
RELATED-KEY ATTACKS ON BLOCK CIPHERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ASLI DARBUKA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

AUGUST 2009

Approval of the thesis:

RELATED-KEY ATTACKS ON BLOCK CIPHERS

submitted by ASLI DARBUKA in partial fulfillment of the requirements for the degree of
Master of Science in Department of Cryptography, Middle East Technical University by,

Prof. Dr. Ersan AKYILDIZ
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh ÖZBUDAK
Head of Department, Cryptography

Assoc. Prof. Dr. Ali DOĞANAKSOY
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Ersan AKYILDIZ
Department of Mathematics, METU

Assoc. Prof. Dr. Ali DOĞANAKSOY
Department of Mathematics, METU

Assist. Prof. Dr. Zülfükar SAYGI
Department of Mathematics, TOBB ETÜ

Dr. Muhiddin UĞUZ
Department of Mathematics, METU

Dr. Meltem Sönmez TURAN
Institute of Applied Mathematics, METU

Date:

1

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ASLI DARBUKA

Signature :

iii

ABSTRACT

RELATED-KEY ATTACKS ON BLOCK CIPHERS

Darbuka, Aslı

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali DOĞANAKSOY

August 2009, 123 pages

One of the most important cryptographic primitives is the concept of block ciphers which

yields confidentiality for data transmission in communication. Therefore, to be sure that con-

fidentiality is provided, it is necessary to analyse the security of block ciphers by investigating

their resistance to existing attacks. For this reason, related-key attacks gain much popularity

in recent years and have been applied to many block ciphers with weak key schedules. In

this work, our main motivation is to cover types of related-key attacks on block ciphers and

exemplify them.

For years, cryptanalysts have been investigating the security of the block cipher XTEA and

proposed several attacks on the cipher. First in FSE’02, Moon et al. presented a 14-round

impossible differential attack on XTEA. Then in ICISC’03, Hong et al. proposed a 15-round

differential attack and a 23-round truncated differential attack on XTEA. In FSE’04, Ko et

al. proposed a 27-round related-key truncated differential attack on XTEA. Afterwards, in

Vietcrypt’06, Lee et al. proposed a 34-round related-key rectangle attack on XTEA. Finally

in 2008, Lu improved this attack to a related-key rectangle attack on 36-round XTEA which

iv

is the best attack on XTEA in terms of the number of attacked rounds. In this thesis, we also

analyse differential properties of both structure and key schedule of XTEA block cipher and

introduce our 25-round related-key impossible differential distinguisher for XTEA.

Keywords: Block Ciphers, Cryptanalysis, Related-Key Attacks, XTEA

v

ÖZ

BLOK ŞİFRELERE YAPILAN İLİŞİK ANAHTAR ATAKLARI

Darbuka, Aslı

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali DOĞANAKSOY

Ağustos 2009, 123 sayfa

Blok şifreler kriptografinin en önemli yapıtaşlarından biri olup haberleşme esnasında veri

aktarımının gizliliğini sağlar. Bu nedenle, gizliliğin sağlandığından emin olmak için, blok

şifrelerin güvenliğinin varolan ataklara olan dayanıklılığı araştırılarak analiz edilmesi gerekir.

Bu sebeple, son yıllarda ilişik anahtar atakları önemli ölçüde yaygınlaştı ve birçok zayıf

anahtar üreteçli blok şifreye uygulandı. Bu çalışmadaki temel amacımız, blok şifrelere yapılan

ilişik anahtar atak çeşitlerini ele almak ve onları örneklendirmektir.

Yıllardır, kriptanalistler XTEA blok şifresinin güvenliğini araştırıyorlar ve bu şifreye yapılmış

birçok atak sundular. İlk olarak FSE’02’de, Moon vd 14 çevrimlik olanaksız diferansiyel

atağını sundular. Sonra ICISC’03’te, Hong vd 15 çevrimlik diferansiyel atak ve 23 çevrimlik

kesik diferansiyel atak sundular. FSE’04’te, Ko vd 27 çevrimlik ilişik anahtarlı kesik diferan-

siyel atak sundular. Daha sonra Vietcrypt’06’da, Lee vd 34 çevrimlik ilişik anahtarlı dikdörtgen

atağını sundular. Son olarak da 2008’de bu atak Lu tarafından çevrim sayısı bakımından

XTEA’ye yapılan en iyi atak olan 36 çevrimlik ilişik anahtarlı dikdörtgen atağına geliştirilmiştir.

Bu tezde ayrıca XTEA’nin yapısının ve anahtar üretecinin diferansiyel özelliğini inceledik ve

XTEA için 25 çevrimlik ilişik anahtarlı olanaksız diferansiyel ayırıcı sunduk.

vi

Anahtar Kelimeler: Blok Şifreler, Kriptanaliz, İlişik Anahtar Atakları, XTEA

vii

To my family

viii

ACKNOWLEDGMENTS

First of all, I am most grateful to my supervisor, Assoc. Prof. Dr. Ali Doğanaksoy, for his

guidance and attention throughout my studies at METU. He has always been a driving force

and a source of inspiration.

Several people assisted me in my work. I would like to express my gratitude to Dr. Meltem

Sönmez Turan who has been a great collaborator and a supporter. She was there every time

I needed her opinion and advice, always patient and good-willed. I also wish to thank Fatih

Sulak for discussions over my work. His comments and constructive criticism were valuable.

My colleagues, Neşe Öztop, Dilek Özberk, Onur Koçak, Onur Özen, İ.Firuze Atalay and

Kerem Varıcı deserve special thanks for their moral support, presence and humour. Above

all, I want to thank M. Fatih Bay for his special love and support.

Last, but not least, I wish to thank my parents, Ahmet and Semra, for raising me to become

who I am and for always being a great support.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Block Ciphers . 2

1.2 Differential Cryptanalysis . 4

1.3 Linear Cryptanalysis . 7

1.4 The Structure of Thesis and Our Contributions 9

2 RELATED-KEY CRYPTANALYSIS . 11

2.1 The Chosen-Key Attack of Winternitz and Hellman 12

2.2 Conventional Related-Key Attacks 13

2.2.1 Related-Key Known Plaintext Attack 13

2.2.2 Conventional Related-Key Attacks on Ciphers with Feistel
Structure: . 14

2.3 A Related-Key Attack on LOKI89 17

2.3.1 A Related-Key Attack on Block Ciphers with More Gen-
eralized Key Schedule 19

2.4 A Related-Key Attack on full round LOKI91 21

2.5 Related-Key Cryptanalysis of full-round SHACAL-1 22

x

2.5.1 An Attack on full-round SHACAL-1 23

3 RELATED-KEY DIFFERENTIAL CRYPTANALYSIS 25

3.1 Related-Key Differential Cryptanalysis of GOST 25

3.1.1 Notations . 26

3.1.2 The GOST Block Cipher 26

3.1.2.1 Key Scheduling Algorithm 26

3.1.2.2 Encryption Algorithm 27

3.1.3 A Distinguishing Attack on Full Round GOST 28

3.1.4 A Related-Key Differential Attack on Full Round GOST . 28

3.1.4.1 A 30-Round Related-Key Differential Char-
acteristics for GOST 28

3.1.4.2 A Full Round Attack on GOST 29

3.2 Related-Key Differential Cryptanalysis of KASUMI 30

3.2.1 Notations . 30

3.2.2 The Block Cipher KASUMI 31

3.2.2.1 The Key Scheduling Algorithm of KASUMI . 31

3.2.2.2 The Encryption Algorithm of KASUMI . . . 32

3.2.3 Related-Key Differential Attack on 5 and 6 Rounds KA-
SUMI . 34

3.2.3.1 A Set of 4-Round Differentials for KASUMI . 34

3.2.3.2 An Attack on 5-Round KASUMI 36

3.2.3.3 An Attack on 6-Round KASUMI 38

4 RELATED-KEY IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS 40

4.1 Overview of the Attack . 41

4.2 Related-Key Impossible Differential Cryptanalysis of Reduced-Round
AES . 42

4.2.1 Notations . 43

4.2.2 The AES Block Cipher 43

4.2.3 Some Properties of AES-192 45

4.2.4 A 5.5-Round Related Key Impossible Differential of AES-
192 . 46

xi

4.2.5 A 7-Round Related-Key Impossible Differential Attack on
AES-192 . 49

4.2.6 Attack Complexity . 51

4.3 Related-Key Impossible Differential Cryptanalysis of 31-Round HIGHT 52

4.3.1 Notations . 52

4.3.2 The HIGHT Block Cipher 53

4.3.2.1 Key Scheduling Algorithm 53

4.3.2.2 The Encryption Function of HIGHT 54

4.3.3 A 31-Round Related-Key Impossible Differential Attack
on HIGHT . 55

4.3.3.1 A 22-Round Related-Key Impossible Differ-
ential for HIGHT 57

4.3.3.2 The Attack 57

4.4 Our Related-Key Impossible Differential Distinguisher for XTEA . . 62

4.4.1 Notations . 63

4.4.2 The XTEA Block Cipher 63

4.4.2.1 The Key Schedule of XTEA 63

4.4.2.2 The Encryption Function of XTEA 63

4.4.3 A 12-Round Impossible Differential by Moon et al. 64

4.4.4 Our 25-Round Related-Key Impossible Distinguisher . . . 65

5 RELATED-KEY BOOMERANG ATTACK AND ITS EXTENSIONS 68

5.1 Related-Key Boomerang Attack . 68

5.1.1 Related-Key Boomerang Attack on Reduced-Round IDEA 70

5.1.1.1 Notations 71

5.1.1.2 The IDEA Block Cipher 71

5.1.1.3 A Related-Key Boomerang Attack 6-Round
IDEA . 73

5.2 Related-Key Amplified Boomerang Attack 76

5.3 Related-Key Rectangle Attack . 78

5.3.1 A Related-Key Rectangle Attack on the Full Round SHACAL-
1 . 80

5.3.1.1 Notations 80

xii

5.3.1.2 The SHACAL-1 Block Cipher 80

5.3.1.3 Related-Key Rectangle Attack on Full Round
SHACAL-1 82

5.3.1.4 A 69-Round Related-Key Rectangle Distin-
guisher for SHACAL-1 82

5.3.1.5 The Attack 83

5.4 Related-Key Impossible Boomerang Attack 87

5.4.1 A 6-Round Related-Key Impossible Boomerang Distin-
guisher for AES-192 . 89

6 RELATED-KEY DIFFERENTIAL-LINEAR CRYPTANALYSIS 92

6.1 Overview of the Attack . 92

6.2 Related-Key Differential-Linear Cryptanalysis of Reduced-Round AES-
192 . 94

6.2.1 Notations . 94

6.2.2 A 5-Round Related-Key Differential-Linear Distinguisher
for AES-192 . 94

6.2.3 A 7-Round Related Key Differential-Linear Attack on AES-
192 . 97

6.2.4 Attack Complexity . 97

7 SLIDE ATTACKS . 99

7.1 Slide Attack . 99

7.1.1 A Typical Slide Attack 100

7.1.2 Slide Attack on Feistel Ciphers 101

7.2 Advanced Slide Techniques . 103

7.2.1 Complementation Slide 103

7.2.2 Sliding with a Twist . 105

7.2.2.1 Cryptanalysis of DESX with Sliding Twist Tech-
nique . 106

7.2.3 Realigning Slide . 107

7.2.3.1 Realigning Slide Attack on Full Round DES . 107

7.2.4 Methods for Handling Stronger Functions 110

7.3 Improved Slide Attacks . 111

7.3.1 Improved Slide Technique 111

xiii

7.3.2 Improved Slide Attack on 24-Round GOST 113

8 CONCLUSION . 116

REFERENCES . 118

xiv

LIST OF TABLES

TABLES

Table 3.1 The Key Schedule of GOST . 27

Table 3.2 A 32-Round Related-Key Differential Characteristic for GOST 28

Table 3.3 A 30-Round Related-Key Differential Characteristic for GOST 29

Table 3.4 The Key Schedule of KASUMI . 31

Table 3.5 Constants Used in the Key Schedule of KASUMI 31

Table 4.1 Subkey Differences . 46

Table 4.2 Relations Between the Master Key, Whitening Keys and Round Keys 56

Table 4.3 A 22-Round Related-Key Impossible Differential for HIGHT 57

Table 4.4 The Key Schedule of XTEA . 64

Table 4.5 A 12-Round Impossible Differential Distinguisher for XTEA 65

Table 4.6 Our 25-Round Related-Key Impossible Differential Characteristic for XTEA 65

Table 5.1 Key Schedule of IDEA . 72

Table 5.2 The First Related-Key Differential for SHACAL-1 85

Table 5.3 The Second Related-Key Differential for SHACAL-1 86

Table 5.4 Subkey Differences . 89

Table 6.1 Subkey Differences . 95

Table 7.1 Circular Shifts in the Tweaked Key Schedule of DES 108

Table 7.2 A 7-Round Differential Characteristics with Probability of 0.494 for GOST 114

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Conventional related-key attack . 14

Figure 2.2 Conventional related-key attack on a generic Feistel cipher 15

Figure 2.3 Related-key attack on full-round LOKI89 20

Figure 3.1 ith round function of GOST . 27

Figure 3.2 Functions of KASUMI . 34

Figure 3.3 A set of 4-round related-key differential characteristics for KASUMI . . . 36

Figure 4.1 A 4.5-round related-key differential for AES-192 47

Figure 4.2 A 1-round related-key differential for AES-192 48

Figure 4.3 A 5.5 round related-key impossible differential distinguisher for AES-192 . 48

Figure 4.4 Rounds before and after the related-key impossible distinguisher of AES-192 49

Figure 4.5 ith round function of HIGHT . 55

Figure 4.6 ith round function of XTEA . 64

Figure 5.1 Related-key boomerang distinguisher based on four related keys 69

Figure 5.2 ith round of IDEA . 72

Figure 5.3 The first related-key differential is on the left-hand side and the second

related-key differential is on the right-hand side for IDEA 74

Figure 5.4 Related-key amplified boomerang distinguisher based on four related keys 77

Figure 5.5 Related-key rectangle distinguisher based on four related keys 79

Figure 5.6 ith round function of SHACAL-1 . 82

Figure 5.7 Related-key impossible boomerang distinguisher satisfying the condition

β ⊕ β′ ⊕ γ ⊕ γ′ , 0 . 88

xvi

Figure 5.8 Differentials with probability 1 for AES-192 90

Figure 6.1 A 4-round differential for AES . 96

Figure 7.1 Typical slide attack . 100

Figure 7.2 Typical slide attack on a generic r-round Feistel cipher with one round

self-similarity . 102

Figure 7.3 Complementation slide attack on a generic r-round Feistel cipher with two-

round self-similarity . 104

Figure 7.4 Sliding with a twist attack on a generic Feistel cipher with two-round self-

similarity . 105

Figure 7.5 Twisting slide attack on full-round DESX 106

Figure 7.6 Shift pattern . 108

xvii

CHAPTER 1

INTRODUCTION

Cryptology which comes from Greek words kryptós “hidden”, grápho “write” or legen “to

speak” is the study of hiding sensitive information. It incorporates two subjects, namely cryp-

tography and cryptanalysis. Cryptography is a tool to protect informations and to design

secure cryptographic algorithms and cryptanalysis on the other hand is the study of getting

meaning of the encrypted information or breaking cryptographic primitives.

The history of cryptology dates back 4000 years ago. Throughout the ages, people always

needed to conceal information due to several reasons. Thus, cryptology was developed and

started to become a crucial tool in real-world applications since then. For example, during

World War I and II, cryptanalysis played an important role that secret information was crypt-

analyzed by the adverse party changed the course of events.

After the development of computers and communication sciences in 1960s, the need of se-

crecy emerged and cryptology had been become famous. More explicitly, private sector

wanted to keep their digital information secret. For this reason in early 1970s, IBM designed

DES (Data Encryption Standard) as U.S Federal Information Processing Standard (FIPS)

which is the building structure of most of the cryptographic algorithms. It had been used

as the standard in many financial institutions all over the world until it was broken.

The most common property of the algorithms designed until that time is that they use only

one secret parameter- namely secret key. That is, this secret key is shared by the two parties

who are communicating and making encryption and decryption. Such algorithms are called

1

Symmetric Key Algorithms which are commonly used in many world-wide applications.

Afterwards, in 1976, Diffie and Hellman introduced a new concept Public-Key Cryptography

which is a type of Asymmetric Key Algorithms. In this technique, a pair of keys are used- a

public key used for encryption and a private key used for decryption. Then in 1978, the idea

of using public-key was firstly used by Rivest, Shamir and Aleman and they proposed a prac-

tical public-key encryption and signature scheme called RS A which is based on hardness of

factoring large integers. Then in 1985, El Gamal proposed another public-key cryptosystem

called “El Gamal encryption system” based on the discrete logarithm problem. Subsequently

in 1991, one of the most striking development called ’Digital Signature’ was presented.

To sum up, recently the development of computer sciences results in increasing of the im-

portance of cryptology on human interest. Cryptology also started to take part in people’s

activities for secure personal information besides governments’ activities. Cryptology is used

in many applications such as communications in army, financial transactions, authentication,

e-government applications, etc. Then it is expected that day after day, the importance of cryp-

tology have further increased and will become one of the most essential part of the human life.

Next, I am going to describe block ciphers which is an important class of symmetric cryp-

tosystems.

1.1 Block Ciphers

A block cipher is a symmetric-key algorithm which translates n-bit data block broken from

m-bit block into n-bit encrypted data block by using k-bit secret key. It consists of three build-

ing structures: Encryption, Decryption and Key Scheduling Algorithms. Both encryption and

decryption algorithms accept an n-bit data block (plaintexts and ciphertexts, respectively) and

a k-bit secret key as input and generates n-bit output block. In block ciphers, decryption is the

inverse function of encryption. Generally, a block cipher is a permutation for each key over

input data block. In addition, it is commonly agreed that an ideal block cipher can be seen as

the set of all secret key combinations which is indistinguishable from a random permutation.

The types of block ciphers can be classified into two types of structures: Feistel Networks and

2

Substitution-Permutation Networks (SPN).

Feistel Networks: In Feistel Networks, the input data is split into two halves and in each

round, round function is applied to only one half and the output of round function is bitwise

XORed with the other half. Then, two halves are swapped that becomes as an input to the

next round function. Data Encryption Standard (DES) is an example of Feistel Networks.

Substitution-Permutation Networks (SPNs): In SPNs, the round function is applied to com-

plete block of input data. The Advanced Encryption Standard (AES) is an example of SPN.

The main difference between two networks is that Feistel Networks do not need to have bijec-

tive round function, but SPNs should have bijective round function to allow unique decryption.

Most of the block ciphers are constructed by iterating a function a number of times. This func-

tion is called a round function which accepts the output of the previous round and a round key

as an input and translates them into output block. In a typical block cipher, a round function

consists of a bitwise XOR of round key, non-linear substitution boxes called S-boxes which

is a nonlinear function operating on fixed length blocks and Permutations.

There are mainly five types of cryptanalysis scenarios. But, before mentioning cryptanalytic

techniques, it is better to know the resources of a cryptanalysist. In cryptography, it is a com-

mon agreement that a cryptosystem should satisfy Kerkhoff’s Principle given as follows:

Kerkhoff’s Principle: A cryptosystem should be secure even if everything about the system,

except the secret key, is public knowledge.

More explicitly, Kerkhoff states that the secret parameters should be only the secret key and

the security of the cryptosystem should rely on only the secret key.

3

Now, cryptanalytic techniques are mentioned as below:

• Ciphertext Only Attacks: In this attack scenario, it is assumed that the attacker has

access to a set of ciphertexts and limited knowledge of plaintexts.

• Known Plaintext Attacks: In this case, the attacker is assumed to have an access to a

set of plaintexts and their corresponding ciphertexts under a fixed secret key. In the

attack, the attacker uses known plaintext-ciphertext pairs to derive secret key. Linear

cryptanalysis is an example of known plaintext attacks.

• Chosen Plaintext-Ciphertext Attacks: In this attack scenario, it is assumed that the at-

tacker can make encryption of a set of plaintexts under the secret key. In other words, he

can get the ciphertexts of chosen plaintexts under secret key. Differential cryptanalysis

is an example of chosen plaintext-ciphertext attack.

• Adaptively Chosen Plaintext-Ciphertext Attacks: In adaptively chosen plaintext-ciphertext

attack scenario, the attacker has a power of making encryption/decryption under un-

known key and using the information obtained, the attacker can choose another set of

plaintext-ciphertext under secret key.

• Related-Key Attacks: The attack has a strong assumption that the attacker is able to

make encryption under secret key and a key derived from the secret key. Namely, the

attacker can choose the keys and there are more than one keys to make encryptions.

Note that Brute Force attack or exhaustive search is a basic and trivial search routine such that

the attacker tries all possible secret key combinations to find the secret key. In cryptanalysis,

breaking a cipher has a meaning that the attacker distinguishes the cipher from a random

permutation and obtains the secret key faster than exhaustive search.

1.2 Differential Cryptanalysis

Differential cryptanalysis was proposed by Biham and Shamir in 1990 [1] and it is a statistical

method which is applicable to many block ciphers. The attack was firstly applied to reduced-

round DES. Then, the attack on DES was improved and broke full-round DES theoretically

4

[2, 3].

Differential cryptanalysis is a powerful technique that can break many ciphers, successfully.

When differential cryptanalysis was first introduced, many block ciphers were vulnerable to

this technique. However, recently designed block ciphers are proved to be secure against dif-

ferential cryptanalysis.

Afterwards, the extensions of differential cryptanalysis have been proposed: impossible dif-

ferential attack, boomerang attack, amplified boomerang attack, rectangle attack, differential-

linear attack. In the following chapters, we will mention the related-key versions of these

attacks.

Differential cryptanalysis exploits specific relations between two plaintexts P and P∗ under se-

cret key K. More explicitly, given difference between P and P∗ under K, the attacker searches

some specific difference between C and C∗ with high probability, where C and C∗ are corre-

sponding ciphertexts of P and P∗ encrypted under secret key K, respectively.

The difference operation can be defined in many different ways, however, from now on, we

consider the operation as XOR operation which is the most commonly used operation in

differential cryptanalysis. The difference between plaintexts is denoted as the input differ-

ence and the difference between ciphertexts is denoted as output difference. A Differential

is defined as the combination between input and output differences. Namely, A differential

(α → β) with probability p is the prediction that given the input difference α leads to the

output difference β with probability p.

Probability of differential for a block cipher is defined as follows:

Definition 1.2.1 Let E be a block cipher with n-bit block size and k-bit secret key K. Let α

and β be input and output difference for E, respectively, then the probability p of the differen-

tial (α→ β) is

5

Pr(α→ β) = Pr[E(P) ⊕ E(P ⊕ α) = β] (1.1)

Moreover, the probability of the differential is computed as

p = Pr(α→ β) =
] {P |E(P) ⊕ E(P ⊕ α) = β}

2n . (1.2)

For a random permutation with n-bit block size, it is expected to get the corresponding differ-

ence occurs with probability 2−n. However, in differential cryptanalysis, the attacker tries to

find a differential that has a probability much higher than 2−n to mount the attack.

There are many different intermediate differences that leads to same differential. Therefore,

a new notion was introduced: A differential characteristics is defined as a sequence of an

intermediate differences which leads to a particular differential. A differential characteristics

for r-round with probability p is called r-round differential characteristics.

In most block ciphers, given input difference propagates linearly in all components of round

function except S-boxes. In a typical round function, the only nonlinear component is S-boxes

which controls the difference in nonlinear way. For this reason, Difference Distribution Table

(DDT) or the XOR table is defined to analyse the probability of differences by counting the

number of pairs with the given input difference leads to the given input differences.

For the key recovery attack, the the attacker aims to take advantage of desired output differ-

ences of the rounds before the last one or two rounds. More explicitly, 1 or 2 rounds are added

to the end of the differential characteristics depending on the structure of the cipher(SPN or

Feistel Network). Then, the attacker guesses necessary key bits/bytes, decrypts all ciphertext

pairs until the end of differential characteristics and checks the pairs that the characteristics

hold with the given probability.

The number of data needed to implement the attack depends on the probability of the differ-

ential characteristics, number of right pairs needed and the number of guessed subkey bits.

6

A pair of plaintexts that satisfy the given plaintext-ciphertext differences and follow the dif-

ferential characteristics at the inner rounds is called a right pair that suggests a set of right

keys. Sometimes, a pair of plaintexts can satisfy the given input and output differences but

not satisfy the differential path, such a pair is called noise which suggest a set of random keys.

It is obvious that if the attacker chooses
c
p

pairs, he expects to get
c
p
· p = c right pairs. The

value of c depends on the proportion of the probability of the right key being suggested by a

right pair to the probability of a random key being suggested by a random pair with the given

initial differences. This is called “Signal to Noise ratio” or S/N, which is defined as follows:

S/N =
2k · p
γ · δ

(1.3)

Where k is the number of active bits, p is the probability of differential characteristics, γ is the

number of keys suggested by each pair of plaintext and δ is the fraction of the counted pairs

among all pairs. It is concluded that if S/N ratio is closed to 1, the number of needed data is

high, if it is bigger than 1, the number of data needed is low.

1.3 Linear Cryptanalysis

Linear cryptanalysis, one of the most famous generic statistical attack against block ciphers,

was proposed by Matsui and Yamagishi and firstly applied to FEAL block cipher [4]. Then

in 1993, Matsui proposed a linear attack on DES cipher [5].

Linear cryptanalysis is a known plaintext-ciphertext attack scenario exploiting linear expres-

sions of some plaintext-ciphertexts and key bits. More explicitly, the attack seeks to have

equality between some parity of input, output and key bits. In linear cryptanalysis, the at-

tacker tries to approximate non-linear block cipher using a linear approximation. Let E be an

n-bit block cipher, a linear approximation can be defined as the following:

λP · P ⊕ λC ·C = λK · K (1.4)

where “ · ” is the scalar product of two binary strings and λ′s are masks which are n-bit binary

vectors.

It is expected that for an ideal block cipher, Equation 1.4 holds with probability
1
2

. However,

7

linear cryptanalysis exploits linear expressions with sufficiently high or low probabilities to

distinguish the cipher from a random permutation. The deviation of probability p of occur-

rences of any linear expression from probability
1
2

is called linear probability bias or bias,

namely p −
1
2

. The bigger bias is, the better linear cryptanalysis is applicable.

Since the right side of Equation 1.4 is unknown but fixed (it is 0 or 1), there is no mind to

write the right side of the equation as 0. if the right side is equal to 1, then only the sign of the

bias will change and will not magnitude of bias. For this reason linear approximation can be

rewritten as:

λP · P ⊕ λC ·C = 0 (1.5)

In most block ciphers, the only non-linear components of the round functions are S-boxes.

Hence, S-boxes should be approximated linearly by using the Linear Approximation Tables

(LATs). Each entry in LATs represent the number of matches between linear expression of

input bits and linear expression of output bits. Linear cryptanalysis exploits the entry with

highest magnitude.

In linear cryptanalysis, the attacker firstly constructs a linear approximation of the cipher

which is equivalent to a differential characteristics, then mount the attack. An r−1 rounds lin-

ear approximation of the given cipher is constructed by concatenating linear approximations

of each round. For example, the approximations of two subsequent rounds are concatenating

if the output mask of the first approximation is equal to the input mask of the second approx-

imation. If the first approximation has bias q1 and the second approximation has bias q2, then

the bias of concatenation of two approximations is 2q1q2 which is calculated according to

Matsui’s Piling Up Lemma [5]:

Matsui’s Piling Up Lemma: Let X1, X2, . . . Xn be independent binary random variables with

biases q1, q2, . . . qn, respectively, then

Prob(X1 ⊕ X2 ⊕ . . . ⊕ Xn) =
1
2

+ 2n−1
n∏

i=1

qi (1.6)

8

or

q1,2...n = 2n−1
n∏

i=1

qi (1.7)

A brief description of r-round linear attack on any block cipher is as follows:

1. Construct an r − 1 rounds linear approximation with sufficiently high linear probability

bias q.

2. Take a set of N plaintext-ciphertexts encrypted under the secret key K.

3. Partially decrypt all ciphertexts through the last round by guessing necessary subkey

bits corresponds to masked output bits,

4. For each guessed subkey Ki, count the number of plaintext-ciphertext pairs which sat-

isfy Equation 1.5.

Let Ti be the number of plaintext-ciphertext pairs satisfy Equation 1.5 for guessed sub-

key Ki, Tmax and Tmin be the maximal and minimal value of T ′i s, then the actual key

bits are determined according to the following algorithm given in [5]:

• If |Tmax − N/2| > |Tmin − N/2|, then adopt the key candidate corresponds to Tmax

and guess λK · K = 0 (when p > 1/2) or 1 (when p < 1/2)

• If |Tmax − N/2| < |Tmin − N/2|, then adopt the key candidate corresponds to Tmin

and guess λK · K = 1 (when p > 1/2) or 0 (when p < 1/2)

The attack is implemented by taking about
c

q−2 known plaintext-ciphertexts. Note that differ-

ent values of c chance the success rate of the attack.

1.4 The Structure of Thesis and Our Contributions

In this work, we try to cover cryptanalytic attacks based on related keys. We start giving

notion of using related keys, then we continue to give its combinations with differential crypt-

analysis. Afterwards, we extend related-key differential cryptanalysis to other combined at-

tacks, namely related-key boomerang, related-key amplified boomerang, related-key rectan-

gle, related-key impossible differential, related-key impossible boomerang and related-key

9

differential-linear attacks. Finally, we mention slide attack which is not a related-key attack,

but its construction is very similar to simple related-key attacks. The aim of this work is to

gather all attacks based on related keys and exemplify them.

Our contribution to this work is that we analyse differential property of the key schedule of

XTEA (Extended Tiny Encryption Algorithm) and increased the number of rounds of 12-

round impossible differential distinguisher for XTEA to 25-round by using related keys with

specific differences.

The structure of thesis is as follows. In Chapter 2, basic related-key attacks are mentioned

and some examples of these attacks on some block ciphers are described. In Chapter 3, we

give the combination of differential cryptanalysis with the related-key idea and some applica-

tions of the attack is given. In Chapters 4, 5 and 6, the extensions of related-key differential

cryptanalysis, namely related-key boomerang, related-key amplified boomerang, related-key

rectangle, related-key impossible differential, related-key impossible boomerang and related-

key differential-linear attacks are detailed. In Chapter 7, we give the detailed description of

slide attack and its improvements. Firstly, we begin by describing basic related-key attacks.

10

CHAPTER 2

RELATED-KEY CRYPTANALYSIS

So far, the most well-known attacks on block ciphers are based on the weaknesses of the en-

cryption/decryption algorithm of the ciphers. Therefore, the ciphers are designed to resist the

attacks targeting at the cipher itself. However, key scheduling algorithms also play a crucial

role in the strength of the cipher. The ciphers which are secure against these attacks may be

still insecure, when key scheduling algorithms are taken into consideration. For this reason,

by exploiting key scheduling algorithm to get some mathematical relations between keys can

enables us to attack the given cipher.

Related-key cryptanalysis is a chosen-key attack, its idea was first introduced by Winternitz

and Hellman [6] and improved by Knudsen in 1992 [7] and Biham in 1993 [8], independently.

Winternitz and Hellman presented a generic attack which is applicable to all block ciphers.

Afterwards, Biham and Knudsen inspired by the work of Winternitz and Hellman, and pre-

sented a new chosen-key attack. The first attack was applied to LOKI89 and LOKI91 by

Biham [8].

In the related-key attack scenario, the attacker focuses on both structure and key schedule of

the cipher to get some weaknesses of the cipher. It is assumed that the attacker only knows

the particular relation between the secret keys, but not the actual key values and has a power

to make encryptions under the secret key and the derived keys.

Conventional related-key attack introduced by Biham is different from early cryptanalytic

methods in a way that it is independent of the number of rounds and mostly round function

11

of the cipher. Therefore, increasing the number of rounds of the cipher does not help the

cipher resist to the conventional related-key attack. Instead of this, key schedule should be

redesigned and strengthened.

Related-key attack is adapted to other mostly known powerful attacks and new methods are in-

troduced: related-key differential cryptanalysis, related-key impossible cryptanalysis, related-

key boomerang and rectangle attacks are some of them.

Related-key attacks do not seem to be realistic in many real-world cryptographic applications

since it is difficult for the attacker to make a sender encrypt plaintexts under related-keys

which are unknown to the attacker. However, some real-world cryptographic applications

may enable related-key attack. For example, in some applications, encryption program uses

secret K, K + 1, K + 2,. . . in subsequent encryptions. Moreover, Related-key attacks can be

applicable to block cipher based hash functions. More explicitly, if the compression function

of an hash algorithm is a block cipher, message words can be seen as related-keys and related-

key attacks can be applied. For example, a related-key attack has been applied to AES-192 by

Biryukov et al. in 2009 [10]. At first, the attack seems to be unrealistic, however, Biryukov et

al. have showed that AES-192 is not an ideal cipher and can not be used as an hash function

such as in Davies-Meyer mode.

In this chapter, conventional related-key attacks will be covered. Section 2.1 will include the

attack of Winternitz and Hellman which introduced the chosen-key idea [6]. Then, section 2.2

will describe conventional related-key attacks on block ciphers. Finally, Sections 2.3, 2.4 and

2.5 exemplify simple related-key attacks on LOKI89, LOKI91 and SHACAL-1, respectively.

2.1 The Chosen-Key Attack of Winternitz and Hellman

The idea of using more than one key in cryptanalysis of block ciphers was introduced by

Winternitz and Hellman [6]. They presented a generic attack which is independent of the

encryption and key scheduling algorithms of the cipher. In this attack, any block cipher with

n-bit key can be broken by using O(2n/2) in computation and memory.

12

The general overview of the attack is as follows:

1. Firstly, flip the first
n
2

bits of n-bit secret key K in 2n/2 possible ways and pick a plaintext

P, then compute:

EK(P), EK⊕(00...1)(P), EK⊕(00...10)(P), , EK⊕(00...11)(P), . . . , EK⊕(00...11...11)(P).

2. Afterwards, make 2n/2 encryptions with a set of key which have all possible values in

the last
n
2

-bit positions and compute:

E(00...0)(P), E(00...10...)(P), . . . , E(11...10...0)(P).

3. Finally, insert two sets of two encryptions in item 1-2 in hash table, check the equality

of EK⊕x(P) and E(y0...0)(P) for some x and y, where x and y are the first and last
n
2

-bit

of secret key K. If EK⊕x(P) = E(y0)(P), then the value of (y, x) is the exact value of K.

Note that we can have a false alarm that can be eliminated by taking 2 or 3 pairs of

plaintexts and ciphertexts.

Now, related-key attacks sticking to Biham’s attack in general framework are going to be

mentioned in the following section.

2.2 Conventional Related-Key Attacks

2.2.1 Related-Key Known Plaintext Attack

Let E be the block cipher with n-bit block length, r rounds and secret key K. Let Ki be the

subkey of round i for 1 ≤ i ≤ r generated by secret key K. Denote by F(xi,Ki) be the round

function of the cipher where xi is the input to round i. Then, as in Biham’s attack [8], assume

that the key schedule of the cipher is cyclic, i.e. , if the key schedule of the cipher generates

the sequence (K1,K2, . . . ,Kr) with K, then it should be possible to generate the sequence

(K2,K3, . . . ,Kr,K1) with another key K∗. Under this assumption, we can capture all key bits

of K1. However, due to the strength of the assumption, application of the attack is infeasible,

as key schedule of most of the block ciphers do not generate such subkey sequences.

13

Figure 2.1: Conventional related-key attack

Under this assumption, the main objective of the attack is to identify a pair of plaintexts

(P,C) and (P∗,C∗) that satisfy the equation F(P,K1) = P∗ where C and C∗ are corresponding

ciphertexts of P and P∗ under K and K∗, respectively. By this way, two encryption processes

will follow the same way in r − 1 rounds as seen in Figure 2.1 and the relation between

ciphertexts F(C,K1) = C∗ is obtained for free. Such a pair is called a slid pair and enables us

to identify the subkey K1 by using the equations F(P,K1) = P∗ and F(C,K1) = C∗.

The general case of attack on any block ciphers is as follows: Take two sets of 2n/2 plaintexts

Pi and P∗j and obtain their corresponding ciphertexts Ci and C∗j under K and K∗, respectively.

By the birthday paradox, it is expected to get only one slid pair. Then, for each pair (Pi,Ci)

and (P∗i ,C
∗
i) solve the equations F(Pi,K1) = P∗j and F(Ci,K1) = C∗j until to find K1 which

satisfies both equations. Due to the structure of the cipher, the equations F(Pi,K1) = P∗j and

F(Ci,K1) = C∗j are not both satisfied if Pi and P∗j is not a slid pair, thus, we probably deal

with a slid pair. Once a slid pair is identified, then conclude that K1 which verifies the system

is equal to the actual value of K1. Notice that, another assumption of conventional related-key

attack is that the round function F must be a weak permutation to let us derive K1, that is with

a few slid pairs it is possible to identify K1 given F(Pi,K1) = P∗j and F(Ci,K1) = C∗j .

The cipher is broken by taking O(2n/2) related-key known plaintext-ciphertexts (Pi,Ci) and

(P∗j ,C
∗
j) with time complexity O(2n), since we have O(2n) plaintext-ciphertext pairs to exam-

ine.

2.2.2 Conventional Related-Key Attacks on Ciphers with Feistel Structure:

Related-key attack can be applied to Feistel ciphers with lower data and time complexities due

to the structure of the Feistel ciphers. In the case of generic Feistel ciphers, a pair (P,C) and

(P∗,C∗) forms a slid pair if the relation between plaintexts F((PL, PR),K1) = (PR, PL⊕ f (PR⊕

14

Figure 2.2: Conventional related-key attack on a generic Feistel cipher

15

K1)) = (P∗L, P
∗
R) = P∗ holds which makes the relation between the ciphertexts F(CR,CL) =

(CR,CL ⊕ f (CR ⊕ K1)) = (C∗L,C
∗
R) hold for free. Then, the relations of a slid pair for generic

Feistel ciphers are:

P∗L = PR, (2.1)

P∗R = PL ⊕ F(PR,K1), (2.2)

C∗R = CL, (2.3)

C∗L = CR ⊕ F(C∗R,K1). (2.4)

Mainly, there are two types of related-key attack on Feistel ciphers: a related-key known

plaintext-ciphertext attack and a related-key chosen plaintext-ciphertext attack.

• A related-key known plaintext-ciphertext attack:

Take two sets of 2n/2 plaintexts P′i s and P∗j
′s and obtain their corresponding ciphertexts

C′i s and C∗j
′s under K and K∗, respectively. By the birthday paradox, it is expected to

find only one slid pair. Then, Equation 2.1 forces
n
2

-bit filtering condition on plaintext

pairs. On the other hand, by Equation 2.3, there is also
n
2

-bit filtering condition on ci-

phertext pairs. In total, there are n-bit filtering condition on a slid pair which eliminates

wrong slid pairs. This elimination can be done by sorting all plaintext-ciphertext pairs

into a hash table and checking Equations 2.1 and 2.3. Then, we expect to get a false

alarm and a slid pair after filtering. For two pairs, Equations 2.2 and 2.4 to derive the

correct value of K1. In addition, it is easy to eliminate the key suggested by the false

alarm by just trying a few plaintext-ciphertext pairs once K1 have identified.

This attack has O(2n/2) data complexity, O(2n/2) work including filtering by using hash

tables.

• A related-key chosen plaintext-ciphertext attack:

In the case of Feistel ciphers, the data complexity of the attack can be reduced from

O(2n/2) to O(2n/4) by taking carefully chosen plaintexts satisfying Equation 2.1. More

16

explicitly, the attacker picks two sets of 2n/4 plaintext-ciphertexts such that one set is

of the form (Pi
L, A) and another set is of the form (A, P j

R), respectively where A is
n
2

-bit

fixed value. These sets constitute 2n/2 · 2n/2 = 2n/2 plaintext-ciphertext pairs one out of

which is a slid pair by the birthday paradox. On the other hand, by Equation 2.3, there

is
n
2

-bit filtering condition on ciphertexts that eliminates all wrong pairs. Hence, we

have one slid pairs and a false alarm after filtering. Once a slid pair have found, we can

extract the correct key value of K1 from Equations 2.2 and 2.4. Finally, this attack has

O(2n/4) data complexity and O(2n/4) offline work.

2.3 A Related-Key Attack on LOKI89

In this subsection, a related-key attack of Biham against LOKI89 based on two related keys is

presented [8]. This attack is a key recovery attack that enables to identify all bits of the secret

key K.

Firstly, notations used in the attack and description of LOKI89 are given:

(KL,KR): 32-bit left and right halves of 64-bit secret key K,

<<< i: A cyclic shift to the left by i bits.

A Brief Description of LOKI89 and LOKI91:

LOKI89 and LOKI91 are a family of block ciphers designed by Brown et al. [9] for the

replacement of DES. Therefore, they have very similar structure with DES. LOKI89 and

LOKI91 are 16 rounds Feistel-type block ciphers with 64-bit block and key sizes. Like

DES, they have permutation P, expansion E and S-boxes in its f-function. Different from

DES, LOKI89 has initial and final key whitenings, while LOKI91 does not have. Notice that

LOKI91 is an improved version of LOKI89 in a way that it has stronger S-box and key sched-

ule than LOKI89 has.

17

The Key Schedule of LOKI89:

The crucial part of LOKI89 is its cyclic key schedule which makes the cipher vulnerable to

related-key attacks. The key schedule of LOKI89 has Feistel structure that it uses only cyclic

shifts to generate subkeys. More explicitly, 64-bit secret key is split into equal halves KL and

KR. Then, replace KL by K1 and KR by K2 and other subkeys Ki of round i are obtained by

rotating Ki−2 by 12 bits to the left, i.e Ki = (Ki−2 <<< 12).

The Key Schedule of LOKI91:

Unlike LOKI89, LOKI91 does not have a cyclic key schedule, however, it is still nonresistant

against related-key attacks. The key schedule of LOKI91 has a Feistel structure which splits

64-bit secret key K into equal halves KL and KR. Then, replace KL by K1 and (KL <<< 12)

by K2 and other subkeys of round i are obtained by rotating the subkeys Ki−4 by 25 bits to the

left (Ki = Ki−4 <<< 25).

The structure of LOKI89 can be seen in Figure 2.3.

The attack

First of all, the attack starts by choosing the relation between two related-keys K and K∗ such

that K∗ = (KR, (KL <<< 12)), then we have the relation between the subkeys as:

K2 = K∗1

K3 = K∗4
...

K16 = K∗15

K1 = K∗16 (2.5)

Emphasize that Equality 2.5 holds due to the cyclic property of the key schedule of LOKI89.

Now, the cricual assumption is that input to the second round in the encryption under key K

is equal to the input to the first round in the encryption under key K∗, namely F(P ⊕ K,K1) =

P∗ ⊕ K∗, since F(P ⊕ K,K1) = (PR ⊕ KR, PL ⊕ KL ⊕ f (PR ⊕ KR,KL)) and P ⊕ K∗ =

18

(P∗L ⊕ KR, P∗R ⊕ (KL <<< 12)), we have

P∗ = (P∗L, P
∗
R) = (PR, PL ⊕ KL ⊕ (KL <<< 12) ⊕ f (PR ⊕ KR,KL)) (2.6)

Then, two encryption processes follow the same way in the subsequent 15 rounds and at the

end the following relation between ciphertexts are obtained for free:

C∗ = (C∗L,C
∗
R) = (CR ⊕ KL ⊕ (KL <<< 12) ⊕ f (CR ⊕ KR,KL),CL) (2.7)

Then, by using Equations 2.6 and 2.7, the attack can be performed as follows:

1. Take two sets of 216 plaintext-ciphertext pairs satisfying P∗L = PR: one set of plaintexts

is of the form (Pi
L, A) and another one is of the form (A, P j

R), respectively where A is

32-bit fixed value.

The number of pairs is 216 · 216 = 232 and by the Birthday Paradox, one slid pair exists.

2. Ask for encryption of plaintexts P′i s and P∗j
′s under K and K∗ respectively, and obtain

their corresponding ciphertexts C′i s and C∗j
′s.

3. Due to Equation 2.7, there are 32-bit filtering condition on ciphertext pairs. Thus, after

filtering one slid pair and one false alarm left.

4. Combining Equations 2.6 and 2.7, we have

f (PR ⊕ KR,KL) ⊕ f (CL ⊕ KR,KL) = P∗R ⊕ PL ⊕C∗L ⊕CR (2.8)

In Equation 2.8, PR, PL, P∗R, CL, CR and C∗L are known values and only unknown value is

KR ⊕ KL. By using Difference Distribution Table of S-boxes of LOKI89, KL ⊕ KR can be

identified easily. Once the value of KL ⊕ KR have been found, then by using Equation 2.7, KL

and KR can be found immediately.

2.3.1 A Related-Key Attack on Block Ciphers with More Generalized Key Schedule

The conventional related-key attack mentioned in the previous section can be generalized in a

way that the key schedule of the cipher generates the sequence (K1,K2, . . . ,Kr) with K and can

generate another the sequence (K2,K3, . . . ,Kr,Kr+1) with another key K∗. This assumption

19

Figure 2.3: Related-key attack on full-round LOKI89

20

is weaker than the previous one, since the key schedule need not to be cyclic. However, the

attack is not possible to mount, because, a pair (P,C) and (P∗,C∗) forms a slid pair if they

satisfy the relations F(P,K1) = C and F(P∗,Kr+1) = C∗. Since identifying a slid pair is not

trivial and it is not possible to solve these two equations if K1 and Kr+1 do not have almost

all their bits in common. But, this situation can be handled only if there are some filtering

conditions on candidates slid pairs. Thus, it is concluded that this attack can be feasible if it is

applied to ciphers with Feistel structure. The attack procedure is as follows: we choose one set

of 2n/2 plaintext-ciphertexts (P,C) encrypted with K and another set of plaintext-ciphertexts

(P∗,C∗) encrypted with K∗, then there are 2n pairs (P,C) and (P∗,C∗) in total. Due to the

design of Feistel ciphers, there are two
n
2
− bit filtering conditions on plaintext and ciphertext

pairs, namely P∗L = PR and C∗L = CR. Thus, after filtering one slid pair remains and suggested

pairs of (K1,Kr+1) are extracted. But, there are many suggested pairs of (K1,Kr+1). If K1 and

Kr+1 have common bits, then the attack can be succeeded due to the filtering of common bits

on suggested key pairs.

2.4 A Related-Key Attack on full round LOKI91

LOKI91 has a different key schedule from LOKI89 in a way that it does not allow to make

related-key attack by shifting one round of encryption process, because, its subsequent sub-

keys are generated by using different number of shifts and is independent of the subkeys of

rounds i and i − 1. Therefore, an encryption process is shifted by two rounds against another

one and a related-key attack to LOKI91 is applied.

Now, let K = (KL,KR) be the secret key and K∗ = (K∗L,K
∗
R) the related-key. If an encryption

under K∗ is shifted by two rounds against an encryption under K and the output of the second

round of an encryption under K is equal to the plaintext of an encryption under K∗, then two

encryption process will follow the same way in subsequent 12 rounds. More explicitly, the

relation between plaintexts will be:

P∗ = (P∗L, P
∗
R) = (PL ⊕ f (PR ⊕ K1), PR ⊕ f (PL ⊕ f (PR ⊕ K1) ⊕ K2)) (2.9)

Then, a similar relation between ciphertexts will be obtained for free:

C∗ = (C∗L,C
∗
R) = (CR ⊕ f (f (CR ⊕ K∗15) ⊕CL ⊕ K∗16), f (CR ⊕ K∗15) ⊕CL) (2.10)

21

Finding a slid pair satisfying Equations 2.9 and 2.10 is not evident, because K1 and K2 are

unknown. However, since K1 = (K1 <<< 12), that is K1 and K2 shares all their bits, and that

makes finding slid pair easier.

A brief description of related-key chosen plaintext attack on LOKI91 is given as follows:

• Choose a set of 216 plaintexts P′i s and obtain their corresponding ciphertexts C
′s
i .

• Guess 232-bit values of K1 and K2 and by using Equation 2.9 calculate the output data

of second round of encryption under K which are assumed to be equal to plaintexts P′js

of an encryption under K∗. Therefore, we have a set of 216 · 232 = 248 P′js in total.

• Ask for encryption of P∗j
′s under K∗ and obtain their corresponding ciphertexts C∗j

′s.

For each pair ((Pi,Ci), (P∗j ,C
∗
j)) check if they satisfy Equation 2.10 with K∗15 and K∗16

or not. Then, keep only the pairs that satisfy Equation 2.10. The remaining pair is

a slid pair with a high probability since, Equations 2.9 and 2.10 cannot both hold if

((Pi,Ci), (P∗j ,C
∗
j) do not form a slid pair. Once a slid pair is identified, K1 which is the

left part of secret key K can be immediately found.

Next, a full-round simple related-key attack on SHACAL-1 presented by Biham et al. will be

covered [11].

2.5 Related-Key Cryptanalysis of full-round SHACAL-1

A simple related-key attack on full round SHACAL-1 was presented by Biham et al. [11].

The attack captures 548 bits of the secret key K. SHACAL-1 is a 80-round Feistel-type block

cipher proposed by Handschuh and Naccache to the NESSIE project in 2000 [12]. It has

160-bit block size and variable key sizes (0-512). For the detailed description of SHACAL-1,

refer to Chapter 5.

This attack is applicable to SHACAL-1, because SHACAL-1 has linear key schedule. The

attack starts by choosing relations between the secret key and the related-key:

22

Let K = (K0,K1, . . . ,K15) be the secret key and K∗ = (K∗0 ,K
∗
1 . . . ,K

∗
15) be the related-key.

Then, K and K∗ satisfy K∗i = Ki+1 for 0 ≤ i ≤ 78, more explicitly:

K∗i =


Ki+1, 0 ≤ i ≤ 14

K16 = (K13 ⊕ K8 ⊕ K2 ⊕ K0) i = 15

If it is assumed that the output of the first round of an encryption under K is equal to the

input to the first (plaintext) round of an encryption under K∗, then the subsequent 19 rounds

in both encryption processes will be the same. However, in round 20 of an encryption under

K uses different fi from an encryption under K∗ in round 19, thus, we need to keep sliding

probabilistically; the input to the round 21 in the first encryption under K should be equal to

the input to the round 22 in an encryption under K∗, that is:

A21 = A∗20, B21 = B∗20, C21 = C∗20, D21 = D∗20 and E21 = E∗20.

Due to the Feistel structure of SHACAL-1, we only need the equality A21 = A∗20, that is:

A21 = K20 + (A20 <<< 5) + f20(B20,C20,D20) + E20 + δ20

= A∗20 + (A∗19 <<< 5) + f19(B∗19,C
∗
19,D

∗
19) + E∗19 + δ19

The equality of two 32-bit blocks holds with probability of 2−32 for a random permutation.

Hence, for SHACAL-1, the probability is 2−32 which is experimentally determined in [11].

Then, sliding continues until round 40 of the encryption under K. Therefore, sliding will be

kept by the assumption of the equality in round 41 and round 40 in both encryptions. But, the

equality happens with a probability of 2−32. Afterwards, we come up against same situation in

round 60. Thus, we make same assumption as before and the equality holds with probability

of 2−32.

Hence, we can conclude that the probability of a pair form a slid pair with satisfying Equation

2.11 is (2−32)3 = 2−96.

2.5.1 An Attack on full-round SHACAL-1

The attack algorithm can be described as follows:

23

1. Pick 267 pairs of structures of 232 chosen plaintexts such that the set P contains plain-

texts (A, B,C,D, x) under K where A, B, C, D and E are fixed and for all possible values

of x and the set P∗ contains plaintexts (y, A, (B <<< 30),C,D) under K∗ for all possible

values of y. Obtain the set of their corresponding ciphertexts C and C∗, respectively.

Each structure constitutes 232 · 232 = 264 chosen plaintexts, therefore, in total there are

267 ·264 = 2131 pairs. Note that for each P ∈ P, there is P∗ such that P∗ ∈ P∗, therefore,

with 267 pairs of structures of 232, it is expected to have 267 · 232 · 2−96 = 23 slid pairs.

2. Since A80 = A∗79, B80 = B∗79, C80 = C∗79, D80 = D∗79 and E80 = E∗79, we have 128-bit

filtering condition on ciphertexts. Therefore, keep only the ciphertext pairs (C,C∗) such

that C = (a, b, c, d, e) and C∗ = (x, a, (b <<< 30), c, d). Since there are 2131 pairs and

due to 128-bit filtering condition, 2131 · 2−128 = 23 candidate slid pairs remain.

3. For each candidate slid pairs, identify K0 and K80 by the following equations:

K0 = y − ((A <<< 5) + fi f (B,C,D) + x + δ0)),

K80 = a∗ − ((a <<< 5) + fxor(b, c, d) + e + δ79)).

4. For each candidate slid pairs, output (K0,K80).

The attack can be applied once more by pairing keys as (K∗,K∗∗), (K∗∗,K∗∗∗),. . ., (K6∗,K7∗).

For example,

K∗∗i =


K∗i+1, 0 ≤ i ≤ 14

K∗16 = (K∗13 ⊕ K∗8 ⊕ K∗2 ⊕ K∗0) i = 15

If steps 1-3 are repeated for keys K∗ and K∗∗, all bits of subkeys K∗0 and K∗80 which are

equivalent to K1 and K81 are obtained. Repeating the attack 7 times, 64 · 7 = 448 linear

equations of subkeys are obtained due to the linearity of the key schedule of SHACAL-1

which enables to identify 448 bits of the secret key. The remaining 64-bit of the secret key

can be found by exhaustive search.

24

CHAPTER 3

RELATED-KEY DIFFERENTIAL CRYPTANALYSIS

The related-key scenario was combined with differential cryptanalysis by Kelsey et al. in

1996 [13] and was firstly applied to IDEA, G-DES, GOST, SAFER and Triple-DES.

Related-key differential cryptanalysis both exploits differential property of structure and key

schedule algorithm of the cipher. Namely, the attacker can choose specific differences be-

tween plaintexts and keys. The attack procedure is same as the attack procedure of differential

attack mentioned in Section 1.2 except the attacker uses more than one keys to make encryp-

tions.

The overview of this chapter is as follows: In section 3.1, a related-differential cryptanalysis

of full-round GOST proposed by Ko et al. [14] is given. Then, in Section 3.2, a related-key

attack on 5-round and 6-round KASUMI proposed by Blunden et al. in 2001 [15] is described.

3.1 Related-Key Differential Cryptanalysis of GOST

The GOST block cipher, its name is an abbreviation for “Gosudarstvennyi Standard ” or

“Government Standard”, was developed by the former Soviet Union in 1989 [16] and became

as a standard for Russian Federation. Since GOST was developed to be an alternative to DES,

the encryption algorithm of GOST is very similar to that of DES. However, unlike DES, some

components of the encryption algorithm of the cipher (S-boxes) are previously kept secret,

then it became public.

25

GOST is vulnerable to differential attacks, because the encryption algorithm does not satisfy

diffusion well. Besides, key scheduling algorithm of GOST does not satisfy difussion well,

either, due to its simple structure. Therefore, by exploiting these weaknesses the structure and

the key schedule of the cipher, several differential attacks are applied to the cipher [17, 14].

In this section, a related-key differential attack on full round GOST which was proposed by

Ko et al. [14] is given.

3.1.1 Notations

The notations used in the description of GOST and in the attack are given as follows:

⊕: Exclusive-OR operation

�: Addition in modulo 232

(<<< i): i-bit cyclic rotation to the left

K: A 256-bit master key

Ki: ith 32-bit of master key K, 1 ≤ i ≤ 8

(Xi,L, Xi,R): Left and right halves of input blocks to the round i, respectively, 1 ≤ i ≤ 64

ei: A 32-bit block having zeros in all positions except the position i

?: Any difference.

3.1.2 The GOST Block Cipher

GOST is a 64-bit block cipher with 256-bit secret key and has a 32-round iterative Feistel

structure. It has simple f -function which consists of a subkey addition in modulo 232, eight

different 4 × 4 S-boxes S 1, S 2, . . . S 8 and 11-bit cyclic rotation to the left.

3.1.2.1 Key Scheduling Algorithm

GOST has a quite simple key scheduling algorithm such that each round subkey is a part of

the secret key K. More specifically, A 256-bit secret key K is divided into eight 32-bit parts

(K1,K2, ...,K8) to generate 32-bit subkeys ki, 1 ≤ i ≤ 32 and then each subkey is one of the 8

26

parts of K. The subkeys used in each round are specified in Table 3.1.

Table 3.1: The Key Schedule of GOST

Round Subkey Round Subkey Round Subkey Round Subkey
1 K1 9 K1 17 K1 25 K8
2 K2 10 K2 18 K2 26 K7
3 K3 11 K3 19 K3 27 K6
4 K4 12 K4 20 K4 28 K5
5 K5 13 K5 21 K5 29 K4
6 K6 14 K6 22 K6 30 K3
7 K7 15 K7 23 K7 31 K2
8 K8 16 K8 24 K8 32 K1

3.1.2.2 Encryption Algorithm

Encryption function of GOST is an 32 times iteration of the round function depicted in Figure

3.1 which splits 64-bit input into two 32-bit halves and then applies f -function to one half of

its input. The f -function used in each round can be defined as follows:

f : {0, 1}32×{0, 1}32 → {0, 1}32, f (x, k)=(S 8((x�k)8)||S 7((x�k)7)|| . . . ||S 1((x�k)1)) <<< 11,

where x is any 32-bit value, k is 32-bit subkey and x � k = ((x � k)8, (x � k)7, . . . , (x � k)1)

Figure 3.1: ith round function of GOST

27

3.1.3 A Distinguishing Attack on Full Round GOST

Ko et al. [14] presented a distinguishing attack on full round GOST by building a 32-

round related-key differential with probability 1. This 32-round differential characteristic

depicted in Table 3.1.3 is constructed by choosing the difference between two plaintext as

P ⊕ P∗ = (PL ⊕ P∗L, PR ⊕ P∗R) = (e31, e31) and the difference between two related-keys as

K ⊕ K∗ = (K1 ⊕ K∗1 ,K2 ⊕ K∗2 , . . . ,K8 ⊕ K∗8) = (e31, e31, . . . , e31). It is seen that the input

difference to each round is always (e31, e31) because plaintext difference is preserved due to

the zero input difference to S-boxes in each round with probability 1.

Since the probability of the related-key differential distinguisher is 1, the probability of dis-

tinguishing the GOST cipher from a truly random permutation is (1 − 2−64). Therefore, the

attack can be implemented by choosing only two plaintext-ciphertext pairs with the given

input differences.

Table 3.2: A 32-Round Related-Key Differential Characteristic for GOST

∆Xi,L ∆Xi,R ∆Ki
∆X1 e31 e31 e31
∆X2 e31 e31 e31
∆X3 e31 e31 e31
.
.
.

.

.

.
.
.
.

.

.

.

∆X31 e31 e31 e31
∆X32 e31 e31 e31

Output e31 e31 -

3.1.4 A Related-Key Differential Attack on Full Round GOST

This attack utilizes 30-round related-key differential characteristics with probability of 2−30.

The attack recovers 4 bits of the last round subkey K1, however in the original paper there

exist extra work to find other 8 bits of K1.

3.1.4.1 A 30-Round Related-Key Differential Characteristics for GOST

If the difference between two plaintexts P = (PL, PR) and P∗ = (P∗L, P
∗
R) are chosen as P⊕P∗ =

(PL ⊕ P∗L, PR ⊕ P∗R) = (e30, e30) and the difference between two keys K and K∗ are chosen as

28

K ⊕ K∗ = (K1 ⊕ K∗1 ,K2 ⊕ K∗2 , . . . ,K8 ⊕ K∗8) = (e30, e30, . . . , e30) then the output difference of

round 30 will be (e30, e30) with probability of 2−30. More explicitly, if the input difference to

the round is (e30, e30) and subkey difference is (e30), after the key addition, the input difference

to the s-boxes will be zero with a probability of 2−1. By this way, one can build a 30-round

related-key differential characteristics with probability of 2−30 as depicted in Table 3.1.4.1.

Table 3.3: A 30-Round Related-Key Differential Characteristic for GOST

∆Xi−1,L ∆Xi−1,R ∆Ki Probability
∆X1 e30 e30 e30 2−1

∆X2 e30 e30 e30 2−1

∆X3 e30 e30 e30 2−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

∆X31 e30 e30 e30 2−1

∆X32 e30 e30 e30 2−1

Output e30 e30 - -

3.1.4.2 A Full Round Attack on GOST

The attack starts by imposing extra conditions on ciphertext pairs. Therefore, it is assumed

that ciphertext differences are CR ⊕ C∗R = e30 and CL ⊕ C∗L[0 − 6] = 0, CL ⊕ C∗L[7 − 10] =?,

CL⊕C∗L[11−29] = 0, CL⊕C∗L[30] = 1 and CL⊕C∗L[31] = 0. Then, this condition needs input

difference to S 8 in round 31 is zero and the input difference to S 8 in round 32 is nonzero.

The attack algorithm can be explained as follows:

• Choose 235 plaintext pairs Pi and P∗i such that Pi ⊕ P∗i = (e30, e30) and obtain their

corresponding ciphertexts Ci and C∗i under K and K∗, respectively.

• Keep only the ciphertext pairs Ci and C∗i such that CR⊕C∗R = e30 and CL⊕C∗L[0−6] = 0,

CL ⊕C∗L[7 − 10] =?, CL ⊕C∗L[11 − 29] = 0, CL ⊕C∗L[30] = 1 and CL ⊕C∗L[31] = 0.

• For each 4-bit key candidate, check two equations given below for each remaning ci-

phertext pairs and count the number of ,

S 8(CR[28−31]+K1[28−31])⊕CL[7−10] = S 8(C∗R[28−31]+K∗1[28−31])⊕C∗L[7−10]

or

S 8(CR[28− 31] + 1 + K1[28− 31])⊕CL[7− 10] = S 8(C∗R[28− 31] + 1 + K∗1[28− 31])⊕

C∗L[7 − 10]

29

If a key candidate is counted at least four times, then conclude that this key candidate is the

actual key.

3.2 Related-Key Differential Cryptanalysis of KASUMI

Third Generation Partnership Project (3GPP) aims to standardize the future mobile telephony.

The goal of 3GPP is to provide more secure environment then GSM. Two main objectives of

the design of 3GPP confidentially and integrity algorithms are to provide high security and

low cost implementation in hardware. KASUMI [18] which a basis for a confidentiality al-

gorithm f8 and integrity algorithm f9 was adapted from the block cipher MISTY1 [19] by

strengthening the algorithm of MISTY1 and simplifying the implementation without com-

promising the complexity and security, respectively.

In 2005, Biham et al. [20] proved that KASUMI is not secure against differential based

related-key attacks. They proposed a related-key rectangle attack on full round KASUMI

which is faster than exhaustive search. In this section, we will describe the related-key dif-

ferential attack of Blunden et al. [15] that was proposed in 2001. This is not the best attack

on KASUMI, however, it is important that it constitutes a basis for the full round attack on

KASUMI.

3.2.1 Notations

The notations used in the specification of KASUMI and description of the attack are listed as

follows:

|| : The concatenation of two string

<<< i: i-bit rotation to the left

∨: The bitwise OR operator

∧: The bitwise AND operator

an: An n-bit string with full of a where a ∈ {0, 1}

30

3.2.2 The Block Cipher KASUMI

KASUMI is an 8-round Feistel block cipher which encrypts an 64-bit input block into 64-bit

output block by using a 128-bit user key. It uses a linear key scheduling algorithm which gen-

erates 32 subkeys of 16-bit length by using 128-bit secret key K. The key schedule algorithm

and the components of KASUMI are described in the following subsection.

3.2.2.1 The Key Scheduling Algorithm of KASUMI

KASUMI uses very simple linear key scheduling algorithm that makes the cipher vulnerable

to related-key attacks. The subkeys KLi, KOi and KIi specified in Table 3.4 are derived from

the secret key K in the following way:

The 128-bit user key K is partitioned into eight 16-bit sections K1,K2 . . .K8 where K =

K1||K2|| . . .K8. Then, each section is used exactly once in the generation of the subkeys of

one round in a way that either it is rotated to the left or it is added with a constant. More

explicitly, K′i is an 16-bit subkey value that is derived from Ki such that K′i = Ki ⊕ δi, for each

i, 1 ≤ i ≤ 8. Here, δi is an 16-bit constant value which is given in Table 3.5.

Table 3.4: The Key Schedule of KASUMI

Round i KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3
1 K1 <<< 1 K3

′ K2 <<< 5 K6 <<< 8 K7 <<< 13 K′5 K′4 K′8
2 K2 <<< 1 K4

′ K3 <<< 5 K7 <<< 8 K8 <<< 13 K′6 K′5 K′1
3 K3 <<< 1 K5

′ K4 <<< 5 K8 <<< 8 K1 <<< 13 K′7 K′6 K′2
4 K4 <<< 1 K6

′ K5 <<< 5 K1 <<< 8 K2 <<< 13 K′8 K′7 K′3
5 K5 <<< 1 K7

′ K6 <<< 5 K2 <<< 8 K3 <<< 13 K′1 K′8 K′4
6 K6 <<< 1 K8

′ K7 <<< 5 K3 <<< 8 K4 <<< 13 K′2 K′1 K′5
7 K7 <<< 1 K1

′ K8 <<< 5 K4 <<< 8 K5 <<< 13 K′3 K′2 K′6
8 K8 <<< 1 K2

′ K1 <<< 5 K5 <<< 8 K6 <<< 13 K′4 K′3 K′7

Table 3.5: Constants Used in the Key Schedule of KASUMI

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8
0x0123 0x4567 0x89AB 0XCDEF 0XFEDC 0XBA98 0X7654 0X3210

31

3.2.2.2 The Encryption Algorithm of KASUMI

Each round of encryption function of KASUMI has two S-boxes S 7 and S 9 and three func-

tions the FO function, the FL function and the FI function.

The FO function is a 3-round balanced Feistel construction which mixes 32-bit data with two

48-bit subkeys in each round. Each round of FO function includes key addition step and the

FI function. The FI function is also a 4-round unbalanced Feistel construction which takes

16-bit input data and 16-bit subkey. Each round has an S-box such that even rounds use S 7

and and odd rounds use S 9. The FL function is a 2-round Feistel construction which takes

32-bit input data and 32-bit subkey. It has two nonlinear operations; the OR operation and the

AND operation both of which operates on 16-bit data and 16-bit subkey. S-boxes used in the

encryption function are S 7 and S 9, S 7 which maps 7-bit input into 7-bit output, and S 9 which

maps 9-bit input into 9-bit output.

The encryption function of KASUMI has three f-functions and two S-boxes described as fol-

lows:

The FL Function: The FL function accepts 32-bit input value X0 and 32-bit subkey KLi and

separate the input X0 into two parts X0,L and X0,R such that X0 = X0,L||X0,R. Then, it applies

the following algorithm:

X1,R = X0,R ⊕ ((X0,L ∧ KLi,1) <<< 1)

X1,L = X0,L ⊕ ((X1,R ∨ KLi,2) <<< 1)

where KLi = KLi,1||KLi,2, and X1 = X1,L||X1,R is the output of the function FL in round i.

The FI Function: The function FI takes a 16-bit X0 and a 16-bit subkey KIi, j as an input,

then it divides 16-bit input X0 into two unequal parts such that 9-bit value X0,L is the left part

and 7-bit value X0,R is the right part, X0 = X0,L||X0,R. The function includes two non-linear

S-boxes S 7 and S 9, S 7 which maps 7-bit input into 7-bit output, and S 9 which maps 9-bit

input into 9-bit output.(details of S-boxes are given in appendix) . It also contains two extra

functions, f1 which transforms 7-bit value into 9-bit value by adding two zeros on the left

32

most side of 7-bit value, and f2 which transforms 9-bit value into 7-bit value by removing two

bits on the left most side of 9-bit value.

The algorithm of the function in round i goes as follows:

X1,L = X0,RX1,R = S 9(X0,L) ⊕ f1(X0,R),

X2,L = X1,R ⊕ KIi, j,2X2,R = S 7(X1,L) ⊕ f2(X0,R) ⊕ KIi, j,2,

X3,L = X2,RX3,R = S 9(X2,L) ⊕ f1(X2,R),

X4,L = S 7(X3,L) ⊕ f2(X3,R)X4,R = X3,R,

where KIi, j = KIi, j,1||KIi, j,2, KIi, j,2 and KIi, j,2 are 7-bit and 9-bit values, respectively.

The FO Function: The FO function is a 3-round Feistel construction which mixes 32-bit

input data X0 with a 48-bit subkey KOi and 48-bit subkey KIi in round i.

The 32-bit input X0 is divided into two halves, X0,L and X0,R such that X0 = X0,L||X0,R and is

processed by the following algorithm of the FO function in round i:

For j=1 to 3;

X j,R = FI(X j−1,L ⊕ KOi, j,KLi, j) ⊕ X j−1,R

X j,L = X j−1,R

where KOi = KOi,1||KOi,2||KOi,3 and KLi = KLi,1||KLi,2||KLi,3.

Encryption:

Encryption function divides a 64-bit input X0 into 32-bit halves X0,L and X0,R such that

X0 = X0,L||X0,R, then applies the following algorithm:

For i=1,3,5,7;

Xi,L = Xi−1,L X j,R = FO(FL(X j−1,L,KL1),KO1,KI1)

Xi+1,L = Xi−1,L ⊕ FL(FO(Xi,R,KOi+1,KIi+1)KLi+1)) Xi+1,R = Xi,R

The algorithm returns the value X8 = X8,L||X8,R.

33

Figure 3.2: Functions of KASUMI

3.2.3 Related-Key Differential Attack on 5 and 6 Rounds KASUMI

3.2.3.1 A Set of 4-Round Differentials for KASUMI

A set of 4-round differentials are built by taking advantage of two properties of FL function

which are given below:

Property 1: If the input to FL function is 016116, then the output is always 132.

Property 2: If the input difference to FL function is zero and the subkey differences are

∆KLi,2 = 0 and ∆KLi,1 , 0, then the output difference is zero with a probability 2−wt(∆KLi,1),

where wt(∆KLi,1) is the weight of ∆KLi,1.

The AND of the input bit and two related keys which have difference in the corresponding

position of the input bit is always zero when the input bit is zero. However, when the input

34

bit is 0, after the key mixing, the output will the value 0 and 1, respectively. Hence, the dif-

ference of the values after key mixing is zero with a probability 2−1. When the whole input

and key strings are considered, the probability of having zero difference between the inputs is

2−wt(∆KLi,1).

If the form of plaintexts is chosen such that P = (PL, PR) = (016116, δ) and P∗ = (P∗L, P
∗
R) =

(016116, δ⊕(γ <<< 5)016), where δ is any 32-bit value and γ is a 16-bit value and the difference

between keys K and K∗ is taken as K ⊕K∗ = (0, 0, γ, 0, 0, 0, 0, 0) then the output difference of

round 4 will be of the form α(γ <<< 5)016 with a probability of 2−wt(γ). This set of 4-round

differentials depicted in Figure 3.3 can be constructed as follows:

• In round 1, the FL function is applied to the left part of the plaintexts PL = P∗L =

016116, by the property 1, the output difference of the function will be zero. Then, zero

differences is preserved through the FO function, since the subkey differences ∆KO1,

∆KI1 and the input difference to the function FO is zero.

• In round 2, the input difference ((γ <<< 5)016) to the function FO is canceled by the

subkey difference ∆KO2,1 = (γ <<< 5), hence the output difference turns out to be

zero. Then, the zero difference is preserved through the FL function due to the subkey

difference which is zero.

• In round 3, the input difference to the FL function is zero and the subkey difference

is ∆KL3 = (γ <<< 1)016, then the output difference of the function is zero with a

probability 2−wt(γ) by the property 2. Then, zero difference is maintained through the

FO function, since the input and the key difference is zero.

• In round 4, the input difference to the FO function is ((γ <<< 5)016) and the subkey

differences are ∆KO4 = 048 and ∆KI4 = 032γ, then the output difference of the function

can be any 32-bit value λ. The difference λ leads to an 32-bit difference α through the

FL function.

As a result, the output difference at the end of round 4 becomes α(γ <<< 5)016 with

probability of 2−wt(γ), if the plaintext and key differences are taken as above.

35

Figure 3.3: A set of 4-round related-key differential characteristics for KASUMI

3.2.3.2 An Attack on 5-Round KASUMI

A 5-round attack [15] is mounted by utilizing one of 4-round differentials mentioned

before. In order to perform the attack with lower complexity, the weight of key dif-

ference γ is taken as one, that is wt(γ) = 1. In this way, the probability of a 4-round

differential will be 2−wt(γ) = 2−1.

The attack procedure goes as follows:

– Form 215 plaintexts pairs P and P∗ such that P = 016116δ, P = 016116δ ⊕ (γ <<<

5)016 , where δ is any 32-bit value and γ is a 16-bit value of weight 1.

– Encrypt the plaintext pairs P and P∗ under K and K∗ and obtain their correspond-

ing plaintexts C and C∗.

Since 1 bit difference between master keys K and K∗ can be in 16 different po-

sitions, P∗’s are encrypted under 16 different values of K∗. Therefore, the attack

requires 215 plaintext encryptions under key K and 215 ·24 = 219 plaintext encryp-

tions under key K∗.

– Keep the ciphertext pairs C and C∗ satisfying the difference C ⊕C∗ = αab, where

a = b ⊕ (γ <<< 5). This step has 16-bit filtering condition, hence, about 2−16 ·

36

219 = 23 pairs that satisfy the appropriate plaintext and ciphertext differences are

left. Since a = b ⊕ (γ <<< 5), the output difference of the function FO will

be (γ <<< 5)016) ⊕ (b ⊕ (γ <<< 5)b) = bb. When the difference bb is rolling

back through the FO function, it is seen that the input difference to FI5,3 will be

zero. Because the output difference and the subkey difference of the function is

zero. Afterwards, since the subkey difference ∆KO5,3 = (γ <<< 13), the output

difference of FI5,2 will be b ⊕ (γ <<< 13).

– Guess the subkeys KL5,1 and KO5,2 and compute the input values to the FI5,2

as the ciphertexts are known. Then, for each ciphertext pair, since input differ-

ences and output differences of FI5,2 are known, by the help of XOR tables of

S 7 and S 9,the values of the subkey KI5,2 is suggested. Then, store the triples

(KL5,1,KO5,2,KI5,2) that are suggested at 4 ciphertext pairs. The key triple is

uniquely detected due to the fact that an incorrect subkey triple is suggested by 4

ciphertext pairs with a probability of (2−16)4 = 2−64 which is less than 2−57. For

that reason, a wrong triple is suggested with a probability of less than 2−9 and the

suggested subkey triple can be accepted as the correct subkey triple. Furthermore,

4 ciphertext pairs suggesting subkey triples can be considered as the right pairs

that follows the differential path prescribed before.

– Once having obtained the subkey KI5,2, the right part of the input difference to the

FO function is known and denote the difference c. Then, the output difference of

FI5,1 is (γ <<< 13)⊕ c), and by guessing the subkeys KL5,2 and KO5,1 which en-

ables the input to FI5,1 to be attained for each right pair. Since the input difference

and the output difference of FI5,1 are known, the subkey KI5,1 can be recovered

by the same method used in the previous step.

– Up to now, 96 bits of the original key are recovered. The remaining bits can be

found by exhaustive search or forming another set of plaintext-ciphertext pairs

which satisfy the condition stated in the first step and do not satisfy the condition

in the third step.

The time complexity of the attack is about 233 5-round KASUMI encryptions and the

data complexity of attack is 215 and 219 chosen plaintexts which are encrypted under

master keys K and K∗.

37

3.2.3.3 An Attack on 6-Round KASUMI

A 6-round attack can be performed by utilizing the same differential used in the 5-round

attack. When mounting this attack, it is avoided guessing all subkey bits of round 6 to

peel off the round by choosing proper differences between the ciphertext pairs. The

attack can be described as follows:

– As in the previous 5-round attack, form 3 · 213 plaintexts pairs P and P∗ such that

P = 016116δ, P = 016116δ ⊕ (γ <<< 5)016 , where δ is any 32-bit value and γ is a

16-bit value of weight 1.

– Ask the encryptions of the plaintext pairs under P and P∗ under K and K∗ and

obtain their corresponding plaintexts C and C∗, respectively.

Since K∗ has 16 different values due to the position of one bit difference, the attack

requires 3 · 213 plaintext encryptions under key K and 3 · 217 plaintext encryptions

under key K∗.

– Keep the ciphertext pairs C and C∗ such that each pair satisfies the difference

C ⊕C∗ = cab, where b = (γ <<< 8). There is 16-bit filtering condition on cipher-

text pairs, therefore, the number of remaining pairs that satisfy the appropriate

plaintext and ciphertext differences are about 2−16 · 3 · 217 = 6.

If the difference ab propagates through FL6 function, it is observed that the dif-

ference b = (γ <<< 8) is cancelled by the subkey difference ∆KO6,2 = (γ <<< 8)

which makes the input difference to FI6,2 zero. Since ∆KI6,2 = 0, the output

difference of FL6,2 is also zero.

– To peel off round 6, guess 6 subkeys of round 6 KL6,1,KL6,2,KO6,1,KO6,3,KI6,1

and KI6,3 which are in fact 96 bits of the master key K. Note that it is not neces-

sary to guess subkey bits of KO6,2 and KI6,2, since the 16-bit output value of FI6,2

can be known by considering 216 possibilities for it.

Note that if the subkeys of round 6 specified above are guessed, then the subkeys

of round 5 KL5,1,KL5,2,KO5,1,KO5,2,KI5,2 and KI5,3 will be determined due to

the feature of the key schedule of KASUMI. Therefore, only unknown subkeys of

round 5 are KI5,1 and KO5,3.

– By guessing the subkeys and considering each possible value of the output FI6,2,

38

round 6 is passed and the input values of FL5 are known for each ciphertexts.

– As input values of FI5,2 are known and all bits of KO5,2 and KI5,2 are previously

guessed in round 6 , the output values of FI5,2 are also known. Now, by using

each suggested pair KI5,1 and KO5,3 and 96 guessed subkey bits, find the output

difference of FL4 for a pair of ciphertexts. Then, keep the subkey pair KO5,2 and

KI5,2 which makes the output difference of FL4 be equal to the input difference

of FL5. To prevent double counting, if this subkey pair is not already suggested

by the same ciphertext pair for a different output value of FI6,2 and same value

of 96 key bits., insert this value to the list of suggested values of this pair. If it is

previously written in the list, then do not add it to the list again.

– Since the probability of the differential characteristics is
1
2

, the expected number

of remaining pairs is 6 ·
1
2

= 3. So, the correct values of the subkeys KL6,1, KL6,2,

KO6,1, KO6,2, KO6,3, KI6,1, KI6,2 and KI6,3 are the value that are suggested at

least three times.

The data complexity of the attack is (3 · 213) + (3 · 217) related-key chosen plaintexts

and the time complexity of the attack is 1.5 · 2113 6-round KASUMI encryptions.

39

CHAPTER 4

RELATED-KEY IMPOSSIBLE DIFFERENTIAL

CRYPTANALYSIS

This chapter is mainly about the related-key impossible differential cryptanalysis which is a

combination of the related-key cryptanalysis and the impossible differential cryptanalysis. It

is known to be a valuable attack that have been applied to several block ciphers.

Impossible differential cryptanalysis was independently presented by Knudsen [21] in 1998

and Biham et al. [22] in 1999 and it was firstly applied to DEAL and Skipjack by Knudsen

and Biham, respectively. It exploits impossible differential relations between plaintext and

ciphertext pairs, that is it uses a differentials with probability 0. The attack is mostly con-

structed in miss in the middle manner [23]; that is, two differentials with probability 1 are

concatenated in a way that intermediate differences contradict with each other. Then, the idea

of the attack is combined with the related-key idea such that the attacker uses differentials

which hold with probability 0 and requires an assumption that the attacker knows the partic-

ular differences between one or more pairs of unknown keys.

The overview of this chapter is as follows: In Section 6.1, a brief description of the related-key

impossible differential cryptanalysis is made. In Section 4.2, related-key impossible differen-

tial attack on reduced round AES proposed by E. biham is discussed. Then in Section 4.3,

a related-key impossible differential attack on 31-round HIGHT proposed by Özen et al. in

2009 is given [24]. Finally, in Section 4.4, our 25-round related-key impossible distinguisher

for XTEA is introduced.

40

4.1 Overview of the Attack

Let α be an input difference and β be an output difference, the related-key impossible dif-

ferential is that the input difference α never propagates the output difference β under related

keys K and K′, simply written α 9 β with probability 1 ,in other words, α difference cannot

produce β difference under any key.

The related-key differential with probability 0 can be used as a distinguisher for a cipher, be-

cause for a random mapping the input difference α leads to an output difference β with prob-

ability of 2−n under related-keys. So, by taking a sufficient number of plaintext-ciphertext

pairs, the cipher can be differentiated from a random mapping.

To describe the related-key impossible differential attack, consider the block cipher E :

{0, 1}n × {0, 1}k → {0, 1}n as a cascade of three subciphers E = E f ◦ Em ◦ Ei, where Em

is rounds including the impossible differential, Ei is the initial rounds before Em and E f is

rounds after Em. Then, build a related-key impossible differential distinguisher that satisfies

the following equation:

Prob[Em
K(P) ⊕ Em

K′(P ⊕ α) = β] = 0 (4.1)

where, P and P ⊕ α are plaintexts, K and K′ are related keys, and α and β are plaintext and

ciphertext differences, respectively.

Using a related-key impossible differential distinguisher, the key recovery attack can usually

be constructed as follows:

• Guess necessary key bits/bytes in Ei, partially encrypt the plaintext pairs under guessed

keys K and K′ and take the pairs that satisfy the difference α just before Em. Then,

encrypt them under keys K and K′ and get their corresponding ciphertexts.

41

• Guess necessary key bits/bytes in E f , partially decrypt the ciphertext pairs under guessed

keys K and K′ and take the pairs that satisfy the difference β just after Em.

• A sufficient number of plaintext-ciphertext pairs that satisfy the two conditions specified

above eliminates wrong keys eliminate and leave the actual key.

4.2 Related-Key Impossible Differential Cryptanalysis of Reduced-Round AES

AES is designed to resist both differential and linear cryptanalysis. J. Daemen and V. Rijmen,

the designers of Rijndael, proved in the AES proposal [25] that there are no 4 or more rounds

differential trails to mount differential attack due to the diffusion property of mix column op-

eration. However, it is observed that the key scheduling algorithm of AES is not as strong

as AES encryption algorithm and propagates differences slowly. This property of the key

scheduling algorithm makes the cipher vulnerable to related-key attacks. For this reason, in

recent years, several related-key impossible differential attacks on AES have been presented.

In 2003, Jakimoski and Desmedt [26] proposed related key impossible differential attacks on

7 and 8 rounds of AES-192. Then in 2006, Biham et al. [27] mounted attacks on again 7

and 8-round AES-192 following the work in [26] but with an improvement of the data and

time complexities. In [28], Zhang et al. presented related-key impossible differential attacks

different from the ones in [26] and [27], by choosing another key difference between two

related keys and starting the attack from the first round which improved the data and time

complexities. Moreover, Zhang et al. [29] made a security analysis of AES-256 against the

related-key impossible differential attack and they introduced an attack on 7-round AES-256

and four attacks on 8-round AES-256.

Note that the security of AES-192 against related key attacks has inspired much research be-

cause of being more susceptible to related key attacks than other key variants. The reason

is that AES-192 has longer related key differentials since the diffusion of the key schedule

is slower than in other versions. More specifically, if the expanded keys are thought as a se-

quence of words, then the key schedule of AES-192 applies a non-linear transformation once

every six words, while the key schedules of AES-128 and AES-256 apply non-linear trans-

formations once every four words.

42

In this section, the best related-key impossible attack on reduced-round AES-192 presented by

Zhang et al. [28] will be covered. To perform the attack, the encryption algorithm and the key

scheduling algorithm of AES-192 is analyzed, appropriate differences between two related

keys are chosen and then 5.5-round related-key impossible differential which combines two

related-key differentials in opposite directions giving rise to a contradiction is constructed.

4.2.1 Notations

The notations used in the description of AES and attack are given as follows:

ki: The subkey of round i, 0 ≤ i ≤ 3

ki,Col(j): The jth column of ki, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

xI
i : The input to round i

xS
i : The output of SubByte operation in round i

xR
i : The output of ShiftRow operation in round i

xM
i : The output of MixColumn operation in round i

xO
i : The output of round i

xi,col(j): The jth column of xi , 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

(xi) j: The jth byte of xi, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

?: Any byte difference

4.2.2 The AES Block Cipher

Rijndael [25] is block cipher which was designed by Rijmen and Daemen is the winner of

The Advanced Encryption Standard competition organized by National Institute of Standards

and Technology (NIST) in 2001. Then, it is called the Advanced Encryption Standard (AES).

AES has replaced for aging DES and has recently become the most widely used block cipher

in the world.

AES has an 128-bit SPN structure with three different key sizes: AES-128, AES-192 and

AES-256. According to its key leght, each AES version uses different key schedules. How-

ever, this thesis only includes the attacks on AES-192, only give the key schedule of AES-192

is described. In addition, each version has different number of rounds, AES-128, AES-192

43

and AES-256 have 10,12 and 14 rounds, respectively.

The round function of AES consists of four operations:

SubByte (SB): It is a non-linear operation on 4x4 arrays and includes an 8x8 bijective S-box

which is applied all 16 bytes of internal state bytes. For the details of the S-box, refer to [25].

ShiftRow (SR): It is linear function which applies cyclic shift to ith row of a 4x4 array to the

left by i bytes, where 0 ≤ i ≤ 3.

MixColumn (MC): It is a permutation that multiply each column by a constant 4x4 matrix

over the Galois Field GF(28) where M is defined as:

M=



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


AddRoundKey (AR): It mixes the state and a 16 byte subkey by using bitwise XOR opera-

tion. Namely, if A and B are 16-byte subkey and internal states, respectively, then AR(A, B) =

A ⊕ B.

The Key Schedule of AES-192

The key schedule of AES-192 generates thirteen 128-bit (16-byte) subkeys by using 192-bit

secret key. The algorithm to generate 16-byte subkeys by using the following algorithm:

1. Divide 192-bit user key into six 32-bit words (K1,K2, . . .K6)

2. For j = 7 to j = 52, do

If (j ≡ 1mod6), then Ki = K j−6 ⊕ S B(K j <<< 8) ⊕ RCON[i/6]

Else Ki = Ki−6 ⊕ Ki−1

3. Output ki = (K4i+1,K4i+2,K4i+3,K4i+4) , (0 ≤ i ≤ 12)

Encryption Algorithm of AES-192

44

Let denote 128-bit plaintext and ciphertext blocks as P and C, respectively. The encryption

Algorithm of AES-192 can be described as follows:

• Input Plaintext P,

• A0 = AR(P, k0),

• For i = 0 to 11, do

• Bi = S B(Ai−1)

Ci = S R(Bi)

Di = MC(Ci)

Ai = AR(Di, ki)

• A12 = S B(A11)

B12 = S R(A12)

• Ciphertext C = AR(B12, k12)

Where Ai, Bi,Ci and Di are 4x4 byte arrays.

4.2.3 Some Properties of AES-192

Property 1: If two inputs to MC operation differ in only one byte in the ith column, then the

outputs of the MC operation differ in four (all) bytes of the ith column.

This is a direct consequence of the description of MC operation.

Property 2: If two inputs to MC operation differ in any two bytes in the ith column, then the

output difference of MC operation cannot be determined.(It can be zero difference or non-zero

difference(s) in any byte(s))

This is also a direct consequence of the description of MC operation.

Property 3: If the key differences are chosen as follows:

45

(∆Kcol(0),∆Kcol(1), . . .∆Kcol(5))=((a,0,0,0), (0,0,0,0), (a,0,0,0), (0,0,0,0), (0,0,0,0), (0,0,0,0))

then the subkey differences are used in the attack are given in Table 5.4:

Table 4.1: Subkey Differences

Round(i) ∆ki,Col(0) ∆ki,Col(1) ∆ki,Col(2) ∆ki,Col(3)

0 (a,0,0,0) (0,0,0,0) (a,0,0,0) (0,0,0,0)
1 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
2 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
3 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
4 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
5 (a,0,0,0) (a,0,0,0) (a,0,0,0) (a,0,0,0)
6 (a,0,0,b) (0,0,0,b) (a,0,0,b) (0,0,0,b)
7 (a,0,0,b) (0,0,0,b) (a,0,c,b) (a,0,c,0)
8 (0,0,c,b) (0,0,c,0) (a,0,c,b) (a,0,c,0)

4.2.4 A 5.5-Round Related Key Impossible Differential of AES-192

A 5.5-round related-key impossible differential which starts with the output of the MC oper-

ation of round 1 and ends with the output of round 6 is:

((0,0,0,0),(0,0,0,0),(a,0,0,0),(a,0,0,0)) 9

((?,?,?,?),(?,?,?,?),(?,?,?,?),(0,0,0,b))

This related-key impossible differential is built by combining two related-key differentials: a

4.5-round related-key differential in encryption direction and a 1-round related-key differen-

tial in decryption direction such that intermediate differences of these two differentials give

rise to a contradiction.

The First 4.5-Round Differential:

A 4.5-round related-key differential is depicted in Figure 4.1 is built as follows:

• Begin by giving the difference (0,0,0,0),(0,0,0,0),(a,0,0,0),(a,0,0,0) to the output of the

MC operation of round 1 which is cancelled by the subkey difference of round 1, so the

difference in all bytes of output of round 1 becomes zero.

46

• This zero output difference of round 1 is kept through SB,SR MC and AR operations

of round 2 and SB,SR MC operations of round 3.

• Then, at the end of round 3, the output difference becomes ((a,0,0,0), (0,0,0,0), (0,0,0,0),

(0,0,0,0)) due to the addition of the subkey difference of round 3.

• This non-zero byte difference diffuses to all bytes of 0-th column due to the property 1

and at the end of round 4, the output difference becomes ((N,N,N,N),(0,0,0,0), (a,0,0,0),

(a,0,0,0)).

• After applying SB and SR operations of round 5, the difference becomes ((N,0,0,0),

(0,0,0,N), (N,0,N,0), (N,N,0,0)), then due to property 2, the output of MC operation is

((N,N,N,N), (N,N,N,N), (?,?,?,?), (?,?,?,?)).

• Finally, after adding the subkey of round 5, the difference ends up with ((?,N,N,N),

(?,N,N,N), (?,?,?,?), (?,?,?,?)).

Figure 4.1: A 4.5-round related-key differential for AES-192

This completes the first related-key differential.

The Second 1-Round Differential:

A 1-round related-key differential shown in Figure 4.2 is built as follows:

• Give the difference ((?,?,?,?), (?,?,?,?), (?,?,?,?), (0,0,0,b)) to the output of round 6.

47

• Then, go backward through AR, MC, SR and SB operations and get the difference

((?,0,?,?), (?,?,0,?), (?,?,?,0), (0,?,?,?)) as the input difference to round 6.

This completes the second related-key differential.

Figure 4.2: A 1-round related-key differential for AES-192

Constructing a 5.5 round related-key impossible differential distinguisher:

To construct the distinguisher, two differentials given above are concatenated as in Figure 4.3.

Figure 4.3: A 5.5 round related-key impossible differential distinguisher for AES-192

48

The output difference of round 5 must be equal to the input difference of round 6, however, it

is seen that the output difference of the first byte of round 5 (∆xO
5)1 which is non-zero is not

equivalent to the input difference of the first byte of round 6 (∆xI
6)1 which is zero. This gives

rise to a contradiction.

4.2.5 A 7-Round Related-Key Impossible Differential Attack on AES-192

Figure 4.4: Rounds before and after the related-key impossible distinguisher for AES-192

The aim of the attack is to capture 8 bytes of k0 and the third byte of k7. Firstly, it is assumed

that the values of a,b,c are all known and all possibilities of these values will be considered in

the part of complexity of the attack.

The attack algorithm goes as follows:

First of all, to make attack faster, the authors construct a hash table storing the input dif-

ferences of possible plaintext that satisfy the input difference to the related-key impossible

differential.

Precomputation step: Form all 264 possible values that have the difference (a,0,0,0) in their

second and third columns and roll back the values through MC, SR and SB operations of

round 1. Then, calculate the values of eight bytes 1,2,6,7,8,11,12 and 13 of the input to the

49

first round and put the values in to a hash table indexed by the difference in these bytes.

The Attack:

• Form two sets of plaintexts P1 and P2 containing m plaintexts each such that each pair

P1 ∈ P1 and P2 ∈ P2 satisfies the desired difference =((a,?,?,0),(0,0,?,?),(?,0,0,?),(?,?,0,0)).

• Ask encryption of the sets of plantexts P1 and P2 and obtain the sets of their corre-

sponding ciphertexts C1 and C2 under two related keys K and K
′

, respectively.

• Construct the set C∗2 = {C2
∗|C2 ∈ C2} by computing C2

∗ = C2⊕((0,0,0,0), (0,0,0,0),

(0,0,0,0), (a,0,0,0)) for every ciphertexts C2 ∈ C2

• Build a hash table storing the the ciphertexts C2 ∈ C2 and C∗2 ∈ C
∗
2 indexed by the bytes

6,9,12.

• Then, by guessing the value of the third byte of k7, do the following steps:

1. First of all, list all 264 values of the subkey k0 in the bytes 1,2,6,7,8,11,12 and 13.

2. Decrypt the third byte of all ciphertext through AR, SR and SB operations of

round 7 .

3. Keep the pairs C2 and C∗2 which are in the same bin of the hash table having the

difference ’b’ in their third bytes of input to round 7.

4. For every remaning pairs C2 and C∗2, look at their corresponding plaintexts P1 and

P2 and calculate the difference in their bytes 1,2,6,7,8,11,12 and 13 and call the

difference value as ∆.

5. Finally, access the bin ∆ in the hash table, if this is nonempty, for each pair (P, P
′

)

calculate the values P1 ⊕ P and P1 ⊕ P
′

and remove these values from the list of

264 values of the subkey k0.

6. The remaining value in the list of all 264 possible values of k0 and the guessed

value of (k7)3 are the actual subkey bytes.

50

4.2.6 Attack Complexity

Data Complexity: Since two sets of plaintexts contain m plaintexts each, there are m2 possible

ciphertexts pairs (C1,C∗2). There is a filtering condition in item 4; so, the remaining ciphertext

pairs in the same bin of the hash table is 2−24m2. Then, in item 5(3), there is a 8-bit filtering

condition and 2−8 of ciphertext pairs are eliminated for one guess of subkey (k7)3. So, there

remain about 2−32m2 ciphertext pairs. Also, it is expected that each plaintext-ciphertext pair

satisfying related-key impossible differential eliminates one wrong key. Since for one guess of

(k7)3, there are 264 subkey candidates, each pair eliminates 2−64 of wrong key values, therefore

after the first pair there remain 264−1 = 264(1−2−64) keys. After the second pair, there remain

264(1 − 2−64) − 264(1 − 2−64)2−64 = 264(1 − 2−64)2 keys. Then, after kth pair, it is expected to

have 264(1−2−64)k keys. The aim is to make the inequality 264(1−2−64)k < 1 hold to eliminate

all wrong subkey values. So, it is enough to take 270 pairs to make only the right subkey leave.

If k = 270, the number of remaining wrong keys become 264(1−2−64)70 ≈ 2−28.85 which is less

than 1. To get 270 pairs, it is needed to take m = 251 related-key chosen plaintext-ciphertext

pairs for each two sets. Therefore, the data complexity of the attack is 2 ·251 = 252 related-key

chosen plaintexts.

Time Complexity: The time complexity of the attack is dominated by item 5(5). In item

5(5) 270 pairs are dealt with and for each pair, it is needed to perform one memory access

to hash table and the list values of k0. Since this step is done for each guess of (k7)3, the

time complexity of this step is 2 · 28 · 270 = 279 memory access which is equal to 273 AES

encryptions. Furthermore, precomputation step needs about 2 · 264 ·
1
7
≈ 262 encryptions.

In addition, in the attack, it is assumed that the values of a,b and c are known, however , the

attacker can fix only the value of a to a certain value and should give all possible values to

b and c. Since there is no need to know the value of c, the attack should be repeated for all

possible 27 values of b and only the time complexity of the attack should be multiplied by 27.

Therefore, the time complexity of the attack is 27 · 272 ≈ 280 AES encryptions.

Required Memory: The attack needs 269 bytes memory which is dominated by precomputa-

tion step.

51

4.3 Related-Key Impossible Differential Cryptanalysis of 31-Round HIGHT

Nowadays, light-weight block ciphers gain importance in some areas of real-life crypto-

graphic applications, such as Radio frequency identification (RFID)systems or Ubiquitous

Sensor Networks (USN). To use in these kind of applications, designing cryptograhic algo-

rithms becomes as an important issue. Therefore, HIGHT is proposed by Hong et al. in 2006

to meet the demand on block ciphers which is used in this area [30]. The design goal of

HIGHT is to provide low-resource hardware implementation. So, the significant property of

HIGHT is that it is composed of only simple algebraic operations such as bitwise XOR, addi-

tion in modulo 28 and left bit rotations. In addition, the security of HIGHT is analyzed in [30]

and it is proved that HIGHT is resistant to some known attacks such as linear, differential,

truncated differential, impossible differential, saturation and boomerang attacks.

In the proposal of HIGHT, designers claimed that the best impossible differential attack can be

applied to 18-round HIGHT by using 14-round impossible differential. However, an impos-

sible differential attack to 25-round HIGHT and a related-key impossible differential attack

to 28-round HIGHT is proposed by Lu in 2007 [31]. Then in 2008, Varici et al. further ana-

lyzed HIGHT and increased the number of attacking rounds from 28 to 31 by using 22-round

related-key impossible differential. The complexity of this attack is approximately same as

exhaustive search, however, one can conclude that HIGHT is not resistant against impossible

differential attacks as claimed in the proposal.

In this section, the related-key impossible differential attack on 31-round HIGHT [24] will be

covered.

4.3.1 Notations

The notations used in the description of HIGHT and the attack are given as follows:

⊕: Exclusive OR operation

�: Addition in modulo 28

52

<<< i: i-bit rotation to the left

K: A 128-bit master key

Ki: ith byte of master key K, 0 ≤ i ≤ 15

WKi: ith byte of whitening key, 0 ≤ i ≤ 7

Xi, j: jth input byte to the round i, 0 ≤ i ≤ 31 and 0 ≤ j ≤ 7

ei: A byte having zeros in all positions except the position i

ei,∼: A byte having zeros in bit positions 0 to i − 1, one in ith position, and any values in

positions i + 1 to 7.

ei,∼: A byte having zeros in bit positions 0 to i and any values in positions i + 1 to 7.

?: Any byte difference

Denote the 64-bit plaintext P as a sequence of 8 bytes (P7, P6, . . . , P0) and 64-bit ciphertext

C as a sequence of 8 bytes C = (C7,C6, . . . ,C0).

4.3.2 The HIGHT Block Cipher

HIGHT is a light-weight block cipher with 64-bit block size and 128-bit key size. It has an

iterative 32-round structure which is Feistel-type with 8 branches.

4.3.2.1 Key Scheduling Algorithm

A 64-bit user key K = (K15,K14, . . .K0) is used to generate 8 whitening key bytes WK0,WK1, . . .WK7

and 128 subkey bytes S K0, S K1, . . . S K127.

Whitening keys are generated as follows:

WK j = K j+12, j = 0, 1, 2, 3,

WK j = K j−4, j = 4, 5, 6, 7.

The whitening key bytes WK0,WK1,WK2 and WK3 are used in the input whitening part and

WK4,WK5,WK6 and WK7 are used in the output whitening part of the encryption algorithm

of HIGHT.

53

The algorithm that produces round subkeys is given as follows:

S K16i+ j = K(j−i)mod8 � δ16i+ j,

S K16i+ j+8 = K(j−i)mod8+8 � δ16i+ j+8.

where δ16i+ j and δ16i+ j+8 are publicly known constant values which were generated by a linear

feedback shift register.

4.3.2.2 The Encryption Function of HIGHT

Encryption function of HIGHT consists of three stages, namely initial transformation, round

function and final transformation.

Initial Transformation: Initial transformation or output whitening step converts an 64-bit

plaintext P = (P7, P6, . . . , P0) into an 64-bit input value to the first round function:

(X0,7, X0,6, . . . X0,0) = (P7, P6 ⊕WK3, P5, P4 � WK2, P3, P2 ⊕WK1, P1, P0 � WK0)

Round Function: The round function of HIGHT depicted in figure 4.5 divides an 64-bit

input into 8 bytes and then applies operations (⊕ and � operations) and cyclic rotations to

four of these bytes. In other words, the round function of HIGHT only operates on only half

of its input bytes.

In the encryption function of HIGHT, the round function is repeated 32-times and can be de-

scribed as follows:

For i = 1 to 32:

Xi,0 = Xi−1,7 ⊕ (F0(Xi−1,6) � S K4i−1)

Xi,1 = Xi−1,0

Xi,2 = Xi−1,1 � (F1(Xi−1,0) ⊕ S K4i−2)

54

Xi,3 = Xi−1,2

Xi,4 = Xi−1,3 ⊕ (F0(Xi−1,2) � S K4i−3)

Xi,5 = Xi−1,4

Xi,6 = Xi−1,5 � (F1(Xi−1,4) ⊕ S K4i−4)

Xi,7 = Xi−1,6

In the above algorithm F0 and F1 are two linear functions each of which applies only cyclic

rotations to the left to its 8-bit input values and can be defined as follows:

F0 : {0, 1}8 → {0, 1}8, F0(x)=(x <<< 1) ⊕ (x <<< 2) ⊕ (x <<< 7) ,

F1 : {0, 1}8 → {0, 1}8, F1(x)=(x <<< 3) ⊕ (x <<< 4) ⊕ (x <<< 6),

X i−1, 7 X i−1, 6 X i−1, 5 X i−1, 4 X i−1, 3 X i−1, 2 X i−1, 1 X i−1, 0

X i , 0X i , 1X i , 2X i , 3X i , 5X i , 6X i , 7 X i , 4

F
0

F
1

F
0

F
1

SK
4i−1

SK
4i−2

SK
4i−3

SK
4i−4

Figure 4.5: ith round function of HIGHT

Final Transformation: Final transformation or output whitening step transforms the output

of 32th round function X32 = (X32,7, X32,6, . . . , X32,0,) into ciphertext C = (C7,C6, . . . ,C0) as

follows:

C = (C7,C6, . . . ,C0)

= (X32,0, X32,7 ⊕WK7, X32,6, X32,5 � WK6, X32,4, X32,3 ⊕WK5, X32,2, X32,1 � WK4)

4.3.3 A 31-Round Related-Key Impossible Differential Attack on HIGHT

The attack is performed by taking advantage of some properties of HIGHT enumerated below:

1. Properties of the addition operation � and the Exclusive OR operation ⊕ used in the

55

round function of HIGHT:

• If the � operation is applied to two pairs each of which have difference in the

most significant bit, than the resulting difference will be 0.

• If two inputs to the � operation differ firstly in the ith bit, then the output differ-

ence is preserved in bits 0 up to ith, that is the difference never propagates to the

bits in the least significant positions.

• The input difference is always preserved through the ⊕ operation.

2. The property of Feistel structure of HIGHT:

• An input byte difference to ith round will influence only at most two bytes of the

output of ith round.

3. The property of the key scheduling algorithm of HIGHT:

• The diffusion in the key schedule of HIGHT is not satisfied well, because, it can

be seen in Table 4.2 which shows the relations between the master key bytes and

subkey and whitening key bytes that if a difference is given to any byte of master

key K, then only one byte of whitening keys and 8 byte of round subkeys will be

affected.

Table 4.2: Relations Between the Master Key, Whitening Keys and Round Keys

Master Whitening Subkey
Key Key
K15 WK3 S K15 S K24 S K41 S K58 S K75 S K92 S K109 S K126
K14 WK2 S K14 S K31 S K40 S K57 S K74 S K91 S K108 S K125
K13 WK1 S K13 S K30 S K47 S K56 S K73 S K90 S K107 S K124
K12 WK0 S K12 S K29 S K46 S K63 S K72 S K89 S K106 S K123
K11 WK15 S K11 S K28 S K45 S K62 S K79 S K88 S K105 S K122
K10 WK14 S K10 S K27 S K44 S K61 S K78 S K95 S K104 S K121
K9 WK13 S K9 S K26 S K43 S K60 S K77 S K94 S K111 S K120
K8 WK12 S K8 S K25 S K42 S K59 S K76 S K93 S K110 S K127
K7 WK11 S K7 S K16 S K33 S K50 S K67 S K84 S K101 S K118
K6 WK10 S K6 S K23 S K32 S K49 S K66 S K83 S K100 S K117
K5 WK9 S K5 S K22 S K39 S K48 S K65 S K82 S K99 S K116
K4 WK8 S K4 S K21 S K38 S K55 S K64 S K81 S K98 S K115
K3 WK7 S K3 S K20 S K37 S K54 S K71 S K80 S K97 S K114
K2 WK6 S K2 S K19 S K36 S K53 S K70 S K87 S K96 S K113
K1 WK5 S K1 S K18 S K35 S K52 S K69 S K86 S K103 S K112
K0 WK4 S K0 S K17 S K34 S K51 S K68 S K85 S K102 S K119

56

4.3.3.1 A 22-Round Related-Key Impossible Differential for HIGHT

A related-key impossible differential presented in [24] which occurs between the rounds 7

and 30 is as follows:

(0, 0, 0, 0, 0, 0, 80x, 0) 9 (0, 0, 0, 80x, 0, 0, 0, 0)

under the key difference:

(∆K15,∆K14, . . . ,∆K0) = (80x, 0, 0, 0, 0, 0, 0, 0)

The contradiction occurs between the third bytes of output of round 17 and input of round

18. The intermediate differences and the subkey differences of the distinguisher are given in

Table 4.3.3.1.

Table 4.3: A 22-Round Related-Key Impossible Differential for HIGHT

∆Xi−1,7 ∆Xi−1,6 ∆Xi−1,5 ∆Xi−1,4 ∆Xi−1,3 ∆Xi−1,2 ∆Xi−1,1 ∆Xi−1,0 Subkey differences
∆X6 0 0 0 0 0 0 80x 0 0 0 0 80x
∆X7 0 0 0 0 0 0 0 0 0 0 0 0
∆X8 0 0 0 0 0 0 0 0 0 0 0 0
∆X9 0 0 0 0 0 0 0 0 0 0 0 0
∆X10 0 0 0 0 0 0 0 0 0 0 80x 0
∆X11 0 0 0 80x 0 0 0 0 0 0 0 0
∆X12 0 e2,∼ 80x 0 0 0 0 0 0 0 0 0
∆X13 e2,∼ 80x 0 0 0 0 0 ? 0 0 0 0
∆X14 80x 0 0 0 0 ? ? e0,∼ 0 80x 0 0
∆X15 0 80x 0 ? ? ? e0,∼ 80x 0 0 0 0
∆X16 80x ? ? ? ? e0,∼ 80x e0,∼ 0 0 0 0
∆X17 ? ? ? ? e0,∼ ? e0,∼ ? 0 0 0 0

∆X17 ? ? ? e0,∼ 80x 0 ? ? 0 0 0 0
∆X18 ? ? e0,∼ 80x 0 0 ? ? 80x 0 0 0
∆X19 ? e0,∼ 80x 0 0 0 ? ? 0 0 0 0
∆X20 e0,∼ 80x 0 0 0 0 ? ? 0 0 0 0
∆X21 80x 0 0 0 0 0 ? e2,∼ 0 0 0 0
∆X22 0 0 0 0 0 0 e2,∼ 80x 0 0 0 0
∆X23 0 0 0 0 0 0 80x 0 0 0 0 80x
∆X24 0 0 0 0 0 0 0 0 0 0 0 0
∆X25 0 0 0 0 0 0 0 0 0 0 0 0
∆X26 0 0 0 0 0 0 0 0 0 0 0 0
∆X27 0 0 0 0 0 0 0 0 0 0 80x 0
∆X28 0 0 0 80x 0 0 0 0 0 0 0 0

4.3.3.2 The Attack

To conduct 31-round attack, a 22-round related-key impossible differential introduced in the

previous subsection is used. This attack recovers all key bytes with the time complexity which

57

is approximately the same as the exhaustive search. In the attack, firstly the pairs satisfying

desired ∆P and ∆C differences respectively are taken, then by doing partial decryption and

encryption, the pairs that do not satisfy the impossible differential given in Table 4.3.3.1 are

eliminated. Finally, by using remaining pairs, wrong keys are discarded and actual key can-

didates are kept.

The attack includes rounds from 1 to 31 and final transformation, but excludes initial trans-

formation.

Data Preparation

If rolling back the difference (0, 0, 0, 0, 0, 0, 80x, 0) through 6 rounds in backward direction,

necessary plaintext difference ∆P = (?, ?, ?, e0,∼, 80x, 0, ?, ?) and similarly propagating the

difference (0, 0, 0, 80x, 0, 0, 0, 0) through 3 rounds in forward direction, desired ciphertext dif-

ferences ∆C = (e0,∼, 80x, 0, 0, 0, 0, ?, ?) are obtained.

Then, the attack algorithm can be expressed as follows:

• Form plaintexts pairs which satisfy the prescribed plaintext difference ∆P = (?, ?, ?,e0,∼,

80x, 0, ?, ?): take a set of 247 plaintexts P′i s which take fixed values in byte 2 and in the

right most seven bits of byte 3 and every possible values in bytes (7,6,5,1,0) and in the

left most seven bits of byte 4. Then, take another set of plaintexts Pi
∗′s which have 1

in the seventh bit of byte 3 and in the first bit of byte 4 and the remaining bits like as

the first set of plaintexts. Also, by changing 15 fixed bits in plaintexts, 215 structures

can be constructed. Therefore, 215 · 247 · 247 = 2109 plaintext pairs are obtained in total.

Furthermore, construct another two sets each of which contains 247 plaintexts such that

the first set of plaintexts P′i s take 1 in the seventh bit of byte 3 and 0 in the first bit of

byte 4 and correspondingly the second set of plaintexts Pi
∗′s take 0 in the seventh bit of

byte 3 and 1 in the first bit of byte 4. Here, the number of plaintext pairs is multiplied

by two and becomes 2110.

• Encrypt all plaintexts Pi and P∗i under related keys K and K∗ satisfying the difference

K ⊕ K∗ = (80x, 0, 0, 0, 0, 0, 0, 0) and obtain their corresponding ciphertexts Ci and C∗i ,

respectively.

58

• Take only the ciphertexts pairs Ci and C∗i such that Ci⊕C∗i = (e0,∼, 80x, 0, 0, 0, 0, ?, ?) by

inserting all ciphertexts into a hash table. This step includes 41-bit filtering condition

on ciphertext pairs, so the number of pairs are decreased to 269.

Plaintext-Ciphertext Pairs Elimination

This part of attack has 23 steps and includes key guesses and elimination of plaintexts-

ciphertext pairs which do not satisfy the impossible differential.

1. Guess the original key byte K0 and deduce the subkey byte S K0. Since plaintext

values are known, calculate the bytes (2,1) of X1 and take the pairs that satisfy the

difference (0,?).

This step has an 8-bit filtering condition. Therefore, the number of remaining

pairs is 261. The time complexity of this step is 2 · 269 · 28 ·
1
4
·

1
31
≈ 271.05.

2. Guess the key byte K3 and compute the subkey byte S K3. Then, calculate the

bytes (7,0) of X1.

The time complexity of this step is 2 · 261 · 216 ·
1
4
·

1
31
≈ 271.05.

3. Guess the key byte K0 and deduce the subkey byte S K4. Then, calculate the bytes

(2,1) of X2 and take the pairs that satisfy the difference (0,?).

Here, there is an 8-bit filtering condition, so the number of remaning pairs is 253.

The time complexity of this step is 2 · 261 · 224 ·
1
4
·

1
31
≈ 279.05.

4. Guess K9 and compute the whitening key byte WK4 and S K120, then find the value

of bytes (1,0) of X30. Keep the pairs which satisfy the difference (0,?).

There is an 8-bit filtering condition, so the number of pairs is decreased to 245.

The time complexity of this step is 2 · 253 · 232 ·
1
4
·

1
31
≈ 279.05.

5. Guess the key byte K12 and compute the bytes WK7 and S K123. Then, find values

of bytes (7,6) of X30 and take the pairs satisfying the difference (e2,∼, 80x).

In this step, there is a 2-bit filtering condition, so the expected number of remain-

ing pairs is 243.

The time complexity of this step is 2 · 245 · 240 ·
1
4
·

1
31
≈ 279.05.

6. Compute the value of S K119 by using K0 which is guessed in step 1 and find the

values of the bytes (7,6) of X29. Keep the pairs that satisfy the difference (0, e2,∼).

There is an 8- bit filtering condition which decreases the number of pairs to 235.

59

The time complexity of this step is 2 · 243 · 240 ·
1
4
·

1
31
≈ 277.05.

7. Guess K2 and compute the subkey byte S K2. Then, obtain the bytes (6,5) of X1.

The time complexity of this step is 2 · 235 · 248 ·
1
4
·

1
31
≈ 277.05.

8. Guess K7 and calculate S K7, then obtain the bytes (7,0) of X2.

The time complexity of this step is 2 · 235 · 256 ·
1
4
·

1
31
≈ 285.05.

9. Guess K8 and compute the value of S K8, then find the bytes (2,1) of X3. Keep the

pairs satisfying the difference (0,?). In this step, there is an 8-bit filtering condition

which reduces the number of the pairs to 227.

The time complexity of this step is 2 · 235 · 264 ·
1
4
·

1
31
≈ 293.05.

10. Guess the key byte K11 and compute the bytes WK6 and S K122. Then, find values

of bytes (5,4) of X30.

This step has 2 · 227 · 272 ·
1
4
·

1
31
≈ 293.05 time complexity.

11. Compute the value of S K118 by using K11 which is guessed in the previous step

and find the values of the bytes (5,4) of X29.

The time complexity of this step is 2 · 227 · 272 ·
1
4
·

1
31
≈ 293.05.

12. Compute S K114 by using previously guessed byte (in step 2) K3 and find the

values of the bytes (5,4) of X28. Then, take the pairs having the difference (0, 80x).

This step has 5-bit filtering condition, so the expected number of remaining pairs

is 222. This step has 2 · 227 · 272 ·
1
4
·

1
31
≈ 293.05 time complexity.

13. Guess K1 and compute the subkey byte S K1. Then, obtain the bytes (4,3) of X1.

The time complexity of this step is 2 · 222 · 280 ·
1
4
·

1
31
≈ 296.05.

14. Guess K6 and calculate S K6, then obtain the bytes (6,5) of X2.

The time complexity of this step is 2 · 222 · 288 ·
1
4
·

1
31
≈ 2104.05.

15. Compute S K11 by using previously guessed byte (in step 10) K11 and find the

values of the bytes (7,0) of X3.

This step has 2 · 222 · 288 ·
1
4
·

1
31
≈ 2104.05 time complexity.

16. Compute S K12 by using previously guessed byte (in step 5) K12 and find the

values of the bytes (2,1) of X4. Take the pairs with the difference (0,?). There is

an 8-bit condition, so the expected number of remaining pairs is 214.

This step has 2 · 222 · 288 ·
1
4
·

1
31
≈ 2104.05 time complexity.

60

17. Guess K5 and compute the subkey byte S K5. Then, obtain the bytes (4,3) of X2.

The time complexity of this step is 2 · 214 · 296 ·
1
4
·

1
31
≈ 2104.05.

18. Guess K10 and compute the value of S K10, then find the bytes (6,5) of X3.

This step has 2 · 214 · 2104 ·
1
4
·

1
31
≈ 2112.05 time complexity.

19. Guess K15 and compute the value of S K15, then find the bytes (7,0) of X4. Keep

the pairs satisfying the difference (80x, e2,∼). In this step, there is a 2-bit filtering

condition which reduces the number of pairs to 212.

This step has 2 · 214 · 2112 ·
1
4
·

1
31
≈ 2120.05 time complexity.

20. Compute S K16 by using previously guessed byte (in step 8) K7 and find the values

of the bytes (2,1) of X5. Take the pairs with the difference (0, e2,∼). There is an

8-bit condition, so the expected number of remaining pairs is 24.

The time complexity of this step is 2 · 212 · 2112 ·
1
4
·

1
31
≈ 2118.05.

21. Obtain S K9 by using previously guessed byte (in step 4) MK9 and find the values

of the bytes (4,3) of X3.

2 · 24 · 2112 ·
1
4
·

1
31
≈ 2110.05 is the time complexity of this step.

22. Guess K14 and compute the subkey byte S K14. Then, obtain the bytes (6,5) of X4.

The time complexity of this step is 2 · 24 · 2120 ·
1
4
·

1
31
≈ 2118.05.

23. Compute S K19 by using previously guessed byte (in step 7) K2 and find the values

of the bytes (7,0) of X5.

This step has 2 · 24 · 2120 ·
1
4
·

1
31
≈ 2118.05.

The total time complexity of all 23 steps is 2121.03.

Key Elimination Step

Compute S K20 by using the byte K3 which was previously guessed in step 2, then by using

S K20, find the values of bytes (2,1) of X6. Check whether the difference (0, 80x) is satisfied.

If a pair satisfies this difference, conclude that the corresponding guessed key is a wrong key

and eliminate it. Since there is a 5-bit filtering condition in this step, it is expected that each

plaintext-ciphertext pair eliminates 2−5 of 2120 keys. Therefore, after the first pair, the num-

ber of remaining keys is about 2120 − 2120 · 2−5 = 2120(1 − 2−5). Then after the second pair,

the number of remaining keys is about 2120(1 − 2−5) − 2120(1 − 2−5)2−5 = 2120(1 − 2−5)2.

61

Since there are 24 remaining pairs, after 24th pair, the expected number of remaining keys is

2120((1 − 2−5)24
) ≈ 2119.27. The time complexity of this step is 3 · 28 · 2 · 2120[1 + (1 − 2−5) +

(1 − 2−5)2 + . . . + (1 − 2−5)24−1] ·
1
4
·

1
31
≈ 2127.28 ≈ 2117.89. As a final step, for every remain-

ing 2119.27 key sequences (K15,K14,K12, . . . ,K0), find key byte K13 by making an exhaustive

search for 3 plaintext-ciphertext pairs. It is very likely that the actual key is found, because

for three pairs, a wrong key is suggested with a probability (2−64)3
= 2−192. Hence, the time

complexity of the final step is 2127.27.

So, the total time complexity of the attack is 2121.03 + 2127.27 ≈ 2127.28.

4.4 Our Related-Key Impossible Differential Distinguisher for XTEA

Tiny Encryption Algorithm (TEA) is a 64-bit block cipher with 128-bit user key which was

designed by Needham and Wheeler in 1994 [32]. Afterwards, the designers noticed that TEA

has some weaknesses, thus they proposed extended TEA (XTEA) to correct these weaknesses

of TEA in 1997 [33]. XTEA has a balanced Feistel structure and is 64-round block cipher

with 64-bit block size and 128-bit key size. Like TEA, XTEA is presented to meet the needs

of block ciphers having easy implementation property. Therefore, it has a simple structure

which has only exclusive-or, addition and shift operations.

Encryption algorithm of XTEA does not satisfy diffusion well. For this reason, differential

attack and its extensions have applied to XTEA, so far [34, 14, 35, 31]. In this work, we further

analyze XTEA and improve the impossible differential distinguisher for XTEA proposed by

Moon et al. [36]. In [36], an impossible differential attack was applied to 14-round XTEA

with time complexity of 285 XTEA encryptions and 262.5 chosen plaintexts by using 12-round

impossible differential. We realize that the key scheduling algorithm of XTEA does not satisfy

diffusion well. So, by using differential property of key schedule of XTEA, we increase the

number of rounds of the impossible distinguisher from 12 to 25 by using related-keys.

62

4.4.1 Notations

The notations used in the description of XTEA and the related-key impossible charactresitics

are given as follows:

⊕: Exclusive-OR operation

�: Addition in modulo 232

�: Multiplication in modulo 232

(<< i): i-bit logical shift to the left

(>> i): i-bit logical shift to the right

K: A 128-bit master key

Ki: 32-bit part of the key K, 1 ≤ i ≤ 4

(Li−1,Ri−1): Left and right halves of input blocks to the round i, respectively, 1 ≤ i < 64

ei: A 32-bit having zeros in all positions except the position i

ei,∼: A 32-bit block having zeros in bit positions 0 to i − 1 , in one in ith position, and any

values in positions i + 1 to 31

4.4.2 The XTEA Block Cipher

4.4.2.1 The Key Schedule of XTEA

A 128-bit secret key K = (K1,K2,K3,K4) is used to generate 64 32-bit round keys ki’s as in

the following manner;

ki = K
(

 i
2

�θ>>11) & 3

whereθ = 0x9e3779b9

The key schedule of XTEA is given in Table 4.4.2.1.

4.4.2.2 The Encryption Function of XTEA

The encryption algorithm of XTEA can be explained as follows:

63

Table 4.4: The Key Schedule of XTEA

Round i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ki K1 K4 K2 K3 K3 K2 K4 K1 K1 K1 K2 K4 K3 K3 K4 K2

Round i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ki K1 K1 K2 K1 K3 K4 K4 K3 K1 K2 K2 K2 K3 K1 K4 K4

Round i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ki K1 K3 K2 K2 K3 K2 K4 K1 K1 K4 K2 K3 K3 K2 K4 K2

Round i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
ki K1 K1 K2 K4 K3 K3 K4 K3 K1 K2 K2 K1 K3 K4 K4 K3

1. Plaintext P = (L0,R0)

2. For i = 1 to 64;

Ri = Li−1 � (((Ri−1 << 4 ⊕ Ri−1 >> 5) � Ri−1) ⊕ (
⌊ i
2

⌋
� θ � ki));

Li = Ri−1;

3. Ciphertext C = (L64,R64).

The ith round of encryption function of XTEA is depicted in figure 4.6.

Figure 4.6: ith round function of XTEA

4.4.3 A 12-Round Impossible Differential by Moon et al.

In [36], Moon et al. proposed an 12-round impossible distinguisher for XTEA which is given

in Table 4.4.3, Then, they built an attack on 14-round of XTEA by adding two rounds at the

end of the impossible characteristics.

64

Table 4.5: A 12-Round Impossible Differential Distinguisher for XTEA

∆Li ∆Ri

∆Xi e25,∼ a031

∆Xi+1 a031 e25,∼
∆Xi+2 e25,∼ e20,∼
∆Xi+3 e20,∼ e15,∼
∆Xi+4 e15,∼ e10,∼
∆Xi+5 e10,∼ e5,∼
∆Xi+6 e5,∼ e0,∼

∆Xi+6 e0,∼ e5,∼
∆Xi+7 e5,∼ e10,∼
∆Xi+8 e10,∼ e15,∼
∆Xi+9 e15,∼ e20,∼
∆Xi+10 e20,∼ e25,∼
∆Xi+11 e25,∼ b031

∆Xi+12 b031 e25,∼

4.4.4 Our 25-Round Related-Key Impossible Distinguisher

Our 25-round related-key impossible differential of XTEA depicted in Table 4.4.4 starts at the

beginning of round 19 and ends at the end of round 43;

(e31, 0) 9 (0, e31) under the key difference (∆K1,∆K2,∆K3,∆K4) = (0, e31, 0, 0).

The contradiction occurs at the end of round 32.

Table 4.6: Our 25-Round Related-Key Impossible Differential Characteristic for XTEA

∆Xi−1,L ∆Xi−1,R ∆ki
∆X19 e31 0 e31
∆X20 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

∆X26 0 0 e31
∆X27 0 e31 e31
∆X28 e31 e26,∼ e31
∆X29 e26,∼ e21,∼ 0
∆X30 e21,∼ e16,∼ 0
∆X31 e16,∼ e11,∼ 0
∆X32 e11,∼ e6,∼ 0
∆X33 e6,∼ e1,∼ 0

∆X33 e6,∼ e11,∼ 0
∆X34 e11,∼ e16,∼ 0
∆X35 e16,∼ e21,∼ e31
∆X36 e21,∼ e26,∼ e31
∆X37 e26,∼ e31 0
∆X38 e31 0 e31
∆X39 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.

∆X43 0 0 e31
∆X44 0 e31 -

65

The distinguisher given above is constructed by using the following properties of XTEA:

Property 1: The key schedule of XTEA does not satisfy diffusion well: if a difference is given

to the only one part of the key, then about 75% of all subkeys has zero difference.

Property 2: If the difference is in the most significant bit position, then modular addition

operation (�) behaves like bitwise Exclusive OR operation (⊕).

Our 25-round related-key impossible distinguisher is constructed by giving difference to only

one part of the master key K in order to let the difference propagates slowly. The construction

of the distinguisher can briefly discussed as follows:

• Begin by giving the input difference (e31, 0) to round 19 which is cancelled by the

subkey difference e31 of round 19 by the Property 1. Thus, the output difference of

round 19 becomes zero.

• This zero difference is preserved through rounds 20,21,22,23,24,25 until the end of

round 26 due to the nonzero key difference in round 26. Therefore, the output difference

of round 26 will be (0, e31).

Note that the reason of that the characteristics begins at round 19 and has difference in

K2 is to keep zero difference as many rounds as possible.

• Then, the difference (0, e31) propagates the following 6 rounds and at the end of round

32 the output difference becomes (e6,∼, e1,∼). This completes our first 14-round differ-

ential.

• Now, at the end of round 43, if the output difference is chosen as (0, e31) and is rolled

backward, then this difference is cancelled by the nonzero subkey difference e31 of

round 43.

• This zero difference is kept until round 38, because of the nonzero subkey difference of

round 38. Thus, the output difference of round 37 will be (e31, 0).

66

• If the difference (e31, 0) is rolled back through 5 rounds, then the output difference of

round 32 becomes (e6,∼, e11,∼). This completes our second 11-round differential.

• If two differentials are concatenated, it is seen that the output difference (e6,∼, e1,∼) of

round 32 of the first differential can never be equal to the output difference (e6,∼, e11,∼)

of round 32 of the second differential that gives rise to a contradiction at this round.

To conclude, if the differential property of key schedule of XTEA is taken in to consideration,

a 12-round impossible distinguisher can be improved.

67

CHAPTER 5

RELATED-KEY BOOMERANG ATTACK AND ITS

EXTENSIONS

This chapter is mainly devoted to related-key boomerang attack and its extensions: related-key

amplified boomerang, related-key rectangle and related-key impossible boomerang attacks.

Throughout this chapter, Section 5.1 gives description of boomerang attack and exemplifies

the attack on reduced round IDEA proposed by Biham et al. [37]. Sections 5.2 and 5.3

describes related-key amplified boomerang and related-key rectangle attacks, respectively.

Section 5.3 also includes an attack on full round SHACAL-1. Finally, Section 5.4 discusses a

new attack called related-key impossible boomerang attack.

5.1 Related-Key Boomerang Attack

The Boomerang attack was proposed by D. Wagner in 1999 and firstly applied to the block

cipher COCONUT98 [38]. The Boomerang attack is based on differential cryptanalysis and

uses two short differential with high probability instead of using one long low probability

differential. Afterwards, Kim et al. have combined the boomerang attack with the related-key

idea which they call related-key boomerang attack in [39] and applied the attack to IDEA

and COCONUT98. In [39], a boomerang attack which uses one ordinary differential and one

related-key differential is proposed. Then, in [40] and [37], a boomerang attack using two

related-key differentials is presented, independently.

Notice that in order to perform related-key boomerang attack, the attacker should have a power

to make encryption and decryption under unknown related-keys. To describe the related-key

68

boomerang attack, consider the block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of

two subciphers E0 and E1, i.e. E = E1 ◦ E0 such that for E0 there is a differential α → β

with probability p and for E1 there is a differential γ → δ with probability q. Note that, if

the differentials α → β for E0 and γ → δ for E1 hold with probability p and q, respectively,

then the differentials β → α for E−1
0 and δ → γ for E−1

1 also hold with probability p and q,

respectively. The important point of the related-key boomerang attack is to combine these

two differentials. Then, by using these two related-key differentials, related-key boomerang

distinguisher based on four related keys can be constructed as follows:

Figure 5.1: Related-key boomerang distinguisher based on four related keys

• Take a randomly chosen plaintext P1 and form another plaintext P2 such that P2 =

P1 ⊕ α.

• Obtain their corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) where K2 =

K1 ⊕ ∆K12.

• Form another pair of ciphertexts C3 and C4 such that C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

• Obtain their corresponding plaintexts P3 = E−1
K3

(C3) and P4 = E−1
K4

(C4) where K3 =

K1 ⊕ ∆K13 and K4 = K1 ⊕ ∆K12 ⊕ ∆K13.

69

• Check P3 ⊕ P4 = α.

To analyze the steps of the algorithm, we assume that the differential α → β for E0 holds

with probability p in the second step. Then, in the fourth step, we expect that the differential

δ → γ for E−1
1 holds with probability q for both ciphertext pairs (C1,C3) and (C2,C4). Once

(EK3
1)−1(C3) ⊕ (EK4

1)−1(C4) = β is automatically satisfied, the difference

(EK3
0)−1((EK3

1)−1(C3)) ⊕ (EK4
0)−1((EK4

1)−1(C4)) = P3 ⊕ P4 = α holds with probability p. The

intermediate difference (EK3
1)−1(C3)⊕(EK4

1)−1(C4) = β is always satisfied due to the following

equation:

(EK3
1)−1(C3) ⊕ (EK4

1)−1(C4)

= (EK3
1)−1(C3) ⊕ (EK4

1)−1(C4) ⊕ (EK1
1)−1(C1) ⊕ (EK1

1
−1

)(C1) ⊕ (EK2
1)−1(C2) ⊕ (EK2

1)−1(C2)

= (EK1
1)−1(C1) ⊕ (EK3

1)−1(C3) ⊕ (EK2
1)−1(C2) ⊕ (EK4

1)−1(C4) ⊕ (EK1
1)−1(C1) ⊕ (EK2

1)−1(C2)

= γ ⊕ γ ⊕ (EK1
1)−1(C1) ⊕ (EK2

1)−1(C2) = EK1
0 (P1) ⊕ EK2

0 (P2)

= β.

A right plaintext quartet (P1, P2, P3, P4) is the one which satisfies all four differentials simul-

taneously.

Therefore, the probability of related-key boomerang distinguisher depicted in Figure 5.1 is

p2 · q2. Notice that for a random n-bit permutation last step holds with probability 2−n. For

this reason, the related-key boomerang distinguisher works only if p2 · q2 > 2−n or equiva-

lently p · q > 2
−n
2 .

5.1.1 Related-Key Boomerang Attack on Reduced-Round IDEA

The related-key boomerang attack is applied to six 6-round IDEA by using 5.5-round related-

key boomerang distinguisher [37]. The attack captures 32 bits of the secret key K by using

four related-keys with 251.6 and 248 data and time complexities, respectively. Now, we begin

by giving the notations used in the attack.

70

5.1.1.1 Notations

The notations used in the description of IDEA and the attack are given as follows:

�: Addition in modulo 216

�: Multiplication in modulo 216 + 1

Xi
j: jth part of the input to round i, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4

Zi
j: jth subkey of round i, 1 ≤ i ≤ 8, 1 ≤ j ≤ 6

Y i
j: jth part of the output of Key Mixing of round i, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4

5.1.1.2 The IDEA Block Cipher

The block cipher IDEA (International Data Encryption Algorithm) was proposed by Lai,

James and Massey in 1990 [41]. It is 8.5-round with 64-bit block size and 128-bit key size.

IDEA uses two operations in its encryption function defined as follows:

Key mixing(T) : This operation which is denoted by T divides 64-bit input value into four

equal 16-bit words, then mixes subkeys with these 16-bit words by using modular addition

(�) in modulo 216 and multiplication (�) in modulo 216 + 1.

M mixing (M) : This operation includes a mutiplication-addition structure denoted by MA

and a swap of two middle words denoted by s and can be written as M = s ◦ MA.

Note that 8.5 round IDEA can be expressed as T ◦ s ◦ (M ◦ T)8 and one round of IDEA is

depicted in figure 5.2.

Key schedule of IDEA

The Key Schedule of IDEA transforms 128-bit secret key into fifty two 16-bit subkey words.

Each round uses 6 subkey words such that 4 of them are used in the key mixing operation and

71

Figure 5.2: ith round of IDEA

2 of them are used in the M mixing operation.

The key schedule of IDEA is given in Table 5.1.

Table 5.1: Key Schedule of IDEA

Round(i) Z1
i Z2

i Z3
i Z4

i Z5
i Z6

i

1 0-15 16-31 32-47 48-63 64-79 80-95
2 96-111 112-127 25-40 41-56 57-72 73-88
3 89-104 105-120 121-8 9-24 50-65 66-81
4 82-97 98-113 114-1 2-17 18-33 34-49
5 75-90 91-106 107-122 123-10 11-26 27-42
6 43-58 59-74 100-115 116-3 4-19 20-35
7 36-51 52-67 68-83 84-99 125-12 13-28
8 29-44 45-60 61-76 77-92 93-108 19-124

Last half round 22-37 38-53 54-69 70-85 - -

72

5.1.1.3 A Related-Key Boomerang Attack 6-Round IDEA

A 5.5-Round Related-Key Boomerang Distinguisher for IDEA

The 5.5-round distinguisher starts at the beginning of round 2 and ends at the end of mixing

operation in round 6 and can be considered as T ◦ (M ◦ T)5. It is built by combining two

differentials which are depicted in figure 5.3. The first differential (M ◦ T)3 has 3 rounds and

the second differential T ◦ (M ◦ T)2 has 2.5 rounds.

The related-key differentials visualized in Figure 5.3 can be constructed as follows:

The First Differential in the forward direction: If the key difference is chosen as ∆K = e25

and the input difference to round 2 is chosen as α = (0, 0, e15, 0), then, the nonzero difference

α is cancelled by the subkey difference ∆Z2
3 = e15 and the zero difference is preserved until

the MA of in round 4. The subkey difference ∆Z4
5 = e8 makes the output difference of MA

an unknown difference β = (β1, β2) where β1 and β2 has 16-bit halves of β. This unknown

β difference has at most 232 different values because the output of the MA is 32-bit word.

Since, it is assumed that all β’s have the equal probability which is 2−32, the probability of

this differential can be computed as: p̂ =
√∑

232(2−32)2 = 2−16.

The Second Differential in the backward direction: The key difference is chosen as ∆K′ =

e75 and the output difference of the key mixing operation M in round 6 is chosen as δ =

(0, 0, e8, 0). If the difference is rolled back through the M, then it is cancelled by the subkey

difference ∆Z7
3 = e8 with probability

1
2

. The zero difference is preserved till the beginning

of the M in round 5. The key subkey difference ∆Z5
1 = e15 leads to the input of round 5

unknown 16-bit γ difference which has at most 216 different values. In addition, it is assumed

that all γ’s have the equal probability which is 2−17(This is computed experimentally by the

attackers, the probabilities are not equiprobable and q̂ > 2−8.8). Therefore, the probability of

this differential can be computed as: q̂ =
√∑

216(2−17)2 = 2−18 = 2−9.

The Attack

73

Figure 5.3: The first related-key differential is on the left-hand side and the second related-key
differential is on the right-hand side for IDEA

74

The attack which utilizes 5.5 round related-key boomerang distinguisher given in the previous

subsection starts at the MA in round 1 and ends just before the MA in round 7. The attack

captures the bits in the position [64-95] of the original key K.

As in the construction of the distinguisher, in the attack, the difference between the original

key and related-keys are choosen as K2 = K1 ⊕ e25, K3 = K1 ⊕ e75 and K4 = K1 ⊕ e25 ⊕ e75.

Then, the attack works as follows:

• Start a counter initialized to zero, for each guess of [64-95] of K1

• Construct a set of 217.6 32-bit value (e, f) such that for each 32-bit value:

1. Form a set of 232 plaintexts P1 such that each plaintext in P1 has the form P =

(a, b, c, d) and a ⊕ c = e and b ⊕ d = f .

2. Form another set of 232 plaintexts P2 such that each plaintext in P2 has the form

P2 = (a, b ⊕ e15, c, d) and a ⊕ c = e and b ⊕ d = f .

3. Encrypt the set P1 under K1 and obtain the set of corresponding ciphertexts C1.

4. Encrypt the set P2 under K2 and obtain the set of corresponding ciphertexts C2.

5. Construct a set of ciphertexts C3 such that each ciphertext in C3 has the form

C3 = C1 ⊕ δ, where δ = (0, 0, e15, 0).

6. Construct another set of ciphertexts C4 such that each ciphertext in C4 has the

form C4 = C2 ⊕ δ, where δ = (0, 0, e15, 0).

7. Decrypt the sets C3 and C4 under K3 and K4, respectively and obtain their sets of

corresponding plaintexts P3 and P4.

8. Build a hash table storing the plaintexts in P3 and P4 indexed by the XOR value

of the first and third 16-bit words and by the XOR value of the second and fourth

16-bit words.

9. For any guess of K1 in the positions [64-95]:

– Consider a pair of colliding plaintexts (P3, P4) and partially encrypt the plain-

texts P1, P2, P3 and P2 through the MA in round 1; compute the difference

between the partially encrypted values of P1 and P2 and the difference be-

tween the partially encrypted values of P3 and P4, if these are both equal to

75

the difference α, then go to the next step. If this is not the case, try the next

subkey value.

– Partially decrypt the respective ciphertext pairs. Then compute the difference

of partially decrypted values of ciphertext pairs. If the difference is zero, in-

crement the counter of the subkey by one. (This step should be done, because

the guessed key value [64-95] of K1 includes the subkey Z7
3 = e15).

• Conclude that the right subkey is the one which has the highest counter.

The attack needs 251.6 plaintext/ciphertexts such that 249.6 plaintexts are encrypted under K1,

249.6 plaintexts are encrypted under K2, 249.6 ciphertexts are decrypted under K3 and 249.6

ciphertexts are decrypted under K4. The time complexity of the attack is 251.6 MA encryptions

or equivalently 248 6-round IDEA encryptions.

5.2 Related-Key Amplified Boomerang Attack

Amplified boomerang attack is the refinement of boomerang attack that transforms the adap-

tively chosen ciphertext nature of the boomerang attack into chosen plaintext attack with the

cost of having lower probability. Namely, contrary to boomerang attack, the attacker only

needs to make encryptions under secret key.

Afterwards, amplified boomerang attack is combined with the related-key idea which is called

related-key amplified boomerang attack. This attack was applied to the block ciphers Eagle-

64 and Eagle-128 by Jeong et al. [42] in 2007.

The related-key amplified boomerang attack tries to capture a set of quartets of plaintexts

satisfying the difference P1 ⊕ P2 = P3 ⊕ P4 = α. Each pair satisfies the differential α → β

of E0 with probability p. If E0(P1) and E0(P3) satisfy the difference E0(P1) ⊕ E0(P3) = γ

with probability of 2−n, then the difference E0(P2) ⊕ E0(P4) = γ holds for free due to the

boomerang conditions mentioned in the boomerang attack. Afterwards, for the differential

γ → δ of E1, two pairs satisfy the differences C1 ⊕ C3 = δ, C2 ⊕ C4 = δ with probability of

2−n · P2 · q2. The construction of the related-key amplified boomerang distinguisher depicted

76

in figure 5.5 based on four related-keys can be given as follows:

• Take a randomly chosen plaintext P1 and form a plaintext P2 such that P1 ⊕ P2 = α.

• Obtain their corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) where K2 =

K1 ⊕ ∆K12.

• Take another randomly chosen plaintext P3 and form a plaintext P4 such that P3⊕P4 =

α.

• Obtain their corresponding ciphertexts C3 = EK3(P3) and C4 = EK4(P4) where K3 =

K1 ⊕ ∆K13 and K4 = K1 ⊕ ∆K12 ⊕ ∆K13.

• Check C1 ⊕C3 = δ and C2 ⊕C4 = δ.

A quartet which satisfies all prescribed differentials is called a right quartet. If we start taking

m1 pairs of plaintexts (P1, P2) and m2 pairs of plaintexts (P3, P4), then the expected number

of quartets satisfying differential α → β is m1 · m2 · p2. Therefore, it is expected to have

2−n · m1 · m2 · p2 · q2 right quartets. Since for any random permutation, about m1 · m2 ·
2 n

right quartets are expected, the distinguisher works only if p · q > 2−n/2 and can be used to

distinguish the cipher from a random permutation [42].

Figure 5.4: Related-key amplified boomerang distinguisher based on four related keys

77

In the following section, the related-key rectangle attack which is a refinement of the related-

key amplified boomerang attack is mentioned.

5.3 Related-Key Rectangle Attack

Rectangle attack [43] is based on differential cryptanalysis and converts the feature of adap-

tively chosen attack of boomerang attack into chosen plaintext attack. Then, rectangle attack

is combined with the related key idea by J. Kim et al. [39] and applied to many known block

ciphers [39, 37, 40, 44, 45]. Like related-key boomerang attack, related-key rectangle attack

takes advantage of differential properties of the encryption algorithm and key schedule of

the cipher and uses shorter related-key differentials. The main difference between related-

boomerang attack and related-key rectangle attack is that related-key rectangle attack uses

two differentials E0 and E1 in only encryption direction, while related-key boomerang attack

uses two differentials E0 and E1 in both encryption/decryption directions. This property of

rectangle attack makes it more realistic to be implemented.

Related-key rectangle attack can be based on 2,4 or more related-keys. As in the boomerang

attack, the attack treats the cipher E as a cascade of two sub-ciphers E0 and E1, that is E =

E1 ◦ E0. Assume that we have a related-key differential α → β of E0 with probability p and

a related-key differential γ → δ of E1 with probability q. Using two related-key differentials,

the related-key rectangle distinguisher depicted in figure 5.5 based on four related keys can

be constructed as follows:

• Take a randomly chosen plaintext P1 and form a plaintext P2 such that P1 ⊕ P2 = α.

• Obtain their corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) where K2 =

K1 ⊕ ∆K12.

• Take another randomly chosen plaintext P3 and form a plaintext P4 such that P3⊕P4 =

α.

• Obtain their corresponding ciphertexts C3 = EK3(P3) and C4 = EK4(P4) where K3 =

K1 ⊕ ∆K13 and K4 = K1 ⊕ ∆K12 ⊕ ∆K13.

• Check C1 ⊕C3 = δ and C2 ⊕C4 = δ.

78

Figure 5.5: Related-key rectangle distinguisher based on four related keys

Related-key rectangle attack is the improvement version of related-key amplified boomerang

attack, because related-key rectangle attack takes advantage of all β′’s and γ′’s satisfying

α → β′ and γ′ → δ. A right quartet can be defined as a quartet of plaintexts (P1, P2) and

(P3, P4) and their corresponding ciphertext that satisfies the following equalities:

P1 ⊕ P2 = P3 ⊕ P4 = α

C1 ⊕C3 = C2 ⊕C4 = δ

As the second improvement, the pair (P1, P2) and (P3, P4) composes two different quartets

((P1, P2), (P3, P4)) and ((P1, P2), (P4, P3)) which reduces the data complexity of the attack.

The probability P of related-key rectangle distinguisher is 2−n(p̂ · q̂)2 where

p̂ =
√∑

β Pr2
K1,K2

[α→ β] and q̂ =
√∑

γ Pr2
K3,K4

[γ → δ].

For a random permutation, the probability of any quartet which satisfies the boomerang distin-

guisher is 2−2nK where K the cardinality of the set of all possible δ’s. Therefore, if P > 2−2nK

is satisfied, then the related-key rectangle distinguisher works. It can be conclude that if we

take N plaintext pairs, it is expected to have N2 · 2−n(p̂ · q̂)2 right quartets.

79

5.3.1 A Related-Key Rectangle Attack on the Full Round SHACAL-1

SHACAL-1 is a block cipher proposed by H. Handschuh and D. Naccache to the NESSIE

project in 2000 [12]. Afterwards, many known attacks have been applied to SHACAL-1,

however, the most efficient ones are the related-key attacks which enable to break full-round

SHACAL-1 [46, 11]. A rectangle attack on 49-round SHACAL-1 was proposed by E. Bi-

ham with data complexity of 2151.9 chosen plaintexts and time complexity of 2508.5 49-round

SHACAL-1 encryptions [45]. Then, In [39], the attack has been further analyzed by con-

sidering key differences and a related-key rectangle attack have been applied to 59-round

SHACAL-1. This attack needs 2149.7 related-key chosen plaintexts and has time complexity

of 2498.3 59-round SHACAL-1 encryptions. Then, this attack has been improved by increas-

ing the number of attacking rounds from 59 to 70 [40] by using 2151.8 related-key chosen

plaintexts and a running time of 2500.1 70-round SHACAL-1 encryptions. Finally, Dunkel-

man et al. [46] have proposed a related-key rectangle attack on 80-round (full) SHACAL-1

which needs 2159.8 related-key chosen plaintexts and has time complexity of 2423 80-round

SHACAL-1 encryptions.

In this section, we will mention the best related-key rectangle attack on SHACAL-1 [46]

which captures 352 bits of the secret key K.

5.3.1.1 Notations

The notations used in the description of SHACAL-1 and the attack are given as follows:

ei: A 32-bit word having zeros in all positions except the position i.

ei, j: A 32-bit word having zeros in all positions except the positions i and j, that is ei ⊕ e j.

{Ai, Bi,Ci,Di, Ei}: The input to the round i.

X j−1,i: ith part of the input to the round j, i ∈ {A, B,C,D, E}.

5.3.1.2 The SHACAL-1 Block Cipher

SHACAL-1 is a 160-bit block cipher which uses variable length secret key(0-512) and based

on the compression function of SHA-1 [48]. It has an iterative 80-round structure which is

80

feistel-type with five branches.

Key Schedule of SHACAL-1

A 512-bit secret key K = (K0,K1, . . .K15) is used to generate eighty 32-bit subkeys k0, k1, . . . k127

in the following manner:

ki =


Ki, 0 ≤ i ≤ 15

(ki−3 ⊕ ki−8 ⊕ ki−14 ⊕ ki−16), 16 ≤ i ≤ 79

Encryption Algorithm

Encryption function of SHACAL-1 splits the 160-bit plaintext block P into five 32-bit words

A0, B0,C0,D0 and E0, then applies the following algorithm:

Input: Plaintext= (A0, B0,C0,D0, E0)

For i = 0 to i = 79;

Ai+1 = ki + ROL5(Ai) + fi(Bi,Ci,Di) + Ei + δi

Bi+1 = Ai

Ci+1 = ROL30(Bi)

Di+1 = Ci

Ei+1 = Di

Output: Ciphertext=(A80, B80,C80,D80, E80)

Where δi is the round constant.

Furthermore, encryption function of SHACAL-1 uses three different functions fi each of

which are used in different rounds of the encryption process:

fi =


fi f = (X & Y) |(¬X & Z), 0 ≤ i ≤ 19

fxor = (X ⊕ Y ⊕ Z), 19 ≤ i ≤ 39, 60 ≤ i ≤ 79

fma j = (X & Y) |(X & Z) |(Y & Z) 40 ≤ i ≤ 59

Notice that ith round of the encryption function of SHACAL-1 is depicted in Figure 5.6.

81

Figure 5.6: ith round function of SHACAL-1

5.3.1.3 Related-Key Rectangle Attack on Full Round SHACAL-1

The related-key rectangle attack presented in [46] is built on 69-round related-key rectangle

distinguisher. The attack captures 11 · 32 = 352 bits of the user key K. Firstly, we begin by

giving the distinguisher for SHACAL-1 and then explain the attack in detail.

5.3.1.4 A 69-Round Related-Key Rectangle Distinguisher for SHACAL-1

The differentials used in the attack is based on the differentials proposed in [47]. SHACAL-1

is decomposed into two subciphers E0 and E1 such that the first differential E0 given in Table

5.2 includes rounds 0-33 with probability of p = 2−41 and the second differential E1 depicted

in Table 5.3 includes rounds 34-68 with probability of p = 2−39.

Related-key rectangle distinguisher can be built by counting over possible differentials. There-

fore, for the first differential, if the most significant bit of A of the plaintext is fixed to 0, then

the probability of round 2 will increase a factor of 2, i.e p = 2−1. Similarly, if the third bit of

A is set to differ from the third bit of B, then the probability of round 3 increase by a factor

of 2, i.e p = 1. Consequently, by using these differentials which have the same 33-round

differential path as in Table 5.2, the probability of the first differential increases to p̂ = 238.5.

Similarly, for the second differential, by using all possible γ′ differences, the probability of

the second differential will rise to q̂ = 238.3. Therefore, the probability P of the distinguisher

82

is computed as P = 2−160 · (2−38.5 · 2−38.3)2 = 2−313.6.

5.3.1.5 The Attack

The attack can be performed by using 69-round related-key rectangle distinguisher given in

the previous subsection. To summarize the attack procedure, firstly plaintext quartets are

formed, then, their corresponding ciphertexts are decrypted through last 11 rounds by guess-

ing the subkeys of these rounds, and finally, the distinguisher is applied to identify the actual

key bits.

Then, the data preparation and the attack algorithm are given as follows:

Data Preparation

• Form 2157.8 pairs of plaintexts (P1, P2) such that P1⊕P2 = α, where α = (0, 0, e31, e31, e31)

and obtain their corresponding ciphertexts (C1,C2) under related-keys K1 and K2, re-

spectively.

• Form another 2157.8 pairs of plaintexts (P3, P4) such that P3 ⊕ P4 = α, where α =

(0, 0, e31, e31, e31) and obtain their corresponding ciphertexts (C3,C4) under secret keys

K3 and K4, respectively.

As computed in the previous subsection, the probability of the distinguisher is P = 2−313.6.

Since 2 · 2157.8 plaintext pairs are taken, there are (2157.8)2 = 2315.6 quartets of which 2315.6 ·

2−313.6 = 22 = 4 are expected to be right quartets. Then, the attack algorithm can be expressed

as follows:

1. Guess the subkeys of rounds 72 − 79;

• Partially decrypt all ciphertexts under respective through rounds 72 − 79.

• Detect all partially decrypted values of pairs (X71
1 , X71

3) which satisfy (X71,A,B,C
1 ⊕

X71,A,B,C
3) ∈ S and S is defined as S = (x, y, z) : ROL30(x) ∈ S ′,ROL30(y) = 0,

ROT L30(z) = e2, where S ′ is the set of possible differences of X70,A.

• Keep only the quartets (P1, P2, P3, P4) such that (X71,A,B,C
2 ⊕X71,A,B,C

4) ∈ S and go

to the next step.

83

This step has time complexity of 8
80 · (2

32)8
·2 ·2157.8 = 2411.5 SHACAL-1 encryp-

tions. Since the set S ′ has only 28.3 = 224 values, this step has 2 · (64 + 23.7) =

175.4-bit filtering condition. Therefore, the expected number of surviving quartets

is 2315.6 · 2−175.4 = 2140.2.

2. Guess the subkey of round 71;

• Partially decrypt all surviving quartets under respective subkeys and obtain the

value (X70
1 , X70

2 , X70
3 , X70

4).

• For each of surviving quartets, compute the value (X70,E
1 ⊕ X70,E

3) and keep only

the quartets such that (X70,E
1 ⊕ X70,E

3 = 0).

• Then, for each of surviving quartets, compute the value (X70,E
2 ⊕ X70,E

4) and keep

only the quartets such that (X70,E
2 ⊕ X70,E

4 = 0) and go to the next step.

The time complexity of this step has 1
80 ·(2

32)8
·232 ·2 ·2140.2 = 2422.9. This step has

(32 + 32) = 64-bit filtering condition, therefore there are about 2140.2 ·2−64 = 276.2

quartets left.

3. Guess the subkey of round 70;

• Partially decrypt all surviving quartets under respective keys and obtain the value

(X69
1 , X69

2 , X69
3 , X69

4).

• For each of surviving quartets, compute the value (X69,E
1 ⊕ X69,E

3) and keep only

the quartets such that (X69,E
1 ⊕ X69,E

3 = 0).

• Then, for each of surviving quartets, compute value (X69,E
2 ⊕ X69,E

4) and keep only

the quartets such that (X69,E
2 ⊕ X69,E

4 = 0) and go to the next step.

The time complexity of this step has 1
80 · (2

32)8
· 232 · 232 · 2 · 275.2 = 2390.9. This

step has (32 + 32) = 64 bits filtering condition, hence, about 2140.2 · 2−64 = 276.2

quartets are expected to survive.

4. Guess the subkey of round 69;

• Partially decrypt all remaining quartets under respective keys and obtain the value

(X68
1 , X68

2 , X68
3 , X68

4).

• For each of surviving quartets, compute the value (X68,E
1 ⊕ X68,E

3) and keep only

the quartets such that (X68,E
1 ⊕ X68,E

3 = e1).

84

• Then, for each of remaining quartets, compute the value (X68,E
2 ⊕ X68,E

4) and keep

only the quartets such that (X68,E
2 ⊕ X68,E

4 = e1) and go to the next step.

The time complexity of this step has 1
80 · (2

32)8
· 232 · 232 · 232 · 2 · 275.2 = 2358.9.

5. If a subkey guess is suggested by at least four quartets, then conclude that it is the right

one.

Therefore, the total time complexity which is dominated by step 2 is approximately 2423

SHACAL-1 encryptions and the total data complexity of the attack is 2159.8 related-key

chosen plaintexts which are encrypted under four related keys.

Table 5.2: The First Related-Key Differential for SHACAL-1

Round i ∆ki ∆Ai ∆Bi ∆Ci ∆Di ∆Ei Probability
0 e1 0 0 e31 e31 e31 2−1

1 e6 e1 0 0 e31 e31 2−2

2 e1,31 0 e1 0 0 e31 2−2

3 e31 0 0 e31 0 0 2−1

4 e1,31 0 0 0 e31 0 2−2

5 e6,31 e1 0 0 0 e31 2−1

6 0 0 e1 0 0 0 2−2

7 e6,31 e1 0 e31 0 0 2−2

8 e31 0 e1 0 e31 0 2−3

9 e6 e1 0 e31 0 e31 2−2

10 e31 0 e1 0 e31 0 2−3

11 e6 e1 0 e31 0 e31 2−2

12 e1,31 0 e1 0 e31 0 2−3

13 0 0 0 e31 0 e31 2−1

14 e31 0 0 0 e31 0 2−1

15 e31 0 0 0 0 e31 1
16 0 0 0 0 0 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

25 0 0 0 0 0 0 1
26 e2 0 0 0 0 0 2−1

27 e7 e2 0 0 0 0 2−1

28 e2 0 e2 0 0 0 2−1

29 e0,3 0 0 e0 0 0 2−2

30 e0,8 e3 0 0 e0 0 2−2

31 e0,3 0 e3 0 0 e0 2−2

32 e1,4 0 0 e1 0 0 2−2

33 e1,9 e4 0 0 e1 0 2−2

34 - 0 e4 0 0 e1 -

85

Table 5.3: The Second Related-Key Differential for SHACAL-1

Round i ∆ki ∆Ai ∆Bi ∆Ci ∆Di ∆Ei Probability
34 e1,30 0 e1 e31 0 e30,31 2−2

35 e1 0 0 e31 e31 0 2−1

36 e6 e1 0 0 e31 e31 2−1

37 e1,31 0 e1 0 0 e31 2−1

38 e31 0 0 e31 0 0 1
39 e1,31 0 0 0 e31 0 2−1

40 e6,31 e1 0 0 0 e31 2−2

41 0 0 e1 0 0 0 2−2

42 e6,31 e1 0 e31 0 0 2−2

43 e31 0 e1 0 e31 0 2−3

44 e6 e1 0 e31 0 e31 2−2

45 e31 0 e1 0 e31 0 2−3

46 e6 e1 0 e31 0 e31 2−2

47 e1,31 0 e1 0 e31 0 2−3

48 0 0 0 e31 0 e31 2−1

49 e31 0 0 0 e31 0 2−1

50 e31 0 0 0 0 e31 1
51 0 0 0 0 0 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

60 0 0 0 0 0 0 1
61 e2 0 0 0 0 0 2−1

62 e7 e2 0 0 0 0 2−1

63 e2 0 e2 0 0 0 2−1

64 e0,3 0 0 e0 0 0 2−2

65 e0,8 e3 0 0 e0 0 2−2

66 e0,3 0 e3 0 0 e0 2−2

67 e1,4 0 0 e1 0 0 2−2

68 e1,9 e4 0 0 e1 0 2−2

69 - 0 e4 0 0 e1 -

86

5.4 Related-Key Impossible Boomerang Attack

Impossible boomerang attack which is a new extension of differential cryptanalysis was pro-

posed by Lu [31] . It is a combination of impossible differential attack and boomerang attack.

Then, this attack is combined with related-key scenario and it is called related-key impossible

boomerang attack.

To describe the related-key impossible boomerang attack, consider the block cipher E :

{0, 1}n × {0, 1}k → {0, 1}n as a cascade of two subciphers E0 and E1, i.e. E = E1 ◦ E0

such that for E0 there are two differentials α → β and α′ → β′ with probability 1 under keys

K1 and K2 and for (E1)−1 there are two differentials δ → γ and δ′ → γ′ with probability 1

under keys K3 and K4 and intermediate differences satisfy the condition β ⊕ β′ ⊕ γ ⊕ γ′ , 0.

Related-key impossible boomerang distinguisher is based on the following theorem:

Theorem 5.4.1 Let P1, P2, P3 and P4 be n-bit plaintext blocks where P2 = P1 ⊕ α and

P3 = P4 ⊕ α
′. Assume that there are two differentials α → β and α′ → β′ with probability 1

for E0 under keys K1 and K2 and there are two differentials δ → γ and δ′ → γ′ with prob-

ability 1 for (E1)−1 under keys K3 and K4 and intermediate differences satisfy the condition

β ⊕ β′ ⊕ γ ⊕ γ′ , 0. Then, the following two equations can not hold, simultaneously:

EK1(P1) ⊕ EK3(P3) = δ (5.1)

EK2(P2) ⊕ EK4(P4) = δ′ (5.2)

Proof. Assume that Equations 5.1 and 5.2 both hold, then by the differentials above,

β′ = EK3
0 (P3) ⊕ EK4

0 (P4)

= (EK3
0 (P3) ⊕ EK1

0 (P1)) ⊕ (EK1
0 (P1) ⊕ EK2

0 (P2)) ⊕ (EK2
0 (P2) ⊕ EK4

0 (P4))

= ((EK3
1)−1(EK3(P3)) ⊕ (EK1

1)−1(EK1(P1)) ⊕ (EK1
0 (P1) ⊕ EK2

0 (P2)) ⊕ ((EK2
1)−1(EK2(P2)) ⊕

(EK4
1)−1(EK4(P4))

= γ ⊕ β ⊕ γ′.

In the equation above, we get that β = γ ⊕ β⊕ γ′, however, this contradicts with the condition

87

Figure 5.7: Related-key impossible boomerang distinguisher satisfying the condition β⊕ β′ ⊕
γ ⊕ γ′ , 0

that β ⊕ β′ ⊕ γ ⊕ γ′ , 0. Then, proof of the theorem is done. �

Consequently, it is concluded that the input difference pair (α, α′) can never cause the output

difference pair (δ, δ′) with probability 1, such a differential is called a related-key impossible

boomerang distinguisher depicted in figure 5.7 which can be written as (α, α′) 9 (δ, δ′).

Using related-key impossible boomerang distinguisher, the key recovery attack can usually

be constructed as follows:

1. Consider the block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of four subciphers

E = E f ◦ E1 ◦ E0 ◦ Ei, where E1 ◦ E0 is the impossible boomerang distinguisher, Ei

includes the rounds before E1 ◦ E0 and E f includes the rounds after E1 ◦ E0.

2. Guess necessary key bits/bytes in Ei and E f , and check whether the quartet of known

plaintext/ciphertext pairs (((P1,C1), (P2,C2))((P3,C3), (P4,C4))) satisfy the following

four equations:

EK1
i (P1) ⊕ EK2

i (P2) = α

EK3
i (P4) ⊕ EK4

i (P4) = α′

88

(EK1
f)−1(C1) ⊕ (EK3

f)−1(C3) = δ

(EK2
f)−1(C2) ⊕ (EK4

f)−1(C4) = δ′.

3. If a guartet satisfies the above four conditions, then conclude that guessed subkey quar-

tet (K1, K2, K3, K4) is wrong and discard it. By this way, taking sufficient number of

quartets of known plaintext/ciphertext pairs make the wrong keys eliminate and leave

the actual key.

5.4.1 A 6-Round Related-Key Impossible Boomerang Distinguisher for AES-192

Related-key impossible boomerang attack on 8-round AES-192 is the first attempt to use this

method to a block cipher by Lu [31]. It is applied to 8-round AES-192 with a running time

of 2160 8-round AES encryptions. This attack is based on 6-round related-key impossible

boomerang distinguisher which is explained in detail in the following subsection. In this sec-

tion we only mention the related-key distinguisher which is a new type of distinguisher for

AES-192.

If the key differences between related keys are chosen as K1⊕K2 = K3⊕K4=(∆Kcol(0),∆Kcol(1),

. . .∆Kcol(5))=((a, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), where a 8-bit

fixed non-zero value, then subkey differences used in the attack are given in Table 5.4:

Table 5.4: Subkey Differences

Round(i) ∆ki,Col(0) ∆ki,Col(1) ∆ki,Col(2) ∆ki,Col(3)

0 (a,0,0,0) (0,0,0,0) (a,0,0,0) (0,0,0,0)
1 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
2 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
3 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
4 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
5 (a,0,0,0) (a,0,0,0) (a,0,0,0) (a,0,0,0)
6 (a,0,0,b) (0,0,0,b) (a,0,0,b) (0,0,0,b)
7 (a,0,0,b) (0,0,0,b) (a,0,c,b) (a,0,c,0)
8 (0,0,c,b) (0,0,c,0) (a,0,c,b) (a,0,c,0)

The distinguisher is built combining four differentials shown in Figure 5.8:

The first differential α→ β for E0 is :

((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0))→ ((f1, e2, e3, e4), (f5, e6, e7, e8), (f9, e10, e11, e12),

89

Figure 5.8: Differentials with probability 1 for AES-192

90

(f13, e14, e15, e16)),

The second differential α′ → β′ for E0 is:

((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0))→ ((f ′1 , e
′
2, e
′
3, e
′
4), (f ′5 , e

′
6, e
′
7, e
′
8), (f ′9 , e

′
10, e

′
11, e

′
12),

(f ′13, e
′
14, e

′
15, e

′
16)),

The first differential δ→ γ for E1 is :

((g1, g2, g3, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))→ ((j1, 0, j3, j4), (j5, j6, 0, j8), (j9, j10, j11, 0),

(0, j14, j15, j16),

The second differential δ′ → γ′ for E1 is:

((l1, l2, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))→ ((o1, 0, 0, o4), (o5, o6, 0, 0), (0, o10, o11, 0),

(0, 0, o15, o16),

Then, it is observed that these differentials can form the following 6-round impossible boomerang

distinguisher for AES-192:

(((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0))) 9

(((g1, g2, g3, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), ((l1, l2, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)).

This distinguisher works, because:

By the property of the MC operation, in the first differential α → β for E0, we have the

equalities e2 = d1 and e3 = d1 and in the second differential α′ → β′ for E0, we have the

equalities e′2 = d′1 and e′3 = d′1. Since the branch number of MC operation is 5 [?], then

i11 , 0. Therefore, j3 , 0. This is a direct consequence of one to one property of SB oper-

ation. Notice that the second bytes of γ and γ′ are both 0 and the third bytes of γ and γ′ are

j3 and 0, respectively. Then, XOR of the second bytes of the four differentials β ⊕ β′ ⊕ γ ⊕ γ′

is e2 ⊕ e′2 = d1 ⊕ d′1 and XOR of the third bytes of the four differentials β ⊕ β′ ⊕ γ ⊕ γ′ is

e3 ⊕ e′3 ⊕ j3 = d1 ⊕ d′1 ⊕ j3. Since it is impossible to make two values d1 ⊕ d′1 and d1 ⊕ d′1 ⊕ j3

zero at the same time, the distinguisher works (β ⊕ β′ ⊕ γ ⊕ γ′ , 0).

This distinguisher given above is used to attack on 8-round AES-192 and for the details of the

attack, refer to [31].

91

CHAPTER 6

RELATED-KEY DIFFERENTIAL-LINEAR CRYPTANALYSIS

Differential-linear cryptanalysis which is a combination of differential and linear cryptanal-

ysis was proposed by Langford and Hellman in 1994 [49]. They show that concatenating a

differential characteristic and a linear approximation is possible and allows to attack many

block ciphers. This cryptanalytic method is firstly applied to 8-round DES in the same paper

in which the attack is presented [49]. Then, in 2002, Biham et al. proposed enhanced ver-

sion of the attack and applied to DES and COCONUT98 [50]. Afterwards, differential-linear

cryptanalysis was combined with related-key scenario and firstly used to attack on AES-192

[51].

This chapter is mainly about the related-key differential-linear cryptanalysis. The structure

of the chapter is as follows: Section 6.1 gives detailed description of related-key differential-

linear attack. Then, Section 6.2 exemplifies the related-key differential-linear on AES-192.

6.1 Overview of the Attack

Differential-linear attack is a combination of differential and linear attacks in a way that

it exploits both a differential characteristics and a linear approximation too. To mount a

differential-linear attack, the attacker first constructs a differential characteristics, then con-

structs a linear approximation which is attached to the differential characteristic. By this way,

the attacker derives a longer distinguisher which allows to attack on more rounds of block

ciphers which are resistant to both differential and linear attacks.

To mount related-key differential-linear attack, firstly we need a related-key differential-linear

92

distinguisher. The construction of a related-key differential-linear distinguisher is based on

the following proposition:

Proposition 6.1.1 Consider the block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of

two subciphers E0 and E1 such that E = E0 ◦ E1. Assume that there exist a differential α→ β

with probability p for E0 and a linear approximation γ → δ with bias ε for E1. Let a plaintext

pair (P, P∗) satisfies P∗ = P ⊕ α, then

Pr[(δ · EK1(P) ⊕ δ · EK2(P∗)) = γ · β] =
1
2

+ 2pε2.

Proof. Assume that a plaintext pair (P, P∗) satisfies the difference α, i.e P∗ = P ⊕ α, then

by the differential α → β for E0, the equation E0
K1

(P) ⊕ E0
K2

(P∗) = β holds with probability

p and by the linear approximation γ → δ for E1, the equation γ · E0
K1

(P) = δ · EK1(P) is

satisfied with bias ε and the equation γ · E0
K2

(P∗) = δ · EK2(P∗) is satisfied with bias ε. If the

equations γ ·E0
K1

(P) = δ ·EK1(P) and γ ·E0
K2

(P∗) = δ ·EK2(P∗) are combined, then the equation

γ · (E0
K2

(P∗) ⊕ E0
K1

(P))︸ ︷︷ ︸
β

= γ · β = (δ · EK1(P)) ⊕ (δ · EK2(P∗)) is obtained with a probability of:

p[(
1
2

+ ε)(
1
2

+ ε)(
1
2
− ε)(

1
2
− ε)] = p(

1
2

+ 2ε2)

It is assumed that E0
K1

(P) ⊕ E0
K2

(P∗) = β holds with probability p, however even if E0
K1

(P) ⊕

E0
K2

(P∗) , β holds with probability (1 − p) and it is assumed that the value (δ · EK1(P)) ⊕ (δ ·

EK2(P∗)) is a random distribution, the probability of γ · β = (δ · EK1(P)) ⊕ (δ · EK2(P∗)) is

(1 − p) ·
1
2

=
1
2
−

p
2
.

Therefore, if the above two cases are both considered, then the probability of Equation γ · β =

(δ · EK1(P)) ⊕ (δ · EK2(P∗))

p(
1
2

+ 2ε2) + (1 − p) ·
1
2

=
1
2

+ 2pε2︸︷︷︸
ε′

.

If E is a random permutation, it is expected that the equation γ ·β = δ · (EK1(P))⊕δ · (EK2(P∗))

holds with probality 1
2 . Therefore, if bias ε′ = 2pε2 of Equation γ·β = (δ·EK1(P))⊕(δ·EK2(P∗))

is high enough, then the cipher E can be distinguished from a random cipher permutation by

93

using the related-key differential-linear distinguisher.

In the following section, an application of this attack to reduced version of AES by Zhang et

al. [51] is described .

6.2 Related-Key Differential-Linear Cryptanalysis of Reduced-Round AES-192

In this section, a related-key differential linear attack on 7-round AES-192 presented by Zhang

et al. [51] will be covered. The attack utilizes 5-round related-key differential-linear distin-

guisher which is given in detail in the following subsection.

6.2.1 Notations

Notations used in the description of the distinguisher and the attack is as follows:

ki: The subkey of round i, 0 ≤ i ≤ 3

ki,Col(j): The jth column of ki, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

xI
i : The input to round i

xS
i : The output of SubByte operation in round i

xR
i : The output of ShiftRow operation in round i

xM
i : The output of MixColumn operation in round i

xO
i : The output of round i

xi,col(j): The jth column of xi , 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

(xi) j: The jth byte of xi, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3

?: Any byte difference N: Non-zero difference

Note that for the description of AES-192 and related notations, refer to Chapter 4.

6.2.2 A 5-Round Related-Key Differential-Linear Distinguisher for AES-192

A 5-round differential-linear distinguisher is built by concatenating a 4-round related-key

differential characteristics with 1-round related-key linear approximation. The difference

94

between two related keys K and K∗ is chosen as ((0,0,0,0), (0,0,0,0), (a,0,0,0), (a,0,0,0),

(0,0,0,0), (0,0,0,0)). Then, the subkey differences are used in the attack are computed and

given in Table 6.1.

Table 6.1: Subkey Differences

Round(i) ∆ki,Col(0) ∆ki,Col(1) ∆ki,Col(2) ∆ki,Col(3)

0 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
1 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
2 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
3 (0,0,0,0) (0,0,0,0) (a,0,0,0) (a,0,0,0)
4 (a,0,0,0) (a,0,0,0) (0,0,0,b) (0,0,0,b)
5 (a,0,0,b) (0,0,0,b) (a,0,0,b) (0,0,0,b)
6 (0,0,c,b) (0,0,c,0) (a,0,c,b) (a,0,c,0)
7 (0,0,c,b) (0,0,c,0) (0,d,c,b) (0,d,0,b)
8 (a,d,c,0) (0,d,0,0) (0,d,c,b) (0,d,0,b)

A 4-round differential depicted in Figure 6.1 is built as follows:

1. Choose the difference between the plaintext pairs (P, P∗) as P⊕P∗ = ((0, 0, 0, 0), (0, 0, 0,

0), (a, 0, 0, 0), (a, 0, 0, 0)), then the plaintext difference is cancelled by the whitening

subkey difference ∆k0, so the difference in all bytes of input to round 1 ∆xI
1 becomes

zero.

2. This zero difference is preserved through SB, SR and MC operations in the first and the

second rounds until adding the subkey difference ∆k2. Then, the first byte of ∆xI
3 will

become a nonzero value.

3. After MC operation in round 3, this difference diffuses to all column. Let’s call the

non-zero byte position zero of the fourth round as ε. Then, after MC operation, the first

column of ∆xM
4 will be (02 · ε, ε, ε, 03 · ε).

4. Finally, after applying the key addition, equal differences in byte 1 and 2 of ∆xO
4 are

obtained. Therefore, ∆(xO
4)1 = ∆(xO

4)2 , 0 holds with probability 1.

Then, 1-round linear approximation is attached to the end of 4-round related-key differential

distinguisher. In SB operation in round 5, a linear approximation is used. Since there are

(28 − 1) possible nonzero value for difference ε, there are 216 · (28 − 1) possible values for

95

quartets ((xO
4)1, (xO

4)∗1, (xO
4)2, (xO

4)∗2) satisfying the equation (xO
4)1⊕(x∗O4)1 = (xO

4)2⊕(x∗O4)2 , 0.

Authors computed that for every possible 8-bit linear mask λ ∈
{
1, 2, . . . , 28 − 1

}
, the equation

λ ·
{
(xS

5)1 ⊕ (x∗S5)1 ⊕ (xS
5)2 ⊕ (x∗S5)2

}
= 0

is satisfied with a bias of 2−9.

Then, after SR operation in round 5, the following equation is satisfied again with a bias of

2−9:

λ ·
{
(xR

5)13 ⊕ (x∗R5)13 ⊕ (xR
5)10 ⊕ (x∗R5)10

}
= 0

Finally, after AR operation in round 5, a 5-round related-key differential-linear distinguisher

is built with a bias of 2−9:

λ ·
{
(xW

5)13 ⊕ (x∗W5)13 ⊕ (xW
5)10 ⊕ (x∗W5)10

}
= 0

or equivalently

λ ·
{
∆(xW

5)13 ⊕ ∆(x∗W5)10
}

= 0

.

Figure 6.1: A 4-round differential for AES

96

6.2.3 A 7-Round Related Key Differential-Linear Attack on AES-192

Main idea of this attack is to apply the 5-round related-key differential-linear distinguisher

given above starting from the first round to guess some key bytes of the sixth and the seventh

rounds for partial decryption, then to use the linear approximation to find the key.

To mount the attack, assume that the values of a,b,c and d are known. Then, the attack

algorithm goes as follows:

• Form two sets of plaintexts P1 and P2 containing m plaintexts each such that each pair

P1 ∈ P1 and P2 ∈ P2 satisfies the desired difference P1⊕P2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0,

0, 0), (a, 0, 0, 0)).

• Obtain the sets of C1 and C2 which are the corresponding ciphertexts of the sets P1 and

P2 under two related keys K1 and K2, respectively.

• Initialize an array of 2160 counters to zero.

• Guess all bytes of k7 and bytes in positions 8,9,12,15 of w6, then partially decrypt each

ciphertext pair (C1,C2) and obtain the bytes (xW
5)10 and (xW

5)13.

Check whether the equation λ ·
{
∆(xW

5)10 ⊕ ∆(xW
5)13

}
= 0 is satisfied, where λ is fixed

to 0x01. If this equation holds, increment the counter of the array by 1.

• If |Tmax − m/2| > |Tmin − m/2|, then conclude that the key candidate corresponding to

Tmax where Tmax is the highest entry is the actual key. Otherwise, conclude that the key

candidate corresponding to Tmin where Tmin is the lowest entry is the actual key.

6.2.4 Attack Complexity

It is assumed that the values a,b,c and d are known. If the value of a is fixed a certain value,

then applying SB operation, there are 27 − 1 = 127 different possible values for b. Due to the

structure of the key schedule, the value of c is derived from the value of b and the value of d

is derived from c. For this reason, if the attacker fixes the value of a to a certain value, the

attack needs to be repeated only for 127 possible values of b.

97

Data Complexity: Since the bias of the distinguisher is 2−9, therefore the attack needs 8 ·

(
1

2−9)
2

= 221 plaintext-ciphertext pairs due to the Matsui’s rule of thumb.

Time Complexity: Since 20 bytes of subkeys are guessed, 2-round decryption is done during

the attack and the attack is repeated for each 127 possible values of b, this attack has the time

complexity of 2160 · 222 ·
2
7
≈ 2180 7-round AES encryptions.

98

CHAPTER 7

SLIDE ATTACKS

Nowadays, block ciphers are designed to resist to the most powerful attacks such as differ-

ential and linear attacks. In addition to this, most of newly designed block ciphers have high

speed and simplicity in hardware and software implementations to be used in sensitive appli-

cations such as RFID systems and sensor networks, etc. For this reason, such block ciphers

have simple encryption and key scheduling algorithms. However, the simplicity can cause the

cipher vulnerable to cryptanalytic attacks. Therefore, the designers increase the number of

rounds of such block ciphers to make them secure. However, having high number of rounds

cannot always provide security against all attacks. The block cipher can still be insecure and

can be broken by using slide attack which is independent of number of rounds.

This chapter is mainly about Slide Attacks and its extensions: Advanced Slide Attacks and

Improved Slide Attacks.

7.1 Slide Attack

Slide attack was proposed by Biryukov and Wagner in 1999 [52, 53]. This attack is inspired by

Knudsen’s work [54] and the attack on LOKI89 and LOKI91 proposed by Biham [8], thus,

it is closely related to the related-key attack. Like related-key attack, slide attack exploits

both weaknesses of the key schedule and the encryption algorithm of the given block cipher.

However, slide attack is different from related-key attack in a sense that while related-key

attack uses two or more keys to make encryptions, slide attack uses only one key. Besides this,

slide attack is applicable to iterative block ciphers which have self-similarity. More explicitly,

99

if a block cipher has an iterative structure and a periodic key schedule with periodicity p, then

the cipher repeats itself in every p-rounds. Such a cipher is called p-round self-similar and

vulnerable to slide attack due to its self-similarity.

7.1.1 A Typical Slide Attack

Assume that the block cipher E can be written as a composition of r identical permutations

such that E = F ◦ F ◦ · · · ◦ F = Fr where F is a permutation which excepts a round key K

and the output of the previous permutation or plaintext as an input. The permutation F can

consist of one ore more rounds of the cipher. The crucial idea of a typical slide attack is to

slide a copy of (a permutation) encryption process against another copy of encryption process

so that each process is one round of phase.

Proposition 7.1.1 Let the pair (P0,C0) and (P∗0,C
∗
0) be a known plaintext-ciphertext pair

for the given block cipher and suppose that the relation P1 = P∗0 holds, then the relation

Pr = P∗r−1 is obtained with probability 1 where Pi and P∗i are the outputs of round i.

Proof. This can be proved by the Induction Hypothesis: Assume that the relation Pk = Pk−1

holds for some k, then Pk+1 = F(Pk,K) = F(P∗k−1,K) = P∗k which proves the relation

Pr = P∗r−1. �

In this attack, the attacker aims to find a pair (P,C) and (P∗,C∗) satisfying F(P,K) = P∗, such

a pair is called a slid pair. Then, the relation F(C,K) = C∗ is obtained for free. Slide attack

is pictorially depicted in Figure 7.1.

Figure 7.1: Typical slide attack

To perform the attack, the attacker needs to find a slid pair to derive the secret key K. How-

ever, finding a slid pair is not trivial, since F(P,K) can not be determined. But, slid equations

100

F(P,K) = P∗ and F(C,K) = C∗ are not both satisfied if (P,C) and (P∗,C∗) do not constitute

a slid pair which gives an approach to identify a slid pair. Afterwards, for each pair (P,C)

and (P∗,C∗) solve Equations F(P,K) = P∗ and F(C,K) = C∗ until to find K which verifies

the equations. Once s solution K has been found for the equations, the pair is probably is a

slid pair and the solution K is the actual value of K. However, the permutation F should be a

weak to allow us to extract key K. Such a permutation is called a weak permutation and the

cipher should have a weak permutation F.

The cipher is broken by taking 2n/2 known plaintext-ciphertexts (Pi,Ci) where n is a block

size. By the birthday paradox, it is expected to find a slid pair (Pi,Ci) and (P j,C j) for some

i, j which satisfies the relation F(P,K) = P∗. A typical slide attack needs O(2n/2) known

plaintext-ciphertexts and since there are O(2n) possible plaintext-ciphertext pairs, the time

complexity of the attack is O(2n).

7.1.2 Slide Attack on Feistel Ciphers

Slide attack is applied to Feistel ciphers with reduced time and data complexities thanks

to their structures in two ways: Known plaintext-ciphertext attack and chosen plaintext-

ciphertext attack.

To explain slide attack on Feistel ciphers, we consider a generic r-round Feistel Network with

one round self-similarity (All round keys are the same). Notice that this attack can be appli-

cable to any feistel ciphers with infinite number of rounds. Sliding is shown on an r-round

Feistel cipher as depicted in Figure 7.2.

In the case of Feistel ciphers, a pair (P,C) and (P∗,C∗) form a slid pair if the relation between

plaintexts F(PL, PR) = (PR, PL ⊕ f (PR ⊕ K)) = (P∗L, P
∗
R) holds which makes the relation be-

tween the ciphertexts F(CR,CL) = (CR,CL ⊕ f (CR ⊕ K)) = (C∗L,C
∗
R) hold for free. Then, the

slid equations for Feistel ciphers are:

101

P∗L = PR (7.1)

P∗R = PL ⊕ F(PR,K) (7.2)

C∗R = CL (7.3)

C∗L = CR ⊕ F(C∗R,K) (7.4)

Figure 7.2: Typical slide attack on a generic r-round Feistel cipher with one round self-
similarity

Known Plaintext-Ciphertext Attack: To mount attack, take a set of 2n/2 known plaintext-

ciphertexts (Pi,Ci) which constitute 2n plaintext-ciphertext pairs. By the Birthday Paradox,

we expect to get only one slid pair. Then, due to the Feistel construction, Equality 7.2 which

makes
n
2

-bit filtering condition on a slid pair should be satisfied. On the other hand, there is

also
n
2

-bit filtering condition on a slid pair for ciphertext pairs, that is CR = C∗L. In total, there

are n-bit filtering condition on a slid pair. Thus, If we sort all 2n/2 plaintext-ciphertexts into a

hash table and check the equalities PR = P∗L and CR = C∗L, then we expect that there are left

a slid pair and a false alarm. A slid pair that we have found allows us to derive correct key

value K by solving Equations 7.2 and 7.4. In addition, it is easy to eliminate the wrong key

102

suggested by a false alarm by just trying two or three plaintext-ciphertexts pair once key K

have found. This attack is implemented with O(2n/2) data complexity, O(2n/2) offline work.

Chosen Plaintext-Ciphertext Attack: In the case of Feistel ciphers, if the attacker can

choose carefully plaintexts satisfying PR = P∗L, then the required data is reduced from 2n/2

to 2n/4 plaintext-ciphertexts which constitute about 2n/2 pairs of plaintexts. Then, due to the

slide attack’s assumption, the attacker picks a set of 2n/4 plaintexts of the form (Pi
L, A) and

another set of 2n/4 plaintexts of the form (A, P j
R) where A is

n
2

-bit fixed value to satisfy Equa-

tion 7.1. Since the required Equation 7.4 has
n
2

-bit filtering condition, it eliminates 2n/2 of the

pairs. Hence, it is expected to find one slid pair which allows to extract the correct key value

of K from Equations 7.2 and 7.4.

7.2 Advanced Slide Techniques

Biryukov and Wagner upgraded the slide attack and presented two new techniques: comple-

mentation slide and sliding with a twist [55].

These techniques optimize a typical slide attack in way that in a typical slide attack, if the

cipher have two rounds (or more) self-similarity, one should slide by two rounds (or more),

on the contrary, in advanced slide attacks, sliding by one round is enough to mount attack.

This reduces the complexity of a typical slide attack. Then, in 2005, Phan [56] introduced a

more effective technique called Realigning Slide Attack which enables to attack block ciphers

having irregular key schedules.

7.2.1 Complementation Slide

In a typical slide attack, if the cipher is 2-round self similar, one must slide encryption process

by two rounds which causes inefficient attacks. In an advanced technique, namely comple-

mentation slide attack, one can slide only by one round as in the case of a typical slide attack.

In this method, a pair (P,C) and (P∗,C∗) forms a slid pair if they satisfy the following equa-

103

tions:

(P∗L, P
∗
R) = (PR ⊕ δ, PL ⊕ f (K0 ⊕ PR) ⊕ δ) (7.5)

(C∗L,C
∗
R) = (CR ⊕ δ,CL ⊕ f (K1 ⊕CR ⊕ δ) ⊕ δ) (7.6)

Figure 7.3: Complementation slide attack on a generic r-round Feistel cipher with two-round
self-similarity

In this technique, instead of choosing a slid difference between plaintexts as zero, one can

choose a slid difference as (δ, δ), where δ = K0 ⊕ K1. This causes the slid difference δ to

be cancelled by the subkey difference δ, appear in every round and show up at the ciphertext

differences.

By using slid Equations 7.5 and 7.6, this technique was applied to DESX which is an extension

of DES. For the details of the attack, refer to [55].

104

7.2.2 Sliding with a Twist

This method is described by using a generic Feistel cipher which has two-round self-similarity.

Unlike typical slide attack, one copy of encryption process is slided by one round against one

copy of decryption process so that each process is one round out of phase which is called as

the twist. This is reasonable, because in a generic Feistel cipher, encryption under the key

K = (K0,K1) is the same as decryption under K = (K1,K0). Encryption from the second

round follows the same way with the decryption starting one round before the last round.

This come up with a slid pair satisfying the following relations:

(C∗L,C
∗
R) = (PR, PL ⊕ f (K0 ⊕ PR)), (7.7)

(P∗L, P
∗
R) = (CR,CL ⊕ f (K0 ⊕CR)). (7.8)

Figure 7.4: Sliding with a twist attack on a generic Feistel cipher with two-round self-
similarity

From Equations 7.7 and 7.8, the relations P∗L = CR and C∗R = PR provide
n
2

+
n
2

= n-bit

filtering condition on a slid pair. If a set of 2n/2 plaintexts-ciphertexts is taken which provides

2n plaintext-ciphertext pairs, then it is expected to get only one slid pair. Recognizing a slid

105

pair is straightforward by sorting all 2n/2 data into a hash table which gives the real subkey

value K0.

Note that once one have found K0, K1 can also be found by using a typical slide attack.

This attack can also be done by choosing plaintexts so that P∗R = PR. By this way, the data

complexity of the attack is reduced from 2n/2 to 2n/4+1.

7.2.2.1 Cryptanalysis of DESX with Sliding Twist Technique

DESX which was proposed by Rivest in 1984 is a variant of DES. The design rational of

DESX is to make DES more resistant to Brute Force attack. DESX has the same compo-

nents as DES, however, different from DES, DESX has initial and final key whitenings. This

property of DESX makes it vulnerable to sliding twist technique.

Figure 7.5: Twisting slide attack on full-round DESX

It is assumed that a slid pair (P,C) and (P∗,C∗) satisfies the relation C ⊕ C∗ = WK1, then the

equality

P∗ = E−1(C∗ ⊕WK2) ⊕WK1 = E−1(C) ⊕WK1 (7.9)

is obtained.

If Equation 7.9 is combined with the relation P = E−1(C∗) ⊕WK1, then we have the equality

WK1 = E−1(C∗) ⊕ P = E−1(C) ⊕ P∗ which gives a condition on a slid pair.

Then, the attack algorithm goes as follows:

• Take a set of 232.5 known plaintext-ciphertexts (Pi,Ci) which constitutes 264 plaintext-

ciphertext pairs.

106

• Guess 56-bit secret key K of DES.

• For each guess of K, construct a lookup table and search a slid pair (P,C) and (P∗,C∗)

that satisfies E−1
K (Ci) ⊕ Pi = E−1

K (C j) ⊕ P j for some i, j.

• For each guess of K, it is expected to get a false slid pair which can be discarded easily

and a true slid pair if the guessed key is correct. Once a slid pair have been found,

whitening keys WK1 and WK2 can be identified by using the relations C ⊕ C∗ = WK1

and WK1 = E−1(C∗) ⊕ P or WK1 = E−1(C) ⊕ P∗. The accuracy of the candidate key of

DESX (WK1,K,WK2) can be tested easily by using 2 or 3 pairs of plaintext-ciphertext

pairs.

This attack has 232.5 known plaintexts as data complexity and 256 · 232.5 = 286.5 offline

full round DES encryptions.

7.2.3 Realigning Slide

A typical slide attack and advanced slide attacks- complementation slide and twisting slide-

can be applied to block ciphers which have self-similarity up to four rounds [52, 53, 55]. For

this reason, to extent applicability of slide attack, Phan [56] introduced an advanced slide

technique called Realigning Slide which enables to attack block ciphers having irregular

key schedule. More explicitly, even if the block cipher have dissimilar rounds between the

sliding rounds or self-similarity more than 4-round, sliding is still possible by realigning slide

technique. To describe this technique, Phan presented a new attack on full round DES that

will be mentioned in the next section.

7.2.3.1 Realigning Slide Attack on Full Round DES

Realigning Slide technique can be applied to full round DES with tweaked key schedule [56].

The key schedule of DES is modified such that 1 shift in round 2 and round 16 changes to 2

shifts. then, shift pattern is depicted in Figure 7.6. Sliding is based on the following theorem

which is adapted from the theorem in [57].

Theorem 7.2.1 For any key K, there exists another key K∗ such that

107

Figure 7.6: Shift pattern

Ki+1 = K∗i where i ∈ {1, 2, 3, 4, 5, 6, 7} ∪ {9, 10, 11, 12, 13, 14, 15} i.e K and K∗ share 14 round

keys.

Proof. For the sake of simplicity, we will use the same notations introduced by Knudsen: 56

bit permuted key K is separated into two parts such that K = (C0,D0), then the subkeys are is

defined as Ki = PC2(Ci,Di) where Ci = LS i(Ci−1), Di = LS i(Di−1) and LS i is a circular shift

to the left according to the number of positions which is given in Table 7.1. Further, define

La[i](C0,D0) = (LS a[i](C0), LS a[i](D0)) where a[i] is the summation of all shifts up to round

i + 1, and Ki = PC2(La[i](K)) and K = (C0,D0).

Table 7.1: Circular Shifts in the Tweaked Key Schedule of DES

Round i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LS i 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
a[i] 1 3 5 7 9 11 13 15 16 18 20 22 24 26 28 30

Let K be given and set K∗ = L2(K), then K2 = PC2(L3(K)) = PC2(L1(K∗)) = K∗1 , K9 =

PC2(LS 16(K)) and K∗8 = PC2(L15(K∗)) = PC2(L17(K)), and similarly Ki+1 = K∗i where i ∈

{1, 2, 3, 4, 5, 6, 7} . Then, the subkeys resynchronize, since K10 = PC2(L18(K)) = PC2(L16(K∗)) =

K∗9 , then similarly Ki+1 = K∗i where i ∈ {9, 10, 11, 12, 13, 14, 15, 16}. �

As seen in Figure 7.6, the rounds from 2 to 8 and 10 to 16 of the first encryption and the

rounds from 1 to 7 and 8 to 15 of the second encryption have the same round keys. By this

way, it is not possible to apply typical slide attack, because there is an unslid round in round

9 of the first encryption and in round 8 of the second encryption. However, realigning slide

technique handles this situation by sliding the inharmonious round probabilistically.

108

Let F be the round function of DES, once F(P,K1) = P∗ and F(X9,K9) = F(X∗8,K8) with a

probability p are satisfied, then the relation F(C,K16) = C∗ is obtained for free. Such a pair

P and P∗ is a slid pair if the relations F(P,K1) = P∗ and F(C,K16) = C∗ are satisfied. Then,

due to the Feistel structure of DES following equations obtained for a slid pair:

P∗L = PR (7.10)

P∗R = PL ⊕ F(PR,K1) (7.11)

C∗R = CL (7.12)

C∗L = CR ⊕ F(C∗R,K16) (7.13)

The crucial point is to compute the probability p to get rid of the unslid round. The proba-

bility p can be computed by using DDTs or XOR Tables of S-boxes of DES. When DDTs of

S-boxes are analyzed, it is seen that among 26 possible input differences, the average number

of output differences is 34.25 which cause zero output difference. Therefore, the probability

p of F(X9,K9) = F(X∗8,K8) is computed as (
34, 24

64
)8 ≈ 2−8.

Note that input difference to unslid round in both encryptions is zero and nonzero input dif-

ference to S-boxes is due to the key differences. Therefore, out of 256 possible key pairs about

256 · 2−8 = 248 pairs satisfy the desired condition F(X9,K9) = F(X∗8,K8).

To perform the attack, pick two sets of plaintexts each of which have (
1
p

)1/2 · 216 plain-

texts Pi and P∗j , respectively. Then, obtain their corresponding ciphertexts Ci and C∗j which

provide
1
p
· 232 chosen plaintext-ciphertext pairs. Therefore, it is expected to find about

p · 2−32 ·
1
p
· 232 = 1 slid pair.

Since Equation 7.12 provides 32-bit filtering condition on a slid pair, there are left about
1
p

pairs to examine. Then, each remaining pair provides 216 candidates for K1 and 216 key can-

didates for K16 from Equations 7.12 and 7.12 respectively, in total 232 key pairs (K1,K16).

Since K1 and K16 have 40 bits in common which provides 40-bit filtering condition, there are

232 · 2−40 = 2−8 key candidates left. Since the number of remaning pairs is
1
p

, the number of

109

suggested key pairs is
1
p
· 2−8. In this attack, we have p = 2−8, therefore, it is expected to get

1 real key value (K1,K16).

The time complexity of the attack is 28 ·
2
16

= 25 full round DES encryptions, since checking

equation for one pair is equivalent to 2-round DES encryptions.

Note that in Equation 7.11, if P∗R ⊕ PL is rolled back to the f-function of DES, there are 22

input value to the each S-box. The reason is that S-boxes of DES are 6 bit to 4 bit and there

are 22 input values correspond to each output value. Therefore, for each candidate slid pair,

each S-box suggests 22 candidates for K1 and in total there are (22)8 = 216 candidates for K1.

In addition, in Equation 7.13, similarly there are 216 candidates for K16.

7.2.4 Methods for Handling Stronger Functions

As mentioned before, a typical slide attack is based on the assumption that the cipher is

decomposed into identical permutation which is so weak that a few input-output pairs are

enough to derive the key. But if the permutation is so strong that multiple input output pairs

are needed to derive the secret key. Therefore, to cope with this situation, two sliding methods

presented by Biryukov and Wagner [55] is described below:

1. By using Differential Analysis: Let α → β be a differential characteristic with proba-

bility p for the permutation F. Let P and P∗ be two plaintexts and P⊕α and P∗⊕β be their

related plaintexts, respectively. If we suppose that F(P) = P∗, then F(P ⊕ α) = P∗ ⊕ β

holds with probability p due to differential characteristic above which provides a slid

pair P and P∗. By this way, for the permutation F, there are four known input-output

pairs to derive the key. If a set of 3 · 2n/2 p−1/2 plaintexts are chosen including the plain-

texts P and P ⊕ α and P ⊕ β, then we have one slid pair P and P∗ such that F(P) = P∗

and F(P ⊕ α) = P∗ ⊕ β holds with probability p.

2. By using multiple encryption: If the permutation F needs N known plaintexts to de-

rive the key K, then the following method works out to find N slid pairs. For each

110

plaintex P, obtain its encryption E(P) and encryption of E2(P) of E(P) and until the

encryption E2N(P). Suppose if P∗ = F(Ei(P)), then by sliding condition on cipher-

texts E(P∗) = F(Ei+1(P)) holds for free. By this way, we get the relation E j(P∗) =

F(Ei+ j(P)) for j = 1, 2, . . . , 2N − 1 which provides 2N − j slid pairs. If N1/2 · 2n+1/2

known plaintexts which constitute N · 2n plaintext-ciphertext pairs are chosen, N slid

pairs the existence of which are verified by the birthday paradox can be identified by

using this technique.

7.3 Improved Slide Attacks

Biham et al. [58] have improved the slide attack in a way that one can find slid pairs faster than

early presented techniques. In the previous techniques, existence of a slid pair is confirmed

by the Birthday Paradox, but no obvious methods are provided to find a slid pair. On the

contrary, this technique provides an instant method to find several slid pairs by exploiting the

cycle structure of the encryption algorithm and the round function of the given cipher.

7.3.1 Improved Slide Technique

In this method, the cycle structure of the cipher is analyzed and an attack which is based on

on only the cycle structures of E and F and not based on any other properties of E and F is

constructed.

Let E = F ◦ F ◦ · · · ◦ F = Fr an encryption algorithm of a block cipher which can be

decomposed into r-identical permutations.

Definition 7.3.1 Let P : GF(2n) → GF(2n) be a random permutation, then the cycle length

of X is defined as Cyclelenght(X) = min {s > 0 |Ps(X) = X} where X ∈ GF(2n).

As mentioned in [59], the length of cycles are close to be uniformly distributed, therefore the

expected values of the cycle length is E(Cyclelenght(X)) = 2n−1. Denote the cycle length

of plaintext X in F and E by CycleF(X) and CycleE(X) respectively and let the value of

CycleF(X) and CycleE(X) be a and b, respectively. Since E = Fr, the relation Eb(X) = X can

111

be expressed as X = Eb(X) = Fr·b(X). Since, a is the cycle length of X in the cycle of F,

a divides r · b, that is a | r · b. If not so, assume the contrary that a - r · b, more explicitly

r · b = a + r1, 0 < r1 < a, then we have X = F(X) = Fa+r1(X) = Fr1(X) which contradicts to

the assumption that a is the smallest integer satisfying the relation Fa(X) = X. Hence, a |r · b .

Proposition 7.3.2 b =
a

gcd(a, r)

Proof. We need to show that b
∣∣∣∣∣ a
gcd(a, r)

and
a

gcd(a, r)
|b .

(⇒:)
a

gcd(a, r)
|b is obvious, since a |r · b .

(⇐:) Consider E
a

gcd(a,r) (X) = Fr· a
gcd(a,r) (X) = (Fa(X))

r
gcd(a,r) = X. Since b is the cycle length of X

in the cycle of E, b
∣∣∣∣∣ a
gcd(a, r)

. �

If gcd(a, r) = 1, then by Proposition 7.3.2 we get a = b. By Euclid’s Extended Algorithm,

there exits an integer k1 ∈ {0, 1, . . . r − 1} such that k1 · a = −1(mod r) or equivalently there

exits k2 such that k2 · r = k1 · a + 1. Then, since Fk1·a+1(X) = (Fk1·a ◦ F)(X) = F(X) and

Fk1·a+1(X) = Fk2·r(X) = Ek2(X), it is found that F(X) = Ek2(X) which gives a slid pair

(X, Ek2(X)). By using multiple encryption technique [55] which is also mentioned in subsec-

tion 7.2.4, (Et(X), Ek2+t(X)) are slid pairs where t is an integer satisfying 1 ≤ t ≤ b − 1, too.

If gcd(a, r) = 1, then we have seen that one can find slid pairs, instantly. However, if it is not

the case, the success probability of the attack is computed as: for a random permutation the

probability of gcd(a, r) , 1 is
r − ϕ(r)

r
where ϕ is an Euler Phi Function. For choosing t plain-

texts which are all in different cycles, the success probability of the attack is 1 − (
r − ϕ(r)

r
)
t
.

Since expected value of cycle length for any X is E(CycleF(X)) = 2n−1, the attack needs

O(2n−1) adaptively chosen plaintexts.

The algorithm for finding slid pairs is the following:

112

1. Take a plaintext X0 and compute b by encrypting X0 in succession until to get X0 again.

Note that there are no algorithms to compute a.

2. Assume that gcd(a, r) = 1, then compute k2 to find slid pairs (Et(X), Ek2+t(X)) where

t ∈ {0, . . . , b − 1}. The number of slid pairs is b, since b is the cycle length of X in the

cycle E.

3. If the algorithm fails, then take another plaintext X1 such that X1 < CycleE(X1) and redo

the steps 1 and 2.

In paper [58], this method is applied to 24-Round GOST.

7.3.2 Improved Slide Attack on 24-Round GOST

GOST [16] is vulnerable to this technique due to the self-similarity of its key schedule. For

the detailed description of GOST, refer to Chapter 3. If 24-round of GOST is considered,

the cipher can be decomposed into 3 identical permutations each of which have 8-rounds.

Consider the encryption function of GOST as E = F3, where F is an 8-round permutation

excepting the set of subkeys {K1,K2, . . .K3}. First of all, slid pairs ((Pi,Ci), (P j,C j)) such that

F(Pi) = P j and F(Ci) = C j for some i and j are found, then an 8-round differential attack

is applied. The crucial point of the attack is that a 8-round differential attack is applied to

8-round F permutation instead of 24-round encryption function E. For this reason, the attack

considers slid pairs (Pi, P j) as plaintext-ciphertext pairs for F permutation. More explicitly,

P j is the corresponding ciphertext of Pi, that is F(Pi) = P j.

The attack is based on a 7-round differential characteristic which is independent of S-Boxes

of GOST. The 7-round differential characteristic given in Table 7.2 has a probability of
15
16
·

45
64
·

3
4

= 0.494 where Ai ∈ {0, 1x, . . . , 8x}, Bi ∈ {0, 8x} and B1 ∈ {1, 9x}.

The attack procedure is as follows:

1. By using the technique given in Section 7.3.1, find 243.5 slid pairs (Pi, P j) such that

F(Pi) = P j.

113

Table 7.2: A 7-Round Differential Characteristics with Probability of 0.494 for GOST

Round i ∆XL
i ∆XR

i Probability
1 00010000 00000000 1

2 00000000 00010000
15
16

3 00010000 A1B1000000 1

4 A1B1000000 0001A2?B2
45
64

5 0001A2?B2 A5B5A3??B300 1

6 A5B5A3??B300 ???B10A7??
3
4

7 ???B10A7?? ?A8B9????? 1
???????? ?A8B9????? -

2. Construct a set of pairs of slid pairs such that ((Pi, P j), (P∗i , P
∗
j)) such that Pi⊕P∗i = ∆P.

From the set of 243.5 slid pairs, it is expected to find
(243.5)2

2
· 2−64 = 222 pairs of slid

pairs having the difference ∆P where 2−64 is the probability of having the difference

∆P.

3. Pick pairs of slid pairs ((Pi, P j), (P∗i , P
∗
j)) such that

• P j has the value A0 in bit positions 8 − 15, where A ∈ {0x, 1x, . . . , Fx} is a prede-

termined value

• P∗j has the value B0 in bit positions 8 − 15, where B ∈ {0x, 1x, . . . , Fx} − {A} is a

predetermined value

Since, we have 8-bit condition on both set of ciphertexts, 222 · (2−8)2 = 26 cipher-

texts remain.

Note that determining some bits of ciphertexts can be done to decrease the data

complexity of the attack. On the other hand, choosing zero value in bit posi-

tions 8 − 11 in both set of ciphertexts decreases the probability of carry bit which

changes the input to S 4 reduces significantly also, makes same input value to S 4.

However, the attack can fail if the four key bits corresponds to S 3 are all 1’s and

a carry comes from the input to S 4. If it happens, the attack fails and more condi-

tions should be imposed on ciphertexts.

4. For each remaining slid pair ((Pi, P j), (P∗i , P
∗
j)),

• Guess the output of S 4 for all pairs (Pi, P j) under the assumption that the output

value of all pairs are equal

114

• Guess the output of S 4 for all pairs (P∗i , P
∗
j) under the assumption that the output

value of all pairs are equal

• Partially decrypt ciphertexts P j and P∗j through S 4 and check if the difference is 0

in 4 bits (23-26) of the left half of the input

• If the difference in these 4-bits are zero increment the counter by 1 corresponds to

8-bit guesses

5. Keep the guesses whose counter is greater than 19.

The idea behind the attack is to exploit the fact that in right pairs there is a difference of 4-bits.

This is done by making sure that all the ’ciphertexts’ (P j, P∗j) are expected to have the same

input to S-boxes thus the same output. This is why the outputs of S 4 are guessed.

In addition, among 26 slid pairs, the counter of wrong guesses is 26 ·2−4 = 4 while the counter

of a right pair is 26 · 0.494 = 31.6. Since there are 28 guesses in total , the correct guessed is

suggested with a probability of 1 − 2−7.6 while a wrong guessed has counter 19 with a proba-

bility of less that 2−22.

The time complexity of the attack is dominated by the first step which finds slid pairs by using

about 263 encryptions.

115

CHAPTER 8

CONCLUSION

Block ciphers play crucial roles in many cryptographic real-life applications. Accordingly,

day by day new block ciphers are designed to be used in such applications. In parallel to this,

the security of these newly designed block ciphers should be analyzed and their reliability

should be proved. Therefore, cryptanalysis of block ciphers is as important as designing se-

cure block ciphers and plays a key part in cryptology.

In this work, we have covered cryptanalytic attacks based on related keys for block ciphers.

Recently, related-key attacks have been applied to many block ciphers and gain importance

in security analysis of the block ciphers. Although related-key attacks seem infeasible to

be mounted at first glance and some cryptographers claim that it is not always possible to

make encryptions under keys that have special properties (difference, etc.), an ideal cipher

should never have such relations between plaintext-ciphertexts and keys. Moreover, related-

key attacks can be effectively applied to cryptographic block cipher based hash functions. To

give an example, new striking related-key attacks on full-round AES-192 and AES-256 have

recently been presented by Biryukov et al. [10]. They proved in theoretically that AES-192

is not an ideal cipher and can not be used as an hash function in Davies-Meyer mode anymore.

To conclude, this work have presented cryptanalytic attacks exploiting the structure of the

encryption and key scheduling algorithms of block ciphers. The aim is to combine all types of

related-key attacks on block ciphers. Furthermore, this work includes our contribution which

improves 12-round impossible distinguisher for XTEA by exploiting differential property of

the key schedule of XTEA. The summary of the chapters is as follows. Chapter 1 includes

116

an introduction of block ciphers and brief descriptions of differential and linear cryptanalysis.

Chapter 2 presents basic related-key attacks and its applications. Chapter 3 is devoted to

related-key differential cryptanalysis and its applications. Chapters 4, 5 and 6 are on the

extensions of related-key differential cryptanalysis, namely related-key boomerang, related-

key amplified boomerang, related-key rectangle, related-key impossible differential, related-

key impossible boomerang and related-key differential-linear attacks. Chapter 7 gives the

detailed description of slide attack and its improvements.

117

REFERENCES

[1] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryptosystems, Ad-
vances in Cryptology, Proceedings of CRYPTO’90, 10th Annual International Cryptol-
ogy Conference, Lecture Notes in Computer Science, volume 537, Springer, 1991.

[2] E. Biham and A. Shamir, Differential Cryptanalysis of Data Encryption Standard,
Springer-Verlag, 1993.

[3] E. Biham and A. Shamir, Differential Cryptanalysis of the full 16-round DES, Advances
in Cryptology, Proceedings of CRYPTO’92, The 12th Annual International Cryptology
Conference, Lecture Notes in Computer Science, volume 740, pages 487-496, Springer-
Verlag, 1993.

[4] M. Matsui and A. Yamagishi, A New Method for Known Plaintext Attack of FEAL ci-
pher, Advances in Cryptology, Proceedings of EUROCRYPT’92, International Con-
ference on the Theory and Application of Cryptographic Techniques, Lecture Notes in
Computer Science, volume 658, pages 81-91, Springer-Verlag, 1993.

[5] M. Matsui, Linear Cryptanalysis Method for DES cipher, Advances in Cryptology, Pro-
ceedings of EUROCRYPT’93, International Conference on the Theory and Application
of Cryptographic Techniques, Lecture Notes in Computer Science, volume 765, pages
386-397, Springer-Verlag, 1994.

[6] R. Winternitz and M. E. Hellman, Chosen-Key Attacks on a Block Cipher, Cryptologia,
volume 11, pages 16-20, 1987.

[7] L. R. Knudsen, Cryptanalysis of LOKI, Advances in Cryptology, Proceedings of
ASIACRYPT 1992, volume 739, Lecture Notes in Computer Science, pages 22-35,
Springer-Verlag, 1992.

[8] E. Biham, New Types of Cryptanalytic Attacks Using Related-Key, Advances in Cryp-
tology, EUROCRYPT’93, International Conference on the Theory and Application of
Cryptographic Techniques, Lecture Notes on Computer Science, volume 765, pages
229-246, Springer-Verlag, 1994.

[9] L. Brown, J. Pieprzyk and J. Seberry, LOKI- A Cryptographic Primitive for Authenti-
cation and Secrecy Applications, Proceedings of AUSCRYPT’90, International Confer-
ence on Cryptology in Australia, Advances in Cryptology, Lecture Notes in Computer
Science, volume 453, pages 229-236, 1990.

[10] A. Biryukov and D. Khovratovich, Related-Key Cryptanalysis of the Full AES-192 and
AES-256, 2009.

[11] E. Biham, O. Dunkelman, and N. Keller, A Simple Related-Key Attack on the full
SHACAL-1, CTRSA 2007, Topics in Cryptography, Lecture Notes in Computer Science,
volume 4377, pages 20-30, Springer, 2007.

118

[12] H. Handschuh and D. Naccache, SHACAL, Preproceeding of NESSIE first workshop,
Leuven, 2000.

[13] J. Kelsey, B. Schneier and D. Wagner, Key Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES, Proceedings of CRYPTO’96, The 16th Annual Inter-
national Cryptology Conference, Advances in Cryptology, pages 7-23, Springer-Verlag,
1996.

[14] Y. Ko, S. Hong, W. Lee, S. Lee and J.-S. Kang ,Related Key Differential Attacks on 27
Rounds of XTEA and Full-Round GOST, FSE’04, Lecture Notes in Computer Science,
volume 3017, pages 299-316, Springer Berlin / Heidelberg, 2004.

[15] M. Blunden and A. Escott, Related-Key Attacks on Reduced Round KASUMI, Proceed-
ings of FSE’01, 8th International Fast Software Encryption Workshop, Lecture Notes in
Computer Science, volume 2355, pages 277-285, Springer-Verlag, 2002.

[16] GOST, Gosudarstvennyi Standard 28147-89, Cryptographic Protection for Data Pro-
cessing Systems, Government Committee of the USSR for Standards, 1989.

[17] H.Seki and T.Kaneko, Differential Cryptanalysis of Reduced Rounds of GOST,SAC’00
, The 7th Annual Workshop on Selected Areas in Cryptography, Lecture Notes in Com-
puter Science, pages 315-323, volume 2012, Springer-Verlag, 2001.

[18] The 3rd Generation Partnership Project, Technical Specification Group Services and
System Aspects, 3GSecurity, Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI Specification, V.3.1.1, 2001.

[19] M. Matsui, Block Encryption Algorithm MISTY, Proceedings of FSE’97, The 4th In-
ternational Fast Software Encryption Workshop, Lecture Notes in Computer Science,
volume 1267, pages 6474, Springer-Verlag, 1997.

[20] E. Biham, O. Dunkelman and N. Keller, A Related-Key Rectangle Attack on the Full
KASUMI, ASIACRYPT’05, Annual International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Lecture Notes in Computer Science,
volume 3788, pages 443461, Springer, 2005.

[21] R. Knudsen, DEAL - A 128-Bit Block Cipher. Technical report, Department of Informat-
ics, University of Bergen, Norway, 1998.

[22] E. Biham, A. Biryukov and A. Shamir, Cryptanalysis of Skipjack Reduced to 31 Rounds
Using Impossible Differentials, Advances in Cryptology, Proceedings of EUROCRYPT
1999, International Conference on the Theory and Application of Cryptographic Tech-
niques, Lecture Notes in Computer Science, volume 1592, pages 12-13, Springer Verlag,
1999.

[23] E. Biham, A. Biryukov and A. Shamir, Miss in the Middle Attacks on IDEA and Khufu,
Proceedings of FSE’99, The 6th International Fast Software Encryption Workshop, Lec-
ture Notes in Computer Science, volume 1636, pages 124-138, Springer-Verlag, 1999.

[24] O. Özen, K. Varıcı, C. Tezcan and Ç. Kocair, Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT, to appear in Information Se-
curity and Privacy, ACISP 200914th Australasian Conference, , Lecture Notes in Com-
puter Science, Springer-Verlag, 2009.

119

[25] J. Daemen and V. Rijmen, AES Proposal: Rijndael, Second Version, AES submission.

[26] G. Jakimoski and Y. Desmedt, Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants, SAC’03, The 10th Annual Workshop on Selected Areas in Cryptogra-
phy, Lecture Notes in Computer Science, volume 3006, pages 208-221, Springer-Verlag,
2004.

[27] E. Biham, O. Dunkelman and N. Keller, Related-Key Impossible Differential Attacks
on 8-round AES-192, CT-RSA’06, The Cryptographers’ Track at the RSA Conference,
Lecture Notes in Computer Science, volume 3860, pages 39-49, Springer-Verlag, 2006.

[28] W. Zhang, W. Wu, L. Zhang and D. Feng, Improved Related-Key Impossible Differential
Attacks on Reduced-Round AES-192, SAC’03, The 13th Annual Workshop on Selected
Areas in Cryptography, Lecture Notes in Computer Science, volume 4356, pages 15-27,
Springer-Berlin, 2007.

[29] W. Zhang, W. Wu and L. Zhang, Related-Key Impossible Differential Attacks on
Reduced-Round AES-256.

[30] D. Hong, J. Sung, S. Hong, J, Lim, S. Lee, B. Koo, C. Lee, D. Chang, j. Lee, K. Jeong,
H. Kim, J. Kim and S. Chee, HIGHT: A New Block Cipher Suitable for Low-Resource
Device, CHES’06, The 8th International Workshop on Cryptographic Hardware and
Embedded Systems pages, Lecture Notes in Computer Science, volume 4249, pages
46-59, 2006.

[31] J. Lu, Cryptanalysis of Block Ciphers, Royal Holloway, University of London, 2008.

[32] D. Wheeler and R. Needham, TEA, A Tiny Encryption Algorithm, Proceedings of
FSE’98, The 9th International Fast Software Encryption Workshop, Lecture Notes in
Computer Science, volume 1372, pages 97-110, Springer-Verlag, 1998.

[33] D. Wheeler and R. Needham, TEA Extensions, Technical Report, University of Cam-
bridge, Cambridge, UK, 1997.

[34] S. Hong, Y. Ko, D. Chang, W. Lee and S. Lee, Differential Cryptanalysis of TEA and
XTEA, Proceedings of ICISC’03, The 7th Annual International Conference on Informa-
tion Security and Cryptology, Lecture Notes in Computer Science, volume 2791, pages
402-417, Springer-Verlag, 2003.

[35] E. Lee, D.Hong, D. Chang, S. Hong and J. Lim, A Weak Key Class of XTEA for a
Related-Key Rectangle Attack, Proceedings of Vietcrypt’06, International Conference
on Cryptology in Vietnam , Lecture Notes in Computer Science, volume 4341, pages
286297, Springer-Verlag, 2006.

[36] D. Moon, K. Hwang, W. Lee, S. Lee, and J. Lim, Impossible Differential Cryptanal-
ysis of Reduced Round XTEA and TEA, Proceedings of FSE’02, The 9th International
Fast Software Encryption Workshop, Lecture Notes in Computer Science, volume 2365,
pages 49-60, Springer-Verlag, 2002.

[37] E. Biham, O. Dunkelman, and N. Keller, A Related-Key Boomerang and Rectangle At-
tacks, Advances in Cryptology, Proceedings of EUROCRYPT’05, International Con-
ference on the Theory and Application of Cryptographic Techniques, Lecture Notes in
Computer Science, volume 3494, pages 507-525, Springer-Verlag, 2005.

120

[38] D. Wagner, The Boomerang Attack, Proceedings of FSE’99, The 10th International
Fast Software Encryption Workshop Lecture Notes in Computer Science, volume 1636,
pages 156170, Springer-Verlag, 1999.

[39] J. Kim, G. Kim, S. Hong, S. Lee and D.Hong, The Related-Key Rectangle Attack - Ap-
plication to SHACAL-1, Proceedings of ICICS’04, International Conference on Infor-
mation Security and Privacy, Lecture Notes in Computer Science, volume 3108, pages
123-136, Springer Verlag, 2004.

[40] S. Hong, J. Kim, S. Lee, and B. Preneel, Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192, Proceedings of FSE’05, The 14th International
Fast Software Encryption Workshop, Lecture Notes in Computer Science, volume 3557,
pages 368-383, Springer-Verlag, 2005.

[41] X. Lai and J. L.Massey, A Proposal for a New Block Cipher Encryption Standard, Pro-
ceeding of EUROCRYPT 90, Workshop on the Theory and Application of of Crypto-
graphic Techniques , Lecture Notes in Computer Science, volume 473, pages 389404,
Springer-Verlag,1991.

[42] K. Jeong, C. Lee, J. Sung, S. Hong and J. Lim, Related-key Amplified Boomerang Attack
on the Full-Round Eagle-64 and Eagle-128, Information Security and Privacy, ACISP
2007, 12th Australasian Conference, Lecture Notes in Computer Science, volume 4586,
pages 143-157, Springer-Verlag, 2007.

[43] E. Biham, O.Dunkelman and N. Keller, The Rectangle Attack Rectangling the Serpent,
Proceedings of EUROCRYPT’01, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Lecture Notes in Computer Science, volume 2045,
pages 340357, Springer-Verlag, 2001.

[44] J. Kim, S. Hong and B. Preneel, Related-Key Rectangle Attacks on Reduced AES-192
and AES-256, Proceedings of FSE’07, The 14th International Fast Software Encryption
Workshop, Lecture Notes in Computer Science, volume 4593, pages 225-241, Springer-
Verlag, 2007.

[45] E. Biham, O. Dunkelman, and N. Keller, Rectangle Attack on 49-round SHACAL-1,
Proceedings of FSE’03, The 10th International Fast Software Encryption Workshop,
Lecture Notes in Computer Science, pages 22-35, Springer, 2003.

[46] O. Dunkelman, N. Keller and J. Kim, Related-Key Rectangle Attack on the Full
SHACAL-1, Proceedings of SAC’06, Selected Areas in Cryptography, Springer, 2006.

[47] X. Wang, L. Yin, H. Yu, Finding Collisions in the Full SHA-1, Advances in Cryptology,
Proceedings of CRYPTO’05, The 25th Annual International Cryptology Conference,
Lecture Notes in Computer Science, volume 3621, pages 17-36, 2005.

[48] US National Bureau of Standards, Secure Hash Standard, Federal Information Process-
ing Standards Publications No. 180-2, 2002.

[49] S. Langford and M. Hellman, Differential-Linear Cryptanalysis, Advances in Cryptol-
ogy, Preecedings of CRYPTO’94, The 14th Annual International Cryptology Confer-
ence, Lecture Notes in Computer Science, volume 839, pages 17-25, Springer-Verlag,
1994.

121

[50] E. Biham, O. Dunkelman and N. Keller, Enhancing Differential-Linear Cryptanalysis,
Advances in Cryptology, Preecedings of ASIACRYPT’02, The 8th Annual International
Conference on the Theory and Application of Cryptology and Information Security, Lec-
ture Notes in Computer Science, volume 2501, pages 254-266, Springer-Verlag, 2002.

[51] W. Zhang, L. Zhang, W. Wu and D. Feng, Related-Key Differential-Linear Attacks on
Reduced AES-192, INDOCRYPT 2007, The 8th International Cryptology Conference
in India, Lecture Notes in Computer Science, volume 4859, pages 73-85, Springer-
Heidelberg 2007.

[52] A. Biryukov and D. Wagner, Slide Attacks, Advances in Cryptology, Proceedings of
FSE’99, The 6th International Fast Software Encryption Workshop, Lecture Notes in
Computer Science, volume 1636, pages 245-259, Springer-Verlag, 1999.

[53] M. Ciet, G. Piret and J.-J. Quisquarter, Related-Key and Slide Attacks: Analysis, Con-
nections, and Improvements , unpublished, 2002.

[54] L. R. Knudsen, Cryptanalysis of LOKI91, Advances in Cryptology, ASIACRYPT’92,
Annual International Conference on the Theory and Application of Cryptology and In-
formation Security, Lecture Notes in Computer Science, volume 718, pages 196-208,
Springer-Verlag, 1993.

[55] A. Biryukov and D. Wagner, Advanced Slide Attacks, Advances in Cryptology, Pro-
ceedings of EUROCRYPT’00, International Conference on the Theory and Application
of Cryptographic Techniques Lecture Notes in Computer Science, volume 1807, pages
586-606, Springer-Verlag, 2000.

[56] R. C. W. Phan, Advanced Slide Attacks Revisited: Realigning Slide on DES, Progress
in Cryptology, Mycrypt 2005, 1st International Conference on Cryptology in Malaysia,
Lecture Notes in Computer Science, volume 3715, pages 263-276, Springer, 2005.

[57] L. R. Knudsen, New Potentially Weak Keys for DES and LOKI, Proceedings of EURO-
CRYPT’94, International Conference on the Theory and Application of Cryptographic
Techniques, volume 950, Springer Verlag, 1994.

[58] E. Biham, O. Dunkelman and N. Keller, Improved Slide Attacks Proceedings of FSE’07,
14th International Fast Software Encryption Workshop, Lecture Notes in Computer Sci-
ence, volume 4593, pages 153-166, Springer-Verlag, 2007.

[59] D. W. Davies and G. I. P. Parkin, The Average Cycle Size of the K Stream in Output Feed-
back Encipherment (Abtract), Advances in Cryptology, Proceedings of CRYPTO’82 ,
2nd Annual International Cryptology Conference, Lecture Notes in Computer Science,
pages 97-98, 1982.

[60] M. Matsui, The First Experimental Cryptanalysis of Data Encryption Standard, Ad-
vances in Cryptology, Proceedings of CRYPTO’93, 13th Annual International Cryptol-
ogy Conference, Lecture Notes in Computer Science, volume 839, pages 1-11, Springer-
Verlag, 1994.

[61] O. Dunkelman, Techniques for Cryptanalysis of Block Ciphers, PhD Thesis, Computer
Science Department, Tecnion, 2006.

122

[62] S. Furuya, Slide Attacks with a Known-Plaintext Cryptanalysis Proceedings of Informa-
tion and Communication Security 2001, Lecture Notes in Computer Science, volume
2288, pages 214-225, Springer-Verlag, 2000.

123

