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ABSTRACT

TIME MEMORY TRADE OFF ATTACK ON SYMMETRIC CIPHERS

Saran, A. Nurdan

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

February 2009, 94 pages

Time Memory Trade Off (TMTO) is a cryptanalytic method that aims to develop an attack

which has a lower memory complexity than lookup table and a lower online time complex-

ity than exhaustive search. TMTO methods are widely studied in the literature and used for

inverting various cryptosystems. We focus on the design and the analysis of TMTO on sym-

metric ciphers in this thesis. Firstly, the summary of the random mapping statistics from the

view point of TMTO is presented. We also recalculate some expected values with a sim-

pler approach than the existing proofs. Then, we propose some variant constructions and

also present three new distinguishers based on random mappings. Next, we provide a de-

tailed analysis of the success rate of two main improvements of the attack; Distinguished

Point Method and Rainbow Method. Finally, we discuss the adjustment of the parameters to

achieve a high success rate. To support our theoretical framework, we also present empirical

results of our analysis to actual ciphers.

Keywords: Time Memory Trade Off, Success Rate, Random Mappings, Symmetric Key,

Cryptanalysis
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ÖZ

SİMETRİK ŞİFRELER ÜZERİNE ZAMAN HAFIZA ÜLEŞİMİ ATAĞI

Saran, A. Nurdan

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Şubat 2009, 94 sayfa

Zaman Hafıza Üleşimi (ZHÜ), amacı başvuru tablosundan daha az hafıza kullanan ve tam

kapsamlı aramadan daha az zaman harcayan saldırılar geliştirmek olan bir kriptanaliz yöntemidir.

ZHÜ literatürde geniş ölçüde çalışılmış ve bir çok kriptosistemin kırılmasında kullanılmıştır.

Bu çalışmada, simetrik şifrelerin tasarım ve analizleri üzerine odaklanılmıştır. Öncelikle, rast-

lantısal dönüşümlerin istatistiksel özellikleri göz önünde bulundurularak bu methodun uygu-

lanmasında gerekli olan bazı parametrelerin beklenen değerleri daha önce verilen yöntemlerden

daha basit bir yaklaşımla yeniden hesaplanarak listelenmiştir. Bilinen tekniklere bazı yeni

yapılandırmalar önerilmiş ve rastlantısal dönüşümler üzerinde üç yeni belirleyici tanımlanmıştır.

Daha sonra, atağın iki önemli iyileştirmesi olan gökkuşağı (Rainbow) yöntemi ve ayırt edilmiş

nokta (Distinguished Point) yöntemlerinin başarı oranları ayrıntılı olarak analiz edilmiştir.

Bu sonuçları kullanarak yüksek başarı elde edilebilmesi için parametrelerin nasıl seçilmesi

gerektiği üzerinde tartışılmıştır. Yaptığımız teorik çalışmaları desteklemek için güncel şifre

algoritmaları üzerinde deneysel sonuçlar sunulmuştur.

Anahtar Kelimeler: Zaman Hafıza Üleşimi , Başarı Oranı, Simetrik Anahtar, Kriptanaliz
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CHAPTER 1

INTRODUCTION

The expansion of worldwide communications and an explosive growth of the digital storage

make information more vulnerable to misuse, and require adequate security. Cryptography is

the art of science concerning to provide information security in the digital world. Indeed, the

protection of new communication systems has been the emphasis of cryptography throughout

much of its history.

Information security has three main aspects: authenticity, confidentiality and data integrity.

Authenticity aims to ensure the identity of two parties entering into communication. Confi-

dentiality means keeping the content of information from unauthorized person. Data integrity

aims to verify that the information have not been modified by unauthorized person.

When a sender (usually called Alice) wants to send a message to a receipt (Bob), she applies

a mathematical transformation, E(), to the plaintext, P. This process of converting ordinary

information (plaintext) into some unreadable form ciphertext, C, is called encryption. And it

is shown as C = E(P). Bob will decrypt the ciphertext by applying the inverse transformation

which is called decryption.

The cryptographic primitives (tools) may be divided into two categories: keyed and unkeyed

primitives as shown in Figure 1.1. Hash functions, secret sharing schemes, and compression

functions may be listed as examples of unkeyed primitives. Keyed cryptosystems may be

classified into two sub categories: Public Key cryptography and Symmetric Key (Secret Key

/Private Key) cryptography.

In Public Key Cryptosystems each party has a pair of key which are called public, e, and

private keys, d. The encryption key e does not need to be kept secret. The main idea which lies

1



Figure 1.1: Cryptographic Primitives

behind public key cryptography is that given e, it is infeasible to determine the corresponding

decryption key d. Public keys are used for digital signatures, key exchange protocols, etc.

In Symmetric Key Cryptosystems the two parties communicating over distrusted channel share

a private key, k. There are two types of symmetric key cryptosystems: stream ciphers and

block ciphers. Block ciphers are encryption algorithms that transform n bit blocks into n bit

blocks. On the other hand, stream ciphers may be described as keyed generators of pseudo

random sequences over a finite alphabet. In this study, we focus on analysis of symmetric key

cryptosystems. The following section describes basic concepts related to this study.

1.1 Symmetric Key Cryptography

1.1.1 Block Ciphers

A block cipher is an algorithm to encrypt n-bit plaintext blocks to m-bit ciphertext blocks;

in most of ciphers, m = n and called the block length. It is parameterized by a random

k-bit key K ∈ K . For a unique decryption, once key K is fixed, the encryption function

must be a bijection. The most usual block lengths for existing block ciphers are n = 64

and 128 bits. Modes of operations are used (See [27]) for plaintext messages exceeding one

block in length. Block ciphers have been used as standards, such as DES (Data Encryption

Standard, AES (Advanced Encryption Standard). Several famous block ciphers are also used

in cryptography, such as IDEA, RC5, MISTY1 and KASUMI.

2



1.1.2 Stream Ciphers

A stream cipher is an algorithm to encrypt individual plaintext alphabet, usually the binary

alphabet {0,1}, one at a time. Classical stream ciphers mostly produce one output bit on

each clock. However, word-oriented stream ciphers encrypt the plaintext as bytes or larger

units. A stream cipher may be thought as a cryptographically secure pseudo random number

generator. Stream ciphers are generally faster than block ciphers and they have less hardware

complexity. The main idea which lies behind the stream ciphers based on the One Time Pad

(OTP) method.

One Time Pad / Vernam Cipher over the binary alphabet is defined by ci = mi ⊕ ki for

i = 1, 2, 3, . . . , where m1,m2,m3, . . . are the plaintext bits, k1, k2, k3, . . . are the key bits,

c1, c2, c3, . . . are the ciphertext bits, and ⊕ is the XOR function (bitwise addition modulo

2). Shannon proved that if the key bits are generated independently and randomly, the Ver-

nam cipher is unconditionally secure against a ciphertext-only attack (See 1.1.3). It should

be noted that the keystream should be as long as the ciphertext. This is the drawback of OTP,

since it is difficult to distribute and manage such a key. The idea behind the design of stream

ciphers is to generate keystream bits pseudo randomly from a smaller secret key.

1.1.3 Security Analysis of Symmetric Ciphers

A cryptosystem should be secure even if everything about the system, except the key, is known

by the attacker. This was firstly stated by Auguste Kerckhoffs in the 19th century.

Kerckhoffs’ Principle : The cryptosystem should be secure even if the attacker knows all

details of the encryption algorithm, except the secret key. This section presents various crypt-

analytic attack scenarios.

Cryptanalytic Attack Scenarios

• Ciphertext Only Attack:

The attacker has only access to ciphertext.

• Known Plaintext Attack:

The attacker has access to both plaintext and ciphertext pairs.

3



• Chosen Plaintext Attack:

The attacker has ability to choose the plaintexts and to obtain the corresponding plain-

texts.

• Chosen Ciphertext Attack:

The attacker has ability to choose the ciphertext and to obtain the corresponding cipher-

text under an unknown key.

• Adaptive Chosen Plaintext/Ciphertext Attack:

The attacker has access to a number of ciphertexts/plaintexts to be decrypted/encrypted,

and then uses the results of these decryptions/encryptions to select subsequent cipher-

texts.

The efficiency of attack depends on the amount of ciphertexts/plaintexts required.

1.2 One way Functions

One way functions are functions that are easy to compute (in polynomial time) but it is hard

to invert. By inversion of a one way function we mean that no polynomial-time algorithm can

compute a preimage of a given point, if there exists any.

1.2.1 Some Generic Attacks on One-way Functions

Generic Attacks consider the encryption function as a black box, and they are not interested

in the construction details of encryption function. Exhaustive search, lookup table and time

memory trade off are examples of generic attacks.

Exhaustive Search

Exhaustive search is a method to find a pre-image of a one way function. It is the simplest

attack against a cryptosystem in which all possible keys are tested in order to find a proper

key. An encryption scheme may be broken by decrypting a fixed ciphertext with trying all

possible keys and discarding keys that does not yield the known plaintext.

4



For a stream cipher, if attacker has a keystream generated by an unknown key, he simply tries

all possible keys (or internal states), and compares the result with the known keystream. If a

stream cipher has n bit internal state, the exhaustive search will take less computational steps

than 2n. Therefore, for a valid attack, the attack complexity must be less than 2n.

Exhaustive searching consumes an excessive time. When attack has to be carried multiple

times, it is not an efficient algorithm.

Lookup Tables

Lookup Table replaces a runtime computation with a simple table construction. A table is

constructed containing all possible outcomes (ciphertexts) and corresponding incomes (keys).

This method may be another solution to invert a one-way function. But in this situation, it

requires extreme amounts of memory for a function acting on large sets.

Time Memory Trade Off

Time Memory Trade Off (TMTO) is a method combining Exhaustive Search and Lookup

Table methods. The aim of the method is to mount an attack which has a lower memory

complexity than lookup table and a lower online time complexity than exhaustive searching.

Basically, the attack may be summarized as following:

Let a oneway function be f : X → X.

1. The attacker prepares a table of size M. He is allowed to prepare tables with in time, P.

2. Given a target point c0 ∈ X , utilizing his table, the attacker searches x ∈ X satisfying

f (x) = c0 within time T among the values in his table.

There are mainly two phases in TMTO; offline (precomputation) and online. In Step 1 (called

as Precomputation/Offline Phase), a table is constructed as in Lookup Table Method, but all

table is not stored, only a partial data is stored. In Step 2 (Online Phase), given a point, the

preimage is searched over this precalculated table. The precomputation time, P, is still on the

order of exhaustive searching, the trade off is between M and T where M represents memory

complexity and T represents online time complexity.
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1.3 Outline and Main Contributions of This Thesis

Inverting a oneway function has an important role in the security of most encryption schemes.

For instance, under a fixed key, a block cipher is a oneway function which maps a (secret)

key to the ciphertext.If an efficient way can be found to invert this map, this will imply totally

breaking down the encryption system. TMTO is a probabilistic method to invert a oneway

functions. In most cases, it is a theoretical attack since the precomputation time exceeds the

exhaustive searching. However, it is an important countermeasure for designers when security

of symmetric ciphers are taken into consideration.

In this thesis, we study the design and analysis of TMTO attacks. We also study in detail

the statistical behaviors of random mappings (also permutations) which affects the selection

of parameters for trade off attacks. In Chapter 2, we present the summary of the random

mapping statistics from the view point of TMTO. We also recalculate some expected values

with a simpler manner than the existing proofs. In addition, we present a comprehensive

survey of the TMTO attacks on symmetric ciphers in Chapter 3. In the literature, TMTO

also occupies a place in both hash functions (as herding attacks) and asymmetric ciphers, but

these are out of the scope of thesis. Some variant constructions of TMTO are also presented

in Chapter 3. We propose a variant method which is based on distinguished point method.

Our construction has a high success rate when one way function is a random permutation.

We provide a technique to prepare a Perfect Hellman table. Besides, we propose to use a

threshold which prevents to eliminate waste of nonmerging chains by a load of memory. In

Section 3.5, three new distinguishers are given which not only distinguish a keytsream of a

cipher from a truly random sequence but also consider the feasibility of TMTO method. There

is no precise guideline in the literature that points out how to choose parameters for Hellman

and two main improvements; Distinguished Point(DP) Method and Rainbow Method. In the

subsequent chapter, we present a detailed analysis of the success rate of Hellman table via

new parameters and also show how to choose parameters to achieve a higher success rate.

The results are also experimentally confirmed. Hellman’s TMTO Curve is discussed. And

we discuss the average length of a chain when we use distinguished points as endpoints. We

calculate the average length of a chain, and also the number of left chains after elimination

which naturally allows us to derive a formula regarding the overall success rate of the method.

We study on the coverage of a Rainbow table and show that no matter how the parameters are
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chosen, coverage remains the same. As the success probability of a trade off algorithms play

an important role in any comparison between trade offs algorithms or in their practical use, we

give more simple and accurate formulas for three trade off algorithms which yields choosing

robust optimal parameters. Then, we compare the three methods applying A5 stream cipher.

Concluding remarks are given in Chapter 5.
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CHAPTER 2

RANDOM MAPPINGS

2.1 Introduction

Random mappings are functions from a finite set of n elements onto m elements. This chapter

introduces the random mapping statistics from the view point of TMTO method. They are

widely used in combinatorial problems. Various characteristics of random mappings have

been studied in [2, 44, 33, 45]. TMTO deals with functions from a finite set of n elements

onto n elements. Let X denote the finite domain of size n and Fn denote the collection of

all functions ( f ) from domain X into range X . We will consider only random mapping

model where every function from Fn is chosen equally likely. Statistical behaviors of both

random mappings and random permutations are summarized. They have a great importance

when choosing the parameters of TMTO method. In this chapter, the expected values for ρ

length and cycle length and resulting tail length are calculated with a different approach. This

approach yields more simpler and intelligible calculations than the presented calculations.

We also give the number of points with exactly i-preimages. This chapter is organized as

follows. First, we describe the terms in graph representation of functions with an example of

size n = 26. Then, the probability distributions and expected values of some random mapping

properties are given and the statistics of random mappings in the literature are summarized in

Section 2.3. Finally, the statical behaviors of random permutations are given in Section 2.4.

2.2 Graph Representation of Functions

Let f be a function, f : X → X, where X denote the finite domain of size n and let Fn denote

the collection of all functions where every function is equally likely to be chosen. So the
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sample space consists of nn random mappings, in other words, the probability that a particular

function ( f ) from Fn is chosen is
1
nn .

Starting from a point x0 ∈ X and iteratively applying f , the following sequence is obtained;

{x0, f (x0), f 2(x0), . . .}. (2.1)

The kth iteration of f on X, where 0 ≤ k ≤ n will be f k(x0) = f ( f k−1(x0)) where f 0(x0) = x0.

For some k ≥ 0 if f k(x0) = y then we call y, a kth image of x0 in f . For k < 0, f k(x0) may not

exist, which we will call terminal nodes, (in other words, a node may have no inverse image)

or may not be uniquely determined (more than one inverse which cause a false alarm from

the view point of TMTO). A random mapping, f can be represented by a functional graph.

Definition 2.2.1 A functional graph of a function f : X → X is a directed graph whose nodes

are the elements of X and whose edges are the ordered pairs (x, f (x)), for all x ∈ X .

In Figure 2.1, the typical behavior of an iteration operation is given. Since the set X is finite,

after some iterations, we will encounter a point that has occurred before. Let f m(x0), 0 ≤ m ≤

n− 1 be the point that the iteration enters a loop. Then, f m(x0) = f k( f m(x0)), k is the smallest

positive integer which we call the cycle length. The path between x0 and f m(x0) is called the

tail length. The sum of the tail length and cycle length is defined as the ρ-length.

x0
xm

Figure 2.1: Functional Graph
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Example 2.2.2 Consider a random function for n = 26 is prepared as in Table 2.1.

Table 2.1: A Random Function

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f (x) 15 63 59 53 53 51 5 12 32 43 60 13 48 16 61 54

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
f (x) 4 57 11 35 28 62 36 62 22 61 27 1 16 36 17 43

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
f (x) 15 59 10 61 22 2 60 9 19 59 19 41 57 14 45 38

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
f (x) 22 4 48 3 62 51 36 22 54 39 40 24 20 23 45 23

The functional graph will be as in Figure 2.2.

Figure 2.2: A Directed Graph of a Random Function

Random mapping properties of this function may be listed as follows:

Number of components = 3

Number of cyclic nodes = 10
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Number of nodes which has k preimages:

k 0 1 2 3 4
number of nodes 24 23 12 4 1

For instance, for a point x0 = 43, the length of the tail is 3, and the length of the cycle is 2

then the rho length is 5.

2.3 Random Mapping Statistics

The results of the statistical behaviors of random mappings (See [33, 30, 44, 45, 52, 2]) are

summarized in the following theorems. Although the expected values of random mappings

are widely studied in the literature, we calculate the expected values for ρ length and cycle

length and resulting tail length with a simpler approach.

Theorem 2.3.1 The expected ρ-length for a random mapping of n elements is given as

E(ρ − length) =

√
πn
2
.

Proof. The probability distribution of the ρ-length is:

Pr(ρ − length = k)
(n − 1)!
(n − k)!

k
nk (2.2)

Since

Pr(ρ − length = 1) =
1
n

Pr(ρ − length = 2) =
n − 1

n
2
n

Pr(ρ − length = 3) =
n − 1

n
n − 2

n
3
n

. . .
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Then the expected value of ρ-length is

E(ρ − length = k) =

n∑
k=0

(n − 1)!
(n − k)!

k2

nk by writing k → n − k

=
(n − 1)!

nn

n∑
k=0

(n − k)2

k!
nk

=
(n − 1)!

nn

n2
n∑

k=0

nk

k!
− 2n

n∑
k=0

nkk
k!

+

n∑
k=0

k2nk

k!



Let Y1 =

n+1∑
k=0

nk

k!
, Y2 =

n+1∑
k=0

nkk
k!

, Y3 =

n+1∑
k=0

nkk2

k!
and define

F(x) =
enx

2
thus F(x) =

∞∑
k=0

nkxk

k!
then Y1 ≈ F(1)

F′(x) =
nenx

2
thus F′(x) =

∞∑
k=0

knkxk−1

k!
then Y2 ≈ F′(1)

F′′(x) =
n2enx

2
thus F′′(x) =

∞∑
k=0

k2nkxk−2

k!
−

knk

k!
then Y3 ≈ F′′(1) + F′(1)

E(k) =
n!
nn

[(
n2

)
en − 2n(nen) + n2en + nen

]
�

n!
nn

en

2
=

√
πn
2
.

�

Theorem 2.3.2 The expected cycle-length for a random mapping of n elements is given as

E(cycle − length) =

√
πn
8
.

Proof.

Pr(cycle − length = k) =

n∑
j=k

(n − 1)!
(n − j)!n j (2.3)
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E(cycle − length = k) =

n∑
k=0

n∑
j=k

(n − 1)!
(n − j)!n j k

=

n∑
j=1

(n − 1)!
(n − j)!n j + 2

n∑
j=2

(n − 1)!
(n − j)!n j + . . . +

(n − 1)!
nn

=
1
2

n∑
j=0

(n − 1)!( j + 1) j
(n − j)!n j

=
(n − 1)!

2

n∑
j=0

( j + 1) j
(n − j)!n j by writing j→ n − j

=
(n − 1)!

2nn

n∑
j=0

(n − j)(n − j + 1)
j!n− j

=
(n − 1)!

2nn

(n2 + n)
n∑

j=0

n j

j!
− (2n + 1)

n∑
j=0

n j j
j!

+

n∑
j=0

j2n j

j!


=

(n)!
2nn

en

2
=

√
πn
8
.

�

Since E(ρ− length) = E(cycle− length) + E(tail− length), then E(tail− length = k) =

√
Πn
8
.

Theorem 2.3.3 The number of points with exactly i-preimages is

P(i) ≈
n

e.i!
.

Proof. The probability that a point, x, has i preimages is

P(i) =

 n

i


(
1
n

)i (n − 1
n

)n−i

The probability that n points have i preimages is

P(i) = n

 n

i


(
1
n

)i (n − 1
n

)n−i

For i = 0,

P(0) = n
(
n − 1

n

)n

≈
n
e
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For i = 1,

P(1) = n
n

n − 1

( n
n − 1

)n
≈

n
e

...

P(i) ≈
n

e.i!
.

�

The above result is also given by [54]. Number of terminal points (number of points which

has no preimages) is P(0) =
n
e

. Therefore, number of images points are n−P(0) = (1− e−1)n.

Theorem 2.3.4 The expected values for a random mapping are given as[30]-[33]

(i) Number of components =
ln(n)

2

(i) Number of terminal nodes = e−1n ≈ 0, 3679n

(ii) Number of image nodes = (1 − e−1)n ≈ 0, 6321n

(iii) Average cycle length =

√
πn
8
≈ 0, 6267

√
n

(iv) Average tail length =

√
πn
8
≈ 0, 6267

√
n

(v) Averageρlength =

√
πn
2
≈ 1, 2533

√
n

(vi) Average component size =
2n
3

(vii) Maximum cycle length = 0.78248
√

n

(viii) Maximum tail length = 1.73746
√

n

The last two items are given in preprint, ”Mapping the discrete logarithm” , by Joshua Holden

and Daniel R. Cloutier. Some empirical examples for n = 28, 210, 212, 213 are presented in

Table 2.2 and 2.3.
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Table 2.2: Empirical Results for n = 28, 210

n = 28 n = 210

Calculated Empirical Calculated Empirical
Components 3 5 3 4 4 6
Cyclic Nodes 20 44 24 40 19 30
Terminal Nodes 95 93 91 379 373 369
Av. Tail Length 10 6.96 8.7 20 26.09 28.57
Av. Cycle Length 10 8.8 8 20 4.75 5
Av. Rho Length 20 15.8 15.8 40 30 33.6

Table 2.3: Empirical Results for n = 212, 213

n = 212 n = 213

Calculated Empirical Calculated Empirical
Components 4 7 11 3 5 3 3
Cyclic Nodes 80 72 132 62 113 63 70
Terminal Nodes 1516 1532 1513 1516 3031 3021 2994
Av. Tail Length 40 34.29 18.45 35.36 57 73 55.7
Av. Cycle Length 40 10.28 12 20.66 57 21 10
Av. Rholength 80 44.7 20.45 55.36 113 94 65.7

2.4 Random Permutations

Permutations have the unary functional graphs that the sum of in-degrees must be the same as

the sum of the out-degrees. Each node must have exactly one inverse. There are no terminal

nodes and tail nodes as in Figure 2.3. This also shows that every node is in a cycle.

Figure 2.3: Functional Graph of a Random Permutation

Let α(n) be the number of cycles in a permutation. Then we have

Pr(α(n) = j) =
S j

n

n!

where S j
n, 1 ≤ j ≤ n is the Stirling number of first kind [45].
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Let Ln be the expected length of the longest cycle in a random permutation then

limn→∞(Ln/n) = 0.62432965

Theorem 2.4.1 The expected values for a random permutation are

(i) Number of components =

n∑
i=1

1
i

= Hn

(ii) Number of terminal nodes = 0

(iii) Number of image nodes = n

(iv) Average cycle length =
n + 1

2

(v) Average tail length = 0

(vi) Average ρ length =
n + 1

2

(vii) Maximum cycle length = 0.62432965n

It should be noted that the average length of the cycle is given in the above theorem is calcu-

lated by starting a random node, x0. But we can define another average by selecting uniformly

randomly from all cycles. Since #components ≈ ln n, the average cycle length of a mapping

is

Average cycle length =
n

#components
=

n
ln n

.
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CHAPTER 3

TIME MEMORY TRADE OFF

3.1 Introduction

This chapter first introduces the basic idea behind the Time Memory Trade Off (TMTO)

method proposed by Hellman [34] with an example. In subsequent sections, the method

is described in the contexts of block cipher and stream cipher, separately. There are mainly

two basic improvements of method; Distinguished Points method (DP) and Rainbow method.

In Section 3.3.1, we summarize the Distinguished Points and propose variant construction for

this method. Starting by listing the distinguished points, the table is constructed. This method

has a high coverage when it is applied on a random permutation. The number of distinguished

points is equal to memory complexity. So if the attacker has access to a high memory than

he can choose the number of distinguished points, D, greater. We also discuss the optimal

parameters in order to have a high coverage. In Section 3.3.2, Rainbow method is summa-

rized. In Section 3.3.3.1, we propose a technique which constructs a Perfect table which has

nonmerging chains. In [3] Avoine et al stated that constructing a perfect Hellman table is

not efficient since all chains have to be looked up. However it increases the precomputation

complexity, with small values of t, it is possible to have a high success rates. In both rainbow

and DP perfect tables, identical endpoints are discarded to reduce the merging chains. On the

other hand, the merge may appear in the last columns in the chain, this will reduce coverage

and waste time. As an example for a random mapping, the trade off between computation and

identical points are given. Other extensions and refinements on block ciphers such as FPGA

implementations and using multiple data are presented in this chapter. In Section 3.4, appli-

cations of trade off method on various stream ciphers such as A5, Lili-128 are examined and

also the design principles of stream ciphers for resistance to TMTO attacks are listed. In Sec-
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tion 3.5 we propose three new distinguishers which may give valuable clues when applying

TMTO method. The results in this chapter have been published in the papers [65]-[71].

3.2 Hellman’s Construction

In 1980, Hellman[34] proposed Time Memory Trade Off (TMTO) method which suggests a

trade off between time and memory by storing some pre-computed data in the memory. This

method has a lower time complexity (in online phase) than exhaustive search and a lower

memory complexity than lookup table. If the attacker has access to a large memory, the

computation time will be less. Thus, it is a probabilistic method; the success rate depends on

the time and memory allocated for cryptanalysis. This attack can be used as a known plaintext

attack. Exhaustive search consumes a lot of computing power when the same attack has to be

carried out multiple times. TMTO stores some data in memory, thus it can be carried out when

the attacker can guess some bytes of data such as password hashes. Moreover, it can also be

used as a ciphertext-only attack by waiting for repeated ciphertext blocks and assuming the

corresponding chosen plaintext.

Hellman applied TMTO on the block cipher, Data Encryption Standard (DES). For any N key

cryptosystem this method may recover key in N2/3 operations with N2/3 words of memory

after a precomputation which requires N operations [34]. He also stated that this method can

be applied to invert a one-way function. TMTO method can be summarized as follows:

Let E : K × P → C be an encryption function where C ∈ {0, 1}n, K ∈ {0, 1}k and P ∈ {0, 1}n

denote the ciphertext, the secret key and the plaintext, respectively. The encryption of one

block is written as:

c = E(x, p) or c = Ex(p)

Given c0 = E(x, p0) where p0 is a fixed plaintext and c0 is the corresponding ciphertext, the

main aim is to recover the key x ∈ K. We may assume that k = n. In some ciphers, the domain

and range size of E may not be the same length. In this situation, employing a reduction or an

expansion function R, it is possible to define Ep0◦R : K → C such that (Ep0◦R) = R(E(x0, p)).

Therefore, to generate a key from a ciphertext, we use xi+1 = R(ci) where ci = E(xi, p0) as in

Figure 3.1. For instance, DES operates on 64 bit plaintext to produce a 64-bit ciphertext under
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56 bit key. In his paper, Hellman suggested to drop the last 8 bits to reduce 64 bits ciphertext

to 56 bits.

Figure 3.1: Reduction Function

A TMTO application is composed of two phases; an offline (precomputation) phase and an

online phase. In the offline phase, the attacker constructs tables that contain possible keys;

this process is approximately equivalent to the exhaustive search but only a part of the tables

are stored. During online phase, the attacker expects to recover the particular key when the

plaintext and ciphertext are known; his aim is to reduce the time of search.

Offline Phase (Precomputation):

In the Hellman table, starting from a random x0, iteratively evaluating E ◦ R = f , a chain of

length t is generated as follows:

x0 → x1 → x2 → . . .→ xt.

To construct a Hellman table of size m× t, choosing m random start points, as shown in Figure

3.2 chains of length t are generated.

Only the first and last terms of each chain are stored to save memory. The first element of

a chain is called Starting Point (SP), and the last element is called Ending Point (EP). By

knowing the starting point, the successive elements can be recalculated in the chain. Also

the table is sorted with respect to the end points for speeding up the search in online phase.

Marginal profit of each new row is quite small when the number of rows exceeds some bound

(given in the Section 4.2.3). Therefore, rather than increasing the number of rows, it is much

more reasonable to define new tables each of which depends on new function formed by

combining the original function with some permutation (See Mask Function 3.2). By this

way, r-Hellman tables are formed. It should be noted that the chains computed using different

functions can intersect without merging.
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Figure 3.2: Hellman Table

Algorithm 3.2.1: P(void)

procedure HT( f )

for j← 0 to m − 1

do

select random S P j;

tmp← f (S P j);

for s← 0 to t − 1

do{
tmp← f (tmp);

EP j ← tmp;

store (S P j, EP j) pairs in table i, sorted with respect to end points;

main

for i← 1 to r

dochoose random Ri 3 E ◦ Ri = fi ;

HT( fi)

20



Online Phase:

For a preimage of a given ciphertext c0, our aim is trying to find out if the key is used to

generate c0 is among the one used in any of the generated tables. A chain for c0 is generated

by iteratively applying f over c0 and after each encryption, the obtained value is compared to

the endpoints of all tables. If a match is found, then from the corresponding starting point,

the whole chain is regenerated and the found key is expected to be the searched key. It should

be noted that sometimes desired key is a part of a chain that is merged with another chain of

the table, resulting false alarms (details can be found in Section 3.2.1). Therefore, the success

rate of the attack is closely related to number of distinct keys that are covered in the offline

phase.

The search in the ith table is realized as follows. Firstly, it is checked whether c0 is equal to

any points of the last column (any endpoints). If Y0 = Ri(c0) is equal to any end point EP j for

some j, 1 ≤ j ≤ m then the k j,t−1 is the desired key. Starting from S P j, after t − 1 iterations

k j,t−1 can be calculated. If Ri(c0) is not equal to any endpoints, we repeatedly apply fi at most

t times and check whether the output is equal to any endpoints. If a match is found (at sth

iteration), it may be a desired key or EP j has more than one inverse. Starting from S P j till

k j,s−1 we check whether Ri(c0) = E(k j,s−1, p0) or not.
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Algorithm 3.2.2: O(c0)

for i← 1 to r

do

if any of the EP j is equal to Ri(c0)

then



tmp← S p j;

for s← 1 to t − 1

do{
tmp← fi(tmp);

return (tmp)

else



for s← 1 to t − 1

do

if any of the EP j is equal to fi(c0)

then



tmp← S p j;

for k ← 1 to s

do{
tmp← fi(tmp); if E(tmp, p0) == c0

then return (tmp)

return ()keyisnot f ound

Mask Function

Hellman suggested to use different tables with different mask functions for decreasing the

repetitions of tables, since, different mask functions will have different cycle structures. The

definition of mask function fi, is fi(x) = Φi( f (x)) where Φi s are independent random permu-

tations. fi ’s are obtained from f by a minor modification such as permuting the output bits

of f as in Hellman’s original work on DES. It should be noted that by permuting output bits,

the cycle structure of the random mapping will not change. In the literature there are some

suggestions for the mask functions:

• Hellman suggested to permute bits, fi(x) = fi(x ⊕ i), but this construction does not

change the properties of functional graph of f (x) (only the name of nodes change).

• Φi(x) = x ⊕ i is given in [69],[61]
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• An interesting idea by Mukhopadhyay et al. is using LFSR sequences instead of coun-

ters [58]. The authors proposed to generate a sequence si of n bit vectors, by randomly

choosing a maximal length LFSR, then Φi(x) = x ⊕ si.

3.2.1 False Alarm

In online phase finding a matching endpoint does not necessarily imply that the key is in that

chain. Since fi is not injective, an EP may have more than one inverse such that the key may

be part of another chain which has the same endpoint. This is called as a false alarm. It is

caused by merges. There are two types of merges:

• There may be a cycle. Let i , j and xi = x j as in Figure 3.3

Figure 3.3: Cycle

• Two chains can merge as in Figure 3.4.

Figure 3.4: Merge

In such situations, after a collision occurs at least two chains will merge and different starting

points will end with a same endpoint. If a collision occurs in the same Hellman Table, the

corresponding starting point will not generate a chain that reaches the desired key. This is

called a false alarm. False alarms increase the online time complexity of cryptanalysis, but

they are omitted when calculating the time complexity in general usage. Since different tables

use different reduction functions, collisions do not necessarily lead to a merge. Merging

chains reduce the coverage, consequently reduce the rate of success.
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Hellman proved that the expected number of false alarms per table is

E( f alsealarm) ≤ mt(t+1)
2N

Hellman also claimed that if mt2 = N and >> 1, then the expected increase of time complex-

ity due to false alarms will be at most 50 percent, since false alarms occurs at most t opera-

tions of f and there are t tables, the expected time complexity is bounded by ≈ mt4/(2N) =

(NT )/(2N) = T/2 [8].

3.2.2 Parameters

When applying the method by means of Hellman tables the parameters in question are the

length of each chain(t), the number of chains (m), number of tables (r).

Memory complexity is the amount of memory that is necessary to store pre-computed data.

M = 2 ∗ m ∗ r ∗ m0 where M is the amount of memory; m0 is the amount of memory that is

necessary to store a start and end point (in general, it is omitted).

Time complexity is the amount of time required to perform the attack successfully. It is often

compared to exhaustive key search. In time-memory trade offs, time complexity is divided

into two parts; precomputation and online time complexities.

T = t ∗ r ∗ t0 where T is the worst case time required in online phase; t0 is the amount of

time that is necessary to evaluate the function (in general, it is omitted). False alarms are not

considered.

P = m ∗ t ∗ r where P is the time complexity required in precomputation phase. Generally, P

is not included in the attack complexity.

Data complexity (D) is the amount of data that is required to mount an attack (like ciphertexts,

known plaintexts, chosen plaintexts, ...). For block ciphers, it is accepted to be 1, but in

multiple data (See Section 3.3.4), if some plaintexts are encrypted with the same key, it is in

question to use data which is called TMDT (Time Memory Data Trade Off).

Complexity of attack is generally called for the maximum of above complexities. It is men-

tioned in [34] as ”The N operations required to compute the table are not counted because
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they constitute a pre-computation which can be performed at the cryptanalyst’s leisure.”

Effects of parameters

• t: If chosen to be too large chains will probably enter in loops which will undesirably

increase both precomputation time and online time. If it is too small, it will increase

the memory requirement.

• m: If chosen to be too large, the number of identical points will increase. If it is too

small, it is necessary to construct more tables.

• r: If it is too large, it will increase both memory and online time complexity.

Coverage

Coverage is the total number of distinct keys covered by the tables. Each table can con-

tain information at most mt distinct points. Coverage of a function f : {0, 1, ...N − 1} →

{0, 1, ...,N − 1} is the number of distinct points and is given in [34] as in the following:

Y(m, t) =
m∑

i=1

t−1∑
j=0

[(N − it)/N] j+1

Let us give some examples for N = 26, and construct Hellman tables, and discuss how to

choose its parameters. The random function used in the following sections is given Example

2.2.2 for N = 26.

Example 3.2.1 Let us take m = 23, t = 23, r = 1

3→ 53→ 51→ 3→ 53→ 51→ 3→ 53

50→ 48→ 22→ 36→ 22→ 36→ 22→ 36

60→ 20→ 28→ 16→ 4→ 53→ 51→ 3

59→ 24→ 22→ 36→ 22→ 36→ 22→ 36

49→ 4→ 53→ 51→ 3→ 53→ 51→ 3

40→ 19→ 35→ 61→ 23→ 62→ 45→ 14

12→ 48→ 22→ 36→ 22→ 36→ 22→ 36

9→ 43→ 41→ 59→ 24→ 22→ 36→ 22

There are 21 distinct points in the above table (the first column is omitted since it will not give any clue

for the key). Thus the coverage of table is 21. In general, the success rate of a table is given as the ratio
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of coverage to whole space. However, we are given a ciphertext in time memory trade offs, we mean

that we are sure that the given point has at least an inverse image. Since approximately N(1− e−1) (See

Theorem 2.3.4) points have inverse images, in our example there are 24 terminal nodes which is also

264(1 − e−1) ≈ 40 = 64 − 24. Thus, the success rate of the above table is 21/40.

Assume in online phase we are given c0. Since we have only the the tuple {S P, EP}, we are searching

if c0 is in the last column.

• Let c0 = 4 is given, it is not in the last column. Then f (c0) = 53 is in the first row, S P = 3, since

f 6(3) , 4, it is a false alarm. f 2(c0) = 51 is not in table. f 3(c0) = 3 is in table, S P = 60, since

f 4(S P) = c0 then the key is f 3(S P) = 16.

• Let c0 = 62 is given, it is not in the last column. Then f (c0) = 45 is not in table. f 2(c0) = 14 is in

table, S P = 40, since f 5(S P) = c0 then the key is f 4(S P) = 23.

• Let c0 = 27 is given, it is not in the last column. Then f (c0) = 1 is not in table. f 2(c0) = 63 is not in

table. f 3(c0) = 23 is not in table. f 4(c0) = 62 is not in table. f 5(c0) = 45 is not in table. f 6(c0) = 14 is

in table, S P = 40, since f (S P) , c0 then it is a false alarm.

• Let c0 = 53 is given, since it is an EP. It is trivial that the key is f 7(S P) = 3. However it may not be

desired key since both f (4) = 53 and f (3) = 53. But clearly, this is not expected as a false alarm.

Note: f s(c0) means the sth iteration of f that is f s(c0) = f ( f s−1(c0)) where f 0(c0) = c0.

Trying all ciphertexts, 21 ciphertexts are found, that is equal to our expectations.

For m = 22, t = 24, r = 1 , the success rate is 13/40. For m = 24, t = 22, r = 1, the success rate is

25/40. These suggest that choosing larger t causes tables to be consist of loops, choosing large m is

better but it takes a lot of memory as in lookup tables.

Since adding many rows increases the merges, Hellman suggests to use r tables. Let us look

at the example with two tables, the mask function of second table is h(x) = f (x) ⊕ 1 as in

Table 3.1.

The functional graph of h(x) will be as in Figure 3.5.

Number of terminal nodes of h(x) = 24

Example 3.2.2 Let us take m = 23, t = 22, r = 2
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Table 3.1: Mask Function, h(x) = f (x) ⊕ 1

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
h(x) 14 62 58 52 52 50 4 13 33 42 61 12 49 17 60 55

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
h(x) 5 56 10 34 29 63 37 63 23 60 26 0 17 37 16 42

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
h(x) 14 58 11 60 23 3 61 8 18 58 18 40 56 15 44 39

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
h(x) 23 5 49 2 63 50 37 23 55 38 41 25 21 22 44 22

Table1

6→ 5→ 51→ 3

56→ 54→ 36→ 22

17→ 57→ 39→ 9

22→ 36→ 22→ 36

47→ 38→ 60→ 20

49→ 4→ 53→ 51

62→ 45→ 14→ 61

46→ 45→ 14→ 61

Table2

10→ 60→ 22→ 37

42→ 18→ 10→ 61

34→ 11→ 12→ 49

56→ 55→ 23→ 63

30→ 16→ 5→ 50

60→ 21→ 63→ 22

29→ 37→ 3→ 52

3→ 52→ 63→ 22

The coverages of above tables are both 17, but the joint coverage is expected to be less than

the sum of these values that is 26 (since the intersection of two table is 8).

In the online phase, tables can be looked up in sequentially or column by column. Online

phase will be as in the following:

• Let c0 = 4 is given, c1 = 4⊕ 1 is not in the last column. Then h(c1) = 50 is in the table,

S P = 30, since f 2(S P) = c1, then the key is f (S P) = 16.

• Let c0 = 62 is given, c1 = 62⊕1 is in the last column. Then S P = 56, since h3(S P) = c1

then the key is h2(S P) = 23.

• Let c0 = 27 is given, c1 = 27 ⊕ 1 is not in the last column. Then h(c1) = 26 is not in

table. Since h(c1) = c1 ,it is trivial that key will not be found.

• Let c0 = 22 is given, c1 = 22 ⊕ 1 is not in the last column. Then h(c1) = 63 is in the

table, S P = 56, since f 2(S P) = c1, then the key is f (S P) = 55. Moreover c0 is in
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Figure 3.5: Graph Representation of h(x)

Table1. S P = 56, then the key is f 3(S P) = 36. Two keys are found, since 22 has more

than one inverse.

For whole space, in the online phase, 17 ciphertexts are found from table 1, and 17 ciphertexts

are found from table 2. The intersection is 8. Thus, the success rate of this example is 26/40,

that is approximately equal to 1 − (1 − 17
40 )2 (See Eq. 4.2).

Example 3.2.3 Let us take m = 22, t = 23, r = 2

Table1

50→ 48→ 22→ 36→ 22→ 36→ 22→ 36

60→ 20→ 28→ 16→ 4→ 53→ 51→ 3

59→ 24→ 22→ 36→ 22→ 36→ 22→ 36

49→ 4→ 53→ 51→ 3→ 53→ 51→ 3

Table2

10→ 61→ 22→ 37→ 3→ 52→ 63→ 22

42→ 18→ 10→ 61→ 22→ 37→ 3→ 52

34→ 11→ 12→ 49→ 5→ 50→ 49→ 5

56→ 55→ 23→ 63→ 22→ 37→ 3→ 52
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For whole space, in the online phase 11 ciphertexts are found from table 1, and 15 ciphertexts

are found from table 2. The intersection is 6. Thus the success rate of this example is 20/40.

This shows us that taking t larger than the expected tail length will yield tables that consists

of loops, and the success rate will decrease.

Example 3.2.4 Let us look at the example with four tables, the mask function for the tables

are h1(x) = f (x), h2(x) = f (x) ⊕ 1, h3(x) = f (x) ⊕ 2, h4(x) = f (x) ⊕ 3, respectively. m = 22,

t = 22 ,r = 22

Table1

42→ 19→ 35→ 61

41→ 59→ 24→ 22

58→ 40→ 19→ 35

10→ 60→ 20→ 28

Table2

49→ 5→ 50→ 49

45→ 15→ 55→ 23

14→ 60→ 21→ 63

29→ 37→ 3→ 52

Table3

48→ 20→ 30→ 19

21→ 60→ 22→ 38

11→ 15→ 52→ 60

39→ 11→ 15→ 52

Table4

41→ 56→ 53→ 48

60→ 23→ 61→ 20

28→ 19→ 32→ 12

38→ 63→ 20→ 31

For whole space, in the online phase, 10, 12, 9, 11 ciphertexts are found from tables, respec-

tively. The intersection is 10. Thus, the success rate of this example is 25/40.

To summarize this section, Table 3.2 gives the comparison of success rates of Hellman tables

for different parameters.
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Table 3.2: Comparison of Hellman Tables

r m t Success

1
23 23 0.525
22 24 0.325
24 22 0.625

2
23 22 0.65
22 23 0.5

22 22 22 0.625

3.2.3 Hellman’s Curve

The number of tables constructed in Hellman attack is r = t, then M = m ∗ t, T = t ∗ t. The

time required in offline phase is P = mt2 = N. Then, for a random function, trade off curve is

obtained as :

T M2 = N2 where 1 ≤ T ≤ N

Fiat and Naor [29] give a rigorous TMTO curve for inverting any one way function as

T M3 = N3

This is weaker than Hellman’s Curve, but it can be used to invert any function rather than a

truly random function.

3.3 TMTO on Block Ciphers

There are two main improvements of TMTO method; Distinguished Method and Rainbow

Method. According to [8], these are the best algorithms when the structure of f is not to be

used.

3.3.1 Distinguished Point (DP)

In 1982, Rivest suggested to use distinguished points as endpoints to reduce the number of

memory accesses. When the table is too large, memory accesses have a great expense. Rather
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than generating a fixed chain length, the chain is iterated until an endpoint that satisfies a

certain property is found. It is extensively studied in [18]-[69]-[62]-[53].

Definition 3.3.1 [18] Let K ∈ {0, 1}k and d ∈ 1, . . . k − 1. Then K is a distinguished point

(DP) of order d if there is an easily checked property which holds for 2k−d different elements

of K .

Distinguished points (DP) are the range points (keystreams /ciphertexts) that satisfy a given

criterion, for example, the last d bits are all zero. They reduce the memory accesses in the

online phase, since a search will be done only if the ciphertext (or the iterations of ciphertext)

is a distinguished point. It should be noted that the chain may enter an infinite loop if it

contains no distinguished points. Only endpoints which encountered a DP in less than t

iterations will be stored, the others will be discarded. Chains are generated until a DP is

encountered and the triple {S P, EP, length} is stored where length is the length of the chain.

If a DP is not reached until tmax iterations, that chain is discarded. Moreover, if the chain

length is less than some t, say tmin, that chain is also discarded. If same DP occurs in different

chains, the triple with maximum chain length is stored (since merging chains will have the

same endpoint). Also, the tables are sorted with respect to the endpoints.

In online phase, when given a first ciphertext (c0), keys will be generated until a distinguished

point is found, and only then looked up in the memory. This greatly reduces the number of

memory lookups. Starting by checking if c0 is a DP then it is equal to any endpoints, EP j,

the key is found by iterating S P j till length j − 1.

If c0 is not equal to any points of the last column, lookup the maximum length j, calculate

f j(c0) and check if it is a DP then check for a match in the (length j − 1)st column else take

j − 1. Check until whether c0 is in the second column of the matrix.
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Algorithm 3.3.1: PDP(void)

procedure TDP( f )

for j← 0 to m − 1

do

select random S P j;

tmp← f (S P j);

for s← 0 to t − 1

do

if (tempisaDP)

then


EP j ← tmp;

length j ← s;

break;

store (S P j, EP j, length j) tuples in table i,sorted with respect to end points.

If two chains have the same end point store the maximal length.;

main

for i← 1 to r

doChoose DP-property of order d.choose random Ri 3 E ◦ Ri = fi ;

TDP( fi)
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Algorithm 3.3.2: ODP(c0)

for i← 1 to r

do

if Ri(c0) is a DP and any of the EP j is equal to Ri(c0)

then



tmp← S p j;

for s← 1 to t − 1

do{
tmp← fi(tmp);

return (tmp)

else



length is the maximum length j of matrix;

for s← 1 to length

do

if f s
i (c0) is a DP and any of the EP j is equal to f s

i (c0)

then



tmp← S p j;

for k ← 1 to s − 1

do{
tmp← fi(tmp); if E(tmp, p0) == c0

then return (tmp)

return (keyisnot f ound)

Example 3.3.2 The random function used in this example is given Example 2.2.2 for N = 26.

Let us take d = 2 (least significant 2 bits are zero). Thus, we have D = 2n−d = 16 DP’s. For

m = 25, tmax = 24, tmin = 2. Starting from m points, we eliminate the chains which has length

less than tmin and also identical endpoints.

17→ 57→ 39→ 9→ 43→ 41→ 59→ 24

18→ 11→ 13→ 16

34→ 10→ 60

Number of remaining rows is 3. Many endpoints are discarded since search space is small,

there are many identical endpoints. For the above random graph, we may write at most 4

chains, since there are 16 DP in the graph in which 4 of them are terminal nodes. So, they do
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not have pre-images. 32, 12, 48, 40, 20, 28, 4 will cause chain lengths to be less than tmin.

Thus, the last chain may be 55→ 22→ 36. In online phase, we are waiting for a c0 which is

a DP. Since there are 2n−d distinguished points, the number of table lookups is reduced by a

factor of 2d.

Online phase will be as in the following:

• Let c0 = 40 is given, c0 is not in the last column. Then f (c0) = 19 is not a DP,

f 2(c0) = 35 is not a DP, f 3(c0) = 61 is not a DP, f 4(c0) = 23 is not a DP, f 5(c0) = 62

is not a DP, f 2(c0) = 45 is not a DP, it is not in table.

• Let c0 = 39 is given, c0 is not a DP. f (c0) = 9 is not a DP, f 2(c0) = 43 is not a DP,

f 3(c0) = 41 is not a DP, f 4(c0) = 59 is not a DP, f 5(c0) = 24 is a DP and in table. Then

S P = 17, since f 2(S P) = c0 then the key is S P = 57.

For whole space, in the online phase 12/40 ciphertexts are found from table. This example

suggests that precomputation increases rapidly when the key space is small.

Advantages of distinguished points are given in [61] as the followings:

• Reduced table lookups

In the online phase, if only a DP is encountered then the tables are searched. Table

lookups is reduced by a factor of 2d.

• Loop freeness

If no DP is encountered till tmax iterations, then the chain is suspected to contain a cycle

and it is discarded. Thus, the tables are free of loops.

• Merge freeness

Since the chains with identical endpoint are discarded in Perfect DP tables (see Section3.3.3.1,

merges will be discarded without additional cost (since tables are sorted, in any case).

Let α be the expected number of chains in a table (at most m) and β be the expected length

of a chain (at most t + 1). Since the chain length is variable and a chain is discarded when it

does not reach a DP, α and β play an important role in the success probability. An important

question is how to choose tmax and tmin, depending on the average chain length, β, and also
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number of chains in a table, α, to have a high table coverage, hence a high probability of

success. In his thesis [57], Mukhopadhyay stated that in the literature there is no precise

guideline about how to choose parameters.

Effects of parameters:

• Number of distinguished points (depends on d)

If d chosen to be too small then the memory access will increase in online phase. If

it is too large, then the number of distinguished points will decrease, the number of

identical endpoints will increase. So, in precomputation, more chains will be iterated,

but lots of them will be discarded. Moreover, probability to reach a distinguished point

will be small, than the average chain length will be high. Borst et al.[19] suggested to

choose d ≈ 1
3 k, m ≈ 2

k
3 and t ≈ 2

k
3 +3 for a success rate of 0.55. In [69] for 40 bit DES,

d is between 11 and 15. In [18] for 16 bit RC2 , d was chosen to be 5 and 6 for 20 bit

RC2 d was chosen to be 6 and 7, for 24 bit RC2 d was chosen to be 7, 8 and 9. There

is no reason why they preferred these values.

• tmin

If chosen to be too large, it eliminates lots of DP’s which will increase precomputation.

If it is too small, it will increase the memory requirement.(See Table 3.3.1)

• tmax

It should be chosen such that the probability to reach a DP in less than tmax operations

is large. It would be better to choose tmax a bit larger than average chain length. If it is

too large, it will consume a lot of time and space unnecessarily. As seen in table 3.3.1,

for instance for tmin = 23, choosing tmax larger than 29 consumes unnecessary effort.

• m

If chosen to be too large the number of identical endpoints will increase. So, as in

Hellman method, it is sensible to construct r tables with different mask functions.

It should be noted that when discarding identical endpoints since longer chains are more often

discarded then short chains which results in reduced average chain length.
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Table 3.3: Effects of tmin and tmax for Reduced Sha-1 N = 228, d=6, m = 216

tmin tmax r1 β0 r2 β1 Coverage

25

27 31240 69 29160 69 1786350
28 38858 89 33140 88 2444536
29 40051 96 33444 93 2554662
210 40051 96 33444 93 2554662

24

27 42869 56 38165 56 1988773
28 50487 74 40257 72 2593928
29 51680 79 40225 75 2690772
210 51696 80 40219 75 2692027
211 51696 80 40219 75 2692027

23

27 49828 50 43234 50 2037106
28 57446 66 44130 62 2606526
29 58639 71 43878 65 2696209
210 58655 72 43878 65 2697300
211 58655 72 43878 65 2697300

3.3.1.1 Variants of the Distinguished Point Method

The main idea of the method is eliminating the need to store the starting points so as to lessen

storage requirements, but it will decrease memory only a factor of 2. Starting from special

points iteration is done until a pattern is found [35]. For m = t = N1/3 and d = 1
3 log2N. When

creating the j − th Hellman chain of the i − th table, starting points is taken to be:

S Pi
j = (0||i|| j)

where each of the components are d bits. The chain is constructed until a point which has

the most significant d bits is found to be j and store at HTi[ j], the j − th row of i − th table.

There is no sorting since starting points are not stored, but if a special pattern is not found then

HTi[ j] will be empty. Moreover applying tmin will discard some of the chains and this will

yield empty Hellman table entries. It is stated that it is not mandatory to store chain lengths,

because it will increase the probability of false alarm, and the online complexity will increase.

They offer a solution for empty chains to use starting points of the form

S Pi
j = (τ||i|| j)

where τ is incremented every time creation of the j− th row fails, but in this case, it increases

the storage requirement.
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The second idea is applying DP to rainbow, since using DPs will vary the chain lengths, they

suggest to use different tables for every chain length.

3.3.1.2 Distinguished Point Table on Permutations

We construct tables consisting of chains starting from distinguished points and ending in a

distinguished point. Our aim is to increase the rate of success. A table of size D (the number

of distinguished points) is constructed. To do this, we first list distinguished points as starting

points. Then, for each starting point we iteratively apply f until a distinguished point is

reached.

Since a random permutation has no terminal nodes; every node is in a cycle (See in Section

2.4). By constructing a table in this manner, it is possible to mark almost all points in every

cycle by a good selection of D as in Figure 3.6.

Figure 3.6: Variant Distinguished Point on Permutations

It is possible to have a high success rate ≈ %99 for a random permutation. To save memory

it is possible to discard some points which are not in the region [tmin, tmax] as in DP technique

but it is trival that the success rate will get smaller. The memory complexity of the attack is

equal to the number of distinguished points.

The question is how to choose distinguished property d resulting in the number of distin-

guished points D to have at least one distinguished point in each cycle:

Let N be the number of all points, k is the length of smallest cycle in a random permutation

and D is the number of special points. The probability that there is no special point in the set
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A which has k elements is:

P′(k,D,N) =

 N − k

D

 N

D


=

(N − k)!D!(N − D)!
D!(N − k − D)!N!

=

(
1 − k

N

)N−k (
1 − D

N

)N−D(
1 − k+D

N

)N−k−D ≈
e−k+ k2

N −D+ D2
N

e−k−D+
(k+D)2

N

= e−
2DK

N

Then the probability that there is at least one point in the set A is:

P(k,D,N) = 1 − e−
2DK

N .

To choose the optimal parameters, let our desired success rate be P. Our aim is to find appro-

priate D such that the probability of success of the trade-off is at least P:

P(k,D,N) = 1 − e
−2Dk

N > P

Then

D >
N
2k

ln
(

1
1 − P

)
.

For instance, let D = N2/3 then if the smallest cycle length k is greater than 2.3N1/3 there will

be at least one special point in each cycle with probability, P = 0.99. As given in Section 2.4,

Average cycle length of a random permutation =
n

#components
=

n
lnn

.

For a random mapping, we can construct the same table. If there is no distinguished point

in the chain, then the chain will enter in an infinite loop. In order to prevent this undesired

situation, we iterate until a predefined time, t, if the chain does not encounter a distinguished

point until t then that chain will be discarded. It should be noted that t will be smaller than

the average cycle length (See in 2.3.2) of a random mapping.

Note: Assume that the state update function of a stream cipher is linear or it is easy to calcu-

late S t, the tth state when S 0 is known. Then, in offline phase, the variant distinguished point

method can easily be applied and also TMTO table can be constructed by starting from ran-

dom S 0 and corresponding n bit keystream then S 2m and corresponding keystream then S 2∗2m

and till S 2n−2m . However, for today’s stream ciphers, the state transition functions are highly
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nonlinear so choosing states reasonable according to the particular cipher may be meaningful

as in [15].

3.3.2 Rainbow Table

Rather than constructing r tables with different reduction functions, Oechslin[61] proposed

new tables, called rainbow tables in which a successive reduction function is used for each

column in the chain. There are t reduction functions. The main advantage of this method is

to reduce the online time complexity by a factor of 2. The total number of computations is

given as
t(t − 1)

2
whereas in classical method it is rt.

k1,1
f1
−→ k1,2

f2
−→ k1,3 · · ·

ft
−→ k1,t

Instead of constructing r tables with m × t elements, choosing m × r random starting points,

m × t × r tables are constructed Figure 3.7.

Figure 3.7: Classic Table vs. Rainbow Table
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Algorithm 3.3.3: RP(void)

for j← 1 to mt

do

select random S P j,choose random R0 3 E ◦ R0 = f0;

tmp← f0(S P j);

for i← 1 to t − 1

dochoose random Ri 3 E ◦ Ri = fi ;

tmp← fi(tmp);

EP j ← tmp;

store (S P j, EP j) pairs in table sorted with respect to end points;

In online phase, when given a first ciphertext (c0), by checking if Rt(c0) is equal to any points

of the last column EP j for some j, 1 ≤ j ≤ mt then the k j,t−1 is the desired key. Starting from

S P j, after t − 1 iterations k j,t−1 can be recalculated. If Rt(c0) is not equal to any endpoints, by

repeatedly applying Rt−i, ft−(i−1), ft−(i−2), . . . , ft−1 3 0 ≤ i ≤ t − 1 to c0 and it is checked that

whether the output is equal to any endpoints. If a match is found (at sth iteration), starting

from S P j , k j,s−1 is recalculated and checked whether c0 = E(k j,s−1, p0) or not. The total

number of calculations is t(t−1)
2 .
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Algorithm 3.3.4: RO(c0)

if any of the EP j is equal to Rt(c0)

then



tmp← S p j;

for s← 1 to t − 1

do{
tmp← fs(tmp);

return (tmp)

else



for s← 1 to t − 1

do

val← Rt−s(c0);

for k ← s to 1

do{
val← ft−k−1(val);

if any of the EP j is equal to val

then



tmp← S p j;

for k ← 1 to s − 1

do{
tmp← fk(tmp);

if E(tmp, p0) == c0

then return (tmp)

return (keyisnot f ound);

Example 3.3.3 Let us take m = 23, t = 23 ,r = 1. In each column, the mask function is taken

as f (x) ⊕ i 3 0 ≤ i ≤ 6.

29→ 36→ 23→ 60→ 23→ 58→ 45→ 8

51→ 3→ 52→ 60→ 23→ 58→ 45→ 8

13→ 16→ 5→ 49→ 7→ 8→ 37→ 4

36→ 22→ 37→ 0→ 12→ 52→ 59→ 30

5→ 51→ 2→ 57→ 36→ 18→ 14→ 59

57→ 39→ 8→ 34→ 9→ 47→ 35→ 59

6→ 5→ 50→ 50→ 51→ 7→ 9→ 45

17→ 57→ 38→ 62→ 46→ 41→ 62→ 43
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There are 37 distinct points for the above construction (the last column is omitted since it will not give

any clue for the key). Thus the coverage of table is 37.

Assume in online phase we are given c0. Since we have only the tuple {S P, EP} we are searching if

Ri(c0) is in the last column.

• Let c0 = 24 is given, R6(c0) = 24 ⊕ 6 = 30 is in table, S P = 36, since h6(S P) = R6(c0) then the key is

59.

• Let c0 = 7 is given, R6(c0) = 7⊕6 = 1 is not in table , f (c0⊕5)⊕6 = 61 is not in table, f ( f (c0⊕4)⊕5)⊕

6 = 16 is not in table, f ( f ( f (c0⊕3)⊕4)⊕5)⊕6 = 57 is not in table, f ( f ( f ( f (c0⊕2)⊕3)⊕4)⊕5)⊕6 = 59 is

in table, S P = 5, 57, since h3(S P)! = c0⊕2 then false alarm. f ( f ( f ( f ( f (c0⊕1)⊕2)⊕3)⊕4)⊕5)⊕6 = 53

is not in table.

• Let c0 = 15 is given, R6(c0) = 15⊕6 = 9 is not in table, f6(R5(c0)) = 58 is not in table, f6( f5(R4(c0))) =

38 is not in table, f6( f5( f4(R3(c0)))) = 30 is in table, S P = 36, key is 0.

For whole space, in the online phase 26/40 keys are found from table.

The advantages of rainbow tables are given in [61] as :

• If two chains collide, they merge only if the collision appears at the same column. If

the collision does not appear at the same column, since they will continue with differ-

ent reduction functions, they will not merge. Since merges will result with identical

endpoints, identical endpoints are discarded in Perfect Rainbow Tables (See Section

3.3.3.1). It should be noted that if identical endpoints are discarded in Rainbow ta-

bles when compared with distinguished points it will increase the precomputation since

there are t tables in DP tables, but in rainbow tables, the identical points will be huge

with in one table. This will result in excessive precomputation.

• Rainbow tables have no loops since each column has different reduction functions.

• Rainbow chains have a constant length. It reduces false alarms.

Oechlin has implemented an attack on MS-Windows password hashes. Using 1.4 GB of data

(two CD-ROMs) he cracked 99.9% of all alphanumerical password hashes (237) in 13.6 sec-

onds whereas it takes 101 seconds with using distinguished points [61]. The coverage is given
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as 78.8%. It is possible to construct a table with given coverage by Perfect Rainbow Table

(See Section 3.3.3.1) with mmax = 225 = 38223872. It should be noted that the precomputa-

tion exceeds exhaustive searching.

The main disadvantage of the attack is pointed out by Barkan et al. [8] that the cost of storage

in the rainbow method is substantially higher than for DP method.

Trade off Curve

The number of tables constructed is r = 1. The memory required is M = mt, the time required

for online phase is T = t2
2 then trade off curve is obtained as:

T M2 = N2 where 1 ≤ T ≤ N

3.3.2.1 Rainbow-Like Schemes

Barkan et al gave several Rainbow-like schemes which uses multiple data points in [8] and

also gave an upper bound on the coverage of TMTO methods.

Thin-Rainbow: Reduces the number of colors (reduction functions) as:

f1 f2 · · · fS f1 f2 · · · fS · · · f1 f2 · · · fS

where S is the number of colors (repeated t times). But it loses the main advantage (reduce

the oline time complexity by a factor of 2) of Rainbow Tables.

Thick-Rainbow: Reduces the number of reduction functions as:

f1 f1 · · · f1︸     ︷︷     ︸
t times

f2 f2 · · · f2︸     ︷︷     ︸
t times

· · · fS fS · · · fS︸      ︷︷      ︸
t times

Fuzzy-Rainbow: In this case the notion of distinguished points is used. The reduction func-

tion of f is switched when a DP is determined. It is claimed that DP occurs with probability

t−1.

General Model of TMTO for the inversion of a random function In [8], Barkan et al.

gave a general model which contains all techniques of TMTO. The success rate of TMTO
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techniques depends on the chosen random function’s (mask function) graph, which is called

”stateful random graphs”. In other words, the graph representation of functions depends on

a ”hidden state” such as the table number in Hellman scheme. They gave an upper bound on

the number of images for which f can be inverted using a trade off scheme with S hidden

states and then gave a lower bound on the number of hidden states. In addition, they gave a

lower bound on its worst case time complexity T = N2

M2lnN .

3.3.2.2 False alarm detection using Checkpoints

In [3]-[4] to gain cryptanalysis time that is wasted by false alarms (≈ 50% of online time),

Avoine et al. defined a method which is called checkpoints by using additional memory. The

main aim is to detect a value matching with an endpoint that will lead to a false alarm, without

regenerating the chain from its starting point.

While preparing tables they define a set of positions xi as checkpoints. For a given function G

(e.g. G is a parity test) for each xi of each chain, G(k j,xi) is stored. In the online phase, while

searching ciphertext and iterations of ciphertexts in EPs, the values for G is also calculated.

If they are not same at least for one checkpoint, it is clear that this is a false alarm without

regenerating the whole chain.

3.3.3 Perfect Tables

Merges in chains decrease the coverages of tables. Generating a table without merges is an-

other trade because it will increase the precomputation time. Perfect tables are tables in which

merges are rarely occurred. In both Rainbow [61]-[3] and DP tables [19], merging chains will

have identical endpoints. Firstly more chains are generated, then identical endpoints are dis-

carded. Throwing away such chains will increase the precomputation time. In [3] Avoine et

al stated that constructing a perfect Hellman table is not efficient since all chains have to be

looked up. We give in Section 3.3.3.1 a new construction technique that constructs Perfect

Hellman Tables.

It is clear that when two chains collide in the same column as in the first two rows of Ex.

3.3.3, the endpoints will be identical. By discarding one of these rows, merge free tables can

be constructed. However, this means that starting from m distinct points, it is expected to
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remain mmax =
m

1 + tm
2N

points [3].

In Ex.3.3.3 starting from m = N. The number of remaining (SP,EP)’ s is 15. For whole space,

in the online phase, 35/40 keys are found from table. This example shows that precomputa-

tion increases rapidly when the key space is small.

The number of perfect table is given

l =

⌈
−

ln(1 − p)
2

⌉
where p is the success rate then

t >
−Nln(1 − p)

mmaxl

3.3.3.1 Perfect Hellman

Assuming the encryption function is modeled as a random mapping the set into itself, if we

consider the graph representation of a random mapping, we choose our start points as terminal

nodes (we mean the points which have no preimage) as shown in Figure 3.8.

Figure 3.8: Perfect Hellman Construction

It is clear that to find the terminal nodes, it is necessary to increase precomputation from N to

2N. Since there are N′ = N ∗ e−1 terminal nodes, starting from N′ by iteratively applying f

we construct a Hellman table. In [3], starting from m0 random points, maximum number of

perfect chains of length t is given as

m(t,m0) =
m0

1 +
tm0
2N

and maximum number of chains of length t by starting with m0 equal to N is given as

mmax =
2N

t + 2
.
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Starting from N′ points, maximum number of chains of length t of Perfect Hellman table will

be mmax ≈
2N

t + 6
.

This shows that the complexity of Perfect Hellman table is approximately equal to the com-

plexity of Perfect Rainbow table.

3.3.3.2 Perfect Tables with Threshold

If a perfect table is constructed by eliminating the chains which has identical endpoints, we

believe that if the merge occur in the columns (< t−ε), a lot of non merging points are wasted.

Therefore, we propose to use threshold after some column, in other words, starting from N

points if identical endpoint is encountered in the same column, it will be discarded only if it

occurs before some threshold. So, it is important to find out where to put this threshold. For

instance, in Table 3.4, the effects of threshold (T ) on coverage and computation are given.

For a Perfect Table without threshold, the expected computation time can be given as

P = m0 + m1 + · · · + mmax.

and success rate is

Psuccess = 1 − e−
m0+m1+···+mmax

N .

On the otherhand, for Perfect table with threshold, the expected computation time can be

given as

P = m0 + m1 + · · · + mt0 + mt0 + · · · + mt0 .

and success rate is

Psuccess = 1 − e−
m0+m1+···+mt0 +(t−t0)mt0

N .

And the ratio of the success rates of two method is

λ =
e−

m0+m1+···+mt0 +(t−t0)mt0
N

e−
m0+m1+···+mt0 +···+mmax

N

= e−
(t−t0)mt0 +mt1 +···+mmax

N

It is clear that there is a trade off between coverage and precomputation that can be seen in

Table 3.4.
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Table 3.4: Threshold Results for m = 222 t = 211

T MFinal Computation Coverage T MFinal Computation Coverage
0 4194304 0.0000P 1.0000% 1056 7892 14.5909P 0.9630%

32 239323 120.9370P 1.0000% 1088 7655 14.5357P 0.9607%
64 124773 66.2363P 0.9998% 1120 7465 14.4930P 0.9587%
96 84386 47.2705P 0.9997% 1152 7254 14.4471P 0.9563%
128 63894 37.8074P 0.9994% 1184 7045 14.4033P 0.9537%
160 51313 32.0940P 0.9991% 1216 6857 14.3653P 0.9511%
192 42785 28.2865P 0.9987% 1248 6677 14.3303P 0.9484%
224 36743 25.6357P 0.9983% 1280 6504 14.2980P 0.9457%
256 32106 23.6367P 0.9978% 1312 6342 14.2689P 0.9429%
288 28547 22.1296P 0.9972% 1344 6195 14.2437P 0.9401%
320 25795 20.9851P 0.9965% 1376 6060 14.2216P 0.9375%
352 23481 20.0405P 0.9958% 1408 5916 14.1991P 0.9344%
384 21590 19.2830P 0.9950% 1440 5745 14.1736P 0.9305%
416 19961 18.6429P 0.9942% 1472 5604 14.1537P 0.9270%
448 18578 18.1102P 0.9933% 1504 5469 14.1357P 0.9234%
480 17295 17.6259P 0.9923% 1536 5362 14.1223P 0.9204%
512 16226 17.2304P 0.9912% 1568 5249 14.1090P 0.9170%
544 15251 16.8770P 0.9901% 1600 5149 14.0979P 0.9138%
576 14406 16.5773P 0.9888% 1632 5047 14.0874P 0.9103%
608 13670 16.3218P 0.9876% 1664 4933 14.0766P 0.9062%
640 12960 16.0808P 0.9862% 1696 4835 14.0680P 0.9025%
672 12354 15.8797P 0.9849% 1728 4753 14.0615P 0.8992%
704 11788 15.6963P 0.9834% 1760 4669 14.0554P 0.8956%
736 11256 15.5279P 0.9818% 1792 4590 14.0503P 0.8920%
768 10802 15.3876P 0.9802% 1824 4505 14.0454P 0.8880%
800 10398 15.2659P 0.9787% 1856 4436 14.0420P 0.8845%
832 10010 15.1519P 0.9770% 1888 4368 14.0392P 0.8810%
864 9662 15.0524P 0.9753% 1920 4293 14.0366P 0.8768%
896 9294 14.9499P 0.9733% 1952 4219 14.0346P 0.8725%
928 8997 14.8695P 0.9715% 1984 4148 14.0333P 0.8682%
960 8712 14.7945P 0.9696% 2016 4084 14.0326P 0.8641%
992 8413 14.7181P 0.9674% 2048 4029 14.0323P 0.8605%

1024 8150 14.6529P 0.9653%

3.3.4 Time/ Memory/Key (TMK) Tradeoff

The Time/Memory/Data in Section 3.4.2 trade-off in the case of stream ciphers can be applied

to the block-cipher Time-Memory-Key case. It is clear that if multiple data is available, this

will improve the effectiveness of a TMTO attack since it will decrease the precomputation

time. In [37], Hong and Sarkar proposed some ways to use multiple data when applying

TMTO on block ciphers.

• fixed plaintext is enciphered multiple times with distinct keys
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• the plaintext is enciphered multiple times using the same key under different IVs.

• the plaintext is enciphered several times in a single long session.

• the k-block plaintext is consisting of k identical blocks.

In [13], Hellman’s algorithm was generalized for the case of multiple data (a fixed plaintext

enciphered under different keys), which resulted in a formula N2 = T M2D2 , 1 ≤ D2 ≤ T ,

P = N/D. It is clear that the actual table preparation time will be less than exhaustive search

in this case. In the online phase, D points are given, that is enciphered under different keys,

the goal of the attack is to find the preimage of any one of these points. Since D points are

given, a set of tables are prepared covering N/D of the domain points by choosing r = t/D,

resulting P = mtr = mt T
D = N/D.

3.3.4.1 Modes of Operations

Block ciphers encrypt n-bit plaintext blocks to n-bit ciphertext blocks; n is called the block

length. Since the plaintext may be of any length, there are several modes of operations (See

[52]-[27]-[17]) such as Electronic Code Book (ECB), Cipher Block Chaining (CBC), Output

Feedback Mode (OFB), Counter Mode (CTR). They require an initialization vector (IV). In

some cases, last block is padded to bring the plaintext length to a multiple of the block size.

There are some techniques in the literature that are called message padding schemes. Adding

null bytes may be the easiest way. In [38]-[37], Hong and Sarkar showed that modes of

operations are vulnerable to TMTO attacks in contradiction with the general belief. Modes

of operations which are susceptible to TMTO attacks can be summarized as in the following

[38]:

• ECB is vulnerable to TMTO under chosen plaintext scenario if the plaintext is chosen

to be as long as the key.

• CTR is vulnerable to TMTO chosen plaintext scenario if counter update is predictable.

• OFB is vulnerable to TMTO known plaintext scenario if key length is any longer than

block or IV length.
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• CBC, CFB are vulnerable to TMTO chosen plaintext scenario if key size is any longer

than IV size (using multiple data 3.3.4). In [9], Biham showed that CBC is vulnerable

only if IV is considered to be a part of the secret.

• OCB, OMAC use MAC addition to ciphertext. They are vulnerable to TMTO chosen

plaintext scenario if key is longer than nonce. The one way function is defined as (key,

nonce) pair to (ciphertext||MAC).

CMC, EME are also considered in [38].

3.3.5 FPGA implementations

Amirazizi and Hellman [1] proposed time/memory/processor trade-off. More processors exe-

cuted in parallel by sharing a large memory. The hardware design for a key search machine is

firstly proposed by Quisquater et al. [63] for a 40-bit DES. FPGA (Field Programmable Gate

Array) is a programmable device that can be used to perform some cryptographic encryption

at very high speed. The precomputation is performed with FPGA design using distinguished

points technique in [63]-[69]. The hardware design on the rainbow was proposed by Mentens

et al.[53], they presented an FPGA architecture for cracking UNIX passwords. Rainbow table

was precomputed with one salt and estimated that precomputation of all salts will be nearly

one year for UNIX passwords.

3.4 TMTO on Stream Ciphers

Stream ciphers behave like random one way functions whenever we try to obtain key/state

using the keystream. TMTO on stream cipher is different from block cipher. If an attacker

can find any of the actual states, then he can find the rest of the keystream. Thus, he does

not have to find the initial state (or key). In many cases, with reverse engineering he may

find the initial state. In addition, when a D + log(N) − 1 bits of keystream is given (there

is no difference between known plaintext and chosen plaintext attack when a stream cipher

is taken into account), he will have D overlapping prefixes. Since Hellman’s table for block

ciphers is associated with a particular plaintext block, the multiple prefix is useless (multiple

data as in Time/Memory/Key Trade Off is not considered). However, for the stream ciphers
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precomputed table can be used on multiple prefixes.

Two different scenarios may be stated when stream ciphers are considered as oneway func-

tions. The one way function may be a function from (internal state→ keystream prefix (state

size)) or from (key+iv →keystream prefix (key+iv size)). In the next two sections we will

summarize the Babbage-Golic (BG) attack and Biryukov-Shamir (BS) attack which carry out

the first scenario.

3.4.1 Babbage-Golic Attack

TMTO on stream ciphers was firstly proposed by Babbage [5] in 1995 and Golic [31] in 1997

through independent works. Golic applied TMTO on the alleged A5 stream cipher [31].

Let internal state size is n. Then the number of possible states is N = 2n.

• S i is the ith state where S i = (si,1, si,2, . . . , si,n)

• S tateU pdate is the State Update function

• zi is the ith bit of keystream

• Out is the output function of a stream cipher.

Generation of ith bit of keystream zi is as in the following:

zi = Out(S i−1)

S i = S tateU pdate(S i−1)

where the initial state S 0 is derived from a secret key.

In offline phase, choosing 2m random states S 1, S 2, . . . , S 2m the corresponding keystream pre-

fixes K1,K2, . . . ,K2m where Ki = zi,1, zi,2, . . . , zi,n are stored in a table as in the below. Table

is also sorted with respect to the keystream sequence. Therefore, the precomputation time is

P = M

s1,1, s1,2, . . . , s1,n → z1,1, z1,2, . . . , z1,n
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s2,1, s2,2, . . . , s2,n → z2,1, z2,2, . . . , z2,n

. . .

sm,1, sm,2, . . . , sm,n → zm,1, zm,2, . . . , zm,n

In Online Phase, given D + n − 1 bit keystream means ≈ D subsequences (of length n) of

possible keystream, K1,K2, . . . ,KD is derived. Each one is searched in the precomputed table,

if a match is found then with high probability the corresponding state is the desired internal

state then, remaining keystream bits after the prefix is computed. The online time is T = D.

In[5], Babbage suggested as a design principle for stream cipher that a state size of 2i bits is

desirable for a secret key length of i bits.

BG’s Curve

T M = N for 1 ≤ T ≤ D and P = M.

3.4.2 Biryukov-Shamir Attack- TMD Trade Off

Biryukov and Shamir combined BG scheme with Hellman attack. As in Hellman construc-

tion by r different functions, r different tables is constructed iteratively applying encryption

function. However, different from Hellman approach, since D keystream prefixes are given,

the total number of points covered by a all tables is reduced from N to N/D. There are two

possible ways of doing this, they proposed to reduce the number of tables instead of making

small tables. In Biryukov-Shamir(BS) construction, there are r = t/D tables each having m

rows, therefore t > D. Consequently, M = mt/D, P = N/D, T = t
D tD = t2 with the condition

T > D2.

BS’s Curve

T M2D2 = N2 for D2 ≤ T ≤ N where P = N/D.

P = T = 22n/3,M = D = 2n/3 is given as an appropriate selection for BS attack for N up to

100 [11].
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3.4.3 Extensions and Refinements

3.4.3.1 Biryukov-Shamir-Wagner Attack

Distinguished points applied on block ciphers which reduces the number of table lookups

was carried out on stream ciphers [14, 15]. As in DP on block cipher, the aim is to reduce the

number of expensive disk operations by a factor of t. Apart from block ciphers, Biryukov-

Shamir-Wagner (BSW) sampling on stream ciphers is dependent on cipher structure. Using

BSW sampling, some recent ciphers are analyzed such as A5/1 [15], Mickey and Grain. These

studies will be summarized in the next section.

Special states are the states which generates an output prefix with a fixed pattern such as

r zero bits. In some stream ciphers, it is possible to enumerate all the special states without

expensive trial and error, which is called BSW sampling. If the cipher has sampling resistance

R = 2−r, each special state can be associated with a short name of n− r bits and a short output

of n − r bits. Then a new random mapping is defined over a reduced space of 2n−r points.

When applying BSW sampling on BG attack, P = M increases to P = M ∗ 2r, because to find

special states we have to try a larger number of random states. Only a special prefix in the

given data have to be looked, online time T = D decreases to T = D∗ f rac12r. Total memory

reduced from mt to mt/D but D data are tried. Trade off curve is given as T P = MD = N for

1 ≤ T ≤ D.

When applying BSW sampling on BS attack, P = N/D remains unchanged, since to find

special states we do not have to try a larger number of random states, we wait for the special

endpoints to occur randomly during our chain construction. Trade off curve is given as

T M2D2 = N2 for any D2 ≤ T ≤ N.

3.4.3.2 Chosen Initial Value

Dunkelman and Keller presented a new approach using a publicly known initial value (IV). By

choosing in advance some IVs TMTO is applied to streams produced using these IVs. The

one way function to invert in this scenario is a function from (key →keystream prefix(key

size). For each chosen IV, the attacker prepares (Hellman/Rainbow) Tables. In the online
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phase, the attacker waits until IVi is used for some i and then applies the TMTO attack with

the tables prepared for that IVi. If both the secret key and the IV are of length n, it is possible

to mount an attack with data, time, and memory complexities of 24n/5 [26]. Hence, when IV

is chosen in a deterministic manner or incremented in a deterministic manner, this attack have

the success rate of 0.40.

3.4.4 Design Principles for TMTO

To resist against TMTO, Golic [31] and Babbage[5] suggested to use state size which should

at least be the twice of the keysize. Hong and Sarkar [38] suggested that IV length should

not be less than the key length and it should not be used in predictable way, and state size

should be at least the size of key plus IV. These results are discussed in [72]-[22]. The authors

suggested that eStream [28] designers should choose the IV length that is equal to the key

length.

In both [38] and [37], Hong and Sarkar stated some remarks on design principles of TMTO

as:

• “Putting a restriction on how many frames are encrypted before the master key is re-

newed does not stop this attack completely. The attacker still gets to know one of the

many master keys.”

• “Making the state initialization process more complex has completely no effect on this

TMTO attack. Neither does the size of the internal state of the stream cipher affect this

TMTO in any manner.”

• “The known part of keystream need not be at the very beginning. As long as they are

fixed positions in the keystream, they do not even need to be continuous. The oneway

function can be defined to match the known part.”

• “If IV is XORed into the key before being placed into the internal state, we could set

the domain of the oneway function to be at that position. In general, the domain of f

should be at the point of least entropy occurring during the initialization process.”

• “Using IVs in a predictable manner effectively reduces the IV space, making TMTO

more efficient.”
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3.4.5 Applications on Stream Ciphers

A5/1

A5/1 is a stream cipher (See details in Appendix A.1) used to provide privacy in the GSM

cellular telephone standard. It was kept secret until 1994. A5/1 and A5/2 were reverse-

engineered by Briceno, Goldberg and Wagner [47]. [10] Golic [31] presented an attack on

A5/1 based on solving a system of 241 linear equations which has time complexity of about

240. He also applied TMTO on A5/1. In offline phase, a table is prepared as described

in Section 3.4.1. The attack is successful if T M ≥ N where D ≈ T/102 data is required

with same secret key and different public key. Biryukov, Shamir and Wagner [15] showed

that it is easy to directly enumerate the 248 out of the 264 states whose outputs start with

r = 16 zeros. The BSW sampling of resistance of A5/1 is R = 2−16. Since by loading 11

specified bits to the right of the clock control taps in both Register2 (R2) and Register3 (R3)

and loading the remaining bits arbitrarily, we can uniquely determine the clock control of the

three registers for the next few cycles, and thus determine the identity of the bits that enter

their most significant bits and affect the output. We can keep this process alive for about 16

clock cycles since each register moves only 3/4 of the time. In [15], the key is computed in

about one second during the first two minutes of the conversation on a single PC using the

BSW sampling with 242 preprocessing and memory complexity of four 73 GB hard-drives.

Biham and Dunkelman proposed a different attack [10] with total work complexity of 239.91

of A5/1 clockings, given 220.8 known plaintext.

LILI-128

LILI-128 is a synchronous stream cipher with a 128 bit key (See details in Appendix A.2)

proposed to NESSIE project[59] by Dawson, Clark, Golic, Millan, Penna and Simpson. Bab-

bage proposed a generic TMD trade off in [6]. In [64], a tradeoff attack using BSW sampling

(R = 44) against LILI-128 is proposed using 264 bits of keystream, a lookup table of 245 89-bit

words and 248 DES operations. The attack may be summarized as follows: Saarinen proved

that LFS Rd is clocked exactly ∆d = 5 ∗ 238 − 1 times for each ∆c = 239 − 1 times LFS Rc is

clocked.

• Load 89 bits of LFS Rd randomly

• It is possible to extract 45 bits from fd sampled ∆d steps apart. Thus, 45 bit vector is
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sufficient to index 89 bit register.

MICKEY

Mickey is a stream cipher proposed to eSTREAM [28] by Babbage and Dodd (See details

in Appendix A.4.2) and designed for restricted hardware environments. In [36], a trade off

attack using BSW (R = 227) sampling against Mickey version 1 is proposed by Hong and

Kim. The attack may be summarized as follows:

• Load 80 bits of S and 53 bits of R (starting from r1) randomly

• To allow the keystream to start with 27 zeros, r0 and r54, . . . , r79 can be filled with

intermediate variables by writing some linear functions since it is possible to calculate

control bits.

This allows a TMD trade off attack with sampling resistance 227. For instance, for data

complexity D = 260 for P = N/227 = 2100, T = M = 266. Although precomputation time

is greater than exhaustive search, the authors preferred to increase the state size to 200 bits

which is 2.5 times the key size in Mickey 2.0 [49] to resistant to these types of attacks.

LEX

Lex (Leak Extraction) is a stream cipher proposed to eSTREAM [28] by Biryukov (See details

in Appendix A.4.1). It uses AES in OFB mode. A TMD trade off attack is applied on Lex

by Dunkelman and Keller in [25]. This attack requires D = 236.3 keystream produced under

the same key with different IVs. According to this attack, Lex was discarded from the final

portfolio of eSTREAM. It is possible to mount an attack with BSW sampling (R = 232),

D = 288, T = M = 2112 [25].

GRAIN

Grain is a stream cipher proposed to eSTREAM [28] by Hell, Johansson and Meier (See

details in Appendix A.4.3) and designed for restricted hardware environments. Grain has a

low resistance to BSW sampling (R = 216), to recover the internal state of Grain v1 [50] using

T = M = 271), and D = 253.5 bits of known keystream. The cost of the precomputation is

P = 2106.5 .

”Every bit that enters the registers remains unused for at least 16 clock cycles, since the high-

est register indices occurring in the state update functions are ni+63 and li+64 respectively. This
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enables implementors to compute up to 16 clocks of the cipher in parallel, greatly speeding up

the cipher with only a moderate increase in gate count” [16]. Given the value of 133 particular

state bits of Grain and the first 18 keystream bits produced from that state, another 18 internal

state bits can be deduced efficiently.

This does not lead to a practical attack due to the cost of the precomputation which is far

above exhaustive searching. The authors preferred to increase the size to 128 bits and IV size

to 96 bits in Grain-128 [49] in order to be resistant to these types of attacks.

3.5 Statistical Tests Based on Random Mappings

There are various statistical test suites such as NIST [60], DIEHARD [48] that contain a

collection of tests which evaluate whether the sequence is generated by a random source or

not. In this section we will deal with tests based on random mappings over stream ciphers and

our main aim is to try to find suitable test statistics which give some clues for applying TMTO.

It is possible to generate a keystream and apply randomness tests on stream ciphers as in [51].

We considered the chosen IV approach in which keystream sequences are generated using a

random key and different IVs. Since key and IV sizes are large to apply a statistical test on a

stream cipher defined as a random mapping, we define random mappings as functions from a

subset of key and IV to keystream prefix (which have the same size as key + IV).

We define three tests in our paper [71] called as Coverage Test, ρ Test and Distinguished Point

Coverage Test.

In Coverage Test, as in Babbage-Golic attack (See Section 3.4.1) a table is constructed by

defining a one way function from the key+iv (define size of key+iv as n) to the corresponding

keystream prefix in which n− l bits are fixed with random value. For all possible 2l IVs, l bits

keysteram prefixes are generated and the coverage of keystream prefixes is calculated. The

coverages are calculated repeatedly with different random IVs. To test if these coverages are

different from expected distribution, Pearson’s Chi Square χ2 test is applied (Refer to [71]-

[70] for details). Resulting a high coverage shows that the mapping is close to a permutation.

The ciphers close the permutations are more vulnerable to trade off attacks.

In ρ Test, as in Biryukov-Shamir attack (See Section 3.4.2) a table is constructed by defining

56



one way function as described in Coverage test by iteratively applying until a repetition is

encountered. This is repeated with different random n−l bits IVs then the values are compared

with expected distribution of ρ length in Section 2.2 using χ2 test. If the observed value is

smaller than the expected value this means that it is appropriate to use smaller values of t.

As a result, choosing a large value of the number of tables, r, will increase the both time and

memory complexities.

DP Coverage Test is similar to Coverage Test which differs in that we calculate the coverage

of l bits of keystream after the first DP is encountered. If different IVs have similar keystream

prefixes, this will result in low coverage.

Using these tests, we give a relation between randomness properties of cipher and the success

of TMTO method. This is the first study in the literature which uses the results of randomness

test as clues for attacking a cipher using trade off methods. It is known that the TMTO method

is successful if a table has a large coverage. By indexing the first repetition using probability

distribution of ρ length in Section 2.2, we try to investigate if the test statistics gives us a result

that TMTO is applicable.

3.6 Other Relevant Applications

Meet in the Middle Attack: TMTO methods are also used in a part of a Meet in the Middle

Attack (MTM) in several papers. MTM attack is a known plaintext attack which can be

summarized as follows: Assume the plaintext is encrypted two times with two separate keys

(k1,k2)

C = Ek1(Ek2(P))

the attacker encrypts a plaintext for all possible keys and store the values in memory and

decrypts the ciphertext with each key and finding any match between these the stored set are

likely to reveal the desired keys.

Firstly, Amirazizi and Hellman suggested to use trade off attack for multiple encryptions [1].

In [24], Demirci and Selçuk developed attacks on 7 and 8 rounds of AES-256 and 7 rounds

of AES-192. Since their attack had a huge memory and precomputation complexities, they
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proposed to use trade off attack to balance complexities between time and memory (also

between precomputation and data). Choy et al. proposed several attacks [23] on multiple

encryptions such as TMTO-MTM applying the time-memory trade-off attack to the meet-

in-the-middle attack on a single ciphertext, Rainbow-MTM applying the Rainbow method,

BS-MTM applying on multiple data.

Maiorana-McFarland functions: In [55], Mihaljevic and Imai presented a guess and deter-

mine attack in Toyocrypt (See in Appendix A.3). For each guess on 96 bits of the 128-bit

LFSR, they formed 32 linear equations. This linear system can be solved to determine the

remaining 32 bits in the LFSR. Thus, the effective key length is 96 bits. Using the BS at-

tack, they reduced the attack complexity to 232 with 280 pre-computation and 264 memory. In

[39] Khoo et al. generalized the attack and proposed a TMD attack on stream ciphers filter

function generators and filter combiners based on Maiorana-McFarland functions. Maiorana-

McFarland is a class of Boolean functions with good cryptographic properties [39]. This

class can be viewed as constructions based on concatenating linear functions. The Maiorana-

McFarland function is defined [39] by the following equation:

f (x0, ..., xn−1) = g(x0, ..., xk−1) + (xk, ..., xn−1)φ(x0, ..., xk−1)

where f : GF(2)n → GF(2), g : GF(2)k → GF(2) and φ : GF(2)k → GF(2)n−k. φ is usually

an injection or 2-to-1 map which would require k < n/2.

T-functions: T-Functions are proposed as building blocks in cryptographic applications by

Klimov and Shamir [41]-[42][43]. The ith bit of the output of T function can depend only on

input bits 1 . . . i. For instance, addition 2n. In [56], Mitra and Sarkar described a trade off

attack when squaring and multiplying is used as T-functions.
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CHAPTER 4

COMPUTATIONS OF SUCCESS RATES

4.1 Introduction

In time memory trade offs, the trade off is not in only time and memory but also in success and

computation. Kusuda and Matsumoto gave an upper bound for the success rates in terms of m

and t in [46]. Kim and Matsumoto showed that the table parameters can be adjusted to achieve

higher success probability [40]. In his M.Sc. thesis, Çalık gave an explicit asymptotic formula

for the number of distinct points covered by a single Hellman Table. In this chapter, firstly we

compare this asymptotic approach with both Kusuda et al. approach and Hellman approach.

There is no precise guideline in the literature that points out how to choose parameters for

Hellman TMTO. We present a detailed analysis of the success rate of Hellman table via new

parameters and also show how to choose parameters to achieve a higher success rate. The

results are also experimentally confirmed. Hellman’s TMTO Curve is discussed. This chapter

is based on our paper [66].

In the next section, we discuss the average length of a chain when we use distinguished

points as endpoints. When DP technique is taken into account there are some parameters

which effect the success rate of the attack such as the number of distinguished points (D),

the expected chains region ([tmin, tmax]), and also number of starting points (m) and number

of tables (r). Borst gives a formula for success probability in his unpublished thesis [7].

Standaert et al. claim that they corrected the probability of success for distinguished points

[69], however, they have no explicit formula about how to choose parameters to achieve a high

success probability. In this section we calculate the average length of a chain, and also the

number of left chains after elimination which naturally allows us to derive a formula regarding
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the overall success rate of the method. We offer some parameters to achieve a high success

rate. The empirical results are also supported by theoretical analysis for Rivest’s distinguished

points.

Then, we study on the coverage of a Rainbow table and show that no matter how the pa-

rameters are chosen, coverage remains same. In the last section we compare three technique

(Hellman, DP, Rainbow) of TMTO on a stream cipher, A5.

4.2 Hellman Tables

4.2.1 A Survey on Known Computations

Hellman’s Approach

The success probability is the frequency of success when attack is repeated certain times

independently. In time memory trade offs, the probability of success depends on how well the

computed chains cover the key space. If E is modeled as a random function mapping the set

into itself, and if the key k is chosen uniformly from this set, then the probability of success

S (m, t) of a table of size (m, t) [34] is bounded by

S (m, t) ≥
m∑

i=1

t−1∑
j=0

[(N − it)/N] j+1 . (4.1)

Then, the probability of success S (m, t, r) of r tables each of size (m, t) is bounded by

S (m, t, r) ≥ 1 − (1−
1
N

m∑
i=1

t−1∑
j=0

(1 −
it
N

) j+1)r. (4.2)

It is clear that for a large key space, it is infeasible to calculate this success rate using the

above formula since it consumes a lot of time.

Kusuda-Matsumuto’s Approach

Accepting the assumptions in Hellman’s success probability is satisfied and m � 1, t � 1,

and mt � 2N then the success probability [46, 40] with a single table is bounded by

S (m, t) ≥ g(u)
mt
N

where u =
mt2

N
, g(u) =

1
u

∫ u

0

1 − e−x

x
dx.
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Thus for r tables, S (m, t, r) = 1 − (1 − S (m, t))r ≈ 1 − exp(−
rmt
N

g(u)).

4.2.2 Detailed Computations

Asymptotic approach

Accepting the assumptions in Hellman’s success probability is satisfied and m <
√

N, let

Y(m, t) be the coverage of a single table,

Y(m, t) =
√

2Nm.tanh


√

mt2

2N

 . (4.3)

Refer to Çalık’s thesis [21] for details.

The ratio of (overall) coverage to N (of r tables) is

S (m, t, r) = 1 − (1 −

√
2m
N
.tanh(

√
mt2

2N
))r.

Table 4.1 gives the comparison of three approaches (Asymptotic, Kusuda et al. and Hellman)

with the observed values of Kusuda. For m = t = 230, it consumes a lot of time to calculate

Hellman probability thus we did not give the results of Hellman’s approach for these values.

Table 4.1: Comparison Table for Asymptotic Approach, Observed by Kusuda, Kusuda et al
Approach, Hellman’s Approach

u m t k Asymptotic Tested Kusuda Hellman
2−2 230 229 231 0.6172 0.6133 0.6094 -
2−1 229 230 231 0.6032 0.6015 0.5893 -

20
230 230 230 0.5773 0.5726 0.5506 -
213 212 212 0.5773 0.5726 0.5507 0.5492
27 27 27 0.5770 0.5738 0.5547 0.5489

21 231 230 229 0.5331 0.5276 0.4831 -
214 212 211 0.5331 0.5277 0.4832 0.4830

22 230 231 229 0.4664 0.4621 0.3874 -
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4.2.3 Specialized Computations

The effectiveness of method depends highly on the choice of parameters. When choosing

optimal parameters there are mainly three items which should be taken into account: the

availability of memory, the available computing power and also the required success rate.

For a single table, it is possible to find x such that E(x) = y if and only if x appears somewhere

in the table. Thus, the number of preimages that can be found in a table is equal to the number

of distinct entries in the table (the coverage of the table) which will be denoted by Y(m, t).

In general usage, success rate of a single table is defined to be S (m, t) =
Y(m, t)

N
. However,

for a random mapping f : X → X with |X| = N, expectedly Ne−1 points will have no inverse

images (See Section 2.3). Consequently, the success rate will be bounded by (1− e−1) ≈ 63%

if it is related with the probability of finding inverse image of an arbitrary x ∈ X. If we are

focused on points x ∈ f (x), the success rate can take any value in (0, 1). Since it is a outcome

of a oneway function we know that the given point has at least one inverse so the expected

success rate of the table will be S (m, t) =
Y(m, t)

N(1 − e−1)
.

Thus the success rate of a table is defined as

S (m, t) =
Y(m, t)
|Im(E)|

where |Im(E)| = N(1 − e−1) = N′.

An important question is how to choose m and t to have a high table coverage, hence a high

success rate.

Hellman suggested that m and t should be chosen to satisfy mt2 = N. We will settle the

mathematical background to explain the relation between mt2 and N( however [14] explains

with matrix stopping rule).

From Eq.4.3 we obtain the marginal change (∆Y) in the value of Y(m, t) as
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∆Y ≈
∂y
∂m

∆m +
∂y
∂t

∆t
1
2

≈

 √2N
2
√

m
tanh


√

mt2

2N

 +
√

2mN
t
√

2N

1
2
√

m
sec h2


√

mt2

2N

 ∆m

+

√2mN
√

m
2N

sec h2


√

mt2

2N

 ∆t

≈

 √N
√

2m
tanh


√

mt2

2N

 +
t
2

sec h2


√

mt2

2N

 ∆m +

m sec h2


√

mt2

2N

 ∆t

Then for a fixed value of m (∆m = 0) and for ∆t = 1, in other words adding one column to a

table will effect the coverage by

∆Y = m sec h2


√

mt2

2N

 .
For example, let N = 248, m = 216, t = 219 then ∆Y = 21,67 < 4. This means that by a load

of m = 216 encryptions, we obtain less than 4 'distinct' points in a table. So the value of m

and t should be chosen properly. Now we will try to investigate the 'rules' how to choose the

feasible values for m and t.

A natural way of measuring the feasibility of a single table is the ratio of the number of distinct

points (outcomes) to the number of work done (encryptions) so we define

R(m, t) =
Y(m, t)

mt

as the feasibility of the table. Then

R(m, t) =

√
2N
mt2 tanh


√

mt2

2N

 . (4.4)

It should be noted that R is indeed a function of 'mt2'. This means that for any fixed C ∈ R

any choice of m and t with mt2 = C will yield the same feasibility.

Define α =
mtr
N

and λ =
mt2

N
. In general, α = 1 since precomputation time(P) is equal to mtr

which is not expected to exceed N. Then we have

R(m, t) =

√
2
λ

tanh

√λ

2

 .
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Expected number of distinct elements in the entire set of r tables is

S (m, t, r) = 1 −
(
1 −

Y(m, t)
N′

)r

≈ 1 − e
−

Y(m, t)r
N′ .

Since r = αN
mt ,

S (m, t, r) = 1 − e
−Y(m, t)

mt
N
N′ = 1 − e

−R(m, t)α
ϕ

where ϕ = 1 − e−1.

Figure 4.1 gives the R(m, t) for different values of λ. For λ = 1, R(m, t) ≈ 0, 86.

Figure 4.1: Feasibility of a Table

4.2.4 Experimental Results

We give our experimental results on Sha-1 (Refer to Appendix A.5 for details).

1. To compare our analysis with empirical results, we give empirical table coverage,

H(m, t), overall coverage H(m, t, r) for reduced Sha-1 with N = 221 in Table 4.2. α = 1

in this table, so precomputation time is not exceeding N.

2. Hellman suggested that m and t should be chosen to satisfy mt2 = N to obtain optimal

coverage rate ( the row colored in gray in Table 4.3). The optimal coverage of a single

table is given as about 0.80mt/N. Now we demonstrate that with different M/T (mem-

ory/ time complexities), it is still possible to have the same success rate. The table is

constructed for N = 240, λ = 1, α = 1, resulting in R(m, t) = 0, 86.
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Table 4.2: Comparison for Reduced Sha-1 with N = 221

λ 4 2 1 1/2 1/4
m 128 64 128 64 128
t 256 256 128 128 64
r 64 128 128 256 256

R(m,t) 0,63 0,76 0,86 0,92 0,96
S(m,t) 0,02 0,01 0,01 0,01 0,01

S(m,t,r) 0,63 0,70 0,75 0,77 0,78
Y(m,t) 20459 12364 13979 7494 7733
H(m,t) 20584 12478 14108 7572 7867

Y(m,t,r) 782679 864433 918141 947460 960488
H(m,t,r) 838736 930556 988617 1019724 1036794

Table 4.3: For N = 240 Hellman Construction

m t r S(m,t) S(m,t,r) M Time
220 210 210 0,0013 0,744128319 30 20
218 211 211 0,0007 0,744012227 29 22
216 212 212 0,0003 0,743954199 28 24
214 213 213 0,0002 0,743925191 27 26

213,4 213,3 213,3 0,0001 0,743919745 26,7 26,6
212 214 214 8,31E-05 0,743910687 26 28
210 215 215 4,15E-05 0,743903436 25 30
28 216 216 2,07E-05 0,74389981 24 32
26 217 217 1,03E-05 0,743897998 23 34
24 218 218 5,19E-06 0,743897091 22 36

For instance, if an attacker has less memory access and more computational power, he

may try the last row of the above table. Hellman’s choice is the case where the memory

and time complexities are closest.

3. Since R(m, t) is the single table coverage, if R(m, t) = 1 then λ � 2−12, this means that

mt2 = 2−12N (See Table 4.4). Then, r =
αt
λ

.

Table 4.4: Effects of r on Success Rates

α r S (m, t, r)
1 212t 0.7955
2 213t 0.9582
3 3 ∗ 212t 0.9915

It is clear that if m and t is chosen to be too small, it will increase the single table
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coverage. However, it will increase the number of tables, r, which will cause excessive

M and T .

4.2.5 Hellman’s Curve

Hellman suggests to construct N1/3 tables, each with m = N1/3 words, and the number of

operations per table is also as t = N1/3 [34].

By choosing λ ≤ 1, it is possible to achieve a higher success without increasing memory but

additional cost of time complexity. In Table 4.5, t = 213,3, α = 1.

Table 4.5: Hellman Construction for Different λ s for N = 240.

m r λ R(m,t) S(m,t) S(m,t,r) M T
11 10327588 2−10 0,999 1,53E-07 0,794 26,7 36,6
169 645474 2−6 0,997 2,44E-06 0,793 26,7 32,6
676 161369 2−4 0,989 9,70E-06 0,791 26,7 30,6

2702 40342 2−2 0,960 3,76E-05 0,781 26,7 28,6
5405 20171 2−1 0,924 7,24E-05 0,768 26,7 27,6
10809 10086 20 0,861 0,0001 0,743 26,7 26,6

216189 5043 21 0,762 0,0002 0,700 26,7 25,6
43238 2521 22 0,628 0,0003 0,630 26,7 24,6

4.3 DP Success

In [19, 18], Borst et al give some suggestions how to choose parameters (r,m, t) with empir-

ical results. Although Standaert et al give a detailed analysis in [69], the optimal choice of

parameters is not given.

4.3.1 A Survey on Known Computations

Borst et al. Approach

Borst gave a formula for success probability in his thesis. The probability to reach a distin-

guished point in ≤ k iterations [18] is given as

P(k) ≈ 1 − e
−

k
2d

A reasonable choice for tmax is given as 2d+3 since P(2d+3) ≈ 1. Yet we believe that the
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maximum chain length may not only depend on distinguished property but also depend on

the key size.

Before throwing the identical endpoints, average chain length (β0) is given by:

β0 =
1

2−d + t
2n+2

−

 1
2−d + t

2n+2

+ t
 (1 − (

2−d +
t

2n+2

)t
)

After throwing identical endpoints, only the experimental values for average chain length (β1)

are given. And a relationship between α and β is given as :

β =
β0m − β1(m − α)

α

Borst et al. [19] suggested to choose d ≈ 1
3 k, m ≈ 2

k
3 and t ≈ 2

k
3 +3 for a success rate of 0.55.

Standaert et al. Approach Assuming the chains have no cycle, the probability to reach a

distinguished point in less than ≤ k iterations is given as [69]

Ps(k) = 1 −
k−1∏
i=0

(
1 −

2n−d

2n − i

)
.

The average chain length β in a region between [tmin, tmax]is given as

β '
(1 − h)tmin−2

(
tmin + 1−h

h

)
− (1 − h)tmax−1

(
tmax + 1

h

)
γ

where h = 2n−d

2n−
tmax+tmin

4
and γ = Ps(tmax) − Ps(tmin − 1).

The success rate of a single table is given as

S (m, t) =
g(γm)

2n

where g is the coverage function denoting the number of keys stored after sort and rejection

of mergers (x be the number of chains computed in region) defined by

g(x) '
(
g(0) −

2n

β

) (
1 −

β2

2n

) j

+
2n

β
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4.3.2 Detailed Computations

The probability that a chain which starts with a distinguished point reaches to a distinguished

point in exactly k iterations is :

PDP(k) =
(N − D)!D

(N − D − k + 1)!Nk

where k ≤ N − D − 1.

The probability that a chain which starts with a non-distinguished point reaches to a distin-

guished point in exactly k iterations is :

PNDP(k) =
(N − D − 1)!D
(N − D − k)!Nk

where k ≤ N − D.

Then the probability that a chain reaches to a distinguished point in exactly k iterations is :

P(k) =
D
N

PDP(k) +
N − D

N
PNDP(k).

Using P(k), with some asymptotic approaches, our aim is to give some better approximations

for the average chain length (β) and maximum chain length tmax.

In this part, we will try to investigate a formula for the average length of a chain (β),

β =

M∑
i=0

kP(k)

M∑
i=0

P(k)
where M = N − D.

M∑
k=0

P(k) =
M!D
NM+1

M∑
k=0

Nk

k!
. (4.5)
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M∑
k=0

kP(k) =
M!D
NM+1

M∑
k=0

Nk(M − k + 1)
k!

=
M!D
NM+1

(M + 1)
M∑

k=0

Nk

k!
− N

M−1∑
k=0

Nk

k!


=

M!D
NM+1

(M + 1)
M∑

k=0

Nk

k!
− N

M∑
k=0

Nk

k!
+

NM

M!


=

M!D
NM+1

(M + 1 − N)
M∑

k=0

Nk

k!
+ D


=

M!D
NM+1

(1 − D)
M∑

k=0

Nk

k!
+ D

 (4.6)

It is known that
∞∑

i=0

Ni

i!
= eN and

N∑
i=0

Ni

i!
≈

eN

2
then

M∑
i=0

Ni

i!
≈ λeN where λ ≤

1
2
.

Using Eq.4.5 and Eq.4.6, the average chain length will be

β = 1 − D +
NM+1

M!
M∑

k=0

Nk

k!

Using Stirling Formula

β = 1 − D +
NM+1

MM

eM

√
2πMλeN

Since M = N − D,

β = 1 − D +
NM+1eM−N

NM
(
1 − D

N

)M
λ
√

2πM

β = 1 − D +
Ne−D

e−
DM
N λ
√

2πM
= 1 − D +

N

e
D2
N λ
√

2πM
(4.7)

When N is large, it consumes a lot of time to calculate λ. To calculate λ we give a relation

between partial exponential summation with incomplete gamma function (See Appendix B

for details) as in the following. A relation among N and M may be given as:
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N∑
i=0

Ni

i!

eN ≈

∞∫
N

tMe−tdt

(M)!

To choose the optimal parameters, let our desired success rate be P. Our aim is to find appro-

priate D such that the probability of success of the trade-off is at least P:

Let k be the smallest cycle length 1, the probability that there is no distinguished point in the

smallest cycle is (
1 −

D
N

)k

Then the probability that at least a DP is encountered in a cycle is

1 −
(
1 −

D
N

)k
> P

This gives us

D > N
(
1 − (1 − P)

1
k

)

4.3.3 Specialized Computations

Since calculating the λ in Eq. 4.7 consumes a lot of time, we give another approach in this part

to calculate the average length of a chain. Using a similar approach with Standaert et al. [69],

we recalculated the success rate of a distinguished point in the following way. Although for

a random mapping the combinatoric model is selection without replacement, to bring some

ease in computations, we use the selection with replacement model. In fact, due to suitable

size of the parameters, this shortcut results in reasonable approximations.

Theorem 4.3.1 Let f : {0, 1}n → {0, 1}n be a one-way function, and DP- property of order d.

Then the key space is N = 2n and the number of distinguished points is D = 2n−d. Assuming

there is no cycle before kth iteration. Then the probability to reach a distinguished point in

exactly k iterations is

P(k) =
D(N − D)!(N − k)!

N!(N − D − (k − 1))!

1 There exists some efficient algorithms to find cycles in random mappings (See [44]-[20]-[67])
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Proof. The probability to reach a DP in 1th iteration

P(1) =
D
N

P(2) =

(
1 −

D
N

) D
N − 1

P(3) =

(
1 −

D
N

) (
1 −

D
N − 1

) D
N − 2

. . .

P(k) =

(
1 −

D
N

) (
1 −

D
N − 1

)
. . .

(
1 −

D
N − (k − 2)

)
D

N − (k − 1)

which can be also derived from [69] by P(k) − P(k − 1).

P(k) =
D

N − (k − 1)

k−2∏
i=0

(
1 −

D
N − i

)
=

2n−d

2n − (k − 1)

k−2∏
i=0

(
1 −

2n−d

2n − i

)
�

In this part we will try to investigate the average length of a chain, β =

M∑
i=0

kP(k)

M∑
i=0

P(k)
where

M = N − D.

The approximation as in [69] gives us

P(k) =
D

N − (k − 1)

k−2∏
i=0

(
1 −

D
N − i

)
=

2n−d

2n − (k − 1)

k−2∏
i=0

(
1 −

2n−d

2n − i

)
= 2−d

(
1 − 2−d

)k−2

since k << 2n.
tmax∑

k = tmin

P(k) =
(
1 − 2−d

)tmin−2
−

(
1 − 2−d

)tmax−1
(4.8)

and also

tmax∑
k = tmin

kP(k) = 2d
[(

1 − 2−d
)tmin−2

(1 − 2−d + 2−dtmin) − (1 − 2−d)tmax−1
(
2−dtmax

)]
(4.9)
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Finally equation (4.9) and (4.8) gives us the average chain length.

β =

2d
[(

1 − 2−d
)tmin−2

(1 − 2−d + 2−dtmin) − (1 − 2−d)tmax−1
(
2−dtmax

)]
(
1 − 2−d)tmin−2

−
(
1 − 2−d)tmax−1

In this part we will consider how many chains will be left in a table. When a table is con-

structed we start with m starting points but since we discard chains with the identical endpoints

and chains of length that are not in the region [tmin, tmax], the remaining number of chains will

be smaller than m.

The probability to reach a DP in less than tmin is

P(6 tmin) = 1 −

1 − 2n−d

2n −
tmin−1

2

tmin

.

tmin << 2n, thus to reach a DP in less than tmin iterations in a chain is

P(6 tmin) = 1 −
(
1 −

1
2d

)tmin

.

For m chains

m
(
1 −

(
1 −

1
2d

)tmin
)

= m

1 −
(1 − 1

2d

)2d
tmin
2d

 � m
(
1 −

[
e−1

] tmin
d

)
= m

1 − 1

e
tmin
2d

 .

The remaining rows after tmin elimination is T � me−
tmin
2d .

There are D distinguished points, so if we pick (with replacement) Tn integers randomly, out

of D integers, then the expected number of distinct integers in our collection will be

Tn+1 = D
(
1 − e−

Tn
D

)
where T0 = T .

By discarding identical endpoints, we remove merging chains. By approximating the rec-

curence relation above as in [3], the expected number of remaining chains will be

α �
T

1 +
β∗T
2D
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Coverage of a table is αβ. Success of r tables will be 1 − (1 − αβ
N )r = 1 − e−

αβr
N

4.3.4 Experimental Results

In order to confirm this analysis, some experiments on reduced Sha-1 (N = 228) are given

in Table 4.6 on which we evaluated the influence of the DP-property and key length, k, on

average chain length.

Table 4.6: DP Results on Reduced Sha-1

dp m tmin − tmax α1 α1,2 β0 β0,2 α2 α2,2 β1 Coverage

5

29 22 − 28 458 452 36 34 457 451 36 16542
23 − 27 401 399 36 35 400 398 35 14346

214 22 − 28 14904 14488 35 34 14459 14048 35 511926
23 − 27 12814 12760 37 35 12563 12426 37 464222

218 22 − 28 238361 231341 35 34 176151 157626 32 5421730
23 − 27 204937 204158 37 35 162002 142834 36 5233945

6

29 23 − 29 464 452 73 70 462 450 73 33750
24 − 28 396 399 74 73 395 397 74 29416

212 23 − 29 3663 3614 71 70 3563 3509 70 251421
24 − 28 3135 3189 74 72 3077 3105 74 228367

216 23 − 29 58639 57835 71 70 43878 39042 65 2696209
24 − 28 50487 51040 74 72 40257 35433 72 2593928

7

29 24 − 210 452 452 137 142 445 445 134 59875
25 − 29 384 398 146 147 381 393 145 55287

211 24 − 210 1808 1807 138 142 1174 1703 136 230178
25 − 29 1572 1594 146 147 1507 1510 145 215549

214 24 − 210 14560 14458 139 142 11049 9716 128 1334881
25 − 29 12624 12759 146 147 10111 8824 142 1287837

8

27 25 − 211 114 113 295 285 113 111 297 33207
26 − 210 98 100 326 295 97 98 328 31442

29 25 − 211 454 451 286 285 434 426 284 122228
26 − 210 389 398 306 295 375 388 304 112595

211 25 − 211 1806 1807 282 285 1540 1451 268 394705
26 − 210 1153 1594 294 295 1375 1303 288 370219

9

27 26 − 212 116 112 630 572 105 106 613 63998
27 − 211 95 99 621 592 90 94 625 53400

29 26 − 212 450 451 599 572 375 362 563 207045
27 − 211 382 398 608 592 334 325 605 193000

211 26 − 212 1819 1807 596 572 1177 910 518 543058
27 − 211 1545 1594 606 592 1099 839 577 529412

10

27 27 − 213 111 113 1124 1147 84 90 1106 88635
28 − 212 102 100 1205 1186 80 81 1211 88648

29 27 − 213 454 452 1123 1147 277 227 993 253215
28 − 212 403 399 1230 1186 259 210 1131 254898

211 27 − 213 1819 1807 1151 1147 782 365 901 553829
28 − 212 1619 1595 1247 1186 762 346 1087 567180

α1 is the number of chains that reaches a DP and α2 is the number of remaining chains after

discarding the identical endpoints (αi,2 are the calculated number of chains with the above
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formula), β0 is the average chain length, β1 is the average chain length after elimination of

identical endpoints.

4.4 Rainbow Tables

4.4.1 A Survey on Known Computations

The success rate of a single Rainbow table is given [61] by

P(s) = 1 −
t∏

i=1

(1 −
mi

N
)

where m1 = m and mn+1 = N(1 − e
−

mn

N )

4.4.2 Detailed Computations

Let bi is the number of distinct elements in column j. Then starting with b0 = m points

b1, b2, . . . , bi is expected to be

b1 = N(1 − exp(−
b0

N
))

b2 = N(1 − exp(−
b1

N
))

. . .

bi = N(1 − exp(−
bi−1

N
)).

Let bk
N = 1 − ck then ck = e−1eck−1 where c1 = e−m/N , 2 ≤ k ≤ t

t∑
k=2

bk = N(
t∑

k=2

(1 − e−1eck−1) = N(
t(t + 1)

2
−

t∑
k=2

e−1eck−1)

Then the coverage will be Y(m, t) = N(1 − e
m+

t∑
k=1

bk
)
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4.4.3 Specialized Computations

We consider a rainbow table consisting of m0 rows and t0 columns where m0t0 = N. As given

in [3], maximum number of remaining chains of length t by starting with m0 is m =
2Nm0

2N+m0t .

The sum of numbers of distinct elements in all rows is

Y(m0, t0) =

t0∫
0

2Nm0

2N + m0t
dt = 2N ln(1 +

m0t0
2N

).

Recalling that t0m0 = N,

Y ≈ 2N ln
(
3
2

)
.

This argument shows that no matter how the number of rows and columns are chosen, Y

remains the same. The expected number of distinct points in the table is then,

Y � N′
(
1 − e

(
− Y

N′
))

= N′(1 − (2/3)2/ϕ) = 0, 722276N′

4.4.4 Experimental Results

In order to confirm this analysis, an experiment on reduced A5/1 (N = 230) is given in Table

4.7 on which we evaluated the influence of the parameters m and t.

Table 4.7: Rainbow Table Coverage for N = 230

m t Coverage
220 210 595711153
218 212 595765307

4.5 Comparing TMTO techniques on A5

To compare these main three techniques, we apply TMTO on A5 for N = 230 (we mean

that the first 34 bits of key are set to zero) and we summarize the results in Table 4.8. In

DP method, least significant d bits are set to zero and t represents the region [tmin, tmax]. DP

method with small d seems to be the best one. Coverages of DP Method is larger than other

methods and also false alarm calculations are smaller than other methods, nevertheless, their

precomputations are higher.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this thesis, we have studied the Time Memory Trade Off cryptanalysis method. Trade

off attacks are widely studied in the literature and used for inverting various cryptosystems.

Focusing on the symmetric ciphers, we have studied the trade off attacks by thoroughly ana-

lyzing the statistical properties of underlying random mappings. This analysis is expected to

motivate the designers in building especially stream ciphers, to assess the resistance against

cryptanalytic trade off attacks. There is no consensus in the research community as to whether

trade offs constitute successful attacks. As some researchers defend to consider online com-

plexity ignoring the time consumed for precomputation, others say that there is no practical

significance if an attack requires overall complexity greater than exhaustive search.

This study can be roughly classified into three parts. The first part includes statistical prop-

erties of random mappings and permutations. The properties stated in this part are the key

stones in the application of time memory trade off attacks. The second part of the thesis de-

scribes the trade off methods in details and gives the extensions and applications of methods

on various ciphers. We have also proposed variant constructions techniques in this part. In

addition, a unified approach to the analysis of TMTO method and statistical tests based on

random mappings have been provided. As the success rates of trade off attacks are of funda-

mental importance in any comparisons of methods, the third part provides detailed analysis

of success rates for three main trade off techniques: Hellman, Rainbow, and DP. In his study,

Hellman gave a lower bound for the coverage of a single table. We have compared Hellman

and Kusuda et al. approach with the success obtained from an asymptotic approach. We have

presented a detailed analysis of the success rate of Hellman table via new parameters and also

showed how to choose parameters to achieve a higher success rate. By using these parame-
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ters, we can easily adjust time and memory complexities to have a better coverage, for a fixed

total complexity. We have examined the selection of parameters to achieve a higher success

rates for DP methods. The selection of parameters does not effect the success rate of Rainbow

method nevertheless it should not be forgotten that choosing t larger than average cycle length

will cause loops and decrease the coverage. In order to illustrate, we have presented applica-

tions of our analysis on stream cipher A5/1 and compare the results of different techniques.

This comparisons have indicated that our calculations are consistent with the empirical results.

The results in this thesis have also been published in the papers [66]-[65]-[71].

Since the researchers in the community are increasingly interested in studying TMTO attacks,

we offer some suggestions for future studies as follows:

• Although false alarms are not taken into consideration when online time complexities

are calculated, our empirical results suggest that false alarms have considerable differ-

ences in the time complexities of all the methods examined in this study. Investigating

the false alarms of these methods will be a valuable future work.

• Comparing the methods regarding to the hardware implementations may be another

future work.
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APPENDIX A

Description of Related Ciphers

A.1 A5/1

A5/1 is the stream cipher that is used for GSM communications in most of the European

countries and the United States. A5/1 is using a 64-bit key and a known 22-bit public key. A

GSM conversation is sent as a sequence of frames every 4.6 millisecond and produces frames

of length 228 bit each; 114 bits for sending and 114 bits for receiving information.

A5/1 is contains three maximal length linear feedback shift registers (LFSR) with irregular

clocking (See FigureA.11).

Figure A.1: A5-1 Stream Cipher

The least significant bit (LSB) is labeled as bit zero. The specification of the three LFSRs are

:

The majority function of the clocking taps is calculated in each clock and a register is clocked

if its clocking taps agree with the majority bits. Two / three registers are clocked at each step,

and each register go with probability 3/4 and stop with probability 1/4.

1 Figure is taken from Wikipedia
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Table A.1: A5/1 Specificitaion

R1 R2 R3
Lengths 19 22 23

Clocking bits 8 10 10
Tap points 13,16,17,18 20,21 7,20,21,22

Key Setup procedure can be summarized as following: Firstly, the registers are set to zero.

Then for 64 cycles, the 64-bit secret key is loaded to the least significant bit of each register

by XORing. By the same way, the 22-bits of the frame number are loaded. Each register is

clocked in each cycle with out majority clocking. Then using the majority clocking mecha-

nism, registers are clocked for 100 cycles and the output discarded.

A.2 LILI

LILI-128 is a stream cipher designed by Dawson, Clark, Golic, Millan, Penna and Simp-

son [68], and submitted to NESSIE (New European Schemes for Signatures, Integrity, and

Encryption[59]).It was accepted as one of six candidate stream ciphers, but was rejected from

the second round [64]. The LILI-128 keystream generator is a synchronous stream cipher

with a 128 bit key (See FigureA.22).

Figure A.2: Lili -128 Stream Cipher

It is a clock-controlled nonlinear filter generator. It uses two binary LFSRs and two functions.

LFS Rd is clocked at least once and at most four times depending on LFS Rc. The feedback

polynomials of LFS Rc and LFS Rd are chosen to be the primitive polynomials as

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

2 Figure is taken from original paper [68]
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for LFS Rc and

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1

for LFS Rd.

fc(x12, x20) = 2x12 + x20 + 1

is chosen to be a linear clock control function so that the distribution of c(t) is close to uniform.

fd is a highly nonlinear, balanced boolean function that inputs ten bits produced from LFS Rd

.

Key Setup procedure can be summarized as following: 128 bit key is loaded directly to form

the initial values of the two shift registers, from left to right, the first 39 bits in LFS Rc then the

remaining 89 bits in LFS Rd. LFSRd is clocked at least once and at most four times between

the production of consecutive keystream bits.

A.3 Toyocrypt

Toyocrypt is a 128-bit stream cipher proposed to the Japanese government Cryptrec call for

cryptographic primitives. It consists 128-bit regularly linear feedback shift register which is

filtered by a 128-bit Maiorana-McFarland function. The keystream is generated by applying

the nonlinear function f to the contents of 127 of the 128 stages.

A.4 eStream Project

European Network of Excellence for Cryptology(ECRYPT) is a 4-year work funded within

the Information Societies Technology (IST) Programme of the European Commission’s Sixth

Framework Programme (FP6). Ecrypt announced a new project for a public development

of efficient, secure stream ciphers (eSTREAM [28])in 2004 and received 34 stream ciphers.

ECRYPT was finalized with 7 stream ciphers on September 2008. eStream ciphers that are

analyzed with TMTO method are listed below.
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Figure A.3: Lex Stream Cipher

A.4.1 LEX

LEX is stream cipher based on AES (Advanced Encryption Standard) by Biryukov submitted

to ECRYPT. The keystream is generated by applying AES in the OFB (Output Feedback

Block ??) mode of operation. In each round, 32 bits of the intermediate state are extracted

after the application of each full AES round (See FigureA.33). IV is changed after 500

encryptions and the process is repeated. The secret key is changed after 232 different IVs.

A.4.2 MICKEY

Mickey (Mutual Irregular Clocking KEYstream generator) is a stream cipher proposed to

eSTREAM by Babbage and Dodd [7]. Mickey is designed for restricted hardware environ-

ments. It supports key size of 80 bit and IV size of between 0 and 80 bit. It uses two 80

bit shift registers with linear feedback (R) and nonlinear feedback (S ) each of which has two

modes of clocking selected by a control bit (See FigureA.44). Keystream is produced by

XORing two bits of shift registers. With a single (K,IV) pair, authors suggested to prodeuce

240 bits keystream.

The xor of two bits, s27 ⊕ r53 for register R and s53 ⊕ r26 for register S , are set as control bits.

3 Figure is taken from original paper [12]
4 Figure is taken from original paper [7]
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Figure A.4: Mickey Stream Cipher

Figure A.5: Grain Stream Cipher

A.4.3 GRAIN

Grain is a stream cipher proposed to eSTREAM by Hell, Johansson and Meier [50](See

FigureA.4.35). Grain is designed for restricted hardware environments and has attracted a

lot of attention due to its high speed, low gate count and low power consumption [32]. Grain

version 1 supportes key size of 80 bits and IV size of 64 bits which is not feasible to exhaus-

tively search with modern computers.

It is based on two shift registers with linear feedback (LFSR) with primitive polynomial ( f (x)

of degree 80 and with nonlinear feedback (NFSR) with nonlinear boolean function (g(x)) of

5 Figure is taken from original paper [50]
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degree 6 given as:

f (x) = 1 + x18 + x29 + x42 + x57 + x67 + x80

and

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80+

+ x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71+

+ x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71+

+ x28x35x43x47x52x59

Let LFSR state at time t is denoted by li, · · · , li+79 and NFSR state at time t is denoted by

ni, · · · , ni+79 Grain outputs a single bit zi at each clock cycle. It is computed by equation

zi = ni+1 + ni+2 + ni+4 + ni+10 + ni+31 + ni+43 + ni+56 + h(li+3, li+25, li+46, li+64, ni+63)

where

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4

Key Setup procedure can be summarized ad following: NLFSR is loaded by 80 key bits and

LFSR is loaded by 66 IV bits, remaining 16 bits of LFSR are all set to 1.

Although TMD method (See in Section 3.4.5) does not lead to practical attacks on Grain due

to the cost of the precomputation. Grain-128 [49] is designed to meet this requirement, it

supports key size of 128 bits and supports IV size of 96 bits.

A.5 SHA

Secure Hash Algorithm (SHA) published by NIST (National Institute of Standards and Tech-

nology) as a U.S. government standard. SHA is a hash function family consisting of five

algorithms; SHA- 1, SHA-224, SHA-256, SHA-384, and SHA-512. SHA-1 is widely used in

various applications such as TLS and SSL, PGP, SSH, S/MIME, and IPsec.

89



APPENDIX B

Relation with Incomplete Euler Gamma Function

Define

F(N) =

M∑
k=0

Nk

k!

F′(N) =

M∑
k=0

Nk

k!
−

NM

M!

Then

F′(N) − F(N) = −
NM

M!

(e−N F)′ = −
e−N NM

M!

e−N F(N) = 1 −
1

M!

N∫
0

tMe−tdt

where F(0) = 1

Since F(N) = λeN Then

λ = 1 −
1

M!
[

∞∫
0

tMe−tdt −

∞∫
N

tMe−tdt]

And also for positive integer, M

Γ(M) =
∞∫
0

tM−1e−tdt = (M − 1)! then

∞∫
0

tMe−tdt � M!
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This gives us a relation among N and M = N − D

N∑
i=0

Ni

i!

eN ≈

∞∫
N

tMe−tdt

(M)!
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APPENDIX C

Statistical Randomness Test

C.1 Pearson’s Chi Square test

The Pearson’s Chi Square (χ2) Test was first proposed by Karl Pearson. If we have frequency

distributions of two or more categories on a variable, Pearson’s χ2 test can be used. It tests how

well a theoretical distribution fits into an observed frequency distribution. The disadvantage

of the test is the value of the chi-square test statistic depend on how the data putted into classes

and also it requires a sufficient size of sample.

Firstly, data is grouped into classes and then compared observed frequency to the theoretical

distributions under the null distribution. The test statistic is calculated by

χ2 =

n∑
i=1

(Oi − Ei)2

Ei

where Oi is the observed frequency, Ei is the theoretical frequency for class i.

The chi-square statistic can then be used to calculate a p-value by comparing the value of the

statistic to a chi-square distribution (See [70] for details).
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