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ABSTRACT

COOPERATIVE INTERVAL GAMES

Alparslan G̈ok, Sırma Zeynep

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard Wilhelm Weber

Co-Supervisor : Prof. Dr. Stef Tijs

January 2009, 123 pages

Interval uncertainty affects our decision making activities on a daily basis making the data

structure of intervals of real numbers more and more popular in theoreticalmodels and related

software applications. Natural questions for people or businesses thatface interval uncertainty

in their data when dealing with cooperation are how to form the coalitions and how to dis-

tribute the collective gains or costs. The theory of cooperative interval games is a suitable

tool for answering these questions. In this thesis, the classical theory ofcooperative games

is extended to cooperative interval games. First, basic notions and facts from classical coop-

erative game theory and interval calculus are given. Then, the model of cooperative interval

games is introduced and basic definitions are given. Solution concepts of selection-type and

interval-type for cooperative interval games are intensively studied. Further, special classes

of cooperative interval games like convex interval games and big boss interval games are in-

troduced and various characterizations are given. Some economic and Operations Research

situations such as airport, bankruptcy and sequencing with interval data and related interval

games have been also studied. Finally, some algorithmic aspects related with the interval

Shapley value and the interval core are considered.
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ÖZ

İŞBİRLİĞİNE AİT ARALIK OYUNLARI

Alparslan G̈ok, Sırma Zeynep

Doktora, Bilimsel Hesaplama B̈olümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm Weber

Ortak Tez Ÿoneticisi : Prof. Dr. Stef Tijs

Ocak 2009, 123 sayfa

Aralık belirsizliği, günlük bazda reel sayı aralıklarının veri yapılarını oluştururken teorik

modellerde ve alakalı yazılım uygulamalarında gitgide popülerleşerek karar alma aktiviteler-

imizi etkilemektedir. İşbirliği ile ilgilenirken verileri aralık belirsizlĭgine dayanan şahıslar

ve şirketler için dŏgal sorular, koalisyonların nasıl oluşacağı ve m̈uşterek kazanç veya mas-

rafların nasıl dăgıtılacăgıdır. İşbirliğine ait aralık oyunlarının teorisi bu soruları cevaplamak

için uygun bir araçtır. Bu tezde, klasik işbirliğine ait oyun teorisi işbirlĭgine ait aralık oyun-

larına genişletilmiştir.Önce klasik işbirlĭgine ait oyun teorisinin temel kavram ile unsurları

ve aralık hesapları verilmiştir. Sonra işbirliğine ait aralık oyunlarının modeli tanıtılmış ve

temel tanımları verilmiştir.̇Işbirliğine ait aralık oyunları için seçme tipli ve aralık tipli çözüm

yöntemleriüzerinde yŏgun olarak çalışılmıştır. Ayrıca, işbirliğine ait aralık oyunlarının kon-

veks aralık oyunları ve b̈uyük patron aralık oyunları gibïozel sınıfları tanıtılmış ve çeşitli nite-

lendirmeleri verilmiştir. Bunlara ek olarak, aralık verili havaalanı, iflas ve sıralama gibi bazı

ekonomik ve işletme (ÿoneylem) araştırması durumları ve alakalı aralık oyunları çalışılmıştır.

Son olarak, aralık Shapley değeri ve aralık çekirdĕgi ile ilgili bazı algoritmik bakış açıları ele

alınmıştır.

vi
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PREFACE

The answer to the questioncan Mathematics or Operations Research model the complexity

of nature and environment under the limitations of modern technology andin the presence of

various societal problems?, seems likely to be “yes”, but in the margins of our developing

understanding only, in this sense: approximately, dynamically and, newly, as being in a game.

Cooperative game theory in coalitional form is a popular research area with many new de-

velopments in the last few years. In classical cooperative game theory payoffs to coalitions

of players are known with certainty. However, interval uncertainty affects our decision mak-

ing activities on a daily basis making the data structure of intervals of real numbers more

and more popular in theoretical models and related software applications. There are many

real-life situations where people or businesses face interval uncertaintyin decision making

regarding cooperation, i.e., they only know the smallest and the biggest values for potential

rewards/costs. In other words, the agents are uncertain about their coalition payoffs. Situa-

tions with uncertain payoffs in which the agents cannot await the realizations of their coali-

tion payoffs cannot be modeled according to classical game theory. A suitable game theoretic

model to support decision making under interval uncertainty of coalition values is that of co-

operative interval games. Cooperative interval games are an extensionof that of cooperative

games in coalitional form in case the worth of coalitions is affected by interval uncertainty.

The model of cooperative interval games, firstly introduced in Branzei, Dimitrov and Tijs

(2003) to handle bankruptcy situations where the estate is known with certainty while claims

belong to known intervals of real numbers, fits all the situations where participants consider

cooperation and know with certainty only the lower and upper bounds of all potential revenues

or costs generated via cooperation.

In this thesis we present our recent contributions to the theory of cooperative interval games

and its applications. The thesis is organized as follows.
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In Chapter 1, first we motivate the model of cooperative interval games. Second, basic notions

and facts from classical cooperative games that are used for the extension of cooperative in-

terval games are established. Finally, we recall basic notions from interval calculus. Chapter

2 presents formally the model of cooperative interval games and gives basic definitions. It in-

cludes selection-based solution concepts based on Alparslan Gök, Miquel and Tijs (2009) and

interval solution concepts based on Alparslan Gök, Branzei and Tijs (2008a,b). Also, a ba-

sic guide for handling interval solution concepts is provided, which is based on Branzei, Tijs

and Alparslan G̈ok (2008b). In Chapters 3 and 4 interesting classes of cooperative interval

games, namely,I-balanced interval games and size monotonic interval games are introduced

and studied. In Chapter 5, the focus is on convex interval games and theircharacterizations,

which is based on Alparslan G̈ok, Branzei and Tijs (2008b) and Branzei, Tijs and Alparslan

Gök (2008a). Chapter 6 is based on Alparslan Gök, Branzei and Tijs (2008c) and Branzei,

Tijs and Alparslan G̈ok (2008a). Here, we deal with another interesting class of cooperative

interval games called big boss interval games. Chapter 7 discusses some applications of coop-

erative interval games in economic and Operations Research (OR) situations. It is composed

of mainly three parts. Airport interval games and their Shapley value is based on Alparslan

Gök, Branzei and Tijs (2008d); Bankruptcy problems with interval uncertainty is based on

Branzei and Alparslan G̈ok (2008) and Sequencing interval situations and related games is

based on Alparslan G̈ok et al. (2008). Chapter 8 is devoted to some algorithmic aspects re-

lated with cooperative interval games. Finally, in Chapter 9 we conclude andsuggest some

topics for further research.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Classical cooperative game theory deals with coalitions that coordinate theiractions and pool

their winnings. Natural questions for individuals or businesses when dealing with cooperation

are: Which coalitions should form? How to distribute the collective gains or costs among the

members of the formed coalition? Generally, the situations here are considered from a de-

terministic point of view. However, in most economical situations potential rewards or costs

are not known precisely, but often it is possible to estimate intervals to which they belong.

The theory of cooperative interval games can be a suitable tool for answering these questions.

This thesis deals with this model of cooperative games. The model of cooperative interval

games is an extension of that of cooperative games in coalitional form in case the worth of

coalitions is affected by interval uncertainty. Many real life situations can be modeled in a

natural way as cooperative interval games or extensions of them. For example, Drechsel and

Kimms (2008) modeled as a cooperative interval game a lot sizing problem with uncertain

demand. As in the classical model, the decision regarding players’ cooperation and the divi-

sion of the interval-type joint reward are based on solution concepts.

Cooperative interval games are introduced in Branzei, Dimitrov and Tijs (2003) to handle

bankruptcy situations where the estate is known with certainty while claims belongto known

bounded intervals of real numbers. They defined two Shapley-like values each of which

associating with each game with interval data a vector of intervals, and studiedtheir interre-

lations using the arithmetic of intervals (Moore (1966)), and inspired by the work of Yager

and Kreinovich (2000). Methods of interval arithmetic and analysis (Moore (1979)) have

played a key role for new models of games based on interval uncertainty. Two-person zero-
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sum non-cooperative games with interval strategies and interval payoff function are studied

by Shashikhin (2004). Interval matrix games arising from situations wherethe payoffs vary

within closed intervals for fixed strategies are introduced in Collins and Hu (2005). Car-

pente et al. (2008) considered games in strategic form and constructed related cooperative

interval games similarly with the procedure used by von Neumann (1928) andvon Neumann

and Morgenstern (1944). An interesting motivating example for the model ofcooperative

interval games can be found in Bauso and Timmer (2006): a joint replenishment situation

where each retailer faces a demand bounded by a minimum and a maximum value.Pulido,

Sánchez-Soriano and Llorca (2002) and Pulido et al. (2008) considerspecial interval coop-

erative games arising from bankruptcy-like situations. Throughout the foregoing literature

motivation from different points of view for studying interval games is provided.

Alparslan G̈ok, Miquel and Tijs (2009) considered cooperative interval games andlooked at

selections of such games which are classical cooperative games. Basedon classical solutions

on the selections such as the core and the Shapley value then they define solutions for the

interval cooperative games. Also, a bankruptcy situation where the claims are certain but the

available estate can vary within a closed and bounded interval is used to illustrate cores for

two-person interval games. In Alparslan Gök, Branzei and Tijs (2008a), another approach is

taken, where solutions are described with the aid of tuples of intervals, the focus being on

interval cores and stable sets. Other interval solution concepts like the Shapley value and the

Weber set are introduced on a special class of cooperative interval games in Alparslan G̈ok,

Branzei and Tijs (2008b). First, these solution concepts are suitable toolsto support decision-

making regarding cooperation in situations with interval data. Second, whenthe realization

of the worth of the grand coalition is known with certainty, an interval payoff vector generated

by such solution concepts is transformed into a traditional payoff vector. The essential issue

of the usefulness of interval solutions depending on how the vectors of intervals can be han-

dled when the uncertainty regarding joint gains/costs is removed is studied in Branzei, Tijs

and Alparslan G̈ok (2008b).

Classical convex games have many applications in economic and real-life situations. It is well-

known that classical public good situations (Moulin (1988)), sequencingsituations (Curiel,

Pederzoli and Tijs (1989)) and bankruptcy situations (O’Neill (1982),Aumann and Maschler

(1985), Curiel, Maschler and Tijs (1987)) lead to convex games. However, there are many

real-life situations in which people or businesses are uncertain about theircoalition payoffs.

Situations with uncertain payoffs in which the agents cannot await the realizations of their

2



coalition payoffs cannot be modeled according to classical game theory. Several models that

are useful to handle uncertain payoffs exist in the game theory literature. We refer here to

chance-constrained games (Charnes and Granot (1973)), cooperative games with stochastic

payoffs (Suijs et al. (1999)), cooperative games with random payoffs (Timmer, Borm and Tijs

(2005)). In all these models, probability theory plays an important role. The class of classical

big boss games (Muto et al. (1988)) has received much attention in cooperative game theory

and various situations were modeled using such games. We refer here to information mar-

ket situations (Muto, Potters and Tijs (1989)), information collecting situations(Branzei, Tijs

and Timmer (2001a,b), Tijs, Timmer and Branzei (2006)) and holding situations (Tijs, Meca

and Ĺopez (2005)). In case such situations are described in terms of intervaldata the corre-

sponding cooperative games are under restricting conditions big boss interval games. Convex

interval games and big boss interval games are introduced and studied in Alparslan G̈ok,

Branzei and Tijs (2008b,c). In Branzei, Tijs and Alparslan Gök (2008a) characterizations of

convex interval games using the notions of superadditivity and exactnessare considered, and

characterizations of big boss interval games in terms of subadditivity and exactness are de-

rived.

Cooperative interval games are a useful tool for modeling various economic and OR situa-

tions where payoffs for people or businesses are affected by interval uncertainty. For example,

sealed bid second price auctions and flow situations with interval uncertaintyare modeled by

interval peer group games in Branzei, Mallozzi and Tijs (2008). In suchsituations decisions

regarding cooperation as well as estimations of potential shares of achieved collective gains

have to be made ex-ante, i.e., by taking into account all possible realizations which belong to

intervals whose lower and upper bounds are known with certainty. We mention here minimum

spanning tree networks (Montemanni (2006), Moretti et al. (2008)), management applications

such as funds’ allocation of firms among their divisions, cost allocation and/or surplus sharing

in joint projects, sequencing situations, conflict resolution and bankruptcy situations, assign-

ment of taxes, when there is interval uncertainty regarding the homogeneous good at stake.

Other interesting applications for the model of cooperative interval games can be also found

in literature.

Before closing this section we notice that in this thesis the rewards/costs taken into account

are not random variables, but just closed and bounded intervals of real numbers with no prob-

ability distribution attached.

3



1.2 CLASSICAL COOPERATIVE GAME THEORY

In this section, we give some definitions and results concerning classical cooperative game

theory needed in the thesis. For an extensive description of classical game cooperative theory

see Tijs (2003) and Branzei, Dimitrov and Tijs (2005, 2008).

A cooperative gamein coalitional formis an ordered pair< N, v >, whereN := {1,2, ...,n} is

the set of players, andv : 2N → R is a map, assigning to each coalitionS ∈ 2N a real number,

such thatv(∅) = 0. Often, we also refer to such a game as aTU (transferable utility) game

and identify a game< N, v > with its characteristic function v. In some situations, costs are

considered instead of rewards. A cost game< N, c > is a cooperative game, whereN is the

set of players, andc : 2N → R is a function assigning to each coalitionS ∈ 2N a real number,

c(S), which is the cost of the coalitionS with c(∅) = 0. The setGN of coalitional games

with player setN, equipped with the usual operators of addition and scalar multiplication of

functions, forms a (2|N| − 1)-dimensional linear space. A basis of this space is supplied by the

unanimity gamesuT (or < N,uT >), T ∈ 2N \ {∅}, which are defined by

uT(S) :=



















1, if T ⊂ S

0, otherwise.

One can easily check that for eachv ∈ GN we havev =
∑

T∈2N\{∅} cTuT with

cT =
∑

S:S⊂T(−1)|T |−|S|v(S).

The interpretation of the unanimity gameuT is that a gain (or cost savings) of 1 can be ob-

tained if and only if all players in coalitionT are involved in cooperation.

Thedual T-unanimity game u∗T is defined by

u∗T(S) :=



















1, T ∩ S , ∅

0, otherwise.

A multi-solutionis a multi-functionF : GN ։ R
n and aone-point solutionis a map f :

GN → R
n.

A payoff vectorx ∈ R
n is called animputationfor the game< N, v > if

(i) x is individually rational, i.e.,xi ≥ v({i}) for all i ∈ N,

(ii) x is efficient (Pareto optimal), i.e.,
∑n

i=1 xi = v(N).

The set of imputations of< N, v > is denoted byI (v). Note thatI (v) = ∅ if and only if

v(N) <
∑

i∈N v({i}).
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The core (Gillies (1959)) of a game< N, v > is the set

C(v) :=















x ∈ I (v)|
∑

i∈S

xi ≥ v(S) for all S ∈ 2N \ {∅}















.

Note that the core is a convex set. Ifx ∈ C(v), then no coalitionS , N has any incentives

to split off from the grand coalition ifx is the proposed reward allocation inN, because the

total amount
∑

i∈S xi allocated toS is not smaller than the amountv(S) which the players can

obtain by forming the subcoalition. IfC(v) , ∅, then elements ofC(v) can easily be obtained,

because the core is defined with the aid of a finite system of linear inequalities.The core is a

polytope1. For a two-person game< N, v >, I (v) = C(v).

A mapλ : 2N \ {∅} → R+ is called abalanced mapif
∑

S∈2N\{∅} λ(S)eS = eN. Here,eS is the

characteristic vectorfor coalitonS with

eS
i :=



















1, if i ∈ S

0, if i ∈ N \ S.

An n-person game< N, v > is called abalanced gameif for each balanced mapλ : 2N \ {∅} →

R+ we have
∑

S∈2N\{∅} λ(S)v(S) ≤ v(N).

The importance of this notion becomes clear by the following theorem proved by Bondareva

(1963) and Shapley (1967). This theorem characterizes games with a non-empty core.

Theorem 1.2.1 Let < N, v > be an n-person game. Then the following two assertions are

equivalent:

(i) C(v) , ∅,

(ii) < N, v > is a balanced game.

Now, we recall other subsets of imputations which are solution concepts forcoalitional games:

the dominance core (D-core) and stable sets. They are based on the dominance relation over

vectors inR
n.

Let v ∈ GN, x, y ∈ I (v), andS ∈ 2N \ {∅}. We say thatx dominates y via coalition S, and

denote it byx domS y, if

1 For details on polytope structure and convexity see Rockafellar (1970).
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(i) xi > yi for all i ∈ S,

(ii)
∑

i∈S xi ≤ v(S).

Note that if (i) holds, then the payoff x is better than the payoff y for all members ofS;

condition(ii) guarantees that the payoff x is reachable forS.

Let v ∈ GN, x, y ∈ I (v). We say thatx dominates y, and denote it byx dom y, if there

is an S ∈ 2N \ {∅} such thatx domS y. For S ∈ 2N \ {∅} we denote byD(S) the set of

imputations which are dominated viaS; note that players inS can successfully protest against

any imputation inD(S). An imputationx is calledundominatedif there does not existy and

a coalitionS such thaty domS x. Thedominance core (D-core) DC(v) of a gamev ∈ GN

consists of all undominated elements inI (v), i.e., it is the setI (v) \ ∪S∈2N\{∅}D(S).

For v ∈ GN andA ⊂ I (v) we denote by dom(A) theset consisting of all imputations that are

dominated by some element in A. Note thatDC(v) = I (v) \ dom(I (v)).

Forv ∈ GN a subsetK of I (v) is called astable setif the following conditions hold:

(i) (Internal stability) K ∩ dom(K) = ∅.

(ii) (External stability) I (v) \ K ⊂ dom(K).

Let v ∈ GN. For eachi ∈ N and for eachS ∈ 2N with i ∈ S, themarginal contributionof

playeri to the coalitionS is Mi(S, v) := v(S) − v(S \ {i}).

LetΠ(N) be the set of all permutationsσ : N→ N of N.

The setPσ(i) :=
{

r ∈ N|σ−1(r) < σ−1(i)
}

consists of all predecessors ofi with respect to the

permutationσ.

Let v ∈ GN andσ ∈ Π(N). Themarginal contribution vector mσ(v) ∈ R
n with respect toσ

andv has thei-th coordinate the valuemσ
i (v) := v(Pσ(i) ∪ {i}) − v(Pσ(i)) for eachi ∈ N.

The Shapley value(Shapley (1953))φ(v) of a gamev ∈ GN is the average of the marginal

vectors of the game, i.e.,φ(v) := 1
n!

∑

σ∈Π(N) mσ(v).

This value associates to eachn-person game one (payoff) vector in R
n. It is proved that

the Shapley value is the unique solution satisfying the properties of additivity,efficiency,

anonymity and the dummy player property (see Theorem 61 in Branzei, Dimitrovand Tijs

(2008)).

A playeri is called adummyin the game< N, v > if v(S∪{i})−v(S) = v({i}) for all S ∈ 2N\{i}.

A dummy playeris a player whose marginal contribution to any coalition is always equal

6



to the worth of his/her own coalition. His/her Shapley value equals his/her own worth. For

details about the properties of one-point solution concepts for cooperative games, we refer to

Driessen (1988).

The Shapley valueφ(u∗T) of thedual T-unanimity game u∗T is defined by

φi(u
∗
T) :=



















1/ |T | , i ∈ T

0, i ∈ N \ T.

Themarginal vectorsof a two-person game< N, v > arem(12)(v) = (v({1}), v({1,2}) − v({1}))

andm(21)(v) = (v({1,2}) − v({2}), v({2})).

For a two-person game< N, v > we have

φi(v) = v({i}) +
v({1,2}) − v({1}) − v({2})

2
, i ∈ {1,2} .

Note that for a two-person game< N, v >, the Shapley value is the standard solution which is

in the middle of the core and the marginal vectors are the extreme (or extremal) points of the

core whose average gives the Shapley value.

A gamev ∈ GN is refered to asadditive if v(S ∪ T) = v(S) + v(T) for all S,T ∈ 2N with

S ∩ T = ∅. An additive gamev ∈ GN is determined by the vectora = (v({1}), . . . , v(N)) ∈ R
n

sincev(S) =
∑

i∈S ai for all S ∈ 2N. Letv1, v2 ∈ GN. The gamev2 is strategically equivalent to

the gamev1 if there existk > 0 and an additive gamea such thatv2(S) = kv1(S) +
∑

i∈S ai for

all S ∈ 2N \ {∅}. The core is entitledrelative invariant with respect to strategic equivalence: if

v2 ∈ GN is strategic equivalent tov1 ∈ GN, sayv2 = kv1+a, thenC(v2) = kC(v1)+a. A game

< N, v > is calledsuperadditiveif v(S ∪ T) ≥ v(S) + v(T) for all S,T ∈ 2N with S ∩ T = ∅;

it is calledsubadditiveif v(S ∪ T) ≤ v(S) + v(T) for all S,T ⊂ N with S ∩ T = ∅. In a

superadditive game, it is advantageous for the players to cooperate. A two-person cooperative

game< N, v > is superadditive if and only ifv({1}) + v({2}) ≤ v({1,2}) holds. Note that a

two-person cooperative game< N, v > is superadditive if and only if the game is balanced.

A gamev ∈ GN is calledconvex (or supermodular)if and only if v(S ∪ T) + v(S ∩ T) ≥

v(S) + v(T) for eachS,T ∈ 2N; it is calledconcave (or submodular)if and only if v(S∪ T) +

v(S ∩ T) ≤ v(S) + v(T) for all S,T ∈ 2N. The family of all convex games with player setN

is denoted byCGN. Each convex (concave) game is also superadditive (subadditive). In the

following, we give characterizations of classical convex games.
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Theorem 1.2.2 (Theorem 4.9 in Branzei, Dimitrov and Tijs (2005)) Let v∈ GN. The follow-

ing five assertions are equivalent:

(i) < N, v > is convex.

(ii) For all S1,S2,U ∈ 2N with S1 ⊂ S2 ⊂ N \ U we have

v(S1 ∪ U) − v(S1) ≤ v(S2 ∪ U) − v(S2).

(iii) For all S1,S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} we have

v(S1 ∪ {i}) − v(S1) ≤ v(S2 ∪ {i}) − v(S2).

(iv) Each marginal vector mσ(v) of the game v with respect to the permutationσ belongs to

the core C(v).

(v) W(v) = C(v), where W(v) is the Weber set (Weber (1988)) of v which is defined as the

convex hull of the marginal vectors of v.

Convex games are balanced games. Notice that Theorem 1.2.2 implies that convex games

have a nonempty core. On the class of convex games, solution concepts have nice properties.

We recall that the Shapley value of a convex (concave) game belongs to the core of the game

and the core is the unique stable set of the game. Also, the core is an additivemap on the class

of convex games (Dragan, Potters and Tijs (1989)).

For a gamev ∈ GN and a coalitionT ∈ 2N \ {∅}, thesubgamewith player setT, (T, vT), is the

gamevT defined byvT(S) := v(S) for all S ∈ 2T . In the sequel, we denote such subgames by

< T, v >. ForT ⊂ N, themarginalgame ofv based onT is defined byvT(S) := v(S∪T)−v(T)

for eachS ⊂ N\T. A game< N, v > is calledexactif for eachS ∈ 2N\{∅} there is anx ∈ C(v)

with
∑

i∈S xi = v(S). It is well-known that:

(i) subgames of convex games are also convex (and subgames of concavegames are also

concave);

(ii) convex games are (total) exact games and total exact games (i.e., games whose all

subgames are also exact) are convex (Biswas et al. (1999), Azrieli and Lehrer (2007));

(iii) games whose marginal games are all superadditive are convex (Branzei, Dimitrov and

Tijs (2004), Martinez-Legaz (1997, 2006)).
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For a traditional cooperative game< N, v >, Biswas et al. (1999) proved that the game is

convex if and only if each subgame< S, v >, with S ⊂ N, is an exact game. In the sequel, we

prove in Theorem 5.2.10 that a similar characterization holds true in the interval data setting.

A gamev ∈ GN is calledtotally balancedif all its subgames are balanced. Equivalently, the

gamev is totally balanced ifC(vT) , ∅ for all T ∈ 2N \ {∅}. The class of totally balanced

games includes the class of games with apopulation monotonic allocation scheme (pmas)

(Sprumont (1990)).

Let v ∈ GN. A schemea = (aiS)i∈S,S∈2N\{∅} of real numbers is a pmas ofv if

(i)
∑

i∈S aiS = v(S) for all S ∈ 2N \ {∅},

(ii) aiS ≤ aiT for all S,T ∈ 2N \ {∅} with S ⊂ T and for eachi ∈ S.

It is known that forv ∈ CGN the (total) Shapley value and (total) Dutta-Ray solution (Dutta

and Ray (1989)) generate population monotonic allocation schemes.

Letv ∈ GN. An imputationb ∈ I (v) ispmas extendableif there exists a pmasa = (aiS)i∈S,S∈2N\{∅}

such thataiN = bi for eachi ∈ N.

A game< N, v > is calleda big boss game with n as a big boss(Muto et al. (1988), Tijs

(1990)) if the following conditions are satisfied:

(i) v ∈ GN is monotonic, i.e.,v(S) ≤ v(T) if for eachS,T ∈ 2N with S ⊂ T.

(ii) v(S) = 0 if n < S.

(iii) v(N) − v(S) ≥
∑

i∈N\S(v(N) − v(N \ {i})) for all S,T with n ∈ S.

Definition 1.2.1 Let v∈ GN and n∈ N. Then, this game is a total big boss game with n as a

big boss, if the following conditions are satisfied:

(i) v ∈ GN is monotonic, i.e., v(S) ≤ v(T) for all S,T ∈ 2N with S ⊂ T;

(ii) v(S) = 0 if n < S ;

(iii) v(T) − v(S) ≥
∑

i∈T\S(v(T) − v(T \ {i})) for all S,T with n∈ S ⊂ T.

Note that big boss games form a cone inGN. Further, a game< N, v > is a total big boss

game with big bossn if and only if < T, v > is a big boss game for eachT ∈ 2N with n ∈ T.
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In this thesis, we only consider total big boss games and call them shortly big boss games.

We denote byPn the set{S ⊂ N|n ∈ S} of all coalitions containing the big boss.

Let v ∈ GN be a big boss game withn as a big boss. We call a schemea = (aiS)i∈S,S∈Pn an

allocation schemefor v if (aiS)i∈S is a core element of the subgame< S, v > for each coalition

S ∈ Pn. Such an allocation schemea = (aiS)i∈S,S∈Pn is called abi-monotonic allocation

scheme (bi-mas)(Branzei, Tijs and Timmer (2001b)) forv if for all S,T ∈ Pn with S ⊂ T we

haveaiS ≥ aiT for all i ∈ S \ {n}, andanS ≤ anT.

Let v ∈ GN be a big boss game withn as a big boss. An imputationb ∈ I (v) is bi-mas

extendable if there exists a bi-masa = (aiS)i∈S,S∈Pn such thataiN = bi for eachi ∈ N.

The next proposition and the definition of suitable marginal games for big boss games are

obtained from Propositions 2 and 3 in Branzei, Dimitrov and Tijs (2006) with{n} in the role

of C.

Proposition 1.2.3 Let< N, v >∈ MVN,{n}. Then the following assertions are equivalent:

(i) < N, v > is a (total) big boss game with big boss n;

(ii) < N \ {n} , v{n} > is a concave game;

(iii) < N \ ({n} ∪ T) ,
(

v{n}
)T
> is a subadditive game for each T⊂ N \ {n};

(iv) < N \ ({n} ∪ T) , v{n}∪T > is a subadditive game for each T⊂ N \ {n}.

Here,MVN,{n} is the set of all monotonic games onN satisfying the big boss property with

respect to the big bossn. Given a game< N, v >∈ MVN,{n} and a coalitionT ∈ 2N\{n}, the

n-based T-marginal game(v{n})T : 2N\T → R is defined by

(v{n})T(S) = v(S ∪ T ∪ {n}) − v(T ∪ {n})

for eachS ⊂ N \ T.

We notice that since here the set of players is very crucial, we refer to thegamev ∈ GN as

< N, v > and to its subgames as< T, v > for eachT ⊂ N. Moreover, we accordingly adjust

the notation for the used notions that were defined previously.

Let v ∈ GN. For eachi ∈ N, themarginal contribution of player i to the grand coalition Nis

Mi(N, v) := v(N) − v(N \ {i}).

The coreC(N, v) of a traditional big boss game is always nonempty and equal to

{x ∈ I (N, v)|0 ≤ xi ≤ Mi(N, v) for eachi ∈ N \ {n}} .
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For a (big boss) subgame< T, v > (with n as a big boss) ofv ∈ GN two particular elements of

its core are thebig boss point B(T, v) defined by

Bj(T, v) :=



















0, if j ∈ T \ {n}

v(T), if j = n,

and theunion point U(T, v) defined by

U j(T, v) :=



















M j(T, v), if j ∈ T \ {n}

v(T) −
∑

i∈T\{n} Mi(T, v), if j = n.

A gamev ∈ GN is calledquasi-balancedif m(N, v) ≤ M(N, v) and
∑n

i=1 mi(N, v) ≤ v(N) ≤
∑n

i=1 Mi(N, v), where for eachi ∈ N we put

mi(N, v) := max{R(S, i)|i ∈ S,S ⊂ N}

with

R(S, i) := v(S) −
∑

j∈S\{i}

M j(N, v).

The τ-value or compromise value(Tijs (1981)) is defined on the class of quasi-balanced

games. Specifically, for each quasi-balanced game< N, v > its τ-value,τ(N, v), is a fea-

sible compromise between the upper vectorM(N, v) := (Mi(N, v))i∈N and the lower vector

m(N, v) := (mi(N, v))i∈N of a game satisfying
∑

i∈N τi(N, v) = v(N).

For a big boss game withn as a big boss theτ-valueof v is given by

τ(N, v) := (
1
2

M1(N, v),
1
2

M2(N, v), . . . , v(N) −
∑

i∈N\{n}

1
2

Mi(N, v)).

Now, letσ = (σ(1), σ(2) . . . , σ(k), σ(k + 1), . . . , σ(n)) be an ordering of the players inN =

{1,2, . . . ,n}. The lexicographic maximumof the coreC(N, v) of a balanced game< N, v >

with respect toσ is denoted byLσ(N, v). Then, theaverage lexicographic value AL(N, v)

(Tijs (2005)) ofv ∈ GN is the average of all lexicographically maximal vectors of the core

of the game, i.e.,AL(N, v) := 1
n!

∑

σ∈Π(N) Lσ(N, v). For a big boss game withn as a big boss,

Lσ(N, v) is equal to

Lσσ(i)(N, v) :=



































Mσ(i)(N, v), i < k

0, i > k

v(N) −
∑k−1

i=1 M(N, v), i = k,

if σ(k) = n.

It is known that theAL-value coincides with theτ-value on the class of (total) big boss games

(Tijs (2005)).
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1.3 INTERVAL CALCULUS

In this thesis, tools of interval calculus play an important role. In this section we give some

notions that we have used along the thesis.

An interval is a closed and bounded set of real numbers,
[

I , I
]

=
{

x ∈ R|I ≤ x ≤ I
}

for any

I , I ∈ R with I ≤ I .

Let I (R) be the set of all closed and bounded intervals inR andI (R+) be the set of all closed

and bounded intervals inR+. We assume that 0 is an element ofR+.

We define anadditionbetween (ordered) pairs which are elements ofI (R), and amultiplica-

tion of an interval with a positive scalar. LetI , J ∈ I (R) with I =
[

I , I
]

, J =
[

J, J
]

, |I | = I − I

andα ∈ R+. Then,

(i) + : I (R) × I (R)→ I (R) with I + J =
[

I + J, I + J
]

;

(ii) · : R+ × I (R)→ I (R) with αI =
[

αI , αI
]

.

By (i) and(ii), I (R) has a cone structure.

Let I , J,K ∈ I (R) andλ, µ ∈ R+. Then,

1. I + J = J + I ;

2. (I + J) + K = I + (J + K);

3. I + [0,0] = I ;

4. λI is an interval;

5. (λµ)I = λ(µI );

6. (λ + µ)I = λI + µI ;

7. λ(I + J) = λI + λJ;

8. 1 · I = I .

Let I and J ∈ I (R). Then, the subtraction operator (Moore (1979)) is defined byI ⊖ J =

[I − J, I − J].
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Example 1.3.1 [6,8] ⊖ [2,5] = [1,6] and [2,5] ⊖ [6,8] = [−6,−1].

Along this thesis, in the context of vector notation we use a coordinate-wise subtraction opera-

tor (Alparslan G̈ok, Branzei and Tijs (2008b)). In the sequel, we define asubtractionbetween

(ordered) pairs (I , J) which are elements of the setD := {(I , J) ∈ I (R) × I (R)| |I | ≥ |J|} . Let

(I , J) ∈ D. Then,

− : D→ I (R) with I − J = [I − J, I − J].

Notice that if we make a comparison with Example 1.3.1, then in our case [6,8]− [2,5] is not

defined. But, [2,5] − [6,8] is defined.

Note thatI − J ∈ I (R) and thatJ+ (I − J) = I . Note also thatI − J ≤ I − J and|I + J| ≤ |I |+ |J|.

We define amultiplicationbetween (ordered) pairs which are elements ofI (R+). Let I , J ∈

I (R+). Then,

· : I (R+) × I (R+)→ I (R+) with I · J = [I J, I J].

We define adivisionbetween (ordered) pairs which are elements of the set

Q :=
{

(I , J) ∈ I (R+) × I (R+ \ {0})|I J ≤ IJ
}

.

Let (I , J) ∈ Q. Then,

÷ : Q→ I (R+) with I
J = [ I

J ,
I
J
].

Note thatI
J is defined if there is an intervalK such thatI = J ·K. Notice that[1,1]

[2,3] is undefined,

but [2,3]
[1,1] is defined.

Let I , J andK ∈ I (R+). Then,

1. I · [1,1] = I ;

2. I · J = J · I ;

3. I · [0,0] = [0,0];

4. (I · J) · K = I · (J · K);

5. (I + J) · K = (I · K) + (J · K).

Let I , J ∈ I (R). We say thatI is left to J, denoted byI≺J, if for eacha ∈ I and for eachb ∈ J,

a ≤ b, and we say thatI is weakly betterthanJ, which we denote byI < J, if and only if

I ≥ J and I ≥ J. Note that in caseI < J, then for eacha ∈ J there existsb ∈ I such that

a ≤ b, and for eachb ∈ I there existsa ∈ J such thata ≤ b. We say thatI is better thanJ,

which we denote byI ≻ J, if and only if I < J and I , J. We also use the reverse notation
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I 4 J, if and only if I ≤ J andI ≤ J, and the notationI ≺ J, if and only if I 4 J andI , J.

Note thatI < J does not imply|I | ≥ |J|; e.g., [1,1] < [0,1].

Note also thatI < J, J < K implies I < K (transitivity) and thatI < J, J < I implies I = J.

Let I , J ∈ I (R). We say thatI andJ aredisjoint if I ∩ J = ∅. For example, the intervals [1,3]

and [4,7] are disjoint.

Let I , J ∈ I (R). We define theminimumof the two intervals,I ∧ J, by I ∧ J = I if I 4 J, and

theirmaximum, I ∨ J, by I ∨ J = J if I 4 J.

Note thatI ∧ (J − K) = (I ∧ J) − (I ∧ K), I ∧ J ≤ I ∧ J, I ∧ J ≤ I ≤ I andI ∧ J ≤ J ≤ J.

In general, letI1, . . . , Ik ∈ I (R). Suppose thatI j < Ir for eachr ∈ {1, . . . , k}. Then, we say

that I j := max{I1, . . . , Ik}. If Is 4 Ir for eachr ∈ {1, . . . , k}, thenIs := min {I1, . . . , Ik}.

For example, letI1 = [0,1], I2 = [−1,2] andI3 = [3,5]. Then,I3 = max{I1, I2, I3}, whereas

max{I1, I2} does not exist. Similarly,I2 = min {I2, I3}, but min{I1, I2, I3} does not exist.

In this thesis,n-tuples of intervalsI = (I1, I2, . . . , In) where I i ∈ I (R) for eachi ∈ N =

{1,2, . . . ,n}, will play a key role. For further use we denote byI (R)N the set of alln-

dimensional vectors whose components are elements inI (R). Let I = (I1, I2, . . . , In), J =

(J1, J2, . . . , Jn) ∈ I (R)N andα ∈ R+. Then,I (R)N has a cone structure with respect to addi-

tion and multiplication with a positive scalar:

(i) I + J = (I1 + J1, I2 + J2, . . . , In + Jn);

(ii) αI = (αI1, αI2, . . . , αIn).

In the following, some properties of intervals are introduced. The proofsof the relations

below are straightforward.

• Let I , J ∈ I (R)N. ThenI i < Ji implies
∑n

i=1 I i <
∑n

i=1 Ji .

• Let A, B,C,D ∈ I (R), |B| ≤ |A| and |D| ≤ |C|. Then,A − B 4 C − D if and only if

A+ D 4 C + B.

• Let A, B,C ∈ I (R) with |B| ≤ |A| and|C| ≤ |A|. Then,B < C impliesA− B 4 A−C.

• Let I , J ∈ I (R) and let|I | ≥ |J|. Then,I − J = I − J andI − J = I − J.

• Let I , J,K ∈ I (R) such thatI = J + K. Then,|I | = |J| + |K|.
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Next we introduce thesquare operator(Alparslan G̈ok, Branzei and Tijs (2008b)), which

assigns to each pair (a,b) ∈ R
n × R

n with a ≤ b an element ofI (R)N. For some classical

solutions for TU-games one can with the aid of this square operator define acorresponding

square solution on suitable classes of interval games.

Let a = (a1, . . . ,an) andb = (b1, . . . ,bn) with a ≤ b. Then,a andb determine a hypercube

H = {x ∈ R
n|ai ≤ xi ≤ bi for eachi ∈ {1, . . . ,n}} .

We denote bya�b the vector (I1, . . . , In) ∈ I (R)N generated by the pair (a,b) ∈ R
n, a ≤ b

with I i = [ai ,bi ] for eachi ∈ {1, . . . ,n}. Let A, B ⊂ R
n. Then, we denote byA�B the subset

of I (R)N defined byA�B := {a�b|a ∈ A,b ∈ B,a ≤ b}.

To sum up, in this chapter, first, we have tried to give an answer to the question: Why is

the class of cooperative interval games important? In this thesis, classical cooperative game

theory and the arithmetic of intervals play an important role since the model of cooperative

interval games is an extension of cooperative games in coalitional form. So,secondly, basic

definitions and useful results from the theory of classical cooperativegames were given. Fi-

nally, preliminaries from basic interval calculus became established. In the following chapter,

we will intensively study the model and the solution concepts for the class of cooperative

interval games which is the skeleton of this pioneering work.
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CHAPTER 2

COOPERATIVE INTERVAL GAMES

2.1 MODEL, EXAMPLES, BASIC DEFINITIONS

In this section, the model of the cooperative interval games and basic definitions will be given.

A cooperative n-personinterval game in coalitional form is an ordered pair< N,w >, where

N = {1,2, . . . ,n} is the set of players, andw : 2N → I (R) is thecharacteristic functionwhich

assigns to each coalitionS ∈ 2N a closed intervalw(S) ∈ I (R), such thatw(∅) = [0,0].

For eachS ∈ 2N, the worth set(or worth interval) w(S) of the coalitionS in the interval

game< N,w > is of the form [w(S),w(S)], wherew(S) is the lower bound andw(S) is the

upper bound ofw(S). In other words,w(S) is the minimal reward which coalitionS could

receive on its own andw(S) is the maximal reward which coalitionS could get. The family

of all interval games with player setN is denoted byIGN. Note that if all the worth intervals

aredegenerate intervals, i.e., w(S) = w(S), then the interval game< N,w > corresponds

to the classical cooperative game< N, v > wherev(S) = w(S). This means that traditional

cooperative games can in a natural way be embedded into the class of cooperative interval

games. Given a gamew ∈ IGN and a coalition{1, . . . , k} ⊂ N, we will often writew(i, . . . , k)

instead ofw({i, . . . , k}).

Example 2.1.1 (Interval glove game) Let N= {1,2,3} consisting of two disjoint subsets L

and R. The members of L possess each one left-hand glove, the members of R one right-hand

glove. A single glove is worth nothing, a right-left pair of gloves is worth between 10 and 20

Euros. In case L= {1,2} this situation can be modeled as a three-person interval game with

w(1,3) = w(2,3) = w(1,2,3) = [10,20] and w(S) = [0,0], otherwise.
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Example 2.1.2 (Landlord peasants game) Let us consider a production economy with one

landlord and many peasants. Let N= {1,2, . . . ,n} be the player set, where n is the landlord

who cannot produce anything alone, and1,2, . . . ,n− 1 are landless peasants.

Let f : [0,n − 1] → I (R) be the production function with interval data, where f(s) is the

interval reward[ f1(s), f2(s)] < [0,0] if s peasants are hired by the landlord, where f(0) =

[0,0], f1 and f2 − f1 are concave with f2 − f1 ≥ 0. This situation corresponds to an interval

game< N,w >, where N= {1,2, . . . ,n} and the characteristic function is given by

w(S) :=



















[0,0], n < S

f (|S| − 1), n ∈ S.

In this thesis, some classicalTU-games associated with an interval gamew ∈ IGN will play a

key role, namely thebordergames< N,w >, < N,w > and thelengthgame< N, |w| >, where

|w| (S) := w(S) − w(S) for eachS ∈ 2N. Note thatw = w+ |w|.

Let J ∈ I (R) with J < [0,0] and letT ∈ 2N \ {∅}. Theunanimity interval gamebased onJ

andT is defined by

uT,J(S) :=



















J, T ⊂ S

[0,0] , otherwise,

for eachS ∈ 2N.

For a gamew ∈ IGN and a coalitionS ∈ 2N \ {∅}, thesubgamewith player setT is the game

wT defined bywT(S) := w(S) for all S ∈ 2T . So,wT is the restriction ofw to the set 2T . We

refer to such subgames by< T,w >.

We say that a game< N,w > is supermodularif

w(S) + w(T) 4 w(S ∪ T) + w(S ∩ T) for all S,T ∈ 2N, (2.1.1)

and a game< N,w > is calledsubmodularif

w(S) + w(T) < w(S ∪ T) + w(S ∩ T) for all S,T ∈ 2N. (2.1.2)

A gamew ∈ IGN is said to besuperadditiveif for all S,T ⊂ N with S ∩ T = ∅ the following

two conditions hold:

w(S ∪ T) < w(S) + w(T); (2.1.3)

|w| (S ∪ T) ≥ |w| (S) + |w| (T);
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it is calledsubadditiveif for all S,T ⊂ N with S ∩ T = ∅, the following two conditions are

satisfied:

w(S ∪ T) 4 w(S) + w(T);

|w| (S ∪ T) ≤ |w| (S) + |w| (T).

Next we give the arithmetics of interval games.

Forw1,w2 ∈ IGN we say thatw1 4 w2 if w1(S) 4 w2(S), for eachS ∈ 2N.

For w1,w2 ∈ IGN andλ ∈ R+ we define< N,w1 + w2 > and< N, λw > by (w1 + w2)(S) =

w1(S) + w2(S) and (λw)(S) = λ · w(S) for eachS ∈ 2N. So, we conclude thatIGN endowed

with 4 is apartially ordered setand has acone structurewith respect to addition and multipli-

cation with non-negative scalars, as described above. Forw1,w2 ∈ IGN with |w1(S)| ≥ |w2(S)|

for eachS ∈ 2N, < N,w1 − w2 > is defined by (w1 − w2)(S) := w1(S) − w2(S).

2.2 SELECTION-BASED SOLUTION CONCEPTS

This section is based on the paper Alparslan Gök, Miquel and Tijs (2009). Here, the notion

of a selection of an interval game is the building block of the theory.

Let < N,w > be an interval game, thenv : 2N → R is called aselectionof w if v(S) ∈ w(S)

for eachS ∈ 2N. We denote the set of selections ofw by S el(w).

Next we define solution concepts for interval games which are based on selections.

The imputation set of an interval game< N,w > is defined by

I (w) := ∪ {I (v)|v ∈ S el(w)}.

Thecore setof an interval game< N,w > is defined by

C(w) := ∪ {C(v)|v ∈ S el(w)}.

We see directly thatC(w) , ∅ if and only if there exists av ∈ S el(w) with C(v) , ∅.

If all the worth intervals of an interval gamew ∈ IGN are degenerate intervals, then

I (w) = I (w) = I (w) andC(w) = C(w) = C(w).

Note thatv(S) ∈ w(S) is a real number, butw(S) = [w(S),w(S)] is a degenerate interval

which is a set consisting of one element.
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An interval game< N,w > is strongly balancedif for each balanced mapλ it holds that
∑

S∈2N\{∅} λ(S)w(S) ≤ w(N). The family of all strongly balanced interval games with player

setN is denoted byBIGN.

Proposition 2.2.1 Let < N,w > be an interval game. Then, the following three statements

are equivalent:

(i) For each v∈ S el(w) the game< N, v > is balanced.

(ii) For each v∈ S el(w), C(v) , ∅.

(iii) The interval game< N,w > is strongly balanced.

Proof. (i)⇔ (ii ) follows from Theorem 1.2.1.

(i)⇔ (iii ) follows using the inequalitiesw(N) ≤ v(N) ≤ w(N) and
∑

S∈2N\{∅} λ(S)w(S) ≤
∑

S∈2N\{∅} λ(S)v(S) ≤
∑

S∈2N\{∅} λ(S)w(S) for each balanced mapλ. �

It follows from Proposition 2.2.1 that for a strongly balanced game< N,w >, C(w) , ∅ since

for all v ∈ S el(w), C(v) , ∅.

We call an interval game< N,w > strongly unbalanced,if there exists a balanced mapλ

such that
∑

S∈2N\{∅} λ(S)w(S) > w(N). Then,C(v) = ∅ for all v ∈ S el(w), which implies that

C(w) = ∅.

If all the worth intervals of an interval game< N,w > are degenerate intervals, then strongly

balancedness corresponds to balancedness and strongly unbalancedness corresponds to un-

balancedness in a classical cooperative game< N, v >.

Note that strongly balancedness means that for allv ∈ S el(w), < N, v > has a nonempty core,

because for allλ

∑

S∈2N\{∅}

λ(S)v(S) ≤
∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N) ≤ v(N).

Proposition 2.2.2 Let v0(S) = w(S) for all S ∈ 2N \ {∅}, v0(N) = w(N). Then, all selections

are balanced if and only if v0 is balanced.

Proof.

(i) Suppose that eachv ∈ S el(w) is balanced. Then, triviallyv0 is balanced.
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(ii) Suppose thatv0 is balanced. Takev ∈ S el(w) and a balanced mapλ. We have to prove

that
∑

S∈2N\{∅} λ(S)v(S) ≤ v(N). Indeed, it holds

∑

S∈2N\{∅}

λ(S)v(S) ≤
∑

S∈2N\{∅}

λ(S)v0(S) ≤ v0(N) = w(N) ≤ v(N),

where the second inequality follows from the fact thatv0 is balanced. �

We call w ∈ IGN weakly balancedif there is at least one selectionv ∈ S el(w) which is

balanced. Letv1(S) = w(S) andv1(N) = w(N). Then, it is obvious that< N,w > is weakly

balanced if and only ifv1 is balanced.

The rest of this section deals with two-person interval games. We start with balancedness and

related topics.

Let < N,w > be a two-person interval game. Then, we define:

(i) thepre-imputation set

I ∗(w) :=
{

x ∈ R
2|x1 + x2 ∈ w(1,2)

}

,

(ii) the imputation set

I (w) :=
{

x ∈ R
2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1,2)

}

,

(iii) themini-core set

MC(w) :=
{

x ∈ R
2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1,2)

}

,

(iv) thecore set

C(w) :=
{

x ∈ R
2|x1 ≥ w(1), x2 ≥ w(2), x1 + x2 ∈ w(1,2)

}

.

Notice that for two-person interval games the imputation set and the core setare equal. More-

over, if an interval game is strongly balanced, then its mini-core set is nonempty and it is a

subset of the core set of the game.

The next example is intended to give insight into the core set and mini-core setof a two-person

(strongly balanced) game< N,w >.

Example 2.2.1 Let N= {1,2}, w ∈ IG{1,2} such that

w(∅) = [0,0], w(1) = [1,3], w(2) = [2,5], w(1,2) = [10,12].
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Figure 2.1: The mini-core set and the core set of a strongly balanced game.

In Figure 2.1, the mini-core set and the core set are depicted. This is a strongly balanced

game sincew(1)+ w(2) = 3+ 5 ≤ w(1,2) = 10.

Now, we describe the core set and the mini-core set of a two-person interval game in terms of

its selections.

Let us introduce names of elements ofw(1), w(2) andw(1,2) as follows:

s1 ∈ w(1) = [w(1),w(1)], s2 ∈ w(2) = [w(2),w(2)], t ∈ w(1,2) = [w(1,2),w(1,2)]

and denote byws1,s2,t theselectionof w corresponding tos1, s2 andt. Then,

C(w) = ∪
{

C(ws1,s2,t)|(s1, s2, t) ∈ w(1)× w(2)× w(1,2)
}

.

Furthermore,

MC(w) = ∪
{

C(ws1,s2,t)|s1 ∈ [w(1),w(1)], s2 ∈ [w(2),w(2)], t ∈ w(1,2)
}

.

So,

MC(w) ⊂ ∪
{

C(ws1,s2,t)|s1 ∈ w(1), s2 ∈ w(2), t ∈ w(1,2)
}

,

i.e., MC(w) ⊂ C(w).

The mini-core setMC(w) is interesting because for eachs1, s2 andt, all points inMC(w) with

x1+ x2 = t are also inC(ws1,s2,t). Note that all points in the mini-core set ofw are individually

rational points for each selectionws1,s2,t, and each selectionws1,s2,t can be written as a linear

combination of unanimity games in the following way:

ws1,s2,t = s1u{1} + s2u{2} + (t − s1 − s2)u{1,2}.
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If w ∈ IG{1,2} is a superadditive game, then for eachs1, s2 andt we haves1 + s2 ≤ t. So, each

selectionws1,s2,t of w is balanced. We conclude that if

w(1)+ w(2) ≤ w(1,2) is satisfied, then each selectionws1,s2,t of w is superadditive.

Hence, a two-person interval game< N,w > is superadditive if and only if< N,w > is

strongly balanced. Here, optimism vectors will play a role.

Let α = (α1, α2) ∈ [0,1] × [0,1], which we call theoptimism vector, andw ∈ IG{1,2}. We

define:

sα1
1 (w) := α1w(1)+ (1− α1)w(1), sα2

2 (w) := α2w(2)+ (1− α2)w(2).

We are interested in mapsκ : [a,b] → R
2, where [a,b] is a closed interval inR with proper-

ties:

(i) for eacha ≤ x1 ≤ x2 ≤ b, κ1(x1) ≤ κ1(x2), κ2(x1) ≤ κ2(x2);

(ii) for eachx ∈ [a,b], κ1(x) + κ2(x) = x.

In the following, we call such mapsmonotonic curves, and we denote byK(R2) the set of all

monotonic curves inR2.

A mapF : IG{1,2} → K(R2) assigning to each interval gamew a unique curve

F(w) : [w(1,2),w(1,2)]→ R
2 for t ∈ [w(1,2),w(1,2)] in K(R2) is called asolution.

We say thatF : IG{1,2} → K(R2) has the property of

(i) efficiency (EFF), if for all w ∈ IG{1,2}, t ∈ [w(1,2),w(1,2)]:
∑

i∈N F(w)(t)i = t.

(ii) α-symmetry (α-SYM), if for all w ∈ IG{1,2} with sα1
1 (w) = sα2

2 (w) and for all t ∈

[w(1,2),w(1,2)] we haveF(w)(t)1 = F(w)(t)2;

(iii) covariance with respect to translations (COV), if for all

w ∈ IG{1,2}, t ∈ [w(1,2),w(1,2)] anda = (a1,a2) ∈ R
2

we haveF(w+ â)(a1 + a2 + t) = F(w)(t) + a.

Here,â ∈ IG{1,2} is defined by

â({1}) := [a1,a1], â({2}) := [a2,a2], â({1,2}) := [a1 + a2,a1 + a2],
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andw+ â ∈ IG{1,2} is defined by

(w+ â)(S) := w(S) + â(S) for S ∈ {{1} , {2} , {1,2}} .

For eachw ∈ IG{1,2} andt ∈ [w(1,2),w(1,2)] we define the mapψα : IG{1,2} → K(R2) such

that

ψα(w)(t) := (sα1
1 (w) + β, sα2

2 (w) + β),

whereβ = β(t,w) := 1
2(t − sα1

1 (w) − sα2
2 (w)).

The next example illustrates the solutionψα with α = (0,0) and its relations with the mini-

core set.

Example 2.2.2 (A bankruptcy situation with an uncertain estate) Consider a bankruptcy si-

tuation given by two claimants with demands d1 = 70 and d2 = 90 and (uncertain) estate

E = [100,120].

Then, the characteristic function of the interval game is as follows:

w(∅) = [0,0], w(1) = [(E − d2)+, (E − d2)+] = [10,30],

w(2) = [(E − d1)+, (E − d1)+] = [30,50], w(1,2) = [100,120],

where x+ = max{x,0}.

This is a strongly balanced game, sincew(1)+ w(2) = 30+ 50≤ w(1,2) = 100,

ψ(0,0)(w)(t) = (10+ β,30+ β) with β =
1
2

(t − 40)and t∈ [100,120].

Figure 2.2 illustrates that for all t∈ [100,120], ψ(0,0)(w)(t) ∈ MC(w(0,0,t)); in this figure L

denotes the set{ψ(0,0)(w)(t)|t ∈ [100,120]}. In the following, we show theψα-values for some

realizations t of w(N):

t

β

ψα(w)(t)





































100 106 110 114 120

30 33 35 37 40

(40,60) (43,63) (45,65) (47,67) (50,70)





































.

Next, we give an axiomatic characterization of theψα-value forα ∈ [0,1] × [0,1].
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Figure 2.2: The mini-core set and theψ(0,0)-values of the game< N,w >.

Proposition 2.2.3 Theψα-value satisfies the properties EFF,α-SYM and COV.

Proof.

(i) For all w ∈ IG{1,2} and t ∈ [w(1,2),w(1,2)], the solutionψα satisfies the efficiency

(EFF) property since

ψα(w)(t)1 + ψ
α(w)(t)2 = sα1

1 (w) + sα2
2 (w) + 2β = t.

(ii) For all w ∈ IG{1,2} andt ∈ [w(1,2),w(1,2)], the solutionψα satisfies theα-symmetry

(α-SYM) property sincesα1
1 (w) = sα2

2 (w) implies

ψα(w)(t)1 = sα1
1 (w) + β = sα2

2 (w) + β = ψα(w)(t)2.

(iii) Take w ∈ IG{1,2}, t ∈ [w(1,2),w(1,2)] and a ∈ R
2. The solutionψα satisfies the

covariance with respect to translations (COV) property since

ψα(w+ â)(a1 + a2 + t) = (sα1
1 (w+ â) + β̂, sα2

2 (w+ â) + β̂).

Then,

ψα(w+ â)(a1 + a2 + t) = (sα1
1 (w) + β, sα2

2 (w) + β) + (a1,a2) = ψα(w)(t) + a.

Note that

β = β̂ =
1
2

(t̂ − sα1
1 (w+ â) − sα2

2 (w+ â)),

wheret̂ = a1 + a2 + t. �
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Theorem 2.2.4 Theψα-value is the unique solution satisfying the EFF,α-SYM and COV

properties.

Proof. Suppose the solutionF : IG{1,2} → K(R2) satisfies the three properties above. We

show thatF = ψα.

Takew ∈ IG{1,2} and leta = (sα1
1 (w), sα2

2 (w)). Then,sα(w− â) = (0,0).

By α-SYM and EFF, for each̃t = t − a1 − a2 with t ∈ [w(1,2),w(1,2)] we haveF(w− â)(t̃) =

(1
2 t̃, 1

2 t̃) = ψα(w− â)(t̃). Hence,F(w− â) = ψα(w− â).

By COV of F andψα we obtain

F(w)(t) = F(w− â)(t̃) + a = ψα(w− â)(t̃) + a = ψα(w)(t)

for eachw ∈ IG{1,2} andt ∈ [w(1,2),w(1,2)].

From Proposition 2.2.3 it follows thatψα satisfies EFF,α-SYM and COV.

So,ψα is the only solution with these three properties. �

Themarginal curvesfor a two-person game< N,w > are defined by

mσ,α(w) : [w(1,2),w(1,2)]→ R
2, where

m(1,2),α(w)(t) := (sα1
1 (w), t − sα1

1 (w)), m(2,1),α(w)(t) := (t − sα2
2 (w), sα2

2 (w)).

TheShapley-like solutionψα is equal to

ψα(w) =
1
2

(m(1,2),α(w) +m(2,1),α(w)).

Note that each point of the marginal curvem(1,2),α(w) : [w(1,2),w(1,2)] → R
2 corresponds

to a marginal vector of a selection ofw, since for allα ∈ [0,1] × [0,1] and for all t ∈

[w(1,2),w(1,2)] we havem(1,2),α(w)(t) = m(1,2)(v), wherev : 2{1,2} → R is the characteristic

function of the game with

v(∅) := 0, v(1) := sα1
1 (w)(t), v(2) := sα2

2 (w)(t) andv(1,2) := t.

Similarly, m(2,1),α(w)(t) = m(2,1)(v) for all α ∈ [0,1] × [0,1] and for allt ∈ [w(1,2),w(1,2)].

In case wherew(S) is a degenerate interval for eachS ∈ 2N, we havemσ,α(w)(t) = mσ(v) for

all α ∈ [0,1] × [0,1] and for allt ∈ [w(1,2),w(1,2)] with

v(∅) := 0, v(1) := w(1), v(2) := w(2) andv(1,2) := w(1,2).
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Let us consider theShapley-like solutionsof the form

ϕα : IG{1,2} → K(R2) defined by

ϕα(w) :=
1
2

(m(1,2),α(w) +m(2,1),α(w))

for eachw ∈ IG{1,2} and for eachα ∈ [0,1] × [0,1].

Then, for eacht ∈ [w(1,2),w(1,2)] it holds thatϕα(w)(t) = ψα(w)(t). So,ϕα coincides with

ψα.

2.3 INTERVAL SOLUTION CONCEPTS

This section is based on Alparslan Gök, Branzei and Tijs (2008a,b).

Recall that a solution concept for classicaln-person cooperative games associates with each

such game a (possibly empty) set ofn-dimensional real-valued vectors whosei-th component

indicates the payoff for player i when the worth of the grand coalition is distributed among

the n players. In case ofn-person cooperative interval games the players have to cope with

the division of the worth of the grand coalition when they only know its lower and upper

bounds. As a consequence of the interval uncertainty regarding the realized value of the grand

coalition, before cooperation starts, players’ payoffs can be rather expressed as intervals of

real numbers than as real numbers, i.e. each player might know at this stage only his/her

minimum and maximum potential payoffs. Thus, an interval solution concept associates to

eachn-person cooperative interval game a (possibly empty) set of interval payoff vectors.

Let I i be the interval payoff of playeri, and letI = (I1, I2, . . . , In) be an interval payoff vector.

Then, according to Moore (1979), we have
∑

i∈S I i =
[

∑

i∈S I i ,
∑

i∈S I i

]

∈ I (R) for eachS ∈

2N \ {∅}. An interval solution conceptF on IGN is a map assigning to each interval game

w ∈ IGN a set ofn-dimensional vectors whose components belong toI (R). Here, we define

interval solution concepts for interval gamesw ∈ IGN.

The interval imputation setI(w) of the interval gamew, is defined by

I(w) :=















(I1, I2, . . . , In) ∈ I (R)N|
∑

i∈N

I i = w(N),w(i) 4 I i , for all i ∈ N















.

We note that
∑

i∈N I i = w(N) is equivalent with
∑

i∈N I i = w(N) and
∑

i∈N I i = w(N), and

w(i) 4 I i is equivalent withw(i) ≤ I i andw(i) ≤ I i , for eachi ∈ N.
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Furthermore,
∑

i∈N I i = w(N) implies that for alli ∈ N and for allt ∈ w(N), there existsxi ∈ I i ,

i ∈ N, such that
∑

i∈N xi = t. Notice that the interval uncertainty of coalition values propagates

into the interval uncertainty of individual payoffs and we obtain interval payoff vectors as

building blocks of interval solutions. The interval imputation set consists of those interval

payoff vectors which assure the distribution of the uncertain worth of the grand coalition such

that each player can expect a weakly better interval payoff that what he/she can expect of

his/her own.

Proposition 2.3.1 Let w ∈ IGN. The interval imputation setI(w) of w is nonempty if and

only if w(N) <
∑

i∈N w(i).

Proof. First, suppose thatI(w) , ∅. Take I = (I1, I2, . . . , In) ∈ I(w). Then I i < w(i) for

eachi ∈ N. So,
∑

i∈N I i <
∑

i∈N w(i) by interval calculus. Now, we use
∑

i∈N I i = w(N). Next

suppose thatw(N) <
∑

i∈N w(i). Then,I = (w(1),w(2), . . . ,w(n−1), In), whereIn = [In, In] =

[w(n)+δ,w(n)+ǫ] with ǫ = w(N)−
∑

i∈N w(i) ≥ 0 andδ = w(N)−
∑

i∈N w(i) ≥ 0, is an element

of the interval imputation set. �

The interval coreC(w) of the interval gamew, is defined by

C(w) :=















(I1, . . . , In) ∈ I (R)N|
∑

i∈N

I i = w(N),
∑

i∈S

I i < w(S), for all S ∈ 2N \ {∅}















.

The interval core consists of those interval payoff vectors which assure the distribution of

the uncertain worth of the grand coalition such that each coalition of playerscan expect a

weakly better interval payoff than what that group can expect on its own, implying that no

coalition has any incentives to split off. Here,
∑

i∈N I i = w(N) is theefficiency conditionand
∑

i∈S I i < w(S), S ∈ 2N\{∅}, are thestability conditionsof the interval payoff vectors. Clearly,

C(w) ⊂ I(w) for eachw ∈ IGN. Notice that for two-person cooperative interval games the

interval imputation set coincides with the interval core.

Example 2.3.1 Let< N,w > be a three-person interval game with

w(1,3) = w(2,3) = w(1,2,3) = J < [0,0] and w(S) = [0,0] otherwise.

The interval core isC(w) = {([0,0], [0,0], J)} .

Let < N,d > be an interval cost game. Then, theinterval coreC(d) is defined by

C(d) :=















(I1, . . . , In) ∈ I (R)N|
∑

i∈N

I i = d(N),
∑

i∈S

I i 4 d(S),∀S ∈ 2N \ {∅}















.
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The interval coreC(d) consists of those interval payoff vectors which assure the distribution of

the uncertain cost of the grand coalition,d(N), such that each coalition of playersS can expect

a weakly better interval cost,
∑

i∈S I i , than what that group can expect on its own, implying

that no coalition has any incentives to split off. We refer to
∑

i∈N I i = d(N) as theefficiency

conditionand to
∑

i∈S I i 4 d(S), S ∈ 2N \ {∅}, as thestability conditions of the interval payoff

vectors.

Remark 2.3.1 Elements of the interval coreC(w), can be computed by solving a system of

linear inequalities of the form:
∑

i∈N I i = w(N);
∑

i∈N I i = w(N) and
∑

i∈S I i ≥ w(S);
∑

i∈S I i ≥

w(S), for each S∈ 2N \{∅}. We notice that the time complexity of the algorithm for computing

the interval coreC(w) for w ∈ IGN is the same as the time complexity1 of the algorithm for

computing the core C(v) for v ∈ GN.

Remark 2.3.2 We notice that the elements of the sets C(w) andC(w) are of different types,

implying that we cannot compare the sets with respect to the inclusion relation. Specifically,

the elements of C(w) are vectors x∈ R
N, whereas the elements ofC(w) are vectors I∈ I (R)N.

But, if all the worth intervals of the interval game< N,w > are degenerate intervals, then the

interval coreC(w) corresponds in a natural way to the core C(w), since([a1,a1], . . . , [an,an])

is in the interval coreC(w) if and only if (a1, . . . ,an) is in the core C(w) for each ai ∈ R and

i ∈ N. Furthermore, we could have situations in whichC(w) = ∅ and C(w) , ∅, as Example

2.3.2 illustrates.

Remark 2.3.3 Note also that if the worth of the grand coalition is given by a degenerate

interval then the elements of the interval core are tuples of degenerate intervals. Under this

assumption, the necessary and sufficient condition for the nonemptiness of the interval core is

the balancedness of the upper game.

The interval core is defined as the set of efficientn-person interval payoff vectors that satisfy

coalitional rationality (or split-off stability) in the interval setting. An algorithm for computing

elements of the interval core of a cooperative interval game based on Remark 2.3.1 is provided

in Drechsel and Kimms (2008). There is a fundamental difference between the interval core

C(w) and the coreC(w) as we emphasized in Remark 2.3.2. Now, we notice that the interval

1 For details on complexity theory we refer to Garey and Johnson (1979).
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core of n-person cooperative interval games can generate via selections (x1, x2, . . . , xn) ∈

(I1, I2, . . . , In) ∈ C(w) a set which has the same type of elements asC(w). The two sets do

not coincide for arbitrary cooperative interval games, but they coincide in case where all the

coalitional worth values are degenerate intervals.

Example 2.3.2 Let < N,w > be a two-person interval game with w(1,2) = [6,8], w(1) =

[2,4], w(2) = [5,6] and w(∅) = [0,0]. For this gameC(w) = ∅. But, C(w) , ∅ since C(v) , ∅

for some selections v∈ S el(w).

Proposition 2.3.2 Let w∈ IGN. If the interval coreC(w) is nonempty, then the core C(w) is

nonempty.

Proof. Take (I1, I2, . . . , In) ∈ C(w). Then,
∑

i∈N I i = w(N), meaning that
∑

i∈N I i = w(N) and
∑

i∈N I i = w(N), and
∑

i∈S I i < w(S), implying that
∑

i∈S I i ≥ w(S) and
∑

i∈S I i ≥ w(S). Let

< N, v > be the selection ofw with v(S) = w(S), v(N) = w(N) and letxi = I i , i ∈ S. Then,
∑

i∈S xi ≥ w(S) and
∑

i∈N xi = w(N) which shows thatC(w) , ∅ andC(w) , ∅ implying that

C(w) is nonempty. �

Some basic properties of the interval core are straightforward extensions of the correspond-

ing properties of the core of traditional cooperative games (Gillies (1959)) as Proposition

2.3.3 and Proposition 2.3.4 illustrate. In Proposition 2.3.4, we extend to intervalgames the

property of relative invariance with respect to strategic equivalence for the core. For this

extension, we need the notion of additive interval games. A game< N,a > is called an

additive interval gameif for each S ∈ 2N it holds a(S) =
∑

i∈S a({i}). For such a game,

C(a) = {(a({1}),a({2}), . . . ,a({n}))}.

Proposition 2.3.3 Let w∈ IGN. Then, the interval coreC(w) of w is a convex set.

Proposition 2.3.4 The interval coreC : IGN ։ I (R)N is relative invariant with respect to

strategic equivalence, i.e., for each w,a ∈ IGN with a being an additive interval game, and

for each k> 0 we haveC(kw+ a) = kC(w) + C(a).

Proposition 2.3.5 Let w∈ IGN. Then the interval core correspondenceC : IGN ։ I (R)N is

a superadditive map.
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Proof. We have to prove thatC(w1) + C(w2) ⊂ C(w1 + w2) for eachw1,w2 ∈ IGN. First,

we note that the inclusion holds ifC(w1) = ∅ or C(w2) = ∅. Otherwise, consider thatw1,

w2 ∈ IGN and take (I1, I2, . . . , In) ∈ C(w1) and (J1, J2, . . . , Jn) ∈ C(w2). Then,

∑

k∈N

Ik +
∑

k∈N

Jk = w1(N) + w2(N)⇒
∑

k∈N

(Ik + Jk) = (w1 + w2)(N),

and, for eachS ∈ 2N \ {∅},
∑

k∈S Ik < w1(S) and
∑

k∈S Jk < w2(S), implying that
∑

k∈S Ik ≥

w1(S) and
∑

k∈S Jk ≥ w2(S). Then, for eachS ∈ 2N \ {∅},

∑

k∈S

Ik +
∑

k∈S

Jk ≥ w1(S) + w2(S)⇒
∑

k∈S

(Ik + Jk) ≥ (w1 + w2)(S).

Similarly,
∑

k∈S(Ik + Jk) ≥ (w1 + w2)(S). Hence, the interval core correspondence is a

superadditive map. �

We call a gamew ∈ IGN anexact interval gameif for eachS ∈ 2N it holds:

(i) there exists anI = (I1, . . . , In) ∈ C(w) such that
∑

i∈S I i = w(S);

(ii) there exists anx ∈ C(|w|) such that
∑

i∈S xi = |w| (S).

Note that(ii) expresses the exactness of the length game< N, |w| >.

Other interesting interval type solution concepts for interval games like the interval dominance

core and stable sets based on a dominance relation are introduced in the following.

Let w ∈ IGN, I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ I(w) andS ∈ 2N \ {∅}. We say thatI

dominates J via coalition S, and denote it byI domS J, if:

(i) I i ≻ Ji for all i ∈ S,

(ii)
∑

i∈S I i 4 w(S).

For S ∈ 2N \ {∅} we denote byD(S) the set of those elements ofI(w) which are dominated

via S. For I , J ∈ I(w), we say thatI dominates Jand denote it byI dom J if there is an

S ∈ 2N \ {∅} such thatI domS J.

Furthermore,I is calledundominatedif there does not existJ and a coalitionS such that

J domS I .

Theinterval dominance coreDC(w) of an interval gamew ∈ IGN consists of all undominated

elements inI(w), i.e., it is the complement of∪
{

D(S)|S ∈ 2N \ {∅}
}

in I(w).

Forw ∈ IGN a subsetA of I(w) is aninterval stable setif the following conditions hold:
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(i) (Internal stability) There do not existI , J ∈ A such thatI domJ or J dom I .

(ii) (External stability) For eachI < A there exists aJ ∈ A such that

J dom I .

Next, we study relations between the interval core, interval dominance core and stable sets

for interval games.

Theorem 2.3.6 Let w∈ IGN and let A be a stable set of w. Then,C(w) ⊂ DC(w) ⊂ A.

Proof. In order to show thatC(w) ⊂ DC(w), let us assume that there is anI ∈ C(w) such that

I < DC(w). Then, there are aJ ∈ I(w) and a coalitionS ∈ 2N \ {∅} such thatJ domS I . Thus,

I (S) ≺ J(S) =
∑

i∈S Ji 4 w(S) andJi ≻ I i for all i ∈ S implying that I < C(w). From this

contradiction it follows thatC(w) ⊂ DC(w).

To prove next thatDC(w) ⊂ A, it is sufficient to showI(w) \ A ⊂ I(w) \ DC(w). Take

I ∈ I(w) \ A. By the external stability ofA there is aJ ∈ A with J dom I . The elements in

DC(w) are not dominated. So,I < DC(w), i.e., I ∈ I(w) \ DC(w). �

The inclusions stated in the previous theorem may be strict. The following example, inspired

by Tijs (2003), illustrates that the inclusion ofC(w) inDC(w) might be strict.

Example 2.3.3 Let< N,w > be the three-person interval game with w(1,2) = [2,2], w(N) =

[1,1] and w(S) = [0,0] if S , {{1,2} ,N}. Then,C(w) = ∅ because the game is notI-

balanced (note that w(1,2)+ w(3) ≻ w(N)). Further, D(S) = ∅ if S , {1,2} and D({1,2}) =

{I ∈ I(w)|I3 ≻ [0,0]}. The elements I inI(w) which are undominated satisfy I3 = [0,0].

Since the interval dominance core is the set of undominated elements inI(w), the interval

dominance core of this game is nonempty.

2.4 HANDLING INTERVAL SOLUTIONS

This section is based on Branzei, Tijs and Alparslan Gök (2008b). Its goal is to provide a basic

guide for handling interval solution concepts. We want to make clear that interval allocations

and protocols to handle them are interrelated and their choice has to be made under interval

uncertainty of coalition values. First, the commonly chosen interval solution concept and pro-

tocol provide support for the players’ decision making regarding the most suitable coalition
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to form under interval uncertainty of coalition values. Second, after the group of cooperating

players is fixed, the same interval solution concept givesa priori interval-type information

regarding the potential reward/cost shares for cooperating individuals.A posteriori, when

uncertainty on the outcome(s) of cooperation is removed, the ranges of potential individual

shares are processed according to the chosen protocol to determine uncertainty-free individ-

ual shares. We notice that usually only uncertainty about the outcome of thegrand coalition

is removed. For this scenario we propose several procedures for solving the difficult task of

distributing the effective total profit/cost among the cooperating players consistently with all

their previous decisions. We cope with two basic ways for evaluating the actual outcome of

the grand coalition:

(i) in one step, when the joint enterprise is finished;

(ii) in several steps, at a priori fixed moments of time when the progress of the joint enter-

prise is evaluated.

The suitability of a particular procedure relies on the nature of the situation modeled as a

cooperative interval game and also on players’ joint decision about when they should receive

their uncertainty-free shares.

The players who like to cooperate in a situation with interval data can at a firststage consider

the corresponding cooperative interval game and a cooperative interval solution. The interval

allocation obtained by the commonly agreed upon interval solution concept has at this stage

a two-fold use:

(a) to assist people or businesses in taking optimal decisions regarding cooperation under

interval uncertainty;

(b) to prescribe before cooperation starts minimal and maximal values for individual shares

for cooperating players such that the interval reward/cost of the grand coalition is

cleared.

We notice that once it was agreed upon which coalition to form, the jointly chosen interval

solution concept provides the ranges of potential individual shares. This means that before co-

operation starts the agents are uncertain about their rights or liabilities, respectively. Clearly,
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the outcome of cooperation will be known with certainty at some future moment(s). How-

ever, the agents have to sign at this stage a contingent contract, rather than waiting until the

uncertainty on their joint rewards/costs is removed. This contract should also specify the

protocol to handle the potential interval shares when the uncertainty on theoutcome of the

grand coalition is removed. We notice that such a protocol should be jointly chosen before

cooperation starts but used when the outcome of the grand coalition is knownwith certainty.

Depending on the dimension of the joint enterprise, the evaluation of the achieved profit or

cost, respectively, by the grand coalition and its distribution among players can be completely

done either in one step, after the joint enterprise is finished, or in severalsteps corresponding

to commonly agreed upon mile stones during the carrying out process.

We focus first on the case when the evaluation of the achieved reward ofthe whole cooper-

ating group takes place only once, after the joint enterprise is finished. Wedenote byR the

achieved joint financial outcome, and look at it as the realization of the valuew(N) of the

grand coalition in the cooperative interval game< N,w >. Notice that in case the cooperating

group of agents is a proper subset of the initial set of people or businesses considering coop-

eration under interval uncertainty, the interval game< N,w > is nothing else than a proper

subgame of the initial interval game arising from the analyzed situation with interval data.

The problem which agents face when the uncertainty onw(N) is removed is how to allocate

this total payoff R. At this stage, uncertainty on individual shares should be removed as well,

i.e., uncertainty-free individual shares should be determined based on the protocol and in

accordance with the individual interval shares specified in the binding contract.

To be more concrete, let< N,w > be the interval game, and letψ be the solution concept on

which the decision to start cooperation of all players inN was based. Here, we suppose that

the interval game is of reward type. The final uncertainty-free individual shares will depend

on Ji = ψi(w) ∈ I (R) for all i ∈ N and on the rewardR ∈ R achieved byN. The players have

to cope with the question: How to divideRaccording to the givenJ = (J1, . . . , Jn)? This issue

is solved using the protocol chosen before cooperation starts. In the sequel, we offer some

possible candidates for such protocols.

First, sinceR appears as a realization ofw(N), one can naturally expect that

w(N) ≤ R≤ w(N). (2.4.1)

One idea is to determineλ ∈ [0,1] such that

R= λw(N) + (1− λ)w(N), (2.4.2)
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and give to eachi ∈ N the payoff xi = λJi + (1− λ)Ji .

Note thatJi ≤ xi ≤ Ji and

∑

i∈N

xi = λ
∑

i∈N

Ji + (1− λ)
∑

i∈N

Ji = λw(N) + (1− λ)w(N) = R.

So,x is a contract-consistent and an efficient payoff vector corresponding toR.

Now, note that we can also writex = J + (1 − λ)(J − J). So, the payoff for player i ∈ N

can be given in the following manner: first (eventually even before cooperation starts), each

player i ∈ N is given the amountJi ; later on (whenR is known), the amountR−
∑

i∈N Ji

is distributed over the players proportionally with their residual contractualrights, Ji − Ji ,

i ∈ N. This is equivalent with using the bankruptcy rulePROPfor a standard bankruptcy

problem (E,d), where the estateE equalsR−
∑

i∈N Ji and the claimsdi with d1 ≤ . . . ≤ dn

are equal toJi − Ji for eachi ∈ N. Note that (2.4.1) implies thatE <
∑

i∈N di ; so, in this

case, we deal with a standard bankruptcy problem. Recall that the rulePROPis defined by

PROPi(E,d) := di
∑

j∈N d j
E for each bankruptcy problem (E,d) and alli ∈ N.

Furthermore, we can extend the previous bankruptcy approach by considering also other well-

known bankruptcy rules such as theconstrained equal awards (CEA) ruleand theconstrained

equal losses (CEL) rule. Recall that the bankruptcy ruleCEA is defined byCEAi(E,d) :=

min {di , α}, whereα ∈ [0,dn] is determined by
∑

i∈N CEAi(E,d) = E for each bankruptcy

problem (E,d) and all i ∈ N, while the bankruptcy ruleCEL is defined byCELi(E,d) :=

max{di − β,0}, whereβ ∈ [0,dn] is determined by
∑

i∈N CELi(E,d) = E, for each bankruptcy

problem (E,d) and all i ∈ N. For details about bankruptcy problems and rules we refer the

reader to Aumann and Maschler (1985), Curiel, Maschler and Tijs (1987), Kaminsky (2000),

O’Neill (1982) and Thomson (2003).

DenoteF := {CEA,CEL,PROP} and let f ∈ F. Then, we can divide the amountR achieved

by N by handing out the amountJi + fi(E,d) to each playeri ∈ N, whereE = R−
∑

i∈N Ji and

di = Ji − Ji for eachi ∈ N.

Next, we illustrate such one-step procedures.

Example 2.4.1 Let< N,w > be the three-person interval game with w(S) = [0,0] if 3 < S ,

w(∅) = w(3) = [0,0], w(1,3) = [20,30] and w(N) = w(2,3) = [50,90]. We consider that

the interval Shapley value was chosen as an interval solution concept and the decision of full

cooperation was taken. Then,Φ(w) = ([31
3,5], [181

3,35], [281
3,50]). Further, we assume that

the realization of w(N) is R= 60. First, note that condition (2.4.1) is satisfied. From (2.4.2)
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we obtainλ = 3
4 implying that the payoff vector is x= (33

4,221
2,333

4).

Now, we determine the individual uncertainty-free shares by using PROP,CEA and CEL to

distribute the amount R− (J1 + J2 + J3) = 10among the three agents. Note that we deal here

with a classical bankruptcy problem(E,d) with E = 10, d = (11
3,162

3,212
3). We obtain

PROP(E,d) CEA(E,d) CEL(E,d)

( 5
12,4

1
6,5

5
12) (12

3,4
1
6,4

1
6) (0,21

2,7
1
2).

Then, we can divide the amount R= 60achieved by N by handing out the payoffs(31
3,181

3,281
3)+

f (10, (11
3,162

3,212
3)), f ∈ F, shown in the next table:

f PROP(E,d) CEA(E,d) CEL(E,d)

x (33
4,221

2,333
4) (5,221

2,321
2) (31

3,205
6,355

6).

A comparison of the payoff vectors obtained using PROP, CEA and CEL can be useful in

practice to support the choice of the preferred bankruptcy rule to be implemented.

Next, we focus on the case when the evaluation of the achieved reward ofthe whole group

takes place along the carrying out process of the joint enterprise. LetT1, . . . ,TK be the time

moments when the financial progress is evaluated and, thus, the current valuation of the joint

outcome is known with certainty. We denote byRk the realization ofw(N) at momentTk,

wherek ∈ {1,2, . . . ,K}, and focus on the situation whenR1 < R2 < . . . < RK . We notice that

w(N) can be viewed as the realizationR0 of the grand coalitionN at the initial momentT0,

i.e., before starting cooperation. Clearly, the uncertainty about the outcomeof cooperation is

reduced at each time momentTk, k ∈ {1,2, . . . ,K − 1}, being completely removed at moment

Tk.

The problem here is to determine individual portionsp(k)
i , i ∈ N, at each momentTk, k ∈

{1,2, . . . ,K}, based on the history of the allocation process and on the financial fluctuations

of the joint outcome.

Thus, the participants face the problem of distributing among them at each time momentTk

the amountRk − Rk−1, whereR0 = w(N), by taking into account their adjusted individual

entitlements at stepk.

We assume that participants receive individual portionsp(0)
i = Ji , i ∈ N, at momentT0. Then,

the adjusted individual entitlements at momentT1 ared(1)
i = Ji − p(0)

i for i ∈ N. Now, we

describe our procedure more formally.
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Step 0. The portionp(0)
i = Ji is handed out to agenti, i ∈ N, obtaining the individual portions

p(1)
i , i ∈ N.

Step 1. The amountR1−R0 is distributed over agents inN by taking into account their adjusted

rightsd(1)
i , i ∈ N.

Step k. The amountRk−Rk−1 is distributed over agents inN according to adjusted rightsd(k)
i =

d(k−1)
i − p(k−1)

i , i ∈ N, obtaining the individual portionsp(k)
i , i ∈ N.

Each playeri ∈ N receives in total the amountxi = Ji +
∑K

k=1 p(k)
i . We note that each

bankruptcy rulef in F can be used in our multi-step procedure if in each step the division

problem at stake is bankruptcy-like, i.e., for allk ∈ {1,2, . . . ,K} we haveRk − Rk−1 > 0,

d(k)
i > 0 for all i ∈ N andRk − Rk−1 <

∑

i∈N d(k)
i .

Next, we illustrate our multi-step procedure using thePROPrule (which is one of the most

often used rule in real life).

Example 2.4.2 Consider the interval game and the Shapley value as in Example 2.4.1. But,

suppose there are 3 steps for evaluating the actual outcome of the grand coalition and con-

sider a scenario with R1 = 60;R2 = 65 and R3 = 80 (R0 = 50). The reader can easily check

that for this scenario, in each step we deal with a classical bankruptcy problem, for which we

use the classical bankruptcy rule PROP.

Step 0. The portion p(0) = (31
3,181

3,281
3) is handed out.

Step 1. The amount R1 − R0 = 10 is distributed over agents in N by taking into account their

adjusted rights d(1) = (11
3,162

3,212
3). Then, p(1) = ( 5

12,4
1
6,5

5
12).

Step 2. The amount R2−R1 = 5 is distributed over agents in N according to the adjusted rights

d(2) = (11
4,121

2,161
4). Then, p(2) = ( 5

24,2
1
12,2

17
24).

Step 3. The amount R3 − R2 = 15 is distributed over agents in N according to the adjusted

rights d(3) = (1 1
24,10 5

12,1313
24). Then, p(3) = (5

8,6
1
4,8

1
8).

Finally, x = (4 7
12,305

6,44 7
12).

Note that the assumptionR1 < R2 < . . . < RK corresponds to the case where the joint

outcomes have an increasing trend. However, it may happen to have ups and downs for
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the joint outcomes along the sequenceT1,T2 . . . ,TK , implying that at a certain momentTk,

k = 1,2, . . . ,K, the amount to be distributed among participants might be negative. Moreover,

at anyTk some individual entitlements could be negative, implying a redistribution of agents’

holdings. Therights-egalitarian rule(Herrero, Maschler and Villar (1999)) could be a good

candidate for solving the sequence of division problems obtained during our multi-stage pro-

cedure in the general case. This rule is defined byf RE
i (E,d) := di +

1
n(E −

∑

i∈N di), for each

division problem (E,d) and all i ∈ N. The rights-egalitarian rule divides equally among the

agents the difference between the total entitlement and the available amount, being suitable for

all circumstances of division problems. In particular, the amount to be divided can be either

positive or negative, the rights may have negative components, and the amount to be divided

may exceed or fall short of the aggregate rights. For these reasons therights-egalitarian rule is

always applicable in the multi-stage procedure. A negative amountRk−Rk−1 to be distributed

in some stepk of our procedure means that a deficit has to be shared. A negative right d(k)
i

for some playeri in some stepk of our procedure corresponds to a debt. If in some stepk the

amountRk − Rk−1 to be distributed is greater (respectively smaller) than the aggregate right
∑

i∈N d(k)
i , we cope with a problem of distributing a surplus (respectively sharing a deficit). We

leave as an exercise for the reader to apply the rights-egalitarian rule in the3-step procedure

of Example 2.4.2 as an alternative toPROP. Next, we illustrate some shortcomings of the

rights-egalitarian rule by considering the scenarioR1 = 85;R2 = 55 andR3 = 60 (i.e., ups and

downs) for the interval game in Example 2.4.2 with the interval Shapley value as the chosen

solution concept.

Step 0. The portionp(0) = (31
3,181

3,281
3) is handed out.

Step 1. The amountR1 − R0 = 35 is distributed over agents inN by taking into account their

adjusted rightsd(1) = (12
3,162

3,212
3). Then,p(1) = (0,15,20).

Step 2. The amountR2 − R1 = −30 is distributed over agents inN according to adjusted rights

d(2) = (12
3,1

2
3,1

2
3). Then,p(2) = (−10,−10,−10).

Step 3. The amountR3 − R2 = 5 is distributed over agents inN according to adjusted rights

d(3) = (112
3,112

3,112
3). Then,p(3) = (12

3,1
2
3,1

2
3).

Finally, x = (−5,25,40).
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Note that the final payoff for player 1 does not belong to [31
3,5]; moreover, it is negative.

The fact that individual shares obtained via the rights-egalitarian rule maylie outside of the

a priori intervals generated by the chosen solutionψ is a shortcoming of this rule. There is

a need to design division rules which are more suitable for our multi-step procedure than the

rights-egaliterian rule for the general case.

We conclude this section with some hints about how to handle abnormal cases regarding

the realization of the total outcome and briefly discuss rare cases where realizations of more

coalition values are known a posteriori.

Occasionally,R might not belong to the intervalw(N). Even in these abnormal cases the

distribution ofR among the players can be done consistently with the vectorJ of intervals

obtained by the jointly chosen interval solution concept and specified in the binding contract.

Our idea to handle interval solutions here is as follows:

• Suppose that the joint enterprise proved to be very profitable generatingR > w(N). In

this case, all agents benefit from the unexpected profit. Our proposalis each player

i ∈ N to receive the maximum expected from cooperation inN, Ji , and something

more which is calculated as equal share of the unexpected profit. In the formula, each

player i ∈ N will receive the amountJi +
1
n(R − w(N)). This is in the spirit of the

rights-egalitarian allocation rule from the classical division problems literature (Her-

rero, Mascher and Villar (1999)) withR in the role ofE anddi = Ji for eachi ∈ N, in

caseE >
∑

i∈N di .

• Suppose now that the joint enterprise was bankrupt and the amount left,R, is less than

w(N). In this case, we have a division problem under interval uncertainty ofclaims for

which rules in Branzei et al. (2004) can be helpful. We notice that the rights-egalitarian

rule can also be applied to this case because agents hold collective responsibility for the

losses; in formula, each playeri ∈ N will receive the amountJi +
1
n(R− w(N)).

An alternative approach for designing one-step and multi-step protocols isto use taxation

rules instead of bankruptcy rules by handing out firstJi and, then take away with the aid of a

taxation rule the deficitT =
∑

i∈N Ji − Rbased ondi = Ji − Ji for eachi ∈ N.

Now, we briefly discuss about how to handle interval solutions in rare cases where besides the

realization ofw(N) also realizations ofw(S) for someS ⊂ N are known. Suppose first that the

uncertainty on all outcomes is removed, implying that a selection of the initial interval game
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is available. Then, we can use for this selection a suitable classical solution todetermine a

posteriori uncertainty-free individual shares. Now, suppose that only the uncertainty of the

outcomes of a few coalitions (including the total outcome) was removed. In such situations,

we deal with a classical cooperative game with restricted cooperation and we can determine a

posteriori uncertainty-free individual shares by using for this game a suitable classical solution

concept.

Finally, in case the situation with interval data at stake is modeled as a cost interval game,

any interval solution concept defined on suitable subclasses of such games is a candidate, and

similar procedures with those described in this section are applicable.

Briefly summarizing, in Chapter 2, the model of cooperative interval games has been intro-

duced. Selection-type and interval-type solution concepts for cooperative interval games were

intensively studied. We have also focussed on the essential issue of handling interval solu-

tions. In the next chapter, we introduce the notion ofI-balancedness and give some results.
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CHAPTER 3

I-BALANCED INTERVAL GAMES

An interval gamew ∈ IGN is calledI-balanced, if for each balanced mapλ : 2N \ {∅} → R+

we have
∑

S∈2N\{∅} λ(S)w(S) 4 w(N). The class ofI-balanced interval games is denoted by

IBIGN and a gamew ∈ IGN for which all subgames areI-balanced is called atotally I-

balancedgame. The class of totallyI-balanced games is denoted byTIBIGN. In the follow-

ing proposition, a relation between balancedness in terms of selections andI-balancedness is

given.

Proposition 3.1 Let < N,w > be a strongly balanced interval game; then< N,w > is I-

balanced.

Proof. Take a balanced mapλ : 2N \ {∅} → R+. Then

w(N) ≥ w(N) ≥
∑

S∈2N\{∅}

λ(S)w(S) ≥
∑

S∈2N\{∅}

λ(S)w(S).

So,
∑

S∈2N\{∅} λ(S)w(S) 4 w(N). Hence,< N,w > is I-balanced. �

Note that the converse of the Proposition 3.1 is not true since there existsv ∈ S el(w) with

C(v) , ∅, implying that the coreC(w) is nonempty, but the interval core may be empty as we

learn from Example 2.3.2.

In the next theorem, we extend to interval games the well-known result of classical coop-

erative game theory that a gamev ∈ GN is balanced if and ony ifC(v) is nonempty (see

Theorem 1.32 in Branzei, Dimitrov and Tijs (2005)) by using the duality theorem from linear

programming theory.
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Theorem 3.1 Let w∈ IGN. Then the following two assertions are equivalent:

(i) C(w) , ∅;

(ii) The game w isI-balanced.

Proof. First, using Remark 2.3.1, we note thatC(w) , ∅ if and only if the following two

equalities hold simultaneously:

w(N) = min















∑

i∈N

I i |
∑

i∈S

I i ≥ w(S), for eachS ∈ 2N \ {∅}















, (3.1)

w(N) = min















∑

i∈N

I i |
∑

i∈S

I i ≥ w(S), for eachS















. (3.2)

We consider the matrixA whose columns are the characteristic vectorseS, S ∈ 2N \ {∅}, and

apply the duality theorem from linear programming theory (Dantzig (1963), Gale, Kuhn and

Tucker (1951)). Then, (3.1) holds true if and only if

w(N) = max



















∑

S∈2N\{∅}

λ(S)w(S)|
∑

S∈2N\{∅}

λ(S)eS = eN, λ ≥ 0



















, (3.3)

and (3.2) is satisfied if and only if

w(N) = max



















∑

S∈2N\{∅}

λ(S)w(S)|
∑

S∈2N\{∅}

λ(S)eS = eN, λ ≥ 0



















. (3.4)

Now, note that (3.3) holds if and only if

∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N), for eachλ ≥ 0 such that
∑

S∈2N\{∅}

λ(S)eS = eN, (3.5)

whereas (3.4) is guaranteed if and only if

∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N), for eachλ ≥ 0 such that
∑

S∈2N\{∅}

λ(S)eS = eN. (3.6)

Finally, we note that (3.5) and (3.6) together express theI-balancedness ofw. �

Let us note that the interval game in Example 2.3.2 is notI-balanced sincew(1) + w(2) <

w(1,2). According to Theorem 3.1 we conclude thatC(w) = ∅.

Remark 3.1 If C(w) is not empty, then C(w) and C(w) are both nonempty.
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We note that if all the worth intervals of the interval game< N,w > are degenerate intervals,

then strongly balancedness andI-balancedness of the game also correspond to the classical

balancedness.

The next proposition gives a description of the interval core of a unanimityinterval game and

shows that on the class of unanimity games the interval core and the interval dominance core

coincide. We defineK as follows:

K :=















(I1, . . . , In) ∈ I (R)N|
∑

i∈N

I i = J, I i ≥ 0,∀i ∈ N, I i = [0,0] for i ∈ N \ T















.

Proposition 3.2 Let< N,uT,J > be the unanimity interval game based on the coalition T and

the payoff interval J < [0,0]. Then,DC(uT,J) = C(uT,J) = K .

Proof. First, we prove that the interval core ofuT,J can be described as the setK . In order to

show thatC(uT,J) ⊂ K , let (I1, . . . , In) ∈ C(uT,J). Clearly, for eachi ∈ N we haveI i < uT,J({i})

anduT,J({i}) < [0,0]. So,I i ≥ 0 for all i ∈ N. Furthermore,
∑

i∈N I i = uT,J(N) = J. Since also
∑

i∈T I i < J, we conclude thatI i = 0 for i ∈ N \ T. So, (I1, . . . , In) ∈ K . In order to show that

K ⊂ C(uT,J), let (I1, . . . , In) ∈ K . So,I i ≥ 0 for all i ∈ N, I i = [0,0] if i ∈ N \ T,
∑

i∈N I i = J.

Then (I1, . . . , In) ∈ C(uT,J), because it also holds:

(i)
∑

i∈S I i < [0,0] = uT,J(S) if T \ S , ∅,

(ii)
∑

i∈S I i =
∑

i∈N I i = uT,J(N) = J = uT,J(S) if T ⊂ S.

Next, we prove thatC(uT,J) = DC(uT,J). Note first thatC(uT,J) ⊂ DC(uT,J) by Theorem 2.3.6.

We only have to prove thatDC(uT,J) ⊂ C(uT,J) or we need to show that for eachI < C(uT,J)

we haveI < DC(uT,J). TakeI < C(uT,J). Then, there is ak ∈ N \ T with Ik , [0,0]. Then,

I
′

domT I , whereI
′

i = [0,0] for i ∈ N \ T andI
′

i = I i +
1
|T | Ik for i ∈ T. So,I < DC(uT,J). �

Notice that Proposition 3.2 shows that unanimity interval games areI-balanced games.

Remark 3.2 From Proposition 3.2 we obtain that the coreC(uT,[1,1]) of the unanimity interval

game uT,J with J = [1,1] is

C(uT,[1,1]) =















I ∈ I (R)N|
∑

i∈N

I i = [1,1], I i ≥ 0,∀i ∈ N, I i = [0,0] for i ∈ N \ T















.
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We notice that the interval core of the unanimity interval game based on the degenerate inter-

val J = [1,1] corresponds to the core of the unanimity game in the traditional case because

all I i are degenerate for I∈ C(uT,[1,1]).

The next example illustrates the fact that the interval core might coincide with the interval

dominance core also for games which are not unanimity interval games.

Example 3.1 Consider the game w in Example 2.3.1. We will show thatDC(w) = C(w). Take

I = (I1, I2, I3) ∈ I(w). Note that if I1 , [0,0] then([0,0], I2+
1
2 I1, I3+

1
2 I1) dom{2,3} (I1, I2, I3).

So, I< DC(w). Similarly, if I2 , [0,0], then I< DC(w). Hence,DC(w) ⊂ {([0,0], [0,0], J)} =

C(w) by Example 2.3.1. On the other hand we know, in view of Theorem 2.3.6, thatC(w) ⊂

DC(w). So, we conclude thatDC(w) = C(w).

In the next proposition, we connect theI-balancedness of< N,w > with the balancedness of

its border games.

Proposition 3.3 If < N,w > is I-balanced, then the border games< N,w > and< N,w >

are balanced.

Proof. Let< N,w > beI-balanced. Then, for each balanced mapλ : 2N \ {∅} → R+ we have
∑

S∈2N\{∅} λ(S)w(S) 4 w(N) implying that
∑

S∈2N\{∅} λ(S)w(S) ≤ w(N) and
∑

S∈2N\{∅} λ(S)w(S) ≤ w(N), which express the balancedness of the border games ofw. �

We define thesquare interval coreC� : IGN ։ I (R)N by C�(w) := C(w)�C(w) for each

w ∈ IGN. We notice that a necessary condition for the non-emptiness of the squareinterval

core is the balancedness of the border games.

Proposition 3.4 Let w∈ IBIGN. Then,C(w) = C�(w).

Proof. (I1, . . . , In) ∈ C(w), if and only if (I1, . . . , In) ∈ C(w) and (I1, . . . , In) ∈ C(w), if and

only if (I1, . . . , In) = (I1, . . . , In)�(I1, . . . , In) ∈ C�(w). �

We define thesquare Weber setW� : IGN ։ I (R)N byW�(w) := W(w)�W(w) for each

w ∈ IGN.
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Theorem 3.2 Let w∈ IGN. Then,C(w) ⊂ W�(w).

Proof. If C(w) = ∅ the inclusion holds true. SupposeC(w) , ∅ and let (I1, . . . , In) ∈ C(w).

Then, by Proposition 3.4, (I1, . . . , In) ∈ C(w) and (I1, . . . , In) ∈ C(w), and, sinceC(v) ⊂W(v)

for eachv ∈ GN, we obtain (I1, . . . , In) ∈ W(w) and (I1, . . . , In) ∈ W(w). Hence, we get

(I1, . . . , In) ∈ W�(w). �

In the sequel, we introduce the notion of (interval)population monotonic allocation scheme

(pmas)for totallyI-balanced interval games, which is a direct extension of pmas for classical

cooperative games (Sprumont (1990)).

We say that for a gamew ∈ TIBIGN a schemeA = (AiS)i∈S,S∈2N\{∅} with AiS ∈ I (R)N is a

pmas ofw if

(i)
∑

i∈S AiS = w(S) for all S ∈ 2N \ {∅},

(ii) AiS 4 AiT for all S,T ∈ 2N \ {∅} with S ⊂ T and for eachi ∈ S.

As a conclusion in this chapter, we have put the emphasis onI-balanced interval games. We

proved that the interval core of a cooperative interval game is nonempty if and only if the game

is I-balanced. The notion of population monotonic allocation scheme (pmas) in the interval

setting became introduced. The next chapter deals with size monotonic interval games.
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CHAPTER 4

SIZE MONOTONIC INTERVAL GAMES

We call a game< N,w > size monotonicif < N, |w| > is monotonic, i.e.,|w| (S) ≤ |w| (T) for

all S,T ∈ 2N with S ⊂ T. For further use we denote byS MIGN the class of size monotonic

interval games with player setN.

We notice that size monotonic games may have an empty interval core. In this chapter, we in-

troduce marginal operators on the class of size monotonic interval games, define the Shapley

value and the Weber set on this class of games.

Denote byΠ(N) the set of permutationsσ : N → N of N. Let w ∈ S MIGN. We intro-

duce the notions ofinterval marginal operatorcorresponding toσ, denoted bymσ, and of

interval marginal vectorof w with respect toσ, denoted bymσ(w). The marginal vector

mσ(w) corresponds to a situation, where the players enter a room one by one inthe order

σ(1), σ(2), . . . , σ(n), and each player is given the marginal contribution he/she creates by en-

tering. If we denote the set of predecessors ofi in σ by Pσ(i) :=
{

r ∈ N|σ−1(r) < σ−1(i)
}

,

whereσ−1(i) denotes the entrance number of playeri, thenmσ
σ(k)(w) = w(Pσ(σ(k))∪{σ(k)})−

w(Pσ(σ(k))) or in shortmσ
i (w) = w(Pσ(i)∪{i})−w(Pσ(i)). We notice thatmσ(w) is an efficient

interval payoff vector for eachσ ∈ Π(N). For size monotonic games< N,w >, w(T)−w(S) is

defined for allS,T ∈ 2N with S ⊂ T since|w(T)| = |w| (T) ≥ |w| (S) = |w(S)|. Now, we notice

that for eachw ∈ S MIGN the interval marginal vectorsmσ(w) are defined for eachσ ∈ Π(N),

because the monotonicity of|w| impliesw(S ∪ {i}) −w(S ∪ {i}) ≥ w(S) −w(S), which can be

rewritten asw(S ∪ {i}) − w(S) ≥ w(S ∪ {i}) − w(S). So,w(S ∪ {i}) − w(S) is defined for each

S ⊂ N andi < S. The following example illustrates that for interval games which are not size

monotonic it might happen that some interval marginal vectors do not exist.
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Example 4.1 Let< N,w > be the interval game with N= {1,2}, w(1) = [1,3],w(2) = [0,0]

and w(1,2) = [2,31
2]. This game is not size monotonic. Note that m(12)(w) is not defined

because w(1,2)− w(1) is undefined since|w(1,2)| < |w(1)|.

Now, we straightforwardly extend for size monotonic interval games two important solution

concepts in cooperative game theory which are based on marginal worth vectors: the Shapley

value (Shapley (1953)) and the Weber set (Weber (1988)).

Theinterval Weber setW on the class of size monotonic interval games is defined byW(w) :=

conv{mσ(w)|σ ∈ Π(N)} for eachw ∈ S MIGN. We notice that for traditional TU-games we

haveW(v) , ∅ for all v ∈ GN, while for arbitrary interval games it might not exist (in case none

of the interval marginal vectorsmσ(w) is defined). Clearly,W(w) , ∅ for all w ∈ S MIGN.

The interval Shapley valueΦ : S MIGN → I (R)N is defined by

Φ(w) :=
1
n!

∑

σ∈Π(N)

mσ(w), for eachw ∈ S MIGN. (4.1)

We can write (4.1) as follows

Φi(w) =
1
n!

∑

σ∈Π(N)

(w(Pσ(i) ∪ {i}) − w(Pσ(i))). (4.2)

The terms after the summation sign in (4.2) are of the formw(S ∪ {i}) − w(S), whereS is a

subset ofN not containingi.

Note that there are exactly|S|!(n−1− |S|)! orderings for which one hasPσ({i}) = S. The first

factor,|S|!, corresponds to the number of orderings ofS and the second factor, (n− 1− |S|)!,

is just the number of orderings ofN \ (S ∪ {i}). Using this, we can rewrite (4.2) as

Φi(w) =
∑

S:i<S

|S|!(n− 1− |S|)!
n!

(w(S ∪ {i}) − w(S))). (4.3)

Note that
∑

S:i<S

|S|!(n− 1− |S|)!
n!

= 1. (4.4)

Proposition 4.1 The interval Shapley valueΦ : S MIGN → I (R)N is additive.

Proof. First, we show that for eachσ ∈ Π(N) the interval marginal operatormσ : S MIGN →

I (R)N is additive, i.e., for allw1,w2 ∈ S MIGN, mσ(w1 + w2) = mσ(w1) +mσ(w2).

46



Letσ ∈ Π(N) andk ∈ N. Then,

mσ
σ(k)(w1 + w2) = (w1 + w2)(σ(1), . . . , σ(k))

− (w1 + w2)(σ(1), . . . , σ(k− 1))

= w1(σ(1), . . . , σ(k)) − w1(σ(1), . . . , σ(k− 1))

+ w2(σ(1), . . . , σ(k)) − w2(σ(1), . . . , σ(k− 1))

= mσ
σ(k)(w1) +mσ

σ(k)(w2).

Now, using the additivity property of interval marginal operators we obtainthatΦ : S MIGN →

I (R)N is anadditivemap, i.e.,

Φ(w1 + w2) =
1
n!

∑

σ∈Π(N)

mσ(w1 + w2)

=
1
n!

∑

σ∈Π(N)

mσ(w1) +
1
n!

∑

σ∈Π(N)

mσ(w2)

= Φ(w1) + Φ(w2),

for all w1,w2 ∈ S MIGN. �

Let w ∈ S MIGN andi, j ∈ N. Then,i and j are calledsymmetric players, if w(S∪{ j})−w(S) =

w(S∪ {i})−w(S), for eachS with i, j < S. We leave the proof of the following proposition to

the reader.

Proposition 4.2 Let i, j ∈ N be symmetric players in w∈ S MIGN. Then,Φi(w) = Φ j(w).

Let w ∈ S MIGN andi ∈ N. Then,i is called adummy playerif w(S ∪ {i}) = w(S) + w({i}),

for eachS ∈ 2N\{i}.

Proposition 4.3 The interval Shapley valueΦ : S MIGN → I (R)N has the dummy player

property, i.e.Φi(w) = w({i}) for all w ∈ S MIGN and for all dummy players i in w.

Proof. This follows from (4.3) by taking (4.4) into account. �
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Proposition 4.4 The interval Shapley valueΦ : S MIGN → I (R)N is efficient, i.e.,
∑

i∈NΦi(w) =

w(N).

Proof. First, we show that for eachσ ∈ Π(N) the interval marginal operatormσ : S MIGN →

I (R)N is efficient, i.e.
∑

i∈N mσ
i (w) = w(N).

Let w ∈ S MIGN andσ ∈ Π(N). Then,

∑

i∈N

mσ
i (w) =

N
∑

k=1

mσ
σ(k)(w)

= w(σ(1))+
n
∑

k=2

w(σ(1), . . . , σ(k)) − w(σ(1), . . . , σ(k− 1))

= w(σ(1))+ w(σ(1), . . . , σ(n)) − w(σ(1)) = w(N).

Now, using the efficiency of interval marginal operators, we obtain thatΦ : S MIGN → I (R)N

is an efficient map, i.e.,
∑

i∈N

Φi(w) =
1
n!

∑

i∈N

∑

σ∈Π(N)

mσ
i (w) =

1
n!

∑

σ∈Π(N)

∑

i∈N

mσ
i (w) =

1
n!

n!w(N) = w(N),

for eachw ∈ S MIGN. �

Proposition 4.5 Let w ∈ S MIGN and letσ ∈ Π(N). Then, mσi (w) =
[

mσ
i (w),mσ

i (w)
]

for all

i ∈ N.

Proof. By definition,

mσ(w) = (w(σ(1)),w(σ(1), σ(2))− w(σ(1)), . . . ,w(σ(1), . . . , σ(n)) − w(σ(1), . . . , σ(n− 1))),

and

mσ(w) = (w(σ(1)),w(σ(1), σ(2))− w(σ(1)), . . . ,w(σ(1), . . . , σ(n)) − w(σ(1), . . . , σ(n− 1))).

Now, we prove thatmσ(w) − mσ(w) ≥ 0. Since|w| = w − w is a classical convex game, we

have for eachk ∈ N

mσ
σ(k)(w) −mσ

σ(k)(w) = (w− w)(σ(1), . . . , σ(k)) − (w− w)(σ(1), . . . , σ(k− 1))

= |w| (σ(1), . . . , σ(k)) − |w| (σ(1), . . . , σ(k− 1)) ≥ 0,

where the inequality follows from the monotonicity of|w|. So,mσ
i (w) ≤ mσ

i (w) for all i ∈ N,

and

([

mσ
i (w),mσ

i (w)
])

i∈N
= (w(σ(1)), . . . ,w(σ(1), . . . , σ(n)) − w(σ(1), . . . , σ(n− 1))) = mσ(w).

�
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Proposition 4.6 Let w ∈ S MIGN and letσ ∈ Π(N). Then,Φi(w) =
[

φi(w), φi(w)
]

for all

i ∈ N.

Proof. From (4.1) and Proposition 4.5 we have

Φi(w) =
1
n!

∑

σ∈Π(N)

mσ
i (w) =

1
n!

∑

σ∈Π(N)

[

mσ
i (w),mσ

i (w)
]

=

















1
n!

∑

σ∈Π(N)

mσ
i (w),

1
n!

∑

σ∈Π(N)

mσ
i (w)

















=
[

φi(w), φi(w)
]

.

�

This chapter has been devoted to size monotonic games. The Weber set andthe Shapley value

have been defined on this class, and their relations were studied. The next chapter will conside

intensively an interesting class of cooperative interval games, called convex interval games.
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CHAPTER 5

CONVEX INTERVAL GAMES

This chapter is based on Alparslan Gök, Branzei and Tijs (2008b) and Branzei, Tijs and

Alparslan G̈ok (2008a).

5.1 DEFINITION AND RELATIONS WITH OTHER CLASSES OF GAMES

We introduce the notion of convex interval game and denote byCIGN the class of convex

interval games with player setN. We call a gamew ∈ IGN convexif < N,w > is supermodular

and|w| (S) + |w| (T) ≤ |w| (S ∪ T) + |w| (S ∩ T) for all S,T ∈ 2N.

An interval game< N,w > is calledconcave, if < N,w > is submodular and|w| (S)+ |w| (T) ≥

|w| (S ∪ T) + |w| (S ∩ T) for all S,T ∈ 2N.

Next we give as a motivating example a situation with an economic flavour leadingto a convex

interval game.

Example 5.1.1 Let N= {1,2, . . . ,n} and let f : [0,n] → I (R) be such that f(x) = [ f1(x), f2(x)]

for each x∈ [0,n] and f(0) = [0,0]. Suppose that f1 : [0,n] → R, f2 : [0,n] → R and

( f2 − f1) : [0,n] → R are convex monotonic increasing functions. Then, we can construct a

corresponding interval game w: 2N → I (R) such that w(S) = f (|S|) = [ f1(|S|), f2(|S|)] for

each S∈ 2N. It is easy to show that w is a convex interval game with the symmetry property

w(S) = w(T) for each S,T ∈ 2N with |S| = |T |.

We can regard< N,w > as a production game if we interpret f(s) for s ∈ N as the interval

reward which s players in N can produce by working together.
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Convex games are useful for modeling economic and OR situations like public good situa-

tions (Moulin (1988)) and sequencing situations (Curiel, Pederzoli and Tijs (1989)). In case

where the parameters determining such situations are not numbers but intervals, under cer-

tain conditions also convex interval games may appear. Also, special bankruptcy situations

(O’Neill (1982), Aumann and Maschler (1985) and Curiel, Maschler and Tijs (1987)) when

the estate of the bank and the claims are intervals give rise in a natural way to convex interval

games. Some economic and OR situations with interval data lead to concave interval games

instead of convex interval games.

Note that the nonempty setCIGN is a subcone ofIGN. The next proposition shows that tra-

ditional convex games can in a natural way be embedded into the class of convex interval

games. The proof of the next proposition is straightforward.

Proposition 5.1.1 If v ∈ GN is convex, then the corresponding game w∈ IGN which is

defined by w(S) := [v(S), v(S)] for each S∈ 2N is also convex.

Let us note the fact that< N, |w| > is supermodular implies that< N, |w| > is monotonic,

because for eachS,T ∈ 2N with S ⊂ T we have

|w| (T) + |w| (∅) ≥ |w| (S) + |w| (T \ S),

and from this inequality follows|w| (S) ≤ |w| (T) since|w| (T \ S) ≥ 0. So,CIGN ⊂ S MIGN.

Then we obtain from Proposition 4.5 thatmσ
i (w) =

[

mσ
i (w),mσ

i (w)
]

for eachw ∈ CIGN,

σ ∈ Π(N) and for alli ∈ N. From Proposition 4.6 we obtain that for eachw ∈ CIGN we have

Φi(w) =
[

φi(w), φi(w)
]

for all i ∈ N.

5.2 CHARACTERIZATIONS OF CONVEX INTERVAL GAMES

Proposition 5.2.1 gives some characterizations of supermodular and convex gamesw ∈ IGN

based on their related length game|w| ∈ GN and border gamesw,w ∈ GN.

Proposition 5.2.1 Let w ∈ IGN and its related games|w| ,w,w ∈ GN. Then the following

assertions hold:

(i) A game< N,w > is supermodular if and only if its border games< N,w > and< N,w >

are convex.
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(ii) A game< N,w > is convex if and only if its length game< N, |w| > and its border

games< N,w >, < N,w > are convex.

(iii) A game< N,w > is convex if and only if its border game< N,w > and the game

< N,w− w > are convex.

Proof.

(i) This assertion follows from formula (2.1.1).

(ii) By definition < N,w > is convex if and only if< N,w > and< N, |w| > are both

supermodular. By(i), < N,w > is supermodular if and only if its border games are

convex. Now, since supermodularity of< N, |w| > is equivalent with its convexity, we

conclude that< N,w > is convex if and only if< N,w >, < N,w > and< N, |w| > are

convex.

(iii) This assertion follows easily from(ii) by noting that< N, |w| >, < N,w > and< N,w >

are convex if and only if< N,w− w > and< N,w > are convex becausew = w+ |w|.

�

Remark 5.2.1 First, we note that (2.1.3) is equivalent to the superadditivity of the lower

game and the upper game. Additionally, notice that, by Proposition 5.2.1, if w∈ CIGN, then

< N,w > is superadditive; further,< N, |w| >, < N,w > and< N,w > are superadditive.

Proposition 5.2.2 gives some characterizations of submodular and concave gamesw ∈ IGN

based on their related length game|w| ∈ GN and border gamesw,w ∈ GN.

Proposition 5.2.2 Let< N,w > be an interval game. Then the following assertions hold:

(i) A game< N,w > is submodular if and only if< N,w > and< N,w > are concave (or

submodular).

(ii) A game< N,w > is concave if and only if< N, |w| > and< N,w >, < N,w > are

concave (or submodular).
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(iii) A game< N,w > is concave if and only if< N,w > and< N, |w| > are concave (or

submodular).

Proof.

(i) This assertion follows from formula (2.1.2).

(ii) By definition< N,w > is concave if and only if< N,w > and< N, |w| > are both

submodular. By(i), < N,w > is submodular if and only if its border games are concave

(or submodular). Now, since submodularity of< N, |w| > is the same with its concavity,

we conclude that< N,w > is concave if and only if< N,w >, < N,w > and< N, |w| >

are concave (or submodular).

(iii) This assertion follows easily from(ii) by noting that< N, |w| >, < N,w > and< N,w >

are concave (or submodular) if and only if< N, |w| > and< N,w > are concave (or

submodular) becausew = w+ |w|.

�

The next example shows that a supermodular interval game is not necessarily convex.

Example 5.2.1 Let < N,w > be the two-person interval game with w(∅) = [0,0], w(1) =

w(2) = [0,1] and w(1,2) = [3,4]. Here,< N,w > is supermodular and the border games are

convex, but|w| (1)+ |w| (2) = 2 > 1 = |w| (1,2)+ |w| (∅). Hence,< N,w > is not convex.

The next example shows that an interval game whose length game is supermodular is not

necessarily convex.

Example 5.2.2 Let < N,w > be the three-person interval game with w(i) = [1,1] for each

i ∈ N, w(N) = w(1,3) = w(1,2) = w(2,3) = [2,2] and w(∅) = [0,0]. Here,< N,w > is not

convex, but< N, |w| > is supermodular, since|w| (S) = 0, for each S∈ 2N.

Interesting examples of convex interval games are unanimity interval games.Clearly,

< N,
∣

∣

∣uT,J

∣

∣

∣ > is supermodular.
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The supermodularity of< N,uT,J > can be checked by considering the following case study:

T ⊂ A,T ⊂ B

T ⊂ A,T 1 B

T 1 A,T ⊂ B

T 1 A,T 1 B

uT,J(A∪ B) uT,J(A∩ B) uT,J(A) uT,J(B)

J J J J

J [0,0] J [0,0]

J [0,0] [0,0] J

J or [0,0] [0,0] [0,0] [0,0].

Theorem 5.2.3 Let w ∈ IGN be such that|w| ∈ GN is supermodular. Then, the following

three assertions are equivalent:

(i) w ∈ IGN is convex.

(ii) For all S1,S2,U ∈ 2N with S1 ⊂ S2 ⊂ N \ U we have

w(S1 ∪ U) − w(S1) 4 w(S2 ∪ U) − w(S2). (5.2.1)

(iii) For all S1,S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} we have

w(S1 ∪ {i}) − w(S1) 4 w(S2 ∪ {i}) − w(S2).

Proof. We show (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i). Suppose that (i) holds. To prove (ii) take

S1,S2,U ∈ 2N with S1 ⊂ S2 ⊂ N \ U. From (2.1.1) with S1 ∪ U in the role ofS andS2 in

the role ofT we obtain (5.2.1) by noting thatS∪T = S2∪U, S∩T = S1. Hence, (i) implies

(ii).

That (ii) implies (iii) is straightforward (takeU = {i}).

Now, suppose that (iii) holds. To prove (i) takeS,T ∈ 2N. Clearly, (2.1.1) holds if S ⊂ T.

Suppose thatT \ S consists of the elementsi1, . . . , ik and letD = S ∩ T. Then, from (iii )

follows that

w(S) − w(S ∩ T) = w(D ∪ {i1}) − w(D)

+

k
∑

s=2

w(D ∪ {i1, . . . , is}) − w(D ∪ {i1, . . . , is−1})

4 w(T ∪ {i1}) − w(T)

+

k
∑

s=2

w(T ∪ {i1, . . . , is}) − w(T ∪ {i1, . . . , is−1})

= w(S ∪ T) − w(T),
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for eachS ∈ 2N. �

We notice that the characterizations of convex interval games in Theorem 1.2.2 are inspired

by Shapley (1971). The next proposition provides additional characterizations of concave

interval games.

Proposition 5.2.4 Let w ∈ IGN be such that|w| ∈ GN is submodular. Then, the following

three assertions are equivalent:

(i) w ∈ IGN is concave.

(ii) For all S1,S2,U ∈ 2N with S1 ⊂ S2 ⊂ N \ U we have

w(S1 ∪ U) − w(S1) < w(S2 ∪ U) − w(S2).

(iii) For all S1,S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} we have

w(S1 ∪ {i}) − w(S1) < w(S2 ∪ {i}) − w(S2).

Proof. To prove (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i) we simply replace the inequality sign4 in

the proof of Theorem 5.2.3 by the inequality sign<. �

A characterization of convex interval games with the aid of interval marginalvectors is given

in the next theorem.

Theorem 5.2.5 Let w∈ IGN. Then, the following assertions are equivalent:

(i) w is convex.

(ii) |w| is supermodular and mσ(w) ∈ C(w) for all σ ∈ Π(N).

Proof. (i) ⇒ (ii) Let w ∈ CIGN, letσ ∈ Π(N) and takemσ(w). Clearly,
∑

k∈N mσ
k (w) = w(N).

To prove thatmσ(w) ∈ C(w) we have to show that forS ∈ 2N,
∑

k∈S mσ
k (w) < w(S).
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Let S = {σ(i1), σ(i2), . . . , σ(ik)} with i1 < i2 < . . . < ik. Then,

w(S) = w(σ(i1)) − w(∅)

+

k
∑

r=2

(w(σ(i1), σ(i2), . . . , σ(ir )) − w(σ(i1), σ(i2), . . . , σ(ir−1)))

4 w(σ(1), . . . , σ(i1)) − w(σ(1), . . . , σ(i1 − 1))

+

k
∑

r=2

(w(σ(1), σ(2), . . . , σ(ir )) − w(σ(1), σ(2), . . . , σ(ir − 1)))

=

k
∑

r=1

mσ
σ(ir )

(w) =
∑

k∈S

mσ
k (w),

where the inequality follows from Theorem 5.2.3(iii) applied toi = σ(ir ) and

S1 := {σ(i1), σ(i2), . . . , σ(ir−1)} ⊂ S2 := {σ(1), σ(2), . . . , σ(ir − 1)}

for r ∈ {1,2, . . . , k}. Further, by convexity ofw, |w| is supermodular.

(ii) ⇒ (i) Frommσ(w) ∈ C(w) for all σ ∈ Π(N) it follows thatmσ(w) ∈ C(w) andmσ(w) ∈

C(w) for all σ ∈ Π(N). Now, by Theorem 1.2.2 we obtain that< N,w > and< N,w > are

convex games. Since< N, |w| > is convex by hypothesis, we learn from Proposition 5.2.1(ii)

that< N,w > is convex. �

However, the well-known result in Theorem 1.2.2(v) can not be extended to convex interval

games as we prove in the following proposition.

Proposition 5.2.6 Let w∈ CIGN. Then,W(w) ⊂ C(w).

Proof. By Theorem 5.2.5 we havemσ(w) ∈ C(w) for eachσ ∈ Π(N). Now, we use the

convexity ofC(w). �

The following example shows that the inclusion in Proposition 5.2.6 might be strict,i.e., with

,, different from Theorem 1.2.2(v).

Example 5.2.3 Let N = {1,2} and let w : 2N → I (R) be defined by w(1) = w(2) = [0,1]

and w(1,2) = [2,4]. This game is convex. Further, m(1,2)(w) = ([0,1], [2,3]) and m(2,1)(w) =

([2,3], [0,1]), belong to the interval coreC(w) andW(w) = conv
{

m(1,2)(w),m(2,1)(w)
}

. Notice

that ([ 1
2,1

3
4], [11

2,2
1
4]) ∈ C(w) and there is noα ∈ [0,1] such that

αm(1,2)(w) + (1− α)m(2,1)(w) = ([
1
2
,1

3
4

], [1
1
2
,2

1
4

]).

Hence,W(w) ⊂ C(w) andW(w) , C(w).
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SinceΦ(w) ∈ W(w) for eachw ∈ S MIGN, by Proposition 5.2.6 we haveΦ(w) ∈ C(w) for

eachw ∈ CIGN.

From Theorem 3.2 and Proposition 5.2.6 we obtain thatW(w) ⊂ W�(w) for eachw ∈ CIGN.

This inclusion might be strict as Example 5.2.3 illustrates.

Given a game< N,w > and a coalitionT ⊂ N, theT-marginal interval game wT : 2N\T →

I (R) is defined bywT(S) := w(S ∪ T) − w(T) for eachS ⊂ N \ T.

Proposition 5.2.7 Let < N,w > be a convex game and T⊂ N. Then,< N \ T,wT > (see

Section 2.1) is a convex game.

Proof. Let w ∈ CIGN. Then,< N,w > and< N, |w| > are supermodular. From this we obtain

the supermodularity of< N \ T,wT > as follows. TakeS1,S2 ⊂ N \ T. Then,

wT(S1 ∪ S2) + wT(S1 ∩ S2) = w(S1 ∪ S2 ∪ T) − w(T) + w((S1 ∩ S2) ∪ T) − w(T)

= w((S1 ∪ T) ∪ (S2 ∪ T)) − w(T)

+ w((S1 ∪ T) ∩ (S2 ∪ T)) − w(T)

< w(S1 ∪ T) − w(T) + w(S2 ∪ T) − w(T)

= wT(S1) + wT(S2).

Similarly, the supermodularity (convexity) of< N \T,
∣

∣

∣wT
∣

∣

∣ > follows from the supermodular-

ity (convexity) of< N, |w| >. Hence,wT ∈ CIGN\T . �

Theorem 5.2.8 Let w∈ IGN. Then, the following assertions are equivalent:

(i) w ∈ CIGN.

(ii) < N \ T,wT > is superadditive for each T⊂ N.

Proof. First, we notice that by Proposition 5.2.1w ∈ CIGN if and only if < N,w >, < N,w >

and< N, |w| > are convex games. Now, using the characterization of classical convexgames

based on the superadditivity of marginal games (Branzei, Dimitrov and Tijs (2004), Martinez-

Legaz (1997, 2006)), we obtain that< N,w >, < N,w > and< N, |w| > are convex if and

only if for eachT ⊂ N, < N \ T,wT >, < N \ T,wT > and< N \ T,
∣

∣

∣wT
∣

∣

∣ > are superadditive

games. Further, by Proposition 5.2.1 and Remark 5.2.1 this is equivalent to thesuperadditivity

of < N \ T,wT > for eachT ⊂ N. �
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Proposition 5.2.9 Each convex interval game w∈ IGN is an exact interval game.

Proof. First, the convexity ofw ∈ IGN implies by Theorem 5.2.5 that|w| is supermodular

(and consequently monotonic) andmσ(w) ∈ C(w) for eachσ ∈ Π(N). So, letS = {s1, . . . , sk}

andσ ∈ Π(N) be such thatσ(r) = sr for r = 1, . . . , k. Then,
∑

i∈S mσ
i (w) = w(S). Further,

the convexity ofw ∈ IGN implies that< N, |w| > is convex and, consequently, it is anexact

game, i.e., for eachS ∈ 2N there existsx ∈ C(|w|) such that
∑

i∈S xi = |w| (S). �

Remark 5.2.2 For a given S∈ 2N and I = (I1, . . . , In) ∈ C(w),
∑

i∈S I i = w(S) also delivers

(I1, . . . , In) ∈ C(w), (I1, . . . , In) ∈ C(w) and(I1− I1, . . . , In− In) ∈ C(|w|), with
∑

i∈S I i = w(S),
∑

i∈S I i = w(S) and
∑

i∈S(I i− I i) = |w| (S). This can be used for extending the characterization

of Biswas et al. (1999) to interval games.

Theorem 5.2.10Let w∈ IGN. Then, the following assertions are equivalent:

(i) w ∈ CIGN.

(ii) < T,wT > is exact for each T⊂ N.

Proof. (i) ⇒ (ii) follows from Proposition 5.2.9 because each subgame of a convex interval

game is convex and, hence, exact.

(ii) ⇒ (i) From the exactness of each interval subgame< T,wT > we obtain that< N,wT >,

< N,wT > and< N, |w|T > are exact games for eachT ⊂ N. Now, we use the result of Biswas

et al. (1999) and obtain that the games< N,w >, < N,w > and< N, |w| > are all convex. By

Proposition 5.2.1 we obtain thatw ∈ CIGN. �

Now, we notice thatCIGN ⊂ IBIGN and obtain thatC(w) = C�(w) for eachw ∈ CIGN.

The two theorems in the next section are very interesting because they extend for interval

games, with the square interval Weber set in the role of the Weber set, the well-known results

of classical cooperative game theory thatC(v) ⊂ W(v) for eachv ∈ GN (Weber (1988)) and

C(v) = W(v) if and only if v is convex (Ichiishi (1981)). We cope with similar issues in the

interval setting. Note thatC�(w) =W�(w) if w ∈ CIGN.
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5.3 PROPERTIES OF INTERVAL SOLUTION CONCEPTS

Theorem 5.3.1 Let w∈ IBIGN. Then, the following assertions are equivalent:

(i) w is convex.

(ii) |w| is supermodular andC(w) =W�(w).

Proof. By Proposition 5.2.1,w is convex if and only if|w| ,w andw are convex. Clearly, the

convexity of|w| is equivalent with its supermodularity. Further,w andw are convex if and only

if W(w) = C(w) andW(w) = C(w). These equalities are equivalent withW�(w) = C�(w).

Finally, sincew isI-balanced by hypothesis, we have by Proposition 3.4 thatC(w) =W�(w).

�

Now, we define thesquare interval dominance coreDC� : IGN ։ I (R)N by

DC�(w) := DC(w)�DC(w)

for eachw ∈ IGN and notice that for convex interval games we have

DC�(w) = DC(w)�DC(w) = C(w)�C(w) = C�(w) = C(w),

where the second equality follows from the well-known result in the theory of TU-games that

for convex games the core and the dominance core coincide, and the last equality follows

from Proposition 3.4. FromDC�(w) = C(w) for eachw ∈ CIGN andC(w) ⊂ DC(w) for each

w ∈ IGN we obtainDC(w) ⊃ DC�(w) for eachw ∈ CIGN. We notice that this inclusion

might be strict (see Example 2.3.3).

Finally, we will show that the interval core is additive on the class of convexinterval games

with the aid of Theorem 5.3.1, which is inspired by Dragan, Potters and Tijs (1989).

Proposition 5.3.2 The interval coreC : CIGN ։ I (R)N is an additive map.

Proof. The interval core is a superadditive solution concept for all interval games (Proposition

2.3.5). Therefore, we need to show the subadditivity of the interval core. We have to prove

that C(w1 + w2) ⊂ C(w1) + C(w2). Note thatmσ(w1 + w2) = mσ(w1) + mσ(w2) for each
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w1,w2 ∈ CIGN. By definition of the square interval Weber set we haveW�(w1 + w2) =

W(w1 + w2)�W(w1 + w2). By Theorem 5.3.1, we therefore learn:

C(w1 + w2) =W�(w1 + w2) ⊂ W�(w1) +W�(w2) = C(w1) + C(w2).

�

5.4 POPULATION INTERVAL MONOTONIC ALLOCATION SCHEMES

In this section, we focus on pmas on the class of convex interval games. Notice that the totalI-

balancedness of an interval game is a necessary condition for the existence of a pmas for that

game. A sufficient condition is the convexity of the interval game. Recall that all subgames

of a convex interval game are also convex, and that for a gamew ∈ CIGN an imputation

I = (I1, . . . , In) ∈ I(w) is calledpmas extendableif there exists a pmasA = (AiS)i∈S,S∈2N\{∅}

such thatAiN = I i for eachi ∈ N (see Chapter 3). In the sequel, we show that the interval

Shapley value has the population monotonicity property and, consequently,it generates a

pmas.

Proposition 5.4.1 The interval Shapley value has the population monotonicity property on

the class of convex interval games.

Proof. Let w ∈ CIGN. We have to prove that for allS,T ∈ 2N such thatS ⊂ T and for

eachi ∈ N the relationΦi(S,wS) 4 Φi(T,wT) holds, where (S,wS) and (T,wT) are the

corresponding subgames. We know thatΦi(w) = [φi(w), φi(w)] for eachw ∈ CIGN and for

all i ∈ N. Further, the fact that the classical Shapley valueφ has the population monotonicity

property onCGN implies that for eachS,T ∈ 2N such thatS ⊂ T and for eachi ∈ N,

φi(S,wS) ≤ φi(T,wT) andφi(S,wS) ≤ φi(T,wT), from which follows

[φi(S,wS), φi(S,wS)] = Φi(S,wS) 4 Φi(T,wT) = [φi(T,wT), φi(T,wT)].

�

Now, sinceΦ(w) of w ∈ CIGN is an element of the interval Weber set and is pmas extendable,

the question arises whether each element of the interval Weber set is pmas extendable. The

next theorem clarifies this issue.
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Theorem 5.4.2 Let w∈ CIGN. Then, each element I ofW(w) is extendable to a pmas of w.

Proof. Let w ∈ CIGN. First, we show that for eachσ ∈ Π(N), mσ(w) is extendable to a

pmas. We know that the interval marginal operatormσ : S MIGN → I (R)N is efficient for

eachσ ∈ Π(N). Then, for eachS ∈ 2N,
∑

i∈S mσ
i (w) =

∑

k∈S mσ
σ(k)(w) = w(S) holds, where

(S,wS) is the corresponding (convex) subgame. Further, by convexity,mσ
i (wS) 4 mσ

i (wT) for

eachi ∈ S ⊂ T ⊂ N, where (S,wS) and (T,wT) are the corresponding subgames.

Second, eachI ∈ W(w) is a convex combination ofmσ(w), σ ∈ Π(N), i.e.,

I =
∑

σ∈Π(N) ασmσ(w) with ασ ∈ [0,1] and
∑

σ∈Π(N) ασ = 1.

Now, since allmσ(w) are pmas extendable, we obtain thatI is pmas extendable as well. �

From Theorem 5.4.2 we obtain that thetotal interval Shapley value, i.e., the interval Shapley

value applied to the game itself and all its subgames, generates a pmas for eachconvex in-

terval game. We illustrate this in the following example, where the calculations arebased on

Proposition 4.6.

Example 5.4.1 Let w ∈ CIGN with w(∅) = [0,0], w(1) = w(2) = w(3) = [0,0], w(1,2) =

w(1,3) = w(2,3) = [2,4] and w(1,2,3) = [9,15]. It is easy to check that for this game the

interval Shapley value generates the pmas depicted as

N

{1,2}

{1,3}

{2,3}

{1}

{2}

{3}







































































































































1 2 3

[3,5] [3,5] [3,5]

[1,2] [1,2] ∗

[1,2] ∗ [1,2]

∗ [1,2] [1,2]

[0,0] ∗ ∗

∗ [0,0] ∗

∗ ∗ [0,0]







































































































































.

We refer the reader to Yanovskaya, Branzei and Tijs (2008) for an alternative proof of the

population monotonicity of the interval Shapley value on the class of convex interval games

and for other monotonicity properties of value-type interval solutions on thisclass of games.
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To summarize in this chapter, convex (concave) interval games have beenintroduced and

characterizations were given. The relations of the Weber set with the interval core for con-

vex interval games were established. It was proved that each element ofthe Weber set of a

convex interval game is extendable to such a pmas. In the next chapter, weintroduce another

interesting class of cooperative interval games, called big boss interval games.
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CHAPTER 6

BIG BOSS INTERVAL GAMES

This chapter is based on Alparslan Gök, Branzei and Tijs (2008c) and Branzei, Tijs and

Alparslan G̈ok (2008a). We notice that because here sets of players have an important role,

we refer to the gamew ∈ IGN as< N,w > and to its subgames as< T,w > for each

T ⊂ N. Moreover, we adjust accordingly the notation for the used notions that were defined

previously.

6.1 DEFINITION AND RELATIONS WITH OTHER CLASSES OF GAMES

Let w ∈ IGN and let< N, |w| > be the corresponding length game. Then, we call a game

< N,w > a big boss interval gameif its border game< N,w > and the game< N, |w| > are

classical (total) big boss games. We denote byBBIGN the set of all big boss interval games

with player setN (without loss of generality we denote the big boss byn). Note thatBBIGN

is a subcone ofIGN.

The interval game in the next example is not a big boss interval game since the related length

game is not a big boss game.

Example 6.1.1 Let < N,w > be a three-person interval game with w(1) = w(2) = w(3) =

w(1,2) = [0,0],w(2,3) = [5,6],w(1,3) = [6,6] and w(N) = [9,11]. Here,< N,w > is a big

boss game, but the length game< N, |w| > is not because it does not satisfy the condition(iii)

for classical big boss games (see Chapter 1.2, take S= {1}).

Next we notice that the Example 2.1.2 leads to a big boss interval game.
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6.2 CHARACTERIZATIONS OF BIG BISS INTERVAL GAMES

In the following propositions and theorems, characterizations for big bossinterval games are

given.

Proposition 6.2.1 Let w ∈ IGN and its related games|w| ,w,w ∈ GN. Then, w∈ BBIGN if

and only if its length game< N, |w| > and its border games< N,w >, < N,w > are big boss

games.

Proof. The proof is straightforward. Note thatw = w+ |w| is a big boss game because classical

big boss games form a cone. �

Theorem 6.2.2 Let w∈ S MIGN. Then, the following two assertions are equivalent:

(i) w ∈ BBIGN.

(ii) < N,w > satisfies:

(a) Big boss property:

w(S) = [0,0] for each S∈ 2N with n < S ;

(b) Monotonicity property:

w(S) 4 w(T) for each S,T ∈ 2N with n ∈ S ⊂ T;

(c) Union property:

w(T) − w(S) <
∑

i∈T\S

(w(T) − w(T \ {i})) for all S,T with n∈ S ⊂ T.

Proof. By Proposition 6.2.1,w ∈ BBIGN if and only if< N,w >, < N,w− w > and< N,w >

are classical big boss games. Now, using Definition 1.2.1,w ∈ BBIGN if and only if< N,w >

satisfies(a), (b) and(c). �

In the following, we use the marginal contributions of a playeri ∈ N to coalitionsT, with

T ⊂ N, in the game< T,w > given byMi(T,w) := w(T) − w(T \ {i}).

Further, we give a concavity property for big boss interval games withn as a big boss:

(d) n-concavity property: w(S ∪ {i}) − w(S) < w(T ∪ {i}) − w(T), for all S,T ∈ 2N with

n ∈ S ⊂ T ⊂ N \ {i}.
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The following theorem which is inspired by Branzei, Tijs and Timmer (2001b) shows that(c)

and(d) are equivalent if(a) and(b) hold.

Theorem 6.2.3 Let w∈ IGN and let(a) and(b) hold. Then,(c) implies(d), and conversely.

Proof.

(i) Suppose that(d) holds. LetS,T be such thatn ∈ S ⊂ T. SupposeT \ S = {i1, . . . , ih}.

Then,

w(T) − w(S) = w(S ∪ {i1}) − w(S)

+

h
∑

r=2

(w(S ∪ {i1, . . . , ir }) − w(S ∪ {i1, . . . , ir−1}))

=

h
∑

r=1

Mir (S ∪ {i1, . . . , ir } ,w)

<

h
∑

r=1

Mir (T,w) =
∑

i∈T\S

Mi(T,w),

where “the inequality” follows from(d). So,(d) implies(c).

(ii) Suppose that(c) holds. Then,

w(U ∪ { j}) − w(U \ {i}) < M j(U ∪ { j} ,w) + Mi(U ∪ { j} ,w). (6.2.1)

But,

w(U ∪ { j}) − w(U \ {i}) = w(U ∪ { j}) − w(U) + w(U) − w(U \ {i})

= M j(U ∪ { j} ,w) + Mi(U,w). (6.2.2)

From (6.2.1) and (6.2.2) we obtain

Mi(U,w) < Mi(U ∪ { j} ,w) (6.2.3)

for all U ⊂ N andi, j ∈ N \ {n} such that{i,n} ⊂ U ⊂ N \ { j}. Now, takeS,T ⊂ N with

{i,n} ⊂ S ⊂ T and suppose thatT \ S = {i1, . . . , ih}. If we apply (6.2.3)h times, then

we haveMi(S,w) < Mi(S ∪ {i1} ,w) < Mi(S ∪ {i1, i2} ,w) < . . . < Mi(T,w).

65



So,(c) implies(d). �

In the sequel, we use the two characterizations of convex interval games provided by Theo-

rems 5.2.8 and 5.2.10 to derive new characterizations of big boss interval games based on the

notions of subadditivity and exactness.

Remark 6.2.1 In view of Theorem 5.2.8, we obtain that a game w∈ IGN is concave if and

only if for each T∈ 2N the marginal interval game< N \ T,wT > is subadditive.

Remark 6.2.2 In view of Theorem 5.2.10, a game w∈ IGN is concave if and only if< T,wT >

is exact for each T⊂ N.

We denote byMIGN,{n} the set of all size monotonic interval games onN that satisfy the big

boss property with respect ton (the big boss player).

Proposition 6.2.4 Let w ∈ MIGN,{n}. Then, w∈ BBIGN if and only if the marginal interval

game< N \ {n} ,w{n} > is a concave interval game.

Proof. Let w ∈ BBIGN. By Proposition 6.2.1 this is equivalent to< N,w >, < N,w > and

< N, |w| > being (total) big boss games withn as a big boss, which implies that< N,w >,

< N,w > and< N, |w| >∈ MVN,{n}. Now, by Proposition 1.2.3 we obtain that< N,w >,

< N,w > and< N, |w| > are (total) big boss games, if and only if< N \ {n} ,w{n} >,

< N \ {n} ,w{n} > and< N \ {n} , |w|{n} > are concave, which is equivalent with the marginal

game< N \ {n} ,w{n} > being a concave interval game. �

Proposition 6.2.5 Let w∈ MIGN,{n}. Then, the following assertions are equivalent:

(i) w ∈ BBIGN.

(ii) Each marginal interval game of< N \ {n} ,w{n} > is subadditive.

(iii) Each (interval) subgame of< N \ {n} ,w{n} > is exact.

Proof. (i)⇔ (ii) follows from Proposition 6.2.4 and Remark 6.2.1.

(i)⇔ (iii) follows from Proposition 6.2.4 and Remark 6.2.2. �
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Now, in the context of cooperative interval games, we extend the definitionof the n-based

T-marginal game (v{n})T , whereT ∈ 2N\{n}. Let < N,w >∈ MIGN,{n} andT ∈ 2N\{n}. The

n-based T-marginal interval game(w{n})T : 2N\T → I (R) is defined by

(w{n})T(S) := w(S ∪ T ∪ {n}) − w(T ∪ {n})

for eachS ⊂ N \ T.

Based on the characterization of big boss interval games using its border and length games, we

can easily extend Proposition 1.2.3 from classical cooperative games to cooperative interval

games.

Proposition 6.2.6 Let< N,w >∈ MIGN,{n}. Then, the following assertions are equivalent:

(i) < N,w > is a big boss interval game with big boss n.

(ii) < N \ {n} ,w{n} > is a concave game.

(iii) < N \ ({n} ∪ T) ,
(

w{n}
)T
> is a subadditive game for each T⊂ N \ {n}.

(iv) < N \ ({n} ∪ T) ,w{n}∪T > is a subadditive game for each T⊂ N \ {n}.

Proof. (i)⇔ (ii) follows from Proposition 6.2.4;

(ii)⇔ (iii) holds by Remark 6.2.2;

(iii)⇔ (iv) follows from the definition of then-basedT-marginal interval game. �

6.3 THE CORE OF BIG BOSS INTERVAL GAMES

We define the setΓ(T,w) for each subgame< T,w > of < N,w > by

Γ(T,w) := {(I1, . . . , In) ∈ I(T,w) | [0,0] 4 I i 4 Mi(T,w) for eachi ∈ T \ {n}} .

The next proposition gives a characterization of the interval core of a big boss interval game

by using marginal contributions of the players.

Proposition 6.3.1 Let w∈ BBIGN. Then,

C(T,w) = Γ(T,w). (6.3.1)
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Proof. It is sufficient to showC(T,w) = Γ(T,w) for T = N.

(i) Suppose thatI = (I1, . . . , In) ∈ C(N,w).

Then,w(N) =
∑

i∈N I i and
∑

j∈N\{i} I j < w(N \ {i}), for all i ∈ N \ {n}. Further,

I i =
∑

j∈N

I j −
∑

j∈N\{i}

I j = w(N) −
∑

j∈N\{i}

I j 4 w(N) − w(N \ {i}) = Mi(N,w),

where the second equality follows from efficiency and “the inequality” follows from

stability (see Section 2.3). Clearly,I i < [0,0] = w(i) for i ∈ N \ {n}. So, I ∈ Γ(N,w).

Therefore,C(N,w) ⊂ Γ(N,w) holds.

(ii) Suppose thatI = (I1, . . . , In) ∈ Γ(N,w). Then, for a coalitionS which does not contain

n, one finds that
∑

i∈S I i < [0,0] = w(S). To prove that
∑

i∈S I i < w(S) for S such that

n ∈ S, we first show thatw(N) − w(S) <
∑

i∈N\S Mi(N,w). Let N \ S = {i1, . . . , ik}.

Then, in a similar way as in the proof of Theorem 6.2.3(i) with N in the role ofT, we

have

w(N) − w(S) = w(S ∪ {i1}) − w(S)

+

k
∑

s=2

(w(S ∪ {i1, . . . , is}) − w(S ∪ {i1, . . . , is−1}))

=

k
∑

s=1

Mis(S ∪ {i1, . . . , is} ,w)

<

k
∑

s=1

Mis(N,w) =
∑

i∈N\S

Mi(N,w),

where “the inequality” follows from then-concavity property. Then, using the defini-

tion of Γ(N,w) we have

w(S) 4 w(N) −
∑

i∈N\S

Mi(N,w) 4 w(N) −
∑

i∈N\S

I i =
∑

i∈S

I i .

So,I ∈ C(N,w). Therefore,Γ(N,w) ⊂ C(N,w) holds. �

Next, we define for a (big boss) subgame< T,w > (with n as a big boss) ofw ∈ BBIGN

two particular elements of its interval core, which we call the big boss intervalpoint and the

union interval point. These points will play an important role regarding the description of the

interval core. Thebig boss interval pointB(T,w) is defined by

B j(T,w) :=



















[0,0], if j ∈ T \ {n}

w(T), if j = n,
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and theunion interval pointU(T,w) is defined by

U j(T,w) :=



















M j(T,w), if j ∈ T \ {n}

w(T) −
∑

i∈T\{n} Mi(T,w), if j = n.

Theorem 6.3.2 Let w ∈ IGN be such that if property(a) in Theorem 6.2.2 holds. Then,

w ∈ BBIGN if and only if for each T⊂ N with n∈ T the big boss interval pointB(T,w) and

the union interval pointU(T,w) belong to the interval core of< T,w >.

Proof. If w ∈ BBIGN, then by Proposition 6.3.1, it is clear thatB(T,w) andU(T,w) ∈ C(T,w)

for eachT ⊂ N with n ∈ T.

Conversely, assume that for eachT ⊂ N with n ∈ T the pointsB(T,w) andU(T,w) belong

to the interval core. Since by hypothesis< N,w > satisfies(a), we only need to show that(b)

and(c) hold.

First, taken ∈ T. SinceB(T,w) ∈ C(T,w), we have

w(S) 4
∑

i∈S

Bi(T,w) = Bn(T,w) +
∑

i∈S\{n}

Bi(T,w) = w(T) + [0,0] = w(T).

So,(b) is satisfied.

Second, takeS such thatn ∈ S ⊂ T. SinceU(T,w) ∈ C(T,w) we have

w(S) 4
∑

i∈S

Ui(T,w) = Un(T,w) +
∑

i∈S\{n}

Ui(T,w) =

(w(T) −
∑

i∈T\{n}

Mi(T,w)) +
∑

i∈S\{n}

Mi(T,w) = w(T) −
∑

i∈T\S

Mi(T,w).

So,(c) is satisfied. �

From the above theorem we learn that big boss interval games are totallyI-balanced games.

Note thatB : BBIGN → I (R)N and U : BBIGN → I (R)N are additive maps.

6.4 BI-MONOTONIC INTERVAL ALLOCATION SCHEMES OF BIG BOSS

INTERVAL GAMES

In this section, we introduce bi-monotonic allocation schemes (bi-mas) for big boss interval

games. We denote byPn the set{S ⊂ N|n ∈ S} of all coalitions containing the big boss.

Take a gamew ∈ BBIGN with n as a big boss. We call a schemeB := (BiS)i∈S,S∈Pn an
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(interval) allocation schemefor w if ( BiS)i∈S is an interval core element of the subgame

< S,w > for each coalitionS ∈ Pn. Such an allocation schemeB = (BiS)i∈S,S∈Pn is called a

bi-monotonic (interval) allocation scheme (bi-mas)for w if for all S,T ∈ Pn with S ⊂ T we

haveBiS < BiT for all i ∈ S \ {n}, andBnS 4 BnT. In a bi-mas the big boss is weakly better

off in larger coalitions, while the other players are weakly worse off.

We say that for a gamew ∈ BBIGN with n as a big boss, an imputationI = (I1, . . . , In) ∈ I(w)

is bi-mas extendableif there exists a bi-masB = (BiS)i∈S,S∈Pn such thatBiN = I i for each

i ∈ N. The next theorem is inspired by Voorneveld, Tijs and Grahn (2003).

Theorem 6.4.1 Let w ∈ BBIGN with n as a big boss and let I∈ C(N,w). Then, I is bi-mas

extendable.

Proof. Since I ∈ C(N,w), by (6.3.1), we can find for eachi ∈ N \ {n} an αi ∈ [0,1],

such thatI i = αi Mi(N,w), and thenIn = w(N) −
∑

i∈N\{n} αi Mi(N,w). We will show that

(BiS)i∈S,S∈Pn, defined byBiS = αi Mi(S,w) for eachS andi such thati ∈ S \ {n}, andBnS =

w(S) −
∑

i∈S\{n} αi Mi(S,w) is a bi-mas.

TakeS,T ∈ Pn with S ⊂ T andi ∈ S \ {n}. We have to prove thatBiS < BiT for i ∈ N \ {n}

andBnS 4 BnT. First,BiS := αi Mi(S,w) < αi Mi(T,w) = BiT , where “the inequality” follows

from (d). Second,

BnT = w(T) −
∑

i∈T\{n}

αi Mi(T,w)

< (w(S) +
∑

i∈T\S

Mi(T,w)) −
∑

i∈T\{n}

αi Mi(T,w)

= (w(S) −
∑

i∈S\{n}

αi Mi(T,w)) +
∑

i∈T\S

(1− αi)Mi(T,w)

< (w(S) −
∑

i∈S\{n}

αi Mi(S,w)) +
∑

i∈T\S

(1− αi)Mi(T,w)

= BnS +
∑

i∈T\S

(1− αi)Mi(T,w) < BnS,

where the first follows from(c), the second follows from(d), and the third follows fromαi ≤ 1

and the nonincreasing of the interval marginal contribution vectors. So,BnT < BnS. �

Example 6.4.1 Consider the interval game in Example 2.1.2. We illustrate Theorem 6.4.1 by

using the special interval core elementsB(T,w) andU(T,w). For each i, n and for each

S ⊂ T,Bi(S,w) = Bi(T,w) = [0,0]; for i = n and for each S⊂ T,Bn(S,w) = f (|S| − 1) 4
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f (|T | − 1) = Bn(T,w). For each i, n and for each S⊂ T,

Ui(S,w) = Mi(S,w) = w(S) − w(S \ {i}) < w(T) − w(T \ {i}) = Mi(T,w) = Ui(T,w);

for i = n and for each S⊂ T,

Un(S,w) = w(S) −
∑

i∈S\{n}

Mi(S,w) 4 w(T) −
∑

i∈T\{n}

Mi(T,w) = Un(T,w).

6.5 THE T -VALUE AND THE INTERVAL AL-VALUE OF BIG BOSS IN-

TERVAL GAMES

Now, we introduce on the class of big boss interval games an interval compromise-like solu-

tion concept, called theT -value, and the intervalAL-value inspired by Tijs (2005), and show

that theT -value equals the intervalAL-value.

Let w ∈ BBIGN. TheT -valueof w is defined by

T (N,w) :=
1
2

(U(N,w) + B(N,w)).

Note thatT : BBIGN → I (R)N has some trade-off flavour, becauseT (N,w) is the average of

the union pointU(N,w) and the big boss interval pointB(N,w) for eachw ∈ BBIGN.

Next, we consider a holding situation with interval data and construct a holding interval game

which turns out to be a big boss interval game. Player 3 is the owner of a holding house which

has capacity for one container. Players 1 and 2 have each one container which they want to

store. If player 1 is allowed to store his/her container, then the benefit belongs to [10,30]

and if player 2 is allowed to store his/her container then the benefit belongs to [50,70]. The

situation described above corresponds to an interval game which is studiedin the following

example.

Example 6.5.1 (A big boss interval game) The interval game< N,w > with N = {1,2,3} and

w(S) = [0,0] if 3 < S , w(∅) = w(3) = [0,0], w(1,3) = [10,30], and w(N) = w(2,3) = [50,70]

is a big boss interval game with player 3 as big boss, because the properties (a), (b) and(c) in

Theorem 6.2.2 are satisfied. TheT -value, in case of full cooperation, generates the interval

allocationT (N,w) = ([0,0], [20,20], [30,50]), which indicates sharp shares for players 1

and 2 equal to0 and 20, respectively. The payoff for player 3 depends, in this case, only
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on the realization R of w(N). Assuming that R= 60 player 3 will receive a payoff equal to

40. However, in general, the actual players’ shares when R is known depend not only R, but

also on the vector allocation agreed upon before starting cooperation. Fordetails regarding

the use of interval solutions for determining the distribution of achieved common gains see

Section 2.4. Finally, the totalT -value generates a bi-mas represented by the following matrix:

N

{1,3}

{2,3}

{3}





































































1 2 3

[0,0] [20,20] [30,50]

[5,15] ∗ [5,15]

∗ [25,35] [25,35]

∗ ∗ [0,0]





































































.

Such a bi-mas extension of the interval core elementT (N,w) might be helpful in the decision

making process regarding which coalitions should form and how to distributethe collective

gains among the participants.

Given a gamew ∈ BBIGN and an ordering

σ = (σ(1), σ(2) . . . , σ(k), σ(k+ 1), . . . , σ(n)),

with σ(k) = n of the players inN = {1,2, . . . ,n}, the lexicographic maximumof the interval

coreC(N,w) of < N,w > with respect toσ, which we denote byLσ(N,w), is defined as

follows:

Lσσ(i)(N,w) :=



































Mσ(i)(N,w), if i < k

[0,0] , if i > k (6.5.1)

w(N) −
∑k−1

j=1 M j(N,w), if i = k.

We notice thatLσ is additive onBBIGN.

The interval average lexicographic valueof w ∈ BBIGN is defined by

AL(N,w) :=
1
n!

∑

σ∈Π(N)

Lσ(N,w),

whereΠ(N) is the set of permutationsσ : N→ N.

Applying (6.5.1) we obtain

AL(N,w) = (
1
2

M1(N,w), . . . ,
1
2

Mn−1(N,w),w(N) −
1
2

n−1
∑

i=1

Mi(N,w)).

So, we haveAL(N,w) = T (N,w). Summarizing, we give the following theorem:
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Theorem 6.5.1 Let w ∈ BBIGN with n as a big boss. Then,T (N,w) = AL(N,w) ∈ C(N,w)

and the (total) AL-value generates a bi-mas for w∈ BBIGN.

To sum up this chapter, big boss interval games have been introduced andvarious charac-

terizations were given. We related big boss interval games with concave interval games and

obtained characterizations of big boss interval games in terms of subadditivity and exactness.

The structure of the core of a big boss interval game was explicitly described and we showed

that it plays an important role relative to interval-type bi-monotonic allocation schemes for

such games. Specifically, each element of the interval core of a big boss interval game is ex-

tendable to a bi-monotonic allocation scheme. Furthermore, on the class of big boss interval

games two interval solution concepts of value type were defined which can be seen as exten-

sions to the interval setting of the compromise value and theAL-value for classical games. It

turns out that these interval solutions coincide and generate bi-monotonic allocation schemes

for each big boss interval game. A small but interesting class of cooperative interval games

is that of interval peer group games (Branzei, Mallozzi and Tijs (2008))which is a subclass

of CIGN and has nonempty intersection withBBIGN. In the next chapter, we continue with

applications of cooperative interval games.
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CHAPTER 7

ECONOMIC AND OR SITUATIONS AND RELATED

COOPERATIVE INTERVAL GAMES

7.1 AIRPORT INTERVAL GAMES AND THEIR SHAPLEY VALUE

This section is based on Alparslan Gök, Branzei and Tijs (2008d). The major topic is to

present and identify theinterval Baker-Thompson rule.

In literature much attention is paid to airport situations and related games. We refer here

to Littlechild and Owen (1973), Littlechild and Thompson (1977) and Driessen(1988). In

the sequel, we summarize the classical airport situation, its classical airportcost game and

the Baker-Thompson rule. Consider the aircraft fee problem of an airport with one runway.

Suppose that the planes which are to land are classified intom types. For each 1≤ j ≤ m,

denote the set of landings of planes of typej by N j and its cardinality byn j . ThenN = ∪m
j=1N j

represents the set of all landings. Letc j represent the cost of a runway adequate for planes

of type j. We assume that the types are ordered such that 0= c0 < c1 < . . . < cm. We

consider the runway divided intom consecutive piecesP j , 1 ≤ j ≤ m, whereP1 is adequate

for landings of planes of type 1;P1 andP2 together for landings of planes of type 2, and so

on. The cost of pieceP j , 1 ≤ j ≤ m, is the marginal costc j − c j−1. The economists Baker

(1965) and Thompson (1971) proposed an appealing rule now called theBaker-Thompson

rule, given byβi :=
∑ j

k=1[
∑m

r=k nr ]−1(ck − ck−1) wheneveri ∈ N j . That is, every landing of

planes of typej contributes to the cost of the piecesPk, 1 ≤ k ≤ j, equally allocated among

its users∪m
r=kNr . We denote the marginal costsck − ck−1 by tk, 1 ≤ k ≤ m. The classical

airport TU game< N, c > is given byc(S) := max{ck|1 ≤ k ≤ m,S ∩ Nk , ∅} for all S ⊂ N.

It is well-known that airport games are concave and the Shapley value (Shapley (1953)) of a

concave game belongs to the core of the game. Littlechild and Owen (1973) showed that for

74



this game the Shapley value agrees with the Baker-Thompson rule.

In this section, we consider airport situations where cost of pieces of therunway are intervals.

Then, we associate as in the classical case to such a situation an interval cost game and extend

to airport interval games the results presented above.

Let I ∈ I (R+), T ∈ 2N \ ∅, and letu∗T : 2N → R be the classical dual unanimity game based

onT. Here, the interval game< N, Iu∗T > defined by (Iu∗T)(S) := u∗T(S)I for eachS ∈ 2N will

play an important role. We notice that theΦ(Iu∗T) for the interval game< N, Iu∗T > is related

with the Shapley valueφ(u∗T) of the classical game< N,u∗T > as follows:

Φi(Iu
∗
T) = φi(u

∗
T)I =



















I/ |T | , i ∈ T

[0,0] , i ∈ N \ T.
(7.1.1)

Consider the aircraft fee problem of an airport with one runway. Suppose that the planes

which are to land are classified intom types. For each 1≤ j ≤ m, denote the set of landings

of planes of typej by N j and its cardinality byn j . ThenN = ∪m
j=1N j represents the set of all

landings. Consider that the runway is divided intomconsecutive piecesP j , 1 ≤ j ≤ m, where

P1 is sufficient for landings of planes of type 1,P1 andP2 together for landings of planes of

type 2, and so on. Let the intervalT j with non-negative finite bounds represent the interval

cost of pieceP j , 1 ≤ j ≤ m.

Next we propose an interval cost allocation ruleγ, which we call theinterval Baker-Thompson

rule. For a given airport interval situation (N, (Tk)k=1,...,m) the Baker-Thompson allocation for

each playeri ∈ N j is given by:

γi :=
j
∑

k=1

(
m
∑

r=k

nr )
−1Tk. (7.1.2)

Note that for the piecePk of the runway the users are∪m
r=kNr , i.e., there are

∑m
r=k nr users.

So, (
∑m

r=k nr )−1Tk is the equal cost share of each user of the piecePk. This means that a

playeri ∈ N j contributes to the cost of the piecesP1, . . . ,P j . The characteristic cost function

d (see Section 1.2) of the airport interval game< N,d > is given byd(∅) := [0,0] and

d(S) :=
∑ j

k=1 Tk for all coalitionsS ⊂ N satisfyingS ∩ N j , ∅ andS ∩ Nk = ∅ for all

j + 1 ≤ k ≤ m (since such coalitionS needs the piecesPk, 1 ≤ k ≤ j of the runway). Now, we

give the description of the airport interval game as follows:

d =
m
∑

k=1

Tku
∗
∪m

r=kNr
. (7.1.3)
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In the following proposition, we show that the interval Baker-Thompson allocation for the air-

port situation with interval data coincides with the interval Shapley value of thecorresponding

airport interval game.

Proposition 7.1.1 Let< N,d > be an airport interval game. Then, the interval allocationγ

of (7.1.2) agrees with the interval Shapley valueΦ(d).

Proof. For i ∈ N j we have

Φi(d) = Φi(
m
∑

k=1

Tku
∗
∪m

r=kNr
) =

m
∑

k=1

Φi(Tku
∗
∪m

r=kNr
)

=

j
∑

k=1

(
m
∑

r=k

nr )
−1Tk = γi ,

where the equalities follow from (7.1.3), the additivity of the interval ShapleyvalueΦ, (7.1.1)

and (7.1.2) respectively. �

Note that if we consider the special caseN1 = {1} ,N2 = {2} , . . . ,Nn = {n}. Then,γ =

(T1
n ,

T1
n +

T2
n−1, . . . ,

T1
n +

T2
n−1 + . . . +

Tn
1 ). Here, each piece of the runway is completely paid by

the users and all users of the same piece contribute equally.

Example 7.1.1 Let < N,d > be a three-person airport interval game corresponding to the

airport interval situation depicted in Figure 7.1. The interval costs of the pieces are given

by T1 = [30,45], T2 = [20,40] and T3 = [100,120]. Then, d(∅) = [0,0], d(1) = [30,45],

d(2) = d(1,2) = [50,85] and d(3) = d(1,3) = d(2,3) = d(N) = [150,205].

Figure 7.1: An airport situation with interval data
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The following table shows the interval marginal vectors of the game, wherethe rows

correspond to orderings of the players and the columns correspond tothe players

123

132

213

231

312

321





















































































[30,45] [20,40] [100,120]

[30,45] [0,0] [120,160]

[0,0] [50,85] [100,120]

[0,0] [50,85] [100,120]

[0,0] [0,0] [150,205]

[0,0] [0,0] [150,205]





















































































.

Note that d= [30,45]u∗
{1,2,3} + [20,40]u∗

{2,3} + [100,120]u∗
{3} and

Φ(d) = ([10,15] , [20,35] , [120,155]).

Notice also that

Φ(d) = Φ(
3
∑

k=1

Tku
∗

∪3
r=kNr

) = Φ(T1u∗{1,2,3}) + Φ(T2u∗{2,3}) + Φ(T3u∗{3})

= (
1
3
,
1
3
,
1
3

)[30,45]+ (0,
1
2
,
1
2

)[20,40]+ (0,0,1)[100,120]= γ.

In the following proposition, we show that airport interval games are concave.

Proposition 7.1.2 Let< N,d > be an airport interval game. Then,< N,d > is concave.

Proof. It is well-known that non-negative multiples of classical dual unanimity gamesare

concave (or submodular). By (7.1.3) we have,d =
∑m

k=1 Tku
∗
k,m and |d| =

∑m
k=1 |Tk| u∗k,m are

concave, becauseTk ≥ 0 and|Tk| ≥ 0 for eachk. By Proposition 5.2.2,< N,d > is concave.

�

Note that the interval game< N,d > in Example 7.1.1 is concave by Proposition 7.1.2.

Proposition 7.1.3 Let (N, (Tk)k=1,...,m) be an airport situation with interval data and< N,d >

be the related airport interval game. Then, the interval Baker-Thompson rule applied to this

airport situation provides an allocation which belongs toC(d).

Proof. First, by Proposition 7.1.2 the airport game< N,d > is concave. We prove that

mσ(d) ∈ C(d) for allσ ∈ Π(N). Letσ ∈ Π(N) and takemσ(d). Clearly, we have
∑

k∈N mσ
k (d) =
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d(N). To prove thatmσ(d) ∈ C(d) we have to show that forS ∈ 2N,
∑

k∈S mσ
k (d) 4 d(S). Let

S := {σ(i1), σ(i2), . . . , σ(ik)} with i1 < i2 < . . . < ik. Then,

d(S) = d(σ(i1)) − d(∅)

+

k
∑

r=2

(d(σ(i1), σ(i2), . . . , σ(ir )) − d(σ(i1), σ(i2), . . . , σ(ir−1)))

< d(σ(1), . . . , σ(i1)) − d(σ(1), . . . , σ(i1 − 1))

+

k
∑

r=2

(d(σ(1), σ(2), . . . , σ(ir )) − d(σ(1), σ(2), . . . , σ(ir − 1)))

=

k
∑

r=1

mσ
σ(ir )

(d) =
∑

k∈S

mσ
k (d),

where the inequality follows from Proposition 5.2.4(iii) applied toi = σ(ir ) and

S1 = {σ(i1), σ(i2), . . . , σ(ir−1)} ⊂ S2 = {σ(1), σ(2), . . . , σ(ir − 1)}

for r ∈ {1,2, . . . , k}.

Further, since the interval Shapley value ofd is the average of all marginal interval vectors of

d and by convexity ofC(d) we obtainΦ(d) ∈ C(d). Now, we apply Proposition 7.1.1. �

An alternative proof of Proposition 7.1.3:1 By Proposition 7.1.1 the Baker-Thompson al-

location is efficient. We need only to check the stability conditions for the interval Baker-

Thompson allocation. Consider the airport interval game< N,d > and any coalitionS ⊂

N,S , ∅. Sayd(S) =
∑ j

r=1 Tr , that is,S ∩ N j , ∅ andS ∩ Np = ∅ for all j < p ≤ m. Then,

we obtain, fori ∈ Nk, γi =
∑k

r=1
Tr

nr+...+nm
. Thus,

∑

i∈S

γi =

j
∑

k=1

















|S ∩ Nk|

k
∑

r=1

Tr

nr + . . . + nm

















=

j
∑

r=1

















Tr

nr + . . . + nm

j
∑

k=r

|S ∩ Nk|

















.

Note that
∑ j

k=r |S ∩ Nk| ≤ nr + . . .+ n j ≤ nr + . . .+ nm. From this, we conclude that
∑

i∈S γi 4

∑ j
r=1 Tr = d(S) by taking care of the ordering of intervals through their lower and upper

borders.�

We notice that the interval Baker-Thompson rule is useful at an ex-ante stage to inform users

about what they can expect to pay, between two bounds, for the construction of the runway.

At an ex-post stage when all costs are known with certainty, the classicalBaker-Thompson

rule can be applied to pick up effective costsxi ∈ γi for eachi ∈ N such that
∑

i∈N xi equals

the realizationd̃ ∈ [d(N),d(N)].

1 This direct proof was provided by one of the anonymous referees ofAlparslan G̈ok, Branzei and Tijs
(2008d).
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7.2 BANKRUPTCY PROBLEMS WITH INTERVAL UNCERTAINTY

This section is based on Branzei and Alparslan Gök (2008). It focuses on bank-

ruptcy situations with interval data and related cooperative interval games and considers

bankruptcy situations where the estate and (some of the) claims vary within closed and

bounded intervals, which we call bankruptcy interval situations.

Classical bankruptcy problems and bankruptcy games have been intensively studied. We refer

here to O’Neill (1982), Aumann and Maschler (1985), Herrero, Maschler and Villar (1999)

and Young (1987). In a classical bankruptcy situation, a certain amountof money (estate) has

to be divided among some people (claimants) who have individual claims on the estate, and

the total claim is weakly larger than the estate.

A bankruptcy situation with set of claimantsN is a pair (E,d), whereE ≥ 0 is the estate to

be divided andd ∈ R
N
+ is the vector of claims such that

∑

i∈N di > E. We assume without

loss of generality thatd1 ≤ d2 ≤ . . . ≤ dn and denote byBRN the set of bankruptcy situations

with player setN. The total claim is denoted byD =
∑

i∈N di . A bankruptcy rule is a function

f : BRN → R
N which assigns to each bankruptcy situation (E,d) ∈ BRN a payoff vector

f (E,d) ∈ R
N such that 0≤ f (E,d) ≤ d (reasonability) and

∑

i∈N fi(E,d) = E (efficiency).

Here, we are interested in bankruptcy rules that are coordinate-wise (weakly) increasing in

E. The proportional rule (PROP) (see Chapter 2.4) is one of the most often used in real-life.

Another interesting bankruptcy rule is the rights-egalitarian rule as a division rule for all cir-

cumstances of division problems.

To each bankruptcy situation (E,d) ∈ BRN one can associate a pessimistic bankruptcy game

vE,d defined byvE,d(S) = (E−
∑

i∈N\S di)+ for eachS ∈ 2N, wherex+ = max{0, x}. The game

vE,d is convex and the bankruptcy rulesPROPand f RE provide allocations in the core of the

game.

Cooperative interval games arising from bankruptcy situations where theclaims can vary

within closed intervals are introduced and analyzed in Branzei, Dimitrov and Tijs (2003). A

bankruptcy situation where the claims are certain but the available estate can vary within a

closed interval is used in Example 2.2.2 to illustrate cores for two-person interval games.

It is important to consider interval claims because in various disputes includinginheritance

(O’Neill (1982)) claimants face uncertainty regarding their effective rights and, as a result,

individual claims can be expressed in the form of closed intervals without any probability

distributions attached to them. In such situations, our model based on intervalclaims fits bet-
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ter than the more standard claims approach with reality and, additionally, offers flexibility in

conflict resolution under interval uncertainty of the estate at stake. Economic applications of

our approach include funds’ allocation of a firm among its divisions (Pulido, Sánchez-Soriano

and Llorca (2002), Pulido et al. (2008)), priority problems (Moulin (2000)), distribution of

penalty costs in delayed projects (Branzei et al. (2002)) and disputes related to cooperation in

joint projects where agents have restricted willingness to pay (Tijs and Branzei (2004)).

A bankruptcy interval situationwith a fixed set of claimantsN = {1,2, . . . ,n} is a pair (E,d) ∈

I (R) × I (R)N, whereE = [E,E] < [0,0] is the estate to be divided andd is the vector of in-

terval claims withi-th coordinatedi = [di ,di ], i ∈ N, such that [0,0] 4 d1 4 d2 4 . . . 4 dn

andE <
∑n

i=1 di . We note that all selections (Ẽ, d̃), whereE < Ẽ < E anddi < d̃i < di , for all

i ∈ N, are traditional bankruptcy situations. We denote byd(N) the total lower claim and by

d(N) the total upper claim. We also use the notationsd(S) :=
∑

i∈S di andd(S) :=
∑

i∈S di for

S ⊂ N. By BRIN we denote the family of bankruptcy interval situations with set of claimants

N.

A bankruptcy interval rulefor bankruptcy interval situations is a functionF : BRIN →

I (R)N assigning to each bankruptcy interval situation (E,d) ∈ BRIN a vectorF (E,d) =

(F1(E,d), . . . ,Fn(E,d)) ∈ I (R)N, such that

(i) [0,0] 4 Fi(E,d) 4 di for eachi ∈ N (reasonability);

(ii)
∑n

i=1Fi(E,d) = E (efficiency).

Now, we look at the bankruptcy rulesPROPand f RE and extend them to the interval setting.

By BRIN1 we denote the family of all bankruptcy situations (E,d) ∈ BRIN which satisfy the

condition

E/d(N) ≤ E/d(N), (7.2.1)

and byBRIN2 the family of all bankruptcy situations (E,d) ∈ BRIN which satisfy the condition

|E| ≥ |d(N)| . (7.2.2)

Condition (7.2.1) can be read as follows: The available amount per-unit oflower-estate is

weakly smaller than the available amount per-unit of upper estate. Condition (7.2.2) can be

read so: The spread of uncertainty regarding the estate is weakly largerthan the total spread

of uncertainty regarding the claims. Note that the conditions (7.2.1) and (7.2.2) are satisfied

for any bankruptcy interval situations where all the claim intervals aredegenerate, i.e.,di = di
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for all i ∈ N. Bankruptcy interval situations where the estate is a nondegenerate interval, i.e.

E < E, and all claims are uncertainty-free are studied in Branzei and Dall’Aglio (2008).

The inclusionBRIN1 ⊂ BRIN might be strict as the following example illustrates.

Example 7.2.1 Let (E,d) be a three-person bankruptcy situation. We suppose that the claims

of the players are closed intervals with d1 = [10,20], d2 = [30,50] and d3 = [30,70],

respectively, and the estate is E= [60,100]. Then, we obtain E/d(N) = 6/7 > 5/7 = E/d(N).

The inclusionBRIN2 ⊂ BRIN might also be strict as we can see from Example 7.2.1, where

|E| = 40 < 70 = |d(N)|. In the following, we extend the proportional rule and the rights-

egalitarian rule to the interval setting.

First, note that

PROPi(E,d) = (di/d(N))E ≤ (di/d(N))E ≤ (di/d(N))E = PROPi(E,d)

for eachi ∈ N, where the first inequality follows from condition (7.2.1) and the second

inequality follows from [di ,di ] ∈ I (R).

We define theproportional interval rulePROP : BRIN1 → I (R)N by

PROPi(E,d) := [PROPi(E,d),PROPi(E,d)],

for each (E,d) ∈ BRIN1 and alli ∈ N. Second, note that

f RE
i (E,d) = di +

1
n

(E − d(N)) ≤ di +
1
n

(E − d(N)) ≤ di +
1
n

(E − d(N)) = f RE
i (E,d)

for eachi ∈ N, where the first inequality follows from condition (7.2.2) and the second

inequality follows from [di ,di ] ∈ I (R).

We define therights-egalitarian interval ruleF RE : BRIN2 → I (R)N by

F RE
i (E,d) := [ f RE

i (E,d), f RE
i (E,d)],

for each (E,d) ∈ BRIN2 and all i ∈ N. The next proposition shows thatPROP andF RE are

bankruptcy interval rules.

Proposition 7.2.1 LetB =
{

PROP,F RE
}

. Then, each interval ruleF ∈ B is efficient and

reasonable.
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Proof. The efficiency ofF follows from the efficiency of corresponding classical bankruptcy

rule f ∈
{

PROP, f RE
}

, i.e.,
∑

i∈N fi(E,d) = E and
∑

i∈N fi(E,d) = E. Further, the reasonability

of F results from

0 ≤ fi(E,d) ≤ di and 0≤ fi(E,d) ≤ di for eachi ∈ N.

�

Subsequently, we define a subclass ofBRIN, denoted byS BRIN, consisting of all bankruptcy

interval situations such that

for eachS ∈ 2N with d(N \ S) ≤ E it holds |d(N \ S)| ≤ |E| . (7.2.3)

We call a bankruptcy interval situation inS BRIN a strong bankruptcy interval situation.

With each (E,d) ∈ S BRIN we associate a cooperative interval game< N,wE,d > defined

by wE,d(S) := [vE,d(S), vE,d(S)] for eachS ⊂ N.

Note that (7.2.3) impliesvE,d(S) ≤ vE,d(S) for eachS ∈ 2N. We denote byS BRIGN the family

of all bankruptcy interval gameswE,d with (E,d) ∈ S BRIN. We notice thatwE,d ∈ S BRIGN is

supermodular becausevE,d andvE,d ∈ GN are convex (see Proposition 5.2.1). The following

example illustrates thatwE,d ∈ S BRIGNis supermodular but not necessarily convex.

Example 7.2.2 Let (E,d) be a two-person bankruptcy situation. We suppose that the claims

of the players are closed intervals d1 = [70,70] and d2 = [80,80], respectively and the estate

is E = [100,140]. Then, for each i= 1,2 the corresponding game< N,wE,d > is given by

wE,d(∅) = [0,0], wE,d(1) = [20,60], wE,d(2) = [30,70] and wE,d(1,2) = [100,140]. This

game is supermodular, but is not convex because
∣

∣

∣wE,d

∣

∣

∣ ∈ GN is not convex.

In the following, we consider the restriction of the interval rulePROP to S BRIN1 = BRIN1 ∩

S BRIN, and the restriction of the interval ruleF RE to S BRIN2 = BRIN2 ∩ S BRIN. In the next

proposition, we consider (E,d) ∈ S BRIN1 if F isPROP, and (E,d) ∈ S BRIN2 if F isF RE.

Proposition 7.2.2 LetF ∈ B. Then,F (E,d) ∈ C(wE,d) for each wE,d ∈ S BRIGN.

Proof. First, we have

n
∑

i=1

Fi(E,d) = E = E −
∑

i∈∅

di = wE,d(N),
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where the first equality follows from efficiency of the bankruptcy interval rules.

Second, takeS ⊂ N. Then,

∑

i∈S

Fi(E,d) = wE,d(N) −
∑

i∈N\S

Fi(E,d) < E −
∑

i∈N\S

di ,

where the equality follows from efficiency and the inequality follows from reasonability of the

bankruptcy interval rules. Also,
∑

i∈S Fi(E,d) < [0,0] by reasonability. So,
∑

i∈S Fi(E,d) <

wE,d(S). Hence,F (E,d) ∈ C(wE,d). �

The use of the allocations generated by the rulesPROP andF RE in practical bankruptcy-

like situations with interval uncertainty is two-fold. Firstly, these interval allocations are used

to inform claimants about what they can expect, between two boundaries, from the division

problem at stake. Secondly, when the realization of the estate occurs, they are used to obtain

standard allocations. We refer the reader to Section 2.4 for ways to transform vectors of

intervals into vectors of real numbers. Further, in Branzei, Dall’Aglio andTijs (2008) interval

bankruptcy rules which are interesting from the game-theoretic point of view are introduced

and studied.

7.3 SEQUENCING INTERVAL SITUATIONS AND RELATED GAMES

This section is based on Alparslan Gök et al. (2008). We consider one-machine sequencing

situations with interval data. We present different possible scenarios and extend classical

results on well-known rules and on sequencing games to the interval setting.

Sequencing situations arise in several instances of real-life. Here, we refer to the classical

scheduling of a sequence of jobs and the waiting line in front of a counter.The use of an

optimal ordering may reduce the cost connected with the time spent in the systemand is

particularly interesting in sequencing situations where several agents areinvolved. In such

situations, the optimal order is good for the agents as a whole (because it increases the ef-

ficiency of the system), but since agents are basically interesting in their individual benefit,

an agreement is equally important. The agreement includes how to compensatethose agents

that are required to spend more time in the system and how to share the joint cost savings. In

the classical approach to the problem, the processing time of each job and thecost per unit

of time associated with it are supposed to be known with certainty. It should beclear that

the optimality of an ordering may be affected when the actual processing times and/or the
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unitary costs are different from the forecasted ones. Here, we simply require an estimation

of intervals of values for the processing times and/or unitary costs, avoiding the difficulties

of associating a reasonable probability distribution. In this setting, the optimal order may be

difficult to reach, but the agents may accept to switch their position in the queue in change of

an adequate compensation. Depending on the agents’ attitude towards risk,various possibil-

ities could be considered to settle the agreement, both for improving the ordering (with more

switches) and for sharing the joint cost savings.

First we recall that a one-machine sequencing situation arises when a setof ordered jobs has

to be processed sequentially on a machine. The basic issue is to determine the optimal order

of the jobs to be processed taking into account the individual processingtimes and the costs

per unit of time. Formally, a sequencing situation is a 4-tuple (N, σ0, α, p) where:

• N = {1,2, . . . ,n} is the set of jobs;

• σ0 : N→ {1,2, . . . ,n} is a permutation that defines the initial order of the jobs;

• α = (αi)i∈N ∈ R
n
+ is a non-negative real vector, whereαi is the cost per unit of time of

job i;

• p = (pi)i∈N ∈ R
n
+ is a positive real vector, wherepi is the processing time of jobi.

Given a sequencing situation and an orderingσ of the jobs, we can associate to it the cost

Cσ defined by the sum of the costs of the jobs, where the cost of jobi ∈ N is given by the

product of its unitary costαi and the time that it spends in the system, i.e., its processing

time pi plus the waiting time for completing all the jobs precedingi in the queue. In formula,

Cσ :=
∑

i∈N αi

(

∑

j∈P(σ,i) p j + pi

)

, whereP(σ, i) is the set of jobs precedingi, according to the

orderσ.

The optimal order of the jobsσ∗ produces the minimum cost

Cσ∗ :=
∑

i∈N

αi



















∑

j∈P(σ∗,i)

p j + pi



















or the maximum cost savingCσ0 − Cσ∗ . Smith (1956) proved that an optimal order can be

obtained reordering the jobs according to decreasing urgency indices,where the urgency index

of job i ∈ N is defined asui =
αi

pi
(of course, if this condition holds for the initial order, no

reordering of jobs is necessary).
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If the jobs belong to the same agent, he will agree to reorder them optimally, according to

Smith’s result. The situation is completely different when each job belongs to a different

agent. In this case, a reordering requires that at least the agents that change their position

agree on the new order. So, we can say that a switch among two jobs is always possible if

they are consecutive in the current order or if all the agents that own one of the jobs in between

the two that are switched agree.

The following question arises: Is it possible to share this cost savingsCσ0 − Cσ∗ among the

agents in such a way that the new order results to be stable? In other words, we want to find

fair shares of the overall cost savings to be given to the different agents, in such a way that all

of them agree on the optimal order and have no incentive to recede from the agreement. This

question finds its natural habitat in cooperative game theory.

In 1989, Curiel, Pederzoli and Tijs introduced the class of sequencing games. An updated

survey on these games can be found in Curiel, Hamers and Klijn (2002). See also the survey

on Operations Research Games (Borm, Hamers and Hendricks (2001)).A sequencing game

is a pair< N, v > whereN is the set of players, that coincides with the set of jobs, and the

characteristic functionv assigns to coalitionS the maximal cost savings that the members of

S can obtain by reordering only their jobs. We say that a set of jobsT is connected according

to an orderσ if for all i, j ∈ T andk ∈ N, σ(i) < σ(k) < σ( j) impliesk ∈ T.

Switching two connected jobsi, j, the cost associated to the ordering varies by the value

α j pi −αi p j . The variation is positive if and only if the urgency indices verifyui < u j . Clearly,

if α j pi − αi p j is negative it is not beneficial fori and j to switch their positions. We denote

the gain of the switch as

gi j := (α j pi − αi p j)+ = max{0, α j pi − αi p j}

and, consequently, the gain of a connected coalitionT according to an orderσ is defined by

v(T) :=
∑

j∈T

∑

i∈P(σ, j)∩T
gi j .

If S is not a connected coalition, the orderσ induces a partition into connected components,

denoted byS/σ. In view of this, the characteristic functionv of the sequencing game can be

defined asv(S) :=
∑

T∈S/σ
v(T) for eachS ⊂ N or, equivalently, asv =

∑

i, j∈N:i< j
gi j u[i, j] , where
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u[i, j] is the unanimity game defined as:

u[i, j](S) :=



















1, if {i, i + 1, ..., j − 1, j} ⊂ S

0, otherwise.

Curiel, Pederzoli and Tijs (1989) show that sequencing games are convex games and, conse-

quently, their core is nonempty. Moreover, it is possible to determine a core allocation without

computing the characteristic function of the game. They propose to share equally between the

playersi, j the gaingi j produced by the switch, and they call this rule theEqual Gain Splitting

(EGS ) rule. It can be computed byEGSi := 1
2

∑

k∈P(σ,i) gki +
1
2

∑

j:i∈P(σ, j) gi j for eachi ∈ N.

There exist two other simple allocation rules, denoted byP andS, respectively. According

to the first rule, the gain of each switch is assigned to the predecessor in theinitial order,

while the second rule assigns the gain to the successor. We can writePi :=
∑

j:i∈P(σ, j) gi j and

Si :=
∑

j∈P(σ,i) g ji for eachi ∈ N, and it is easy to see thatEGS= 1
2(P+S), understood in the

vectorial sense based on these members.

In a similar way, we can define theEGSε solutionfor eachε ∈ [0,1] asEGSε := εP+(1−ε)S.

Clearly, forε = 0 we getS, for ε = 1
2 we getEGS, and forε = 1 we getP.

In this section, we drop the hypothesis of complete knowledge of the parameters of a sequenc-

ing situation, in order to better fit the real-world situations. In particular, we suppose that the

processing time and/or the cost per unit of time of each job are represented by intervals. In

fact, each agent may have some difficulties in evaluating the actual duration of his/her job and

the unitary cost. On the other hand, it is often possible to assign minimal and maximalvalues

for both elements. We consider three scenarioes: In the first one, the processing time of each

job is a positive real number but its unitary cost is an interval of positive real values. In the

second one, the unitary costs are positive real numbers and the processing times are intervals

of positive real values. In the last one, both elements are intervals of positive real values.

1. The first scenario:

A one-machine sequencing situation with interval-uncertain costs per unit oftime can

be described as a 4-tuple (N, σ0, α, p), whereN, σ0 andp are the same as in the classical

case andα = ([αi , αi ]) i∈N ∈ I (R+)N is a vector of intervals. Here,αi is the minimal

unitary cost andαi is the maximal unitary cost of jobi.
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In this situation, the arithmetics of intervals allows us to compute theurgency indexof

the jobs,ui := αi
pi
=
[

αi
pi
,
αi
pi

]

, i ∈ N.

To useSmith’s resultfor finding the optimal order we need not only to compareui and

u j to check ifui 4 u j for any two possible candidatesi and j to a neighbor switch,

but also that these intervals are disjoint, i.e.,ui < u j . This setting corresponds to the

maximal risk aversion of the agents that agree on a switch of their job only if it issurely

profitable.

Example 7.3.1 Consider the sequencing interval situation with N= {1,2},σ0 = {1,2},

p = (2,3) andα = ([2,4], [12,21]). The urgency indices are u1 = [1,2] and u2 = [4,7];

so the two jobs may be switched.

Now, the question is how to share among the switching agentsi and j the gain arising

from their switch. We consider two possible approaches.

First, the agentsi and j may agree on the dictatorial solution for agenti, i.e., the com-

pensation corresponds to the upper boundαi p j ; this means that agenti asks to be fully

compensated referring to his maximal unitary cost, plus the possibility of an extra gain

if the actual cost per unit of time is lower.

Second, the agentsi and j could determine the individual compensation when the jobs

are performed and realizations of the unitary costs are available. This leads to a clas-

sical sequencing situation and the agents may agree on one of the existing allocation

rules, e.g., theEGS-rule.

Example 7.3.2 Referring to the situation in Example 7.3.1, the dictatorial approach

assigns to agent 1 a compensationα2p1 = 21×2 = 42and0 to agent 2. The realization

approach may be performed only when the two jobs are processed. Suppose that the

realization of the unitary cost is 4 for agent 1 and 16 for agent 2. The EGS -rule for the

resulting classical sequencing situation assigns to both agents a compensation of10.

2. The second scenario:

We describe a one-machine sequencing situation with interval-uncertain processing

time as a 4-tuple (N, σ0, α, p), whereN, σ0 and α are as in the classical case and

p = ([p
i
, pi ]) i∈N ∈ I (R+)N is the vector of intervals wherep

i
is the minimal processing

time andpi is the maximal processing time of jobi.
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In this situation, the arithmetics of intervals does not allow us to compute the urgency

index of a job, as we cannot divide a real number by an interval, so we introduce the

notion ofrelaxation index of job i, defined byr i := α−1
i pi =

[ p
i
αi
,

pi
αi

]

for all i ∈ N.

We notice that the relaxation index is the inverse of the urgency index in the classical

case, so we may reformulate for this scenario the rule of Smith saying that to obtain an

optimal order, the jobs have to be ordered according to increasing relaxation indices.

Two jobs i, j ∈ N may be switched only ifr i < r j and the intervals are disjoint, i.e.,

r i > r j .

We can consider the same sharing approaches of the first scenario, withsuitable modi-

fication.

3. The third scenario:

Here, a one-machine sequencing interval situation is described as a 4-tuple (N, σ0, α, p),

whereN andσ0 are as usual, whereasα = ([αi , αi ]) i∈N ∈ I (R+)N andp = ([p
i
, pi ]) i∈N ∈

I (R+)N are the vectors of intervals withαi , αi representing the minimal and maximal

unitary cost of jobi, respectively. Here,p
i
, pi representing the minimal and maximal

processing time of jobi, respectively.

To handle such sequencing situations we propose to use either the approach based on

urgency indices or the approach based on relaxation indices. This requires to be able

to compute eitherui =

[

αi
p

i
,
αi
pi

]

for all i ∈ N or r i =

[

p
i
αi
,

pi
αi

]

for all i ∈ N, i.e., for

each such an index the lower bound has to be less than or equal to the upper bound.

Example 7.3.5 shows that this could be impossible. When all indices of a certain type

can be calculated, they are useful to find an optimal order only in case theycan be

ordered properly and are also disjoint. Example 7.3.3 illustrates a successful use of the

urgency indices, while Example 7.3.4 shows that although the relaxation indices can be

computed and compared, they are not useful to find an optimal order because they are

not disjoint.

Example 7.3.3 Consider the two-agent situation with p1 = [1,4], p2 = [6,8], α1 =

[5,25], α2 = [10,30]. We can compute u1 =
[

5, 25
4

]

,u2 =
[

5
3,

15
4

]

and use them to

reorder the jobs as the intervals are disjoint.

Example 7.3.4 Consider the two-agent situation with p1 = [1,3], p2 = [4,6], α1 =

[5,6], α2 = [11,12]. Here, we can compute r1 =
[

1
5,

1
2

]

, r2 =
[

4
11,

1
2

]

, but we cannot

reorder the jobs as the intervals are not disjoint.
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Example 7.3.5 Consider the two-agent situation with p1 = [1,3], p2 = [5,8], α1 =

[5,6], α2 = [10,30]. Now, r1 is defined but r2 is undefined; on the other hand, u1

is undefined and u2 is defined, so no comparison is possible and, consequently, the

reordering cannot take place.

If two jobs may be switched, we can use the sharing approaches introduced above. In

particular, we may have no total order, as some pairs of jobs cannot be compared, but

we may reach just a partial optimal order and share the associated gains.

Remark 7.3.1 Allowing degenerate intervals[a,a] ∈ I (R+) leads to the possibility

of a unique game-theoretic treatment of all three scenarios of sequencing situations

with interval data, based on the third scenario. In fact, in the first scenariowe may

consider the vector of real numbers p= (pi)i∈N as a vector of degenerate intervals

p = ([pi , pi ]) i∈N. Analogously, in the second scenario we may consider the vector of

real numbersα = (αi)i∈N as a vector of degenerate intervalsα = ([αi , αi ]) i∈N.

Next we introduce the class of cooperative sequencing interval games.In view of Remark

7.3.1, we refer to the general situation presented in the third scenario.

Let i, j ∈ N. We define theinterval gain of the switch of jobs iand j by

Gi j :=



















α j pi − αi p j if jobs i and j switch

[0,0] otherwise.

The sequencing interval game associated to a one-machine sequencing situation (N, σ0, α, p)

is defined by

w :=
∑

i, j∈N:i< j

Gi j u[i, j] ,

provided thatGi j ∈ I (R) for all switching jobsi, j ∈ N.

Remark 7.3.2 The condition Gi j ∈ I (R) is equivalent to Gi j ≤ Gi j . Note that for the first two

scenarioes this condition may be written as
|αi |

pi
≤
|α j |

p j
and
|pi |

αi
≥
|p j |

α j
, respectively, and such

conditions may not be satisfied. Consider the sequencing interval situationwith N = {1,2},

σ0 = {1,2}, p = ([2,2], [3,3]) andα = ([2,4], [12,13]). The urgency indices are u1 = [1,2]

and u2 =
[

4, 13
3

]

, so the switch is profitable, since u2 is larger than u1 = [1,2]. Moreover, the

intervals are disjoint but
|α1|

p1
= 1 ≥

|α2|

p2
=

1
3

, implying that G12 = [18,14], i.e., it is not an

interval.
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In the following, we show that each sequencing interval game is convex.

Proposition 7.3.1 Let< N,w > be a sequencing interval game. Then,< N,w > is convex.

Proof. By definitionGi j < [0,0]. So,Gi j ≥ 0 and
∣

∣

∣Gi j

∣

∣

∣ ≥ 0 for all (i, j). It is well known that

classical unanimity games are convex. Then,w =
∑

i, j∈N:i< j
Gi j u[ i, j] and|w| =

∑

i, j∈N:i< j

∣

∣

∣Gi j

∣

∣

∣u[ i, j]

are convex games, in the classical sense. So,w =
∑

i, j∈N:i< j
Gi j u[ i, j] is convex (see Proposition

5.2.1 (iii)). �

The interval equal gain splitting ruleis defined by

IEGSi :=
1
2

∑

j∈N:i< j

Gi j +
1
2

∑

j∈N:i> j

Gi j

for eachi ∈ N.

Proposition 7.3.2 Let< N,w > be a sequencing interval game. Then,

i) IEGS(w) = 1
2(m(1,2...,n)(w) +m(n,n−1,...,1)(w)),

ii) IEGS(w) ∈ C(w).

Proof.

i) If σ = (1,2, . . . ,n), then

m(1,2...,n)(w) = ([0,0],G12,G13+G23,G14+G24+G34, . . . ,G1n + . . . +Gn−1,n).

If σ = (n,n− 1, . . . ,1), then

m(n,n−1,...,1)(w) = (G12+ . . . +G1,n, . . . ,Gn−1,n, [0,0]).

ii) In Proposition 5.2.5, it is proved that the interval marginal vectors are interval core

elements for convex interval games. The proof follows immediately as the sequencing

interval games are convex by Proposition 7.3.1 and the interval core is a convex set (see

Proposition 2.3.3).

�

Example 7.3.6 Referring to the situation in Example 7.3.1, the interval gain is G12 = [18,30],

the sequencing interval game< N,w > is w(1) = w(2) = [0,0], w(1,2) = [18,30] and

IEGS(w) = ([9,15], [9,15]).
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As we have already seen, for some sequencing interval situations we may have difficulties in

ordering the jobs using only the urgency indices or the relaxation indices. In such situations,

we can (partially) reorder the jobs using a mixed approach: We can consider actually adjacent

pairs of jobsi and j for which bothui andu j or bothr i andr j are defined, and decide if they

may be switched, i.e., if all the required conditions are satisfied. Consider thesequencing

interval situation withN = {1,2,3,4}, σ0 = {1,2,3,4}, p = ([1,6], [8,15], [2,3], [2,7]) and

α = ([1,3], [2,3], [6,12], [6,8]). We may computeu1 = [1,2], u2 = [4,5], r3 = [3,4] and

r4 =
[

1
3,

1
2

]

, while the other indices are undefined. We can observe that jobs 1 and 2 and jobs 3

and 4 may be switched, but we can say nothing about jobs 1 and 4, that become adjacent after

the first two switches, as we have no common index. But we can go further inour analysis.

In fact, it is easy to realize that the urgency of job 1 is a number in the interval[1,2] while the

relaxation of job 4 is a number in the interval
[

1
3,

1
2

]

. So, in any realization, the urgency of job

4 is a number in the interval [2,3] and, apparently, the switch is surely profitable.

In this chapter, we studied some economic and OR situations, and extended classical results

on well-known rules to the interval setting. We have shown that some of thesesituations are

modeled as cooperative interval games. Motivating examples for the model of cooperative

interval games and discussions about potential applications can also be found in the papers

listed in references and in further publications. In the next chapter, we will present some

algorithmic results for cooperative interval games.
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CHAPTER 8

ALGORITHMIC ASPECTS

In this chapter, we give some numerical results that we have obtained by using Matlab. All

the m-files used in this chapter are given in the Appendix.

We start with some examples related with the interval Shapley value introduced inChap-

ter 4 with two, three and four players. We use the m-filesshapley2 for two-person case,

shapley3 for three-person case, andshapley4 for four-person case. For these examples,

we work on the class of size monotonic interval games, where the interval Shapley value is

defined.

Example 8.1 Let< N,w > be a two-person cooperative interval game with

w(1) = [5,9],w(2) = [7,13],w(N) = [20,32].

Then, the algorithm gives the numerical result([9.0000,14.0000], [11.0000,18.0000])

and draws the interval Shapley value of the game depicted in Figure 8.1.

Example 8.2 Let< N,w > be a two-person cooperative interval game with

w(1) = [0,1],w(2) = [0,2],w(N) = [4,8].

Then, the algorithm gives the numerical result([2.0000,3.5000], [2.0000,4.5000])

and draws the interval Shapley value of the game depicted in Figure 8.2.
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Figure 8.1: The interval Shapley value of the two-person cooperative interval game in
Example 8.1.

Example 8.3 Let< N,w > be a three-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(3) = [0,0],w(1,2) = [0,0],w(1,3) = [60,75],

w(2,3) = [40,55] and w(N) = [100,120]. Then, the algorithm gives the numerical result

([30.0000,34.1667], [20.0000,24.1667], [50.0000,61.6667])

and draws the interval Shapley value of the game depicted in Figure 8.3.

Example 8.4 Let< N,w > be a three-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(3) = [0,0],w(1,2) = [0,0],w(1,3) = [1,2],

w(2,3) = [1,2] and w(N) = [1,2]. Then, the algorithm gives the numerical result

([0.1667,0.3333], [0.1667,0.3333], [0.6667,1.3333])

and draws the interval Shapley value of the game depicted in Figure 8.4.
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Figure 8.2: The interval Shapley value of the two-person cooperative interval game in
Example 8.2.

Example 8.5 Let< N,w > be a three-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(3) = [0,0],w(1,2) = [0,0],w(1,3) = [10,30],

w(2,3) = [50,70] and w(N) = [50,70]. Then, the interval Shapley value of the game is

([1.6667,5.0000], [21.6667,25.0000], [26.6667,40.0000]).

See Figure 8.5.

Example 8.6 Let< N,w > be a four-person cooperative interval game with w(i) = [0,0]

for each i= 1,2, . . . ,4,

w(1,2) = [0,0],w(1,3) = [1,2],w(1,4) = [1,2],w(2,3) = [1,2],w(2,4) = [1,2],

w(3,4) = [1,2],w(1,2,3) = [1,2],w(1,2,4) = [1,2],w(1,3,4) = [1,2],

w(2,3,4) = [1,2] and w(1,2,3,4) = [2,3]. Then, the algorithm gives the numerical result

([0.4167,0.5833], [0.4167,0.5833], [0.5833,0.9167], [0.5833,0.9167])

which is the interval Shapley value of the interval game.
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Figure 8.3: The interval Shapley value of the three-person cooperative interval game in
Example 8.3.

Example 8.7 Let< N,w > be a four-person cooperative interval game with w(i) = [0,0]

for each i= 1,2, . . . ,4,

w(1,2) = [0,0],w(1,3) = [6.5,8],w(1,4) = [6.5,8],w(2,3) = [6.5,8],w(2,4) = [6.5,8],

w(3,4) = [0,0],w(1,2,3) = [10,20],w(1,2,4) = [10,20],w(1,3,4) = [10,20],

w(2,3,4) = [10,20] and w(1,2,3,4) = [13,34].

Then, the algorithm gives the numerical result

([3.2500,8.5000], [3.2500,8.5000], [3.2500,8.5000], [3.2500,8.5000])

which is the interval Shapley value of the interval game.

Our examples continue with the calculation of interval core elements for two-person and

three-person cooperative interval games. The notion of the interval core introduced in Section

2.3 is one of the more interesting solution concepts on the class of cooperative interval games.

Here, the nearest interval core element is obtained according to the initial guess that we have

chosen. We use the m-filesicore2 for the two-person case andicore3 for the three-person

case.
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Figure 8.4: The interval Shapley value of the three-person cooperative interval game in
Example 8.4.

Example 8.8 Let< N,w > be a two-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(1,2) = [18,30].

Then, the algorithm gives the numerical result

([9.0000,15.0000], [9.0000,15.0000])

obtained by choosing the initial guess[8.5; 8.5] for the lower game and[14.5; 14.5]

for the upper game.

Example 8.9 Let< N,w > be a three-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(3) = [0,0],w(1,2) = [0,0],w(1,3) = [10,30],

w(2,3) = [50,70] and w(N) = [50,70]. Then, the algorithm gives the numerical result

([0.0000,0.0000], [25.0000,35.0000], [25.0000,35.0000])

obtained by choosing the initial guess[0; 10; 10] for the lower game and[0; 10; 10] for the

upper game. Another result obtaining by choosing the initial guess as[0; 15; 25]for the lower

game and[0; 15; 45]for the upper game is

([0.0000,0.0000], [20.0000,20.0000], [30.0000,50.0000]).
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Figure 8.5: The interval Shapley value of the three-person cooperative interval game in
Example 8.5.

By choosing different initial guesses we can obtain different interval core elements.

Example 8.10 Let< N,w > be a three-person cooperative interval game with

w(1) = [0,0],w(2) = [0,0],w(3) = [0,0],w(1,2) = [0,0],w(1,3) = [1,2],

w(2,3) = [1,2] and w(N) = [1,2]. Then, the algorithm gives the numerical result

([0.0000,0.0000], [0.0000,0.0000], [1.0000,2.0000])

obtained by choosing the initial guess[0; 1; 1] for the lower game and[1; 0; 2]

for the upper game. Note that this game has only one element in the interval core.

In this chapter, we intended to give a flavour of some numerical results related with the interval

Shapley value and the interval core. In the next chapter, we shall conclude our studies by

mentioning some open problems and future work for the class of cooperative interval games.
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CHAPTER 9

CONCLUSION

In this thesis, we have developed the theory of cooperative interval games, which is a new

area in cooperative game theory. We also aim to intensively present the state-of-the-art in

this booming field of research and its applications. The reader is referredto Branzei, Tijs and

Alparslan G̈ok (2008c) for a brief survey on cooperative interval games and interval solution

concepts. This is a pioneering work on a promising topic, and there are still many interesting

questions to be solved by further research such as the following ones.

A difficult topic might be to analyze under which conditions the set of payoff vectors gener-

ated by the interval core of a cooperative interval game coincides with the core of the game in

terms of selections (of the interval game). The interval core is an appealingsolution concept

both from the theoretical point of view and from the respect of computational complexity.

However, the use of elements of the interval core in practical situations requires to transform

such an interval payoff vector into a traditional payoff vector. This can be done as in Chapter

2 where the reader can find a basic guide for handling interval solution concepts. A straight-

forward interpretation of interval core elements is questionable as discussed in Drechsel and

Kimms (2008). The fact that there are interesting classes of cooperativeinterval games with

nonempty interval cores like convex interval games and big boss interval games increases the

interest in this solution concept.

A dominance relation in the interval setting is used to define the interval dominance core and

interval stable sets for cooperative interval games. Relations between theinterval core, the

interval dominance core and interval stable sets of a cooperative interval game are studied. It

is interesting to find sufficient conditions for the equality of the interval core and the interval

dominance core, and to investigate whether for each interval game its interval dominance

98



core is a convex set. Moreover, studying stable sets of a cooperative interval game in terms

of selections of the game seems to be a valuable topic for the extension of the theory of

cooperative interval games.

Further interesting questions are to study whether one can extend to interval games the well-

known result of the traditional cooperative game theory that the core of aconvex game is

the unique stable set (Shapley (1971)) and to find an axiomatization of the interval Shapley

value on the class of convex interval games. Other topics could be related tointroducing

new models in cooperative game theory by generalizing cooperative interval games. For

example, the concepts and results on (convex) cooperative interval games could be extended

to cooperative games in which the coalition valuesw(S) are ordered intervals of the form

[u, v] of an (infinite dimensional) ordered vector space. Such generalization could give more

applications to the interval game theory. Also to establish relations between convex interval

games and convex games in other existing models of cooperative games wouldbe interesting.

We notice that other OR situations and combinatorial optimization problems with interval

data among which are flow situations, linear production situations and holding situations

also could give rise to interesting interval games. The existing literature on related classi-

cal games can be an inspiration source for further research (Borm, Hamers and Hendrickx

(2001), Curiel (1997), Kalai and Zemel (1982), Owen (1975), Tijs,Meca and Ĺopez (2005).

Weber, Alparslan G̈ok and S̈oyler (2007), Weber et al. (2008) and Weber, Alparslan Gök and

Dikmen (2008) considered gene-network problems and environmental problems such as car-

bon dioxide emission reduction and fish quota with interval uncertainty. Weber, Kropat and

Alparslan G̈ok (2008) show how advanced methods of continuous optimization contributeto

modeling, learning and problem solution in areas of environmental protection, medicine and

development under various kinds of uncertainty. It is a topic for furtherresearch to associate

cooperative interval games with such situations.

For sequencing interval situations and related games, the approach usingboth urgency indices

and relaxation indices when dealing with sequencing interval situations is a topic for further

research. Other approaches for sharing the gain generated by a switch may be investigated.

For example, it is possible to assign to each job its minimal compensation obtained supposing

that its unitary cost and the processing time of the jobs involved in the switches coincide with

the lower bound. After a realization, the difference between the actual cost savings and the
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sum of the shares already distributed over the switched jobs, can be allocated according to a

fair division procedure or a bankruptcy rule.

In this thesis, we define two bankruptcy interval rules by extending the proportional rule and

the rights-egalitarian rule to bankruptcy interval situations (see Chapter 7). An interesting

topic is to extend to the interval setting the axiomatic characterizations ofPROPand f RE and

to compare them in the spirit of Herrero, Maschler and Villar (1999). Note that to compare

PROP with F RE we need to consider the restricted classBRIN1 ∩ BRIN2 . The use of the

allocations generated by the rulesPROP andF RE in practical bankruptcy-like situations with

interval uncertainty is two-fold. Firstly, these interval allocations are usedto inform claimants

about what they can expect, between two boundaries, from the divisionproblem at stake.

Secondly, when the realization of the estate occurs, they are used to obtainstandard allocations

(see Chapter 2 for ways to transform vectors of intervals in vectors of real numbers).

Finally, Moretti et al. (2008) cope with uncertainty in cost allocation problems arising from

connection configurations. Basically, they deal with minimum cost spanning tree situations

where the costs are intervals and the agents may act optimistically or pessimistically. In

the sequel, they briefly introduce a more complex problem as a possible topic for further

research: how to deal with minimum interval cost spanning tree situations where not all the

agents follow the same (pessimistic or optimistic) approach to make the decision on which

spanning tree must be realized.

Consequently, cooperative interval games that we have developed in thisthesis are a very valu-

able tool for modeling various economic and OR situations. The reader can find in Branzei,

Tijs and Alparslan G̈ok (2008b) several protocols specifying how a certain interval solution,

chosen for a specific situation to support decision making regarding cooperation might be used

when uncertainty on payoffs is removed. The recent developments in the field of cooperative

interval games offer new opportunities for game practice.
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[81] Tijs S., Meca A. and Ĺopez M.A., “Benefit sharing in holding situations”,European
Journal of Operational Research162 (1)(2005) 251-269.

[82] Tijs S., Timmer J. and Branzei R., “Compensations in information collecting situa-
tions”, Journal of Public Economic Theory, 8 (2006) 181-191.

[83] von Neumann J., “Zur theorie der gesellschaftsspiele”,Mathematische Annalen, 100
(1928) pp. 295 - 300.

[84] von Neumann J. and Morgenstern O. , “Theory of Games and Economic Behavior”,
Princeton Univ. Press, Princeton NJ(1944).

[85] Voorneveld M., Tijs S. and Grahn M., “Monotonic allocation schemes in clan games ”,
Mathematical Methods of Operations Research56 (2003) 439-449.

[86] Weber R., “Probabilistic values for games, in Roth A.E. (ed.), The Shapley Value: Es-
says in Honour of Lloyd S. Shapley”,Cambridge University Press, Cambridge(1988)
101-119.

[87] Weber G.W., Alparslan G̈ok S.Z. and Dikmen N., “Environmental and life sciences:
Gene-environment networks-optimization, games and control - a survey on recent
achievements”,in the special issue of Journal of Organizational Transformation and
Social Change, guest editor: D. DeTombe, Vol. 5, no.3 (2008) pp. 197-233.

[88] Weber G.W., Alparslan G̈ok S.Z. and S̈oyler B., “A new mathematical approach in envi-
ronmental and life sciences: gene-environment networks and their dynamics”, preprint
no. 69, Institute of Applied Mathematics, METU(2007) (to appear in Environmental
Modeling and Assessment,
DOI number:http://dx.doi.org/doi:10.1007/s10666-007-9137-z).

[89] Weber G.W., Kropat E. and Alparslan Gök S.Z., “Semi-infinite and conic optimization
in modern human, life and financial sciences under uncertainty”,in the ISI Proceed-
ings of 20th Mini- EURO conference, Continuous Optimization and Knowledge-Based
Technologies, Neringa, Lithuania(May 20-23, 2008) 180-185.

[90] Weber G.W., Taylan P., Alparslan Gök S.Z., Özöğür Akyüz S. and AktekeÖztürk
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APPENDIX

First, we present the Matlab m-files inspired from Mirás Calvo and Śanchez Rodriguez (2006)

which are used to obtain Interval Shapley value.

shapley2.m

Interval Shapley value of a two-person cooperative interval game

function [sU,sL,mU,mL]=shapley2(vL1,vL2,vL12,vU1,vU2,vU12)

%shapley2 calculates and draws the interval Shapley value of a

%two-person cooperative interval game.

%The algorithm only works on the class of size monotonic interval

%games.

%The inputs vL1, vL2, vL12 are the lower bounds; vU1, vU2, vU12

%are the upper bounds of the characteristic function of the

%two-person cooperative interval game.

%From the outputs sL represents the lower bound, sU represents the

%upper bound of the Interval Shapley value and mL is the interval

%marginal vector of the lower game, mU is the interval marginal

%vector of the upper game.

%Here, X is the vector which is used to obtain the figure.

mL(1,:)=[vL1 vL12-vL1];

mL(2,:)=[vL12-vL2 vL2];

mU(1,:)=[vU1 vU12-vU1];

mU(2,:)=[vU12-vU2 vU2];
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tL1=0;

tL2=0;

tU1=0;

tU2=0;

for i=1:2

tL1=mL(i,1)+tL1;

tL2=mL(i,2)+tL2;

sL=[tL1;tL2]*(1/2)

tU1=mU(i,1)+tU1;

tU2=mU(i,2)+tU2;

sU=[tU1;tU2]*(1/2)

end

Sh=[sL sU];

fprintf(’IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4f])\n’,sL(1,1),

sU(1,1),sL(2,1),sU(2,1))

X=[sL(1) sL(2); sU(1) sL(2); sU(1) sU(2); sL(1) sU(2);

sL(1) sL(2)]

fill(X(:,1),X(:,2),’y’)

axis([0 20 0 20])

xlabel(’x’)

ylabel(’y’)
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shapley3.m

Interval Shapley value of a three-person cooperative interval game

function [sU,sL,mU,mL]=shapley3(vL1,vL2,vL3,vL12,vL13,vL23,vL123,

vU1,vU2,vU3,vU12,vU13,vU23,vU123)

%shapley3 calculates and draws the interval Shapley value of a th-

%ree-person cooperative interval game. The algorithm only works on

%the class of size monotonic interval games.

%The inputs vL1,vL2,vL3,vL12,vL13,vL23,vL123 are the lower bounds;

%vU1,vU2,vU3,vU12,vU13,vU23,vU123 are the upper bounds of the

%characteristic function of the three-person cooperative interval

%game.

%From the outputs sL represents the lower bound, sU represents the

%upper bound of the Interval Shapley value and mL is the interval

%marginal vector of the lower game, mU is the interval marginal

%vector of the upper game.

%Here, X is the vector which is used to obtain the figure.

mL(1,:)=[vL1 vL12-vL1 vL123-vL12];

mL(2,:)=[vL1 vL123-vL13 vL13-vL1];

mL(3,:)=[vL12-vL2 vL2 vL123-vL12];

mL(4,:)=[vL123-vL23 vL2 vL23-vL2];

mL(5,:)=[vL13-vL3 vL123-vL13 vL3];

mL(6,:)=[vL123-vL23 vL23-vL3 vL3];

mU(1,:)=[vU1 vU12-vU1 vU123-vU12];

mU(2,:)=[vU1 vU123-vU13 vU13-vU1];

mU(3,:)=[vU12-vU2 vU2 vU123-vU12];

mU(4,:)=[vU123-vU23 vU2 vU23-vU2];

mU(5,:)=[vU13-vU3 vU123-vU13 vU3];

mU(6,:)=[vU123-vU23 vU23-vU3 vU3];
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tU=[0;0;0];

tL=[0;0;0];

for i=1:6

tL(1)=mL(i,1)+tL(1);

tL(2)=mL(i,2)+tL(2);

tL(3)=mL(i,3)+tL(3)

sL=[tL(1);tL(2);tL(3)]*(1/6)

tU(1)=mU(i,1)+tU(1);

tU(2)=mU(i,2)+tU(2);

tU(3)=mU(i,3)+tU(3)

sU=[tU(1);tU(2);tU(3)]*(1/6)

end

Sh=[sL sU];

fprintf(’IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4f],[%6.4f,%6.4f])

\n’, sL(1,1),sU(1,1), sL(2,1),sU(2,1),sL(3,1),sU(3,1))

X=[sL(1) sL(2) 0; sU(1) sL(2) 0; sU(1) sU(2) 0; sL(1) sU(2) 0;

sL(1) sL(2) 0; sL(1) sL(2) sL(3); sU(1) sL(2) sU(3); sU(1)

sU(2) sU(3); sL(1) sU(2) sL(3); sL(1) sL(2) sL(3); sU(1) sL(2)

sU(3); sU(1) sL(2) 0; sU(1) sU(2) 0; sU(1) sU(2) sU(3); sL(1)

sU(2) sL(3); sL(1) sU(2) 0]

axis([0 40 0 40 0 40])

hold on

plot3(X(:,1),X(:,2),X(:,3),’m’)

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)
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shapley4.m

Interval Shapley value of a four-person cooperative interval game

function [sU,sL,mU,mL]=shapley4(vL1,vL2,vL3,vL4,vL12,vL13,vL14,

vL23,vL24,vL34,vL123,vL124,vL134,vL234,vL1234,vU1,vU2,vU3,vU4,

vU12,vU13,vU14,vU23,vU24,vU34,vU123,vU124,vU134,vU234,vU1234)

%shapley4 calculates the interval Shapley value of a four-person

%cooperative interval game. The algorithm only works on the

%class of size monotonic interval games.

%The inputs vL1, vL2,vL3,vL4,vL12,vL13,vL14,vL23,vL24,vL34,vL123,

%vL124,vL134,%vL234,vL1234 are the lower bounds; vU1,vU2,vU3,vU4,

%vU12,vU13,vU14,vU23,vU24,vU34,vU123,vU124,vU134,vU234,vU1234

%are the upper bounds of the characteristic function of the

%four-person cooperative interval game.

%From the outputs sL represents the lower bound, sU represents

%the upper bound of the Interval Shapley value and mL is the

%interval marginal vector of the lower game, mU is the interval

%marginal vector of the upper game.

mL(1,:)=[vL1 vL12-vL1 vL123-vL12 vL1234-vL123];

mL(2,:)=[vL1 vL12-vL1 vL1234-vL124 vL124-vL12];

mL(3,:)=[vL1 vL123-vL13 vL13-vL1 vL1234-vL123];

mL(4,:)=[vL1 vL1234-vL134 vL13-vL1 vL134-vL13];

mL(5,:)=[vL1 vL124-vL14 vL1234-vL124 vL14-vL1];

mL(6,:)=[vL1 vL1234-vL134 vL134-vL14 vL14-vL1];

mL(7,:)=[vL12-vL2 vL2 vL123-vL12 vL1234-vL123];

mL(8,:)=[vL12-vL2 vL2 vL1234-vL124 vL124-vL12];

mL(9,:)=[vL123-vL23 vL2 vL23-vL2 vL1234-vL123];

mL(10,:)=[vL1234-vL234 vL2 vL23-vL2 vL234-vL23];

mL(11,:)=[vL124-vL24 vL2 vL1234-vL124 vL24-vL2];
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mL(12,:)=[vL1234-vL234 vL2 vL234-vL24 vL24-vL2];

mL(13,:)=[vL13-vL3 vL123-vL13 vL3 vL1234-vL123];

mL(14,:)=[vL13-vL3 vL1234-vL134 vL3 vL134-vL13];

mL(15,:)=[vL123-vL23 vL23-vL3 vL3 vL1234-vL123];

mL(16,:)=[vL1234-vL234 vL23-vL3 vL3 vL234-vL23];

mL(17,:)=[vL134-vL34 vL1234-vL134 vL3 vL34-vL3];

mL(18,:)=[vL1234-vL234 vL234-vL34 vL3 vL34-vL3];

mL(19,:)=[vL14-vL4 vL124-vL14 vL1234-vL124 vL4];

mL(20,:)=[vL14-vL4 vL1234-vL134 vL134-vL14 vL4];

mL(21,:)=[vL124-vL24 vL24-vL4 vL1234-vL124 vL4];

mL(22,:)=[vL1234-vL234 vL24-vL4 vL234-vL24 vL4];

mL(23,:)=[vL134-vL34 vL1234-vL134 vL34-vL4 vL4];

mL(24,:)=[vL1234-vL234 vL234-vL34 vL34-vL4 vL4];

mU(1,:)=[vU1 vU12-vU1 vU123-vU12 vU1234-vU123];

mU(2,:)=[vU1 vU12-vU1 vU1234-vU124 vU124-vU12];

mU(3,:)=[vU1 vU123-vU13 vU13-vU1 vU1234-vU123];

mU(4,:)=[vU1 vU1234-vU134 vU13-vU1 vU134-vU13];

mU(5,:)=[vU1 vU124-vU14 vU1234-vU124 vU14-vU1];

mU(6,:)=[vU1 vU1234-vU134 vU134-vU14 vU14-vU1];

mU(7,:)=[vU12-vU2 vU2 vU123-vU12 vU1234-vU123];

mU(8,:)=[vU12-vU2 vU2 vU1234-vU124 vU124-vU12];

mU(9,:)=[vU123-vU23 vU2 vU23-vU2 vU1234-vU123];

mU(10,:)=[vU1234-vU234 vU2 vU23-vU2 vU234-vU23];

mU(11,:)=[vU124-vU24 vU2 vU1234-vU124 vU24-vU2];

mU(12,:)=[vU1234-vU234 vU2 vU234-vU24 vU24-vU2];

mU(13,:)=[vU13-vU3 vU123-vU13 vU3 vU1234-vU123];

mU(14,:)=[vU13-vU3 vU1234-vU134 vU3 vU134-vU13];

mU(15,:)=[vU123-vU23 vU23-vU3 vU3 vU1234-vU123];
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mU(16,:)=[vU1234-vU234 vU23-vU3 vU3 vU234-vU23];

mU(17,:)=[vU134-vU34 vU1234-vU134 vU3 vU34-vU3];

mU(18,:)=[vU1234-vU234 vU234-vU34 vU3 vU34-vU3];

mU(19,:)=[vU14-vU4 vU124-vU14 vU1234-vU124 vU4];

mU(20,:)=[vU14-vU4 vU1234-vU134 vU134-vU14 vU4];

mU(21,:)=[vU124-vU24 vU24-vU4 vU1234-vU124 vU4];

mU(22,:)=[vU1234-vU234 vU24-vU4 vU234-vU24 vU4];

mU(23,:)=[vU134-vU34 vU1234-vU134 vU34-vU4 vU4];

mU(24,:)=[vU1234-vU234 vU234-vU34 vU34-vU4 vU4];

tU=[0;0;0;0];

tL=[0;0;0;0];

for i=1:24

tL(1)=mL(i,1)+tL(1);

tL(2)=mL(i,2)+tL(2);

tL(3)=mL(i,3)+tL(3)

tL(4)=mL(i,4)+tL(4)

sL=[tL(1);tL(2);tL(3);tL(4)]*(1/24)

tU(1)=mU(i,1)+tU(1);

tU(2)=mU(i,2)+tU(2);

tU(3)=mU(i,3)+tU(3);

tU(4)=mU(i,4)+tU(4);

sU=[tU(1);tU(2);tU(3);tU(4)]*(1/24)

end

Sh=[sL sU];

fprintf(’IntervalShapley=([%6.4f,%6.4f],[%6.4f,%6.4f],[%6.4f,%6.4f],

[%6.4f,%6.4f])\n’, sL(1,1),sU(1,1),sL(2,1),sU(2,1),sL(3,1),

sU(3,1),sL(4,1),sU(4,1))
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Second, we present the Matlab m-files which find the nearest interval core element according

to the initial guess chosen.

icore2.m

The interval core element of a two-person cooperative interval game

function[xL,xU]=icore2(vL1,vL2,vL12,xL0,vU1,vU2,vU12,xU0)

%icore2 finds an interval core element of a two-person coopera-

%tive interval game which is the nearest to the initial guess

%chosen.

%The inputs vL1, vL2, vL12 are the lower bounds; vU1, vU2, vU12

%are the upper bounds of the characteristic function of the

%two-person cooperative interval game.

%xL0 is the initial guess for the lower game and xU0 is the

%initial guess for the upper game.

%The output xL is the lower bound and the output xU is the

%upper bound of the interval core element.

%For the lower game [xL,fval]=fsolve(@coremyfunL,xL0) returns

%the value of the objective function coremyfunL at the solution

%xL, i.e., the algorithm starts at xL0 and tries to find a zero

%of fL.

%For the upper game the procedure is similar as above.

%For details on fsolve we refer to Matlab Optimization Toolbox.

global vL12

global vU12

[xL,fval]=fsolve(@coremyfunL,xL0)

if xL(1)>=vL1 & xL(2)>=vL2

solution=xL

else
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fprintf(’Change your initial guess’)

end

[xU,fval]=fsolve(@coremyfunU,xU0)

if xU(1)>=vU1 & xL(2)>=vU2

solution=xU

else

fprintf(’Change your initial guess’)

end

fprintf(’Intervalcore element=([%6.4f,%6.4f],[%6.4f,%6.4f])\n’,

xL(1,1),xU(1,1),xL(2,1),xU(2,1))

function fL =coremyfunL(x)

global vL12

fL =x(1)+x(2)-vL12

function fU=coremyfunU(x)

global vU12

fU=x(1)+x(2)-vU12

icore3.m

The interval core element of a three-person cooperative interval game

function[xL,xU]= icore3(vL1,vL2,vL3,vL12,vL13,vL23,vL123,xL0,vU1,

vU2,vU3,vU12,vU13,vU23,vU123,xU0)

%icore3 finds an interval core element of a three-person

%cooperative interval game which is the nearest to the
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%initial guess chosen.

%The inputs vL1,vL2,vL3,vL12,vL13,vL23,vL123 are the lower bounds;

%vU1,vU2,vU3,vU12,vU13,vU23,vU123 are the upper bounds of the

%characteristic function of the three-person cooperative interval

%game.

%xL0 is the initial guess for the lower game and xU0 is the

%initial guess for the upper game.

%The output xL is the lower bound and the output xU is the upper

%bound of the interval core element.

%For the lower game [xL,fvalL]=fmincon(@coremyfunL,xL0,A,bL,[],[],

%lbL) starts at xL0, attempts to find a minimum xL to the function

%described in coremyfunL subject to the linear inequalities AxL<=b

%and defines a set of upper bounds on the design variables in xL,

%so that the solution always satisfies lbL<=xL.

%For the upper game the procedure is similar as above.

%For details on fmincon we refer to Matlab Optimization Toolbox.

global vL123

global vU123

A=[-1 -1 0;-1 0 -1;0 -1 -1]

bL=[-vL12;-vL13;-vL23]

lbL=[vL1;vL2;vL3]

bU=[-vU12;-vU13;-vU23]

lbU=[vU1;vU2;vU3]

[xL,fvalL]=fmincon(@coremyfunL,xL0,A,bL,[],[],lbL)

[xU,fvalU]=fmincon(@coremyfunU,xU0,A,bU,[],[],lbU)

fprintf(’Intervalcore element=([%6.4f,%6.4f],[%6.4f,%6.4f],

[%6.4f,%6.4f])\n’,xL(1,1),xU(1,1),xL(2,1),xU(2,1),xL(3,1),xU(3,1))
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function fL=coremyfunL(x)

global vL123

fL =x(1)+x(2)+x(3)-vL123

function fU=coremyfunU(x)

global vU123

fU=x(1)+x(2)+x(3)-vU123
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