
SPECTRAL MODULAR MULTIPLICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INSTITUTE OF APPLIED MATHMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İHSAN HALUK AKIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

FEBRUARY 2009

Approval of the thesis:

SPECTRAL MODULAR MULTIPLICATION

submitted by İHSAN HALUK AKIN in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Department of Cryptography, Middle East Technical
University by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Assoc. Prof. Dr. Emrah Çakçak
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Prof. Dr. Çetin Kaya Koç
Department of Computer Science, University of California, USA

Assist. Prof. Dr. Ali Aydın Selçuk
Department of Computer Engineering , Bilkent University

Dr. Muhiddin Uğuz
Department of Mathematics, METU

Date:

1

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: İHSAN HALUK AKIN

Signature :

iii

ABSTRACT

SPECTRAL MODULAR MULTIPLICATION

Akın, İhsan Haluk

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

February 2009, 97 pages

Spectral methods have been widely used in various fields of engineering and applied mathe-

matics. In the field of computer arithmetic: data compression, polynomial multiplication and

the spectral integer multiplication of Schönhage and Strassen are among the most important

successful utilization. Recent advancements in technology report the spectral methods may

also be beneficial for modular operations heavily used in public key cryptosystems.

In this study, we evaluate the use of spectral methods in modular multiplication. We carefully

compare their timing performances with respect to the full return algorithms. Based on our

evaluation, we introduce new approaches for spectral modular multiplication for polynomials

and exhibit standard reduction versions of the spectral modular multiplication algorithm for

polynomials eliminating the overhead of Montgomery’s method.

Moreover, merging the bipartite method and standard approach, we introduce the bipartite

spectral modular multiplication to improve the hardware performance of spectral modular

multiplication for polynomials. Finally, we introduce Karatsuba combined bipartite method

for polynomials and its spectral version.

Keywords: Modular Multiplication, Montgomery Reduction, Spectral Methods,

iv

ÖZ

SPEKTRAL MODULAR ÇARPMA

Akın, İhsan Haluk

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Şubat 2009, 97 sayfa

Spekral metodlar mühendisliğin ve uygulamalı matematiğin çeşitli alanlarında yaygın olarak

kullanılmaktadır. Veri sıkıştırma, polinom çarpması ve Schönhage and Strassen’ ın spek-

tral tamsayılar çarpması bilgisayar aritmetik alanında en başarılı uygulamalardandır. Son

teknolojik araştırmalar spektral metodların modular operasyonların yoğun olarak kullanıldığı

açık anahtarlı sistemlerde faydalı olabiliceğini söylüyor.

Bu çalışmada, spektral metodların modular çarpmada kullanımlarını değerlendirdik. Bu yön-

temlerin zaman performanslarını tam dönüşlü algoritmalara karşı dikkatli şekilde karşılaştır-

dık. Değerlendirmemizi baz alarak, polinomlar için spektral modular çarpmaya dair yeni

yaklaşımlar sunduk ve Montgomery’ nin metodunun yükünü ortadan kaldıran polinomlar için

spektral modular çarpmanın standart versiyonunu sunduk.

Bunun yanında, polinomlar için spektral modular çarpmanın donanım performansını geliştir-

mek için iki taraflı ve standart yaklaşımları birleştirerek iki taraflı spektal modular çarmayı

sunduk. Son olarak polinomlar için Karatsuba ile birleştirilmiş iki taraflı metodunu ve bunun

spektral versiyonunu sunduk.

Anahtar Kelimeler: Modular Çarpma, Montgomery İndirgeme, Spektral Metodları

v

to my parents, my love for whom I have never been able to express truly

vi

ACKNOWLEDGMENTS

It is a great pleasure to have the opportunity to express my thanks to all those who supported

me throughout my thesis.

First of all, I would like to express my deepest gratitude to Prof. Dr. Çetin Kaya Koç for his

support, guidance and insight he provided throughout this research. I would also like to thank

Gökay Saldamli for his help with my research and for being an honorary adviser for me.

I would like to thank my colleagues; İhsan Çiçek for helping me learn VHDL and digital

electronics and Murat Cihan for cheering me up with his great sense of humor.

I would like to thank Erkay Savaş and Sabancı University for granting me access to their ASIC

laboratory. I’m also very grateful to Assist. Prof. Dr. İlker Hamzaoğlu for his enlightening

discussion on synthesizing.

I should also thank Dr. Kubilay Atasu and Behzad Sadeghi for the illuminating discussions.

I would like to express my gratitude to Mehmet Karaman, Metin Özkan and especially Kaşkaloğu

family for their hospitality during my visits in Ankara.

I would also like to thank Prof. Dr. İsmail Güloğlu and Alparslan Babaoğlu for their support

while preparing for the candidacy exam.

I feel deeply indebted to my family for everything they have given me.

It has been a great pleasure having Assoc. Prof. Dr. Ali Doğanaksoy as my adviser. I’m very

thankful for his support.

I would like to thank Assist. Prof. Dr. Ahmet M. Güloğlu for reading my thesis and his useful

comments. I also would like to thank Assist. Prof. Dr. Ali Aydın Selçuk for his support and

hospitality.

I would like to extend my special thanks to Ahmet Fazıl Aydoğan for providing me with

accommodation.

vii

Finally, I would like to thank everyone who love and care about me as well as those whose

names I may have forgotten to mention here.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

DEDICATION . vi

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Contribution of the Thesis . 3

1.4 Outline . 4

2 BACKGROUND . 6

2.1 Representations of Numbers . 6

2.2 Finite Fields and Representation of Polynomials 8

2.3 Arithmetic Performance . 9

2.4 Arithmetic on Mersenne Numbers 10

2.5 Modular Arithmetic . 11

2.5.1 School Book Integer Multiplication 11

2.5.2 Karatsuba Multiplication 11

2.5.3 Montgomery’s Method 13

2.5.4 School Book Polynomial Multiplication 14

ix

2.5.5 Karatsuba Multiplication for Polynomials 15

2.5.6 Standard Polynomial Modular Reduction 18

2.5.7 Standard Polynomial Modular Multiplication 19

2.5.8 Montgomery for Polynomials 22

2.5.9 Exponentiation . 24

2.6 Convolution and Discrete Fourier Transform 25

2.6.1 Linear and Cyclic Convolutions 25

2.6.2 Discrete Fourier Transform 27

2.6.3 Spectral Arithmetic . 28

2.6.4 Mersenne Number Theoretical Transform 31

2.6.4.1 Arithmetic Performance Of MNT 31

2.6.4.2 Fast Fourier Transform on MNT 32

2.7 Multiplication by DFT . 34

2.7.1 Spectral Polynomial Multiplication 34

2.7.2 Spectral Integer Multiplication 35

3 STATE OF ART ON SPECTRAL MODULAR MULTIPLICATION 37

3.1 Spectral Modular Multiplication for Integers 37

3.1.1 Spectral Integer Multiplication and Time Domain Reduction 38

3.1.2 Partial Return . 39

3.1.2.1 Arithmetic Performance of Partial Return . . . 40

3.1.2.2 Hardware Performance of Partial Return . . . 40

3.1.3 Spectral Montgomery Modular Multiplication for Integers 41

3.1.4 Performance . 42

3.1.4.1 Arithmetic Performance 43

3.1.4.2 ASIC Performance Evaluation 45

3.2 Spectral Modular Arithmetic for Finite Field Extensions 46

3.2.1 Existence of Parameters 46

3.2.2 Spectral Polynomial Multiplication and Time Domain Re-
duction . 47

3.2.3 Spectral Polynomial Montgomery Modular Multiplication 48

3.2.4 Performance . 50

x

3.2.4.1 Arithmetic Performance 50

3.2.4.2 Hardware Performance Evaluation 52

3.3 Conclusion . 53

4 BIPARTITE MODULAR MULTIPLICATION IN SPECTRAL DOMAIN . . 54

4.1 Spectral Standard Modular Multiplication Algorithms Over GF(p) . 54

4.1.1 Arithmetic Performances 61

4.2 Comparison of Partial Return Algorithms 62

4.2.1 Arithmetic Comparison of Spectral Modular Multiplica-
tion Algorithms . 62

4.2.2 Hardware Performance Comparison of Spectral Modular
Multiplication Algorithms 63

4.3 Bipartite Modular Multiplication for Polynomials 63

4.3.1 Performance of Bipartite Modular Multiplication 66

4.4 Bipartite Spectral Modular Multiplication 67

4.4.1 Arithmetic Performance 70

4.5 Comparison of Bipartite and Partial Return Spectral Algorithms . . . 71

4.5.1 Arithmetic Comparison 71

4.5.2 Hardware Comparison 71

4.6 Conclusion . 72

5 KARATSUBA AND SPECTRAL ARITHMETIC 73

5.1 Bipartite in Karatsuba for Polynomials 73

5.2 Non-Interleaved Bipartite in Karatsuba for Polynomials 74

5.3 Interleaved Bipartite in Karatsuba for Polynomials 75

5.4 Karatsuba, Bipartite on Spectral Domain 79

5.4.1 The Split Function . 79

5.4.2 Algorithm 25 . 81

5.4.3 Arithmetic Complexity Analysis 83

5.4.4 Comparison . 83

5.5 A Hardware Structure for Algorithm 25 84

5.5.1 Hardware Performance Evaluation of Algorithm 25 84

5.6 Conclusion . 86

xi

6 CONCLUSIONS . 88

REFERENCES . 90

APPENDICES

A NOTATION . 93

B PARAMETER FOR MERSENNE NUMBER TRANSFORM 95

C THE TABLE OF EFFICENT CASES xk − 2 96

VITA . 96

xii

LIST OF TABLES

TABLES

Table 2.1 Three representation methods of binary numbers with n = 4 8

Table 2.2 Arithmetic performance of Algorithm 7 21

Table 2.3 Arithmetic performance of Algorithm 9 24

Table 2.4 Arithmetic performance of MNT with ω = ±2 32

Table 2.5 Arithmetic performance of MNT with ω = ±2 and ω = −2 with FFT 33

Table 3.1 Arithmetic performance of the partial return at arbitrary rings 40

Table 3.2 Arithmetic performance of the partial return at Mersenne rings with ω = ±2 40

Table 3.3 Step by step arithmetic requirements of Algorithm 13 43

Table 3.4 Step by step arithmetic requirements of Algorithm 14 44

Table 3.5 Arithmetic performance of Algorithm 13 & Algorithm 14 44

Table 3.6 Step by step Arithmetic requirements of Algorithm 15 51

Table 3.7 Step by step Arithmetic requirements of Algorithm 16 51

Table 3.8 Arithmetic performance of Algorithm 15 & Algorithm 16 52

Table 4.1 Step by step Arithmetic requirements of Algorithm 17 61

Table 4.2 Step by step Arithmetic requirements of Algorithm 18 61

Table 4.3 Arithmetic performance of partial return algorithms (17, 18 and 16) 62

Table 4.4 One step arithmetic performance of partial return algorithms (17 and 16) . 62

Table 4.5 Arithmetic performance of Algorithm 19 67

Table 4.6 Arithmetic performance of Algorithm 19 with k = 2m 67

Table 4.7 Step by step Arithmetic requirements of Algorithm 20 70

Table 4.8 Arithmetic performance of Bipartite Spectral Modular Multiplication 71

xiii

Table 4.9 Arithmetic performance of the Algorithms 17, 18, 16 and 20 71

Table 5.1 Step by step Arithmetic requirements of algorithm 21 75

Table 5.2 Step by step Arithmetic requirements of algorithm 22 78

Table 5.3 Step by step Arithmetic requirements of Algorithm 23 80

Table 5.4 Step by step Arithmetic requirements of Algorithm 24 80

Table 5.5 Arithmetic performance of Algorithm 23 & Algorithm 24 81

Table 5.6 Step by step Arithmetic requirements of Algorithm 25 83

Table 5.7 Arithmetic performance of Algorithms 17, 16, 20 and 25 84

Table B.1 Parameters of MNT for 216 < q < 2128 . 95

Table C.1 The table of Efficent Cases xk − 2 . 96

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Karatsuba Multiplication Algorithm over GF(p) 17

Figure 2.2 Left-to-Right Interleaved Modular Multiplication over GF(p) 20

Figure 2.3 Interleaved Montgomery Modular Multiplication GF(p) 23

Figure 2.4 Sum of sequence and first value. 30

Figure 2.5 Schönhage and Strassen’s Integer Multiplication 36

Figure 3.1 Time coefficients . 42

Figure 3.2 Algorithm 13’s steps . 45

Figure 3.3 Algorithm 14’s steps . 45

Figure 3.4 Spectral Polynomial Modular Multiplication 49

Figure 3.5 Algorithm 15’s steps . 52

Figure 3.6 Algorithm 16’s steps . 52

Figure 4.1 Spectral Standard Modular Reduction over GF(p) (type I) 56

Figure 4.2 Spectral Standard Modular Reduction over GF(p) (type II) 59

Figure 4.3 Polynomial Bipartite Modular Multiplication 66

Figure 5.1 Steps of non-Interleaved Bipartite in Karatsuba for Polynomials 75

Figure 5.2 Interleaved Polynomial Bipartite in Karatsuba modular multiplication . . . 77

Figure 5.3 A Hardware Structure Proposal for Algorithm 25 85

xv

CHAPTER 1

INTRODUCTION

1.1 Background

With the increase of electronic communications, security of information gets more and more

attention everyday. The use of electronic equipment and devices almost everywhere also

increased this attention. Hence, security is becoming a major criterion for the quality of

electronic equipment.

Today cryptographic algorithms are considered as providing mature security. Some metrics

of the security mechanism are the running time, allocated space, power consumptions and

power dissipation. other than the theoretical algorithmic security.

A major class of cryptographic algorithms comprises public-key schemes. Message integra-

tion verification, message authentication control, key distribution and digital signature is some

elements of public-key shemes. RSA, ElGamal, Diffie-Hellman and Elliptic Curve Cryptog-

raphy are among the examples of public key algorithms.

Most public key crypto systems requires arithmetic operations in certain mathematical struc-

tures such as groups, rings and finite fields. The most resource consuming operations in these

structures are modular multiplication, inversion and exponentiation. As a consequence, these

operations are in the center of intensive research.

1

1.2 Motivation

RSA public key crypto system is based on the modular exponentiation in Zq. There are sev-

eral available methods to fast, small or optimum approaches are offered to perform RSA

multiplication. One technique for integer multiplication have been known over a quarter of a

century, spectral integer multiplication proposed by Schönhage as Strassen. It is shown that

this technique can be used to multiply large numbers effectively. This kind of multiplications

are needed when computing π to millions of digit of precision, factoring and also in big prime

research projects.

A naive method of utilizing spectral integer multiplication for modular multiplication is per-

forming the multiplication in spectral domain and then performing reduction in time domain.

Such approach is preferable if the input lengths are large enough to meet the forward and

backward transformation between domains.

Recently, Saldamlı [30] offered a new approach to integer modular exponentiation on spectral

domain. This approach performs modular reduction in spectral domain with partial return to

time domain. In fact this is adaption of redundant Montgomery reduction to spectral domain.

After the success of RSA, various other crypto systems are introduced. Because of its ef-

ficiency, short key lengths and mature mathematics elliptic curve cryptography (ECC), pro-

posed independently by Koblitz [15] and Miller [23]. It is adopted by the U.S. Government

as the leading technology for key agreement and digital signature standard.

The security of the ECC depends on the well known discrete logarithm problem. To setup the

system one has to compute exponentiations in the elliptic curve group, requiring several cal-

culations (especially multiplications) with in a finite field. As the ECC over binary and prime

fields are standardized ([1] and [10]), once can argue that the practical (i.e. implementation)

aspects of these systems are fairly mature. On the other hand, the arithmetic in medium size

characteristics extension fields (i.e. GF(pk) for some positive integer k and a prime p such

that 0 < p < 2128) is still a very active research topic. Recently, in [2] and [3] Baktır

proposed and evaluated the spectral modular reduction over the medium size characteristics

fields. Moreover, he successfully applied the method to ECC.

In this thesis, we work on this two proposals. Our work start with comparison of the per-

2

formances of the spectral modular multiplication, described both in [30] and [3], with the

standard spectral approach using DFT multiplication combined with redundant Montgomery

reduction and non redundant Montgomery reduction, respectively. Based on our result we

continue on improvements on the work of Baktır [3].

1.3 Contribution of the Thesis

1. With our arithmetic calculations, we showed that spectral modular reduction for inte-

gers, which uses partial return to time domain is not a better choice over it’s rival, which

uses time based reduction. Our ASIC performance evaluation shows that spectral mod-

ular reduction for integers does not have better performance over time based reduction.

We conclude that for integer modular multiplication, although time based reduction re-

quires full return to time domain, it is better choice over spectral modular reduction for

integers.

2. When multiplication over medium size characteristics fields is considered spectral mod-

ular reduction for polynomials is better choice over it’s rival, which uses time based

reduction, in arithmetic performance. The zero memory requirements of time based

reduction may become a suitable choice over spectral modular reduction for polynomi-

als in some processor environments. Interestingly, although spectral modular reduction

for polynomials has better arithmetic performance over time based reduction , its ASIC

performance is worse than its rival.

3. We exhibited two standard reduction method for spectral modular multiplication for

polynomials to eliminate Montgomery overhead. Our arithmetic calculations showed

that one is almost same performance as Montgomery approach. With our ASIC perfor-

mance evaluation we conclude that they have almost same performance. We conclude

that if there is no special use of Montgomery domain, standard reduction method for

spectral modular multiplication for polynomials is better choice.

4. We introduced GF(pk) version of bipartite modular multiplication [11]. We showed

that even for arbitrary field generating polynomials it is not much improvement for

polynomial modular multiplication in arithmetic performance. When we evaluated the

ASIC performance, we shows that it is only helpful, if the field generating polynomial

3

is not a special polynomial like xk − c. In case of special forms like xk − c this approach

has no use neither arithmetically nor hardware.

5. With the help of standard reduction method for spectral modular multiplication for

polynomials, we exhibited a spectral bipartite modular reduction algorithm for polyno-

mials. There is no improvement for arithmetic performance. We evaluated the ASIC

performance as it is at most half of the spectral modular multiplication for polynomials.

6. We introduced GF(pk) version of bipartite in Karatsuba modular multiplication [31].

With the help of Karatsuba, number of multiplications are reduced. We conclude that

the non-interleaved version of this algorithm is better choice for polynomials if the field

generation polynomial is in special form.

7. We introduced spectral version of bipartite in Karatsuba modular multiplication for

polynomials. Interestingly the number of multiplications are increased. We conclude

that arithmetically this is not better over the other partial return algorithm for polyno-

mials. Also, we evaluated that the ASIC performance still is not close to full return

version.

8. The main contribution of this thesis is the demonstration of the fact that partial return

spectral modular multiplication algorithm are not replacement of full return spectral

modular reduction algorithms, in case of speed. And, the arithmetic performance of

spectral modular multiplication for polynomial work only if p of the GF(pk) is of the

form p = 2k − 1.

9. We conclude with a final remark; all algorithms are designed to start from spectral

domain and complete the result in spectral domain too. When ASIC implementations

are considered there must be some DFT implementations. Full return algorithm can

take this implementations to require less area beside with the increase of network.

1.4 Outline

Chapter 2 presents some background information about number representations, finite fields

and polynomial representations. This chapter also includes the arithmetic performance cal-

culation method that we used throughout the thesis. Arithmetic on Mersenne numbers de-

scribed in details. Modular arithmetic methods that are used in the other chapters are given

4

in detail with their arithmetic performances. Definition of Convolutions and Discrete Fourier

Transforms are given and one level Fast Fourier Transform approach is described. Finally,

polynomial and integer multiplication by DFT is described.

In Chapter 3, the integer reduction version of spectral modular reduction is described, in

which multiplication is performed on spectral domain, and reduction is performed in time

domain, by using DFT dictionary. Spectral modular multiplication, defined by Saldamlı is

reviewed. Their arithmetic and ASIC performance are calculated and evaluated. We turned

our attention to the arithmetic in the extension fields and revisit two methods of multiplication

including an adaption of algorithm 2.7.1 and the algorithm proposed in [2]. Their arithmetic

and ASIC performance are also calculated and evaluated.

In Chapter 4, bipartite for polynomial over GF(p) is investigated. Two new standard spectral

modular multiplication algorithms is exhibited. Polynomial version of bipartite algorithm

is defined. Finally, combination of standard and spectral Montgomery multiplication, i.e.

spectral bipartite modular multiplication algorithm is demonstrated. The algorithms that is

defined in this chapter are examined by their arithmetic performances and their hardware

performances are evaluated.

In Chapter 5, firstly, we look at the polynomial version of Saldamlı’s work [31] in details.

Secondly, we translate Bipartite Karatsuba modular multiplication into spectral domain with

the help of DFT dictionary. Thirdly, arithmetic performance is calculated and compared to

algorithms, which are presented in previous chapters. And, after that, we give a simple hard-

ware architecture for the spectral version. Under the hardware architecture the hardware

performance is evaluated and compared to others.

We conclude our work with some final comments in Chapter 6.

5

CHAPTER 2

BACKGROUND

In this chapter we present some background information about number representations, finite

fields and polynomial representations. This chapter also includes the arithmetic performance

calculation method that we use throughout the thesis. The arithmetic on Mersenne numbers

is described in detail. Modular arithmetic methods that are used for the rest of the thesis

are given in detail with their arithmetic performances. Definitions of Convolutions and Dis-

crete Fourier Transform (DFT) are given and one level Fast Fourier Transform approach is

described. Finally, polynomial and integer multiplication by DFT is described.

2.1 Representations of Numbers

This section has been adapted from the first chapter of Koren’s book [18]. In conventional dig-

ital computers, integers are represented as binary numbers of fixed length. A binary number

of length k can be represented as an ordered sequence

(xk−1, xk−2, . . . , x1, x0)2 (2.1)

of binary digits, where each digit (bit) can assume one of the values 0 or 1. The above

sequence of n digits represents the integer value

X = xk−12k−1 + xk−22k−2 + · · · + x12 + x0 =

k−1∑

i=0

xi2i. (2.2)

Conventional number systems are non-redundant, weighted, and positional systems. In a

non redundant number system every number has a unique representation. i.e. if two sequences

represent same number then they are equal. The term weighted number system means that

6

there is a sequence of weights

wk−1,wk−2, . . . ,w1,w0

that determines the value of the given n-tuple xk−1, xk−2, . . . , x1, x0 by the equation

X =

k−1∑

i=0

xiwi. (2.3)

The weight wi is assigned to the digit in the i-th position, xi. Finally, in a positional number

system, the weight wi depends only on the position i of the digit xi. In conventional number

systems, the the weight wi is the i-th power of a fixed integer r, which is the radix of the

number system. In other words, wi = ri. Therefor this number systems are also called

fixed-number systems. Since the weight assigned to digit xi is ri, this digit has to satisfy

0 ≤ xi ≤ r − 1. Otherwise, if xi ≥ r is allowed, then

xiri = (xi − r)ri + 1 · ri1 ,

resulting two machine representation for the same value : (. . . , xi+1, xi, . . .) and (. . . , xi+1 +

1, xi − r, . . .). In other words allowing xi ≥ r introduces redundancy into fixed-radix number

systems.

For fixed-point numbers in a radix r system, there are 3 number representations that com-

monly used to represent the negative numbers :

1. Signed-magnitude : In this representation sign and magnitude are represented sepa-

rately. The first digit is the sign digit and the remaining (n − 1) digits are represents

the magnitude. In a binary case, the sign bit is normally selected to be 0 for positive

numbers and for 1 negative numbers. In the non binary case, the values 0 and r − 1 are

assigned to the sign digit of positive and negative numbers, respectively. This represen-

tation is redundant since there is two representation of the number zero.

2. One’s complement : In One’s complement representation negative numbers are rep-

resented as the radix complement of the digits, where each digit is complemented by

2r − 1 − xi. This representation is also redundant since zero has two representation.

3. Two’s complement : Two’s complements representation is very similar to One’s com-

plement representation, except that the negative of number is obtained by subtracting

7

1 from the complement of the digits. Complement of a negative number is also ob-

tained by subtracting 1 from the complement of the digits. This representation is non-

redundant.

Table 2.1: Three representation methods of binary numbers with n = 4

Sequence Two’s complement Ones Complement Signed-Magnitude
0111 7 7 7
0100 6 6 6
0101 5 5 5
0100 4 4 4
0011 3 3 3
0010 2 2 2
0001 1 1 1
0000 0 0 0
1111 -1 -0 -7
1110 -2 -1 -6
1101 -3 -2 -5
1100 -4 -3 -4
1011 -5 -4 -3
1010 -6 -5 -2
1001 -7 -6 -1
1000 -8 -7 -0

Radixes higher than 2 do not have a direct representation in computer architecture. Each digit

of a number in radix q where q > 2 can be represented as binary sequence. For simplicity,

instead of their computer representation we use classical base representation. And, whenever

there is distinction between xi, xi−1 and xixi−1 for all possible values of xi’s in the radix the

commas are omitted. Therefore the sequence representation in 2.1 becomes;

(xk−1xk−2 . . . x1x0)2.

Remark 1 Radix is also called base in number representations.

2.2 Finite Fields and Representation of Polynomials

A finite field is a field with finite number of elements. A finite field is also called Galois

Field. Two common representation of finite fields are Fq and GF(q) where q stands for the

8

number of the elements in the field [20]. q is always a prime power, i.e q = pk, k ∈ Z+, where

the prime number p is called the characteristic of the finite field. When q is prime then the

finite field GF(q) is called prime field. A prime field is the field of residue classes modulo p

and its elements are represented by the integers in {0, 1, . . . , p − 1}. When q is a prime power

the finite field GF(pk) is called an extension field. The extension field GF(pk) is generated by

using an m-th degree irreducible polynomial over GF(p) and it is the field of residue classes

modulo the irreducible field generating polynomial. Hence, in polynomial representation the

elements of GF(pk) are represented by polynomials of degree at most k − 1 with coefficients

in GF(p).

Remark 2 We also use sequence representation for polynomials. i.e. ;

a(x) =

k−1∑

i=0

aixi

is also represented as the sequence

(a) = (ak−1, . . . , a0, a1).

2.3 Arithmetic Performance

The algorithms that are presented as current state of art and newly proposed as a part of

this thesis are evaluated by their arithmetic performances. This performance evaluations are

precisely counted rather than classification as in big O notation [16]. This counting not only

help the comparison of the algorithms but also gives idea about their real life performance

on computers. In the same computer architectures, companies which is interested in these

algorithms can have advantage from the arithmetic performance evaluations before real time

implementation.

In parallel environments, like FPGA, ASIC and newly introduced multi core CPU’s, arith-

metic performance can also gives idea on the performance of this environments. In these

environments one must keep in mind that which data is dependent to the other to solve the

parallelization issues.

To give an idea, in O performance of integer multiplication and division are same as k2 where

k is the number of bits [16]. Multiplication is parallelizable, however division is sequential

[18].

9

To solve a specific problem in general we do not have one algorithm. For example one can use

school book multiplication or Karatsuba multiplication [13]. Some of the aims of introducing

new algorithms are reducing the arithmetic operation or working more in parallel or reducing

costly operations or changing them with less costly operations.

In counting arithmetic operations in this thesis we count, ring and field operations, rotations

and shifts. Some of the algorithms may require precomputation. We do not list these as a

part of the performance of the algorithm since precomputation is assumed to be calculated for

once. The result of a precomputation must be stored to be used later. We count the required

memory by amount of bits, since more memory means more space for the real application of

the algorithms.

2.4 Arithmetic on Mersenne Numbers

This section is adaptation form chapter 6 of Blahut’s book [4]. Galois Fields in which the

operation of multiplication is most straightforward are those of the form GF(2k − 1), which

may be a field when k is a prime but never a field if k is a composite because 2ab−1 is divisible

by 2a − 1. Primes of the form 2k − 1 are called Mersenne primes. The smallest values of k for

which 2k − 1 is a prime are 3, 5, 7, 13, 17, 19 and 31; and the corresponding Mersenne primes

are 7, 31, 127, 8,191, 131,071, 524,287 and 2,147,483,647.

Arithmetic in the field GF(2k − 1) is quite convenient if the integers are represented is k-bit

binary numbers. Because 2k − 1 = 0 in this field, the overflow 2k is equal to one. Hence the

arithmetic is the conventional integer arithmetic, and the overflow bits are added to low order

bits of the number.

For the arithmetic on the Mersenne numbers we choose One’s complement representation.

With One’s complement representation, the additive inverse, i.e. negation, becomes just bit

inversion. As a result of this, additive inverse is not counted in our arithmetic performances.

Multiplication by a power of 2 is just rotation of the k-bits. Multiplication by powers of 2 is

counted as rotation.

10

2.5 Modular Arithmetic

In modular arithmetic, modular multiplication can be done as standard multiplication fol-

lowed by modular reduction, This type algorithms for modular multiplication is called non-

interleaved modular multiplication. Some of the multiplication and reduction algorithms can

be combined as one algorithm and this type modular multiplications are called interleaved

modular multiplication.

In this section we review some modular arithmetic algorithms for integers and polynomials.

These include some interleaved and non interleaved modular multiplication algorithms. Their

arithmetic performances are calculated and some of them are compared to each other.

2.5.1 School Book Integer Multiplication

School Book Multiplication is a sequential multiplication, and also called classical multi-

plication. Let a and b be two integer in base q representation a = (an−1an−2 . . . a1a0) and

b = (bn−1bn−2 . . . b1b0). The product of ab will have at most 2n digits in base q [22].

To see this : let x = y = qn, i.e. x and y is just plus 1 to the highest possible number from n

digit base q numbers. Product of x and y will be equal to xy = q2n, that is 2n + 1 digits. Since

x and y are bigger than any n digit base q numbers, multiplications of a and b will be smaller

than b2n, i.e. a · b can be correctly represented in 2n digits in base q.

Algorithm 1 is the reorganized version of school book integer multiplication. At step 7 there

are 1 multiplication and 2 additions. Inner loop and outer loop counts are n, therefore there

are n2 multiplications and 2n2 additions in this algorithm.

2.5.2 Karatsuba Multiplication

In 1962, two Russian mathematicians, Karatsuba and Ofman [13], offered a recursive algo-

rithm which requires asymptotically fewer bit operations than O(k2), i.e. the O complexity

of school book multiplications of two k-bit integers. Their algorithms in general named as

Karatsuba multiplication (KA). The details of the algorithm can be found in [14]. We give

brief description here.

11

Algorithm 1 School Book Multiplication Algorithm with Radix q.
Input : positive integers a and b, where

a = (x2n−1, x2n−2, . . . , x1, x0)q and b = (x2n−1, x2n−2, . . . , x1, x0)q

Output : a · b = (z2n−1, z2n−2, . . . , z1, z0)q

1: for i = 0 to (2n − 1) do

2: zi = 0

3: end for

4: for i = 0 to n do

5: c = 0

6: for j = 0 to n do

7: (u, v)q = zi+ j + x jyi + c

8: zi+ j = v

9: c = u

10: end for

11: end for

12: return (z2n−1, z2n−2, . . . , z1, z0)q

Let a and b be two k-bit integers. First decompose the numbers by h, 0 < h < k;

a =2ha1 + a0 (2.4)

b =2hb1 + b0 (2.5)

With the school book algorithm, multiplication of a and b can be written as ;

(2ha1 + a0)(2hb1 + b0) = 22ha1b1 + 2h(a0b1 + a1b0) + a0b0. (2.6)

Equation 2.6 also can be view as multiplication of numbers with radix h, if we assume that

a0, a1, b0, b1 all are less then h. With the equation 2.6, we can see that there is four multi-

plications, which are aib j with 0 ≤ i ≤ 1 and 0 ≤ j ≤ 1. With the following trick one can

compute the products in the equation 2.6 using three multiplications by rewriting (a0b1+a1b0)

as follows

12

(a0b1 + a1b0) = (a1 + a0)(b1 + b0) − a0b0 − a1b1 (2.7)

Since a0b0 and a1b1 is computed in other parts, this saves one multiplication (two multipli-

cations are removed but one multiplication and some new additions are required). With the

help of Equation 2.7 we can rewrite Equation 2.6 as follows;

(2ha1 + a0)(2hb1 + b0) = 22ha1b1 + 2h((a1 + a0)(b1 + b0) + a0b0 + a1b1) + a0b0

= (22h − 2h)a1b1 + 2h(a0 + a1)(b0 + b1) + (1 − 2h)a0b0.

The recursive Karatsuba multiplication algorithm is presented in the algorithm 2;

Algorithm 2 Karatsuba-Ofman Algorithm
Procedure KA (a,b)

Input : positive integers a and b

Output : ab

1: a = 2haH + aL

2: b = 2hbH + bL

3: t0 = KA(aL, bL)

4: t2 = KA(aH , bH)

5: u0 = KA(aL + aH , bL + bH)

6: t1 = u0 − t0 − t2

7: return (22ht2 + 2ht1 + t0)

The complexity of Karatsuba is given as O(klog23) ≈ O1.58 [14]. This yields that Karat-

suba multiplication is faster than school book multiplication which requires O(k2) operations.

However due to recursive nature of the Karatsuba method, there is an overhead in Karatsuba

and most of the time only a few level of the recursion is implemented [14].

2.5.3 Montgomery’s Method

Montgomery’s method, proposed by Peter Montgomery in 1985 [24], is an efficient algorithm

to compute z = ab mod q where a, b and q are k digit numbers in base b. This algorithm

computes the resulting k digit number z without performing a division by the modulus q.

13

The method uses special representation of the modulus, called Montgomery domain. Let q

be a positive integer, and let R and a be two integers such that R > q, gcd(q,R) = 1 and 0 ≤
a < qR. The Montgomery domain representation of a is aR mod q. Since q and R relatively

prime R−1 exist and every number is uniquely represented in the Montgomery domain. A

number with Montgomery domain representation can be translated by multiplying R modulo

q. Since Montgomery reduction changes the representation of the integer to Montgomery

domain representation, this creates and overhead for the algorithm.

A method describing for computing aR−1 without using classical division by modulus is called

Montgomery Reduction [22]. Multiplication of two integers in their Montgomery represen-

tation and applying Montgomery reduction will result in the Montgomery representation of

modular multiplication of their normal representations.

Let 0 ≤ a, b < q. Let A = aR mod q and B = bR mod q. The Montgomery reduction of A · B
is A · BR−1 mod q = abR mod q.

The above observation on multiplication leads an efficient method for exponentiation.

Consider computing a5 mod q for some integer a, 1 ≤ a < q. First compute A = aR mod q.

Then compute Montgomery reduction of A2, which is B = A2R−1 mod q. The Montgomery

reduction of B2 is B2R−1 mod q = A4R3 mod q. The Montgomery reduction of A(B2R−1 mod

q) is B2R−1AR−1 mod q = A5R−4 mod q = a5R mod q. Multiplying this value by R−1 mod q

and reducing modulo q gives a5 mod q.

The next algorithm gives the details of Montgomery reduction in radix b.

In chapter 3, we need redundant Montgomery reduction and deal the performance in that

chapter.

2.5.4 School Book Polynomial Multiplication

Let a(x),b(x) be two polynomials over GF(p) with degree k defined by;

a(x) =

k−1∑

i=0

aixi , b(x) =

k−1∑

i=0

bixi.

School book (standard) multiplication of a(x) and b(x) over GF(p) is given by,

14

Algorithm 3 Montgomery Reduction
Input : Integers; q = (qk−1 . . . q1q0)b with

gcd(q, b) = 1, R = bk, q′ = −q−1 mod b, and a = (a2k−1 . . . a1a0)b

Output : Z = aR−1 mod q

1: Z = a

2: for i = 0 to k − 1 do

3: ui = Zi q′(mod b).

4: Z = Z + ui q

5: Z = Z/b

6: end for

7: if Z ≥ q then

8: Z = Z − q

9: end if

10: return Z

z(x) =

2k−2∑

i=0

zixi , where zi =

i∑

t=0

atbt−i,

for i = 1, . . . , 2k − 2 and a j = 0, b j = 0 for j > k − 1.

The arithmetic complexity of standard polynomial multiplication requires k2 multiplications

and k2 − 2k + 1 additions over the field, where k − 1 is the degree of the polynomials.

For small fields, look up tables can be very helpful for the base field multiplication. In hard-

ware environments standard multiplication algorithm is parallelizable. One way to this paral-

lelization is calculating partial sums in parallel and then sum the coefficients with same degree

with a csa Wallace tree [37] combined with a fast final adder, like Sklansky adder [34]. More

detail parallelization of multiplication these can be found at [14] and [18].

2.5.5 Karatsuba Multiplication for Polynomials

Karatsuba multiplication algorithm (algorithm 2) is also applicable to the polynomials. It

can be used both for the polynomial multiplications and for the base field multiplications.

We only interested in Karatsuba for polynomial multiplications. In a two term polynomials,

a(x) = a1x + a0 and b(x) = b1x + b0 , the computation is performed as follows:

15

z(x) = a1b1x2 + ((a0 + a1)(b0 + b1) − a0b0 − a1b1)x + a0b0.

Polynomials with more than 2 terms, are split into upper and lower parts, preferable with

equal powers, and KA algorithm is applied recursively whenever a polynomial multiplication

is required. Equal part is just important for the implementations. With the help of the full

recursion KA can attain O(nlog23) [14]. Like in KA for integers, in practice, only a few level

of recursion are helpful because of the overhead of the recursion.

Fully recursion form of KA is listed in the algorithm 4.

Algorithm 4 Karatsuba Multiplication Algorithm over GF(p)
Procedure KA (a(x),b(x))

Input : Polynomials a(x) and b(x) with degrees less then k

Output : z(x) = a(x)b(x)

1: h = dk/2e
2: a(x) = 2ha(x)H + a(x)L

3: b(x) = 2hb(x)H + b(x)L

4: t0(x) = KA(a(x)L, b(x)L)

5: t2(x) = KA(a(x)H , b(x)H)

6: u0(x) = KA((a(x)L + a(x)H), (b(x)L + b(x)H))

7: t1(x) = u0(x) − t0(x) − t2(x)

8: z(x) = 22ht2(x) + 2ht1(x) + t0(x)

9: return z(x)

We calculate arithmetic performance of one level KA as follow; Let a(x) and b(x) be poly-

nomials with k − 1 degree where k is odd. Let α = (k + 1)/2. We have three polynomial

multiplications, therefore we have 3(α2) multiplications, 3(α2 − 2α + 1) additions from the

three multiplications. Additionally, we have 3 additions which makes 3α additions. In total,

one level Karatsuba polynomial multiplication requires; 3α2 multiplications and 3α2 + α + 1

additions.

Example 2.5.1 One Level Polynomial Karatsuba Example :

16

aL(x)aH(x)

bL(x)bH(x)

t0 = aL(x) bL(x)

(aL(x)+ ah(x))(bL(x)+ bh(x))

- t0

- t1

t1 = aH(x) bH(x)

X

+

Figure 2.1: Karatsuba Multiplication Algorithm over GF(p)

inputs:

a(x) = 2x6 + 5x5 + 3x4 + 3x3 + x2 + x + 3.

b(x) = 3x6 + 7x5 + 2x4 + 7x3 + x2 + 2x + 4.

parts :

aH(x) = 2x2 + 5x + 3.

aL(x) = 3x3 + x2 + x + 3.

qH(x) = 3x2 + 7x + 2.

qL(x) = 7x3 + x2 + 2x + 4.

intermediate values :

t0 = 10x6 + 10x5 + 3x4 + 3x3 + 9x2 + 10x + 1.

t1 = x9 + 6x8 + 2x7 + 6x6 + 5x5 + 7x4.

t2 = 6x12 + 7x11 + 4x10 + 9x9 + 6x8.

result :

result = 6x12 + 7x11 + 4x10 + 10x9 + x8 + 2x7 + 5x6 + 4x5 + 10x4 + 3x3 + 9x2 + 10x + 1

17

2.5.6 Standard Polynomial Modular Reduction

Definition 2.5.2 Let a(x) = ak−1xk−1 + . . .+a1x+a0 be a polynomial. The leading coefficient

of a(x) is the coefficients of the highest term.

Obviously, a(x) , 0⇔ lcoe f (a(x)) , 0.

Definition 2.5.3 The function coef(a(x), t) returns the coefficient of a(x) at the position t;

coef(a(x), t) =

at if 0 ≤ t ≤ k − 1

0 else.

Standard reduction algorithm for the polynomials reduces the polynomials from left to right.

The below algorithm 2.5.6 is the standard reduction algorithm for polynomials.

Algorithm 5 Standard Polynomial Reduction Algorithm
Precomputation : f ′(x) = lcoe f (f (x))−1 f (x) (modq)

Input : a(x), f (x) where degree(a(x)) = 2k − 2 and degree(f (x)) = k

Output : z(x) such that z(x) ≡ a(x) mod f (x)

1: z(x) = a(x)

2: for i = k − 1 down to 1 by -1 do

3: s = lcoe f (s(x))

4: z(x) = z(x) − s · f ′(x) · xi

5: end for

6: return z(x)

Arithmetic requirements of the algorithm 2.5.6 is k2 − k constant multiplications and k2 − k

additions.

The Algorithm 2.5.6 is simplified version of the polynomial division algorithm [16]. The

standard division algorithm scans all the powers of the dividend that are bigger or equal to

the degree of the divisor one bye one starting from highest power. Unlike the standard mul-

tiplication algorithm for polynomials, the division algorithm for polynomials is completely

sequential [18]. Therefore, cannot be parallel in hardware or multicore processor environ-

ments. In chapter 4 we will see that this sequentiality can be break into two pieces.

18

Being sequential, do not prevent having simple algorithms to find the remainder for some

special modulus. If the modulus f (x) have low weight, i.e only a few coefficients are non-

zero, or is of the form xk − c for some c ∈ GF(p) then reduction steps can be done in highly

parallel or even in one polynomial addition with a constant multiplication.

We deal with the form xk − c. In this type modulus, it is possible to replace every xk by c, i.e

we use the identity xk = c instead of full step reduction like in the algorithm 2.5.6. With the

help of this algorithm 2.5.6 becomes algorithm 6.

Algorithm 6 Polynomial Reduction Algorithm for Modulus of the form xk − c
Input : a(x), f (x) = xk − c where deg(a(x)) = 2k − 1

Output : z(x) such that z(x) = a(x) mod f (x)

1: z(x) = 0

2: for j = 0 to k − 1 do

3: z j(t) = a j(t) + c · a j+k.

4: end for

5: return z(x)

Arithmetic requirements of the algorithm 6 is k−1 constant multiplications and k−1 additions.

When the field generation polynomial has a small constant c, the constant multiplications can

be calculated in a few additions.

If the polynomials defined over Mersenne numbers, and c = 2 than the constant multiplica-

tions turn into rotations. This is the one of the simple forms for the polynomial reduction

algorithm.

2.5.7 Standard Polynomial Modular Multiplication

Standard polynomial modular multiplication over GF(pk) can be performed in two ways.

Interleaved and non-interleaved. Non-interleaved version is school book polynomial multi-

plication followed by algorithm 2.5.6.

Interleaved polynomial multiplication combines polynomial multiplication and polynomial

reduction (algorithm 2.5.6). Due to reduction from left, it is also called left-to-right inter-

leaved modular multiplication. At each step, one coefficient multiplication and one reduc-

tion on degree is performed.

19

Let f (x) be the field generating polynomial of GF(pk). Let a(x), b(x) ∈ GF(pk). The follow-

ing algorithm computes z(x) ≡ a(x)b(x) mod f (x), i.e. z(x) ∈ GF(pk)

Algorithm 7 Left-to-right interleaved modular multiplication over GF(pk)
Precompute: f ′ = lcoe f (f (x))−1 mod p. fm(x) = f ′ · f (x)

Input : a(x), b(x) ∈ GF(pk)

Output : z(x) such that z(x) = a(x) · b(x) mod f (x)

1: z(x) = 0

2: for i = 0 to k − 1 do

3: z(x) = z(x) · x + a(x) · coef(b(x), k − 1 − i))

4: if deg(z(x)) ≥ deg(f (x)) then

5: z(x) = z(x) − (fm(x) · lcoe f (z(x)))

6: end if

7: end for

8: return z(x)

a(x)

b(x)

fm(x)

fm(x)

fm(x)

X

Figure 2.2: Left-to-Right Interleaved Modular Multiplication over GF(p)

Example 2.5.4 Let a(x), b(x) ∈ GF(117). Let the field generating polynomial f (x) of GF(117)

is given by f (x) = x7 + 2x + 5;

input a(x) = 2x6 + 5x5 + 3x4 + 3x3 + x2 + x + 3

input b(x) = 3x6 + 7x5 + 2x4 + 7x3 + x2 + 2x + 4

at i = 0 : z(x) = x6 + x5 + 10x4 + 2x3 + 2x2 + x + 7

at i = 1 : z(x) = 3x6 + x5 + 6x3 + 5x2 + 7x + 9

at i = 2 : z(x) = 10x6 + 9x5 + 8x4 + x3 + 3x2 + x + 4

20

at i = 3 : z(x) = 2x6 + x5 + 8x4 + 9x2 + 10x

at i = 4 : z(x) = 6x6 + 2x5 + 6x4 + 8x3 + 9x2 + x + 3

at i = 5 : z(x) = 4x5 + 10x4 + 5x3 + 8x2

at i = 6 : z(x) = 2x6 + 8x5 + 7x4 + 4x3 + 7x2 + 9x + 8

The precomputation on the field generating polynomial do not change the result. It removes

constant multiplications from the algorithm. The field generating polynomial has a significant

effect on the performance of the algorithm 7. If f (x) is monic then the precomputation that

removes constant multiplications from step 5 is not required. When f (x) is low weight or in

the simple form like xk − c then the reduction steps, steps 4 and 5, of the algorithm 7 has

simple forms. In case of xk − c the step can be redefined as

4: if coe f (z(x), k) , 0 then

5: z(x) = zx) − coe f (z(x), k)xk + coe f (z(x), k) · c

We note that; at last step of the algorithm there is no need to a reduction after the last coeffi-

cient multiplication. So there is actually k steps of multiplications but k−1 steps of reductions.

Table 2.2 list the arithmetic performance of the algorithm 7 for two types of field generating

polynomials; for degree k, and of the form xk − c.

Table 2.2: Arithmetic performance of Algorithm 7

arbitrary f (x) f (x) = xk − c

Multiplication k2 k2

Constant Multiplication k2 k
Addition 2k2 − k k2

Shift and Rotate none none

Stored Memory (bits) none none

Since the algorithm 7 combines multiplication and reduction, it inherits their properties. Al-

though multiplication is parallelizable, the degree sequentiality of the division algorithm pre-

vents working in parallel. The division algorithm, more specifically reduction, is completely

21

sequential [18] in the degree. Therefore is not parallelizable in hardware or multicore proces-

sor environments. Like we mentioned in reduction, being sequential, do not prevent having

simple algorithms for finding remainder for some special modulus. If the field generating

polynomial f (x) is of the form xk − c for some c ∈ GF(p) then reduction steps can be done

in highly parallel or even in one polynomial addition with a constant multiplication. Due to

one step reduction, in ASIC or FPGA environments non-interleaved version of the algorithm

7 will give better performance.

Algorithm 8 Polynomial Reduction Algorithm over GF(p) for modulus of the form xk − c
Input : a(x), b(x), f (x) where a(x), b(x) ∈ GF(pk) and f (x) = xk − c

Output : z(x) such that z(x) = a(x)b(x) mod f (x)

1: z(x)

2: t(x) = a(x)b(x)

3: for j = 0 to k − 1 do

4: coe f (z(x), j) = coe f (t(x), j) + coe f (t(x), j + k)

5: end for

6: return z(x)

2.5.8 Montgomery for Polynomials

Montgomery for polynomials first proposed by Koç[17]. Polynomial modular multiplication,

unlike from integer modular multiplication, do not have advantage in domain changes. This

can be seen from comparing the results of the tables 2.2. Despite of this, there is a good

application for polynomial Montgomery multiplication, namely; Montgomery inversion, [12].

Let f (x) be a polynomial with degree k, let r(x), t(x) be two polynomials such that deg(r(x)) =

deg(f (x)) − 1, gcd(f (x), r(x)) = 1 and 0 ≤ deg(t(x)) < deg(f (x) · r(x)).

t(x) · b(x)−1 mod f (x) is called the Montgomery reduction of t(x) modulo f (x) with respect to

r(x).

In this section we look at the interleaved Montgomery modular multiplication. As left-to-

right interleaved modular multiplication approach, interleaved Montgomery modular multi-

plication combines multiplication and Montgomery modular reduction over GF(pk). Due to

reduction from left it is also called right-to-left modular multiplication. At each step one

22

multiplication and one Montgomery modular reduction is performed.

Let f (x) be the field generating polynomial of GF(pk). Let a(x), b(x) ∈ GF(pk). The follow-

ing algorithm 9 computes z(x) ≡ a(x) · b(x) · r(x)−1 mod f (x).

Algorithm 9 Interleaved Montgomery Modular Multiplication over GF(pk)
Precompute: f ′ = coe f (f (x), 0)−1 mod p, fn(x) = f ′ · f (x).

Input : a(x), b(x) ∈ GF(pk) and r(x) = x(k−1).

Output : z(x) such that z(x) = a(x) · b(x) · r(x)−1 mod f (x).

1: z(x) = 0

2: for i = 0 to k − 1 do

3: u = coe f (z(x), 0) + coe f (a(x), i) · coe f (b(x), 0)

4: z(x) = z(x) + coe f (a(x), i) · b(x) + u · fn(x)

5: z(x) = z(x)/x

6: end for

7: return z(x)

a(x)

b(x)

fn(x)

fn(x)

fn(x)

X

>>

Figure 2.3: Interleaved Montgomery Modular Multiplication GF(p)

Example 2.5.5 Let a(x), b(x), f (x) and b(x) be some polynomials over GF(11). Let the field

generation polynomial f (x) of GF(117) is given by f (x) = x7 + 2 · x + 5, b(x) = x8 and;

f ′ = 2

a(x) = 2x6 + 5x5 + 3x4 + 3x3 + x2 + x + 3

b(x) = 3x6 + 7x5 + 2x4 + 7x3 + x2 + 2x + 4

z(x) = 4x6 + 5x5 + 9x4 + 7x3 + 2x2 + 5x + 10

23

z(x) = 2x6 + 9x5 + 3x4 + 5x3 + 9x2 + 7x

z(x) = 10x6 + 9x5 + 4x4 + 4x3 + 10x2 + 5x + 10

z(x) = 3x6 + 8x5 + x4 + 10x3 + x2 + 8x + 8

z(x) = 3x6 + 6x5 + 9x4 + 3x3 + 9x2 + 4x + 2

z(x) = 8x6 + 8x5 + 4x4 + 5x3 + 5x2 + 3x

z(x) = 8x6 + 7x5 + 4x4 + 7x3 + 9x2 + 4x + 1

z(x) = 2x6 + 8x5 + 7x4 + 4x3 + 7x2 + 9x + 8

return = 4x6 + 4x5 + 7x3 + x2 + x + 2

Table 2.3: Arithmetic performance of Algorithm 9

arbitrary f (x) f (x) = xk − c

Multiplication k2 + k k2 + k
Constant Multiplication k2 2k
Addition 2k2 k2

Shift and Rotate none none

Stored Memory (bits) none none

Like algorithm 7, the choice of f (x) has important effect on the performance of the algorithm.

If f (x) is already normal then precomputation is not required. Like sequential reduction,this

algorithm is also not parallelizable in term of the degree reduction. The table 2.3 lists the

arithmetic performance of the algorithm 9.

When we consider about one step reduction like in algorithm 7, it is not possible for the

algorithm 9 because of its design. Therefore non-interleaved version do not have hardware

advantage over this one.

2.5.9 Exponentiation

One of the most important arithmetic operations for public-key cryptography is exponen-

tiation. The RSA scheme [29] requires exponentiation in Zm for some positive integer m,

whereas Diffie-Hellman key agreement [8] and the ElGamal encryption scheme [9] use expo-

nentiation in Zp for some large prime p.

24

Exponentiation can be performed in various ways, well known methods are left-to-right ex-

ponentiation and right-to-left exponentiation. Each of these requires modular multiplica-

tions, when modular exponentiation is considered. As we shown in the Section 2.5.3, it is

possible to perform modular exponentiation over Montgomery Domian.

In this thesis we are only interested in modular multiplication. For the detail of the expo-

nentiation methods we refer to chapter 14 of the Menezes’ book [22], Handbook of Applied

Cryptography.

2.6 Convolution and Discrete Fourier Transform

In this section, we turn our attention to a different approach of polynomial multiplication, and

its connection to DFT.

2.6.1 Linear and Cyclic Convolutions

Definition 2.6.1 let (a), (b) be two sequence of length n. The sequence (z) defined by follow-

ing equation

zi =

n−1∑

k=0

ai−kbk i = 0, . . . , 2d − 2, (2.8)

where ai−k = 0 if (i − k < 0), is called linear convolution.

Remark 3 In the definition 2.6.1, the length of the sequences (a) and (b) are taken as equal.

Actually, this is not necessary for the definition, see chapter 1 of [4]. We only need the equal

case.

The linear convolution can be express as polynomials too;

a(x) =

n−1∑

i=0

aixi, b(x) =

n−1∑

i=0

bixi

then

z(x) = a(x)b(x)

25

where

z(x) =

n−1∑

i=0

zixi

where zi =
∑i

t=0 atbt−i, for i = 1, . . . , 2d − 2 and a j = 0, q j = 0 for j > k − 1.

The sequence (z) is the sequence representation of the polynomial multiplication z(x) =

a(x)b(x). With the commutativity of the polynomial multiplication, we can say that con-

volution of two sequences is symmetric.

Definition 2.6.2 let (a), (b) be two sequences of length n. The sequence (z) defined by follow-

ing equation

zi =

n−1∑

k=0

a((i−k))bk i = 0, . . . , d − 1, (2.9)

where the double parenthesis denotes modulo n, is called cyclic convolution.

There is a very close relation between cyclic and linear convolutions. A cyclic convolution

can be expressed as polynomial product modulo xn − 1. This will replace the term xn+i with

xi when xn+i appears with positive i. This will give the coefficients of the cyclic convolution.

The expression of a linear convolution as a cyclic convolution can be seen as follows;

zi =

n−1∑

k=0

a((i−k))bk i = 0, . . . , d − 1. (2.10)

We can reorganize the terms in two terms; those with i− k ≥ 0 and those with i− k < 0. Using

these we can rewrite equation 2.10 as

zi =

n−1∑

k=0

ai−k bk +

n−1∑

k=0

an+i−k bk i = 0, . . . , d − 1 (2.11)

where in left summation ai−k = if k > i; and in second summation gn+i−k = 0 if k < i.

If the second term is set to zero in the equation 2.11, we will have linear convolution. Choos-

ing the length of cyclic convolution, bigger than n > 2d − 2, where the d is the length of the

sequence of the linear convolution, will ensure the linear convolution.

26

Direct calculation of the linear convolutions, namely polynomial multiplication, requires

O(d2) multiplications. With usage of appropriate of fast Fourier transform and convolution

theorem it is possible to decrease this complexity. For the details we refer to textbooks [4]

and [25]. In next section we introduce the discrete Fourier transform.

2.6.2 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is one of the specific forms of Fourier transformation.

It is defined over complex numbers (C) and real numbers. Pollard [27] introduced DFT over

ring Zm. We left the complex number to [4] and continue on rings.

Definition 2.6.3 ω is called a primitive d-th root of unity modulo n if ωd ≡ 1 (mod n) and

ωd/t − 1 ≡ 0 (mod n) for any prime divisor t of d.

Definition 2.6.4 Let ω be a primitive d-th root of unity in Zm and, let a(x) and A(x) be poly-

nomials of degree d − 1 having entries in Zm. The DFT map over Zm is an invertible set map

sending a(x) to A(x) given by the following equation;

Ai = DFTω
d (a(x)) :=

d−1∑

j=0

a jω
i j mod m, (2.12)

with the inverse

ai = iDFTω
d (A(x)) := d−1 ·

d−1∑

j=0

A jω
−i j mod m, (2.13)

for i, j = 0, 1, . . . , d − 1. We say a(x) and A(x) are transform pairs, a(x) is called a time

polynomial and sometimes A(x) is named as the spectrum of a(x).

Remark 4 We reserve lower case letters for time coefficients and the capital letters for the

spectral coefficients. And we remove the indeterminate from spectral polynomials, i.e. we say

a(x) and A are transform pairs.

Remark 5 The range of the DFT is called spectral domain. Also Fourier domain is used for

the range of the DFT. The image of the DFT is called time domain.

27

Remark 6 In the literature, DFT over a finite ring spectrum is also known as the Number

Theoretical Transform (NTT). Moreover, if q has some special form such as a Mersenne

number or a Fermat number, the transform named after this form; i.e. Mersenne Number

Transform (MNT) or Fermat Number Transform (FNT).

In a complex setting, for every d > 0 there exists a d-point DFT because a complex principal

d-th root of unity and the inverse transform always exist; however, in a finite ring spectrum

the existence of inverse transform and principal root of unity depend on some conditions.

Therefore, a NTT exists if these conditions are satisfied.

Proposition 2.6.5 The inverse transform

ai = d−1 ·
d−1∑

j=0

A j ω
−i j mod m, i = 0, 1, . . . , d − 1 (2.14)

exists if d is invertible, i.e. d · d′ = 1 mod m for some d′ ∈ Zm

Proof. Clearly (2.14) gives the inverse transform. Since ω is a principal d root of unity,

negative powers exist. Hence, the sum is well defined if the inverse of d exists in Zm. ¥

Corollary 2.6.6 If m is prime in (2.14) then the inverse transform exists.

Proof. This is the case where Zm is a field, which means that every non-zero element has a

multiplicative inverse. ¥

Next section we look into how arithmetic is performed in the spectral domain.

2.6.3 Spectral Arithmetic

Not all of the time domain arithmetic operations have corresponding spectral equivalents.

We simply list the ones we are going to need. For more details, proofs and more arithmetic

properties we refer to chapter 4 of [25].

Let ((a), A) and ((b), B) be two transform pairs with length d, where (a) and (b) corresponds

to a(x) ∈ Zm[x] and b(x) ∈ Zm[x], respectively. If c ∈ Zm then the DFT has the following

properties.

28

(i) Linearity. This property correspond to addition and subtraction of sequences. Addition

and subtraction in time domain corresponds to addition in spectral domain.

(a) ± (b) ←−DFT −→ A ± B

c · (A) = (cAd−1, . . . , cA0) ←−DFT −→ c · A

(ii) Convolution The main reason of our interest in the discrete Fourier transform is the

following convolution property. Let� denote the component-wise multiplication of sequences

(polynomial) then

a(x) ∗ b(x) ←−DFT −→ A � B

a(x) � b(x) ←−DFT −→ A ∗ B

With this property, costly convolution, polynomial multiplication of a(x) and b(x) is calculated

in spectral domain, by transforming the sequences into spectral coefficients doing a term-by-

term multiplication and obtaining the result by an inverse transformation. We will deal more

with his property in 2.7.1 and 2.7.2.

The converse is also true. Convolutions in the spectral domain correspond to term-by-term

multiplications in the time domain.

Notation 2.6.7 Assume that ω is a principal d-th root of unity in Zm; we let {Γk} and {Ωk}
denote the positive and negative power sequence of ω as

Ω = (1, ω1, ω2, . . . , ω(d−1))

Γ = (1, ω−1, ω−2, . . . , ω−(d−1))

(iii) Rotates Time domain rotates correspond to point multiplication by Ω and Γ in spectral

domain when working with finite-length sequences. Let (a) = (a0, a1, . . . , ad−1) a be trans-

form pair. The one-term right circular shift is defined as

(a) © 1 = (ad−1, a0, . . . , ad−2) ←− DFT −→ A �Ω

The one-term left circular shift is similar, where multiplication of the coefficients with

negative power sequence of the principal d-th root of unity gives the left circular shift:

29

(a) ª 1 = (a1, a2, . . . , ad−1, a0) ←− DFT −→ A � Γ

An arbitrary left (or right) rotates can be computed by applying the consecutive one-term

left (or right) rotates or by using a proper Ω (or Γ) power sequence, for instance; an s

(0 ≤ s ≤ d − 1) left rotate is achieved by

(a) ª n := (an, an+1, . . . , ad−1, a0, . . . , a(n−1)) ←− DFT −→ P � Γn

and where {Γs} = (1, ω−s, ω−st, . . . , ω−s(d−1)).

and an s (0 ≤ s ≤ d − 1) right rotate is achieved by

(a) © n := (ad−(n−1), ad−(n−2), . . . , ad−1, a0, . . . , ad−(n+1)) ←− DFT −→ P �Ωn

and where {Ωs} = (1, ω−s, ω−st, . . . , ω−s(d−1)).

(iv) Sum of sequence and first value. The sum of a sequence in the time domain is equal

to the first value of its DFT; conversely the sum of the spectrum coefficients equals d−1 times

the first value of the time sequence (Figure 2.4).

a0 = d−1 ·
d−1∑

i=0

Aiω
−i and A0 =

d−1∑

i=0

aiω
i

sum times d−1 equals x0

6

¾ ©©©©©

︷ ︸︸ ︷
(a0, a1, . . . , ad−1)

DFT
¾ - (A0, A1, . . . , Ad−1)︸ ︷︷ ︸

³³³³³ - sum equals A0

?

Figure 2.4: Sum of sequence and first value.

30

(v) Left shifts. There is no direct left shift in spectral arithmetic. However one can use

properties (iii) and (iv), to get left shifts. The idea is first use property (iv) to get the value of

first value, convert it spectral coefficient, subtract and then rotate.

(a) >> 1 = (0, ad−1, . . . , a1) ←− DFT −→ A + (a0, a0,a + 0) �Ω

2.6.4 Mersenne Number Theoretical Transform

Definition 2.6.8 If the Ring Zm in the definition 2.6.4 is a Mersenne ring then the transform

is called Mersenne Number Transform.

The following proposition 2.6.9 gives information about the existence of not only Mersenne

number transforms but also on the other number theoretical transform.

Proposition 2.6.9 There exist a d-point NTT over the ring Zm if and only if d divides p−1 for

every prime p divides m. Moreover the greatest common divisor of the set {p − 1 : p dividing

m} gives the maximum NTT length that can be defined over Zm.

Proof. see Theorem 6.1.1 in [4]. ¥

Corollary 2.6.10 If m is a prime then for every factor d of m − 1, there exists a d-point NTT

over Zq.

Example list of existence parameters is given in appendix B. We continue on the performance

of MNT.

2.6.4.1 Arithmetic Performance Of MNT

In this thesis, we follows the paths of Saldamlı [30] and Baktır [2]. Saldamlı offered Mersenne

and Fermat number transformations. Baktır offered Mersenne number transformation, in

which the number is a prime.

31

Mersenne and Fermat numbers have very close performances when the usual arithmetic is

considered [38]. In this thesis we look at the Mersenne number transformation.

Suppose that there exist a d-point DFT map for some principal root of unity ω in Zq, and q is

a Mersenne number.

With the equation 2.12, we can say that, for each Ai there is d − 1 multiplication and d − 1

addition. As we noted on section 2.4, when ±2 is utilized as ω MNT will give best perfor-

mance with one’s complement representation. With this multiplication becomes rotations. So

instead of d multiplication we have d − 1 rotations. So in total DFT requires d2 − d additions

and d2 − d rotations.

The inverse transform, equation 2.13, differs only by a constant multiplication, namely d−1.

Therefore, iDFT requires d constant multiplications, d2 − d additions and d2 − d rotations.

The results are collected in table 2.4.

Table 2.4: Arithmetic performance of MNT with ω = ±2

DFT iDFT
Multiplication none none
Constant Multiplication none d
Addition d2 − d d2 − d
Shift and Rotate d2 − d d2 − d

Stored Memory (bits) none none

Next section, we will go more in performance when ω = −2.

2.6.4.2 Fast Fourier Transform on MNT

If the Mersenne transformation have ω = −2, than it is possible to have d = 2k as composite,

for such examples see appendix B. With these settings it is possible to apply one level Fast

Fourier Transformation [6] to DFT and inverse DFT.

The idea behind is the powers of −2 passes two times the powers of 2 in absolute value. With

these idea DFT, equation 2.12, can be written as;

32

Ai =

k−1∑

j=0

a2 j ω
2i j + ωr

k−1∑

j=0

a2 j+1 ω
2i j, 0 ≤ i ≤ k − 1 (2.15)

Ai+k =

k−1∑

j=0

a2 j ω
2i j − ωr

k−1∑

j=0

a2 j+1 ω
2i j, 0 ≤ i ≤ k − 1 (2.16)

And, similarly for inverse DFT, equation 2.13;

ai =
1
d

(k−1∑

j=0

a2 j ω
−2i j + ω−i

k−1∑

j=0

a2 j+1 ω
−2i j

)
, 0 ≤ i ≤ k − 1 (2.17)

ai+k =
1
d

(k−1∑

j=0

a2 j ω
−2i j − ω−i

k−1∑

j=0

a2 j+1 ω
−2i j

)
, 0 ≤ i ≤ k − 1 (2.18)

Remark 7 The approach in this section is Cooley-Tukey FFT [6], and this one level is called

two-point butterfly. There is a need to permutations in the inputs to have the same results in

equation 2.12. We do not count these permutations in arithmetic calculations. [4].

With this idea, DFT requires 2k2 − k rotation and 2k2 − k additions, and inverse DFT requires

2k2 − k rotation and 2k2 − k additions and 2k constant multiplication. As a comparison with

previous table we put all in one table and set d = 2k

Table 2.5: Arithmetic performance of MNT with ω = ±2 and ω = −2 with FFT

DFT DFT (FFT) iDFT iDFT (FFT)
Multiplication none none none none
Constant Multiplication none none 2k 2k
Addition 4k2 − 2k 2k2 − k 4k2 − 2k 2k2 − k
Shift and Rotate 4k2 − 2k 2k2 − k 4k2 − 2k 2k2 − k

Stored Memory (bits) none none none none

As we can see from the table 2.5, this FFT approach saves almost half of the operations,

except the constant multiplications.

33

2.7 Multiplication by DFT

In the convolution property of the Discrete Fourier Transform we have seen that, convolutions

can be calculated by point multiplication in spectral domain. We’ve also looked at the relation

of linear and cyclic convolution. With the help of these we express polynomial multiplication

and integer multiplication by DFT, and calculate their arithmetic performance under MNT

with FFT utilized.

2.7.1 Spectral Polynomial Multiplication

Suppose that there exist a d-point DFT map for some principal root of unity ω in GF(pk).

Let a(x), b(x) be two polynomial over Zq with degrees less than (d − 2)/2. Let A and B

are transform pairs of a(x) and b(x) respectively. Then the following algorithm calculates

a(x)b(x).

Algorithm 10 DFT Polynomial Multiplication
Input : a(x), b(x)

Output : z(x) = a(x)b(x)

1: A = DFT (a(x))

2: B = DFT (b(x))

3: Z = A � B

4: z(x) = iDFT (Z)

5: return (z(x))

Algorithm 10 start in time domain, and leaves the result in time domain. In chapter 3, we

will look at the spectral form of this algorithm, where it starts in spectral and leaves the data

spectral domain, with a combined reduction. Here we only give a brief performance of the

algorithm 10.

Direct calculation of the arithmetic performance will be; two DFTs, one iDFT and additional

multiplications from point multiplication. When d = 2k, With the utilizing FFT as in section

2.6.4.2, the arithmetic performance will be; 2k multiplications, 2k constant multiplications,

6k2 − 3k additions and 6k2 − 3k rotations.

34

2.7.2 Spectral Integer Multiplication

In this section, we briefly introduce spectral integer multiplication. In 1971, Schönhage and

Strassen proposed to use DFT for integer multiplication [33], by encoding integer into poly-

nomials. We begin with definitions for encoding and decoding.

Definition 2.7.1 Encoding of an integer a, into a polynomial a(x) ∈ Zm[x], degree(a(x)) =

k − 1 with base b representation is defined as follows;

ai = (a div 2bi
) mod 2b , where 0 ≤ i < k. (2.19)

Definition 2.7.2 Decoding of a polynomial a(x) ∈ Zm[x] , degree(a(x)) = k − 1 into an

integer a with base b representation is defined as the output of the following algorithm;

Algorithm 11 Decoding algorithm
Input : a(x), b

Output : integer a

1: for i = 0 to k − 1 do

2: a = ai mod b

3: ai+1 = ai+1 + ai div b

4: end for

5: return a

Notation 2.7.3 We use a(x) = encoding(a, b, k) as the encoding an integer a, into a polyno-

mial a(x) ∈ Zm[x], degree(a(x)) = k − 1 with base b representation, and decoding(a(x), b, k)

for decoding a polynomial b(x) ∈ Zm[x] , degree(a(x)) = k − 1 into an integer with base b

representation.

Example 2.7.4 Let integer a is represented in base b, i.e. a = (al−1, . . . , a1, a0)b. Then the

encoding of this integer into polynomial b(x) ∈ Zm[x] and b(x) = bk−1xk−1 + . . . + b1x + b0 is

b(x) = ak−1xk−1 + . . . + a1x + a0.

In the proposal of Schönhage and Strassen, they offered to use of Fermat’s Number Transfor-

mations, which is of the form 22k
+ 1. With the proposition 2.6.9, we can say that there is a

35

DFT with length d = 22k
. This type length DFT is fully utilizes FFT, which is called butterfly

network. More information on butterfly network can be found at the page 313 of [4].

The below algorithm, shows the steps of Spectral integer multiplication in shortly.

Algorithm 12 Spectral Integer Multiplication
Input : integers a and c

Output : z = ac

1: a(x) = encode(a, b, k)

2: c(x) = encode(c, b, k)

3: A = DFT (a(x))

4: C = DFT (c(x))

5: Z = A �C

6: z(x) = iDFT (Z)

7: z = decode(z(x), b, k)

8: return (z)

In algorithm 12, the encoding is based on polynomial over Zm[x]. Numbers encoded u bits

per coefficient (i.e. encode the integer into polynomial from base u representation), into some

polynomial over Zm[x] so that the 2m > k2u, where k is the degree of the polynomial. The

encoding step do not require any arithmetic in our counting, it is just memory mappings.

Whereas, the decoding the number from polynomial into integer requires some additions.

Encode DFT
Point

Multiplication

Inverse

DFT
decode

Figure 2.5: Schönhage and Strassen’s Integer Multiplication

This algorithm, unlike from algorithm 10, depends not only on the degree but also the u. In

chapter 3 we will go into details of arithmetic performance together with redundant Mont-

gomery reduction.

36

CHAPTER 3

STATE OF ART ON SPECTRAL MODULAR

MULTIPLICATION

Saldamlı, in his thesis [30], was the first to introduce spectral modular multiplication algo-

rithm for Zm in 2005. He successfully translated redundant integer Montgomery reduction

algorithm into spectral domain. He also provided a hardware structure for his algorithm.

In 2007 and 2008 Baktır proposed, calculated arithmetic performance [2], and exhibited a

hardware implementation for spectral modular multiplication for GF(pk) [3].

In this chapter, we work on these two proposals. We calculate their arithmetic performances

with their half spectral rivals in detail and evaluate their hardware performances.

Although Saldamlı and Baktır’s approaches can be used for single modular multiplications,

their algorithms were mainly intended for modular exponentiations. They designed their al-

gorithms to start and end in spectral domain. Our algorithms also start and end in spectral

domain. And, from this point of the thesis, we follow this design approach.

3.1 Spectral Modular Multiplication for Integers

Saldamlı defined spectral modular multiplication for integers where both multiplication and

reduction are performed in spectral domain. In this section, we describe his method together

with an alternative method where reduction is performed in time domain while multiplication

is performed in spectral domain. We calculate and compare the arithmetic performance of

each algorithm and also evaluate their ASIC performances.

37

3.1.1 Spectral Integer Multiplication and Time Domain Reduction

In section 2.7.2 we gave a brief introduction to spectral integer multiplication (algorithm 12).

Algorithm 12 is designed to start in time domain. Now we introduce a half domain algo-

rithm that starts in spectral domain, performs its reduction by using redundant Montgomery

reduction in time domain, and finally transfers the result into spectral domain.

Let a, b, u,m, ∈ Z and b = 2u. let a(x) = encoding(a, b, k), b(x) = encoding(b, b, k) and

m(x) = encoding(m, b, k) are encodings of a, b and m with base b representations, where

a(x), b(x) ∈ Zq[x]. Suppose that there exist a d-point DFT map for some principal root of

unity ω in Zq, and A, B and M are transform pairs of a(x), b(x) and m(x) respectively. Then

the following algorithm computes ab2−db mod m.

Algorithm 13 Spectral multiplication with time reduction
Input : A, B and M

Output : Z = DFT (z(x)) where decoding(z(x), b, k) ≡ ab2−db mod m

1: Z = A � B

2: z(x) = iDFT (Z)

3: α = 0

4: for i = 0 to d − 1 do

5: β = −(z0 + α) mod b

6: α = (z0 + α + β)/b

7: z(x) = z(x) + β m(x)

8: z(x) = z(x)/x

9: end for

10: z0(x) = z0(x) + α

11: Z = DFT (z(x))

12: return Z

When we look at the algorithm 13, we see that at step 1, point multiplication is performed

followed by inverse transformation. Between steps 4 and 9 redundant Montgomery reduction

is performed. In step 11, the result is transferred into spectral domain.

Saldamlı offered a precomputation for the reduction in spectral domain. We translate his

approach to time domain. The multiplication with m(x) in step 7 can be precomputed as

follows; Let the the following polynomials are defined to be 2i powers of the m(x)

38

mi(x) = 2im(x) for i = 1, 2, . . . , u.

Observe that m1(x) = m(x).

Now, with this we can write β multiple of m(x) as follows

β m(x) =

u∑

i=1

βi mi(x) , (3.1)

Therefore, step 7 can be re-written as;

7: z(x) = z(x) +
∑u

i=1 βi mi(x)

The relation between s, b and , q is 2sb2 < q, where s = deg(m(x)). For bound analysis and

correctness of algorithm, can be found at [30].

3.1.2 Partial Return

Before going further we define partial return(A, n) to simplify the spectral modular multipli-

cation algorithms.

Definition 3.1.1 Suppose that there exist a d-point DFT map for some principal root of unity

ω in Zq. A function that calculates any coefficient of a(x) from A (spectral coefficient of a)

is called partial return. i.e.

partial return(A, n) = an = d−1
d−1∑

j=0

A j ω
−n j mod q.

where 0 ≤ n ≤ d − 1.

Remark 8 We call the algorithms that uses partial return as partial return algorithms.

39

3.1.2.1 Arithmetic Performance of Partial Return

For any ring, that used to define DFT, the simplest calculation for a partial return is at n = 0,

partial return(A, 0) = d−1
d−1∑

j=0

A j mod q.

This requires no multiplication with the power of the principal root of unity. When the base

ring is Mersenne with the principal root of unity is ω = ±2 the multiplications are only

rotations and negations. So in Mersenne rings, the partial return(A, n) requires d−1 additions

and one constant multiplications when n = 0. If n , 0 additional d−1 rotations required when

ω = ±2. The arithmetic performance of partial return can be seen in the tables 3.1 and 3.2

Table 3.1: Arithmetic performance of the partial return at arbitrary rings

except 0 at 0
Multiplication d − 1 0
Constant Multiplication 1 1
Addition d − 1 d − 1
Shift and Rotate none none

Table 3.2: Arithmetic performance of the partial return at Mersenne rings with ω = ±2

except 0 at 0
Multiplication none none
Constant Multiplication 1 1
Addition d − 1 d − 1
Shift and Rotate d − 1 none

3.1.2.2 Hardware Performance of Partial Return

The best way of calculating partial return is, Wallace tree with CSA adders, after the multipli-

cations by the powers of the ω, [30]. For Mersenne rings with ω = ±2, the multiplications are

just rotations. When the performance is considered against full return (iDFT), partial return

it is expected have same performance.

40

3.1.3 Spectral Montgomery Modular Multiplication for Integers

Integer Spectral Montgomery Modular Multiplication is originally described in [30] as Mod-

ified Spectral Montgomery Product (MSMP). Let a, b, u,m ∈ Z and , b = 2u. let a(x), b(x)

and m(x) are encodings of a,b and m with base b representations, where a(x), b(x) ∈ Zq. Sup-

pose that there exist a d-point DFT map for some principal root of unity ω in Zq, and A, B

and M are transform pairs of a(x), b(x) and m(x) respectively. Then the following algorithm

computes ab2−db mod m.

Algorithm 14 Modified Spectral Modular Product
Input : A, B

Output : Z = DFT (z(x)) where decoding(z(x), b, d) ≡ ab2−db mod n

1: Z = A � B

2: α = 0

3: for i = 0 to d − 1 do

4: z0 = partial return(Z, 0)

5: β = −(z0 + α) mod b

6: α = (z0 + α + β)/b

7: Z = Z + β M mod q

8: Z = Z − (z0 + β) mod q

9: Z = Z � Γ mod q

10: end for

11: Z = Z + α

12: return Z

Remark 9 The q int the algorithm 14 need not to be a prime number.

Algorithm 14 is spectral version of algorithm 13, which perform the reduction in time domain.

Saldamlı, offered a look up table for the multiplication with M in step 7 as follows; Let the

the following polynomials are defined to be 2i powers of the m(x)

mi(x) = 2im(x) for i = 1, 2, . . . , u.

Observe that m1(x) = m(x). And, let Mi be their transform pairs.

41

Time coefficients after point multiplication

Time coefficients after reduction steps

q

b

q

b

Figure 3.1: Time coefficients

Now, with this we can write β multiple of M as follows

β M =

u∑

i=1

βi Mi(x) , (3.2)

The relation between s, b and , q is 2sb2 < q, where s = deg(m(x)). For bound analysis and

correctness of algorithm, can be found at [30].

3.1.4 Performance

If the first steps of Algorithm 13 and Algorithm 14 are examined, we see that multiplications

are performed in spectral domain. Two algorithms diverge in the reduction steps; the reduction

of Algorithm 13 takes place in the spectrum whereas Algorithm 14 computes the modular

reduction in spectral domain. Our work in this section is to investigate the differences to

compare the algorithms.

Remark 10 To simplify our discussions, throughout this text we take q as a Mersenne prime

power and the principal root of unity as ω = −2 without loss of generality. According to [30]

and [3], such a preference reflects the the best performance for DFT computations, spectral

multiplications and reductions among other choices.

42

3.1.4.1 Arithmetic Performance

In order to perform the Montgomery reduction, the least significant word of the partial sum has

to be known at each iteration. Therefore, Algorithm 14 requires partial returns to time domain

to determine the least significant words. With the help of these partial returns, reduction

calculations are performed in spectral domain.

On the other hand, Algorithm 13 performs the Montgomery reduction in time domain. Obvi-

ously, such a reduction needs a full return of the result of multiplication to the time domain.

Once reduction is completed using redundant Montgomery method, a forward DFT transform

is applied to grasp the spectral coefficients.

At first glance, the partial return of the Algorithm 14 seems advantageous over Algorithm

13 requiring full forward and backward DFTs. However, as will seen in our calculations full

return algorithm behaves better than the partial return one.

Now, we give the step by step arithmetic requirements of Algorithm 13 & 14 and collect the

result in a table.

Table 3.3: Step by step arithmetic requirements of Algorithm 13

Step 1 contains d multiplications.
Step 2 contains d(d − 1) additions and d(d − 1) rotations and d constant

multiplications.
Step 3 none
Step 4 none (loop - d times)
Step 5 contains 1 addition.
Step 6 contains 1 addition (step 5 and 6 uses a temporary variable to

avoid one addition.)
Step 7 contains (u − 1)d + d additions, which makes ud,
Step 8 contains only memory mappings.
Step 9 none (end of loop - d times)
Step 10 contains 1 addition.
Step 11 contains d(d − 1) additions and d(d − 1) rotations.
Step 12 none

In total, Algorithm 13 requires d multiplications, d constant multiplications, (u + 2)d2 + 1

additions, 2d(d − 1) shift and rotates and u · b · d bits of precomputation memory.

In total, Algorithm 14 requires d multiplications, d constant multiplications, (u + 3) · d2 + 2d

43

Table 3.4: Step by step arithmetic requirements of Algorithm 14

Step 1 contains d multiplications.
Step 2 none
Step 3 loop (d times)
Step 4 contains d − 1 additions and 1 constant multiplication.
Step 5 contains 1 addition.
Step 6 contains 1 addition (step 5 and 6 uses a temporary variable to

avoid one addition.)
Step 7 contains (u − 1)d + d additions, which makes ud,
Step 8 contains d + 1 additions.
Step 9 contains d rotations.
Step 10 end of loop (d times)
Step 11 contains d additions.
Step 12 none

additions, d · d shift and rotates and q · b · d bits of precomputation memory.

Table 3.5: Arithmetic performance of Algorithm 13 & Algorithm 14

Algorithm 13 Algorithm 14
Multiplication d d
Constant Multiplication d d
Addition (u + 2) · d2 + 1 (u + 3) · d2 + 2d
Shift and Rotate 2d(d − 1) d · d
Stored Memory (bits) u · b · d q · b · d

Table 3.5 gives a comparison of the both algorithms when the number of operations and

memory requirements are considered. First of all, the number of multiplications and con-

stant multiplications are same. Secondly, if addition is considered Algorithm 13 requires less

operations. However; one needs less shift and rotates in Algorithm 14.

Another comparison concern would be the memory requirements of both algorithms. As both

algorithms enjoy the performance gain comes with the high radix Montgomery reduction,

one has to pre-compute and store the basis sets. Observe that Algorithm 13 and Algorithm

14 require u and q sized words respectively for such allocations. If the relation 2u < q is

simply taken (see [30] for the exact ratio), one sees that Algorithm 13 is advantageous over

Algorithm 14.

44

3.1.4.2 ASIC Performance Evaluation

Parallelism is one of the most important feature of the ASIC designs. Likewise any division

algorithm, Montgomery reduction is naturally sequential.

Since complexity of the multiplication for both algorithms is same, we exclude its cost from

our analysis. Algorithm 13 consists of three stages, namely; iDFT, reduction steps and DFT.

Among those three, DFT and iDFT can be calculated with the same FFT hardware, preferably

with a butterfly network taking logarithmic time with respect to the operand size. When

algorithm 14 is considered it has a single stage, consists of reduction steps and partial return

embeddings. The stage loops d times and should calculate a reduction step in one clock cycle.

Point

Multiplication

d - times

Modular

Reduction

Step

Partial

Return

Modular

Reduction

Step

Partial

Return

Figure 3.2: Algorithm 13’s steps

Point

Multiplication

Inverse

DFT

Modular

Reduction

Step

d - times

Modular

Reduction

Step

DFT

Figure 3.3: Algorithm 14’s steps

The loop of Algorithm 14 contains a partial return, which calculates the value z0. As men-

tioned before partial return computation takes the same logarithmic time as the full iDFT

calculation. Since this partial return is computed at every iteration of the loop and rest of

the remaining steps in both algorithms have similar complexities, Algorithm 13 definitely

demonstrates a better performance. Moreover, if redundancy and bound control, and smaller

sized precomputation (see [30]) are considered Algorithm 13 again outperforms. If presented

formally; let reduction and iDFT times are denoted by Tred and TiDFT respectively, then

TAlgorithm13 = d · Tred + TDFT + TiDFT

and

TAlgorithm14 = d · (Tred + TiDFT)

45

Here, note that TDFT < TiDFT because of the constant multiplication.

For many reasons, above analysis demonstrates a fair comparison of both algorithms. In fact,

one can equipped Algorithm 13 with more features that one can not do that with Algorithm

14. For instance; better parameters on the encoding and decoding can be chosen while trans-

forming to the non-redundant form. With these parameters Montgomery reduction can be

calculated faster and requires less values to store depending on the requirements as described

in [5], [35] and [36].

As a last remark, we remind that in our analysis we reference the worst case DFT and iDFT

computation. The analysis of fast Fourier transform algorithms are beyond the scope of this

thesis. However; in real world applications one has to benefit the fruits of this deep and mature

methods. We refer the reader to textbook presentations [4] and [25] for further discussions.

3.2 Spectral Modular Arithmetic for Finite Field Extensions

In this section, we turn our attention to the arithmetic in the extension fields and revisit two

methods of multiplication including an adaption of algorithm 2.7.1 and the algorithm pro-

posed in [2].

Field generating polynomials of extension fields plays an important role on the algorithms.

As we explored in section 2.5.7, special polynomials have special reduction algorithms for

polynomials, i.e. when the field generating polynomial is of the form xk − 2, instead of

Montgomery reduction taking xk = 2 and simple adding at once has better approach in time

domain.

Baktır selection is presented by choosing f (x) = xk − 2, ω = −2 and p a Mersenne prime of

the form p = 2k − 1, such as 213 − 1 or 219 − 1 to utilize best performance, [2] and [3]. In next

section we give a brief information about the existence of these parameters.

3.2.1 Existence of Parameters

This section is adapted from [2].

Theorem 3.2.1 Let α, β ∈ GF(p) and α = βi. The orders of α and β are related as

46

ord(α) =
ord(β)

gcd(i, ord(β))
,

where ord(a) denotes the order of field element a and gcd(a, b) denotes the greatest common

denominator of a and b.

Proof. See [21] ¥

Definition 3.2.2 A Wieferich prime is an odd prime p which satisfies 2p−1 = 1 mod p2.

Theorem 3.2.3 For a Mersenne prime p = 2n−1 and for k = n, a binomial of the form xk±2s

, where s is an integer not congruent to 0 modulo n, is irreducible in GF(p)[x] if m is not a

Wieferich prime.

Proof. See page 39 of [2]. ¥

The only known Wieferich primes are 1093 and 3511. It is also known that there are no other

Wieferich primes less than 4x1012 [7]. The Table C.1 list the efficient cases where the field

characteristic p = 2b − 1 is a Mersenne prime and k = n, kth degree irreducible binomials of

the form xk ± 2s , for a nonzero integer s, always exist.

Remark 11 From this point of thesis, in our analysis, without loss of generality, we assume

f (x) = xk − 2, ω = −2 and p is a Mersenne prime of the form 2k − 1. For example of such

parameter are listed in C.1. Also, as long as not stated d = 2k equality is assumed, in analysis

of the algorithms.

Remark 12 All the algorithms, except algorithm 15, that we will define can work in arbitrary

fields, as long as the DFT exist.

The next algorithm (algorithm 15) presented under under the condition that f (x) = xk − 2.

Therefore; it does not includes a Montgomery reduction step.

3.2.2 Spectral Polynomial Multiplication and Time Domain Reduction

The following algorithm combines spectral domain started spectral polynomial multiplica-

tion, which is originally starts from spectral domain 10, and one step reduction type of the

47

algorithm 7.

Let f (x) = xk−2 be field generation polynomial of GF(pk). Suppose that there exist a d-point

DFT map for some principal root of unity ω in GF(p), and A and B are transform pairs of

a(x) and b(x) respectively, where a(x), b(x) ∈ GF(pk).

Algorithm 15 Spectral standard modular multiplication for GF(pk)
Input : d ≥ 2k − 1, f (x) = xk − ω , A, B

Output : Z, where z(x) = iDFT (Z) ≡ a(x) · b(x) mod f (x) ∈ GF(pk)

1: Z = X � Y

2: z(x) = IDFT (Z)

3: for j = 0 to k − 2 do

4: z j(x) = z j(x) + 2 z j+k

5: end for

6: Z = DFT (z(x))

7: return Z

Proof of correctness. At step 1, point multiplication performs linear convolution, since we

have 2k − 1 ≤ d. At step 2 , inverse transformation is performed. At steps 3 to 5, special

reduction is performed in time domain (algorithm 6). Therefore, at step 6 we have Z =

DFT (z(x)) where z(x) = iDFT (Z) ≡ a(x) · b(x) mod f (x) ∈ GF(pk). ¥

3.2.3 Spectral Polynomial Montgomery Modular Multiplication

Spectral Modular Multiplication Algorithm, which is defined by Baktır, performs Mont-

gomery reduction in spectral domain, for more detail see page 36 of [2].

Let f (x) be field generation polynomial of GF(pk). Suppose that there exist a d-point DFT

map for some principal root of unity ω in GF(p). Let fn(x) = f (x)/ f (0) be normalized field

generating polynomial. Let A, B , FN are transform pairs of a(x), b(x) and fn(x) respectively,

where a(x), b(x) ∈ GF(pk).

The correctness algorithm can be found at page 36 of [2].

As Saldamlı used a precomputation for the multiplication with the modulus, Baktır also used a

similar approach. The following proposition is adaption from Baktır’s thesis [2], which turns

48

Algorithm 16 Spectral Montgomery modular multiplication algorithm for GF(pk)
Input : d ≥ 2k − 1, FN , A and B

Output : Z where z(x) = iDFT (Z) ≡ a(x) · b(x) · x(k−1) ∈ GF(pk)

1: Z = A � B

2: for j = 0 to k − 2 do

3: s = −partial return(Z, 0)

4: s(x) = s

5: S = DFT (s(x))

6: Z = (Z + FN � S)

7: Z = Z � Γ

8: end for

9: return Z

Z

S

Z + FN S

Partial Return

SPECTRAL DOMAINTIME DOMAIN

L
o
o
p

Rotate Z

Z = P Q

Figure 3.4: Spectral Polynomial Modular Multiplication

49

multiplication with the field generation polynomial f (x) into simple table look up in Mersenne

numbers if p is of the form p = 2k − 1. We will use this idea in the future algorithms too.

Proposition 3.2.4 Let p = 2k − 1 be a Mersenne prime. Let G(pk) be an extension field of

GF(p). Let fn(x) = − 1
n xk + 1 be normalized field generation polynomial of G(pk). Suppose

that there exist a d-point DFT map with principal root of unity ω = −2 in GF(p). Then, point

multiplication by FN � S can be performed by 2pk bits look up table. i.e.

FNi · S i =

S · 1
2 ki even

S · (1
2 + 1) ki odd

Proof.

(−2)ki ≡ (−1)ki · (2k)i ≡ (−1)ki mod p. And,

FNi =

d−1∑

j=0

f j · (−2)i j (mod p)

= −1
2

(−2)ki + 1 (mod p)

= −1
2

(−1)ki + 1 (mod p)

¥

3.2.4 Performance

3.2.4.1 Arithmetic Performance

Notice that likewise in Algorithm 14 there exist a partial return in Algorithm 16. In fact, the

discussion in Section 3.1.2.1 while comparing Algorithm 13 and Algorithm 14 is clearly valid

in here again. However this time not all of inverse DFT is calculated by Algorithm 14 over

the loop, since we have d ≥ 2k − 1. More precisely d = 2k, see [2].

The selection of xk − 2 not only improve performance of the Algorithm 16 but also of the

Algorithm 15. With this selection as we mentioned above there is no need for a sequential

50

reduction or Montgomery’s approach. This is the reason why Algorithm 15 has no reduction

loop.

The following table 3.6 step by step requirements of Algorithm 15.

Table 3.6: Step by step Arithmetic requirements of Algorithm 15

Step 1 contains 2k multiplications.
Step 2 contains 2k2 additions and 2k2 − 2k rotations and 2k − 1 constant

multiplications.
Step 3 none (loop k-1 times)
Step 4 contains 1 rotations and 1 additions.
Step 5 none (end loop k times)
Step 6 contains k2 + k additions and k2 rotations.
Step 7 none.

In total, Algorithm 15 requires 2k multiplications, 2k−1 constant multiplications, 3k2 +2k−1

additions, 3k2 − k + 1 shift and rotates and zero bit of precomputation memory.

The following table 3.7 step by step requirements of Algorithm 16.

Table 3.7: Step by step Arithmetic requirements of Algorithm 16

Step 1 d = 2k multiplication
Step 2 loop (k − 1 times)
Step 3 2k − 1 addition and 1 constant multiplication
Step 4 none
Step 5 none
Step 6 2k additions
Step 7 2k rotates
Step 8 end of loop (k − 1 times)
Step 9 none

In total, Algorithm 15 requires 2k multiplications, k− 1 constant multiplications, 4k2 − 5k + 1

additions, 2k2 − k − 1 shift and rotates and 2pk bits of precomputation memory.

Table 3.8 tabulates the comparison of the arithmetic operations performed by Algorithm 15

and 16. Moreover, memory requirements of both algorithms are presented. First of all since

there is no precomputation in Algorithm 15, therefore does not require extra memory.

As seen Table 3.8, Algorithm 16 has better arithmetic performance over Algorithm 15. There-

51

Table 3.8: Arithmetic performance of Algorithm 15 & Algorithm 16

Algorithm 15 Algorithm 16
Multiplication 2k 2k
Constant Multiplication 2k − 1 k − 1
Addition 3k2 + 2k − 1 4k2 − 5k + 1
Shift and Rotate 3k2 − k + 1 2k2 − 2k

Stored Memory (bits) none 2pk

fore, in a computer platform Algorithm 16 is a better choice.

3.2.4.2 Hardware Performance Evaluation

The ideas in Section 3.1.4.2 discussing ASIC performance evaluation can be applied in here.

In the light of these ideas, the simple reduction of the Algorithm 15 gives much better perfor-

mance.

Point

Multiplication

(m-1) - times

Modular

Reduction

Step

Partial

Return

Modular

Reduction

Step

Partial

Return

Figure 3.5: Algorithm 15’s steps

Point

Multiplication

Modular

Reduction

Inverse

DFT
DFT

Figure 3.6: Algorithm 16’s steps

Putting these in a more formal setting gives the following analysis. Suppose that TsRed and

Tred are the time of the reductions of Algorithm 15 and Algorithm 16, respectively. Let TDFT

and TiDFT be the times of DFT and inverse DFT to be performed, respectively, then

TAlgorithm15 = TDFT + TsRed + TiDFT ,

52

and

TAlgorithm16 = m · (TiDFT + TRed).

Clearly, the above analysis shows the superiority of the Algorithm 15 over Algorithm 16.

Also, the memory requirements of the algorithm 16, should be increased to 2pkd in order to

work in parallel.

3.3 Conclusion

In this chapter we reviewed four algorithms. Two of the algorithms, algorithm 13 & 14, for

the integer modular multiplication and other two algorithms, algorithm 15 & 16 for multipli-

cation over medium size characteristics fields. We calculated and compared their arithmetic

performances. Also their ASIC performances evaluated.

Arithmetic performance calculations yields out that, although algorithm 13, requires full re-

turn to time domain, it is better choice over algorithm 14 for integer modular multiplication.

When multiplication over medium size characteristics fields is considered algorithm 16 is bet-

ter choice over algorithm 15. The zero memory requirements of algorithm 15 may become a

suitable choice over algorithm 16 in some processor environments.

Our ASIC performance evaluations show that algorithm 13 & 15, which require full return to

time domain have better performance than partial return algorithms. Interestingly, although

algorithm 16 has better arithmetic performance over algorithm 15, it’s ASIC performance is

worse than its rival.

We conclude this chapter with a final remark; all algorithms are designed to start from spec-

tral domain and complete the result in spectral domain too. When ASIC implementations

are considered there must be some DFT implementations. Algorithm 13 & 15 can take this

implementations to require less area beside with the increase of network.

In future chapter of this thesis, we stop working on integer modular multiplication. Our work

continues on the improvement of ASIC performance of the algorithm 16.

53

CHAPTER 4

BIPARTITE MODULAR MULTIPLICATION IN SPECTRAL

DOMAIN

In section 2.5, it was mentioned that reduction is sequential in degree. In 2005, Kaihare

and Takagi [11] found a method, called bipartite modular multiplication, which successfully

combines standard modular multiplication with Montgomery modular multiplication for inte-

gers. Although their work has no arithmetic advantage, they reduced the loop count by half,

which yields a huge advantage in parallel platforms like ASIC and FPGA. For this reason, it

is desirable to obtain a similar method for spectral modular multiplication for polynomials.

In this chapter, we want to carry the ASIC and FPGA advantage of bipartite modular multi-

plication into spectral modular multiplication algorithm for polynomials. To achieve this, first

we need GF(p) version of bipartite modular multiplication. Then we need to express a new

method for spectral modular multiplication which utilize standard reduction method. Finally,

spectral bipartite modular multiplication algorithm is demonstrated.

The algorithms that are exhibited in this chapter are examined by their arithmetic perfor-

mances and their hardware performances are evaluated.

4.1 Spectral Standard Modular Multiplication Algorithms Over GF(p)

Saldamlı defined spectral integer modular multiplication with the help of Montgomery reduc-

tion. Integer version of spectral methods requires that the numbers must be represented in

redundant form, otherwise overflow will occur [30]. This redundant representation prevents

the standard division algorithm not only in spectral domain but also in time domain.

54

In section 2.7.1 we have seen that for polynomials over Zm the redundant representation of

polynomials are not required for spectral multiplication algorithm. This is also true for the

algorithm 16. Therefore a standard polynomial version of Algorithm 16 is possible. We will

represent two version of this approach.

Let fm(x) = f (x)/lcoe f (f (x)) be the monic form of the field generating polynomial. In order

to perform reduction by fm(x), just before passing to the spectral domain we transform fm(x)

into fmt(x) = fmt(x) · xk−1, for the power of x we assume d = 2k. This will cause that the

lcoe f (f (x)) will be in position 2d in sequence representation, assuming 1 as starting point.

We propose to this is as a precomputation, and actual cost of this precomputation is only a

memory mapping in time domain. Whereas, once fmt(x) is transferred to spectral domain

one have to perform d rotations in spectral domain to get FMt. This ideas are listed in the

algorithm 17.

Suppose that there exist a d-point DFT map for some principal root of unity ω in GF(p). And

A, B , FMt are transform pairs of a(x), b(x) and fmt(x) respectively, where a(x), b(x) ∈ GF(pk).

Algorithm 17 Type - I spectral standard modular multiplication algorithm for GF(pk)
Input : d ≥ 2k − 1, A, B, FMt,

Output : Z, where z(x) = iDFT (Z) ≡ a(x)b(x) mod f (x), i.e. z(x) ∈ GF(pk)

1: Z = A � B

2: for j = 0 to k − 2 do

3: s = −partial return(Z, 2k − j)

4: s(x) = s

5: S = DFT (s(x))

6: Z = Z + FMt � S

7: FM = FMt � Γ

8: end for

9: return (Z)

Proof of correctness. Type - I spectral standard modular multiplication algorithm is direct

adaption of left-to-right non-interleaved modular multiplication for the spectral domain. At

step 1, polynomial multiplication is performed, and z(x) = a(x)b(x) is obtained. At each

steps of the modular reduction steps, step 2 to 8, the exact multiple of fmt(x) is added to

z(z) to reduce the degree in spectral domain. Performing this reduction steps k − 1 results

55

z(x) ≡ a(x)b(x) mod f (x). ¥

Z

S

Z + FM S

Partial Return

SPECTRAL DOMAINTIME DOMAIN

L
o
o
p

Rotate FM

Z = P Q

Figure 4.1: Spectral Standard Modular Reduction over GF(p) (type I)

Remark 13 For better understanding we keep our examples in time domain. We also keep the

data in sequence form. Their corresponding spectral values can be reach by directly applying

the DFT.

In the next example (example 4.1.1) we calculate a(x)b(x) mod f (x) by using algorithm 17.

Example 4.1.1 let p = 217 − 1. Let f (x) = x9 + x7 + x5 + 19x + 1 be the field generating

polynomial of GF(p). We have 2 as a principal root of unity in GF(p), and therefore we have

17-point DFT. Let a(x) := 2x8 + 5x5 + 3x4 + 3x3 + x2 + x + 3 and b(x) := 3x8 + 7x5 + 2x4 +

7x3 + x2 + 2x + 4. Then the vector representations are;

(a) = [3, 1, 1, 3, 3, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

(b) = [4, 2, 1, 7, 2, 7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]

(fmt) = [0, 0, 0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1]

Note that; the degree increase when we move right.

(z) = [12, 10, 9, 36, 32, 59, 43, 39, 79, 38, 40, 23, 13, 29, 0, 0, 6]

56

, z(x) after point multiplication (convolution in time domain), step 1 of the algorithm.

The followings shows the assigned new values of (z) and (fmt) for the loop steps;

step 1 : (z) = [12, 10, 9, 36, 32, 59, 43, 33, 131036, 38, 40, 23, 7, 29, 131065, 0, 0]

(fmt) = [0, 0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0]

step 2 : (z) = [12, 10, 9, 36, 32, 59, 43, 33, 131036, 38, 40, 23, 7, 29, 131065, 0, 0]

(fmt) = [0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0]

step 3 : (z) = [12, 10, 9, 36, 32, 65, 157, 33, 131036, 38, 46, 23, 13, 29, 0, 0, 0]

(fmt) = [0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0]

step 4 : (z) = [12, 10, 9, 36, 3, 130585, 157, 33, 131036, 9, 46, 131065, 13, 0, 0, 0, 0]

(fmt) = [0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0]

step 5 : (z) = [12, 10, 9, 23, 130827, 130585, 157, 33, 131023, 9, 33, 131065, 0, 0, 0, 0, 0]

(fmt) = [0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0]

step 6 : (z) = [12, 10, 15, 137, 130827, 130585, 157, 39, 131023, 15, 33, 0, 0, 0, 0, 0, 0]

(fmt) = [0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]

step 7 : (z) = [12, 131048, 130459, 137, 130827, 130585, 124, 39, 130990, 15, 0,

0, 0, 0, 0, 0, 0]

(fmt) = [1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

step 8 : (z) = [131068, 130763, 130459, 137, 130827, 130570, 124, 24, 130990, 0, 0,

0, 0, 0, 0, 0, 0]

(fmt) = [19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]

The algorithm 17 uses the partial return with index values other than zero, and this index

changes in every turn. Calling partial return other than 0 in Mersenne field will require more

rotations than algorithm 16, see section 3.1.2. However , throughout the calculations Z is not

rotated. Direct calculation of arithmetic performance is; there are 2k field multiplications, the

number of constant multiplications are 2k2 − k − 1, number of additions are 4k2 − 5k + 1 and

the number of rotations are 4k2 − 5k + 1.

We will deal more in the performance section, and, we continue with another approach to

57

algorithm 17. After the point multiplication in spectral domain, the relative position of the

spectral coefficients don’t need to be stay fixed. They can be rotated as long as all the other

parameters, which are used in the loop is rotated too. The idea is; instead of fixed Z, we

rotate it every turn, and there is an initial rotation to that the position of leading coefficient

of z(x) can be reach by partial return(Z, 0). This idea will help to reduce the rotations in

partial return.

We approach to f (x) as similar to above algorithm. Let fm(x) = f (x)/lcoe f (f (x)) be the

monic form of the field generating polynomial. In order to perform reduction by fm(x), just

before passing to the spectral domain we transform fm(x) into fmt(x) = fmt(x) · xk mod x2k, for

the power of x we assume d = 2k. This will cause that the lcoe f (f (x)) will be in position 0

in sequence representation. Like above, we propose to this is as a precomputation, and actual

cost of this precomputation is only a memory mapping in time domain. Whereas, once fm(x)

is transferred to spectral domain one have to perform d rotations in spectral domain to get

FMt. This ideas are listed in the algorithm 18.

Let a(x), b(x) ∈ G(pk) and let A, B and FMt are transform pairs of a(x), b(x) and fmt(x)

respectively.

Algorithm 18 Type - II spectral standard modular reduction algorithm for GF(pk)
Input : d ≥ 2k − 1, A, B , FMt,

Output : Z where z(x) = iDFT (Z) ≡ a(x)b(x) mod f (x) i.e. z(x) ∈ GF(pk)

1: Z = A � B

2: Z = Z �Ω(d−2k+2)

3: for j = 0 to k − 2 do

4: s = −partial return(Z, 0)

5: s(x) = s

6: S = DFT (s(x))

7: Z = (Z + FMt � S)

8: Z = Z �Ω

9: end for

10: return (Z � Γk−1)

Proof of correctness. Type - II spectral standard modular multiplication algorithm is another

adaption of left-to-right non-interleaved modular multiplication for the spectral domain. At

58

step 1, polynomial multiplication is performed, and z(x) = a(x)b(x) is obtained. Before

the reduction steps z(x) is rotated. At each steps of the modular reduction steps, step 2 to

8, the leading coefficient of z(x) made zero. Performing this reduction steps k − 1 results

z(x) ≡ a(x)b(x) mod f (x). A final rotation is performed at step 10 to set the z(x) in correct

representation in time domain. ¥

Z

S

Z + FMt S

Partial Return

SPECTRAL DOMAINTIME DOMAIN

L
o
o
p

Rotate Z

Z = P Q

Rotate Z

Rotate Z

Figure 4.2: Spectral Standard Modular Reduction over GF(p) (type II)

In the next example (example 4.1.2) we calculate a(x)b(x) mod f (x) by using algorithm 18.

We use the same settings.

Example 4.1.2 let p = 217 − 1. Let f (x) = x9 + x7 + x5 + 19x + 1 be the field generating

polynomial of GF(p). We have 2 as a principal root of unity in GF(p), and therefore we have

17-point DFT. Let a(x) := 2x8 + 5x5 + 3x4 + 3x3 + x2 + x + 3 and b(x) := 3x8 + 7x5 + 2x4 +

7x3 + x2 + 2x + 4. Then the vector representations are;

(a) = [3, 1, 1, 3, 3, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

(b) = [4, 2, 1, 7, 2, 7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]

(fmt) = [1, 0, 0, 0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0]

59

Note that; the degree increase when we move right.

z(x) = [12, 10, 9, 36, 32, 59, 43, 39, 79, 38, 40, 23, 13, 29, 0, 0, 6]

, after point multiplication (convolution in time domain), step 1 of the algorithm.

z(z) = [6, 12, 10, 9, 36, 32, 59, 43, 39, 79, 38, 40, 23, 13, 29, 0, 0]

, the first rotation of z(x).

The followings shows the assigned new values of (z) for the loop steps;

step 1 : (z) = [0, 12, 10, 9, 36, 32, 59, 43, 33, 131036, 38, 40, 23, 7, 29, 131065, 0]

step 2 : (z) = [0, 0, 12, 10, 9, 36, 32, 59, 43, 33, 131036, 38, 40, 23, 7, 29, 131065]

step 3 : (z) = [0, 0, 0, 12, 10, 9, 36, 32, 65, 157, 33, 131036, 38, 46, 23, 13, 29]

step 4 : (z) = [0, 0, 0, 0, 12, 10, 9, 36, 3, 130585, 157, 33, 131036, 9, 46, 131065, 13]

step 5 : (z) = [0, 0, 0, 0, 0, 12, 10, 9, 23, 130827, 130585, 157, 33, 131023, 9, 33, 131065]

step 6 : (z) = [0, 0, 0, 0, 0, 0, 12, 10, 15, 137, 130827, 130585, 157, 39, 131023, 15, 33]

step 7 : (z) = [0, 0, 0, 0, 0, 0, 0, 12, 131048, 130459, 137, 130827, 130585, 124, 39,

130990, 15]

step 8 : (z) = [0, 0, 0, 0, 0, 0, 0, 0, 131068, 130763, 130459, 137, 130827, 130570, 124,

24, 130990]

z(x) = [131068, 130763, 130459, 137, 130827, 130570, 124, 24, 130990, 0, 0, 0, 0, 0, 0, 0, 0],

after the final rotation.

Algorithm 18 is designed to remove the index change in partial return(Z, n). However, this

removal requires some other rotates. First, observation of arithmetic requirements of algo-

rithm 18 are : 2k multiplications, 2k2 − k + 1 constant field multiplication, 4k2 − 5k + 1 field

additions and 4k2 − 3k + 1 rotations.

60

4.1.1 Arithmetic Performances

A similar improvement like in proposition 3.2.4 exist for algorithm 17 and algorithm 18. Here

we need extra rotations for the stored memory before addition. So the constant multiplications

of S are eliminated by rotations. Under the light of proposition 3.2.4 the rotation of FMt in

algorithm 17 is then memory mapping. The following tables are step by step requirements

with d = 2k.

Table 4.1: Step by step Arithmetic requirements of Algorithm 17

Step 1 d = 2k multiplication
Step 2 loop (k − 1 times)
Step 3 2k − 1 addition , 1 constant multiplication and 2k − 1 rotations
Step 4 none
Step 5 none
Step 6 2k additions and 2k − 1 rotations
Step 7 none (combined with step 7)
Step 8 end of loop (k − 1 times)
Step 9 none

In total, algorithm 17 requires, 2k multiplications, k − 1 constant multiplications, 4k2 − 5k + 1

additions and 4k2 −4k + 2 rotations for arithmetic operations. 2pk memory is needed for FMt.

Table 4.2: Step by step Arithmetic requirements of Algorithm 18

Step 1 d = 2k multiplication
Step 2 2k rotations
Step 3 loop (k − 1 times)
Step 4 2k − 1 addition , 1 constant multiplication
Step 5 none
Step 6 none
Step 7 2k additions and 2k − 1 rotations
Step 8 2k rotates
Step 9 end of loop (k − 1 times)
Step 10 2k rotations

In total, algorithm 18 requires, 2k multiplications, k − 1 constant multiplications, 4k2 − 5k + 1

additions and 4k2 − k + 1 rotations for arithmetic operations. 2pk memory is needed for FMt.

61

4.2 Comparison of Partial Return Algorithms

4.2.1 Arithmetic Comparison of Spectral Modular Multiplication Algorithms

The arithmetic and memory requirements of the algorithms are listed in table 4.3 when p is

Mersenne prime of the form 2k − 1 and −2 is utilized as ω. Their difference is in rotates.

For computer environments our conclusion on choices of spectral reduction algorithms is

algorithm 16. There is a Montgomery domain effect on the performance of the algorithm

16, which is not listed in the table. One is also consider the amount of multiplications are

enough to use advantage of algorithm 16 over others, otherwise the Montgomery domain

transformations will cost more even computer environments.

Table 4.3: Arithmetic performance of partial return algorithms (17, 18 and 16)

algorithm 17 algorithms 18 algorithm 16
Spect. std-I Spect. std-II Spect. Mont.

Multiplication 2k 2k 2k
Constant Multiplication k − 1 k − 1 k − 1
Addition 4k2 − 5k + 1 4k2 − 5k + 1 4k2 − 5k + 1
Shift and Rotate 4k2 − 4k + 2 4k2 − 4k + 2 2k2 − 2k

Stored Memory (bits) 2pk 2pk 2pk

In section 4.4, the arithmetic calculation of the algorithm will be based on the table 4.3. We

will need only one step performances apart from point multiplication that is listed in below

table 4.4.

Table 4.4: One step arithmetic performance of partial return algorithms (17 and 16)

algorithm 17 algorithm 16
Spect. std-I Spect. Mont.

Constant Multiplication 1 1
Addition 4k − 1 4k − 1
Shift and Rotate 4k − 1 2k

Stored Memory (bits) 2pk 2pk

62

4.2.2 Hardware Performance Comparison of Spectral Modular Multiplication Algo-

rithms

As we see from table the differences are from shifts and rotates that is only wiring in hardware

environment if fixed like in these three algorithms. So there is not much, indeed non, differ-

ence is expected in their performances. However, the Montgomery domain in the algorithm 16

will be overhead to this algorithm compared to others. Baktır compared his implementation

to [26], [19] and [32]. For a base of speed, we refer to table at page 58 of [2].

4.3 Bipartite Modular Multiplication for Polynomials

In chapter 2.1 we mention that division algorithm is sequential. Like standard division, Mont-

gomery reduction is also sequential. Obviously, being sequential prevents parallelism. How-

ever, being sequential individually don’t prevent work together. In 2005, Kaihara and Tak-

agi [11] successfully combined standard integer modular multiplication algorithm and Mont-

gomery modular multiplication algorithm, and named their work Bipartite Modular Multi-

plication. Leaving the details of the integer version of bipartite to Kaihara’s work [11] we

continue our work on polynomial version.

Definition 4.3.1 Let f (x) be the field generating polynomial of GF(pk) over GF(p). Let

n = k − 1, r(x) = xαn, where 0 < α < 1 and gcd(r(x), f (x)) = 1. A(x) = a(x) · r(x) mod f (x)

is called partial Montgomery residue (PMR) representation of a(x) ∈ GF(pk) with respect to

r(x).

Letting α = 0 in definition 4.3.1 will end standard representation, whereas letting α = 1 will

be Montgomery domain. Given A(x) and B(x), two PMR images of polynomials a(x) and

b(x) respectively, multiplication modulo f (x) in the PMR is defined as;

A(x) ~ B(x) = (A(x) · B(x) · x−αn) mod f (x).

Transformation a polynomial from standard representation into PMR can be calculated by

standard polynomial multiplication of the polynomial by xαn modulo f (x). The reverse trans-

formation is performed by multiplying x−αn modulo f (x).

63

The PMR multiplication modulo f (x) over the images of a(x) and b(x) results in image of

a(x) · b(x) mod f (x) which can be seen below.

A(x) · B(x) · x−αn mod f (x) = (a(x) · xαn) · (b(x) · xαn) · x−αn mod f (x)

= (a(x) · q(x))xαn mod f (x)

Let f (x) be the field generating polynomial of GF(pk) over GF(p). Let r(x) = xαn, where

0 < α < 1 and gcd(r(x), f (x)) = 1. Let A(x), B(x) be two PMR images of polynomials

a(x) and b(x), respectively. Let z(x) = a(x) · b(x) mod f (x). Then the following algorithm

computes Z(x) ≡ A(x) · B(x) · r(x)−1 mod f (x)

Algorithm 19 Bipartite Polynomial Modular Multiplication
Input : r(x) , A(x), B(x).

Output : Z(x) where Z(x) ≡ A(x) · B(x) · r(x)−1 mod f (x) and Z(x) = z(x) · xαn mod f (x).

1: S (x) = 0

2: T (x) = 0

3: BH(x) = Q(x) div r(x)

4: BL(x) = Q(x) mod r(x) (i.e. B(x) = BH · r(x) + BL(x))

5: ResLe f t(x) = stand polyn mod mul (A(x), BH(x), f (x))

6: ResRight(x) = montg polyn mod mul (A(X), BL(x), f (x), r(x), α)

7: Z(x) = ResLe f t(x) + ResRight(x)

8: return Z(x)

The function stand polyn mod mul() in the algorithm 19 is algorithm 7, and algorithm 9 is

the function montg polyn mod mul().

Proof of correctness.

P(x) · QH(x) + P(x) · QL(x) mod f (x) =

= P(x) · QH(x) + P(x) · QL(x) · r(x)−1 mod f (x)

= P(x) · [QH(x) · r(x) · r(x)−1 + QL(x) · r(x)−1] mod f (x)

= P(x) · [QH(x) · r(x) + QL(x) · r(x)] · r(x)−1 mod f (x)

= P(x) · Q(x) · r(x)−1 mod f (x).

¥

64

The next example shows some of the steps of the algorithm 19

Example 4.3.2 Let a(x), b(x), r(x) and f (x) be some polynomials over GF(11). Let the field

generation polynomial f (x) of GF(117) is given by f (x) = x7 + 2 · x + 5 and;

r(x) = x4

r−1(x) = 7x6 + 10x5 + 8x4 + 2x3 + 3

a(x) = 2x6 + 5x5 + 3x4 + 3x3 + x2 + x + 3

A(x) = x6 + x5 + 10x4 + 2x3 + 2x2 + x + 7

a(x) = 3x6 + 7x5 + 2x4 + 7x3 + x2 + 2x + 4

B(x) = x6 + 2x5 + 9x4 + 4x3 + 5x2 + 9x + 9

The input to the left side is : x2 + 2x + 9.

The input to the right side is : 4x3 + 5x2 + 9x + 9.

The result of left side : Res Le f t(x) = 10x6 + 9x5 + 8x4 + x3 + 3x2 + x + 4.

The result of the right side : Res Right(x) = 2x6 + 3x5 + 8x4 + 4x3 + 10x2 + 7x + 5.

The final result : Z(x) = Res Le f t(x) + Res Right(x) = x6 + x5 + 5x4 + 5x3 + 2x2 + 8x + 9.

To control : Z(x)r(x)−1 = 4x6 + 4x5 + 7x3 + x2 + x + 2 = a(x) b(x).

One can notice from the algorithm 19 that the bipartite modular multiplication is calculated

in half normal and half special Montgomery domain. Original bipartite designed for inter-

leaved modular multiplication and we followed this path. In next chapter, we will need non-

interleaved version of the algorithm 6. This version can be designed by first putting a poly-

nomial version and replacing non-interleaved versions of the modular multiplications, more

precisely replace Montgomery polynomial modular Multiplication by Montgomery polyno-

mial reduction and polynomial modular multiplication by polynomial modular reduction.

65

Kaihara mentioned that like Montgomery modular multiplication one can perform standard

representation to PMR representation and vice versa by using algorithm 19. Passing A(x),

B(x) = 1 will led to the a(x) and passing a(x), r2(x) mod f (x) will lead to A(x).

4.3.1 Performance of Bipartite Modular Multiplication

Figure 4.3: Polynomial Bipartite Modular Multiplication

The arithmetic in Bipartite Polynomial Modular Multiplication contains two algorithms that

work simultaneously. A significant difference from integer version is the final modular reduc-

tion is not required for polynomials [11].

The field generating polynomial has significant effects on the arithmetic performance of this

algorithm. As mentioned above at subsection 2.5.7 the monic field generating polynomials

helps standard polynomial multiplication, normalized polynomials helps Montgomery poly-

nomial multiplication. Since algorithm 19 uses both algorithm a precomputation may be

required.

Before given the arithmetic calculations we want to note that, when the field generation poly-

nomial has odd degree, then the left and right algorithms has not same amount of step, the

effect of even degree can be seen on figure 4.3. In figure 4.3; dark gray is the final result,

upper three is reduced by Montgomery and Below three by Standard approach. One can let

the two algorithm to work same amount when the field generating polynomial has odd degree

them, but that won’t change the result. So there is a k multiplication without reduction, that

requires additional k additions.

66

So for simplicity for our case we choose k = 2m as an even number. The below table list the

arithmetic performance for arbitrary field generating polynomials and with the case xk − c,

where k = 2m is taken as even number.

Table 4.5: Arithmetic performance of Algorithm 19

arbitrary f (x) f (x) = xk − c

Multiplication m(2k + 1) m(2k + 1)
Constant Multiplication 2m(k + 1) 3m
Addition 2m(2k − 1) 2mk

For a simple comparison with the algorithms we let 2m = k and rewrite the table as

Table 4.6: Arithmetic performance of Algorithm 19 with k = 2m

arbitrary f (x) f (x) = xk − c

Multiplication k2 + k/2 k2 + k/2
Constant Multiplication k(k + 1) (3k)/2
Addition k(2k − 1) k2

As a comparison from the Tables 2.2 & 2.3 the algorithm 19 have middle value performance

in arithmetic.

When ASIC performance considered, the loop count of the single algorithms are reduced to at

most half [11]. With the help of this reduction in time, parallel ASIC designs will be require

at least half of the time of the single algorithms.

In case of field extension with special polynomial like xk − c algorithm 7 still better choice.

When the field generation is not special or low weight, bipartite will have advantage.

4.4 Bipartite Spectral Modular Multiplication

Integer version of partial spectral methods defined in [30] works successfully on Montgomery

reduction over spectral domain. When standard reduction is considered for integers it fails due

to redundancy.

We mentioned in Section 4.3 that Kaihara’s work is interleaved, but it can be converted into a

67

bipartite reduction easily. With the idea of bipartite, type-I spectral standard modular reduc-

tion and spectral Montgomery modular reduction can be combined in spectral domain. The

algorithm 20 lists the details of the combination.

Suppose that there exist a d-point DFT map for some principal root of unity ω in GF(pk), and

A,B , FMt and FN are transform pairs of a(x), b(x), fmt(x) and fn(x), respectively, where fmt as

in algorithm 17.

Algorithm 20 Bipartite Spectral Modular Multiplication for GF(pk)
Input : d ≥ 2k − 1, FN ,FMt, A, B

Output : Z where z(x) = iDFT (Z) ≡ a(x) b(x) · x(k−1) ∈ GF(pk)

1: Z = A � B

2: for j = 0 to (k − 1)/2 do

3: s = −partial return(Z, 0)

4: s(x) = s

5: S = DFT (s(x))

6: t = −partial return(Z, 2k − 2(i − 1))

7: t(x) = t

8: T = DFT (t(x))

9: Z = (Z + FN � S + FMt � T)

10: Z = Z �Ω

11: FMt = FMt � Γ2

12: end for

13: return (Z)

Proof of correctness. We only need to show that two reduction algorithms, that works in

spectral domain, has no effect on each other. The output has at most 2k−2 degree. From right

and left we have (k − 1)/2 reductions, which makes k − 1 degrees are reduced. Therefore we

have k − 1 degrees left. ¥

In the next example (example 4.4.1) we calculate a(x)b(x) · x(k−1) mod f (x) by using algo-

rithm 20.

Example 4.4.1 let p = 217 − 1. Let f (x) = x9 + x7 + x5 + 19x + 1 be the field generating

polynomial of GF(p). We have 2 as a principal root of unity in GF(p), and therefore we have

68

17-point DFT. Let a(x) := 2x8 + 5x5 + 3x4 + 3x3 + x2 + x + 3 and b(x) := 3x8 + 7x5 + 2x4 +

7x3 + x2 + 2x + 4. Then the vector representations are;

(a) = [3, 1, 1, 3, 3, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

(b) = [4, 2, 1, 7, 2, 7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]

(fmt) = [0, 0, 0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1]

The corresponding Partial Montgomery Domain representations of (a) and (b) are

(A) = [131066, 130978, 38, 131069, 131036, 131067, 3, 131069, 3, 0, 0, 0, 0, 0, 0, 0, 0]

(B) = [131064, 130941, 57, 131068, 131018, 131066, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

(z) after point multiplication ;

(z) =[35, 1301, 11539, 120859, 3215, 9304, 128012, 130116,

2429, 130751, 131045, 62, 130864, 131040, 18, 131067, 6].

The followings shows the assigned new values of (z) and (fmt) for the loop steps;

step 1 : (z) =[636, 11539, 120859, 3215, 9269, 128012, 130075, 2315, 130716, 131045,

62, 130858, 131040, 12, 131067, 0, 0]

(fmt) =[0, 0, 0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0]

step 2 : (z) =[130526, 120859, 3215, 9269, 127380, 130151, 1679, 130716, 130409,

66, 130858, 131044, 12, 0, 0, 0, 0]

(fmt) =[0, 0, 0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0]

69

step 3 : (z) =[143, 3215, 9257, 127152, 130696, 1679, 190, 130397, 611, 130846, 131044,

0, 0, 0, 0, 0, 0]

(fmt) =[0, 1, 19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]

step 4 : (z) =[525, 9770, 127152, 130696, 1536, 217, 130254, 638, 130703,

0, 0, 0, 0, 0, 0, 0, 0]

(fmt) =[19, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]

And the result is

z(x) = 130703x8 + 638x7 + 130254x5 + 217x5 + 1536x4 + 130696x3 + 127152x2

+ 9770x + 525

4.4.1 Arithmetic Performance

Bipartite Spectral Modular Multiplication reduced the the loop count in to half. As mentioned

earlier this has only effect on ASIC implementation. Multicore cpu’s can only have slight

impact on the performance due to carry free arithmetic of the polynomials. Algorithm 20

requires 2k multiplication, k−1 constant multiplication, 4k2−5k+1 additions and 3k2−4k+1

rotations. The required precomputation memory is 2pk.

Table 4.7: Step by step Arithmetic requirements of Algorithm 20

Step 1 d = 2k multiplication
Step 2 loop ((k − 1)/2 times)
Step 3 2k − 1 additions
Step 4 to 5 none
Step 6 2k − 1 additions and 2k − 1 rotations
Step 7 to 8 none
Step 9 4k additions and 2k − 1 rotations
Step 10 2k rotations
Step 11 none (added to step 9)
Step 12 end of loop ((k − 1)/2 times)
Step 13 none

70

Table 4.8: Arithmetic performance of Bipartite Spectral Modular Multiplication

Bipartite Spectral Modular Multiplication
Multiplication 2k
Constant Multiplication k − 1
Addition 4k2 − 5k + 1
Shift and Rotate 3k2 − 4k + 1

Stored Memory (bits) 2pk

4.5 Comparison of Bipartite and Partial Return Spectral Algorithms

4.5.1 Arithmetic Comparison

The comparison of partial return algorithm is listed in the below table. Like in time domain

bipartite, algorithm 19, Bipartite DFT modular multiplication has no advantage over others.

Apart from time domain version, in spectral domain there is a need to additional memory. So

for arithmetic performances we propose standard DFT algorithms over the others.

Table 4.9: Arithmetic performance of the Algorithms 17, 18, 16 and 20

algorithm 17 algorithm 18 algorithm 16 algorithm 20
spect. std.-I spect. std.-II spect. Mont. bipar. spect.

Multiplication 2k 2k 2k 2k
Constant Multiplication k − 1 k − 1 k − 1 k − 1
Addition 4k2 − 5k + 1 4k2 − 5k + 1 4k2 − 5k + 1 4k2 − 5k + 1
Shift and Rotate 4k2 − 4k + 2 4k2 − 4k + 2 2k2 − 2k 3k2 − 4k + 1

Stored Memory (bits) 2pk 2pk 2pk 2pk

4.5.2 Hardware Comparison

In time domain version of bipartite, algorithm 19, left and right parts of the modular mul-

tiplication are added at the end of algorithm. In spectral domain version, algorithm 20, we

have non-interleaved version and left and right parts are not separated. Therefore this two part

must be added in every step of the main loop. This will cause additional delays. This can be

eliminated by simple csa plus a fast adder instead of fast adder plus fast adder. So expected

performance of the algorithm 20 is not exact half of the algorithm 16, very close to it.

71

4.6 Conclusion

In this chapter we presented four algorithms. The Spectral standard modular multiplication

algorithms (algorithms 17 and algorithm 18) can be a better choice over Baktır’s algorithm,

algorithm 16. The new algorithm removes the the overhead of the Montgomery domain.

The polynomial bipartite modular multiplication algorithm has no advantage over standard

polynomial modular multiplication if the one step reduction is performed with special modu-

lus. If the modulus is not special polynomial bipartite still will not have advantage over single

or multicore cpu environments due to carry free arithmetic of the polynomials.

In hardware environments, The polynomial bipartite modular multiplication will advantage if

modulus is not in special form. Moreover, it will require more area in hardware environments,

and implementation of two algorithms.

When we turned our attention to spectral bipartite modular multiplication, it does not improve

the arithmetic performance over the other spectral modular multiplication algorithms, namely

algorithm algorithm 16, 17 and algorithm 18. In hardware environments, algorithm 20 have

speed improvements that is close to two times. As time domain polynomial bipartite, the

hardware area requirements will be larger too.

In next chapter, which is final contribution of this thesis, we are going to investigate Karat-

suba method on polynomial modular multiplication and spectral modular multiplication algo-

rithms.

72

CHAPTER 5

KARATSUBA AND SPECTRAL ARITHMETIC

After the introduce of the bipartite method [11] as a combination of two reduction methods,

Saldamlı and Baek [31] added another combination; they successfully put the bipartite mod-

ular multiplication into one level Karatsuba multiplication.

In this chapter, firstly, we look at the polynomial version of Saldamlı’s work in details. Sec-

ondly, we translate Bipartite Karatsuba modular multiplication into spectral domain with the

help of DFT dictionary. Thirdly, arithmetic performance is calculated and compared to other

partial return algorithms, which are presented in previous chapters. And, after that, we give

a simple hardware architecture for the spectral version. Under the hardware architecture the

hardware performance is evaluated. Finally, chapter’s conclusions are presented.

5.1 Bipartite in Karatsuba for Polynomials

In this section we define polynomial version of Saldamlı’s Karatsuba approach to bipartite

modular multiplication. To make the approach more clear we first introduce a direct approach,

in which the modular multiplication is non-interleaved. This approach is excepted to cause

more time in hardware.

Let a(x), b(x) ∈ GF(pk) and let f (x) be the field generating polynomial of GF(pk). The

following algorithm , algorithm 21, computes Z(x) such that

z(x) = Z(x)x−k ≡ a(x)b(x) mod f (x).

Without lost of generality, we assume that k is even. If it is not the case, then the polynomials

a(x) and b(x) can be assumed to have odd degree.

73

5.2 Non-Interleaved Bipartite in Karatsuba for Polynomials

Algorithm 21 Non-interleaved Polynomial Bipartite in Karatsuba modular multiplication
Input : a(x), b(x) ∈ GF(pk), f (x) as field generation polynomial of GF(pk)

Output : Z(x), where Z(x) · xαn = a(x)b(x) mod f (x)

1: α = k/2

2: r(x) = xα

3: aL(x) = a(x) mod xα

4: aH(x) = a(x) div xα

5: bL(x) = b(x) mod xα

6: bH(x) = b(x) div xα

7: t0(x) = aL(x)bL(x)

8: t2(x) = aH(x)bH(x)

9: t0r(x) = mont polyn red(t0(x), f (x), r(x), α)

10: t2r(x) = stand polyn red(t2(x), f (x))

11: t1(x) = [(aH(x) + aL(x))(bH(x) + bL(x))] − t0(x) − t2(x)

12: Z(x) = t1(x) + t0r(x) + t2r(x)

13: return (Z(x))

Proof of correctness. We only need to show that, the value of t1(x) is not required by the two

reductions.

In Karatsuba multiplication the final sum is calculated as follows;

22αt2(x) + 2αt1(x) + t0(x)

The right reduction, Montgomery, only work for α steps, which will require the coefficients

at the positions 0, 1, . . . , α−1. Therefore, the t1(x) is not required for right side. Similarly, for

the left side the reduction is performed on f (x). This reduction required only α − 1 degrees,

which will require the coefficients 4α − 1, 4α − 2, . . . , 3α, where the coefficients are offset

values, i.e. their position according with no reduction. Therefore t1(x) is not required for

reductions. ¥

In total, algorithm 21 approximately requires; 3α2 multiplications, 2α2 − α constant multipli-

cations and 7α2 − 3α + 3.

Figure 5.1, exhibits the steps of the algorithm, where each row is a partial product.

74

aH(x) aL(x)

bL(x)bH(x)

t1(x)

t1(x)

-t0(x)

-t2(x)

t2(x)

t0r(x)

t2r(x)
+

Figure 5.1: Steps of non-Interleaved Bipartite in Karatsuba for Polynomials

Table 5.1: Step by step Arithmetic requirements of algorithm 21

Step 1 to 6 none
Step 7 α2 multiplications and α2 − 2α + 1 additions
Step 8 α2 multiplications and α2 − 2α + 1 additions
Step 9 α2 constant multiplications, α2 additions
Step 10 α2 − α constant multiplications, α2 − α additions
Step 11 α2 multiplications and α2 + 1 additions
Step 12 2α additions
Step 13 none

5.3 Interleaved Bipartite in Karatsuba for Polynomials

In algorithm 21, the reduction and multiplication are non-interleaved. In case of interleaved

modular multiplication, the first observation is that one have to recalculate the product, t0(x)

and t2(x). Saldamlı’s observation on this calculation is that one can extract the multiplication

from the reduction steps. Namely, at each steps of interleaved reduction one digit multipli-

cation is performed, then reduced. Saldamlı offered that interleaved modular multiplication

algorithms should return two values; reduction and multiplication. With this idea reduction

and multiplication are performed together. Therefore every step can be performed parallel,

except the additions in last two steps of algorithm 21. We list the details in algorithm 22.

75

Algorithm 22 Interleaved Polynomial Bipartite in Karatsuba modular multiplication
Input : a(x), b(x) ∈ GF(pk), f (x) as field generation polynomial of GF(pk)

Output : Z(x), where Z(x) · xαn = a(x)b(x) mod f (x)

1: α = k/2

2: r(x) = xα

3: aL(x) = a(x) mod xα

4: aH(x) = a(x) div xα

5: bL(x) = b(x) mod xα

6: bH(x) = b(x) div xα

7: t0(x) = aL(x)bL(x)

8: t2(x) = aH(x)bH(x)

9: t0r(x) = 0

10: t2r(x) = 0

11: for i = 0 to α − 1 do

12: t0(x) = aL(x) coe f (b(x), k − 1 − i)

13: t0r(x) = t0r(x) x + t0(x)

14: if deg(t0r(x)) ≥ deg(f (x)) then

15: t0r(x) = t0r(x) − (fm(x) lcoe f (t0r(x)))

16: end if

17: u = coe f (t2r(x), 0) + coe f (aH(x), i) coe f (bH(x), 0)

18: t2(x) = t2(x) x + bH(x) coe f (aH(x), i)

19: t2r(x) = t2r(x) + t2(x)/xi+1 + u · fn(x)

20: t2r(x) = t2r(x)/x

21: end for

22: t1(x) = [(aH(x) + aL(x))(bH(x) + bL(x))] − t0(x) − t2(x)

23: return t1(x) + t0r(x) + t2r(x)

76

Proof of correctness. In the for loop of the algorithm, both the multiplications and reductions

are performed. Only modification from the algorithm 21 is calculation of two multiplication

t0(x) and t2(x), inside the loop. t0(x) = aL(x) ·coe f (b(x), k−1− i) and t2(x) = t2(x) · x+bH(x) ·
coe f (aH(x), i). So this algorithm is just refining of algorithm 21 ¥

a(x)

b(x)

t0(x)

(aL(x)+aH(x))(bL(x)+bH(x))

t2(x)

-t2(x) x^h

-t0(x) x^h

Figure 5.2: Interleaved Polynomial Bipartite in Karatsuba modular multiplication

Example 5.3.1 Let a(x), b(x), r(x) and f (x) be some polynomials over GF(11). Let the field

generation polynomial f (x) of GF(117) is given by f (x) = x7 + 2 · x + 5 and;

77

Table 5.2: Step by step Arithmetic requirements of algorithm 22

Step 1 to 6 none
Step 7 α2 multiplications and α2 − 2α + 1 additions
Step 8 α2 multiplications and α2 − 2α + 1 additions
Step 9 to 10 none
Step 11 loop (α times)
Step 12 α multiplications
Step 13 α − 1 additions
Step 14 to 16 2α constant multiplications and 2α additions
Step 17 2α additions
Step 18 α multiplications and α − 1 additions
Step 19 2α constant multiplications and 3α additions
Step 20 none
Step 21 end loop (α times)
Step 22 α2 multiplications and α2 + α + 1 additions
Step 23 2α additions

r(x) = x4

r−1(x) = 7x6 + 10x5 + 8x4 + 2x3 + 3

a(x) = 2x6 + 5x5 + 3x4 + 3x3 + x2 + x + 3

A(x) = x6 + x5 + 10x4 + 2x3 + 2x2 + x + 7

a(x) = 3x6 + 7x5 + 2x4 + 7x3 + x2 + 2x + 4

B(x) = x6 + 2x5 + 9x4 + 4x3 + 5x2 + 9x + 9

t0(x) = 8x6 + 7x5 + 10x4 + 3x3 + 7x2 + 6x + 8

t1(x) = x4 + 3x3 + 10x2 + 7x + 2

t2(x) = 6x5 + 4x4 + 7x2 + x + 10

t0r(x) = 2x6 + 10x5 + 10x4 + 5x3 + 8x2 + 7x + 3

t2r(x) = 10x6 + 7x5 + 2x4 + 9x2 + 7

78

result : x6 + x5 + 5x4 + 5x3 + 2x2 + 8x + 9

The inputs and the result is same as in example 4.3.2.

5.4 Karatsuba, Bipartite on Spectral Domain

In this section, we are translating algorithm 21 to it’s spectral version by using the DFT

dictionary.

Suppose that there exist a d-point DFT map for some principal root of unity ω in GF(pk),

As in time domain version we assume that k is odd, and α = (k+1)/2. Inside the algorithm, the

reductions steps will require DFT size one larger then the size of field generating polynomial.

Therefore,the relation between k and d is d ≥ k + 1.

We first define a new function that we will use in the algorithm.

5.4.1 The Split Function

Definition 5.4.1 The function split(Z), returns the spectral coefficients ZH and ZL such that

Z = (ZH �Ωα) + ZL.

We propose two algorithm to function split(Z), one is full return to time domain, performing

splitting there and transferring back to spectral domain, which is listed in algorithm 23. The

other one uses α partial returns to construct ZL, subtract ZL from Z, and finally rotate to result

to get ZH , which is listed in algorithm 24.

Proof of correctness. At first step, z(x) is obtained by the inverse transformation, iDFT (Z).

Then, at steps 2 and 3, z(x) splitted into two part, zL(x) and zH(x), by memory operations.

Finally, the parts are transfferred back to spectral domain by forward transformations at steps

4 and 5. ¥

Algorithm 23 requires, one full return, two forward DFT transformations. In total ; d constant

multiplications, d2 + d(2α− 3) additions and d2 + 2αd − 3d + 2α+ 4 rotations are needed. We

did not utilize two point butterfly approach by using −2 as a root of unity. We need this form

79

Algorithm 23 Full Return Splitting Algorithm
Input : Z

Output : ZH , ZL such that Z = (ZH �Ωα) + ZL

1: z(x) = iDFT (Z)

2: zL(x) = z(x) mod xα

3: zH(x) = z(x) div xα

4: ZH = DFT (zH(x))

5: ZL = DFT (zL(x))

6: return (ZH ,ZL)

Table 5.3: Step by step Arithmetic requirements of Algorithm 23

Step 1 d constant multiplication, d2 − d additions and d2 − d rotations
Step 2 to 3 none
Step 4 (α − 1)d additions and (α − 2)d rotations
Step 5 (α − 1)d additions and (α − 2)d rotations
Step 6 none

to compare of algorithm 25.

Proof of correctness. In the for loop, z(x)’s α coefficients are extracted and transferred back

into spectral domain, where they are added to ZL with their correct positions. With this op-

erations ZL formed in spectral domain. Finally, ZH rotated after it is extracted from Z by

subtracting ZL. ¥

Table 5.4: Step by step Arithmetic requirements of Algorithm 24

Step 1 none
Step 2 loop (α times)
Step 3 1 constant multiplication, d − 1 additions, d − 1 rotations except

α = 0
Step 4 to 5 none
Step 6 αd additions and αd rotations
Step 7 end loop (α times)
Step 8 d additions
Step 9 d rotations
Step 10 none

Algorithm 24 requires, α partial return’s, with only one is at 0. In total, α constant multi-

80

Algorithm 24 Partial Return Splitting Algorithm
Input : Z

Output : ZH , ZL such that Z = (ZH �Ωα) + ZL

1: ZL = 0

2: for i = 0 to α − 1 do

3: zi = partial return(Z, i)

4: zi(x) = zi

5: Zi = DFT (zi(x))

6: ZL = ZL + (ZL �Ωi)

7: end for

8: ZH = Z − ZL

9: ZH = ZH � Γ

10: return (ZH ,ZL)

plications, 2(α − 1)d + d − 1 summations and 2αd − α + 1 rotations are required to compute

Algorithm 24.

The arithmetic comparison of algorithm 23 & 24 is listed in the table 5.5.

Table 5.5: Arithmetic performance of Algorithm 23 & Algorithm 24

Algorithm 23 Algorithm 24
Multiplication none none
Constant Multiplication d α

Addition d2 + d(2α − 3) 2(α − 1)d + d − 1
Shift and Rotate d2 + 2αd − 3d + 2α + 4 2αd − α + 1

Stored Memory (bits) none none

As a result of table 5.5, algorithm 24 has better arithmetic performance over algorithm 23.

With the help of the split(Z) function we continue on the our main algorithm of this chapter.

5.4.2 Algorithm 25

Let AH ,AL,BH , BL, FM and FN are transform pairs of aH(x), aL(x), bH(x),bL(x), fm(x) and

fn(x) respectively, where a(x) = aH(x)xα + aL(x) and b(x) = bH(x)xα + bL(x).

81

The following algorithm computes ZH and ZL, where

zH(x)xα + zL(x) = iDFT (ZH) · xαiDFT (ZL) ≡ a(x)b(x)xαn mod f (x) in spectral domain.

Algorithm 25 Spectral Polynomial Bipartite in Karatsuba modular multiplication algorithm
Input : d ≥ k + 1, AH , AL, BH , BL, FN , FM

Output : ZH and ZL, where

zH(x)xα + zL(x) = iDFT (ZH) · xαiDFT (ZL) ≡ a(x)b(x)xαn mod f (x)

1: Z0 = AL � BL

2: Z2 = AH � BH

3: Z1 = (AL + AH) � (BL + BH)

4: for j = 0 to (k − 2)/2 do

5: s = −partial return(Z, 0)

6: s(x) = s

7: S = DFT (s(x))

8: t = −partial return(Z, 2k − 2(i − 1))

9: t(x) = t

10: T = DFT (t(x))

11: Z0r = Z + FN � S

12: Z2r = Z + FM � T

13: Z0r = Z0r � Γ

14: FN = FN �Ω

15: end for

16: Z = Z0r + Z2r + Z1 − Z0 − Z2

17: (ZH ,ZL) = split(Z)

18: return (ZH ,ZL)

Proof of correctness. Algorithm 25 of algorithm 21. At steps 1,2 and 3, Karatsuba multi-

plication is performed. Since multiplication of any part is one degree smaller than f (x), then

we do not cyclic conversion here. Between steps 4 and 15 the left and right parts are reduced

by standard and Montgomery reductions, respectively. At step 16 the values are added and at

step 17 the result is splitted into two parts. ¥

Remark 14 The split function at the end of algorithm 25 is needed for further multiplications.

Otherwise it is not necessary.

82

Table 5.6: Step by step Arithmetic requirements of Algorithm 25

Step 1 d multiplications
Step 2 d multiplications
Step 3 d multiplications, 2d additions
Step 4 loop ((k − 2)/2 times)
Step 5 d constant multiplication, d2 − d additions and d2 − d rotations
Step 6,7, none
Step 8 d constant multiplication, d2 − d additions and d2 − d rotations
Step 9,10 none
Step 11 d additions
Step 12 d additions
Step 13 d rotations
Step 14 d rotations
Step 15 end loop ((k − 2)/2 times)
Step 16 4d additions
Step 17 split function
Step 18 none

We choose 24 for the splitting function. With these, algorithm 25 requires 3k multiplications,

k − 2 constant multiplications, ≈ 3k2 − 4k + 4 additions , and ≈ (5k2 − 4k)/2 rotations with

2pk bits memory.

5.4.3 Arithmetic Complexity Analysis

5.4.4 Comparison

The divide method of Karatsuba changes the parameters of the algorithm 25. Therefore there

is no exact comparison. While non Karatsuba spectral algorithms require d ≥ 2k − 1, Karat-

suba spectral algorithm requires d ≥ k + 1. The closest way to compare is having two DFT’s

of length d and 2d such that former uses 2 and later uses −2 as principal root of unity. Under

this assumption the following table gives the comparison.

Interestingly, Karatsuba approach under spectral methods requires more multiplication and

more constant multiplications. Additions are lowered but rotations are increased. With this

result we choose Algorithm 17.

83

Table 5.7: Arithmetic performance of Algorithms 17, 16, 20 and 25

algorithm 17 algorithm 16 algorithm 20 algorithm 25
Spec. Std.-I Spec. Montg. Spec. Bipar. KA Bipar. Spec.

Multiplication 2k 2k 2k 3k
Constant Multiplication k − 1 k − 1 k − 1 k − 2 + k/2
Addition 4k2 − 5k + 1 4k2 − 5k + 1 4k2 − 5k + 1 ≈ 3k2 − 4k + 4
Shift and Rotate 2k2 − 3k + 1 2k2 − 2k 2k2 + k + 1 ≈ (5k2 − 4k)/2

Stored Memory (bits) 2pk 2pk 2pk 2pk

5.5 A Hardware Structure for Algorithm 25

In this section we exhibit a hardware structure for algorithm 25. With this structure, we are

going to evaluate the performance in next section by using this structure.

We divide the structure into 4 steps, namely,Multiplication, Reduction, Summation and Split-

ting. In Multiplication step, two point multiplications (AH �BH and AL �BL) and 2 additions

((AH ⊕ AL) and (BH ⊕ BL)) are performed. The reduction steps consist of two reduction

methods (standard and Montgomery) and the point multiplication of (AH⊕AL) and (BH⊕BL)

and subtraction of ZH and ZL from this point multiplication is performed. In next step, sum-

mation step, Z2r, Z1 and Z0r are added. And finally a split algorithm is performed in splitting

steps. These can be seen in the figure 5.3

5.5.1 Hardware Performance Evaluation of Algorithm 25

One of the distinctions of algorithm 25 from rest of the partial return algorithm is the length

of the DFT. This causes various effects. Firstly, due to smaller DFT size algorithm 25 can

be more compact in hardware than any other partial return algorithm exhibited in this thesis.

Secondly, partial return will require less additions, in precisely half of the others as we

choose d = 2α = k. Clearly, less additions will cause less time.

One another distinction is from the algorithm 20, in which left and right reductions are per-

formed together. As stated in Chapter 4, this will cause at least one more addition in the

loop.

Our last notice of distinction is the final summation and the splitting, which hasn’t have equiv-

84

AH

BH

AH

AL BL

BH

Z2 Z0

(AL+AH) (BL+BH)

Spectral

Standard

Polynomial

Modular

Reduction

Spectral

Montgomery

Polynomial

Modular

Reduction

Z2r Z0rZ1

AL

BL

Split Function

ZH ZL

Figure 5.3: A Hardware Structure Proposal for Algorithm 25

85

alence in other partial return algorithms.

Under this distinctions we can evaluate as follows;

Since we use same base field in all partial algorithms, the multiplication step same in all. So

we need to look to rest to evaluate.

When compared to single partial return algorithms, algorithm 16, 17 and 18, we have half

of the reduction loop , as in algorithm 20. The additional last two steps of algorithm 25 can

be performed at most two more steps. Therefore, we can say that, in hardware platforms

algorithm 20 can perform better result than single partial return algorithms.

The hardest comparison without direct implementation is comparing algorithm 25 to algo-

rithm 20, for this a real implementation is required to see weather the smaller partial return

has better performance to cover the final sum and splitting or not. This implementation is out

of the research point of this thesis, and left as a future work.

When we turned to full return, again, we can conclude that full return has the best performance

by using the same arguments in Chapter 3.

5.6 Conclusion

In this chapter, we exhibited GF(pk) version of bipartite in Karatsuba approach of Saldamlı,

algorithm 22. We first exhibited non-interleaved version 21 in order to use in translation to

spectral version. With the help of DFT dictionary and previous chapters a spectral version of

algorithm 21 is demonstrated.

With our calculation we conclude that Karatsuba approach has reduced the number of multi-

plications for time domain methods. Unfortunately, the bipartite methods for GF(pk) when p

is Mersenne number and field generating polynomial is chosen as xk − 2 interleaved methods

have bad performance over the one step reduction of non-interleaved modular multiplication.

Therefore non-interleaved Karatsuba offers better results.

With our arithmetic calculation method, we concluded that the algorithm 25 has no better

arithmetic performance than the other partial return algorithms due to 3k > 2k = d multipli-

cations as others required only 2k. For the ASIC performance, as we shown in Chapter 3,

86

partial return makes a huge disadvantage.

We conclude the thesis in next chapter; Conclusions.

87

CHAPTER 6

CONCLUSIONS

In this thesis we work on the partial return spectral modular multiplication algorithms. We

presented four algorithms. Two of the algorithms, algorithm 13 & 14, for the integer modular

multiplication and other two algorithms, algorithm 15 & 16 for multiplication over medium

size characteristics fields. We calculated and compared their arithmetic performances. Also

their ASIC performances evaluated.

Arithmetic performance calculations yields out that although algorithm 13, requires full return

to time domain, it is better choice over algorithm 14 for integer modular multiplication. When

multiplication over medium size characteristics fields is considered algorithm 16 is better

choice over algorithm 15. The zero memory requirements of algorithm 15 may become a

suitable choice over algorithm 16 in some processor environments.

Our ASIC performance evaluations show that algorithm 13 & 15, which require full return to

time domain have better performance than partial return algorithms. Interestingly, although

algorithm 16 has better arithmetic performance over algorithm 15, its ASIC performance is

worse than its rival.

We conclude with a final remark; all algorithms are designed to start from spectral domain

and complete the result in spectral domain too. When ASIC implementations are considered

there must be some DFT implementations. Algorithm 13 & 15 can take this implementations

to require less area beside with the increase of network.

The Spectral standard modular multiplication algorithms (algorithms 17 and algorithm 18)

can be a better choice over Baktır’s algorithm, algorithm 16. The new algorithm removes the

the over thread of Montgomery domain.

88

The polynomial bipartite modular multiplication algorithm has no advantage over standard

polynomial modular multiplication if one step reduction is performed with special modulus.

If modulus is not special polynomial bipartite still will not have advantage over single or

multicore cpu environments due to carry free arithmetic of polynomials. In hardware envi-

ronments, it will advantage if modulus is not in special form. However, bipartite approach

will need more are in hardware environments, and implementation of two algorithms.

When we turned our attention to spectral bipartite, it does not have arithmetic improvements

over the other spectral modular multiplication algorithms, namely algorithm 17, algorithm 18

and algorithm 16. In hardware environments, it will have speed improvements that is not as

high as two times. As time domain polynomial bipartite, the are requirements will be larger

too.

we exhibited GF(pk) version of bipartite in Karatsuba approach of Saldamlı, algorithm 22 to

polynomial modular multiplication. We first exhibited non-interleaved version 21 in order to

use in translation to spectral version. With the help of DFT dictionary and previous chapters

a spectral version of algorithm 21 is demonstrated.

With our calculation we conclude that Karatsuba approach has reduced the number of mul-

tiplications for time domain methods. Unfortunately, the bipartite methods for GF(pk) when

p is Mersenne number and field generating polynomial is chosen as xk − 2 interleaved meth-

ods fails over the one step reduction of non-interleaved modular multiplication. Therefore

non-interleaved Karatsuba offers better results.

With our arithmetic calculation method, we concluded that the algorithm 25 has no better

arithmetic performance than the other partial return algorithms due to 3k > 2k = d multipli-

cations as others required only 2k. For the ASIC performance, as we shown in Chapter 3,

partial return makes a huge disadvantage.

89

REFERENCES

[1] ANSI X9.62-2001, Public key cryptography for the financial services industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography, 2001, Draft Version.

[2] Baktır, S., Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptogra-
phy, Electrical and Computer Engineering Department, Worcester Polytechnic Institute,
Worcester, MA, USA, April, 2008.

[3] Baktır, S., Kumar, S., Paar, C. and Sunar B., A State-of-the-art Elliptic Curve Crypto-
graphic Processor Operating in the Frequency Domain, Mobile Networks and Applica-
tions (MONET), Volume 12, number 4, Springer, pp. 259-270, September, 2007.

[4] Blahut, R. E., Fast Algorithms for Digital Signal Processing, Addison-Wesley publish-
ing Company , 1985.

[5] Bunimov, V. and Schimmler, M., Area and time efficient modular multiplication of large
integers, Proceedings of the Application-Specific Systems, Architectures, and Proces-
sors, 2003.

[6] Cooley, J. W. and Tukey, J. W. An Algorithm for the Machine Calculation of Complex
Fourier Series, Mathematics of Computation, 19:297 - 301, 1965.

[7] Crandall, R., Dilcher, K. and Pomerance, C., A Search for Wieferich and Wilson Primes,
Mathematics of Computation, 66(217):433-449, 1997.

[8] Diffie, W. and Hellman, M. E., New Directions in Cryptography, IEEE Transactions on
Information Theory, IT-22:644 - 654, 1976.

[9] ElGamal, T., A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms, IEEE Transactions on Information Theory, IT-31(4):469 - 472, 1985.

[10] IEEE, P1363: Standard specifications for public-key cryptography, November 12, 1999,
Draft Version 13.

[11] Kaihara,M. E. and Takagi, N., Bipartite modular multiplication, CHES 2005, Lecture
Notes in Computer Science, No. 3659. 2005, pp. 201-210, Springer-Verlag.

[12] Kaliski Jr., B.S., The Montgomery Inverse and Its Applications, IEEE Trans. Computers,
vol. 44, no. 8, pp. 1,064-1,065, Aug. 1995.

[13] Karatsuba, A. and Ofman, Y., Multiplication of multidigit number on automata, Soviet
Physics Doklady(English translation), pp. 595-596, volume 7, number 7, year 1963.

[14] Knuth, D. E., The Art of Computer Programming - Seminumerical Algorithms, Addison-
Wesley, Reading, Massachusetts, 2nd edition, 1981.

[15] Koblitz, N., Elliptic curve cryptosystems, Mathematics of Computation, vol. 48, pp.
201-209, 1987.

90

[16] Koblitz, N., A Course in Number Theory anc Crptography, Second Edition, Springer
,1994.

[17] Koç, Ç. K. and Acar, T., Montgomery multiplication in GF(2k), Designs, Codes and
Cryptography, volume 14, number 1, pp. 57-69, april 1998.

[18] Koren, I., Computure Arithmetic Algorithms, Second Edition, A. K. Peters Natick, Mas-
sachusetts, 2001.

[19] Lee, M-K., Kim, K. T., Kim, H. and Kim, D. K., Effcient Hardware Implementation
of Elliptic Curve Cryptography over GF (pm), In Proceedings of the 6th International
Workshop on Information Security Applications (WISA 2005), volume 3786 of Lecture
Notes in Computer Science (LNCS), pp. 207-217. Springer, 2006.

[20] Lidl, R. and Niederreiter,H., Finite Fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley, Reading, Massachusetts, USA, 1983.

[21] McEliece, R. J., Finite Fields for Computer Scientists and Engineers, Kluwer Academic
Publishers, 2nd edition, 1989.

[22] Menezes, A., Oorschot, P. van and Vanstone, S., Handbook of Applied Cryptography,
Handbook of Applied Cryptography, CRC Press, 1997.

[23] Miller, V., Use of elliptic curves cryptography, in Advances in Cryptology, Proc.
Crypto’85, LNCS 218. 1986, pp. 417-426, Springer-Verlag.

[24] Montgomery, P. L., Modular Multiplication without Trial Division, Mathematics of
Computation, 44(170):519 - 521, April 1985.

[25] Naussbaumer, H. J., Fast Fourier Transform and Convolution Algorithms, Springer,
Berlin, Germany, 1982.

[26] Öztürk, E., Sunar, B. and Savaş, E., Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic., In Proceedings of the Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES 2004), volume 3156 of Lecture Notes in Computer
Science (LNCS), pp. 92-106. Springer, 2004.

[27] Pollard, J. M., The Fast Fourier Transform in a Finite Field., Mathematics of Computa-
tion, 25:365-374, 1971.

[28] Pollard, J. M., Implementation of number theoretic transform, Electronics Letters vol-
ume 12, number 15, pp. 378-379 , jul 1976.

[29] Rivest, R. L., Shamir, A. and Adleman, L., A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, vol. 21, no. 2, pp. 120 -
126, Feb. 1978.

[30] Saldamlı, G., Spectral Modular Arithmetic, Department of Electrical and Computer En-
gineering, Oregon State University, May 2005.

[31] Saldamlı, G., Baek, Y.J., Karatsuba and Bipartite Modular Reduction, pre-print.

[32] Satoh, A. and Takano, K., A scalable dual-field elliptic curve cryptographic processor,
Computers, IEEE Transactions on, 52(4):449- 460, April 2003.

91

[33] Schönhage, A. and Strassen, V., Schnelle multiplikation grosser zahlen, Computing ,
volume 7, pp. 281-292, 1971.

[34] Sklansky, J., Conditional Sum Addition Logic, Transactions of the IRE, EC-9(2):226 -
230, June 1960.

[35] Tenca, A. F. and Koç, Ç. K., A word-based algorithm and scalable architecture for
Montgomery multiplication, in Lecture Notes in Computer Science, No. 1717. 1999, pp.
94-108, Springer-Verlag.

[36] Todorov, G., Tenca, A. and Koç, Ç. K. , High-radix design of a scalable modular mul-
tiplier, in Lecture Notes in Computer Science, No. 1717. 2001, pp. 189-206, Springer-
Verlag.

[37] Wallace, C. S., A Suggestion for a Fast Multiplier, IEEE Transactions on Electronic.
Computers, EC-13:14-17, February 1964.

[38] Zimmermann, R., Efficient VLSI implementation of modulo (2n± 1) addition and multi-
plication, in Proceedings of the 14th IEEE Symposium on Computer Architecture, 1999,
pp. 158-167.

92

APPENDIX A

NOTATION

notation simple definition

(a)b a number in base b

GF(q) Finite field with q elements

a(x),b(x) for arbitrary polynomials

f (x) field generating polynomial

am(x) monic form of polynomial a(x)

an(x) normal form of polynomial a(x)

A transform pair of (a) and/or a(x)

B transform pair of (b) and/or b(x)

t a constant in the base field,
mostly ±2 for f (x) = xk ± t

p a prime

q power of p

k power of the p for the extension field GF(pk)

d DFT length

gcd Greatest Common Divisor

mod modular

� point multiplication

∗ convolution

DFT Discreate Fourier Transform

FFT Fast Fourier Transform

R for Montgomery multiplier

O Big O notation

coe f (a(x), i) coefficient of a(x) at position i

93

lcoe f leading coefficient

notation simple definition

ω as a root of unity

partial return(A, n) calculation of the nth time coefficient of A.

encoding encoding of an integer...

decoding decoding of a polynomial...

mi(x) defined as : mi(x) = 2im(x)

Mi defined as : DFT (mi(x))

Ω the positive power sequence of ω

Γ the negative power sequence of ω

94

APPENDIX B

PARAMETER FOR MERSENNE NUMBER TRANSFORM

Table B.1: Parameters of MNT for 216 < q < 2128

ring
prime factors ω

MNT
ω

MNT

Zq length length

217 − 1 131071 2 17 −2 34

219 − 1 524287 2 19 −2 38

223 − 1 47 · 178481 2 23 −2 46

229 − 1 233 · 1103 · 2089 2 29 −2 58

231 − 1 2147483647 2 31 −2 62

237 − 1 223 · 616318177 2 37 −2 74

241 − 1 13367 · 164511353 2 41 −2 82

243 − 1 431 · 9719 · 2099863 2 43 −2 86

247 − 1 2351 · 4513 · 13264529 2 47 −2 94

253 − 1 6361 · 69431 · 20394401 2 53 −2 106

259 − 1 179951 · 3203431780337 2 59 −2 118

261 − 1 2305843009213693951 2 61 −2 122

267 − 1 193707721 · 761838257287 2 67 −2 134

271 − 1 228479 · 48544121 · 212885833 2 71 −2 142

273 − 1 439 · 2298041 · 9361973132609 2 73 −2 146

This table is simplified from Saldamlı’s work [30].

95

APPENDIX C

THE TABLE OF EFFICENT CASES xk − 2

Table C.1: The table of Efficent Cases xk − 2

Mersenne prime deg(f (x)) d ω equivalent binary field size

213 − 1 11 26 −2 ∼ 2143

213 − 1 12 26 −2 ∼ 2156

213 − 1 13 26 −2 ∼ 2169

217 − 1 9 17 2 ∼ 2153

217 − 1 11 34 −2 ∼ 2187

217 − 1 12 34 −2 ∼ 2204

217 − 1 13 34 −2 ∼ 2221

217 − 1 14 34 −2 ∼ 2238

217 − 1 15 34 −2 ∼ 2255

217 − 1 16 34 −2 ∼ 2272

217 − 1 17 34 −2 ∼ 2289

219 − 1 12 38 −2 ∼ 2228

219 − 1 13 38 −2 ∼ 2247

219 − 1 14 38 −2 ∼ 2266

219 − 1 15 38 −2 ∼ 2285

219 − 1 16 38 −2 ∼ 2304

219 − 1 17 38 −2 ∼ 2323

219 − 1 18 38 −2 ∼ 2342

219 − 1 19 38 −2 ∼ 2361

231 − 1 11 31 2 ∼ 2341

231 − 1 12 31 2 ∼ 2372

231 − 1 13 31 2 ∼ 2403

This table is simplified from Baktır’s work [2].

96

VITA

PERSONAL INFORMATION

Surname,name : Akın, İhsan Haluk

Nationality : Turkish

Date and Place of Birth: 25 July 1975 , İstanbul

Marital Status: Single

Phone: +90 532 202 27 77

email: ihsan akin@yahoo.com

EDUCATION
Degree Institution Year of Graduation

MS Sabancı University 2002

BS METU Mathematics 1999

High School Ahmet Rasim High School, İstanbul 1992

WORK EXPERIENCE
Year Place Enrollment

2007 - 2008 Embedding Design Center / Eczacıbası Embedded Design Expert

2005 - 2007 İstanbul Commerce University Expert

1999 - 2005 TUBITAK / UEKAE Reseacher

FOREIGN LANGUAGES

Advanced English

HOBBIES

Photography, Reading.

97

