Now, let us investigate the relationship between the usual exponential Lévy
model and the geometric Lévy model( stochastic exponential model). Assume that our stock

price process S ={S,,t €[0,T]} is given by the equation
S, =S,e", S, >0 (4.29)

where X =1{X,,t €[0,T]} is a Lévy process. We can say that the process can be modelled
as a stochastic exponential of a Lévy process, that is defined as the solution
of the linear stochastic differential equation (3.1) and denoted by S, = S, Q(X,),where

X ={X,,t€[0,T]}is a Lévy process related to )N(

Then, the following properties can be written:

(1) If X is a Lévy process with characteristic triplet (n, y 25‘) then the usual

exponential e is of the form Q(X,) for some Lévy process X with characteristic triplet

given by (17, y*,0), where
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2

n :r}+%+j(l{
=z
o(U) = [1,(e" =) o(dx),U € BR)

- (e’ =1)— xl{‘x‘g} )o(dx),

e -1

(2) If X is a Lévy process with characteristic triplet given by (17, ;(2 ,O) then the stochastic

exponential Q(X,) is of the form e, for some Lévy process X with characteristic triplet
- ~2 .
givenby (n,y ,0), where

n=n- > + J‘I{“og(m)‘g} (log(1+ x) — xI (xl<y )o(dx),
2
2

X =X

(D) = [1,(log(1 + x)o(dx) . D € BR)

By (3.18) and (4.29)

S, =5, exp(AJ,),
S, =8, exp(1+AJ,),

where J is the jump part of X and J is the jump part of X.

If the stock dynamics is defined by (4.29) then we can define the hedging portfolio as
following. Here the price function F(t,x) is the solution of the following PIDE:

D, F(t,x)+ f(x,)D,F(t,x) +r.x D,F(t,x) +% xix! D] F(t,x)

~ D,F(t,%)[u(y) &, (dy) + DF(t,x) = r,F(z,x)
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F(T,x) = p(x),
where
DF(t,x) = Th(t,x, Yo, (dy)
and

h(t,x,y)=F(t,xe’,x,,x; +u(y))— F(t,x)—x,(e" =1) —x,D,F(t,x,,x,,x;),

Here, the contingent claim has a payoff that depends only on the stock price at maturity. So
we have that h(t,x,y) = F(t,xe”)— F(t,x)—x(e’ =1)D,F(t,x) and

h(ti x)O) = 07

ih(t, x,y)=0,
oy

D" F(t,x)x".

n |
L hex0)= Y "
oy" g 2<men M Y, om (2D (3™ LL(nl)™

Here, the sum is over all partitions of n,that is, over all n-tuples

(m,, m,,...,m,) such that
Im,+2m, +3m,+...+ nm, =n,
We have the notation of m:=m, +m,+...+m,,

And, the hedging portfolio is given by

n!
Q) . P 25 m\m,!..m (21" (3™ ...(n)™
t .

J!

D™ F(,S, )S,"

=23

Until now we supposed that the contingent claims with a price function F'(¢,x) satisfying

the analytic assumptions in Theorem 4.2.2. However, these regularity conditions are strong
and we would like to obtain hedging formulas for more general contingent claims. For
getting such formula, we will consider the discounted orthonormalized power jump

processes  {Y',j>2}Recall the orthonormalization coefficients from the

orthonormalization procedure and consider the orthonormal real polynomial pt(j (), j=>1
with these time dependent coefficients.

Lemma 4.2.2 Let f :[0,T]x R* — R be a measurable function such that
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E{i‘“f(s,x, y)| o:S (dy)ds] <,

Then we have

Zf(S SS Vs ,AJ ) ZJ‘<f(S X, )p(J)()> Y(,)

O<s<t J=l o

* f [r (5,3, )0, (dy)ds.

Theorem 4.2.3 Let Y be a contingent claim with payoff Y = p(S;,V;) and a price function
F(t,S,,V,)such that F(t,x) is of class C"***in [0,T]x R".
Consider the function

h(t,%,y) = F(t,x,(1+ )55, +u(0) = F(t,x) —x yD F(6,x)  (4.30)
and suppose that

E[j“h(s,x, y)| ots (dy)ds] < oo,

Set

j=2 m=2 " (s,T) LSS,

. )M “")( )m(m—l)(
NO(s,K)=)>" ] ,

~ k
where o/ = [1(s,S, .V, .y)pP (Mo, (dy) and aP =3 b, (s)a.
R

J=i

Then we have the representation formula

i j ) dYS‘”

J=lo

k—>0|

© t
i | B.N®(s,K)
Ss

Jj=lo

d C (K)dK - J.MdS}

In addition to this, the hedging portfolio in terms of bonds, stocks and call options is given
by
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1
w, =BT[F(LSL7Vt,)_St,D1F(t’SL’VL )]

t

— C, (K)dK |,
B i~ & S S; - ()

S_ 0 t

kf A1) (k)
a, =D1F(t’St’Vt)_11ci»rgzI%
=10

s
t

(k)

! k— St2

Proof:

Applying Ito’s formula to F'(¢,S,,V,) gives
t

F(t,8,,V,) = F(t,8,,V,) + [ F(s,8, ,V, )dS,
0

t
(DS, 1) 23T DI, W) 5, D55, ) s
0

+ Y [F(s,S, .V, )= F(s,S, .V, )= D,F(s,S, ,V, )AS,].

O0<s<t

It is clear that ,AS = §  AJ . Thus;

S (F(s,S, .V, )~ F(s,S, ,V, )= S, AJ.D,F(s,S, .V, ))

O<s<t

=h(s,S, ,V, ,AJ)).

Using the Partial Differential equations (4.10) and (4.11) gives the following:
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F(1,8,,V,) = F(tSO,V)+J-DF(tS )dS.

s_27 s

j(F(SSg, V,)=S8, D\F(s,S, , q))

+

0 Bs

+ Y h(s.S, VA )= [[hs.S, V. p)o (dy)ds. (4.31)
O<s<t 0R

This gives us the representation of the hedging portfolio in terms of bonds and stocks.

In addition to this, note that

S

M, = Y h(s,S, ,V, ,AJ,)- ”h(ss V., y)o.(dv)ds

O<s<t

= Zh(s,ss,VS,AJ»—E(Zh(s,SS,VS,AJS)j

O<s<t O<s<t

is a square integrable martingale and, by Lemma 4.2.2, we have that

o 1
M, = z j Offi) dYS(”

Jj=lo

where

(/) J-f(s S, .V, ,y)pq/)(y)aws(dy) and E{[i‘a‘y)‘zds}<o&
0

j=1
By (3.21), we have
asi)dys(j) — as/) Zj:b_/,i (S)dZS(j) )
i=1

Generaly, we can write

o
Z J’ aVdY" =1lim

J=10 J=1

a(j)dYS(j)

-
-
e O —

M»

[Zb”a(”]dz(” —hija(”‘)dZ“)

i=1 Jj=i i=l ¢

where, ") = Zb“(s)a(’)

Recalling (4.18) gives us:
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>

Jj=i

o-_.N

(”dY“) _ hmzj‘amdzm

J=i 0
kot b j 1 ~ (k)
=1lim B.a” 1)’ m|(-1)" ———dF (5,5
Zj (- )Z( j( " Fwes gl S

k ~ (m)

=li11€’112(—1)mJ-F(m)( 5 )2 a(/k)( By [4de 6.5

m=i

The representation (4.26) yields

. k /oot i j . j Km—z ~
lim{ > (~1) ! ! B.a™> (-1 [mjm(m—l)WdCS(K)dK}

Combining with the representation (4.31), we obtain the hedging portfolio.

Remark 4.2.3 Take a call option struck at K. in an additive market with bond price process
B,. Then, its price function is given by

F(.5) =2 Eol(sy -5,).[F ]

T

B .
B (8 K
BT S, x ),
Bl
=B—St(l)(t,x)

T

x=S,

S K. B
where  ®(t,x) = E|, HSt ]:| Price function F(t,x)= B—tStCD(t, X) must satisfy
;X

T
the partial differential equations (4.10) and (4.11).Thus,

2

5 5 LI
— D, x)—rx— D, x) + 2 x* ——D(t,x
Py (¢,x)— o (2,x) 7Y o (#,x)

T[(l + y)[q{t,ij - CD(t,x)J + yxiob(t,x)] o (dy)=0
e I+y Ox
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q)(T,X) = (x_K*)+
Suppose that F(t,X)=e ™" x®(t,x) is analytic in x for all x>0 and t €[0,T]. By
theorem (4.2.2) ,the portfolio in the power jump assets Z'7” Jj =2 can be represented by

o B, ;
ZJ'a(j)dZ(J) _J- YR(S K)dc (K)dK J' h(si V\ s )dS\
0

Jj=2 s 0 S
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CHAPTER 5

PORTFOLIO OPTIMIZATION

In this section, the portfolio optimization problem in the complete Additive Market is
considered. This problem consists of choosing an optimal portfolio in such a way that the
largest expected utility of the terminal wealth is obtained.

In this section, a class of utility functions, including HARA, logarithmic and exponential
utilities, are considered. Then, the optimal portfolio that maximizes the terminal expected
utility is obtained by the martingale method. Then, the optimal wealth is found and the
hedging portfolio replicating this wealth is obtained respectively.

In this section, it is shown that for particular choices of the equivalent martingale measure in
our market, the optimal portfolio only consists of bonds and stocks.

5.1 THE OPTIMAL WEALTH AND THE OPTIMAL PORTFOLIO

Definition 5.1.1 A wtility function is a map U(x):=R — R {—0}, which is strictly

increasing and continuous on {U > —o}, of class C” and strictly concave on the interior

of {U > —oo}, and such that marginal utility tends to zero when wealth tends to infinity, i.e.,
U () =1limU'(x) = 0.

Let us denote the interior of {U > -} by dom(U). We will consider only the two
following cases:
Case 5.1.1 dom(U) = (0,0) and U satisfies
U'(0):=1imU'(x) = .
x—>0"

Case 5.1.2 dom(U) =R and U satisfies
U'(=0) = lim U'(x) = .

I-p

The HARA utility functions U(x) = lx
4

U(x)=log(x) are examples of case 5.1.1 and the exponential utility function

for p € R, \{0,1} and the logarithm utility

1
U(x)= - e ™ is example of case 5.1.2.

Let us fix a structure preserving martingale Q. Our aim is to solve the optimal investment
problem in the non-homogeneous Lévy market by using the so called “Martingale method.”
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We consider that, an initial wealth w, and an utility function U, that we want to find the
optimal terminal wealth WV, that is, the value of W, that maximizes £, (U(W;)) and can
be replicated by a portfolio with initial value w,, .

We have the information that, under an equivalent measure Q, which is structure preserving,

w.
any random variable W, e I’ (€, %,,Q) can be replicated and w, = E|, {B—T}

T
Thus, we will consider the optimization problem

max{Ep wwy)): E, [%j =W, }

T

The corresponding Lagrangian is

E,(UW;)) - AEQ[%_ Wo] = EP[U(WT) _/IT[ZI,?)T % —Wo ]J (5.1)

Definition 5.1.2 W, is called the optimal terminal wealth if it is a solution to the
optimization problem (5.1),
The optimal terminal wealth is given by the following equation:

W, = (U')*(g—fgfj

T

where A, is the solution of the equation

Loy A 9Rr | _
EQ{BT U [Br > ﬂ_wo. (5.2)

Remark 5.1.1 In order to hedge the optimal terminal wealth W, , we need to know its price

B B, . (A
EQ[B—;WTMT} = EQ[B—;(U ) {B—;g,p',ﬂ.

and this depends on the utility function considered. Assume that the utility function satisfies
U (xp)=b,(x)U )" () +b,(x), for any x,y € R, for certain C” functions b,(x)
and b, (x).

Then the price function W, verifies:

process:
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E, ﬂWT|'Ft = E, 5(U')—1 A dQr
B B, B, dP,

T

4

Ar, d Ar, d
_E, b{ QT,,] (U,)l[i th}L i, bz[ Qm]
BT,t dPT,t Bt dPt BT,t dPT,t

= 7(t, )W, + o(t,T) (5.3)

B
So we have EQ{B—[ W, |7-'t} =7x(t,TW, +(t,T), for certain deterministic functions
T

dQ;, dQ,/dP,

7(t,T) and w(t,T) (In the ab =
(t,T) and o(t,T) (In the above ar,, dQ[/dP[)
with
| A
w,=U" l(g’tgtJ
where

1 4 A
E,|—U"Y | — =w,.
Q|:Bt ( ) [Bt gz j:| 0
Lemma 5.1.1 (U")"' (xy) =b,(x)(U") "' (y) + b,(x), for any x,y € (0,0) if and only if
U'(x)/U"(x) =mx+n, forany x € dom(U), and some m,n € R.

Proof:

Suppose first that (U")™' (xy) = b,(x)[U") "' () +b,(x). Write I(x)=(U"')"'(x). Then,
by differentiating with respect to x, we have

V' (xp) = b ()1 () +b, (x)

Thus, by taking y = /' (1) and x =1, we obtain
_ _ U'(u)
Il (w)=—=
@)I'(I" (u)) U ()

=b,(Du +b,(1)

Suppose that U'(x)/U"'(x) = mx + n . By integrating the differential equation we have that
U(x) =B, log(x—n)+ B, if m#1,
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U(x)= (mx+n)"™"" + B, if me{-10},

m(1 +11/m)
U(x) = Bne*’" + B, if m=0.

where B, and B, are integration constants. Hence, (U')™"' () = ky” —n/m, if m # 0 and

(U '(y)=nlogy+k if m =0, where k is constant.

U|
Lemma 5.1.2 Consider a utility function U such that # =mx+n, forany

U'(x)
x € dom(U) and for some m,nE R. Then;
o if m#0
UH"' () = m (5.4)
nlogy+k if m=0
The proof of this lemma has been already done in the above.
In the above ¢, has the following representation:
_4Q,
S =
dP
t 1 t X s t 400
= exp [j;(sGdeS - EJL Glds + [ [log H(s,x)M(ds,dx)J
0 0 0 -
Jexp U [ (H (s.2) = 1= log H (s.x))o, (dx)dsJ (5.5)
0 -

where G and H verifying following assumptions:
T +x 2

(i) j ﬂlog H (s, x)| o (dx)ds < o,
0 -

(ii) j j |H(s,x) ~1~log H (s, x)lo, (dx)ds < o,
0

—0

(i) y’G, +a, +r + j x(H(t,x)—1)o, (dx) = 0.

We can express this density process in terms of the Q-Brownian motion W and the

compensated random measure M (dt,dx). From (4.1) and (4.3), we have
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dQ,
dP

t

¢ =
t t t +oo

= exp UZSGSdWS = %J;(fods + [ [1og H(s,x)M(ds,dx)J
0 0 0 -0

/exp (j T(H(s,x) —-1-log H(s,x))o, (dx)dsJ

U'(x)
U”(x)
xedom(U) and for some mne R. Assume also that Q is a structure preserving

equivalent martingale measure, the associated function H satisfies the following
assumptions:

Theorem 5.1.1 Assume that the utility function U satisfies =mx+n, for any

T +x 2

i) | [[logH(s,x)| o, (dx)ds <,

0
T

i) | [|H(s,x)=1-log H(s,x)lo, (dx)ds < =,
0

8

i) sup [ exp(A[]) &, (dx) = sup [exp(AdH (2, )0, (dx).
te ] t€[0,T]

(0.7 (~&,6)¢ T (-g,8)

0
In addition to the assumptions in the above H (¢,0) =1 and 8_H & y) =G, forall
v

y=0

te[0,7]

(@) If

1
H(t, x) — (1 + mG,x)'” , if m# 0, (5.5)
H(t,x) =exp(G,x), if m=0,

then the optimal portfolio consists only of bonds and stocks, and the number of shares is
given by

,1 _ ﬂ(t,T)(mSVK +n)G, . 56)

(b) If m# 0 and (H(t,x))" is an analytic function in the x variable, and does not have the

form (5.5) then, in general, the optimal portfolio will consist of bonds, stocks and power-
Jjump assets. The number of shares of these assets is given by
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=23, (5.7)
y=0
(c) If m =0 and log H(t,x) is an analytic function in the x variable, and does not have the

form (5.5) then, in general, the optimal portfolio will consist of bonds, stocks and power-
Jjump assets. The number of shares of these assets is given by

' J'B, Y on)oy’

' J'B, “on)oy’

, =230, (5.8)

=0

Proof:

Let us define

0
K, = jTlogH(s,x)M(ds,dx).
0 -0

which are Q-martingales. The discounted wealth price process, given by

A B
W, 5:BLEQ{B_tWT (Fr} 2Dy m(t’T),

T t B

t t

is also a martingale and can also be written in terms of the processes R, and K, .

W,=f(tR,.K,),
where

7Z'(t T) C()(t,T)

S, x,y)=—]-— 2

') ( exp(g(t, x y))j

t t

and

t +oo

g(t,x,y)=x+y+— J-;(YG ds+j j(H(s x)log H(s,x) +1— H(s, x))o, (dx)ds.

In this proof, we will consider the two cases in (5.4).
First, consider m # 0. Then we have:

N A (A " _n
) [ = exp(g(z,x,w]—( Bj exp(mg (%, y)) =~

t t

Let us now apply the It6’s Formula for semimartingales to W, = f(¢,R,,K, ) . Then we will
find following result:
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:l(t, R, K, )dt+ f(t, R, K, )dR, + f(t, R, ,K, )dK,

2
+%aaf(uet,K,)d[R,, RIS M R, K, )d[K, K,
X

2
+ of (t,R, K, )d[R,,K,]°
oxoy B

n VIA/,—V?/t—Zl(t,Rt K, )AR, — 6f(zR K )AK, |
_(LR K, ,

By definition, R, is a continuous process (It is an It0 integral) and K, is a jump process and
we have that
AR, =0,
=logH(t,AJ,),
d[R,, ,]t =(7,G,)dt,
dK, K t]t =0,

Hence,

dVIA/t:AtdtJr m vAv[—a)(;T) +n”(t’T)

x.G,dW,

t t

N V/I\/t,_ a)(t,T) l’lﬂ'(l‘ T) [

j (H(1,x))" 1) M (dt, dx).

t

where 4, is the finite variation part of the process 7. It is obvious that the It6 integral and
the integral with respect to the compensated random measure are Q-martingales and in order

N
to W be a martingale, the finite variation part 4,, must be zero. Thus;

de/t =(7z(t,T)(th +n)

3 ])&th W,

t

n(r,T)[W; +"] » :
T PN (CH @) =1y M (dt, d)

B

t
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By (4.5) we can write following equation:

dS, =y, S dW+S. [xM(dt.d).

This Q-dynamics give:

t

A z(t,TYmW, +n d§
m:[( m, )JG, s,
S

t

++I z(t,T) (VVt L (H(t,x)" =1)=G,(mW, +n)x M(dt,dx).
B m

t

Since S, = B,'S,, we can write the following:

At _ 7(t,TYmW, +n)G, dSi
S

t

+TM(’"Wz +n) M—G[x M(dt,dx).
B - m

t

—o0|

In order to ensure that the optimal portfolio will consists only of bonds and stocks, the jump

part of of d W, must be zero and, hence,

1

H(t,x) = (1+mG,x)"

By (4.4) we know that the function G, must satisfy

+00 i
272G, +a, -1 + J.x((l+mGtx)'” —1]0, (dx) = 0.

In addition to the previous equation, the wealth invested in stocks at time ¢ is then given by

' Gz, T)mW, +n)
t S *

t

Generally, if the function H(Z,x) does not satisfy (5.5) then the structure preserving
martingale measure, that characterizes the market, is such that the optimal portfolio includes
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bonds, stocks and derivatives which can be expressed by the power jump assets. Since
H(t,x) is analytic in x, we can expand the integrant function

(H@x)" -1,

m o
in terms of powers of x, with H(z,0) =1 andai H(t,x)) =G,.Then
X x=0
0
(H(1, )"
H " -1 1 & oy’ :
e -1 o 15w y
m a’‘s J!
y=0

and the number of power-jump assets in the optimal portfolio is given by

T U R G0y

, j=23,...,

y=0

In the second case of (5.4), when m = 0, we have

(U')_l (% exp(g(t,x, y))] = n(log[%] + g(t, x, y)J +k.

t t

Applying to Itd Formula for semimartingales to W, = f(¢,R,,K,) gives us following:

A 6,7 -

dW, = A dt +%d W,

+ (—””g’T )j [1og((s.x)) M (dt, ),
t —©

where 4, is a finite variation process. Similarly to the case m # 0, the finite variation part

A, , must be zero and

nz(t,T)G, | d S,

B, 5?t

AW, =

Jr(mz(t,T)

- jf (log(H (s, x)) — G, x) M (dt, dx).

57

t



Thus,

d VIA/[ - Md SN'Z
. [#jiﬁ(log(}[(l‘,x» _ Gtx)]\N[(dt,dX)-

In order to ensure that the optimal portfolio will consist only of bonds and stocks, we requare
that

H(t,x) =exp(G,x),
where, by (4.4), the function G, satisfies

271G, +a, 1, + [ x(exp(G,x) - o, (dx) = 0.

The wealth invested in stocks is given by:

nz(t,T)G,
gl =T

t

If H(t,x)does not satisfy (5.5) then the optimal portfolio includes also power jump assets.
Let us expand the integrant function

log(H(t,x))-G,x

=G, . Since

x=0

0
In terms of powers of x, considering that H(z,0) =1 and 8_H (t,x)
X

log H(t,x) is an anlytic function in the x variable, we have

ajaog(H(t,y)))‘
Y

J!

log(H(t,x))-G,x =

x’,

M

Il
S

J

y=0

and the number of the power-jump assets in the optimal portfolio is given by,

g =27 O (o0 m1, )

,j=23,.., QED..
j1B, 0y’ Y

»=0
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5.2 APPLICATION

Example 5.2.1 Consider the logarithm utility U (x) = logx. Then

U'(x)=U")"(x)=x"

and U') =mx+n with m=—1 and n =0. By solving
U”(x)
A, d
E, L(U')*l _T& =w,.
B, B, dP,
we have
dP,
W, =w,B, —.
dQ;
B P, dP,
Thus, we obtain EQ —tWT F | = WOBtEQ|:d—T|¢t:| =w,B, ik Sy~ w.,.
BT dQT sz

Therefore, n(t,T)=1 and w(t,T)=0. Applying theorem (5.1.1), the optimal portfolio
consists only of bonds and stocks if

Hitx) = —— (59)

-G,x

and G,x satisfies

x((1-G,x)" 1), (dx) = 0.

t
thGt +n, - +_[
0

+00
00

The fraction of wealth invested in stocks, at time t, is given by

If the function H satisfies the assumptions in Theorem 5.1.1 but is not of the form (5.9) then,
in general, the optimal portfolio also includes power-jump assets. The number of these assets
is given by
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;W8 i
¢ =B oy HEy) | ,j=23,.,
Tt

y=0

I-p
Example 5.2.2 Consider the HARA utilities U (x) = lx

with p € R, \{0,1}. Then

1

U (x)=x"
and U”(x) =mx+nwith m = 1 and n =0.
U''(x) p
Solving E, L(U')f1 A dQp =W, gives us
B, B, dP;
(dP, /1dQ,)""
r = Wobr p -

Eo((dP; 1dQ,)""

By using these equation, we obtain

E,[(dP, 1dQ; )'"*|F ]
} o5 Eo((dP; /dQ,)"")
E, ((dPr,t /dQ, )" (dP,/dQ,)"”

7)

~M T (@, 14Q,, )7 (@p 1dQ,) )
_ g lar1dQ,)""

" Ey\r /dq,)"")
=W

t

Therefore n(t,T)=1 and @(t,T)=0. Applying theorem (5.1.1), the optimal portfolio
consists of only of bonds and stocks if

and G, satisfies
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20G +n, -, +Hw Hl—x]p l})'s(dx)=0.

The fraction of wealth invested in stocks, at time t, is given by

alSl, _ G
W, p
If the equivalent martingale measure is such that the optimal portfolio cannot be hedged by
bonds and stocks, then the number of shares of the power-jump assets is given by

L
" JjIB, oy’

el =23,

y=0

Example 5.2.3 Consider exponential utility function is given by

Ux)= —%e_ﬂx

U'(x) _l

1
with 0,00) . Then, U' = U™ ———1 and ——= .
th B3 €(0,0) (x)=e, (U)"(x) 0gx U p

Hence, we are in the case m =0 and n = —% of (5.4). We have that
B B
EQ{—’WTVFI} =w,B, +—f[E{1og el |7-;} —Eo[log ap; D
B; BB dQ; dQ;
dP, dP,
=w,B, + —— 5, of log—"=|F, |- E,|log—"
ﬁBr dQy, dQ,
dP, _E,| log dP,
dQ, dQ
B P P
pB:\  dQ, dQ

Bt Bt
= LW +w,B,|1-—L |
BT BT

=Wy,
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B
Thus, in this case 7(t,T) :B—t and o(t,T)=w,B,(1-B,/B;). By (5.4), the optimal
T

portfolio includes only bonds and stocks if H(y) = exp(% yj.

If this is the case, then G, satisfies the equation

t +oo G
127G, +n, —r + _([ J;x[exp(; yj - 1}05 (dx)=0

and
¢l :_ﬂ-(taT)Gt
t S,

If the optimal portfolio includes power-jump assets, then the number of shares is given by

. B, & .
¢t(j) =—ﬁayj logH(y) ) =2>3,---5
. y=0
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CHAPTER 6

CONCLUSION

In this study, the general geometric Additive market models are considered. These market
models are generally incomplete, this means that, the perfect replication of derivatives, in the
usual sense, is not possible. It is offered that the geometric Additive market should be
enlarged by so called “power-jump assets” based on power-jump processes of the underlying
Additive process. By using Martingale Representation Property for Additive processes, it is
shown that the enlarged market is complete. After doing this, the hedging portfolios for
claims whose payoff function depends on the prices of the stock and the power-jump assets
at maturity are derived. In addition to the previous completion strategy, it is offered that the
market should also be completed by considering portfolios with a continuum of call options
with the same maturity and different strikes. What is more, the portfolio optimization
problem is considered in the enlarged market. The optimization problem includes choosing
an optimal portfolio in such a way that the largest expected utility of the terminal wealth is
obtained. In our study, a class of special utility functions, including the HARA, logarithmic
and exponential utilities are considered. Then, optimal portfolio that maximizes the terminal
expected utility is obtained by the martingale method. It is shown that for particular choices
of the equivalent martingale measure in the market, optimal portfolio consists of only of
bonds and stocks. This includes the solution to the problem of utility maximization in the

real market, consisting only of the bond and the stock.

63



REFERENCES
[1] Balland, P., Deterministic implied volatility models, Quantitative Finance, 2: 31-44
(2002).
[2] Bertoin, J., Lévy Processes, Cambridge University Press (1998).

[3] Black, F., Scholes, M., The pricing of options and corporate liabilities, Journal of
Political Economy, 81: 637-654 (1973).

[4] Carr, P., Geman, H., Madan, D., P. and Yor, M., Pricing options on realized variance,
Finance and Stochastics, 9: 453-475 (2005).

[5] Carr, P., Geman, H., Madan, D.,P. and Yor, M., Self-Decomposibility and Option pricing,
Mathematical Finance, 17(1): 31-57 (2007).

[6] Carr, P. and Madan, D., Towards a Theory Of Volatility Trading, in: Volatility, Risk
Publications, R. Jarrow, ed., 417-427 (1998). Reprinted in: Option pricing, Interest Rates,

and Risk Menagement, Musiella, Jounini, Cvitanic, ed., Cambridge University Press, 458-
476 (2001).

[7] Chan, T., Pricing contingent claims on stocks driven by Lévy processes, The Annals of
Applied Probability, 9(2): 504-528 (1999).

[8] Cont, R. and Tankov, P., Financial Modelling With Jump Processes, Chapman &
Hall/Crc Financial Mathematics Series (2004).

[9] Corcuera, J., M.,. Guerra, J., Nualart, D. and Schoutens, W., Completion of a Lévy market
by power-jump assets, Springer Science, 9(1):109-127 (2005).

[10] Corcuera, J., M., Guerra, J.,Dynamic Complex Hedging in Additive Markets, Institut de
Mathematica, 393 (2007).

[11] Corcuera, J., M., Guerra, J., Nualart, D. and Schoutens, W., Optimal Investment in a
Leévy Market, Applied Mathematics Optimization, 53: 279-309 (2006).

[12] Sato, K., L, Stochastic integrals in Additive processes and application to semi-Lévy
Processes, Osaka J.Math, 41: 211-236 (2004).

[13] Eberlein, E. and Raible, S., Term structure models driven by general Lévy Processes,
Mathematical Finance, 9(1): 31-53 (1999).

[14] Follmer, H. and Schweizer, M., Hedging of Contingent Claims under incomplete
Information, Discussion Paper, No. B-166 (1990).

64



[15] Follmer, H. and Leukert, P., Quantile Hedging, Finance and Stochastics, 3: 251-273
(1999).

[16] Jacod, J. and Protter, P., Risk Neutral Compatibility with Option Prices, Research Paper
(2006).

[17] Jaillet, P., Lamberton, D., Lapeyre, B., Variational Inequalities and the pricing of

American Options. Introduction to Stochastic Calculus Applied to Finance, Springer, 21(3):
263-289 (1990).

[18] Jarrow, R. and Madan, D., P., Hedging contingent claims on semimartingales, Finance
and Stochastics, 3: 111-134 (1999).

[19] Kyprianou, Andreas, E., Introductory Lectures on Fluctuations of Lévy Processes with
Applications, Berlin, Springer-Verlag Berlin Heidelberg (2006).

[20] Laha, R., G. and Rohatgi, V., K., Probability Theory, New York, Wiley (1979).

[21] Nualart, D. and Schoutens W., Chaotic and predictable representations for Lévy
Processes, Elsevier, 90(1): 109-122 (2000).

[22] Protter, P., E., Stochastic Integration and Differential Equations, Springer, Second
Edition (2004).

[23] Sato, K., L., Lévy Processes and Infinitely Divisible Distributions, Cambridge University
Press (1999).

[24] Sato, K., L., Stochastic integrals in Additive processes and application to semi-Lévy
Processes, Osaka J.Math, 41: 211-236 (2004).

65



	Title.pdf
	tez.pdf

