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ABSTRACT

RESULTS ON SOME AUTHENTICATION CODES

Kurtaran Özbudak, Elif

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

February 2009, 80 pages

In this thesis we study a class of authentication codes with secrecy. We obtain the maximum

success probability of the impersonation attack and the maximum success probability of the

substitution attack on these authentication codes with secrecy. Moreover we determine the

level of secrecy provided by these authentication codes. Our methods are based on the theory

of algebraic function fields over finite fields. We study a certain class of algebraic function

fields over finite fields related to this class of authentication codes. We also determine the

number of rational places of this class of algebraic function fields.

Keywords: Authentication codes with secrecy, algebraic function fields over finite fields
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ÖZ

BAZI DOĞRULAMA KODLARI ÜZERİNE SONUÇLAR

Kurtaran Özbudak, Elif

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Şubat 2009, 80 sayfa

Bu tezde bir sınıf sırlı doğrulama kodlarını çalıştık. Bu sırlı doğrulama kodları üzerindeki

yerine geçme atağının en yüksek başarı olasılığını ve yerine koyma atağının en yüksek başarı

olasılığını bulduk. Ayrıca bu doğrulama kodları tarafından sunulan sır derecesini elde et-

tik. Metodlarımız sonlu cisimler üzerindeki foksiyon cisimleri teorisine dayanmaktadır. Bu

doğrulama kodlarıyla ilişkili bır sınıf sonlu cisimler üzerindeki foksiyon cisimlerini çalıştık.

Bu fonksiyon cisimleri üzerindeki rasyonel nokta sayısını da elde ettik.

Anahtar Kelimeler: Sırlı doğrulama kodları, sonlu cisimler üzerindeki cebirsel fonksiyon

cisimleri
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PREFACE

In this thesis we study a class of authentication codes with secrecy. This class is related to a

class of authentication codes considered in [4]. We obtain the maximum success probability

of the impersonation attack and the maximum success probability of the substitution attack on

these authentication codes with secrecy. Moreover we determine the level of secrecy provided

by these authentication codes. These results give new contributions to some open problems

mentioned in [4].

Our methods are based on the theory of algebraic function fields. We study a certain class

of algebraic function fields over finite fields related to this class of authentication codes. We

determine the number of rational places of this class of algebraic function fields. These results

extend some of the corresponding results of [1].

This thesis is organized as follows. In Chapter 1 we give a general background on authentica-

tion codes and algebraic function fields over finite fields. Our results on the class of algebraic

function fields over finite fields mentioned above are presented in Chapter 2. We give our re-

sults on the class of authentication codes with secrecy that we study in Chapter 3. The results

of Chapter 2 are essentially used in Chapter 3.
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CHAPTER 1

BACKGROUND ON AUTHENTICATION CODES AND

ALGEBRAIC FUNCTION FIELDS

In this chapter, a general background on authentication codes and algebraic function fields

over finite fields is presented.

In Section 1.1 we give some basic definitions on authentication codes. Our main concern in

the class of authentication codes in this thesis is the subclass of authentication codes with

secrecy and we give more emphasis on authentication codes with secrecy.

There are various approaches to the study of authentication codes. Some of these approaches

use methods from areas including computer science, information theory, combinatoric, graph

theory and design theory. Our approach is based on algebraic methods, and in particular based

on algebraic function fields over finite fields.

A part of our contributions and most of our methods in this thesis are related to the theory of

algebraic function fields over finite fields. In Section 1.2 we give a very short introduction to

some basic notions of algebraic function fields over finite fields. We refer the reader to [14]

for a very nice and detailed account of algebraic function fields over finite fields.

1.1 AN INTRODUCTION TO AUTHENTICATION CODES

In 1974, Gilbert, MacWilliams and Sloane introduced the idea of authentication codes [6]. In

their model, there are two trusting parties: a transmitter and a receiver. The transmitter wants

to send a piece of information securely using her secret key over a public channel.
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In 1984, Simmons proposed a new model [13]. In his model, there is also an opponent

involved together with the two trusting parties. In this model, the opponent could observe

and disturb the ordinary communication.

The class of authentication codes are divided into two subclasses:

i) authentication codes without secrecy,

ii) authentication codes with secrecy.

In an authentication code without secrecy, the transmitter and the receiver share a secret key.

In the transmitter end, a message is obtained by encoding a source state to the corresponding

tag. The shared key is used for the generation of the tag. Then the transmitter sends the

message to the receiver over the public channel. Here there is no encryption of the message.

Therefore, without knowledge of the shared secret key, an opponent can recover the source

state from the encoded message.

In the authentication code with secrecy, there is an encryption of the source state. Again

the transmitter and the receiver share a secret key. A part of the shared key is used for the

encryption of the source state. The remaining part of the key is used for the generation of the

tag. Then the message is obtained from the source state using the encrypted version of the

source state and the generated tag. Therefore, without knowledge of the shared secret key, an

opponent cannot recover the source state from the encoded message.

Authentication codes with secrecy are considered, using a variety of approaches in, for exam-

ple, [2], [4], [5], [6], [9], [11], [12], [13], [15], [16], [17].

A formal definition of authentication codes is given as follows.

Definition 1.1.1 An authentication code is a quadruple (S,K ,M,E), where

1. S is the set of possible source states (plain texts),

2. K is the set of available keys,

3. M is the set of messages, and
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4. E is the set of authentication maps (encoding rules) from S × K toM. For authenti-

cation codes with secrecy, the encryption is considered as a part of the authentication

map in this definition.

There is a generalization of the model above. In this generalized model, an authentication

map can send a source state to more than one message. This is called splitting. In this thesis

we consider authentication codes without splitting.

For authentication codes with secrecy, the general protocol can be described in detail as fol-

lows:

(1) Let s ∈ S be a source state to be transmitted. Let k ∈ K be a secret key, which is known

by the transmitter and the receiver. Let Ek be the corresponding authentication map.

We consider Ek as

Ek = ( fk, gk) ∈ E,

where fk is the part of the authentication map used for the encryption of the source state,

and gk is the part of the authentication map used for the generation of the corresponding

tag. The message is considered as consisting of two parts. The first part is the image of

the map of the source state under the map fk, which is the encrypted part. The second

part of the message is the image of the map gk of the source state to the corresponding

tag. Note that the second part is used only for authentication and hence the length of

the second part is shorter than the first part.

Let the transmitted message be

mk = ( fk(s), gk(s)).

(2) The receiver gets the message m′ = (m1,m2). Using the shared key k and the decryption

map f −1
k , the receiver computes s′ = f −1

k (m1).

(3) The receiver computes m′2 = gk(s′). Then the receiver compares m2 with m′2.

(a) If m2 = m′2, then the receiver assumes that m′ is a valid message.

(b) If m2 , m′2, then the receiver rejects the message m′.

3



We assume that everything about the authentication model is publicly known due to the Ker-

ckhoff’s principle. Hence the opponent knows the whole parameters of the authentication

code, except the secret key shared by the transmitter and the receiver.

Now we explain two attacks by the opponent that we will study.

Assume that the opponent generates a random message m′ from the message setM and inserts

it to the public channel. This is called the impersonation attack.

Assume that the opponent observes a message m to be transmitted, and then the opponent

changes it with a different message m′ randomly. This is called the substitution attack.

Usually the maximum success probabilities of the impersonation and the substitution attacks

are denoted by PI and PS, respectively.

Finally we recall the definition of the level of secrecy of authentication codes with secrecy.

The level of secrecy provided by an authentication code with secrecy is the uncertainty of the

source state when the corresponding message is observed.

1.2 AN INTRODUCTION TO ALGEBRAIC FUNCTION FIELDS OVER FI-

NITE FIELDS

In this section we recall some basic definitions and we explain some notation that we use in

this thesis on algebraic function fields over finite fields.

Let q be a power of a prime. Let Fq denote a finite field with q elements.

An algebraic function field F over Fq is an extension field of Fq such that there exists an

element z ∈ F that is transcendental over Fq and for which F is a finite extension of the rational

function field Fq(z). Moreover, we call Fq the full constant field of F if Fq is algebraically

closed in F. A place of F is the maximal ideal of some valuation ring of F. Let Z denote the

set of integers. A normalized discrete valuation of F is a surjective map ν : F → Z ∪ {∞}
satisfying the following:

(i) ν(x) = ∞⇐⇒ x = 0;

(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ F;
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(iii) ν(x + y) ≥ min (ν(x), ν(y)) for all x, y ∈ F;

(iv) ν(a) = 0 for all a ∈ Fq \ {0}.

There is a bijective correspondence between the places of F and the normalized discrete

valuations of F. Let vP be the normalized discrete valuation of F corresponding to the place

P of F. The valuation ring of P is

OP = {x ∈ F : vP(x) ≥ 0}

and the maximal ideal of OP is

MP = {x ∈ OP : vP(x) > 0}.

If Fq is the full constant field of F, then the residue class field OP/MP can be identified with

a finite extension of Fq. The degree of this extension is called the degree of the place P. A

place of degree 1 is called rational. We usually denote the number of rational places of F by

N(F).

The research area on algebraic function fields over finite fields is a very active research area

and it has many applications. For further information on algebraic function fields and their

applications we refer, for example, to the excellent books of Stichtenoth [14] and Niderreiter

and Xing [10].
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CHAPTER 2

A CLASS OF ALGEBRAIC FUNCTION FIELDS OVER

FINITE FIELDS

In this chapter we study a class of algebraic function fields defined in Section 2.1 below (see

the definition in (2.1)). We determine the number of rational places of these algebraic function

fields. In particular our results extend some of the corresponding results of [1].

We refer to Chapter 1 for a basic background on algebraic function fields over finite fields.

We also refer to Chapter 1 for the notation and basic definitions.

This chapter is organized as follows: In Section 2.1 we introduce the class of algebraic func-

tion fields that we will study. We also introduce some basic definitions and some notation. In

Section 2.2, using some results from [8], we obtain useful results that we will use in Section

2.3. We conclude our chapter in Section 2.3. The main result of this chapter is Theorem 2.3.1.

The results of this chapter will be used in Chapter 3 essentially.

2.1 INTRODUCTION

In this section we introduce a class of algebraic function fields that we will study. Moreover

we recall some basic definitions and we fix some notation.

Let q be a power of an odd prime. Let m ≥ 2 be a positive integer. By a curve we mean a

smooth, geometrically irreducible, projective curve defined over a finite field. The theory of

algebraic curves is essentially equivalent to the theory of algebraic function fields. Therefore

we use the terms function field and curve interchangeably.
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Let

S (X) = s0X + s1Xq + · · · + shXqh ∈ Fqm[X]

be an Fq-linearized polynomial with h ≥ 0 and sh , 0. Let

L(X) = µ0X + µ1Xq + · · · + µnXqn ∈ Fqm[X]

be an arbitrary Fq-linearized polynomial. Let β ∈ Fqm be an arbitrary element. Let F be the

algebraic function field

F := Fqm(X, Y) with Yq − Y = XS (X) + L(X) + β. (2.1)

In this chapter we determine the number N(F) of rational places of F. Our results in this

chapter extend the corresponding results of [1].

Let Tr denote the trace map from Fqm onto Fq, i.e., Tr(x) = x + xq + · · · + xqm−1
. Let BS be the

symmetric bilinear form on the Fq-linear vector space Fqm defined as

BS : Fqm × Fqm → Fq

(x, y) 7→ Tr (xS (y) + yS (x)) .

Let QS be the map

QS : Fqm → Fq

x 7→ Tr (xS (x)) .

Let WS be the radical of BS , which is defined as

WS = {x ∈ Fqm : BS (x, y) = 0 for each y ∈ Fqm}. (2.2)

For x ∈ Fqm , we observe that x ∈ WS if and only if Tr (xS (y) + yS (x)) = 0 for all y ∈ Fqm ,

which means

Tr
(
x
(
soy + s1yq + · · · + shyqh)

+ y
(
s0x + s1xq + · · · + shxqh))

= 0

for all y ∈ Fqm . Note that

Tr (xs1yq) = Tr
(
(xs1)q−1

y
)
,

Tr
(
xs2yq2)

= Tr
(
(xs2)q−2

y
)
,

...

Tr
(
xshyqh)

= Tr
(
(xsh)q−h

y
)

7



Hence for x ∈ Fqm , we have that x ∈ WS if and only if

Tr

y


h∑

i=1

(xsi)q−i
+ (xs0) + (s0x) +

h∑

i=1

(
sixqi)


 = 0,

for each y ∈ Fqm . Let u ∈ Fqm be the term, depending on x ∈ Fqm and S (X) ∈ Fqm[X], defined

as

u =


h∑

i=1

(xsi)q−i
+ xs0

 +

s0x +

h∑

i=1

(
sixqi)

 .

Note that

Tr(yu) = 0 for each y ∈ Fqm

if and only if u = 0. Taking qh-th power of u we obtain that, for x ∈ Fqm , x ∈ Ws if and only

if x is a root of the Fq-linearized polynomial

h−1∑

i=0

sqi

h−iT
qi

+ 2sqh

0 T qh
+

h∑

i=1

sqh

i T qh+i ∈ Fqm[T ]. (2.3)

Let k be the Fq-dimension

k := dimFq WS

of WS . Note that the degree of the Fq-linearized polynomial in (2.3) is q2h. Hence we have

that

k ≤ min{2h,m}.

We choose an Fq-linear subspace WS of Fqm such that

WS ⊕WS = Fqm .

In particular dimFq WS = m − k. It is clear that the restriction of BS onto Fq-linear space WS

gives a nondegenerate symmetric bilinear form on WS .

2.2 SOME RESULTS USING QUADRATIC FORMS

In this section we obtain some results using quadratic forms. In particular we use some results

from [8]. These will be useful in the next section.

We start with the following lemma.
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Lemma 2.2.1 There exists a basis {e1, e2, . . . , em−k} of WS over Fq and d ∈ Fq \ {0} such that

BS (x1e1 + x2e2 + · · · + xm−kem−k, y1e1 + y2e2 + · · · + ym−kem−k)

= x1y1 + x2y2 + · · · + xm−k−1ym−k−1 + dxm−kym−k

for all x1, y1, . . . , xm−k, ym−k ∈ Fq.

Proof. Note that BS is a nondegenerate symmetric bilinear from on WS . Moreover the charac-

teristic of Fq is odd. Therefore by [7, Theorem 4.9] there exists a basis {e1, e2, . . . , em−k} of WS

over Fq such that the representing matrix of BS corresponding to the basis {e1, e2, . . . , em−k}
is the (m − k) × (m − k) diagonal matrix



1

1
. . .

1

d



,

where d ∈ Fq \ {0}. This completes the proof. ¥

We choose a basis {e1, e2, . . . , em−k} of WS as in Lemma 2.2.1. Moreover let d ∈ Fq \ {0} be

the corresponding nonzero element given in Lemma 2.2.1.

We further choose a basis { f1, f2, . . . , fk} of WS over Fq in an arbitrary manner. Note that

{e1, e2, . . . , em−k, f1, f2, . . . , fk} is a basis of Fqm over Fq.

Lemma 2.2.2 Under the notation and assumptions as above, for x1, x2, . . . , xm−k, y1, y2, yk ∈
Fq, we have the identity that

QS (x1e1 + x2e2 + · · · + xm−kem−k + y1 f1 + y2 f2 + · · · + yk fk)

=
1
2

(
x2

1 + x2
2 + · · · + x2

m−k−1 + dx2
m−k

)
.

In particular the term above is independent from y1, y2, . . . , yk.

Proof. Note that for x, y ∈ Fqm we have

BS (x, y) = Tr(xS (y) + yS (x)),

and

QS (x) = Tr(xS (x)).

9



Hence

BS (x, x) = Tr(xS (x) + xS (x))

= 2Tr(xS (x))

= 2QS (x).

Note that 2 , 0 as q is odd. Putting

x = x1e1 + x2e2 + · · · + xm−kem−k + y1 f1 + y2 f2 + · · · + yk fk,

and

u = x1e1 + x2e2 + · · · + xm−kem−k, v = y1 f1 + y2 f2 + · · · + yk fk,

we obtain that

BS (x, x) = BS (u + v, u + v) = BS (u, u) + 2BS (u, v) + BS (v, v).

As v ∈ WS , we have that BS (u, v) = BS (v, v) = 0 and hence

BS (x, x) = BS (x1e1 + x2e2 + · · · + xm−kem−k)

= x2
1 + x2

2 + · · · + x2
m−k−1 + dx2

m−k,

where we use Lemma 2.2.1 in the last step. This completes the proof. ¥

Let H(x1, . . . , xm−k) ∈ Fq[x1, . . . , xm−k] be the polynomial over Fq in m − k indeterminates

x1, x2, . . . , xm−k given by

H(x1, . . . , xm−k) :=
1
2

(
x2

1 + x2
2 + · · · + dx2

m−k

)
.

Recall that the function field F is defined as

F = Fqm(X,Y) with Yq − Y = XS (X) + L(X) + β,

where

L(X) = µ0X + µ1Xq + · · · + µnXqn ∈ Fqm[X]

is an arbitrary Fq-linearized polynomial and β ∈ Fqm is an arbitrary element.

For 1 ≤ i ≤ m − k, let

ai := Tr(L(ei)) ∈ Fq.

10



For 1 ≤ i ≤ k, let

bi := Tr(L( fi)) ∈ Fq.

Finally let

b := Tr(β) ∈ Fq.

Lemma 2.2.3 Under the notation and assumptions above, for x1, x2, . . . , xm−k, y1, . . . , yk ∈
Fq, let

X = x1e1 + x2e2 + · · · xm−kem−k + y1 f1 + y2 f2 + · · · + yk fk ∈ Fqm ,

and let

x1 = x1 + a1,

x2 = x2 + a2,
...

xm−k−1 = xm−k−1 = am−k−1,

xm−k = xm−k +
am−k

d .

Moreover let A ∈ Fq be the evaluation

A = H
(
a1, a2, . . . , am−k−1,

am−k

d

)

of the polynomial H(x1, x2, . . . , xm−k) ∈ Fq[x1, x2, . . . , xm−k] at the point (a1, a2, . . . , am−k−1,
am−k

d ) ∈
Fm−k

q . Then we have the identity

Tr (XS (X) + L(X) + β) = H(x1, x2 . . . , xm−k) + b1y1 + b2y2 + · · · + bkyk − A + b.

Proof. We first consider the left hand side

Tr(XS (X) + L(X) + β).

Using Lemma 2.2.2 we have

QS (X) = Tr(XS (X)) =
1
2

(
x2

1 + x2
2 + · · · + x2

m−k−1 + dx2
m−k

)
.

It is easy to observe that

Tr(L(X)) = a1x1 + a2x2 + · · · + am−k xm−k + b1y1 + b2y2 + · · · + bkyk,

11



and

Tr(β) = b.

Hence the left hand side is

1
2

(
x2

1 + x2
2 + · · · + x2

m−k−1 + dx2
m−k

)
+

m−k∑

i=1

aixi +

k∑

i=1

biyi + b. (2.4)

Next we consider the right hand side

H(x1, x2 . . . , xm−k) + b1y1 + b2y2 + · · · + bkyk − A + b.

Note that

1
2 x2

1 − 1
2 a2

1 = 1
2 (x1 + a1)2 − 1

2 a2
1 = 1

2 x2
1 + a1x1,

1
2 x2

2 − 1
2 a2

2 = 1
2 (x2 + a2)2 − 1

2 a2
2 = 1

2 x2
2 + a2x2,

...

1
2 x2

m−k−1 − 1
2 a2

m−k−1 = 1
2 (xm−k−1 + am−k−1)2 − 1

2 a2
m−k−1 = 1

2 x2
m−k−1 + am−k−1xm−k−1,

and

d
2

x2
m−k −

d
2

(am−k

d

)2
=

d
2

(
xm−k +

am−k

d

)2
− 1

2
a2

m−k

d
=

d
2

x2
m−k + xm−kam−k.

Hence the right hand side is equal to (2.4). This completes the proof. ¥

The following lemma holds for q even as well.

Lemma 2.2.4 Let q be a power of an arbitrary prime number, i.e., including the case of even

characteristic as well. Let n ≥ 2 be an integer and g(x1, x2, . . . , xn−1) ∈ Fq[x1, x2, . . . , xn−1]

be a polynomial in n−1 indeterminates x1, x2, . . . , xn−1. Let a ∈ Fq \{0} be a nonzero element.

The number of the solutions of the equation

g(x1, x2, . . . , xn−1) + axn = 0,

with x1, x2, . . . , xn−1, xn ∈ Fq is qn−1.

Proof. We show that for any u1, u2, . . . , un−1 ∈ Fq, there exists a uniquely determined un ∈ Fq

such that (x1, x2, . . . , xn−1, xn) = (u1, u2, . . . , un−1, un) is a solution. Let

un = −g(u1u2, . . . , un−1)
a

. (2.5)
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As g(x1, x2, . . . , xn−1) is a polynomial in Fq[x1, x2, . . . , xn−1] and a ∈ Fq\{0}, for any u1, u2, . . . , un−1 ∈
Fq the evaluation g(u1, u2, . . . , un−1) and hence un ∈ Fq is uniquely determined by (2.5). Run-

ning through all u1, u2, . . . , un−1 we obtain all qn−1 solutions. This completes the proof.

¥

Let ψ : Fqm → Fq be the Fq-linear map

ψ(x) = Tr(L(x)). (2.6)

Recall that { f1, f2, . . . , fk} is a basis of WS ⊆ Fqm and bi = Tr(L( fi)) for 1 ≤ i ≤ k. Hence

WS ⊆ Kerψ⇐⇒ b1 = b2 = · · · = bk = 0. (2.7)

In the following proposition we would like to determine N(F) in a relatively easier particular

case. Its proof will be included in the proof of Theorem 2.3.1 below.

Proposition 2.2.5 Let q be a power of an odd prime and m ≥ 2 be a positive integer. Let

S (X) = s0X + s1Xq + · · · + shXqh ∈ Fqm[X] be an Fq-linearized polynomial with sh , 0 and

h ≥ 0. Let

L(X) = µ0X + µ1Xq + · · · + µnXqn ∈ Fqm[X]

be an arbitrary Fq-linear polynomial. Let β ∈ Fqm be an arbitrary element. Let F be the

algebraic function field

F = Fqm(X,Y) with Yq − Y = XS (X) + L(X) + β.

Let WS be the radical defined in (2.2). Let ψ be the Fq-linear map defined in (2.6). If Ws *

Kerψ, then for the number N(F) of rational places of F we have

N(F) = 1 + qm.

In this chapter, from now on we assume that WS ⊆ Kerψ, or equivalently, b1 = b2 = · · · =

bk = 0. Therefore the identity in Lemma 2.2.3 becomes

Tr (XS (X) + L(X) + β) = H(x1, x2 . . . , xm−k) − A + b.

We will use the following lemmas.
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Lemma 2.2.6 Let q be a power of an odd prime, u ∈ Fq and d ∈ Fq \ {0}. Let n ≥ 2 be an

even integer. We consider the number N of solutions of the equation

x2
1 + x2

2 + · · · + x2
n−1 + dx2

n = u

with x1, x2, . . . , xn ∈ Fq. Assume first that u , 0. Then we have

N =


qn−1 − qn/2−1 if (−1)n/2d is a square in Fq,

qn−1 + qn/2−1 if (−1)n/2d is not a square in Fq.
(2.8)

Assume next that u = 0. Then we have

N =


qn−1 + (q − 1)qn/2−1 if (−1)n/2d is a square in Fq,

qn−1 − (q − 1)qn/2−1 if (−1)n/2d is not a square in Fq.
(2.9)

Proof. We use the notation of [8, Theorem 6.26] in this proof. Under this notation we have

f (x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n−1 + dx2

n ∈ Fq[x1, x2, . . . , xn]. For the determinant of

the polynomial f we have det( f ) = d (see [8, page 280] for a definition of the determinant

det( f )).

For the integer valued-function υ(·) on Fq (see [8, Definition 6.22]) we have

υ(u) =


−1 if u , 0,

q − 1 if u = 0.
(2.10)

Note that if η is the quadratic character of Fq and x ∈ Fq \ {0}, then

η(x) =


1 if x is a square in Fq,

−1 if x is not a square in Fq.
(2.11)

Assume first that u , 0. Then υ(u) = −1 by (2.10). Moreover

η(d) =


1 if d is a square in Fq,

−1 if d is not a square in Fq

(2.12)

by (2.11). Hence using [8, Theorem 6.26] we obtain (2.8).

Assume next that u = 0. Then υ(u) = q − 1 by (2.10). Hence using (2.12) and [8, Theorem

6.26] we obtain (2.9). This completes the proof. ¥

Lemma 2.2.7 Let q be a power of an odd prime, u ∈ Fq and d ∈ Fq \ {0}. Let n ≥ 3 be an

odd integer. We consider the number N of solutions of the equation

x2
1 + x2

2 + · · · + x2
n−1 + dx2

n = u
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with x1, x2, . . . , xn ∈ Fq. Then we have

N =


qn−1 + q(n−1)/2 if (−1)(n−1)/2du is a square in Fq,

qn−1 − q(n−1)/2 if (−1)(n−1)/2du is not a square in Fq.
(2.13)

Proof. We use the notation of [8, Theorem 6.27] in this proof. Under this notation we have

the polynomial f (x1, x2, . . . , xm) and the (extended) quadratic character η of Fq as in the proof

of Lemma 2.2.6. Here N does not depend on υ(u), but it depends only on η
(
(−1)(n−1)/2du

)
.

Hence we have two cases in (2.13) instead of four cases of Lemma 2.2.6. Using [8, Theorem

6.27] we complete the proof. ¥

2.3 NUMBER OF RATIONAL PLACES

Thanks to the results of Section 2.2, now we are ready to determine the number N(F) of the

rational places of F in all cases. In this section we determine the number of rational places of

the algebraic function field given in (2.1).

Theorem 2.3.1 Let q be a power of an odd prime. Let m ≥ 2 be an integer. Let S (X) =

s0X + s1Xq + · · ·+ shXqh ∈ Fqm[X] be an Fq-linearized polynomial with sh , 0 and h ≥ 0. Let

L(X) = µ0X + µ1Xq + · · · + µnXqn ∈ Fqm[X]

be an arbitrary Fq-linear polynomial. Let β ∈ Fqm be an arbitrary element. Let F be the

algebraic function field

F = Fqm(X,Y) with Yq − Y = XS (X) + L(X) + β.

Let WS be the radical defined in (2.2). Let k = dimFq WS be the Fq-dimension of WS . We

choose an Fq-linear subspace WS of Fqm such that WS ⊕ WS = Fqm . Let {e1, e2, . . . , em−k}
be an Fq-basis of WS and d ∈ Fq \ {0} be a nonzero element given by Lemma 2.2.1. Let

H(x1, x2, . . . , xm−k) ∈ Fq[x1, x2, . . . , xm−k] be the polynomial over Fq in m − k indeterminates

x1, x2, . . . , xm−k given by

H(x1, . . . , xm−k) =
1
2

(
x2

1 + x2
2 + · · · + dx2

m−k

)
.

For 1 ≤ i ≤ m − k, let

ai = Tr(L(ei)) ∈ Fq.
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Let

A = H
(
a1, a2, . . . , am−k−1,

am−k

d

)
∈ Fq

and

b = Tr(β) ∈ Fq.

Let ψ : Fqm → Fq be the Fq-linear map

ψ(x) = Tr(L(x)).

If WS * Kerψ, then for the number N(F) of rational places of F we have

N(F) = 1 + qm. (2.14)

If WS ⊆ Kerψ, m − k is even and A , b, then for the number N(F) of rational places of F we

have

N(F) =


1 + qm − q(m+k)/2 if (−1)(m−k)/2d is a square in Fq,

1 + qm + q(m+k)/2 if (−1)(m−k)/2d is not a square in Fq.
(2.15)

If WS ⊆ Kerψ, m − k is even and A = b, then for the number N(F) of rational places of F we

have

N(F) =


1 + qm + (q − 1)q(m+k)/2 if u is a square in Fq,

1 + qm − (q − 1)q(m+k)/2 if u is not a square in Fq,
(2.16)

where u = (−1)(m−k)/2d ∈ Fq.

If WS ⊆ Kerψ and m − k is odd, then for the number N(F) of rational places of F we have

N(F) =


1 + qm + q(m+k+1)/2 if u is a square in Fq,

1 + qm − q(m+k+1)/2 if u is not a square in Fq,
(2.17)

where u = (−1)(m−k−1)/22d(A − b) ∈ Fq.

Proof. For γ ∈ Fqm , consider the equation

xq − x = γ. (2.18)
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This has a solution if and only if

Tr(γ) = 0.

Moreover if Tr(γ) = 0, then the number of solutions of (2.18) with x ∈ Fqm is q. Also these

statements hold independent from the characteristic of Fq, i.e., they hold for any finite field

Fq and any extension Fqm of Fq with m ≥ 2. This useful result is well known and it is called

as Hilbert’s Theorem 90.

Let P∞ be the place of the rational function field Fq(X) corresponding to the pole of X. It is

also well known that the place P∞ is totally ramified in the extension F/Fq(X) and there is a

unique rational place of F over P∞.

Let N be the number of solutions of the equation

H(x1, x2, . . . , xm−k) + b1y1 + b2y2 + · · · + bkyk − A + b = 0

with x1, x2, . . . , xm−k, y1, y2, . . . , yk ∈ Fq. Then using the arguments above, Hilbert’s Theorem

90 and Lemma 2.2.3 we obtain that

N(F) = 1 + qN. (2.19)

First we assume that Ws * Kerψ (cf. Proposition 2.2.5). Using (2.7) we conclude that there

exists a nonzero element of the set {b1, b2, . . . , bk}. Hence using Lemma 2.2.4 we obtain that

N = qm−1. (2.20)

Combining (2.19) and (2.20) we obtain (2.14), which also proves Proposition 2.2.5.

In this proof from now on we assume that WS ⊆ Kerψ, or equivalently b1 = b2 = · · · = bk = 0.

Let N1 be the number of the solutions of

H(x1, x2, . . . , xm−k) − A + b = 0

with x1, x2, . . . , xm−k ∈ Fq. Then we immediately obtain that

N = qkN1. (2.21)

We consider the case that m−k is even and A , b. Then using (2.8) in Lemma 2.2.6 we obtain

that

N1 =


qm−k−1 − q(m−k)/2−1 if (−1)(m−k)/2d is a square in Fq,

qm−k−1 + q(m−k)/2−1 if (−1)(m−k)/2d is not a square in Fq.
(2.22)
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Note that

q · qk · qm−k−1 = qm, q · qk · q(m−k)/2−1 = q(m+k)/2. (2.23)

Hence combining (2.19), (2.21), (2.22) and (2.23) we prove (2.15).

Next we consider the case that m−k is even and A = b. Using (2.9) in Lemma 2.2.6 we obtain

that

N1 =


qm−k−1 + (q − 1)q(m−k)/2−1 if u is a square in Fq,

qm−k−1 − (q − 1)q(m−k)/2−1 if u is not a square in Fq,
(2.24)

where u = (−1)(m−k)/2d ∈ Fq. Combining (2.19), (2.21), (2.23) and (2.24) we prove (2.16).

Finally we consider the remaining case that m − k is odd. Using Lemma 2.2.7 we obtain that

N1 =


qm−k−1 + q(m−k−1)/2 if u is a square in Fq,

qm−k−1 − q(m−k−1)/2 if u is not a square in Fq,
(2.25)

where u = (−1)(m−k−1)/22d(A − b) ∈ Fq. Note that

q · qk · q(m−k−1)/2 = q(m+k+1)/2. (2.26)

Combining (2.19), (2.21), (2.23), (2.25) and (2.26) we prove (2.17). This completes the proof.

¥
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CHAPTER 3

A CLASS OF AUTHENTICATION CODES WITH SECRECY

In this chapter we study the class of authentication codes with secrecy defined in Section 3.1

below (see the definition in (3.1)). In particular we obtain some contributions to some open

problems mentioned in [4].

We refer to Chapter 1 for a background on authentications codes with secrecy. We also refer

to Chapter 1 for the notions and definitions of impersonation attack, substitution attack and

level of secrecy protection.

This chapter is organized as follows: We introduce a class of authentication codes with se-

crecy, fix some notation and give some preliminary results in Section 3.1. We study the

maximum success probability PI of the impersonation attack on these codes in Section 3.2.

The determination of the maximum success probability PS of the substitution attack on these

codes is more involved. We begin our study on PS and we determine PS when m
gcd(2h,m) is

even in Section 3.3. It will be clear below why it is necessary to consider the cases m
gcd(2h,m) is

even and m
gcd(2h,m) is odd separately when we study PS. The study of PS is more interesting

when m
gcd(2h,m) is odd. In Section 3.4 we obtain some preliminary results on PS and study PS

when m
gcd(2h,m) is odd and m is even. Similarly, using the preliminary results of Section 3.4,

we obtain PS when m
gcd(2h,m) is odd and m is odd in Section 3.5. Finally we study the level of

secrecy provided by these authentication codes in Section 3.6.

Our results in this chapter refine and improve some of the results of [12] extensively. Through-

out this chapter, we use some results from Chapter 2.
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3.1 PRELIMINARIES

In this section we introduce a class of authentication codes with secrecy, give some results

that we use later and we fix some notation.

Let q be a power of a prime. For a positive integer m, Fqm denotes a finite field with qm

elements. For m ≥ 2, let TrFqm/Fq denote the trace map from Fqm onto Fq given by

TrFqm/Fq : Fqm → Fq

x 7→ x + xq + · · · + xqm−1
.

When it is clear from context, we also denote TrFqm/Fq as Tr in short.

Now we introduce a class of authentication codes.

Let q be a power of an odd prime, m ≥ 2 and h ≥ 1 be integers. Let Tr denote the trace map

from Fqm onto Fq.

Let Π be the map defined as

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

The authentication code with secrecy we consider is (S,K ,M,E) with



S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},

(3.1)

where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .

It follows from the definition that the maximum success probability PI of the impersonation

attack on the authentication code with secrecy in (3.1) is

PI = max
m=(m1,m2)

|{k ∈ K : Π(m1 − k) + Π(k) = m2}|
|K|
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where the maximum is overM, that is the maximum is defined as m1 runs through Fqm and

m2 runs through Fq.

Again it follows from the definition that the maximum success probability PS of the substitu-

tion attack on the authentication code with secrecy in (3.1) is

PS = max
m,d

|{s ∈ S : Π(s) + Π(m1 − s) = m2, Π(s + d1) − Π(s) = d2}|
|{s ∈ S : Π(s) + Π(m1 − s) = m2}| ,

where the maximum is over m = (m1,m2) ∈ M = Fqm ×Fq and d = (d1, d2) ∈ M with d1 , 0.

In the rest of this section we give some preliminary results that we will use later. We start

with a simple lemma.

Lemma 3.1.1 Let q be a power of a prime. Let a, b be positive integers. Then we have

gcd
(
qa − 1, qb − 1

)
= qgcd(a,b) − 1.

Proof. We begin with an observation. Let c be a positive integer dividing a. We have

qa − 1 = qc( a
c ) − 1 =

(
qc − 1

) (
1 + qc + q2c + · · · + q( a

c−1)c
)
.

This implies that

(
qgcd(a,b) − 1

)
| (qa − 1

)
,

and

(
qgcd(a,b) − 1

)
|
(
qb − 1

)
.

Therefore we have

(
qgcd(a,b) − 1

)
| gcd

(
qa − 1, qb − 1

)
. (3.2)

Let r = gcd(qa − 1, qb − 1). Then r | (qa − 1), r | (qb − 1), and in particular

qa ≡ 1 mod r,

qb ≡ 1 mod r.

For any integers `1, `2 ∈ Z we have that

q`1a+`2b ≡ (
qa)`1

(
qb

)`2 ≡ 1 · 1 ≡ 1 mod r. (3.3)
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There exist integers `1, `2 ∈ Z such that

gcd(a, b) = `1a + `2b. (3.4)

Then using (3.3) and (3.4) we obtain that

qgcd(a,b) ≡ 1 mod r,

and hence

gcd
(
qa − 1, qb − 1

)
|
(
qgcd(a,b) − 1

)
. (3.5)

Combining (3.2) and (3.5) we complete the proof. ¥

The following lemma is crucial for our results.

Lemma 3.1.2 Let q be a power of an odd prime. Let a,m be positive integers. Let W be the

set of the zeroes of the Fq-linearized polynomial

T + T qa ∈ Fq[T ]

in Fqm . Let

a = gcd(a,m).

If
m
a

is odd, then

W = {0},

and in particular |W | = 1.

If
m
a

is even, then the Fq-linearized polynomial

T + T qa ∈ Fq[T ] (3.6)

splits in the subfield Fq2a of Fqm . Moreover, in this case, W is equal to the set of zeroes of the

polynomial in (3.6), in particular |W | = qa.

Proof. Note that 0 ∈ W. Let x ∈ Fqm \ {0} and assume that x ∈ W. Then

xqa
= −x,
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and hence

x2(qa−1) = 1. (3.7)

As x ∈ Fqm \ {0}, we also have

xqm−1 = 1. (3.8)

Combining (3.7) and (3.8) we obtain that

xgcd(2(qa−1),qm−1) = 1. (3.9)

By Lemma 3.1.1 we have

qa − 1 = gcd
(
qa − 1, qm − 1

)
. (3.10)

Note that

qm − 1 = qa·ma − 1 =
(
qa − 1

) (
1 + qa + q2a + · · · + q( m

a −1)a
)
. (3.11)

The number of terms in the sum

1 + qa + q2a + · · · + q( m
a −1)a

is
m
a

. Moreover

qia ≡ 1 mod 2

for 1 ≤ i ≤ m
a − 1, as q is odd. Hence

1 + qa + q2a + · · · + q( m
a −1)a ≡


1 mod 2 if m

a is odd,

0 mod 2 if m
a is even.

(3.12)

Using (3.10), (3.11) and (3.12) we obtain that

gcd
(
2

qa − 1
qa − 1

,
qm − 1
qa − 1

)
=


1 if m

a is odd,

2 if m
a is even.

(3.13)

In (3.13) we use the fact that

gcd
(
qa − 1
qa − 1

,
qm − 1
qa − 1

)
= 1,

which follows from (3.10). Then using (3.13) we obtain that

gcd
(
2(qa − 1), qm − 1

)
=


qa − 1 if m

a is odd,

2
(
qa − 1

)
if m

a is even.
(3.14)
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First we consider the case that m
a is odd. By (3.9) and (3.14) we have

xqa−1 = 1

and hence

xqa
= x.

Then

xq2a
=

(
xqa

)qa

= (x)qa
= x.

Similarly for any integer ` ≥ 1 we have

xq`a = x.

In particular for ` = a
a we obtain that

xqa
= x. (3.15)

As x ∈ W, we also have

xqa
= −x. (3.16)

Recall that x ∈ Fqm \ {0}. Combining (3.15), (3.16) and using the fact that q is odd we arrive

to the contradiction that x = 0. Hence W = {0} in the case that m
a is odd.

Next we consider the case that m
a is even. By (3.9) and (3.14) we have

(
xqa−1

)2
= 1.

Hence

xqa−1 = 1 or xqa−1 = −1.

If xqa−1 = 1, then as in the case that m
a is odd, we arrive to the conclusion that xqa

= x. As

xqa
= −x, x , 0, and q is odd, we obtain a contradiction. Therefore xqa−1 = −1 and

x + xqa
= 0. (3.17)

Note that Fq2a ⊆ Fqm as m
a is even. Moreover for y ∈ Fq2a , its trace TrFq2a/Fqa (y) relative to Fqa

is given by

TrFq2a/Fqa (y) = y + yqa
.
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It is well known that the equation TrFq2a/Fqa (y) = 0 has exactly qa solutions with y ∈ Fq2a .

Hence the number of solutions of (3.17) with x ∈ Fqm is qa. This completes the proof. ¥

The following lemma will be used later.

Lemma 3.1.3 Let q be a power of a prime. Let h,m be positive integers. Let W ⊆ Fqm be the

subset defined as

W = {x ∈ Fqm : x + xq2h
= 0}.

Let Tr denote the trace map from Fqm onto Fq. Let α ∈ Fqm and ψ be the Fq-linear map defined

as

ψ : Fqm → Fq

x 7→ Tr
((
αq−h

+ αqh)
x
)
.

Then

W ⊆ Kerψ.

Proof. Let x ∈ W. We have

ψ(x) = Tr
((
αq−h

+ αqh)
x
)

= Tr
(
αq−h

x
)

+ Tr
(
αqh

x
)

= Tr
(
αqh (

x + xq2h))
.

(3.18)

As x ∈ W, we have

x + xq2h
= 0. (3.19)

Using (3.18) and (3.19) we obtain that

ψ(x) = 0.

This completes the proof. ¥
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3.2 THE MAXIMUM SUCCESS PROBABILITY OF THE IMPERSONATION

ATTACK

In this section we consider the maximum success probability PI of the impersonation attack

on the authentication code with secrecy defined in (3.1).

We recall that PI is given by

PI = max
m=(m1,m2)

|{k ∈ K : Π(m1 − k) + Π(k) = m2}|
|K|

= max
m=(m1,m2)

|{k ∈ K : Π(m1 − k) + Π(k) = m2}|
qm ,

(3.20)

where the maximum is overM, that is the maximum is defined as m1 runs through Fqm and

m2 runs through Fq.

Let x ∈ Fqm , α ∈ Fqm and b ∈ Fq. Note that

Π(α − x) + Π(x) = b (3.21)

means that

Tr
(
(α − x)qh+1

)
+ Tr

(
xqh+1

)
= b. (3.22)

We have

(α − x)qh+1 = (α − x)qh
(α − x)

= (αqh − xqh
)(α − x)

= αqh+1 − αqh
x − αxqh

+ xqh+1.

(3.23)

We choose β ∈ Fqm such that

Tr(β) = b. (3.24)

Note that

Tr
(
αxqh)

= Tr
(
αq−h

x
)
. (3.25)

Combining (3.22), (3.23), (3.24) and (3.25) we obtain that (3.22) holds if and only if

Tr
(
2xqh+1 −

(
αq−h

+ αqh)
x + αqh+1 − β

)
= 0. (3.26)
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For γ ∈ Fqm , let Fα,γ be the algebraic function field

Fα,γ = Fqm(x, y) with yq − y = 2xqh+1 −
(
αq−h

+ αqh)
x + γ. (3.27)

Note that the polynomial

T q − T −
(
2xqh+1 −

(
αq−h

+ αqh)
x + γ

)
∈ Fqm(x)[T ]

is irreducible over the field Fqm(x). Hence [Fα,γ : Fqm(x)] = q.

Let N(α, β) denote the number of solutions of the equation (3.26) with x ∈ Fqm .

Let N(Fα,γ) denote the number of rational places of Fα,γ.

Using (3.26) and (3.27) we obtain that if

γ = αqh+1 − β, (3.28)

then

N(Fα,γ) = 1 + qN(α, β). (3.29)

It is also clear that α and β runs through Fqm if and only if α and αqh+1 − β runs through Fqm .

Hence, by (3.28) and (3.29), we have that

max
α,γ

N
(
Fα,γ

)
= 1 + q max

α,β
N(α, β). (3.30)

Here maxα,γ N
(
Fα,γ

)
is the maximum of N

(
Fα,γ

)
as α and γ runs through Fqm . Similarly

maxα,β N(α, β) is the maximum of N(α, β) as α and β runs through Fqm .

Therefore the determination of PI reduces to the determination of

max
α,γ

N
(
Fα,γ

)
, (3.31)

where the maximum is over α, γ ∈ Fqm . We will determine (3.31) using the results of Chapter

2.

Let S (T ) = 2T qh ∈ Fqm[T ] be the Fq-linearized polynomial. Under the notation of Chapter 2,

for the mapping QS we have

QS : Fqm : → Fq

x 7→ Tr(xS (x)) = Tr
(
2xqh+1

)
.
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The corresponding bilinear form Bs is given by

BS : Fqm × Fqm → Fq

(x, y) 7→ Tr(xS (y) + yS (x)).

Using (2.3) in Chapter 2, for the radical WS of the bilinear form BS we have

WS = {x ∈ Fqm : 2x + 2xq2h
= 0}

= {x ∈ Fqm : x + xq2h
= 0}.

Let h = gcd(2h,m) and k = dimFq WS be the Fq-dimension of WS .

If m
h

is odd, then using Lemma 3.1.2 we have

WS = {0} and k = 0. (3.32)

If m
h

is even, then using Lemma 3.1.2 we have

WS = {x ∈ Fqm : x + xqh
= 0} and k = h. (3.33)

Let ψ be the Fq-linear map

ψ : Fqm → Fq

x 7→ Tr
((
αq−h

+ αqh)
x
)
.

By Lemma 3.1.3 we have that

WS ⊆ Kerψ. (3.34)

The following simple lemma will be useful.

Lemma 3.2.1 Let a, b be positive integers. Let a = gcd(2a, b). If b
a is even, then a is even.

Proof. Assume that b
a is even. Then b is even, 2 | b and 2 | (2a). This implies that 2 |

gcd(2a, b). Therefore a = gcd(2a, b) is even. ¥

Now we are ready to determine PI.
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Theorem 3.2.2 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let Π be

the map

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

Let (S,K ,M,E) be the authentication code with secrecy defined as



S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},

where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .

Let PI denote the maximum success probability of the impersonation attack on the authenti-

cation code with secrecy defined above. Let

h = gcd(2h,m).

If m
h

is odd and m is odd, then

PI =
1
q

+
1

q
m+1

2

. (3.35)

If m
h

is odd and m is even, then

PI =
1
q

+
1

q
m
2 +1

or PI =
1
q

+
q − 1

q
m
2 +1

. (3.36)

If m
h

is even, h is even, and m is even, then

PI =
1
q

+
1

q
m−h

2 +1
or PI =

1
q

+
q − 1

q
m−h

2 +1
. (3.37)

Proof. We use the notation introduced before Lemma 3.2.1 above. In particular we note that

WS ⊆ Kerψ (3.38)

in all cases.
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First we consider the case that m
h

is odd and m is odd. For the dimension k of WS we have

k = 0,

by (3.32). Then m − k is odd. Using Theorem 2.3.1 of Chapter 2 we obtain that

N
(
Fα,γ

)
= 1 + qm + q

m+1
2 or N

(
Fα,γ

)
= 1 + qm − q

m+1
2 , (3.39)

where α, γ ∈ Fqm .

In order to decide which value in (3.39) occurs depending on α and γ, we need to consider

whether the element

(−1)
m−1

2 2d(A − b) ∈ Fq (3.40)

is square or not in Fq. Here d is a nonzero constant in Fq \ {0} depending on q, m and h.

Moreover in (3.40) A ∈ Fq is a constant depending on q, m, h, and α. Finally in (3.40), the

constant b ∈ Fq is defined as

b = Tr(γ). (3.41)

Using (3.41) we obtain that the value in (3.40) takes both square and nonsquare values in

Fq as α and γ run through Fqm . Therefore both of the values in (3.39) occur as α and γ run

through Fqm . Therefore

max
α,γ

N
(
Fα,γ

)
= 1 + qm + q

m+1
2 , (3.42)

where the maximum is over α, γ ∈ Fqm . Recall that for α, β ∈ Fqm , N(α, β) denotes the number

of solutions of the equation in (3.26) with x ∈ Fqm . Using (3.30) and (3.42) we obtain that

max
α,β

N(α, β) =
maxα,γ N

(
Fα,γ

)
− 1

q

= qm−1 + q
m−1

2 .

(3.43)

For maxα,β N(α, β) in (3.43), the maximum is over α, β ∈ Fqm .

Using (3.20) and (3.43) we obtain that

PI =
qm−1 + q

m−1
2

qm

=
1
q

+
1

q
m+1

2

,
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which completes the proof of (3.35).

Next we consider the case that m
h

is odd and m is even. Again

k = dim WS = 0

by (3.32). Then m − k is even. Using Theorem 2.3.1 of Chapter 2, we obtain that

N
(
Fα,γ

)
= 1 + qm − q

m
2 or N

(
Fα,γ

)
= 1 + qm + q

m
2 (3.44)

if A , b, and

N
(
Fα,γ

)
= 1 + qm + (q − 1)q

m
2 or N

(
Fα,γ

)
= 1 + qm − (q − 1)q

m
2 (3.45)

if A = b. Here, as in the case that m
h

is odd and m is odd above, A ∈ Fq is a constant depending

on q,m, h, and α. Moreover b = Tr(γ). Hence both of the cases

A = b and A , b

occur as α and γ run through Fqm . Also the values in (3.44) and (3.45) depend on whether

(−1)
m
2 d is a square in Fq or not, (3.46)

where d ∈ Fq \ {0} is a nonzero constant depending on q,m and h.

If the value in (3.46) is a square in Fq, then using (3.44) and (3.45) we obtain that

max
α,γ

N
(
Fα,γ

)
= max

{
1 + qm − q

m
2 , 1 + qm + (q − 1)q

m
2
}

= 1 + qm + (q − 1)q
m
2 .

(3.47)

If the value in (3.46) is not a square in Fq, then using (3.44) and (3.45) we obtain that

max
α,γ

N
(
Fα,γ

)
= max

{
1 + qm + q

m
2 , 1 + qm − (q − 1)q

m
2
}

= 1 + qm + q
m
2 .

(3.48)

Combining (3.47), (3.48) and using (3.30) we obtain that

max
α,β

N(α, β) =
maxα,γ N

(
Fα,γ

)
− 1

q

and hence

max
α,β

N(α, β) = qm−1 + (q − 1)q
m
2 −1 (3.49)

31



or

max
α,β

N(α, β) = qm−1 + q
m
2 −1. (3.50)

Using (3.20), (3.49) and (3.50) we get that

PI =
qm−1 + (q − 1)q

m
2 −1

qm

=
1
q

+
q − 1

q
m
2 +1

or

PI =
qm−1 + q

m
2 −1

qm

=
1
q

+
1

q
m
2 +1

,

which completes the proof of (3.36).

Finally we consider the case that m
h

is even, h is even and m is even. For the dimension k of

WS we have

k = h

by (3.33). Then m − k is even. Using Theorem 2.3.1 of Chapter 2 we obtain that

N
(
Fα,γ

)
= 1 + qm − q

m+h
2 or N

(
Fα,γ

)
= 1 + qm + q

m+h
2 (3.51)

if A , b and

N
(
Fα,γ

)
= 1 + qm + (q − 1)q

m+h
2 or N

(
Fα,γ

)
= 1 + qm − (q − 1)q

m+h
2 (3.52)

if A = b. Here, as in the case of m
h

is odd and m is even above, the occurrence of values in

(3.51) and (3.52) depend on the constants A, b and d. Again A ∈ Fq is a constant depending

on q,m, h and α. Moreover b = Tr(γ), and d ∈ Fq \ {0} is a nonzero constant depending on

q,m, and h.

If (−1)
m−h

2 d is a square in Fq, then both of the values

N
(
Fα,γ

)
= 1 + qm − q

m+h
2 and N

(
Fα,γ

)
= 1 + qm + (q − 1)q

m+h
2 (3.53)

occur as α and γ run through Fqm .
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If (−1)
m−h

2 d is not a square in Fq, then both of the values

N
(
Fα,γ

)
= 1 + qm + q

m+h
2 and N

(
Fα,γ

)
= 1 + qm − (q − 1)q

m+h
2 (3.54)

occur as α and γ run through Fqm .

Therefore, by (3.53) and (3.54), we have

max
α,γ

N
(
Fα,γ

)
= max

{
1 + qm − q

m+h
2 , 1 + qm + (q − 1)q

m+h
2

}

= 1 + qm + (q − 1)q
m+h

2

(3.55)

or

max
α,γ

N
(
Fα,γ

)
= max

{
1 + qm + q

m+h
2 , 1 + qm − (q − 1)q

m+h
2

}

= 1 + qm + q
m+h

2 .
(3.56)

Using (3.30), (3.55) and (3.56) we get that

max
α,β

N(α, β) = qm−1 + (q − 1)q
m+h

2 −1 (3.57)

or

max
α,β

N(α, β) = qm−1 + q
m+h

2 −1. (3.58)

Hence from (3.20), (3.57) and (3.58) we obtain that

PI =
qm−1 + (q − 1)q

m+h
2 −1

qm

=
1
q

+
q − 1

q
m−h

2 +1

or

PI =
qm−1 + q

m+h
2 −1

qm

=
1
q

+
1

q
m−h

2 +1
,

which completes the proof of (3.37). ¥

Remark 3.2.3 Using Lemma 3.2.1 we obtain that there is no case in Theorem 3.2.2 with m
h

is

even and h is odd. Moreover if m
h

is even, then m is even and there is no case that m
h

is even,

h is even and m is odd. Therefore Theorem 3.2.2 considers PI in all possible cases. Also all

three cases considered in Theorem 3.2.2 occur. For example:
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i) If m = 9 and h = 3, then h = gcd(2h,m) = 3 and we have

m
h

= 3 is odd, and m = 9 is odd.

ii) If m = 6 and h = 2, then h = gcd(2h,m) = 2 and we have

m
h

= 3 is odd, and m = 6 is even.

iii) If m = 8 and h = 2, then h = gcd(2h,m) = 4 and we have

m
h

= 2 is even, h = 4 is even and m = 8 is even.

3.3 THE MAXIMUM SUCCESS PROBABILITY OF THE SUBSTITUTION

ATTACK: CASE m
gcd(2h,m) IS EVEN

In this section we begin to consider the maximum success probability PS of the substitution

attack on the authentication code with secrecy defined in (3.1) and we determine it when
m

gcd(2h,m) is even.

We recall that PS is given by

Ps = max
m,d

|{s ∈ S : Π(s) + Π(m1 − s) = m2, Π(s + d1) − Π(s) = d2}|
|{s ∈ S : Π(s) + Π(m1 − s) = m2}| , (3.59)

where the maximum is over m = (m1,m2) ∈ M = Fqm ×Fq and d = (d1, d2) ∈ M with d1 , 0.

Let α1 ∈ Fqm , b1 ∈ Fq, α2 ∈ Fqm \ {0} and b2 ∈ Fq.

For the denominator of the right hand side of the equation in (3.59) we consider the cardinality

of the set

{x ∈ Fqm : Π(x) + Π(α1 − x) = b1}. (3.60)

For the numerator of the right hand side of the equation in (3.59) we consider the cardinality

of the set

{x ∈ Fqm : Π(x) + Π(α1 − x) = b1, Π(x + α2) − Π(x) = b2}. (3.61)
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We choose β1 ∈ Fqm such that Tr(β1) = b1. Let N1(α1, β1) denote the number of solutions of

the equation

Tr
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + α

qh+1
1 − β1

)
= 0 (3.62)

with x ∈ Fqm . Using (3.21), (3.22), (3.23) , (3.24), and (3.25), as in determination of the

maximum success probability PI of the impersonation attack, we obtain that N1(α1, β1) is

equal to the cardinality of the set in (3.60).

For x ∈ Fqm , note that

(x + α2)qh+1 − xqh+1 =

(
xqh

+ α
qh

2

)
(x + α2) − xqh+1

=

(
xqh+1 + xqh

α2 + xαqh

2 + α
qh+1
2

)
− xqh+1

= xqh
α2 + xαqh

2 + α
qh+1
2 .

Then we have

Π(x + α2) − Π(x) = Tr
(
(x + α2)qh+1

)
− Tr

(
xqh+1

)

= Tr
(
xqh
α2 + xαqh

2 + α
qh+1
2

)

= Tr
((
α

q−h

2 + α
qh

2

)
x + α

qh+1
2

)
.

(3.63)

We choose β2 ∈ Fqm such that Tr(β2) = b2. Using (3.63) we observe that the number of

solutions of the system of equations


Π(x) + Π(α1 − x) = b1,

Π(x + α2) − Π(x) = b2,

with x ∈ Fqm is the same as the number of solutions of the system of equations


Tr
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + α

qh+1
1 − β1

)
= 0,

Tr
((
α

q−h

2 + α
qh

2

)
x + α

qh+1
2 − β2

)
= 0,

(3.64)

with x ∈ Fqm . Let N2(α1, β1;α2, β2) denote the number of solutions of the system (3.64) with

x ∈ Fqm . Using (3.59) we observe that

PS = max
α1,β1,α2,β2

N2(α1, β1;α2, β2)
N1(α1, β1)

, (3.65)
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where the maximum is over α1, β1, α2, β2 ∈ Fqm with α2 , 0.

We consider whether there exists α2 ∈ Fqm \ {0} such that

α
q−h

2 + α
qh

2 = 0, (3.66)

which is equivalent to

α2 + α
q2h

2 = 0.

Now we use Lemma 3.1.2. Let h = gcd(2h,m). If m
h

is odd, then there is no α2 ∈ Fqm \ {0}
such that (3.66) holds. If m

h
is even, then the number of α2 ∈ Fqm \ {0} such that (3.66) holds

is qh − 1.

First we deal with the case that m
h

is even and we choose α2 ∈ Fqm \ {0} such that

α
q−h

2 + α
qh

2 = 0.

Moreover we choose β2 ∈ Fqm such that

Tr
(
α

qh+1
2 − β2

)
= 0.

The number of such β2 is exactly qm−1. Then the system (3.64) of equations becomes the

system of equations given by


Tr
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + α

qh+1
1 − β1

)
= 0,

Tr (0 · x) = 0.

(3.67)

As the second equation in system (3.67) is trivially satisfied, the system in (3.67) is equivalent

to the equation in (3.62) for these choices of α2 ∈ Fqm \ {0} and β2 ∈ Fqm . Therefore for any

α1, β1 ∈ Fqm and for those choices of α2 ∈ Fqm \ {0} and β2 ∈ Fqm we have

N1(α1, β1) = N2(α1, β1;α2, β2). (3.68)

Moreover we observe that the system in (3.64) includes the equation in (3.62) as its first

equation. Therefore for any choice of α1, β1 ∈ Fqm and for any choice of α2 ∈ Fqm \ {0} and

β2 ∈ Fqm we have

N1(α1, β1) ≥ N2(α1, β1;α2, β2). (3.69)
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Therefore using (3.65), (3.68) and (3.69) we obtain that

PS = 1,

whenever m
h

is even.

We have proved the following proposition.

Proposition 3.3.1 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let Π

be the map

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

Let (S,K ,M,E) be the authentication code with secrecy defined as


S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},

where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .

Let PS denote the maximum success probability of the substitution attack on the authentica-

tion code with secrecy defined above. Let

h = gcd(2h,m).

If m
h

is even, then

PS = 1.

3.4 THE MAXIMUM SUCCESS PROBABILITY OF THE SUBSTITUTION

ATTACK: CASE m
gcd(2h,m) IS ODD AND m IS EVEN

The study of the maximum success probability PS of the impersonation attack on the authen-

tication code with secrecy defined in (3.1) is more interesting when m
gcd(2h,m) is odd.
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In this section we begin to study PS when m
gcd(2h,m) is odd. We obtain some useful results

and we consider the subcase that m
gcd(2h,m) is odd and m is even. The remaining subcase that

m
gcd(2h,m) is odd and m is odd will be considered in the next section.

Let ϕ be the map

ϕ : Fqm → Fqm

α2 7→ α
q−h

2 + α
qh

2 .
(3.70)

Using Lemma 3.1.2 we obtain that there is no α2 ∈ Fqm \ {0} with

α
q−h

2 + α
qh

2 = 0,

and hence the Fq-linear map ϕ in (3.70) gives an Fq-linear isomorphism on Fqm , under our

assumption that m
h

is odd.

For α1, β1 ∈ Fqm , α3 ∈ Fqm \ {0} and β3 ∈ Fqm , let N3(α1, β1;α3, β3) denote the number of

solutions of the system


Tr
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + α

qh+1
1 − β1

)
= 0,

Tr (α3x + β3) = 0,

(3.71)

with x ∈ Fqm .

We note that

N2(α1, β1;α2, β2) = N3(α1, β1;α3, β3) (3.72)

if

α3 = α
q−h

2 + α
qh

2 and β3 = α
qh+1
2 − β2. (3.73)

For α1, γ1, α3, γ3 ∈ Fqm with α3 , 0, let Fα1,γ1,α3,γ3 denote the algebraic function field

Fα1,γ1,α3,γ3 = Fqm(x, y1, y2) with



yq
1 − y1 = 2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + γ1,

yq
2 − y2 = α3x + γ3.

(3.74)
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Note that the polynomial

T q − T −
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
+ γ1

)
x ∈ Fqm(x)[T ]

is irreducible over the field Fqm(x). Similarly the polynomial

T q − T − (α3x + γ3) ∈ Fqm(x, y1)

is irreducible over the field Fqm(x, y1). Then we have that

[
Fqm(x, y1) : Fqm(x)

]
= q,

[
Fqm(x, y1, y2) : Fqm(x, y1)

]
= q,

and hence

[
Fα1,γ1,α3,γ3 : Fqm(x)

]
= q2.

Let N
(
Fα1,γ1,α3,γ3

)
denote the number of rational places of the algebraic function field Fα1,γ1,α3,γ3 .

Using (3.72), (3.73) and (3.74) we observe that

N
(
Fα1,γ1,α3,γ3

)
= 1 + q2N2(α1, β1;α2, β2) (3.75)

provided that we have

γ1 = α
qh+1
1 − β1, α3 = α

q−h

2 + α
qh

2 , and γ3 = α
qh+1
2 − β2. (3.76)

For a choice of α1, γ1, α3, γ3 ∈ Fqm with α3 , 0 for defining Fα1,γ1,α3,γ3 , using the same α1

and γ1, let Eα1,γ1 be the algebraic function field

Eα1,γ1 = Fqm(x, y) with yq − y = 2xqh+1 −
(
α

q−h

1 + α
qh

1

)
x + γ1.

Note that

[
Eα1,γ1 : Fqm(x)

]
= q.

Recall that for α1, β1 ∈ Fqm , N1(α1, β1) denotes the number of solutions of the equation

Tr
(
2xqh+1 −

(
α

q−h

1 + α
qh

1

)
x + α

qh+1
1 − β1

)
= 0

with x ∈ Fqm . Let N
(
Eα1,γ1

)
denote the number of rational places of the algebraic function

field Eα1,γ1 . Therefore we have

N
(
Eα1,γ1

)
= 1 + qN1(α1, β1). (3.77)
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provided that we have

γ1 = α
qh+1
1 − β1. (3.78)

Using (3.65), (3.75), (3.76), (3.77) and (3.78), for the maximum success probabilityPS of the

substitution attack on the codes defined in (3.1) we obtain that

PS = max
α1,γ1,α3,γ3


N

(
Fα1,γ1,α3,γ3

)
− 1

q2




N
(
Eα1,γ1

)
− 1

q



, (3.79)

where the maximum is over α1, γ1, α3, γ3 ∈ Fqm with α3 , 0.

Our arguments above related to the maximum success probabilityPI of the impersonation at-

tack give sufficient information for determining N(Eα1,γ1) in (3.79). However we need further

information for determining N(Fα1,γ1,α3,γ3) in (3.79). We develop such results below.

Let α1, γ1, α3, γ3 ∈ Fqm with α3 , 0. We derive an equivalent definition of the algebraic

function field Fα1,γ1,α3,γ3 instead of the one in (3.74). Using (3.74), we have

x =
yq

2

α3
− y2

α3
− γ3

α3
, (3.80)

and

yq
1 − y1 = 2


yq

2

α3
− y2

α3
− γ3

α3


qh+1

−
(
α

q−h

1 + α
qh

1

)
x + γ1. (3.81)

Note that


yq
2

α3
− y2

α3
− γ3

α3


qh+1

=


yq

2

α3
− y2

α3
− γ3

α3


qh 

yq
2

α3
− y2

α3
− γ3

α3



=




yq
2

α3
− y2

α3


qh

−
(
γ3

α3

)qh




yq
2

α3
− y2

α3

 − γ3

α3



=


yq

2

α3
− y2

α3


qh 

yq
2

α3
− y2

α3



−γ3

α3


yq

2

α3
− y2

α3


qh

−
(
γ3

α3

)qh 
yq

2

α3
− y2

α3



+

(
γ3

α3

)qh+1

.

(3.82)
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Let L1 be the Fq-linear map defined as

L1 : Fqm → Fqm

y 7→ −
(
α

q−h

1 + α
qh

1

)
y.

(3.83)

Let L2 be the Fq-linear map defined as

L2 : Fqm → Fqm

y 7→ −2
((
γ3
α3

)q−h

+
(
γ3
α3

)qh
)

y.

(3.84)

Using (3.83) and (3.84) we define the Fq-linear map L as

L : Fqm → Fqm

y 7→ L1(y) + L2(y)

(3.85)

Let α1, γ1, α3, γ3 ∈ Fqm with α3 , 0. Using (3.81), (3.82), and (3.85) we obtain the following

equivalent representation of the algebraic function field Fα1,γ1,α3,γ3 consisting of one affine

equation instead of the two affine equations in (3.74):

Fα1,γ1,α3,γ3 = Fqm(y2, y1) with

yq
1 − y1 = 2


yq

2

α3
− y2

α3


qh+1

+ L


yq
2

α3
− y2

α3

 +

γ1 + 2
(
γ3

α3

)qh+1
 .

(3.86)

Note that the polynomial

T q − T −
2


yq

2

α3
− y2

α3


qh+1

+ L


yq
2

α3
− y2

α3

 +

γ1 + 2
(
γ3

α3

)qh+1


 ∈ Fqm(y2)[T ]

is irreducible over the field Fqm(y2) and hence

[
Fα1,γ1,α3,γ3 : Fqm(y2)

]
= q.

It is clear from (3.80) that x ∈ Fqm(y2) ⊆ Fα1,γ1,α3,γ3 .

We will use the representation of Fα1,γ1,α3,γ3 in (3.86) and the results of Chapter 2 in order to

consider N
(
Fα1,γ1,α3,γ3

)
and the maximum success probability PS of the substitution attack

on the authentication code with secrecy defined above.
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Using the notation of Chapter 2, let S (X) ∈ Fqm[X] be the Fq-linearized polynomial

S (X) = 2Xqh ∈ Fqm[X]

Let BS be the symmetric bilinear form

BS : Fqm × Fqm → Fq

(x, y) 7→ Tr (xS (y) + yS (x))

on the Fq-linear space Fqm .

Let QS be the map

QS : Fqm → Fq

x 7→ 1
2

BS (x, x).

Recall that, conversely, the symmetric bilinear form BS is obtained from the map QS via

BS (x, y) = QS (x + y) − QS (x) − QS (y). (3.87)

We also observe that

QS (x) = Tr
(
2xqh+1

)

for all x ∈ Fqm .

Let QR be the map

QR : Fqm → Fq

x 7→ QS

(
xq

α3
− x
α3

)
.

(3.88)

As in (3.87) we define the symmetric bilinear form BR on the Fq-linear space Fqm using the

map QR defined in (3.88) as

BR : Fqm × Fqm → Fq

(x, y) 7→ QR(x + y) − QR(x) − QR(y).

(3.89)

The following lemma will be useful.
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Lemma 3.4.1 Under the notation as above we have

BR(x, y) = BS

(
xq

α3
− x
α3
,

yq

α3
− y
α3

)

for all x, y ∈ Fqm .

Proof. Let x, y ∈ Fqm . Using (3.89) we have

BR(x, y) = QR(x, y) − QR(x) − QR(y).

Then by (3.88) we get

BR(x, y)

= QS

(
(x + y)q

α3
− x + y

α3

)
− QS

(
xq

α3
− x
α3

)
− QS

(
yq

α3
− y
α3

)
.

(3.90)

Note that

QS

(
(x + y)q

α3
− x + y

α3

)
= QS

(
xq − x
α3

+
yq − y
α3

)
(3.91)

Then by (3.87) and (3.91) we have

BS

(
xq − x
α3

,
yq − y
α3

)

= QS

(
xq − x
α3

+
yq − y
α3

)
− QS

(
xq − x
α3

)
− QS

(
yq − y
α3

)

= QS

(
(x + y)q

α3
− x + y

α3

)
− QS

(
xq − x
α3

)
− QS

(
yq − y
α3

)
.

(3.92)

Combining (3.90) and (3.92) we obtain that

BR(x, y) = BS

(
xq − x
α3

,
yq − y
α3

)
,

which completes the proof. ¥

Let WS be the radical of BS and let WR be the radical of BR. We have

WS = {x ∈ Fqm : BS (x, y) = 0 for all y ∈ Fqm}.

Using Lemma 3.4.1 we obtain that

WR =

{
x ∈ Fqm : BS

(
xq

α3
− x
α3
,

yq

α3
− y
α3

)
= 0 for all y ∈ Fqm

}
.
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Let W be the Fq-linear subspace of Fqm defined as

W =

{
x ∈ Fqm : BS

(
x,

yq

α3
− y
α3

)
= 0 for all y ∈ Fqm

}
.

The fact that W is an Fq-linear subspace of Fqm follows from the bilinearity of BS .

Let η be the Fq-linear map

η : Fqm → Fqm

x 7→ xq

α3
− x

α3
.

Let H = Im(η) be the image of η, or equivalently the image η
(
Fqm

)
of Fqm under the map η.

Lemma 3.4.2 Under the notation as above, for the image η (WR) of WR under the map η, we

have

η (WR) = W ∩ H.

Proof. We first show that η (WR) ⊆ W ∩ H. It is clear that η (WR) ⊆ H and its is enough to

show that η (WR) ⊆ W. Let x ∈ WR. By definition of WR we have

BS

(
xq

α3
− x
α3
,

yq

α3
− y
α3

)
= 0

for all y ∈ Fqm . Hence

BS

(
η(x),

yq

α3
− y
α3

)
= 0

for all y ∈ Fqm . Using the definition of W we obtain that η(x) ∈ W.

Conversely let x ∈ W ∩ H. Then, as x ∈ H, there exists x1 ∈ Fqm such that

x =
xq

1

α3
− x1

α3
. (3.93)

Using the definition of W and (3.93) we get that

BS


xq

1

α3
− x1

α3
,

yq

α3
− y
α3

 = 0

for all y ∈ Fqm . Hence x1 ∈ WR and

x = η(x1) ∈ η (WR)) .

This completes the proof. ¥

As a consequence of Lemma 3.4.2, we obtain the following useful lemma.
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Lemma 3.4.3 We keep the notation as above.

If W ⊆ H, then

dim WR = dim W + 1. (3.94)

If W * H, then

dim WR = dim W. (3.95)

Proof. We note that

Kerη = Fq

and hence

dim WR = dim η(WR) + 1. (3.96)

Assume first that W ⊆ H. Then using Lemma 3.4.2 we obtain that

dim η(WR) = dim (W ∩ H) = dim W. (3.97)

using (3.96) and (3.97) we prove (3.94).

Next we assume that W * H. We have, by linear algebra,

dim(W ∩ H) + dim
(
Span{W ∪ H}) = dim W + dim H. (3.98)

Note that

dim H = m − 1

as Kerη = Fq. Moreover

dimW ≥ 1.

Indeed, otherwise dim W = 0 and W ⊆ H trivially, which is a contradiction to our assumption

that W * H. Therefore

dim
(
Span{W ∪ H}) > dim H = m − 1,
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which implies that

dim
(
Span{W ∪ H}) = m. (3.99)

Combining (3.98) and (3.99) we obtain that

dim(W ∩ H) = dim W + (m − 1) − m

= dim W − 1.
(3.100)

Moreover we have

dim(W ∩ H) = dim η(WR) (3.101)

by Lemma 3.4.2.

The proof of (3.95) follows from (3.96), (3.100) and (3.101). ¥

Now we consider W in detail. Note that the map

ϕ̃ : Fqm → Fqm

x 7→ x + xq2h

is injective as m
h

is odd. Let ξ3 ∈ Fqm \ {0} be the uniquely determined nonzero element such

that

ϕ̃(ξ3) = α
qh

3 .

Lemma 3.4.4 Under the notation as above, we have that

W = {cξ3 : c ∈ Fq}.

Proof. Let x ∈ Fqm . By definition of W we have that x ∈ W if and only if

BS

(
x,

yq

α3
− y
α3

)
= 0

for all y ∈ Fqm .

For y ∈ Fqm , we have that BS
(
x, yq

α3
− y

α3

)
= 0 if and only if

Tr

x
(

yq

α3
− y
α3

)qh

+ xqh
(

yq

α3
− y
α3

) = 0.
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Note that

Tr

x
(

yq

α3
− y
α3

)qh = Tr
(
xq−h

(
yq

α3
− y
α3

))
.

Moreover

Tr




xqh
+ xq−h

α3

 yq

 = Tr




xqh−1
+ xq−h−1

α
q−1

3

 y

 .

Then for x, y ∈ Fqm we have that BS
(
x, yq

α3
− y

α3

)
= 0 if and only if

Tr




xqh−1
+ xq−h−1

α
q−1

3

− xqh
+ xq−h

α3

 y

 = 0.

This implies, for x ∈ Fqm , that BS
(
x, yq

α3
− y

α3

)
= 0 for all y ∈ Fqm if and only if


xqh−1

+ xq−h−1

α
q−1

3

− xqh
+ xq−h

α3

 = 0. (3.102)

Taking qh+1-th power of both sides of the equation in (3.102) we obtain

xq2h
+ x

α
qh

3

− xq2h+1
+ xq

α
qh+1

3

= 0.

Hence for x ∈ Fqm , we have that x ∈ W if and only if

ϕ̃(x)

α
qh

3

=


ϕ̃(x)

α
qh

3


q

or equivalently

ϕ̃(x)

α
qh

3

∈ Fq.

We conclude that

W =

{
x ∈ Fqm : ϕ̃(x) = cαqh

3 for some c ∈ Fq

}
.

As ϕ̃ is an Fq-linear (vector space) isomorphism on Fqm and ϕ̃(ξ3) = α
qh

3 , for x ∈ Fqm we have

ϕ̃(x) = cαqh

3 ⇐⇒ x = cξ3,

where c ∈ Fq. This completes the proof. ¥

Combining Lemma 3.4.3 and Lemma 3.4.4 we obtain the following.
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Lemma 3.4.5 Under the notation as above, for the dimension dim WR of the Fq-linear space

WR we have

dim WR =


2 if W ⊆ H,

1 if W * H.

Proof. Assume first that W ⊆ H, then by Lemma 3.4.3 we have

dim WR = dim W + 1

= 2,
,

where in the last equality we use the fact that dim W = 1, which follows from Lemma 3.4.4.

Assume next that W * H, then by Lemma 3.4.3 we have

dim WR = dim W

= 1,
,

where in the last equality we again use Lemma 3.4.4 and the fact that dim W = 1 . ¥

Next we consider H in detail.

Lemma 3.4.6 Under the notation as above, we have that

H =
{
x ∈ Fqm : Tr(α3x) = 0

}
.

Proof. If x ∈ H, then there exists x1 ∈ Fqm with η(x1) = x, or equivalently

xq
1

α3
− x1

α3
= x,

that is

xq
1 − x1 = α3x.

Therefore using Hilbert’s Theorem 90 we obtain that if x ∈ H, then

Tr(α3x) = 0.

Conversely, let x ∈ Fqm with Tr(α3x) = 0. Then, again by Hilbert’s Theorem 90, there exists

x1 ∈ Fqm such that

xq
1 − x1 = α3x.
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This means that

η(x1) =
xq

1

α3
− x1

α3
= x,

which completes the proof. ¥

Recall that ξ3 ∈ Fqm \ {0} is the nonzero element with

ξ3 + ξ
q2h

3 = α
qh

3 . (3.103)

Lemma 3.4.7 Under the notation as above, we have

W ⊆ H ⇐⇒ Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
= 0.

Proof. By Lemma 3.4.4 we have

W =
{
cξ3 : c ∈ Fq

}
. (3.104)

Moreover by Lemma 3.4.6 we have

H =
{
x ∈ Fqm : Tr(α3x) = 0

}
. (3.105)

Note that as W and H are Fq-linear subspaces of Fqm and dim W = 1,

W ⊆ H ⇐⇒ ξ3 ∈ H. (3.106)

Indeed if ξ3 ∈ H, then cξ3 ∈ H for all c ∈ Fq, and hence using (3.104) we get that W ⊆ H.

Conversely if W ⊆ H, then as ξ3 = 1 · ξ3 ∈ W we have ξ3 ∈ H trivially.

Using (3.105) and (3.106) we obtain that

W ⊆ H ⇐⇒ Tr (α3ξ3) = 0. (3.107)

From (3.103) we get

Tr(α3ξ3) = Tr
(
(α3ξ3)qh)

= Tr
(
α

qh

3 ξ
qh

3

)

= Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
.

(3.108)
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The proof follows from (3.107) and (3.108). ¥

Combining Lemma 3.4.5 and Lemma 3.4.7 we obtain the following.

Lemma 3.4.8 Under the notation as above, for the dimension dim WR of the Fq-linear sub-

space WR of Fqm we have

dim WR =



2 if Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
= 0,

1 if Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
, 0.

Proof. The proof follows directly from Lemma 3.4.5 and Lemma 3.4.7. ¥

The following proposition is useful.

Proposition 3.4.9 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let Tr

denote the trace map from Fqm onto Fq.

There exists ξ ∈ Fqm \ {0} such that

Tr
((
ξ + ξq2h)

ξqh)
= 0. (3.109)

There exists ξ ∈ Fqm \ {0} such that

Tr
((
ξ + ξq2h)

ξqh)
, 0. (3.110)

Proof. Let 0 ≤ h1 < m and 0 ≤ h2 < m be the integers with

h ≡ h1 mod m,

and

2h ≡ h2 mod m.

Hence for ξ ∈ Fqm we have

Tr
((
ξ + ξq2h)

ξqh)
= Tr

((
ξ + ξqh2

)
ξqh1

)
. (3.111)

Let m1 = m − h1. Then, for ξ ∈ Fqm , taking qm1-th power we obtain that

Tr
((
ξ + ξqh2

)
ξqh1

)
= Tr

((
ξqm1

+ ξqh2+m1
)
ξ
)
. (3.112)
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Let S 1(X) be the Fq-linearized polynomial

S 1(X) = Xqm1
+ Xqh2+m1 ∈ Fqm[X].

Let F1 be the algebraic function field with

F1 = Fqm(x, y) with yq − y = S 1(x)x.

Let BS 1 be the symmetric bilinear form on the Fq-linear space Fqm defined as

BS 1 : Fqm × Fqm → Fq

(x, y) 7→ Tr (xS 1(y) + yS 1(x)) .

Let W1 be the radical of BS 1 , which is given by

W1 =
{
x ∈ Fqm : BS 1(x, y) = 0 for all y ∈ Fqm

}
.

Let k1 = dim W1 be the Fq-dimension of W1.

As W1 ⊆ Fqm , it is clear that

0 ≤ k1 ≤ m. (3.113)

Let N(F1) denote the number of rational places of F1.

Using Theorem 2.3.1 of Chapter 2, we obtain that N(F1) is in the set

T1 =
{
1 + qm − q

m+k1
2 , 1 + qm + q

m+k1
2 ,

1 + qm + (q − 1)q
m+k1

2 , 1 + qm − (q − 1)q
m+k1

2

1 + qm + q
m+k1+1

2 , 1 + qm − q
m+k1+1

2
}
.

Using (3.113), we get

1 + q < min T1 and max T1 < 1 + qm+1. (3.114)

Let N1 denote the number of solutions of

Tr (xS 1(x)) = 0
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with x ∈ Fqm . Using Hilbert’s Theorem 90 we obtain that

N(F1) = 1 + qN1. (3.115)

First we consider the case (3.109) of the proposition and we assume that there is no ξ ∈
Fqm \ {0} such that

Tr
((
ξ + ξq2h)

ξqh)
= 0.

Note that for ξ = 0, we have that Tr
((
ξ + ξq2h)

ξqh)
= 0 holds trivially. Therefore N1 = 1 and

using (3.115) we obtain that

N(F1) = 1 + q. (3.116)

As N(F1) < T1, using (3.114) and (3.116) we obtain a contradiction. This proves that there

exists ξ ∈ Fqm \ {0} such that (3.109) holds.

Next we consider the case (3.110) of the proposition and we assume that there is no ξ ∈
Fqm \ {0} such that

Tr
((
ξ + ξq2h)

ξqh)
, 0.

Hence we obtain that N1 = qm and from (3.115) we get that

N(F1) = 1 + qm+1. (3.117)

Again, as N(F1) < T1, using (3.114) and (3.116) we obtain a contradiction. This completes

the proof. ¥

Recall that (see 3.85) L is an Fq-linear map on Fqm given by

L : Fqm → Fqm

x 7→ −

(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh x.

Let ψ1 be the Fq-linear map from Fqm to Fq defined by

ψ1 : Fqm → Fq

x 7→ Tr (L(x)) .
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Recall that η is the Fq-linear map from Fqm to Fqm given by

η : Fqm → Fqm

x 7→ xq

α3
− x
α3
.

Let ψ be the Fq-linear map from Fqm to Fq defined by

ψ : Fqm → Fq

x 7→ ψ1

(
xq

α3
− x
α3

)
.

Lemma 3.4.10 Under notation as above, we have that

WR ⊆ Kerψ

if and only if

η (WR) ⊆ Kerψ1.

Proof. If x ∈ WR and ψ(x) = 0, then

ψ1

(
xq

α3
− x
α3

)
= ψ1 (η(x)) = 0,

which implies that η (WR) ⊆ Kerψ1.

Conversely assume that η (WR) ⊆ Kerψ1 and there exists x ∈ WR \ Kerψ. Then η(x) ∈ Kerψ1,

ψ1

(
xq

α3
− x
α3

)
= 0,

and hence ψ(x) = 0, which is a contradiction.

This completes the proof. ¥

In the following lemma, we use Lemma 3.4.2, Lemma 3.4.4, Lemma 3.4.8 and Lemma 3.4.10.

Lemma 3.4.11 We keep the notation as above.

If W * H, then

WR ⊆ Kerψ
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always.

If W ⊆ H, then

WR ⊆ Kerψ⇐⇒ Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0,

where ξ3 ∈ Fqm \ {0} is the uniquely determined element by α3 such that

ξ3 + ξ
q2h

3 = α
qh

3 .

Proof. Recall that

WR =

{
x ∈ Fqm : BS

(
xq − x
α3

,
yq − y
α3

)
= 0 for all y ∈ Fqm

}
.

If x ∈ Fq, then xq − x = 0 and hence

BS

(
xq − x
α3

,
yq − y
α3

)
= BS

(
0,

yq − y
α3

)
= 0

for all y ∈ Fqm . This shows that

Fq ⊆ WR.

Recall that

Kerη = Fq.

Therefore we obtain that

dim WR = dim η (WR) + 1. (3.118)

Assume first that W * H. Then by Lemma 3.4.5 we have that

dim WR = 1. (3.119)

Using (3.118) and (3.119) we conclude that

dim η(WR) = 0.

Therefore

η(WR) ⊆ Kerψ1

54



holds trivially, and using Lemma 3.4.10 we obtain that

WR ⊆ Kerψ.

Assume next that W ⊆ H. Then by Lemma 3.4.2

η(WR) = W ∩ H = W. (3.120)

Using (3.120) and Lemma 3.4.4

η(WR) = {cξ3 : c ∈ Fq}. (3.121)

Note that dim η(WR) = 1. Using (3.121) and Lemma 3.4.10 we obtain that WR ⊆ Kerψ if and

only if

ψ1(ξ3) = 0,

which is equivalent to

−Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0.

This completes the proof. ¥

Lemma 3.4.12 Let ξ3 ∈ Fqm \ {0}. Let α3 ∈ Fqm \ {0} be the uniquely determined element by

ξ3 such that

ξ3 + ξ
q2h

3 = α
qh

3 .

Let γ3 ∈ Fqm .

The number of α1 ∈ Fqm such that

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0 (3.122)

is qm−1.

The number of α1 ∈ Fqm such that

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 , 0 (3.123)

is qm − qm−1.
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Proof. Let

α1 = α1 +
2γ3

α3
.

Note that the number of α1 ∈ Fqm satisfying (3.122) is equal to the number of α1 ∈ Fqm

satisfying

Tr
((

(α1)q−h
+ (α1)qh

)
ξ3

)
= 0. (3.124)

Similarly the number of α1 ∈ Fqm satisfying (3.123) is equal to the number of α1 ∈ Fqm

satisfying

Tr
((

(α1)q−h
+ (α1)qh

)
ξ3

)
, 0. (3.125)

For α1 ∈ Fqm , we have

Tr
(
(α1)q−h

ξ3

)
= Tr

(
α1ξ

qh

3

)
,

and

Tr
(
(α1)qh

ξ3

)
= Tr

(
α1ξ

q−h

3

)
.

Hence for α1 ∈ Fqm , (3.124) holds if and only if

Tr
(
α1

(
ξ

qh

3 + ξ
q−h

3

))
= 0. (3.126)

As

α
qh

3 = ξ3 + ξ
q2h

3 ,

and α3 , 0, we have

ξ
qh

3 + ξ
q−h

3 = α3 ∈ Fqm \ {0}.

Therefore the number of α1 ∈ Fqm satisfying (3.124) is equal to the number of α1 ∈ Fqm

satisfying

Tr (α1α3) = 0.

As α3 , 0, this number is well known to be qm−1.
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For the number of α1 ∈ Fqm satisfying (3.125), or equivalently for the number of α1 ∈ Fqm

satisfying (3.123), we subtract qm−1 from qm = |Fqm |, which gives qm − qm−1. This completes

the proof. ¥

We combine Proposition 3.4.9 and Lemma 3.4.12 in the next proposition.

Proposition 3.4.13 We keep the notation and assumptions as above. The statements in each

of the following four cases hold:

Case i) There exist ξ3 ∈ Fqm \ {0}, γ3 ∈ Fqm , and α1 ∈ Fqm such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
= 0,

and

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0,

where α3 ∈ Fqm \ {0} is the uniquely determined element by ξ3 such that ξ3 + ξ
q2h

3 = α
qh

3 .

Case ii) There exist ξ3 ∈ Fqm \ {0}, γ3 ∈ Fqm , and α1 ∈ Fqm such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
= 0,

and

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 , 0,

where α3 ∈ Fqm \ {0} is the uniquely determined element by ξ3 such that ξ3 + ξ
q2h

3 = α
qh

3 .

Case iii) There exist ξ3 ∈ Fqm \ {0}, γ3 ∈ Fqm , and α1 ∈ Fqm such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
, 0,

and

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0,

where α3 ∈ Fqm \ {0} is the uniquely determined element by ξ3 such that ξ3 + ξ
q2h

3 = α
qh

3 .
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Case iv) There exist ξ3 ∈ Fqm \ {0}, γ3 ∈ Fqm , and α1 ∈ Fqm such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
, 0,

and

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 , 0,

where α3 ∈ Fqm \ {0} is the uniquely determined element by ξ3 such that ξ3 + ξ
q2h

3 = α
qh

3 .

Proof. Using Proposition 3.4.9 we choose ξ3 ∈ Fqm \ {0} such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
= 0.

Let α3 ∈ Fqm \ {0} be the uniquely determined nonzero element such that

ξ3 + ξ
q2h

3 = α
qh

3 .

We choose γ3 ∈ Fqm arbitrarily.

Using Lemma 3.4.12 we know that there exists α1 ∈ Fqm such that

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 = 0. (3.127)

Moreover we also know that there exists α1 ∈ Fqm such that

Tr



(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh ξ3

 , 0. (3.128)

These prove the statements in Case i) and Case ii).

For Case iii) and Case iv), using Proposition 3.4.9, we choose ξ3 ∈ Fqm \ {0} such that

Tr
((
ξ3 + ξ

q2h

3

)
ξ

qh

3

)
, 0.

Again we choose γ3 ∈ Fqm arbitrarily. By Lemma 3.4.12, as above, we know existence of

α1 ∈ Fqm satisfying (3.127). Also we know existence of α1 ∈ Fqm satisfying (3.128). Hence

we prove the statements in Case iii) and Case iv).

This completes the proof. ¥

In the following corollary we use Lemma 3.4.7, Lemma 3.4.8 and Lemma 3.4.11 together

with Proposition 3.4.13.
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Corollary 3.4.14 We keep the notation and assumptions as above. For α1, α3, γ3 ∈ Fqm with

α3 , 0, we are in one of the four cases of Proposition 3.4.13, and, conversely, each case of

Proposition 3.4.13 occurs as α1, α3 and γ3 run through Fqm with α3 , 0.

If we are in Case i) of Proposition 3.4.13, then

dim WR = 2 and WR ⊆ Kerψ. (3.129)

If we are in Case ii) of Proposition 3.4.13, then

dim WR = 2 and WR * Kerψ. (3.130)

If we are in Case iii) or Case iv) of Proposition 3.4.13, then

dim WR = 1 and WR ⊆ Kerψ. (3.131)

Proof. Let α1, α3, γ3 ∈ Fqm with α3 , 0. Then it is clear that these elements define exactly

one of the four cases of Proposition 3.4.13 depending on whether the corresponding equations

give zero or nonzero values. Also by Proposition 3.4.13, each of these four cases occur as

α1, α3, γ3 run through Fqm with α3 , 0.

Assume first that we are in Case i) of Proposition 3.4.13. Then by Lemma 3.4.8

dim WR = 2,

and

W ⊆ H

by Lemma 3.4.7. Then using Lemma 3.4.11 we obtain that

WR ⊆ Kerψ,

which proves (3.129).

Assume now that we are in Case ii) of Proposition 3.4.13. Then, still by Lemma 3.4.7 and

Lemma 3.4.8, we have

dim WR = 2,
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and

W ⊆ H.

However by Lemma 3.4.11, now we have

WR * Kerψ,

which proves (3.130).

Assume finally that we are in Case iii) or Case iv) of Proposition 3.4.13. By Lemma 3.4.7 and

Lemma 3.4.8,

dim WR = 1,

and

W * H.

Then by Lemma 3.4.11, both in Case iii) and Case iv) we have

WR ⊆ Kerψ,

which proves (3.131).

This completes the proof. ¥

We are ready to determine the number of rational places of the algebraic function fields

Fα1,γ1,α3,γ3 and Eα1,γ1 in each case.

We first consider the situation that m
h

is odd and m is even.

Theorem 3.4.15 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let

h = gcd(2h,m).

Assume that m
h

is odd and m is even.

Let α1, α3, γ3 ∈ Fqm with α3 , 0.

Let ξ3 ∈ Fqm \ {0} be the unique element determined by α3 such that

ξ3 + ξ
q2h

3 = α
qh

3 .

60



For γ1 ∈ Fqm , let Fα1,γ1,α3,γ3 and Eα1,γ1 be the algebraic function fields defined as

Fα1,γ1,α3,γ3 = Fqm(y2, y1) with

yq
1 − y1 = 2


yq

2

α3
− y2

α3


qh+1

+ L


yq
2

α3
− y2

α3

 +

γ1 + 2
(
γ3

α3

)qh+1
 ,

and

Eα1,γ1 = Fqm(x, y) with yq − y = 2xqh+1 −
(
α

q−h

1 + α
qh

1

)
x + γ1.

Here L is an Fq-linear map on Fqm given by

L : Fqm → Fqm

x 7→ −

(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh x.

As γ1 runs through Fqm , the number N
(
Eα1,γ1

)
of Eα1,γ1 takes both of the values in the set

{
1 + qm − q

m
2 , 1 + qm + (q − 1)q

m
2
}
, (3.132)

or takes both values of in the set

{
1 + qm + q

m
2 , 1 + qm − (q − 1)q

m
2
}

(3.133)

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case i) of Proposition

3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3 takes both of

the values in the set

{
1 + qm − q

m
2 +1, 1 + qm + (q − 1)q

m
2 +1

}
,

or takes both values of in the set

{
1 + qm + q

m
2 +1, 1 + qm − (q − 1)q

m
2 +1

}
.

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case ii) of Proposition

3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3 is always given

by

N
(
Fα1,γ1,α3,γ3

)
= 1 + qm.
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Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case iii) or Case iv)

of Proposition 3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3

takes both of the values in the set

{
1 + qm + q

m
2 +1, 1 + qm − q

m
2 +1

}
.

Proof. We complete the proof using Theorem 2.3.1 of Chapter 2.

First we consider N(Eα1,γ1). We use similar arguments as in the proof of Theorem 3.2.2. By

Lemma 3.1.2, as m
h

is odd, for the dimension kE of the radical of the corresponding symmetric

bilinear form of Eα1,γ1 , which is independent from α1 and γ1, we have

kE = 0.

Moreover there exists a nonzero element dE ∈ Fq \ {0}, which depends only on q, h and m,

used for the determination of the number N(Eα1,γ1) of rational places of Eα1,γ1 .

Recall that m is even by our assumption.

If

(−1)
m
2 dE is a square in Fq,

then N(Eα1,γ1) takes both of the values in the set

{
1 + qm − q

m
2 , 1 + qm + (q − 1)q

m
2
}

as α1 and γ1 run through Fqm , Here we use Lemma 3.1.3 and Theorem 2.3.1 of Chapter 2.

If

(−1)
m
2 dE is a not square in Fq,

then N(Eα1,γ1) takes both of the values in the set

{
1 + qm + q

m
2 , 1 + qm − (q − 1)q

m
2
}

as α1 and γ1 run through Fqm . Here we again use Lemma 3.1.3 and Theorem 2.3.1 of Chapter

2. These complete the proof of the statements in the theorem related to the number N(Eα1,γ1)

of rational places of Eα1,γ1 .
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Next we consider N(Fα1,γ1,α3,γ3) case by case.

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case i) of Proposition

3.4.13. Then by Corollary 3.4.14 we have

kR := dim WR = 2 and WR ⊆ Kerψ.

There exists a nonzero element dL ∈ Fq \ {0}, which depends on the map L together with q, h

and m. Here dL is used for the determination of the number N(Fα1,γ1,α3,γ3) of rational places

of Fα1,γ1,α3,γ3 .

As m is even, if

(−1)
m−2

2 dL is a square in Fq,

then N(Fα1,γ1,α3,γ3) takes both of the values

{
1 + qm − q

m
2 +1, 1 + qm + (q − 1)q

m
2 +1

}

as γ1 runs through Fqm .

If

(−1)
m−2

2 dL is not a square in Fq,

then N(Fα1,γ1,α3,γ3) takes both of the values

{
1 + qm + q

m
2 +1, 1 + qm − (q − 1)q

m
2 +1

}

as γ1 runs through Fqm .

These complete the proof of the statements in the theorem related to the number N(Fα1,γ1,α3,γ3)

of rational places of Fα1,γ1,α3,γ3 for Case i) of Proposition 3.4.13.

Assume next that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case ii) of

Proposition 3.4.13. Then by Corollary 3.4.14 we have

kR = dim WR = 2 and WR * Kerψ.

Then, as WR * Kerψ, we have

N(Fα1,γ1,α3,γ3) = 1 + qm
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for each value of γ1 ∈ Fqm .

This completes the proof of the statements in the theorem related to the number N(Fα1,γ1,α3,γ3)

of rational places of Fα1,γ1,α3,γ3 for Case ii) of Proposition 3.4.13.

Finally we assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case iii) or

Case iv) of Proposition 3.4.13. Then by Corollary 3.4.14 we have

kR = dim WR = 1 and WR ⊆ Kerψ.

As m − kR is odd, N(Fα1,γ1,α3,γ3) takes both of the values

{
1 + qm − q

m
2 +1, 1 + qm + q

m
2 +1

}

as γ1 runs through Fqm .

This completes the proof of the statements in the theorem related to the number N(Fα1,γ1,α3,γ3)

of rational places of Fα1,γ1,α3,γ3 for Case iii) and Case iv) of Proposition 3.4.13. ¥

We determine PS in the next corollary when m
h

is odd and m is even.

Corollary 3.4.16 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let

h = gcd(2h,m).

Assume that m
h

is odd and m is even.

Let Π be the map

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

Let (S,K ,M,E) be the authentication code with secrecy defined as


S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},

where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .
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Let PS denote the maximum success probability of the substitution attack on the authentica-

tion code with secrecy defined above. Then PS takes one of the values in the set

{
qm−2 + (q − 1)q

m
2 −1

qm−1 − q
m
2 −1

,
qm−2 + q

m
2 −1

qm−1 − q
m
2 −1

}
,

or takes one of the values in the set

{
qm−2 + (q − 1)q

m
2 −1

qm−1 − (q − 1)q
m
2 −1

,
qm−2 + q

m
2 −1

qm−1 − (q − 1)q
m
2 −1

}
.

Proof. We will complete the proof using (3.79) and Theorem 3.4.15.

For the number N(Eα1,γ1) there are two cases we should consider, which correspond to the

sets in (3.132) and (3.133) of Theorem 3.4.15.

Assume first that N(Eα1,γ1) takes one of the values in the set in (3.132). Taking (3.79) into

account we need to consider

N1 := min
{
1 + qm − q

m
2 , 1 + qm + (q − 1)q

m
2
}

= 1 + qm − q
m
2 .

Then, again by (3.79), we compute

N1 − 1
q

= qm−1 − q
m
2 −1. (3.134)

For the number N(Fα1,γ1,α3,γ3) of Fα1,γ1,α3,γ3 , we need to consider all of four cases of proposi-

tion 3.4.13 one by one, as all of them occur. From Case i) of Proposition 3.4.13 we get

N2,1 := max
{
1 + qm − q

m
2 +1, 1 + qm + (q − 1)q

m
2 +1

}

= 1 + qm + (q − 1)q
m
2 +1

(3.135)

or

N2,1 := max
{
1 + qm + q

m
2 +1, 1 + qm − (q − 1)q

m
2 +1

}

= 1 + qm + q
m
2 +1

(3.136)

From Case ii) of Proposition 3.4.13 we get

N2,2 := 1 + qm.
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From Case iii) and Case iv) of proposition 3.4.13 we get

N2,3 := max
{
1 + qm + q

m
2 +1, 1 + qm − q

m
2 +1

}

= 1 + qm + q
m
2 +1

(3.137)

Let

N2 := max{N2,1,N2,2,N2,3}.

If (3.135) holds, then we have

N2 = 1 + qm + (q − 1)q
m
2 +1. (3.138)

If (3.136) holds, then we have

N2 = 1 + qm + q
m
2 +1. (3.139)

Using (3.79), (3.138) and (3.139) we compute and conclude that

N2 − 1
q2 ∈

{
qm−2 + (q − 1)q

m
2 −1, qm−2 + q

m
2 −1

}
. (3.140)

Hence by (3.134) and (3.140), using (3.79) we get that

PS ∈
{

qm−2 + (q − 1)q
m
2 −1

qm−1 − q
m
2 −1

,
qm−2 + q

m
2 −1

qm−1 − q
m
2 −1

}
,

provided that N(Eα1,γ1) takes one of the values in the set in (3.132).

Assume next that N(Eα1,γ1) takes one of the values in the set in (3.133). Taking (3.79) into

account we need to consider

N1 := min
{
1 + qm + q

m
2 , 1 + qm − (q − 1)q

m
2
}

= 1 + qm − (q − 1)q
m
2 .

Then by (3.79), we compute

N1 − 1
q

= qm−1 − (q − 1)q
m
2 −1. (3.141)

By the same reasoning corresponding to the case that N(Eα1,γ1) takes one of the values in the

set in (3.133) above, for the numerator of the right hand side of (3.79) we consider and obtain

N2 − 1
q2 ∈

{
qm−2 + (q − 1)q

m
2 −1, qm−2 + q

m
2 −1

}
. (3.142)
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From (3.79), (3.141) and (3.142) we get that

PS =

(
N2 − 1

q2

)

(
N1 − 1

q

) ∈
{

qm−2 + (q − 1)q
m
2 −1

qm−1 − (q − 1)q
m
2 −1

,
qm−2 + q

m
2 −1

qm−1 − (q − 1)q
m
2 −1

}
,

provided that N(Eα1,γ1) takes one of the values in the set in (3.133).

This completes the proof. ¥

3.5 THE MAXIMUM SUCCESS PROBABILITY OF THE SUBSTITUTION

ATTACK: CASE m
gcd(2h,m) IS ODD AND m IS ODD

We continue our study on the maximum success probability PS of the impersonation attack

on the authentication code with secrecy defined in (3.1) when m
gcd(2h,m) is odd.

Using similar methods as in Section 3.4, we determine PS when m
gcd(2h,m) is odd and m is odd.

This section will conclude our study of PS in all cases.

Theorem 3.5.1 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let

h = gcd(2h,m).

Assume that m
h

is odd and m is odd.

Let α1, α3, γ3 ∈ Fqm with α3 , 0.

Let ξ3 ∈ Fqm \ {0} be the unique element determined by α3 such that

ξ3 + ξ
q2h

3 = α
qh

3 .

For γ1 ∈ Fqm , let Fα1,γ1,α3,γ3 and Eα1,γ1 be the algebraic function fields defined as

Fα1,γ1,α3,γ3 = Fqm(y2, y1) with

yq
1 − y1 = 2


yq

2

α3
− y2

α3


qh+1

+ L


yq
2

α3
− y2

α3

 +

γ1 + 2
(
γ3

α3

)qh+1
 ,

and

Eα1,γ1 = Fqm(x, y) with yq − y = 2xqh+1 −
(
α

q−h

1 + α
qh

1

)
x + γ1.
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Here L is an Fq-linear map on Fqm given by

L : Fqm → Fqm

x 7→ −

(
α1 +

2γ3

α3

)q−h

+

(
α1 +

2γ3

α3

)qh x.

As γ1 runs through Fqm , the number N
(
Eα1,γ1

)
of Eα1,γ1 takes both of the values in the set

{
1 + qm + q

m+1
2 , 1 + qm − q

m+1
2

}
,

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case i) of Proposition

3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3 takes both of

the values in the set

{
1 + qm + q

m+1
2 +1, 1 + qm − q

m+1
2 +1

}
.

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case ii) of Proposition

3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3 is always given

by

N
(
Fα1,γ1,α3,γ3

)
= 1 + qm.

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case iii) or Case iv)

of Proposition 3.4.13. Then as γ1 runs through Fqm , the number N
(
Fα1,γ1,α3,γ3

)
of Fα1,γ1,α3,γ3

takes both of the values in the set

{
1 + qm − q

m+1
2 , 1 + qm + (q − 1)q

m+1
2

}
,

or takes both values in the set

{
1 + qm + q

m+1
2 , 1 + qm − (q − 1)q

m+1
2

}
.

Proof. The proof is similar to the proof of Theorem 3.4.15.

Again we first consider N(Eα1,γ1). Under the notation of the proof of Theorem 3.4.15 we still

have

kE = 0,
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and there exists a nonzero element dE ∈ Fq \ {0}, which depends only on q, h and m.

Recall that m is odd by our assumption. Then using Lemma 3.1.3 and Theorem 2.3.1 of

Chapter 2, N(Eα1,γ1) takes both of the values in the set
{
1 + qm + q

m+1
2 , 1 + qm − q

m+1
2

}
(3.143)

as α1 and γ1 run through Fqm . There is only one set given in (3.143), which is independent

from dE . This completes the proof of the statement in the theorem related to the number

N(Eα1,γ1) of rational places of Eα1,γ1 .

Next, similarly, we consider N(Fα1,γ1,α3,γ3) case by case.

Assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case i) of Proposition

3.4.13. Then by Corollary 3.4.14 we have

kR = dim WR = 2 and WR ⊆ Kerψ.

There exists a nonzero element dL ∈ Fq \ {0}, which depends on the map L together with q, h

and m.

As m is odd, m − kR is odd and hence N(Fα1,γ1,α3,γ3) takes both of the values
{
1 + qm − q

m+1
2 +1, 1 + qm + q

m+1
2 +1

}

as γ1 runs through Fqm . Note again that there is only one set given in (3.143), which is

independent from dL.

Assume next that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case ii) of

Proposition 3.4.13. As in the case of Theorem 3.4.15, by Corollary 3.4.14 we have

kR = dim WR = 2 and WR * Kerψ.

Then, as WR * Kerψ, we have

N(Fα1,γ1,α3,γ3) = 1 + qm

for each value of γ1 ∈ Fqm .

Finally we assume that α1, α3, γ3 ∈ Fqm with α3 , 0 is chosen such that we are in Case iii) or

Case iv) of Proposition 3.4.13. Then by Corollary 3.4.14 we have

kR = dim WR = 1 and WR ⊆ Kerψ.
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Again there exists a nonzero element dα3 ∈ Fq \ {0}, which depends on α3 together with q, h

and m.

As m − kR is even, we need to take dα3 into account.

If

(−1)
m−1

2 dα3 is a square in Fq,

then N(Fα1,γ1,α3,γ3) takes both of the values
{
1 + qm − q

m+1
2 , 1 + qm + (q − 1)q

m+1
2

}

as γ1 runs through Fqm .

If

(−1)
m−1

2 dα3 is not a square in Fq,

then N(Fα1,γ1,α3,γ3) takes both of the values
{
1 + qm + q

m+1
2 , 1 + qm − (q − 1)q

m+1
2

}

as γ1 runs through Fqm .

These complete the proof of the statements in the theorem related to the number N(Fα1,γ1,α3,γ3)

of rational places of Fα1,γ1,α3,γ3 for Case iii) and Case iv) of Proposition 3.4.13. ¥

Corollary 3.5.2 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let

h = gcd(2h,m).

Assume that m
h

is odd and m is odd.

Let Π be the map

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

Let (S,K ,M,E) be the authentication code with secrecy defined as


S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},
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where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .

Let PS denote the maximum success probability of the substitution attack on the authentica-

tion code with secrecy defined above. Then PS is given exactly by

PS =
qm−2 + q

m−1
2

qm−1 − q
m−1

2

.

Proof. The proof is similar to the proof of Corollary 3.4.16.

For the number N(Eα1,γ1), using Theorem 3.5.1 and (3.79) we define

N1 := min
{
1 + qm + q

m+1
2 , 1 + qm − q

m+1
2

}
= 1 + qm − q

m+1
2 .

Then we have

N1 − 1
q

= qm−1 − q
m−1

2 . (3.144)

For the number N(Fα1,γ2,α3,γ3) we consider all four cases of Proposition 3.4.13.

When we are in Case i) of Proposition 3.4.13 we define

N2,1 := max
{
1 + qm + q

m+1
2 +1, 1 + qm − q

m+1
2 +1

}
= 1 + qm + q

m+1
2 +1.

When we are in Case ii) of Proposition 3.4.13 we define

N2,2 := 1 + qm.

When we are in Case iii) or Case iv) of Proposition 3.4.13 we define N2,3 as

N2,3 := max
{
1 + qm − q

m+1
2 , 1 + qm + (q − 1)q

m+1
2

}

= 1 + qm + (q − 1)q
m+1

2 ,

(3.145)

or

N2,3 := max
{
1 + qm − (q − 1)q

m+1
2 , 1 + qm + q

m+1
2

}

= 1 + qm + q
m+1

2 .

(3.146)
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Let

N2 := max
{
N2,1,N2,2,N2,3

}
.

Note that

1 + qm + q
m+1

2 +1 > 1 + qm + (q − 1)q
m+1

2 .

Therefore, independent from whether we define N2,3 as in (3.145) or as in (3.146), we have

N2 = 1 + qm + q
m+1

2 +1.

Hence we get

N2 − 1
q2 = qm−2 + q

m−1
2 . (3.147)

Using (3.79), (3.144), and (3.147) we obtain that

PS =

(
N2 − 1

q2

)

(
N1 − 1

q

) =
qm−2 + q

m−1
2

qm−1 − q
m−1

2

.

This completes the proof. ¥

3.6 THE LEVEL OF SECRECY

In this section we study the level of secrecy provided by the authentication codes defined in

(3.1).

We use similar methods as in Section 3.2 above.

First we recall some notation and some results that we will use in this section.

Let Π denote the map introduced in the definition of the authentication codes with secrecy

given in (3.1) above. For the minimum level of secrecy provided by these authentication

codes with secrecy, we need to consider the minimum value

min
m1,m2

|{s ∈ S : Π(s) + Π(m1 − s) = m2}| , (3.148)

where the minimum is over (m1,m2) ∈ M, or equivalently over m1 ∈ Fqm and m2 ∈ Fq.
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Let α ∈ Fqm and b ∈ Fq. For x ∈ Fqm we have

Π(x) + Π(α − x) = Tr
(
2xqh+1 −

(
αq−h

+ αqh)
x + αqh+1

)
.

Let β ∈ Fqm with Tr(β) = b. Hence, for x ∈ Fqm , we have that

Π(x) + Π(α − x) = b

if and only if

Tr
(
2xqh+1 −

(
αq−h

+ αqh)
x + αqh+1 − β

)
= 0.

For α ∈ Fqm and γ ∈ Fqm , let N(α, γ) denote the number of solutions of the equation

Tr
(
2xqh+1 −

(
αq−h

+ αqh)
x + γ

)
= 0

with x ∈ Fqm .

For α ∈ Fqm and γ ∈ Fqm , let Fα,γ be the algebraic function field

Fα,γ = Fqm(x, y) with yq − y = 2xqh+1 −
(
αq−h

+ αqh)
x + γ. (3.149)

Let N(Fα,γ) denote the number of rational places of Fα,γ. Using Hilbert’s Theorem 90 we

have that

N
(
Fα,γ

)
= 1 + qN(α, γ).

Therefore the minimum value in (3.148) is equal to the minimum value

min
α,γ

N(Fα,γ) − 1
q

, (3.150)

where the minimum is over α, γ ∈ Fqm .

Let ψ be the Fq-linear map

ψ : Fqm → Fq

x 7→ Tr
(
−

(
αq−h

+ αqh)
x
)
.

Let S (T ) = 2T qh ∈ Fqm[T ] be the Fq-linearized polynomial.
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Let BS be the bilinear form

BS : Fqm × Fqm → Fq

(x, y) 7→ Tr (xS (y) + yS (x)) .

Let WS denote the radical of BS . We have

WS =
{
x ∈ Fqm : x + xq2h

= 0
}
.

Using Lemma 3.1.3 we obtain that

WS ⊆ Kerψ, (3.151)

for any positive integer h.

Let h = gcd(2h,m).

By Lemma 3.1.2 we have

dim WS = 0 if
m

h
is odd,

and

dim WS = h if
m

h
is even,

Now we are ready to determine the level of secrecy.

Theorem 3.6.1 Let q be a power of an odd prime. Let m ≥ 2 and h ≥ 1 be integers. Let Π be

the map

Π : Fqm → Fq

x 7→ Tr
(
xqh+1

)
.

Let (S,K ,M,E) be the authentication code with secrecy defined as



S = Fqm ,

K = Fqm ,

M = Fqm × Fq,

E = {Ek : k ∈ K},
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where for k ∈ K , the authentication map Ek is defined as

Ek : S → M
s 7→ (s + k,Π(s) + Π(k)) .

Moreover let h be the positive integer given by

h = gcd(2h,m).

If m
h

is odd and m is odd, then the authentication codes with secrecy defined above provides

at least

log2

(
qm−1 − q

m−1
2

)
(3.152)

bits of secrecy.

If m
h

is odd and m is even, then the authentication codes with secrecy defined above provides

at least

log2

(
qm−1 − q

m
2 −1

)
or log2

(
qm−1 − (q − 1)q

m
2 −1

)
(3.153)

bits of secrecy.

If m
h

is even, then the authentication codes with secrecy defined above provides at least

log2

(
qm−1 − q

m+h
2 −1

)
or log2

(
qm−1 − (q − 1)q

m+h
2 −1

)
(3.154)

bits of secrecy.

Proof. Let

k = dim WS .

First we consider the case that m
h

is odd and m is odd. Then

k = 0 and m − k is odd. (3.155)

Let α, γ ∈ Fqm . Using (3.151), (3.155) and Theorem 2.3.1 of Chapter 2, for the number

N(Fα,γ) of the algebraic function field defined in (3.149), we have that N(Fα,γ) is in the set

{
1 + qm − q

m+1
2 , 1 + qm + q

m+1
2

}
. (3.156)
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Moreover both of the values in the set (3.156) are attained as α and γ run through Fqm . There-

fore we get

min
α,γ

N(Fα,γ) = 1 + qm − q
m+1

2

and

min
α,γ

N(Fα,γ) − 1
q

= qm−1 − q
m−1

2

Here the minimum values are defined as α and γ run through Fqm .

Therefore using (3.148), (3.150) and taking the logarithm we prove (3.152).

Next we consider the case that m
h

is odd and m is even. Then

k = 0 and m − k is even. (3.157)

Let α, γ ∈ Fqm . Using (3.151), (3.157) and Theorem 2.3.1 of Chapter 2, for the number

N(Fα,γ) of the algebraic function field defined in (3.149), we have that N(Fα,γ) is in the set

{
1 + qm − q

m
2 , 1 + qm + (q − 1)q

m
2
}

(3.158)

or N(Fα,γ) is in the set

{
1 + qm + q

m
2 , 1 + qm − (q − 1)q

m
2
}

(3.159)

Moreover if N(Fα,γ) is in the set (3.158), then both of the values in the set (3.158) are attained

as α and γ run through Fqm . Similarly if N(Fα,γ) is in the set (3.159), then both of the values

in the set (3.159) are attained as α and γ run through Fqm .

Therefore we get

min
α,γ

N(Fα,γ) − 1
q

∈
{
qm−1 − q

m
2 −1, qm−1 − (q − 1)q

m
2 −1

}
,

where the minimum value is over α, γ ∈ Fqm . Using (3.148), (3.150) and taking the logarithm

we complete the proof of (3.153).

Finally we consider the case that m
h

is even. It is not difficult to observe that m is even and h

is even in this case (see Remark 3.2.3 above). Then we have

k = h and m − k is even. (3.160)
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Let α, γ ∈ Fqm . Using (3.151), (3.160) and Theorem 2.3.1 of Chapter 2, for the number

N(Fα,γ) of the algebraic function field defined in (3.149), we have that N(Fα,γ) is in the set

{
1 + qm − q

m+h
2 , 1 + qm + (q − 1)q

m+h
2

}
(3.161)

or N(Fα,γ) is in the set

{
1 + qm + q

m+h
2 , 1 + qm − (q − 1)q

m+h
2

}
(3.162)

Moreover, as in the case above, if N(Fα,γ) is in the set (3.161), then both of the values in the

set (3.161) are attained as α and γ run through Fqm . Similarly if N(Fα,γ) is in the set (3.162),

then both of the values in the set (3.162) are attained as α and γ run through Fqm .

Therefore we get

min
α,γ

N(Fα,γ) − 1
q

∈
{
qm−1 − q

m+h
2 −1, qm−1 − (q − 1)q

m+h
2 −1

}
,

where the minimum value is over α, γ ∈ Fqm . Using (3.148), (3.150) and taking the logarithm

we complete the proof of (3.154).

This completes the proof. ¥
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