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ABSTRACT

IMAGE SEGMENTATION AND SMOOTHING VIA PARTIAL DIFFERENTIAL
EQUATIONS

Özmen, Neslihan

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Kemal Leblebicioğlu

February 2009, 86 pages

In image processing, partial differential equation (PDE) based approaches have been exten-

sively used in segmentation and smoothing applications. The Perona-Malik nonlinear diffu-

sion model is the first PDE based method used in the image smoothing tasks. Afterwards the

classical Mumford-Shah model was developed to solve both image segmentation and smooth-

ing problems and it is based on the minimization of an energy functional. It has numerous ap-

plication areas such as edge detection, motion analysis, medical imagery, object tracking etc.

The model is a way of finding a partition of an image by using a piecewise smooth represen-

tation of the image. Unfortunately numerical procedures for minimizing the Mumford-Shah

functional have some difficulties because the problem is non convex and it has numerous

local minima, so approximate approaches have been proposed. Two such methods are the

Ambrosio-Tortorelli approximation and the Chan-Vese active contour method. Ambrosio and

Tortorelli have developed a practical numerical implementation of the Mumford-Shah model

which based on an elliptic approximation of the original functional. The Chan-Vese model is

a piecewise constant generalization of the Mumford-Shah functional and it is based on level

set formulation. Another widely used image segmentation technique is the “Active Contours
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(Snakes)” model and it is correlated with the Chan-Vese model. In this study, all these ap-

proaches have been examined in detail. Mathematical and numerical analysis of these models

are studied and some experiments are performed to compare their performance.

Keywords: Image Processing, Partial Differential Equations, Optimization, Functional Anal-

ysis, Numerical Analysis.
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ÖZ

KISMİ TÜREVLİ DENKLEMLERLE GÖRÜNTÜ BÖLÜTLEME VE
DÜZGÜNLEŞTİRME

Özmen, Neslihan

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Şubat 2009, 86 sayfa

Kısmi türevli denklem (KTD) tabanlı yaklaşımlar görüntü işlemede, bölütleme ve düzgünleştir

me uygulamalarında yaygın olarak kullanılmaktadır. Perona-Malik doğrusal olmayan difüzyon

modeli görüntü düzgünleştirme alanında kullanılan ilk KTD tabanlı yöntemdir. Bunun ardından

klasik Mumford-Shah modeli hem görüntü bölütleme hem de düzgünleştirme problemlerine

yönelik olarak geliştirilmiştir ve enerji fonksiyonelinin minimize edilmesini temel alır. Bu

modelin kenar bulma, hareket analizi, medikal görüntüleme, nesne izleme gibi bir çok uygu-

lama alanı bulunmaktadir. Bu model, görüntünün parçali ve düzgün temsilini kullanarak bir

görüntü bölütlemesi bulmanin bir yoludur. Ne yazık ki, problemin konveks olmaması ve

çok sayıda yerel minimum değere sahip olmasından dolayı Mumford-Shah fonksiyonelini

minimize edecek nümerik yöntemler bazı zorluklar taşırlar, bu yüzden yaklaşık yöntemler

önerilmiştir. Bu yöntemlerden ikisi Ambrosio-Tortorelli yaklaşımı ve Chan-Vese aktif çevrit

yöntemidir. Ambrosio ve Tortorelli, Mumford-Shah fonksiyoneli için eliptik yaklaşıma dayalı,

pratik bir sayısal uygulama önermişleridir. Chan-Vese modeli, Mumford-Shah fonksiyonelinin

parçalı sabit bir genelleştirmesidir ve düzey kümesi formülasyonuna dayanır. Yaygın olan

diğer bir görüntü bölütleme tekniği ise “Aktif Çevrit (Yılan)” modelidir ve Chan-Vese mod-
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eliyle ilintilidir. Bu çalışmada bütün bu modeller detaylı olarak incelenmiştir. Bu model-

lerin matematiksel ve sayısal analizleri çalışılmış ve performanslarını karşılaştırmak için den-

emeler gerçekleştirilmiştir.

Anahtar Kelimeler: Görüntü İşleme, Kısmi Türevli Denklemler, Optimizasyon, Fonksiyonel

Analiz, Sayısal Analiz.
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CHAPTER 1

INTRODUCTION

Images in our world have a great meaning and they are extensively used in many tasks in

daily basis such as surveillance, identification and communication. Great improvements and

technological developments in computer industry allow us to obtain and work with more im-

age data and this progress triggered birth of a new application field known as Computational

Imaging [51]. Computational Imaging is interested in acquisitioning and processing the visual

information and it is divided into two main application areas: image processing and computer

vision. These two fields differ with respect to the type of information used in the process

and output obtained after the process. In image processing the processed image is used by

the humans, while in computer vision it is used by the computers. Furthermore, computer

vision tends to focus on the 3D scene projected onto one or several images, whereas image

processing tends to focus on 2D images.

An image is considered as a 2D simulation of the 3D world by image processing community.

The images obtained by digital cameras are considered on a discrete grid. Each square in this

grid, known as a pixel, has a digital value. Therefore, a digital image is defined as a matrix and

each matrix element takes the corresponding pixel value. The number of rows and columns

give the size of an image and it is called as resolution. The resolution demonstrates the

closeness between the real world and the image [4]. Mathematically an image is expressed by

a real-valued, bounded function defined on an open subset of<2 and the value of the function

at a point gives the intensity or brightness, at that point in the image.

The role of image processing is to develop techniques to extract and exploit information from

images. The application areas are numerous and the most significant application fields are

medical [10, 37, 60, 62], defense [25, 26, 30] and manufacturing [15, 28, 33, 58]. Image
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Processing is comprised of several branches such as image segmentation, image denoising,

image registration etc. Each area is used for different purposes. For instance, the ambition of

segmentation is to partition an object of interest from the background in a given image. On

the other hand, denoising can be defined as recovering the original image from a noisy mea-

surement. The researches on the subject of Image Processing have been extensively carried

out for a long time. When we look at the history of image processing, to process the images,

several mathematical approaches have been emerged and the most fundamentals among them

are stochastic modeling [23, 24, 34], wavelets [8, 16, 17, 35, 63], and partial differential equa-

tion (PDE) approaches. Stochastic modeling depends on the theory of Markov random field

and wavelet theory is based on decomposition techniques. However, PDE-based approach is

undoubtedly the most famous one due to its powerful mathematical background and flexibility

[4].

PDEs are generally used for solving the problems of engineering, physics and other scientific

applications because they are directly related to real-world problems. They are described in a

continuous setting and supply a better comprehension of the discrete world. One can develop

stable and novel algorithms of image processing based on PDEs which have a well-established

theory for years. Because of this well-established theory behind them and evolutionary char-

acteristics, PDEs are the most practical and preferred tools in image processing. After they

were introduced to this area at the beginning of the 80’s, several PDE-based methods have

emerged. These methods have been successfully used to solve the main problems in vari-

ous application areas such as image segmentation, edge detection, image deblurring, object

tracking, noise removing, image enhancement, image restoration, image inpainting, shape

extraction and recognition, motion analysis etc. [2, 5, 13, 46, 47, 48, 54, 56].

Variational techniques are extensively used for solving image processing problems especially

by the PDE-based methods. A problem defined by a well chosen energy functional to be

minimized is usually equivalent to a nonlinear PDE. The basic idea behind them is to find the

local minimum of a given energy functional while the variables correspond to the solution

of the problem or the results of a given task. Local optimum of the energy functional can be

found by equated its first variation to zero. Numerically iterative optimisation techniques such

as method of steepest descent are used to determine the local optimums of energy functional.

One of the earlier classical method used in image processing is “Gaussian Smoothing”. It is
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based on convolution of an image with the Gaussian function

Gσ(x) =
1

(4πσ)
d
2

e−|x|
2/4σ .

Researcer have discovered the fact that the Gaussian function is a fundamental solution of a

linear heat equation

It = c∇2I = cIxx + cIyy .

This is how PDEs entered into the image processing computations. Later “linear diffusion

equation method” was used in many applications. This linear image smoothing method blurs

edges in the images and sometimes moves their locations. However; for some applications, it

is very crucial to find the location of edges precisely, for instance in the medical imagery, find-

ing a tumor’s place exactly is very vital for surgery operations. On the other hand, for some

of the applications blurring is not desired, so Gaussian smoothing (linear diffusion) method is

a bad choice. To overcome these difficulties, nonlinear diffusion methods are proposed [39].

Perona and Malik [44] have introduced a modification of the linear heat equation, known

as anisotropic diffusion, as shown below, which is used in image denoising and smoothing

applications.

It = ∇ · (g(∇I)∇I) ,

where Ω ⊂ <2 is image domain, I : Ω→< represents the image function.

This method preserves the edges better than linear diffusion models. Since than this nonlinear

diffusion approach has become a center of attraction and many different applications have

emerged.

Mathematically, the Perona-Malik (PM) model can be considered as the backward heat equa-

tion, it acts locally like heat equation; the regions in the image are diffused with respect to

intensities. The function g is considered as an edge indicator and it depends on the gradient ∇I

of the image I. g is chosen such that for large gradients it is expected to go to zero. As a result
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diffusion process is expected to stop on edges. The extensive explanation and mathematical

analysis of this model is given in Chapter 2.

Despite its good properties, the PM model is not adequate for some applications. It is an

ill-posed problem and have some difficulties such as non-uniqueness of its solutions. Many

different approaches have been proposed to overcome the problems of the PM model. The

most commonly used one is the regularized version of it originally suggested by Catte, Lions

and Morel [7] is as follows

It = ∇ · (g(|∇Gσ ∗ I|)∇I) .

In this regularized version, the convolution of the image with the Gaussian kernel is used

and this is similar to the linear diffusion, so this model can be considered joining of ideas in

linear and nonlinear diffusions. This little contribution have provided favorable benefits and

facilitated the verification, the existence and the uniqueness of the solution. Moreover, the

convolution of images with the Gaussian kernel ensures quite a smooth function for which its

gradient is mathematically easier to calculate.

Alvarez, Lions and Morel [1] developed a nonlinear diffusion equation for image and shape

analysis based on mean curvature motion as represented below

It = g(|∇Gσ ∗ I|)∇I · ∇ ·
(
∇I
|∇I|

)
.

In this method the regions are smoothed by the mean curvature motion, while the edges are

preserved and comparatively enhanced. The function f , given in [1], is a contrast function

and it decides whether a detail is sharp enough to be kept.

Another widely used PDE-based method is proposed by Mumford and Shah in 1989 [41].

They introduced the following energy functional, known as Mumford-Shah (MS) functional

EMS (u,C) = α

∫
Ω−C

|∇u|2dx + β

∫
Ω

(u − I)2dx + µ.length(C) ,

where u : Ω→< is an approximation of the given image I and C is the set of edges.
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This functional is used for solving both image segmentation and denoising problems. The

fundamental idea behind this functional is to obtain a piecewise smooth approximation of a

given image I and an edge set Γ. In the functional, the first term represents the stabilizing

cost, the second term is the deviation cost, and the third term gives the edge cost. To find

piecewise smooth approximation u of the image I, the energy functional, consists of these

three costs should be minimized. However, this functional has some numerical complications

due to the lack of uniqueness of the solution and the dependency of the region integration on

its solution. Numerous approximate approaches are proposed to overcome these difficulties.

Two such methods are the Ambrosio-Tortorelli (AT) [3] approximation and the Chan-Vese

(CV) active contour method [9]. Ambrosio and Tortorelli developed a practical numerical

implementation of the Mumford-Shah functional and it is based on an elliptic approximation

of the original functional.

EAT (u, v) =

∫
Ω

(
α(v2|∇u|2) + β(u − I)2 +

1
2

(
ρ|∇v|2 +

(1 − v)2

ρ

))
dx .

The Chan-Vese model is a piecewise constant generalization of the Mumford-Shah functional

and it is based on level set formulation introduced by Osher and Sethian [42].

ECV (C, c1, c2) = µ.length(C) + ν.area(inside(C))

+λ1

∫
inside(C)

|I − c1|
2dx + λ2

∫
outside(C)

|I − c2|
2dx .

Besides, Tsai et al. [50] suggested an image segmentation and smoothing method based on

the Mumford-Shah functional and it resembles to the Chan-Vese model in many respects.

The Snakes (Active Contours) are also image segmentation techniques based on variational

methods, originally proposed by Kass et al. [32]. They can be understood as a special case of

a more general technique of matching a deformable model to an image by means of energy

minimization. In general, snakes are curves defined in an image domain and they move under

the control of two image forces: internal force and external force. They are successfully used

in medical imaging, object tracking, edge detection and video surveillance applications.

After applying any segmentation algorithm, one may desire to know the accuracy of the re-
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sults. In general, segmentation algorithms are evaluated visually, qualitatively. However, it is

very important to verify the segmentation algorithms by using quantitative measures. So, it

is important to develope a metric to determine quality of the segmentation. In [29], a quanti-

tative analysis is carried out to assess the segmentation algorithms. First the ground truth of

the image of interest is obtained by manual description, and then a percentage error is chosen

to measure the distance between ground truth and segmented image. Binary image repre-

sentation of the ground truth and segmented image are used to find the error measure and

segmentation techniques are compared according to this error. The errors which are produced

by segmentation techniques are calculated, and the method which gives the smallest segmen-

tation error is determined as the most accurate technique. In [21], three basic methods, laws

of optics application, shape coefficients and template matching, of image segmentation ver-

ification are introduced. In the first two methods, an object of known shape and dimension

is used as a reference sample and the sizes of reference sample and the segmented object

are compared. In the third method, a template, the low quality of image of the plot paper,

is used and the consistencies between the image after the segmentation and the template are

analyzed. In University of California, Berkeley, a group studying on segmentation and edge

detection provides a dataset (Berkeley Segmentation Dataset and Benchmark) which is used

for developing and evaluating the segmentation algorithms. The group compares the segmen-

tation results with the ground truth (the human segmented image of the original). They use

precision-recall curves to determine similarities between segmentation and ground truth. Pre-

cision and recall signify the noise measures in the output of the segmentation and the ground

truth, respectively. The details are given in [38].

In this thesis image segmentation methods based on variational techniques including the

snakes and the PDE-based methods such as the Perona-Malik, the Mumford-Shah, the Ambrosio-

Tortorelli and the Chan-Vese models are examined. The accuracy of these methods is not in-

vestigated in quantitative point of view but we qualitatively analyze the segmentation results,

namely they are evaluated by means of visual inspection. The organization of this work is as

follows: in Chapter 2, analytical properties and numerical approximation of the Perona-Malik

model are explained and some implementations of the model are presented. In Chapter 3,

the detailed mathematical analysis and problems of the Mumford-Shah functional are given.

Analytical and numerical analysis, also experimental results of the the Ambrosio-Tortorelli

approximation of the Mumford-Shah functional are discussed in Chapter 4. In Chaper 5,

6



the Chan-Vese active contours model is examined. The mathematical analysis and numerical

approximations are presented, and experimental results are demonstrated. In Chapter 6, the

technique of active contours are expressed. An overview of this methods is explained and

the detailed analysis of the original snakes is given. Chapter 7 includes comparasions of the

techniques discussed in previous chapters Finally, in Chapter 7 the conclusions are provided.
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CHAPTER 2

PERONA-MALIK MODEL

Partial differential equations are successfully used in many image smoothing tasks. In dif-

fusion processes, the main goal is to remove the noise from the given image and finding the

details by smoothing the interior of the regions, not the edges. The original image can be

considered as an initial condition of a diffusion process. When evolution by diffusion is ap-

plied on the whole image, it is defined as a “scale space” approach and it can be used for

extracting important information [14]. Generally, denoising is performed by convolving the

original image with a Gaussian function, or equally by solving the heat diffusion equation

with the original image as the initial state. During this process the edges get blurred too much

and they are not preserved; this is the main disadvantage of the diffusion method. This linear

heat diffusion equation is defined as

It = c∇2I = cIxx + cIyy , (2.1)

where c is a unitary constant.

To overcome the difficulties of the linear diffusion and for keeping the edges in an image

sharp, well-defined and localized, Perona and Malik proposed a nonlinear diffusion scheme

[44]. They introduced a nonlinear heat equation with a diffusion coefficient g. The image

domain is defined by Ω and ∂Ω is the boundary of Ω. The Perona-Malik (PM) model is

defined as

∂I
∂t

= div(g · ∇I) , (2.2)

∂I
∂n

= 0 . (2.3)
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Notice that, when g is taken as a constant, again the linear heat diffusion equation is obtained.

The scalar diffusivity g(.) is not constant; it is defined as a function of the gradient I, and

it is a decreasing and non-negative function. In the regions where the gradient is small in

magnitude, the diffusion is almost linear. At the regions where the norm of the gradient is

large, it restrains the diffusion near the edges; thus the edges are preserved. The selection of

the function g is the fundamental characteristic of this method. Perona and Malik proposed

two different g functions:

g (∇I) = exp
(
−
|∇I|
k2

)
,

g (∇I) = −
1√

1 +
|∇I|2

k2

,

where k is a fixed gradient threshold.

This diffusion process smoothes the edges with small gradients and the image is divided into

two regions along a steep gradient region. The condition to maintain the edges is defined as

|∇I| > k; so the parameter k must decrease when the norm of the gradient decreases. When

the diffusion process is allowed for a long time, it blurs the image and some edges can be

lost. By using p-norm based estimation of the parameter k, the error descends slower than

using a constant k. The parameter k affects the results directly. A method is proposed in

[53] for estimating the appropriate k when the suitable value of the diffusion coefficient is

not known and loss of details is not wanted. For setting k, the smoothing property of the

diffusion equation is used. Since a fixed k may delete edge and small details during the

diffusion process, k is decreased for each iteration without noise estimation. The formulation

for estimating the parameter k given in [53] is

k(m∆t) =
ς|∇I|p
M × N

, (2.4)

where I is an image with M rows and N columns and ς is a constant proportional to the image

average intensity. A p-norm of the image is used as defined below

|∇I|p =
[∑
|I|p

]1/p
. (2.5)
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2.1 Numerical Approximations

The model is

∂I(x, y, t)
∂t

= div(g(x, y, t) · ∇I(x, y, t)) , (2.6)

∂I(x, y, t)
∂n

= 0 . (2.7)

The initial condition is given by the original image, i.e., I(x, y, 0) = I0(x, y). “Neumann type

boundary conditions” can be used as boundary conditions.

The function In
i, j = I(ih, jh, n∆t) is the approximation of the image I(x, y, t) and gn

i, j = g(ih, jh, n∆t)

is the approximation of the function g(x, y, t). Discretization of the model is

In+1
i, j − In

i, j

∆t
= div(g · (∇I))n

i, j , (2.8)

∇Ii, j =


Ii+ 1

2 , j
− Ii− 1

2 , j

h

Ii, j+ 1
2
− Ii, j− 1

2
h

 ,
for h=1

(g · ∇I)i, j =


gi, j(Ii+ 1

2 , j
− Ii− 1

2 , j
)

gi, j(Ii, j+ 1
2
− Ii, j− 1

2
)

 ,

(div (g · ∇I))i, j = gi+ 1
2 , j

Ii+1, j − gi− 1
2 , j

Ii, j − gi+ 1
2 , j

Ii, j − gi− 1
2 , j

Ii−1, j

+ gi, j+ 1
2
Ii, j+1 − gi, j− 1

2
Ii, j − gi, j+ 1

2
Ii, j + gi, j− 1

2
Ii, j−1 . (2.9)

Perona and Malik proposed a numerical approximation for g, as given below:

gi+ 1
2 , j
≈ gi+1, j, gi− 1

2 , j
≈ gi−1, j,

gi, j+ 1
2
≈ gi, j+1, gi, j− 1

2
≈ gi, j−1.
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By this numerical approximation, the above approximation takes the following form (com-

prehensive details are given in [44]):

(div (g · ∇I))i, j ≈ gi+1, j(Ii+1, j − Ii, j) − gi−1, j(Ii, j − Ii−1, j)

+ gi, j+1(Ii, j+1 − Ii, j) − gi, j−1(Ii, j − Ii, j−1) . (2.10)

An explicit finite difference scheme can be applied on equation (2.10)

In+1
i, j = In

i, j + ∆t [gi+1, j(Ii+1, j − Ii, j) − gi−1, j(Ii, j − Ii−1, j)

+ gi, j+1(Ii, j+1 − Ii, j) − gi, j−1(Ii, j − Ii, j−1)] . (2.11)

For a stable evolution of the PM model, the time step ∆t must be ∆t ≤ 0.25.

2.2 Experimental Results

In the experiments, since it has a more stable character, the second choice of the function g,

proposed by Perona and Malik [44], is used:

g (∇I) = −
1√

1 +
|∇I|2

k2

.

In order to choice k, the method given in [53] is used, and in the experiments, 2-norm of

the image is used (i.e., p = 2). To analyze the performance of the PM model, we calculate

SNR (signal-to-noise ratio) improvements known as the simplest and widely used measure of

image quality. SNR improvements of the diffusion results have been examined to evaluate the

algorithm and they are given for each image.

Figure 2.1 illustrates the results of the classical PM nonlinear process for 30, 50 and 100

iterations by using the time step size of 0.1. SNR of the noisy image and SNR of the final

image given in Figure 2.1 (d) have been calculated and an SNR improvement of 5.0765 dB

has been achieved.
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In Figure 2.2, the PM nonlinear diffusion process is shown for 50, 75 and 100 iterations. For

the image displayed in Figure 2.2 (d), an SNR improvement of 6.1469 dB has been obtained.

The PM model is applied to a medical image by using time step size of 0.2 for 60, 150 and

200 iterations and the results are demonstrated in Figure 2.3. During the diffusion process,

noise is removed and edges are kept sharp but some isolated noisy points have remained. For

the medical image, the nonlinear diffusion process showed an SNR improvement of 6.1458

dB.

Figure 2.4 display the nonlinear diffusion results of Lena image by using the PM model, the

time step size of 0.1 for 50, 60 and 75 iterations. An SNR improvement has been calculated

as 7.4653 dB for the image given in Figure 2.4 (d).

The edge detection results of the images shown in Figure 2.4 are given in Figure 2.5. As seen

from the figure, the edges given in Figure 2.5 (d) are better than that of noisy image given

in Figure 2.5 (a). As a result, well-located edges can be obtained after nonlinear diffusion

process.

Figure 2.6 shows the comparison of the PM diffusion results for decreasing and fixed k. For

decreasing k, the value of k is calculated automatically in each iteration, an SNR improvement

of 6.5828 dB has been achieved. For fixed k = 0.5, the result is given in Figure 2.6 (c), an

SNR improvement of 3.6395 dB has been attained. After many trials, a suitable value of k

is obtained and the result is shown in Figure 2.6 (d) for k = 2, and an SNR improvement of

6.3847 dB has been achieved. As seen from SNR improvements, better results are obtained for

decreasing k. To find a suitable k for each image is a difficult task; thus, using the decreasing

k given in [53] is more meaningful for nonlinear diffusion.
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Figure 2.1: (a) The initial noisy image. (b) The result of the PM nonlinear diffusion for
30 iterations with k given by (2.4), (c) the result for 50 iterations and (d) the result for 100
iterations.

13



Figure 2.2: Diffusion process by the PM nonlinear diffusion (a) Noisy image. (b) The result of
the PM model for 50 iterations, (c) the result for 75 iterations, (d) the result for 100 iterations.
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Figure 2.3: Smoothing results of a medical image. (a) The initial noisy image. (b) The result
of the PM model for 60 iterations, (c) the result for 150 iterations, (d) the result for 200
iterations.
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Figure 2.4: (a) Original noisy image. (b) The result of the PM model for 50 iterations, (c) the
result for 60 iterations, (d) the result for 75 iterations.

16



Figure 2.5: Edge detection results applied on the images obtained by nonlinear diffusion given
in Figure 2.4.
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Figure 2.6: Comparasion of fixed k with decreasing k given in [53]. (a) Noisy image. (b)
Nonlinear diffusion results by using the PM model for decreasing k, after 75 iterations, (c) for
a fixed k=0.5 after 75 iterations, (d) for a constant k=2 after 75 iterations.
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CHAPTER 3

MUMFORD AND SHAH APPROACH

Segmentation and denoising tasks are necessary if one desires to find the details of a noisy

image. In order to deal with the problem, variational and PDE-based image segmentation

and smoothing approaches have been developed and used in many applications such as med-

ical imaging, satellite imaging, tracking, robot vision. Mumford and Shah have introduced a

mathematical model that enables both image segmentation and denoising [41]. This model

is one of the most widely used models in image segmentation and denoising schemes. The

model is a way of finding a partition of an image by using a piecewise smooth representa-

tion of the image. The key idea depends on minimizing an energy functional, known as the

Mumford-Shah functional, in order to obtain homogeneous representation of the image and

detect the boundaries of the smooth regions. They defined a general energy functional EMS

which measures the degree of match between an image and its segmentation:

EMS (u,C) = α

∫
Ω−C

|∇u|2dx + β

∫
Ω

(u − I)2dx + µ.length(C) , (3.1)

Ω ⊂ <2 is connected, bounded, open subset representing image domain and it can be a

combination of various open subsets;

Ω = Ω1 ∪Ω2 ∪ ... ∪Ωn .

Here, I is the original image defined in the image domain Ω, C ⊂ Ω is the set of edge curves, u

is a piecewise smooth approximation of I and it is a differentiable function in the open subsets

of Ω, which can be discontinuous across the boundary curves C. Furthermore, α, β, µ are

the positive real constants which arrannge the weights of the terms and settle the scale of the

segmentation and smoothing.
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The first term in EMS (u,C) is the smoothing term, also known as the stabilizing cost, provides

u to stay smooth within each region. The second term in EMS (u,C) is the data fidelity term,

also known as the deviation cost, measures the least squares distance to the given image. It

forces the segmentation to be similar to the original image. The third term in EMS (u,C) is the

punishing term, also known as the edge cost, measures the length of the edges and punishes

overmuch arc length. It can be defined as

length(C) =

∫
C

ds .

To accomplish a succesful segmentation task, the image function I should be homogenous and

should vary smoothly within each Ωi’s. The segmentation problem is defined as of finding a

decomposition Ωi of Ω and an optimal piecewise smooth approximation u of I. This piecewise

smooth approximation function u is constructed as the combination of subfunctions ui which

are differentiable in Ωi.

Figure 3.1: The simple image composed of two homogenous regions.

Segmentation of a given image is performed by minimizing the energy functional given in

equation (3.1). However, minimizing the functional is not easy due to its complex structure.

In particular, in the functional there are two unknowns; the segmented image u and the edge

set C. Hence the minimization is done by using the calculus of variations. Firstly, C is fixed

and the functional EMS is minimized with respect to u. In the second step, u is fixed and the

functional is minimized with respect to C. The constants are fixed during the minimization.

For the first step, ϕ is considered the same type of function as u and the directional derivative

of EMS in the direction ϕ is obtained as follows
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DuEMS (u,C)[ϕ] = lim
ε→0

EMS (u + εϕ,C) − EMS (u,C)
ε

,

EMS (u + εϕ,C) − EMS (u,C) = α

∫
Ω−C

|∇(u + εϕ)|2dx + β

∫
Ω

(u + εϕ − I)2dx + µ.

∫
C

ds

− α

∫
Ω−C

|∇u|2dx − β
∫
Ω

(u − I)2dx − µ.
∫
C

ds

= 2αε
∫

Ω−C

∇u · ∇ϕdx + αε2
∫

Ω−C

|∇ϕ|2 dx

+ 2βε
∫
Ω

(u − I)ϕdx + βε2
∫
Ω

ϕ2dx ,

lim
ε→0

EMS (u + εϕ,C) − EMS (u,C)
ε

= lim
ε→0

1
ε

(2αε
∫

Ω−C

∇u · ∇ϕdx + αε2
∫

Ω−C

|∇ϕ|2 dx

+ 2βε
∫
Ω

(u − I)ϕdx + βε2
∫
Ω

ϕ2dx) ,

lim
ε→0

(2α
∫

Ω−C

∇u · ∇ϕdx + αε

∫
Ω−C

|∇ϕ|2 dx

+ 2β
∫
Ω

(u − I)ϕdx + βε

∫
Ω

ϕ2dx) ,

DuEMS (u,C)[ϕ] = 2

α
∫

Ω−C

∇u · ∇ϕdx + β

∫
Ω

(u − I)ϕdx

 . (3.2)

Integrating by parts and using the Green’s theorem, we obtain

1
2

DuEMS (u,C)[ϕ] = β

∫
Ω−C

(u − I)ϕdx − α
∫

Ω−C

∇2uϕdx + α

∫
C

ϕ
∂u
∂n

ds

=

∫
Ω−C

ϕ
(
β(u − I) − α∇2u

)
dx + α

∫
C

ϕ
∂u
∂n

ds ,

where n is the outward unit normal vector of curve C. ϕ is nonzero in Ω−C and zero elsewhere

and so u satisfies the damped Poisson equation with Neumann boundary condition
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∇2u =
β

α
(u − I) in Ω −C , (3.3)

∂u
∂n

= 0 on C . (3.4)

For the sake of simplicity, refering to the Figure 3.1, consider a simple image composed of

two homogenous image regions. The above equation becomes the following pair of diffusion

equations

∇2uin =
β

α
(uin − I),

∂uin

∂n
= 0 , (3.5)

∇2uout =
β

α
(uout − I),

∂uout

∂n
= 0 , (3.6)

where uin and uout represents the value inside and outside the curve C, respectively.

For the second step, the energy functional for the simple image given in Figure 3.1 can be

written as

E(C) = α


∫

in(C)

|∇uin|
2 dx +

∫
out(C)

|∇uout|
2 dx


+ β


∫

in(C)

(uin − I)2dx +

∫
out(C)

(uout − I)2dx

 + µ.

∫
C

ds .

Curve evolution process is obtained from the minimization of the energy functional E(C)

according to the variation of C with respect to time t. So the curve evolution equation can be

written as

∂C
∂t

= α
(
|∇uin|

2 − |∇uout|
2
)

n + β
(
(uin − I)2 − (uout − I)2

)
n + µ.κn , (3.7)

where n is the inward unit normal vector of the curve and κ is the curvature of the curve.
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The regional smooth approximations of image function I, obtained from (3.5) and (3.6), uin

and uout are used as inputs in the curve evolution equation (3.7). Thus this segmentation

algorithm based on diffusion and curve evolution is defined in an iterative manner.

Unfortunately numerical procedures for minimizing the Mumford-Shah functional have some

difficulties because the problem is nonconvex and it has numerous local minima, so approxi-

mate approaches are proposed. Two such methods are the Ambrosio-Tortorelli approximation

and the Chan-Vese active contour method. Ambrosio and Tortorelli developed a practical nu-

merical implementation of the Mumford-Shah model and it is based on an eliptic approxima-

tion of the original functional. The Chan-Vese model is a piecewise constant generalization

of the Mumford-Shah functional and it is based on level set formulation. The Ambrosio-

Tortorelli approximation and the Chan-Vese model are examined in detail in Chapters 4 and

5, respectively.
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CHAPTER 4

AMBROSIO-TORTORELLI MODEL

In the Mumford-Shah functional, the unknown edge set (or discontinuity set) makes the min-

imization difficult because discretization of it is very complicated. A common way is to

approximate EMS by a sequence Eρ of regular functionals defined on Sobolev spaces. As ρ

goes to zero, Eρ converges to EMS in the sense of Γ-convergence (see Appendix) [4]. The

edge set C should not be a variable in Eρ to propose an approximation which is numerically

easy to deal with, and so different approaches have been proposed on this problem. The one

which has first appeared and widely used is the approximation by elliptic functionals offered

by Ambrosio and Tortorelli [3]. They have introduced a smooth edge indicator function v

which depends on a parameter ρ. It supposed that on the edges v goes to one and on the

smooth regions v goes to zero as ρ goes to zero.

v(x) ≈


0 if x ∈ C ,

1 otherwise .

The goal of this approximation is to find a sequence of functions (uρ, vρ) that converges to

(u, 1) and so Eρ = EAT converges to EMS .

The edge term length(C) is replaced by the term 1
2

(
ρ|∇v|2 +

(1−v)2

ρ

)
. So the new model (AT

model) is:

EAT (u, v) =

∫
Ω

(
α(v2|∇u|2) + β(u − I)2 +

1
2

(
ρ|∇v|2 +

(1 − v)2

ρ

))
dx . (4.1)

This approximation describes comprehensive line process regularization where the regularizer
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has a supplementary constraint introduced by the term ρ|∇v|2.

4.1 Euler-Lagrange Equations

In order to minimize the Ambrosio-Tortorelli functional given by equation (4.1), we should

determine its gradient and equate it to zero. Using the calculus of variations, the Gateaux

derivatives of functional at u and v are taken; so the Euler-Lagrange equations for the func-

tional (4.1) are found.

The Gateaux derivative of EAT at u in the direction ϕ

DuEAT (u, v)[ϕ] = lim
ε→0

EAT (u + εϕ, v) − EAT (u, v)
ε

, (4.2)

EAT (u + εϕ, v) − EAT (u, v) =

∫
Ω

(
(αv2|∇u + ε∇ϕ|2) + β(u + εϕ − I)2

)
dx

−

∫
Ω

(
α(v2|∇u|2) + β(u − I)2

)
dx

=

∫
Ω

αv2
(
|∇u + ε∇ϕ|2 − |∇u|2

)
dx

+

∫
Ω

β
(
(u + εϕ − I)2 − (u − I)2

)
dx , (4.3)

• |∇u + ε∇ϕ|2 − |∇u|2 = |∇u|2 + 2ε∇u · ∇ϕ + ε2|∇ϕ|2 − |∇u|2

= 2ε∇u · ∇ϕ + ε2|∇ϕ|2 , (4.4)

• (u + εϕ − I)2 − (u − I)2 = (u − I)2 + 2(u − I)εϕ + ε2ϕ2 − (u − I)2

= 2ε(u − I)ϕ + ε2ϕ2 . (4.5)

Substituting the above results (4.4) and (4.5) in equation (4.3), we obtain
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EAT (u + εϕ, v) − EAT (u, v) =

∫
Ω

(
αv2

(
2ε∇u · ∇ϕ + ε2|∇ϕ|2

)
+ β

(
2ε(u − I)ϕ + ε2ϕ2

))
dx ,

(4.6)

lim
ε→0

EAT (u + εϕ, v) − EAT (u, v)
ε

=

∫
Ω

(
2αv2∇u · ∇ϕ + 2β(u − I)ϕ

)
dx . (4.7)

If Green’s theorem is applied to the first term, the following equation is obtained.

•

∫
Ω

v2∇u · ∇ϕdx = −

∫
Ω

ϕ∇ · (v2∇u)dx +

∫
∂Ω

v2 ∂u
∂n
ϕds , (4.8)

DuEAT (u, v)[ϕ] = −

∫
Ω

2αϕ∇ · (v2∇u)dx +

∫
∂Ω

2αv2 ∂u
∂n
ϕds +

∫
Ω

2β(u − I)ϕdx . (4.9)

Here, ∂u
∂n = 0 and DuEAT (u, v)[ϕ] = 0 for all admissable ϕ which are 0 on boundary ∂Ω.

DuEAT (u, v)[ϕ] =

∫
Ω

(
2β(u − I) − 2α∇ · (v2∇u)

)
ϕdx = 0 . (4.10)

From the fundamental lemma of the calculus of variations

2β(u − I) − 2α∇ · (v2∇u) = 0 . (4.11)

Dividing both sides by −2α, we obtain

∇ · (v2∇u) −
β

α
(u − I) = 0 .

The Gateaux derivative of EAT at v in the direction ψ is given by

DvEAT (u, v)[ψ] = lim
ε→0

EAT (u, v + εψ) − EAT (u, v)
ε

, (4.12)
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EAT (u, v + εψ) − EAT (u, v) =

∫
Ω

(
(α(v + εψ)2|∇u|2) +

1
2

(
ρ|∇v + ε∇ψ|2 +

(1 − v − εψ)2

ρ

))
dx

−

∫
Ω

(
α(v2|∇u|2) +

1
2

(
ρ|∇v|2 +

(1 − v)2

ρ

))
dx

=

∫
Ω

α
(
(v + εψ)2 − v2

)
|∇u|2dx +

∫
Ω

ρ

2

(
|∇v + ε∇ψ|2 − |∇v|2

)
dx

−

∫
Ω

1
2ρ

(
(1 − v − εψ)2(1 − v)2

)
dx , (4.13)

• (v + εψ)2 − v2 = v2 + 2vεψ + ε2ψ2 − v2

= 2vεψ + ε2ψ2 , (4.14)

• |∇v + ε∇ψ|2 − |∇v|2 = |∇v|2 + 2ε∇v · ∇ψ + ε2|∇ψ|2 − |∇v|2

= 2ε∇v · ∇ψ + ε2|∇ψ|2 , (4.15)

• (1 − v − εψ)2 − (1 − v)2 = (1 − v)2 + 2(1 − v)εψ + ε2ψ2 − (1 − v)2

= −2(1 − v)εψ + ε2ψ2 . (4.16)

We substitute the above results (4.14), (4.15) and (4.16) in equation (4.13):

EAT (u, v + εψ) − EAT (u, v) =

∫
Ω

α
(
2vεψ + ε2ψ2

)
|∇u|2dx

∫
Ω

ρ

2

(
2ε∇v · ∇ψ + ε2|∇ψ|2

)
dx

+

∫
Ω

1
2ρ

(
−2(1 − v)εψ + ε2ψ2

)
dx , (4.17)

lim
ε→0

EAT (u, v + εψ) − EAT (u, v)
ε

=

∫
Ω

2αvψ|∇u|2dx +

∫
Ω

ρ∇v · ∇ψdx −
∫
Ω

1 − v
ρ

ψdx . (4.18)
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Applying the Green’s theorem to the second term, we obtain:

∫
Ω

∇v · ∇ψdx = −

∫
Ω

∇2vψdx +

∫
∂Ω

∂v
∂n
ψds . (4.19)

DvEAT (u, v)[ψ] =

∫
Ω

2αvψ|∇u|2dx −
∫
Ω

ρ∇2vψdx +

∫
∂Ω

ρ
∂v
∂n
ψds −

∫
Ω

1 − v
ρ

ψdx . (4.20)

Here, ∂v
∂n = 0 and DvEAT (u, v)[ψ] = 0 for all admissable ψ which are 0 on boundary ∂Ω.

∫
Ω

(
2αv|∇u|2 − ρ∇2v −

1 − v
ρ

)
ψdx = 0 . (4.21)

By using the fundamental lemma of the calculus of variations, we obtain:

2αv|∇u|2 − ρ∇2v −
1 − v
ρ

= 0 . (4.22)

Both sides can be divided by −ρ

∇2v +
1 − v
ρ2 −

2αv|∇u|2

ρ
= 0 .

Thus, the Euler-Lagrange equations are obtained:

∇ · (v2∇u) −
β

α
(u − I) = 0,

∂u
∂n
|∂Ω = 0 , (4.23)

∇2v +
1 − v
ρ2 −

2αv|∇u|2

ρ
= 0,

∂v
∂n
|∂Ω = 0 . (4.24)

4.2 Numerical Approximations

In order to determine the solutions of Euler-Lagrange equations (4.23) and (4.24) approxi-

mately in the distributed sense, we construct the following formulas to update u and v.
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∂u
∂t

= ∇.(v2∇u) −
β

α
(u − I) , (4.25)

∂v
∂t

= ∇2v −
2αv|∇u|2

ρ
−

v − 1
ρ2 . (4.26)

Indeed, these are diffusion equations and each of them minimizes a convex quadratic func-

tional. In particular, keeping v fixed, the first equation minimizes

∫
Ω

(
αv2|∇u|2 + β(u − I)2

)
dx . (4.27)

Similarly, keeping u fixed the second equation minimizes

∫
Ω

ρ|∇v|2 +
1 + 2αρ|∇u|2

ρ

(
1

1 + 2αρ|∇u|2
− v

)2 dx . (4.28)

The Euler-Lagarange equations (4.23) and (4.24) or their diffusion equations equivalent (4.25)

and (4.26) have in general multiple solutions. So any numerical solution technique is strongly

dependent on the initial choices of the functions u and v. A reasonable selection as the initial

state of u, u(x, 0) is the original image itself. Then a suitable initial state for v can be found as

by letting t → ∞ in equation (4.26)

∇2v −
2αv|∇u|2

ρ
−

v − 1
ρ2 = 0 ,

v can be extracted from above equation as

v =
1 + ρ2∇2v

1 + 2αρ|∇u|2
. (4.29)

Since ρ is small enough, ρ2 ≈ 0. Thus the initial state of the edge indicator function v can be

written as

v(x, 0) ≈
1

1 + 2αρ|∇u|2
=

1
1 + 2αρ|∇I|2

. (4.30)
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A final note about equations (4.25) and (4.26) is that even though they are a coupled set of

nonlinear initial value problems for the pair u and v, interestingly, they are linear equations;

(4.25) is linear with respect to u, when v is fixed and conversely (4.26) is linear with respect

to v, when u is fixed.

∂u
∂t

= ∇.(v2∇u) −
β

α
(u − I) ,

∂v
∂t

= ∇2v −
2αv|∇u|2

ρ
−

v − 1
ρ2 .

Method of finite difference approximation is used in order to discretize and obtain an ap-

proximate solution of these equations. Regularization terms on the right hand side of each

equations (the first terms) are evaluated at time t. Bias terms in the right hand side of each

equations are evaluated at time t+1.

d
dt

ui, j(t) = ∇.
(
v2

i, j(t)∇ui, j(t)
)
−
β

α
(ui, j(t) − Ii, j) , (4.31)

d
dt

vi, j(t) = ∇2vi, j(t) −
2αvi, j(t)|∇ui, j(t)|2

ρ
−

vi, j(t) − 1
ρ2 . (4.32)

h is the space step, ∆t is the time step, di, j(t) = v2
i, j(t) and

∇ui, j =


ui+ 1

2 , j
− ui− 1

2 , j

h

ui, j+ 1
2
− ui, j− 1

2
h

 ,

(d∇u)i, j =


di, jui+ 1

2 , j
− di, jui− 1

2 , j

h

di, jui, j+ 1
2
− di, jui, j− 1

2
h

 ,

(∇ (d∇u))i, j =
di+ 1

2 , j
ui+1, j − di− 1

2 , j
ui, j

h2 −
di+ 1

2 , j
ui, j − di− 1

2 , j
ui−1, j

h2

+
di, j+ 1

2
ui, j+1 − di, j− 1

2
ui, j

h2 −
di, j+ 1

2
ui, j − di, j− 1

2
ui, j−1

h2 ,
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(∇ (d∇u))i, j =
1
h2 (di+ 1

2 , j
(ui+1, j − ui, j) − di− 1

2 , j
(ui, j − ui−1, j)

+di, j+ 1
2
(ui, j+1 − ui, j) − di, j− 1

2
(ui, j − ui, j−1)) ,

∆x
+ui, j = ui+1, j − ui, j , ∆x

−ui, j = ui, j − ui−1, j ,

∆
y
+ui, j = ui, j+1 − ui, j , ∆

y
−ui, j = ui, j − ui, j−1 ,

di± 1
2 , j

=
di±1, j+di, j

2 , di, j± 1
2

=
di, j+di, j±1

2 ,

(∇ (d∇u))i, j =
1
h2 (di+ 1

2 , j
∆x

+ui, j − di− 1
2 , j

∆x
−ui, j

+ di, j+ 1
2
∆

y
+ui, j − di, j− 1

2
∆

y
−ui, j) . (4.33)

We use the above equation (4.33) in equation (4.31) to obtain

ut+1
i, j − ut

i, j

∆t
=

1
h2 (dt

i+ 1
2 , j

∆x
+ut

i, j − dt
i− 1

2 , j
∆x
−ut

i, j + dt
i, j+ 1

2
∆

y
+ut

i, j − dt
i, j− 1

2
∆

y
−ut

i, j)

−
β

α
(ut+1

i, j − Ii, j) ,

ut+1
i, j =

1

1 +
∆tβ
α

(ut
i, j +

∆tβ
α

Ii, j +
∆t
h2 (dt

i+ 1
2 , j

∆x
+ut

i, j − dt
i− 1

2 , j
∆x
−ut

i, j

+ dt
i, j+ 1

2
∆

y
+ut

i, j − dt
i, j− 1

2
∆

y
−ut

i, j)) . (4.34)

∇vi, j =


vi+ 1

2 , j
− vi− 1

2 , j

h

vi, j+ 1
2
− vi, j− 1

2
h

 ,

(∇2v)i, j =
vi+1, j − vi, j

h2 −
vi, j − vi−1, j

h2 +
vi, j+1 − vi, j

h2 −
vi, j − vi, j−1

h2

=
1
h2 (∆x

+vi, j − ∆x
−vi, j + ∆

y
+vi, j − ∆

y
−vi, j) . (4.35)
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∇ui, j =


ui+1, j−ui−1, j

2h

ui, j+1−ui, j−1
2h

 ,

|∇u|2i, j = (
ui+1, j − ui−1, j

2h
)2 + (

ui, j+1 − ui, j−1

2h
)2

=
(ui+1, j − ui−1, j)2 + (ui, j+1 − ui, j−1)2

(2h)2 , (4.36)

the equations above (4.35) and (4.36) are substituted in equation (4.32) to obtain

vt+1
i, j − vt

i, j

∆t
=

1
h2 (∆x

+vt
i, j − ∆x

−vt
i, j + ∆

y
+vt

i, j − ∆
y
−vt

i, j)

−
2α
ρ

 (ui+1, j − ui−1, j)2 + (ui, j+1 − ui, j−1)2

(2h)2

 vt+1
i, j −

vt+1
i, j − 1

ρ2 ,

vt+1
i, j =

(
1 + ∆t

(
2αρA + 1

ρ2

))−1 (
vt

i, j +
∆t
ρ2 +

∆t
h2 (∆x

+vt
i, j − ∆x

−vt
i, j + ∆

y
+vt

i, j − ∆
y
−vt

i, j)
)
, (4.37)

where

A =

 (ui+1, j − ui−1, j)2 + (ui, j+1 − ui, j−1)2

(2h)2

 .

ut+1
i, j =

1

1 +
∆tβ
α

(ut
i, j +

∆tβ
α

gi, j +
∆t
h2 (dt

i+ 1
2 , j

∆x
+ut

i, j − dt
i− 1

2 , j
∆x
−ut

i, j + dt
i, j+ 1

2
∆

y
+ut

i, j − dt
i, j− 1

2
∆

y
−ut

i, j)) ,

(4.38)

vt+1
i, j =

(
1 + ∆t

(
2αρA + 1

ρ2

))−1 (
vt

i, j +
∆t
ρ2 +

∆t
h2 (∆x

+vt
i, j − ∆x

−vt
i, j + ∆

y
+vt

i, j − ∆
y
−vt

i, j)
)
. (4.39)

Equations (4.38) and (4.39) are discretized approximated update formulas for the smooth

image function u and the edge indicator function v.
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4.3 Experimental Results

In this section, the segmentation results of the Ambrosio-Tortorelli (AT) algorithm are demon-

strated. In all experiments, the Neumann type boundary conditions are used along the image

boundary. Figure 4.1 illustrates segmentation results of the Lena image obtained using the

AT algorithm with different scale space parameters and after 100 iterations. Figure 4.1 (a)

is the original image of Lena. The segmentation results for α = 5, β = 1.5, ρ = 0.001

are given in Figure 4.1 (b)-(c). Figure 4.1 (b) and Figure 4.1 (c) demonstrate the function u

and the edge function 1 − v respectively. Figure 4.1 (d)-(e) are the reconstruction results for

α = 3, β = 0.5, ρ = 0.001. Figure 4.2 demonstrates segmentation results for different value

of the ρ with α = 2, β = 0.1 and 100 iterations. Figure 4.2 (a)-(b) are the results obtained

by using ρ = 0.01 and Figure 4.2 (c)-(d) are the results obtained by using ρ = 0.001. It can

be observed from the results that the smaller value of ρ is, the less detailed construction is

obtained. In Figure 4.3, the reconstruction results are demonstrated for decreasing β values

and keeping α fixed after 200 iterations.

Figure 4.3 (a) is the original image. Figure 4.3 (b)-(c) are the resonstruction results of the

image by using α = 0.75, β = 0.01, ρ = 0.01 and Figure 4.3 (d)-(e) are the resonstruction

results of the image by changing β = 0.001. When β is decreased while keeping α fixed,

the diffusion is so strong that some details are lost but the noise is not eliminated completely.

The same results are obtained in Figure 4.4 for the image of penguens. As seen from the

reconstruction results for small value of β = 0.001 in Figure 4.4 (f)-(g), some details have

been lost. If we increase the value of α and keep α
β fixed, the penalty of the length term is

decreased and we obtain more detailed reconstruction. Figure 4.5 demonstrates the results of

the AT with ρ = 0.001 and 100 iterations. Figure 4.5 (b)-(c) illustrate segmentation results

with α = 1, β = 0.01, (d)-(e) show the results with α = 2, β = 0.02 and finally (f)-(g) show

the results with α = 4, β = 0.04. For increasing the value of α and β in the same proportion,

more detailed edges can be obtained.

The segmentation results of the venice image corrupted with 10% salt and pepper noise are

demonstrated in Figure 4.6. The results given in Figure 4.6 (b)-(c) are obtained by using

α = 1, β = 0.01, ρ = 0.001, in Figure 4.6 (d)-(e) are obtained obtained by using α = 1, β =

0.001. In this case, strong noise could not be eliminated entirely.
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The segmentation results of a texture image are shown in Figure 4.7. Figure 4.7 (b)-(c) il-

lustrate the reconstruction results for α = 0.5, β = 0.05, ρ = 0.01 and Figure 4.7 (d)-(e)

illustrate the reconstruction results for α = 15, β = 1, ρ = 0.01. During the process, the

texture regions are also smoothed out, while noise is removed.
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Figure 4.1: Segmentation results of the AT. (a) Original image. (b)-(c) Reconstruction results
of the image by using α = 5, β = 1.5, ρ = 0.001. (d)-(e) Reconstruction by α = 3, β =

0.5, ρ = 0.001.
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Figure 4.2: Reconstruction results for different value of ρ. (a)-(b) are the results for ρ = 0.01,
(c)-(d) are the results for ρ = 0.001.
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Figure 4.3: Reconstruction results for decreasing β and fixed α.
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Figure 4.4: Reconstruction results for decreasing β with 100 iterations. (a) is the original
image. (b)-(c) reconstruction results for α = 2, β = 0.5, ρ = 0.001. (d)-(e) recostruction
results for β = 0.01. (f)-(g) reconstruction results for β = 0.001.
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Figure 4.5: Reconstruction results for increasing α and β.
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Figure 4.6: Reconstruction results of a very noisy image.
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Figure 4.7: Reconstruction results for a texture image.
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CHAPTER 5

CHAN-VESE MODEL

In order to detect the edges in an image, Chan and Vese introduced a different approximation

of the Mumford-Shah energy functional [9]. This new model is based on curve evolution

and level set method introduced by Osher and Sethian [42]. In the literature, it is known

as the Chan-Vese active contour model (CV model) which is a region-based segmentation

algorithm. It is more robust to noise and less sensitive to the initialization than other active

contour techniques.

As oppossed to the classical snake algortihms [6, 32, 57, 59], this model is not based on the

gradient of the image to stop the evolving curve on the boundaries of the object, and does

not use control points to interpolate the contour C. The interior contours can be detected

automatically and the initial curve does not depend on the objects. The main idea of this

model is to find the boundaries of the objects via an evolving implicit surface. The zero level

set of this surface is a moving curve and this curve detects the object in the image. Owing

to this implicit representation, the topological changes such as splitting and merging can be

detected automatically. According to this method, an image is separated into homogenous

regions by using this level set function. These regions consist of the image parts with close

mean values. The energy functional introduced by Chan and Vese [9] is defined as

ECV (C, c1, c2) = µ.(length(C)) + ν.area(inside(C))

+ λ1

∫
inside(C)

|I − c1|
2dx + λ2

∫
outside(C)

|I − c2|
2dx , (5.1)

where I is the given image, C(s) : [0, 1] → <2 is the curve, c1 and c2 are the constants and

depending on C, µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters.
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5.1 Relation with the MS functional

Chan and Vese intorduced a curve evolution representation of the Mumford-Shah energy func-

tional discussed in Chapter 3.

EMS (u,C) = β

∫
Ω

(I − u)2dx + α

∫
Ω−C

|∇u|2dx + µ.length(C) .

Mumford and Shah indicated a reduced form of their model, known as the minimal partition

problem. In this case, u is separated into constant functions, i.e., u = ci and is equal to

average of I on each region Ωi of Ω.

The Chan-Vese model is considered piecewise constant generalization of the minimal partion

problem of the Mumford-Shah functional. It can be considered as a particular case of the

reduced form of the Mumford-Shah problem for ν = 0, λ1 = λ2 = λ. In this particular

case, the edge C is considered as a snake or an active contour and the approximation u of I is

defined as

u =


c1, inside(C) ,

c2, outside(C) ,

where c1 is the average of I inside C and c2 is the average of I outside C.

The Chan-Vese model is based on the Mumford-Shah functional but it is slightly different. In

the Mumford-Shah model the aim is to find an approximation of the initial image composed

of homogenous regions. In the Chan-Vese model the idea is to find the boundaries of objects

in an image. They are both used for segmenting an image, but which one is more appropriate

depends on the kind of the image that we handle. If we deal with an image in which all

contours are important and we would like to find recognition of all contours divided by sharp

edges, the Mumford-Shah model can be used. If we are interested in an image in which

specific objects are significant and we want to find the boundaries of objects, we may use the

han-Vase active contour model. Among the images given in Figure 5.1 and 5.2, the Mumford-

Shah functional is more appropriate for the images given in the former and the Chan-Vese

model can be applied to the images given in the later [4].
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Figure 5.1: Images suitable for MS model

Figure 5.2: Images suitable for CV

5.2 The level set formulation

The level set method is used for minimizing the Chan-Vese energy functional in order to deal

with the problems of the classic active contour models. In the level set formulation, there is no

explicit contour C and implicit representation is given by the zero level of a Lipschitz function

φ instead of C. This implicit curve physically overcomes the topological changes, such as

splitting and merging. In addition, independent of the initial position, the curve automatically

detects interior contours.

The model is reformulated by replacing C with the function φ
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ECV (φ, c1, c2) = µ.(length(φ)) + ν.area(φ)

+ λ1

∫
φ≥0

|I − c1|
2dx + λ2

∫
φ<0

|I − c2|
2dx . (5.2)

φ : <N →< is defined as [9]


C =

{
x ∈ <N : φ(x) = 0

}
,

inside(C) =
{
x ∈ <N : φ(x) > 0

}
,

outside(C) =
{
x ∈ <N : φ(x) < 0

}
.

Heaviside function H and the one dimensional Dirac measure δ are used to express the terms

in the energy.

H(φ) =


1 if φ ≥ 0 ,

0 if φ < 0 ,

δ(φ) =
d

dφ
H(φ) .

The terms in the energy functional can be replaced as follows:

length(φ) =

∫
Ω

|∇H(φ)|dx =

∫
Ω

δ(φ)|∇φ|dx ,

area(φ) =

∫
Ω

H(φ)dx ,

∫
φ≥0

|I − c1|
2dx =

∫
Ω

|I − c1|
2H(φ)dx ,

∫
φ<0

|I − c2|
2dx =

∫
Ω

|I − c2|
2(1 − H(φ))dx .
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Then the energy can be written as:

ECV (φ, c1, c2) = µ

∫
Ω

|∇H(φ)| + ν

∫
Ω

H(φ)dx + λ1

∫
Ω

|I − c1|
2H(φ)dx

+ λ2

∫
Ω

|I − c2|
2(1 − H(φ))dx . (5.3)

Since the Heaviside function H is not differentiable at 0, we cannot compute the first vari-

ation of the EAT and the solution of minimization problem. To obtain a global minimizer,

regularized versions of the Heaviside function H and the dirac measure δ are used. The ap-

proximations of H and δ can be defined as following

Hε(φ) =
1
2

(
1 +

2
π

arctan(
φ

ε
)
)
, (5.4)

δε(φ) = H
′

ε(φ) =
1
π

ε

ε2 + φ2 . (5.5)

As ε → 0, these approximations converge to H and δ, respectively.

5.3 Euler-Lagrange Equation

The associated Euler-Lagrange equation of the energy functional can be computed by using

the slightly regularized versions of the functions H and δ defined in equations (5.4) and (5.5).

Hε is the regularized version of H, δε is the regularized version of δ where δε = H
′

ε . Then the

regularized version of the energy functional ECV can be written as:

Eε(φ, c1, c2) = µ

∫
Ω

δε(φ)|∇φ|dx + ν

∫
Ω

Hε(φ)dx + λ1

∫
Ω

|I − c1|
2Hε(φ)dx

+ λ2

∫
Ω

|I − c2|
2(1 − Hε(φ))dx , (5.6)

where |∇Hε(φ)| = δε(φ)|∇φ|.
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Keeping c1 and c2 fixed, Eε is minimized with respect to φ. Gateaux derivative (see Appendix)

of Eε in the direction ϕ is used:

DφEε(φ, c1, c2)[ϕ] = lim
t→0

Eε(φ + tϕ, c1, c2) − Eε(φ, c1, c2)
t

.

Gateaux derivative of the term µ
∫
Ω

δε(φ)|∇φ|dx in the direction ϕ is

lim
t→0

µ

∫
Ω

δε(φ + tϕ)|∇(φ + tϕ)|dx −
∫
Ω

δε(φ)|∇φ|dx

t
. (5.7)

Adding and substracting the term δε(φ)|∇(φ + tϕ)| to numerator, one can obtain

lim
t→0

µ

∫
Ω

δε(φ + tϕ)|∇(φ + tϕ)| − δε(φ)|∇(φ + tϕ)| + δε(φ)|∇(φ + tϕ)| − δε(φ)|∇φ|
t

dx

= lim
t→0

µ

∫
Ω

(
δε(φ + tϕ) − δε(φ)

t

)
|∇(φ + tϕ)|dx + lim

t→0
µ

∫
Ω

δε(φ)
|∇(φ + tϕ)| − |∇φ|

t
dx .

• lim
t→0

∫
Ω

(
δε(φ + tϕ) − δε(φ)

t

)
|∇(φ + tϕ)|dx = lim

t→0

∫
Ω

δε(φ) +
∂δε (φ)
∂φ · tϕ − δε(φ)

t
|∇(φ + tϕ)|dx

=

∫
Ω

δε(φ)
′

ϕ|∇φ|dx .

• lim
t→0

∫
Ω

δε(φ)
|∇(φ + tϕ)| − |∇φ|

t
dx = lim

t→0

∫
Ω

δε(φ)
|∇(φ)| + ∂|∇(φ)|

∇(φ) · t∇ϕ − |∇φ|

t
dx

=

∫
Ω

δε(φ)
∇(φ)
|∇φ|
∇ϕdx .

Substituting the above results in equation (5.7), we obtain:
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lim
t→0

µ

∫
Ω

δε(φ + tϕ)|∇(φ + tϕ)|dx −
∫
Ω

δε(φ)|∇φ|dx

t

= µ

∫
Ω

(
δ
′

ε(φ)ϕ|∇φ| + δε(φ)
∇φ · ∇ϕ

|∇φ|

)
dx . (5.8)

Gateaux derivative of the term ν
∫
Ω

Hε(φ)dx in the direction ϕ is

lim
t→0

ν

∫
Ω

Hε(φ + tϕ) − Hε(φ)
t

dx = lim
t→0

ν

∫
Ω

Hε(φ) + c − Hε(φ)
t

dx

= ν

∫
Ω

H
′

ε(φ)ϕdx

= ν

∫
Ω

δε(φ)ϕdx . (5.9)

Gateaux derivative of the term λ1
∫
Ω

|I − c1|
2Hε(φ)dx in the direction ϕ is

lim
t→0

λ1

∫
Ω

|I − c1|
2 Hε(φ + tϕ) − Hε(φ)

t
dx = lim

t→0
λ1

∫
Ω

|I − c1|
2

Hε(φ) +
∂Hε (φ)
∂φ · tϕ − Hε(φ)

t
dx

= λ1

∫
Ω

|I − c1|
2H

′

ε(φ)ϕdx

= λ1

∫
Ω

|I − c1|
2δε(φ)ϕdx . (5.10)

Gateaux derivative of the term λ2
∫
Ω

|I − c2|
2(1 − Hε(φ))dx in the direction ϕ is

lim
t→0

λ2

∫
Ω

|I − c2|
2 (1 − Hε(φ + tϕ)) − (1 − Hε(φ))

t
dx = lim

t→0
λ2

∫
Ω

|I − c2|
2
−Hε(φ) − ∂Hε (φ)

∂φ · tϕ + Hε(φ)

t
dx

= −λ2

∫
Ω

|I − c2|
2H

′

ε(φ)ϕdx

= −λ2

∫
Ω

|I − c2|
2δε(φ)ϕdx . (5.11)

Gathering the above derivatives given by equation (5.8), (5.9), (5.10) and (5.11), we obtain

the following equation.
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∫
Ω

µ

(
δ
′

ε(φ)|∇φ|ϕ + δε(φ)
∇φ · ∇ϕ

|∇φ|

)
dx +

∫
Ω

δε(φ)(ν + λ1(I − c1)2 − λ2(I − c2)2)ϕdx = 0 .

(5.12)

When Green’s theorem (see Appendix) is applied, we obtain

•

∫
Ω

δε(φ)
∇φ · ∇ϕ

|∇φ|
dx =

∫
∂Ω

δε(φ)
|∇φ|

∂φ

∂n
ϕds −

∫
Ω

ϕ∇ ·

(
δε(φ)

∇φ

|∇φ|

)
dx . (5.13)

Substituting equation (5.13) in equation (5.12), we get

∫
Ω

µδ
′

ε(φ)|∇φ|ϕdx +

∫
∂Ω

µ
δε(φ)
|∇φ|

∂φ

∂n
ϕds −

∫
Ω

µ∇ ·

(
δε(φ)

∇φ

|∇φ|

)
ϕdx

+

∫
Ω

δε(φ)(ν + λ1(I − c1)2 − λ2(I − c2)2)ϕdx = 0 .

Developing the divergence operator

∫
Ω

µ∇ ·

(
δε(φ)

∇φ

|∇φ|

)
ϕdx =

∫
Ω

µδ
′

ε(φ)|∇φ|ϕdx +

∫
Ω

µδε(φ)∇ ·
(
∇φ

|∇φ|

)
ϕdx ,

we finally obtain

∫
∂Ω

µ
δε(φ)
|∇φ|

∂φ

∂n
ϕds −

∫
Ω

µδε(φ)∇ ·
(
∇φ

|∇φ|

)
ϕdx

+

∫
Ω

δε(φ)(ν + λ1(I − c1)2 − λ2(I − c2)2)ϕdx = 0 , (5.14)

for all admissable ϕ. Since ∂φ
∂n = 0

∫
Ω

(
µδε(φ)∇ ·

(
∇φ

|∇φ|

)
− δε(φ)

(
ν + λ1(I − c1)2 − λ2(I − c2)2

))
ϕdx = 0 . (5.15)

By using the fundamental lemma of the calculus of variations (see Appendix), the following

Euler Lagrange equation for φ is obtained.

49



δε(φ)
[
µ∇

(
∇φ

|∇φ|

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

]
= 0 , (5.16)

∂φ

∂n
= 0 on ∂Ω .

5.4 Numerical Approximations

In order to solve the Euler-Lagrange equation (5.16), we use the steepest descent algorithm

in the distributed sense introducing an artificial time parameter t. The distributed iteration

formula for the steepest descent algorithm is given as

∂φ

∂t
= δε(φ)

[
µ∇ ·

(
∇φ

|∇φ|

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

]
, (5.17)

φ(t, x, y) = φ0(x, y) in Ω ,

δε(φ)
|∇φ|

∂φ

∂n
= 0 on ∂Ω ,

c1(φ) =

∫
Ω

IHε(φ)dx∫
Ω

Hε(φ)dx
= average(I) in φ > 0 , (5.18)

c2(φ) =

∫
Ω

I(1 − Hε(φ))dx∫
Ω

(1 − Hε(φ))dx
= average(I) in φ < 0 . (5.19)

Method of finite differences is used to approximate the iteration formula. Let h be the space

step, ∆t time step and (xi, yi) = (ih, jh) be the grid points. Let φn
i, j = φ(n∆t, ih, jh) be an

approximation of φ(t, x, y) with n ≥ 0. The finite differences are:
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∆x
+φi, j = φi+1, j − φi, j , ∆x

−φi, j = φi, j − φi−1, j ,

∆
y
+φi, j = φi, j+1 − φi, j , ∆

y
−φi, j = φi, j − φi, j−1 .

Discretization of the equation (5.17) yields

φn+1
i, j − φ

n
i, j

∆t
= δε(φn

i, j)
(
µκ(φn

i, j) − ν − λ1(I − c1)2 + λ2(I − c2)2
)
,

φn+1
i, j = φn

i, j + ∆tδε(φn
i, j)

(
µκ(φn

i, j) − ν − λ1(I − c1)2 + λ2(I − c2)2
)
, (5.20)

where

c1(φn
i, j) =

∑
IHε(φn

i, j)∑
Hε(φn

i, j)
, c2(φn

i, j) =

∑
I(1 − Hε(φn

i, j))∑
(1 − Hε(φn

i, j))
,

Hε(φn
i, j) =

1
2

1 +
2
π

arctan(
φn

i, j

ε
)
 , (5.21)

δε(φn
i, j) =

1
π

ε

ε2 + (φn
i, j)

2 , (5.22)

κ(φn
i, j) = ∇ ·

(
∇φ

|∇φ|

)n

i, j
, (5.23)

∇φi, j =


φi+ 1

2 , j
− φi− 1

2 , j

h

φi, j+ 1
2
− φi, j− 1

2
h

 ,

|∇φ|i, j =

√√φi+ 1
2 , j
− φi− 1

2 , j

h

2

+

φi, j+ 1
2
− φi, j− 1

2

h

2

,

k = |∇φ|i, j ,
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(
∇φ

|∇φ|

)
i, j

=
1
k


φi+ 1

2 , j
− φi− 1

2 , j

h

φi, j+ 1
2
− φi, j− 1

2
h

 ,

(
∇

(
∇φ

|∇φ|

))
i, j

=
1
k

(
φi+1, j − φi, j

h2 −
φi, j − φi−1, j

h2 +
φi, j+1 − φi, j

h2 −
φi, j − φi, j−1

h2

)
,

κ(φn
i, j) =

1
kh2

(
∆x

+φ
n
i, j − ∆x

−φ
n
i, j + ∆

y
+φ

n
i, j − ∆

y
−φ

n
i, j

)
. (5.24)

Initial state for φ is an arbitrary curve located around the objects in the image.

5.5 Experimental Results

In this section, experimental results of the Chan-Vese active contour models are presented.

This model is applied to several synthetic and real images having different kinds of boundary

and shapes. In the implementations, the parameters have been chosen as follows: µ > 0, ν =

0, λ1 = λ2 = 1, h = 1 and ∆t = 0.1. Since the derivatives of the H and δ functions do not exist

everywhere, the approximations Hε and δε (for ε = 1) are used to provide the computation of

a global minimiser. The parameter µ is changed in each experiment. For detecting most of

the edges of any size, µ should be small, while for detecting larger objects, µ should be large.

The implementation of the CV model on a synthetic image is presented in Figure 5.3. Figure

5.3 (a) shows three objects with different shapes and the initial curve, Figure 5.3 (b) shows

the contour extraction of these different objects and detection of interior contour. Figure 5.3

(c)-(d) give results of the CV model for the same and noisy image. As seen in the figure, the

model works well in a noisy environment and handles the topological changes. In Figure 5.4,

the results of the CV model on an image with smooth contours are demonstrated. Figure 5.4

(a) gives original image, silhouette of a man, with initial contour and Figure 5.4 (b) displays

the contour extraction of the man. The model successfully finds the smooth contours. Figure

5.5 illustrates detection of four people located in different places. The original real image

and the initial contour is given in Figure 5.5 (a), as seen in the figure, the position of the

initial contour can be somewhere in the image and it does not necessarily enclose the people.

Detection of two people with smooth contours from a real image is presented in Figure 5.6.
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The curve is spread and than divided into two pieces which locate the boundaries of people.

Figure 5.7 and Figure 5.8 demonstrate the results of the CV algorithm applied to outcomes

of the Perona-Malik and the Ambrosio-Tortorelli models, respectively. Figure 5.7 (a) shows

the original image of penguins. The result obtained using the PM model in 100 iterations

is presented in Figure 5.7 (b). Figure 5.7 (c) shows the result of the PM model with initial

contour, Figure 5.7 (d), (e) and (f) present the CV evolutions on the result of the PM model

after 300, 500 and 1000 iterations, respectively. Figure 5.8 (a) is the image of penguins given

previously in Figure 5.7 (a). Figure 5.8 (b)-(c) present the results of the AT approximation of

the MS functional in 300 iterations. Figure 5.8 (d) shows the edges given in Figure 5.8 (c)

with initial contour and Figure 5.8 (d) gives the CV evolution after 100 iterations. As seen

from the figures, the CV evolution on the edges obtained by using the AT model is very well.
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Figure 5.3: (a) Original image with initial contour. (b) The result of the CV algorithm. (c)-(d)
Original noisy image with initial contour and result of CV respectively.

Figure 5.4: (a) Siluet of a man with initial contour. (b) The result of the CV model.
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Figure 5.5: (a) Initial image with four people. (b) The result of the CV: four people has been
detected succesfully.

Figure 5.6: Detection of two people with the CV algorithm.
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Figure 5.7: (a) Original image, (b) The result of the PM model after 100 iterations, (c) The
PM model with initial contour, (d) is the result of the CV model after 300 iteraions, (e) The
CV after 500 iterations, (f) The CV after 1000 iterations.
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Figure 5.8: (a) Original image. (b)-(c) The results of the AT model after 100 iterations with
α = 1, β = 0.1, ρ = 0.001. (d) Initial contour. (e) The result of the CV model after 300
iterations.
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CHAPTER 6

SNAKES: ACTIVE CONTOUR MODELS

The technique of active contours or snakes have been first introduced by Kass et. al. in 1987

[32]. The main idea behind this method is to evolve a curve by means of energy minimization.

Since its publication, it has gained popularity and researches have been done to generalize the

forms of the contours and to cope with the convergence and stability problems encountered

during the energy minimization process. By now, this technique is widely and successfully

used in many image segmentation and motion tracking tasks. An active contour is defined

as a curve or a surface within an image and it detects the boundary of a desired object. The

contour starts from an initial position and moves towards the closest object boundary; this

is why they are sometimes called “snakes”. The initial curve location should be determined

close enough to the object boundary for successful process. The prior knowledge of the shape

of the object may be needed for this purpose. This curve evolves under the influence of image

features inside and outside it and stops at the boundary of the object of interest according to a

stopping criteria. The edge detector function defined as a function of ∇I, where I is the given

image, signifies when the curve is placed at the boundary of an object. The performance of

the evolution is dependent on the shape and location of the initial curve.

Mathematically, a snake is defined as

C(s) = (x(s), y(s)) , s ∈ [0, 1] .

The energy of the snake is defined as

E∗snk(C) = Eint(C) + Eext(C) . (6.1)
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The total energy of the snake is the integral of the energy at each point. To find the best fit

between a snake and an object’s shape, we minimize the total energy. The energy functional

to be minimized is

Esnk(C) =

∫ 1

0

E∗snk(C)ds

=

∫ 1

0

(Eint(C) + Eext(C)) ds . (6.2)

The energy functional consists of internal and external energy terms. The internal energy

keeps the model smooth during the deformation. It prevents curve to deform too much to

maintain the curve’s original shape. The external energy pulls or pushes the snake toward the

edges of the object. It guides the snake by using image information such as intensity, gradient

magnitude etc. There is an inverse association between energy and image features: strong

features have low energy and weak features have high energy.

Active contours are classified into two types: parametric active contours [31, 32, 57, 59]

and geometric active contours [6, 9, 36, 43] according to the choice of the mathematical

representations for curves [61]. Parametric active contours are represented explicitly, typically

with splines in a Lagrangian formulation. The main idea is to evolve the curve by adjusting

the corresponding parameters or control points. With this method, it is difficult to handle the

topological changes such as splitting or merging, but its computational complexity is lower

than that of geometric active contours. Geometric active contours are represented implicitly in

an Eulerian formulation as a level set of a higher dimensional function. The advantage of this

method is that they can tackle topological changes without prior knowledge about the object.

Moreover, snakes can be classified in terms of the type of image information used. If local

feature such as edges is used, the method is called edge-based, if regional image information

such as intensity, statistics color or texture is used; the method is called region-based.

The original parametric snakes are introduced by Kass et al. in [32] and the analysis of this

method is given in section 6.1 in detail. Kass snake model is very sensitive to parameters

and convergence depend on the initial curve. Furthermore, it has narrow capture range and

fails to detect concave boundaries. To address some of the problems of the Kass snake model,

Williams and Shah [57] proposed a new discrete approximation for the snake algorithms
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called the “greedy snake”. The evolution process of the greedy snake is different than that

of Kass snake; It checks the neighborhood around each snake point and then moves to the

point with the lowest energy. It also decreases the computational cost and provides a stable

convergence. Additionally, to solve the problems of the snakes several methods have been

developed. Gradient vector flow (GVF) snake [59], the balloon model [11], distance potential

force [12] and dual active contour model [27] are some other examples of snake models. GVF

snakes more efficient than other approaches. It is less sensitive to the initialization and it can

move into boundary concavities. A level set formulation of active contours was proposed

by Caselles et al. and Malladi et al. [6] to provide a solution and to address the limitations

of parametric snakes. The evolution is independent of parameterization and based on the

curve evolution theory. Later on Chan and Vese [9] introduced more effective active contour

algorithm which is examined in Chapter 5.

6.1 Original Snake Model (Kass et al.)

A snake is a parametric curve which tries to move into a position where its energy is mini-

mized. The following energy functional is introduced in [32].

Esnk(C) =

∫ 1

0

(Eint(C) + Eext(C)) ds .

The internal energy of the snake is defined as

Eint =
1
2

(
α(s)|Cs|

2 + β(s)|Css|
2
)
, (6.3)

where,

Cs = ∂C
∂s : first order derivative of C that measures the elasticity of the snake.

Css = ∂2C
∂s2 : second order derivative of C that measures the curvature of the snake.

The external energy of the snake is defined as Eext = Eimg + Econ. In order to simplify the

analysis, the external constraint forces Econ can be disregarded.

The image energy Eimg of the snake is defined as
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Eimg = −|∇I(x, y)|2 , (6.4)

or,

Eimg = −|∇ (Gσ(x, y) ∗ I(x, y)) |2 . (6.5)

6.1.1 Euler-Lagrange Equations

The energy functional of the snake is

Esnk(C) =

∫ 1

0

(
1
2

(
α(s)|Cs|

2 + β(s)|Css|
2
)

+ Eext(C)
)

ds . (6.6)

To minimize this functional we can use the calculus of variations. The Euler-Lagrange equa-

tions are found by computing the Gateaux derivative of the energy functional. The Gateaux

derivative (See Appendix) of Esnk(C) in the direction Θ

DEsnk(C)[Θ] = lim
ε→0

Esnk(C + εΘ) − Esnk(C)
ε

, (6.7)

where Θ = (η(s), ζ(s)) and C + εΘ = (x + εη, y + εζ). Let α(s) = α and β(s) = β be constants.

Then

Esnk(C + εΘ) − Esnk(C) =

∫ 1

0

1
2

α ∣∣∣∣∣∂C
∂s

+ ε
∂Θ

∂s

∣∣∣∣∣2 + β

∣∣∣∣∣∣∂2C
∂s2 + ε

∂2Θ

∂s2

∣∣∣∣∣∣2
 + Eext(C + εΘ)

 ds

−

∫ 1

0

1
2

α ∣∣∣∣∣∂C
∂s

∣∣∣∣∣2 + β

∣∣∣∣∣∣∂2C
∂s2

∣∣∣∣∣∣2
 + Eext(C)

 ds . (6.8)

•

∣∣∣∣∣∂C
∂s

+ ε
∂Θ

∂s

∣∣∣∣∣2 =

(
dx
ds

+ ε
dη
ds

)2

+

(
dy
ds

+ ε
dζ
ds

)2

=

(
dx
ds

)2

+ 2ε
dx
ds

dη
ds

+ ε2
(
dη
ds

)2

+

(
dy
ds

)2

+ 2ε
dy
ds

dζ
ds

+ ε2
(
dζ
ds

)2

. (6.9)
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•

∣∣∣∣∣∣∂2C
∂s2 + ε

∂2Θ

∂s2

∣∣∣∣∣∣2 =

(
d2x
ds2 + ε

d2η

ds2

)2

+

(
d2y
ds2 + ε

d2ζ

ds2

)2

=

(
d2x
ds2

)2

+ 2ε
d2x
ds2

d2η

ds2 + ε2
(
d2η

ds2

)2

+

(
d2y
ds2

)2

+ 2ε
d2y
ds2

d2ζ

ds2 + ε2
(
d2ζ

ds2

)2

.

(6.10)

The taylor expansion of the term Eext(C + εΘ) is

Eext(C + εΘ) = Eext(x + εη, y + εζ)

= Eext + εη
∂Eext

∂x
+ εζ

∂Eext

∂y
+ O(ε2) . (6.11)

Substituting the above results (6.9), (6.10) and (6.11) in equation (6.8), we obtain

Esnk(C + εΘ) − Esnk(C) =

∫ 1

0

1
2
α

(dx
ds

)2

+ 2ε
dx
ds

dη
ds

+ ε2
(
dη
ds

)2

+

(
dy
ds

)2

+ 2ε
dy
ds

dζ
ds

+ ε2
(
dζ
ds

)2 ds

+

∫ 1

0

1
2
β

(d2x
ds2

)2

+ 2ε
d2x
ds2

d2η

ds2 + ε2
(
d2η

ds2

)2

+

(
d2y
ds2

)2

+ 2ε
d2y
ds2

d2ζ

ds2 + ε2
(
d2ζ

ds2

)2 ds

+

∫ 1

0

(
Eext + εη

∂Eext

∂x
+ εζ

∂Eext

∂y

)
ds

−

∫ 1

0

1
2

α (dx
ds

)2

+

(
dy
ds

)2 + β

(d2x
ds2

)2

+

(
d2y
ds2

)2 + Eext

 ds , (6.12)

lim
ε→0

Esnk(C + εΘ) − Esnk(C)
ε

=

∫ 1

0

(
α

(
dx
ds

dη
ds

+
dy
ds

dζ
ds

)
+ β

(
d2x
ds2

d2η

ds2 +
d2y
ds2

d2ζ

ds2

))
ds

+

∫ 1

0

(
η
∂Eext

∂x
+ ζ

∂Eext

∂y

)
ds . (6.13)

Since DEsnk(C)[Θ] = 0 for all admissible Θ, (6.13) yields the following pair of equations

∫ 1

0

(
α

dx
ds

dη
ds

+ β
d2x
ds2

d2η

ds2 + η
∂Eext

∂x

)
ds = 0 , (6.14)
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∫ 1

0

(
α

dy
ds

dζ
ds

+ β
d2y
ds2

d2ζ

ds2 + ζ
∂Eext

∂y

)
ds = 0 . (6.15)

Using the integration by parts rule (see Appendix) in equation (6.14), we obtain

•

∫ 1

0

α
dx
ds

dη
ds

=

[
α

dx
ds
η

]1

0
−

∫ 1

0

η
d
ds

(
α

dx
ds

)
ds . (6.16)

•

∫ 1

0

β
d2x
ds2

d2η

ds2 ds =

[
β

d2x
ds2

dη
ds

]1

0
−

[
d
ds

(
β

d2x
ds2

)
η

]1

0
+

∫ 1

0

η
d2

ds2

(
β

d2x
ds2

)
ds . (6.17)

Since we are interested with a closed curve

η(1) − η(0) = 0 and ζ(1) − ζ(0) = 0 .

So equation (6.14) can be written as

∫ 1

0

(
−

d
ds

(
α

dx
ds

)
+

d2

ds2

(
β

d2x
ds2

)
+
∂Eext

∂x

)
ηds = 0 . (6.18)

From the fundamental lemma of the calculus of variations (see Appendix), we obtain the

following Euler-Lagrange equation

−
d
ds

(
α

dx
ds

)
+

d2

ds2

(
β

d2x
ds2

)
+
∂Eext

∂x
= 0 . (6.19)

Similarly, equation (6.15) yields

−
d
ds

(
α

dy
ds

)
+

d2

ds2

(
β

d2y
ds2

)
+
∂Eext

∂y
= 0 . (6.20)

6.1.2 Numerical Approximations

In order to solve the Euler-Lagrange equations (6.19)and (6.20) numerically, an artificial time

paremeter t is introduced and the distributed steepest descent formulation is applied
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γ
∂C
∂t

=
∂

∂s

(
α
∂C
∂s

)
−
∂2

∂s2

(
β
∂2C
∂s2

)
−
∂Eext

∂C
, (6.21)

or simply as

γCt = αCss − βCssss − ∇Eext(C) , (6.22)

γ
∂C
∂t

= Fint(C) + Fext(C) , (6.23)

where Fint(C) = αCss − βCssss and Fext(C) = −∇Eext(C). We can discretize the model by

using finite differences

Cn
i = (xn

i , y
n
i ) = (x(ih, n∆t), y(ih, n∆t)) ,

∂C
∂t

=
Cn

i −Cn−1
i

∆t
,

∂C
∂s

=
Cn

i −Cn
i−1

h
,

∂2C
∂s2 =

Cn
i−1 − 2Cn

i + Cn
i+1

h2 .

A compact matrix form is obtained as

Cn −Cn−1

τ
= ACn + Fext(Cn−1) , (6.24)

where A : mxm petadiagonal banded matrix (m is the number of sample points) and τ = ∆t
γ .

The above equation (6.24) can be solved iteratively by matrix inversion

Cn = (I − τA)−1(Cn−1 + τFext(Cn−1)) . (6.25)
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The inverse of the matrix (I − τA) can be calculated efficiently by LU decomposition. The

new snake points are defined as

xn = (I − τA)−1
(
xn−1 − τ

∂Eimg

∂xn−1

)
, (6.26)

yn = (I − τA)−1
(
yn−1 − τ

∂Eimg

∂yn−1

)
. (6.27)

6.1.3 Experimental Results

In this section, the Kass snake model, examined in detailed in Section 6.1.1 and Section 6.1.2

have been implemented. In the experiments, we take α = 0.05 and β = 0.0005. In Figure

6.1, an example of snake evolution is illustrated. The initial snake is located around the object

and shown in Figure 6.1 (a); the blue dots marks initial location of the snake points and the

yellow curve, interpolation of the points gives the initial curve. By minimizing the snake

energy, it is converged the boundary of the object and the final location of the snake after

618 iterations is shown in Figure 6.1 (b). In Figure 6.2, the segmentation result of snake

evolution is demonstrated. Figure 6.2 (a) shows initial position of the snakes and the object to

be detected. The snake reached the boundary of the desired object after 399 iterations and the

final result illustrated in Figure 6.2 (b). One of the limitations of the active contour is shown

in Figure 6.3. The initial snake is located around the object as a circle, illustrated in Figure

6.3 (a). The result of evolution is not good enough in Figure 6.3 (b) and Figure 6.3 (c); the

snake cannot move concavity in boundary. After many tests for the values of α and β = 0.05,

a successful boundary localization is obtained; but it consumes much time. In Figure 6.4 the

snake evolution results of a man image are given. Figure 6.4 (a) the initial curve located in the

center of the image and the result after 3000 iterations seen in Figure 6.4 (b) shows that the

snake is not able to find the boundaries. When we manually place the initial curve near the

boundary, we obtain better result but it still does not find the concave boundaries. The initial

curves and the results after 2000 and 5000 iterations are given in Figure 6.4 (c)-(d) and Figure

6.4 (e)-(f), respectively. Figure 6.5 illustrates the comparison of the classic active contours

and the Chan-Vese active contour model. The results obtained using the classic snakes based

on edge function are shown in Figure 6.5 (a)-(b), while the results obtained using the Chan-

Vese model are presented in Figure 6.5 (c)-(d). The classic snakes are not be successful to
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find the smooth contours for different intensities; on the other hand the Chan-Vese algorithm

automatically detects the smooth contours.
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Figure 6.1: Contour detection of an image via the active contour model. (a) The iniitial
situation of the snake and the object. (b) The final situation of the snake using the Kass snake
model after 618 iterations.

Figure 6.2: The snake evolution result. (a) The initial snake and the object to be detected. (b)
The final snake after 399 iterations.
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Figure 6.3: The snake evolution for boundary concavity. (a) The initial snake. (b) The result
of Kass snake model; the snake cannot detect the boundary well after 1500 iterations. (c)
The result after 2000 iterations; the snake is still not able to move into concavity after 2000
iterations. (d) Finally, the snake reaches the boundary concavity with α = 0.1, β = 0.05 after
756 iterations.
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Figure 6.4: The snake evolution results.
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Figure 6.5: Comparison the classic snakes with the Chan-Vese active contour model.
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CHAPTER 7

COMPARISON OF THE MODELS

It is not easy to make a quantitative comparison among the methods explained in previous

chapters. All these methods have different applications and each of them is successful in

special fields. So, in general, we cannot say that one method is better than the other. On

the other hand, one can compare the methods according to their similarities and differences

and point out their strong and weak characteristics for different image types. Before making

a comparison, we have classified the images and determined image types. First, we have

grouped images according to their contained objects. All methods are applied on a basic

image which contains only one object and the results of each algorithm are given in Figure 7.1.

Two methods are applied together, e.g.,the Perona-Malik and the Chan-Vese or the Ambrosio-

Tortorelli and the Chan-Vese, on the same image and the results are given in Figure 7.1.

As seen from the results, when the Chan-Vese and the snake algorithm are applied with the

Ambrosio-Tortorelli algorithm, we get better segmentation results. Next, we have classified

images with respect to their texture properties and compared the methods. The Perona-Malik,

the Ambrosio-Tortorelli and the Chan-Vese algorithms are applied on a basic textured image

given in Figure 7.3. In this comparison, we do not deal with the snake algorithms, because it

is not appropriate for this type of images. It has been observed that the Chan-Vese algorithm

was not able to find the boundaries of the textured image. The results of the Chan-Vese model

after the Perona-Malik and the Ambrosio-Tortorelli algorithms are illustrated in Figure 7.4.

However, when the Perona-Malik or the Ambrosio-Tortorelli method is applied before the

Chan-Vese model, the boundaries are detected successfully. As a result, we can conclude that

if a nonlinear diffusion method is applied before any segmentation algorithm, more successful

results can be obtained.
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Table 7.1: Comparison of the models with respect to number of the objects in an image.

Model Image Type Noise reduction Time
PM Mid-complex, low-complex and

basic images High 140.3299 (150 iterations)
AT Mid-complex, low-complex and

basic images High 31.5321 (150 iterations)
CV Low-complex and basic images Not applicable 26.8008 (150 iterations)
Snakes Basic images Not applicable 2.8715 (2000 iterations)
PM + CV Low-complex images High 169.4669 (300 iterations)
PM + Snake Basic images High 144.0586 (2150 iterations)
AT + CV Low-complex and basic images High 42.4775 (300 iterations)
AT + Snake Basic images High 167.3603 (2150 iterations)

Model:

PM: Perona-Malik model

AT: Ambrosio-Tortorelli model

CV: Chan-Vese model

Snake: Active Contour model

Image Type: Images can be classified according to their phase.

• Basic images contain one simple object.

• Low-complex images contain two or more simple objects.

• Mid-complex images contain several objects.

• High-complex images contain large number of small objects.

For high-complex images, the segmentation can be meaningless.

Noise Reduction: For the noise we keep in view the previous results given in the chapters.

Time: All algorithms are tested on the same basic image and the results given in Figure 7.1.

Figure 7.2 shows the results of AT, CV and Snake algorithm with PM algorithm together.

The computational time of each algorithm is calculated and given in Table 7.1. In the snake

algorithm the time is calculated after 2000 iterations, however it consumes the minimal time.
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Figure 7.1: Comparison of the models. (a) The original image. (b) The result of PM model
after 150 iteratios. (c)-(d) The results of the AT model after 150 iterations for α = 2, β = 0.1,
ρ = 0.002. (e) The result of CV model after 150 iterations. (f) The resuslt of snake model
after 2000 iterations for α = 0.12, β = 0.04.
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Figure 7.2: (a)-(b) The results of CV and snake models after PM model, respectively. (c)-
(d)The results of CV and snake models after AT model, respectively.
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Table 7.2: Comparison of the models with respect to texture.

Model Image Type Noise reduction Time
PM Mid-textured and low-textured images High 123.2241 (100 iterations)
AT High-textured, mid-textured

and low-textured images High 19.9300 (100 iterations)
CV Failed Not applicable 23.3991 (100 iterations)
Snakes - - -
PM + CV Low-textured images High 146.2982 (200 iterations)
AT + CV Low-textured images High 33.0520 (200 iterations)

Image Type: We classify the images according to textured as

• Low-textured images

• Mid-textured images

• High-textured images

Noise Reduction: For the noise we keep in view the previous results given in the chapters.

Time: All algorithms are tested on the same low-textured image and the results given in

Figure 7.3. Figure 7.4 shows the results of AT and CV algorithm with PM algorithm together.

The computational time of each algorithm is calculated for a low-textured image and given in

Table 7.2.

75



Figure 7.3: (a) The original image. (b) The result of PM model after 100 iteratios. (c)-(d) The
results of the AT model after 100 iterations for α = 2, β = 0.2, ρ = 0.001. (e) The result of
CV model after 100 iterations.
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Figure 7.4: (a) The result of PM model. (b) The result of CV model with PM model. (c) The
result of AT model. (d) The result of CV model with AT model.
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CHAPTER 8

CONCLUSION

Image segmentation and smoothing applications are the most widely studied issues in image

processing community. In the literature, there are several approaches proposed to deal with

segmentation and smoothing problems. In this study, the image segmentation and smooth-

ing techniques based on PDEs, have been examined. At first, linear diffusion equation based

methods have been used for reducing noise, while preserving shapes in an image. To over-

come the difficulties of the linear diffusion methods, Perona and Malik proposed a nonlin-

ear diffusion method, also known as anisotropic diffusion. It is a well-known denoising

methodology and one of the early developed PDE-based methods. The numerical analysis

of the Perona-Malik model and experimental results have been presented in this work. The

Mumford-Shah functional which is the most widely studied model in image processing deals

with both segmentation and denoising problems. The key idea is to minimize an energy func-

tional in order to obtain a homogeneous representation of the image and detect the boundaries

of the smooth regions. Unfortunately, the Mumford-Shah functional is complicated and non-

convex, so it has numerous local minima. To handle the problems of the Mumford-Shah

functional, several approaches have been proposed. The details and some approximations of

this model have been described within the scope of this thesis. Two of such approximations

of the Mumford-Shah functional are the Ambrosio-Tortorelli model and the Chan-Vese active

contours model. They are both used for segmenting an image, but which one is used depends

on the kind of the image under investigation. If we are interested in an image in which specific

objects are significant and we want to find the boundaries of objects, we may prefer to use

the Chan-Vase model. If we deal with an image in which all contours are important and we

would like to find an approximation of the initial image composed of homogenous regions,

the Ambrosio-Tortorelli approximation of the Mumford-Shah functional can be used. In this
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thesis, the Ambrosio-Tortorelli model has been described extensively. Derivation of the Euler-

Lagrange equations and numerical implementations of the model have been shown in detail.

The Chan-Vese active contours model based on the Mumford-Shah functional and level set

method has been presented, as well. Mathematical analysis and numerical approximation

of the energy functional have been given. Moreover, another commonly used edge-based

segmentation technique, “Snakes: Active Contour Models” is studied. An active contour is

defined as a curve or a surface within an image and it detects the boundary of a desired object.

Classical Snakes introduced by Kass et al. is described and numerical approximations of this

model are presented. During this study, MATLAB codes have been developed to implement

all image segmentation methods investigated within this thesis. The developed programs of

these techniques have been applied on several synthetic and real images and the results have

been interpreted. Comparing the results, we can conclude that the performance of the Chan-

Vese model is better than the classic active contours. The Chan-Vese active contour method

has successfully found the boundaries of more than one object and it is more robust to noise.

The evolution of the Chan-Vese model does not depend on location of initial curve. It can be

anywhere on the image domain, but in the snakes the curve must be initialized near the object

focused on.

To make a comparison, all methods are applied on the same type of images. Evaluating the

performance of the algorithms, two methods have been applied together on the same im-

ages. The experimental results have shown that the boundary localization performed after

the Ambrosio-Tortorelli model implementation is better than that of the Perona-Malik model.

Comparing the methods examined in this study, the fastest one is the classical snake method;

but it has some limitations. To deal with the limitations of the classical snakes some regular-

ization should be made. Statistical information extracted from images with shape information

can be used to learn the possible shape of the object, before the snake method is applied.

Therefore, the shape of the initial curve had better be chosen similar to the object to be de-

tected and controlled during the process. This may be useful for medical image segmentation

applications.

Considering limitations and results of this study, some of the issues identified for future work

are as follows.

• In segmentation and edge detection, to verify the results a criteria should be determined.
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In this thesis, any quantitative analysis is not applied to the segmentation results. Veri-

fication of the segmentation results is considered, qualitatively. A methodology can be

developed or any existing method can be used to quantify the results. A ground truth of

the desired image can be obtained by human or somehow and it can be compared with

segmentation result.

• The importance of the scaling parameters (e.g., α, β) is understood from the experi-

mental results given in previous chapters, especially for the Ambroiso-Tortorelli and

the classical snake methods. Many trials have been made to find the best values of

them. If we want to segment a new image, we should run the segmentation algorithms

many times to find the appropriate α and β values. However, testing many values in an

order does not ensure the best result. By examining the effect of the parameters to the

model and the relation between the parameters and the image, some formulas for α and

β may be proposed.

• As seen in some experiments of the Ambrosio- Tortorelli model, the strong noise cannot

be eliminated and after many iterations some details get blurred. A new regularization

may be developed to remove noise completely, while keeping edges.

• Generally, all these methods are applied to the basic images because it is hard to apply

the segmentation methods to the complex images which contain large numbers of small

objects. Also the size of the image is significant for the computation time. The sizes of

the images used in the experiments are usually small. But for the images with big region

sizes the computations may take too much time. If possible, speeds of the algorithms

may be increased.
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APPENDIX A

Some Mathematical Results

Definition A.1 (Gateaux Derivative) Suppose X and Y are locally convex topological vector

spaces (for example Banach spaces), U ⊂ X is open and F : X → Y. The Gateaux derivative

of F at u ⊂ U in the direction ϕ is defined as

DF(u;ϕ) = lim
ε→0

F(u + εϕ) − F(u)
ε

.

Theorem A.2 (Green’s identity) Suppose Ω is an open bounded set of<N and ∂Ω is a piece-

wise smooth boundary of Ω. Let u and v are twice continuously differentiable functions, then∫
Ω

∇u∇vdx =

∫
∂Ω

∂u
∂n

vds −
∫
Ω

∇2uvdx

∫
Ω

c∇u∇vdx =

∫
∂Ω

c
∂u
∂n

vds −
∫
Ω

∇ · (c∇u) vdx

Lemma A.3 (Fundamental Lemma of the Calculus of Variations) Let M(x) be a continuous

function on the interval [a, b]. Suppose that for any continuous function h(x) with h(a) =

h(b) = 0 we have ∫
a

b
M(x)h(x)dx = 0.

Then M(x) is identically zero on [a, b].

Definition A.4 (Γ-Convergence) Let X be a seperable Banach space endowed with a topol-

ogy τ and let Fh : X → R be a sequence of functionals. We say that Fh Γ-converges to F

(F = Γ − limFh) for the topology τ if:
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(i) For every x in X and for every sequence xn τ-converging to x in X

F(x) ≤ lim
h→∞

Fh(xh),

(ii) For every x in X there exists a sequence τ-converging to x in X such that

F(x) ≥ lim
h→∞

Fh(xh).

Theorem A.5 (Integration by parts formula) Ω be an open bounded set of <N and ∂Ω is

C′. Let u, v ∈ C′(Ω), then∫
Ω

uxivdx = −

∫
Ω

uvxidx +

∫
∂Ω

uvnids (i = 1, ...,N).
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